
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

2012

Novel Techniques of Using Diversity in Software Security and Novel Techniques of Using Diversity in Software Security and

Information Hiding Information Hiding

Jin HAN
Singapore Management University, jin.han.2007@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Information Security Commons

Citation Citation
HAN, Jin. Novel Techniques of Using Diversity in Software Security and Information Hiding. (2012).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/83

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Novel Techniques of Using Diversity in Software
Security and Information Hiding

HAN Jin

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee

Debin GAO (Supervisor / Chair)
Assistant Professor of Information Systems

Singapore Management University

Robert DENG Huijie (Co-Supervisor)
Professor of Information Systems
Singapore Management University

Yingjiu LI

Associate Professor of Information Systems
Singapore Management University

Jianying ZHOU

Senior Scientist
Institute for Infocomm Research

Singapore Management University

2012

Copyright (2012) HAN Jin

Abstract

Diversity is an important and valuable concept that has been adopted in many fields

to reduce correlated risks and to increase survivability. In information security,

diversity also helps to increase both defense capability and fault tolerance for in-

formation systems and communication networks, where diversity can be adopted

from many different perspectives. This dissertation, in particular, focuses mainly

on two aspects of diversity – the application software diversity and the diversity in

data interpretation.

Software diversity has many advantages over mono-culture in improving system

security. A number of previous researches focused on utilizing existing off-the-

shelf diverse software for network protection and intrusion detection, many of which

depend on an important assumption – the diverse software utilized in the system

is vulnerable only to different exploits. In the first work of this dissertation, we

perform a systematic analysis on more than 6,000 vulnerabilities published in 2007

to evaluate the extent to which this assumption is valid. Our results show that the

majority of the vulnerable application software products either do not have the same

vulnerability, or cannot be compromised with the same exploit code.

Following this work, we then propose an intrusion detection scheme which

builds on two diverse programs to detect sophisticated attacks on security-critical

data. Our model learns the underlying semantic correlation of the argument val-

ues in these programs, and consequently gains more accurate context information

compared to existing schemes. Through experiments, we show that such context in-

formation is effective in detecting attacks which manipulate erratic arguments with

comparable false-positive rates.

Software diversity does not only exist on desktop and mainframe computers,

it also exists on mobile platforms like smartphone operating systems. In our third

work in this dissertation, we propose to investigate applications that run on diverse

mobile platforms (e.g., Android and iOS) and to use them as the baseline for com-

paring their security architectures. Assuming that such applications need the same

types of privileges to provide the same functionality on different mobile platforms,

our analysis of more than 2,000 applications shows that those executing on iOS con-

sistently ask for more permissions than their counterparts running on Android. We

additionally analyze the underlying reasons and find out that part of the permission

usage differences is caused by third-party libraries used in these applications.

Different from software diversity, the fourth work in this dissertation focuses on

the diversity in data interpretation, which helps to defend against coercion attacks.

We propose Dummy-Relocatable Steganographic file system (DRSteg) to provide

deniability in multi-user environments where the adversary may have multiple snap-

shots of the disk content. The diverse ways of interpreting data in the storage allows

a data owner to surrender only some data and attribute the unexplained changes

across snapshots to the dummy data which are random bits. The level of deniability

offered by our file system is configurable by the users, to balance against the result-

ing performance overhead. Additionally, our design guarantees the integrity of the

protected data, except where users voluntarily overwrite data under duress.

This dissertation makes valuable contributions on utilizing diversity in software

security and information hiding. The systematic evaluation results obtained for mo-

bile and desktop diverse software are important and useful to both research literature

and industrial organizations. The proposed intrusion detection system and stegano-

graphic file system have been implemented as prototypes, which are effective in

protecting valuable user data against adversaries in various threat scenarios.

Contents

1 Introduction 1

1.1 Diversity in Software Security . 2

1.2 Diversity in Information Hiding 4

1.3 Contributions and Organization . 5

2 Literature Review 7

2.1 Software Diversity for Fault Tolerance and Intrusion Detection . . . 7

2.2 Mobile Application Security . 8

2.3 Cryptographic and Steganographic File Systems 10

3 A Systematic Study on Vulnerabilities in Diverse Software 13

3.1 Introduction . 13

3.2 Source of Information and Preliminary Analysis 16

3.2.1 Software without substitutes 17

3.2.2 Vulnerable software categorization 18

3.2.3 Vulnerabilities in application software 19

3.3 Vulnerabilities in Software Substitutes 22

3.3.1 Finding vulnerabilities in software substitutes 22

3.3.2 Exploit Code . 24

3.3.3 Summary . 25

3.4 Software Products running on Multiple Operating Systems 25

3.4.1 Different operating systems 26

i

3.4.2 Software products running on multiple operating systems . . 27

3.4.3 Exploit Code . 28

3.4.4 Summary . 30

3.5 Vulnerabilities in Other Software Products 31

3.5.1 Web script modules . 31

3.5.2 Operating systems, languages and libraries 35

3.5.3 Summary . 36

3.6 Discussion . 37

4 Software Diversity in Intrusion Detection 38

4.1 Introduction . 38

4.2 Diversity Detection Model . 40

4.2.1 Overview . 41

4.2.2 Relationships of the Arguments 43

4.2.3 Training Algorithms . 44

4.2.4 Model Refinement . 47

4.2.5 Detection . 49

4.3 Implementation . 49

4.4 Evaluation . 51

4.4.1 Detection Effectiveness . 51

4.4.2 False Alarm Analysis . 55

4.4.3 Performance Overheads 57

4.5 Discussion . 59

5 Application Security Comparison of Diverse Mobile Platforms 61

5.1 Introduction . 61

5.2 Background and Overview . 64

5.2.1 Security Model: Android vs. iOS 64

5.2.2 Comparison Framework Overview 66

5.3 Cross-platform Applications . 67

ii

5.3.1 Preliminary Data Collection 67

5.3.2 Identifying Cross-platform Applications 69

5.3.3 Stratified Sampling . 71

5.4 Permission Comparisons . 73

5.4.1 Android system permissions 74

5.4.2 Permissions not supported by iOS 75

5.4.3 Permissions supported by iOS 76

5.5 Static Analysis Tools . 78

5.5.1 Android Static Analysis Tool 78

5.5.2 iOS Static Analysis Tool 81

5.6 Comparison Analysis Results . 85

5.6.1 API Resolving Rate of Analysis Tools 86

5.6.2 Comparisons on Both-supported Permissions 87

5.6.3 Reason Probing 1: Permission Usage of Third-party Libraries 90

5.6.4 Reason Probing 2: Microanalysis on Application Code Logic 94

5.6.5 Comparisons on Full Permissions 97

5.7 Discussion . 98

6 Data Interpretation Diversity in Information Hiding 101

6.1 Introduction . 101

6.2 Problem Definition . 104

6.2.1 Threat Model . 104

6.2.2 Definition of Deniability 105

6.3 Design of DRSteg . 106

6.3.1 Overview of DRSteg . 107

6.3.2 Detailed Design of DRSteg 108

6.3.3 Discussions . 111

6.4 Plausible Deniability of DRSteg 112

6.4.1 Analysis of Deniability . 112

iii

6.4.2 α-deniable DRSteg . 116

6.5 Evaluation . 119

6.5.1 Empirical Evaluation on Deniability 119

6.5.2 Implementation and Performance Evaluation 121

6.6 Discussion . 126

7 Dissertation Conclusion and Future Work 127

7.1 Summary of Contribution . 127

7.2 Future Direction . 128

iv

List of Figures

3.1 An example (Behavioral Distance) of utilizing off-the-shelf diverse

software . 15

3.2 Vulnerabilities in different software categories 20

3.3 Analysis on application software vulnerabilities 21

3.4 Different operating systems . 26

3.5 Vulnerable software on multiple operating systems 27

3.6 CVE entry CVE-2007-0605 and the corresponding exploit code . . 33

3.7 XSS attacks that have different impact on browsers 33

4.1 Our diversity IDS framework . 41

5.1 The overview of our comparison framework. 67

5.2 The distribution of the cross-platform apps in CS1 and CS2 vs. the

distribution of the whole iOS app set. 72

5.3 The work flow of our Android static analysis tool. 79

5.4 The work flow of our iOS static analysis tool. 82

6.1 A multi-user stegfs with untrusted shared storage 104

6.2 Key management and user view of the storage 108

6.3 System view of allocated blocks 115

6.4 Deniability of DRSteg under different scenarios 121

6.5 Block organization in DRSteg . 122

6.6 Performance compared with previous stegfs designs 124

6.7 Trade-off between deniability and performance 125

v

List of Tables

3.1 Examples of software products without substitutes 18

3.2 Two examples of the same vulnerability in software substitutes . . . 24

3.3 Vulnerabilities in software products that run on multiple OSes . . . 28

3.4 System calls on Windows . 29

3.5 Vulnerabilities in web script modules 32

4.1 Selected non-control-flow attacks 51

4.2 False alarm rate . 56

4.3 Model refinement by taint analysis 56

4.4 Program size and model size . 58

4.5 Training time and detection overhead 58

5.1 Security model comparison: Android vs.iOS 64

5.2 Data collected from Android Market and iTunes Store 68

5.3 Candidate sets for cross-platform applications: conditions and sta-

tistical results . 69

5.4 Overview of permission analysis result 74

5.5 Examples of unsupported permissions on iOS 76

5.6 Permissions supported on both Android and iOS 77

5.7 Permissions with greatest disparity that are required by the applica-

tions on Android and iOS. 88

5.8 Most common ads and analytics libraries on Android 91

5.9 Most common ads and analytics libraries on iOS 92

vi

5.10 The 8 applications which are open-source on both platforms and

their permission usage. 94

5.11 Usage of unsupported permissions on iOS for Android apps 98

6.1 Summary of notations used . 113

6.2 Evidences and the corresponding DRSteg operations 114

6.3 Simulation parameters and statistics 120

6.4 Hardware parameters . 124

6.5 Workload parameters . 124

vii

Acknowledgments

I would like to thank Professor Steven MILLER, Professor Robert DENG, Assistant

Professor Debin GAO, Associate Professor Yingjiu LI and Senior Scientist Doctor

Jianying ZHOU for their guidance in completing my dissertation.

I also thank my friends YAN Qiang and KOH Noi Sian for the research collab-

oration, their friendship, and their encouragement.

Finally, I would like to thank my parents, who are always supporting me and

encouraging me with their best wishes.

viii

Dedication

I dedicate my dissertation work to my loving parents, HAN Yandong and LI Aiqin.

Thanks, Mum and Daddy.

ix

Chapter 1

Introduction

Diversity, in general, is an important and valuable concept that has been adopted in

many fields to reduce correlated risks and to increase survivability. For example,

individuals and financial institutions spread their portfolio among multiple invest-

ment vehicles so that the fluctuations of a single investment will have less impact

on a diverse portfolio [90]. In agriculture, crop diversity is necessary to prevent

the attack of diseases on the dominant crop type. The Irish potato blight of 1846

that caused the deaths of over one million people was the result of planting only

two potato varieties, both of which were vulnerable to the Phytophthora infestans

mold [70].

In information security, diversity also helps to increase both defense capability

and fault tolerance for information systems and communication networks, where

diversity can be adopted from many different perspectives. For example, operating

systems, application software, routing protocols, service models, and encryption

mechanisms used in an information system can all be diversified to increase the

security and survivability of the system. This dissertation, in particular, focuses

mainly on two aspects of diversity – the application software diversity and the di-

versity in data interpretation, which will be introduced in the following two sections,

correspondingly.

1

1.1 Diversity in Software Security

Software diversity has many advantages over mono-culture in improving system

security [55, 99]. A number of previous researches focused on utilizing existing

off-the-shelf diverse software for network protection [82, 112] and intrusion detec-

tion [67, 87, 101, 51], many of which depend on an important assumption – the

diverse software utilized in the system is vulnerable only to different exploits. With

this assumption, replicas constructed using diverse software will not be compro-

mised by the same attack. However, to the best of our knowledge, there has not

been a systematic analysis in evaluating the extent to which this assumption is cor-

rect.

Thus, in this study, our first work is to perform a systematic analysis on the

vulnerabilities published in 2007 to evaluate the extent to which this assumption is

valid. We focus on vulnerabilities in application software, and show that the major-

ity of these software products either do not have the same vulnerability or cannot be

compromised with the same exploit. We also find evidence that indicates the use of

diversity in increasing attack tolerance for other software such as hardware-specific

or OS-specific software. These results show that systems utilizing off-the-shelf soft-

ware products to introduce diversity are effective in detecting intrusions.

Following this work, we then propose an intrusion detection scheme which

builds on two diverse programs to detect sophisticated attacks on security-critical

data. In many programs, the value of a function argument in one normal program

execution could become illegal in another normal execution context. Attacks uti-

lizing such erratic arguments are able to evade detections as fine-grained context

information is unavailable in many existing detection schemes [23, 72, 100]. In

order to obtain such fine-grained context information, a precise model on the inter-

nal program states has to be built, which is impractical especially when monitoring

a closed source program alone. Thus, we propose an intrusion detection scheme

utilizing two diverse programs providing semantically-close functionalities. Our

2

model learns the underlying semantic correlation of the argument values in these

programs, and consequently gains more accurate context information compared to

existing schemes. Through experiments, we show that such context information is

effective in detecting attacks which manipulate erratic arguments with comparable

false-positive rates.

Software diversity does not only exist on desktop and mainframe computers. It

also exists in mobile platforms like smartphone operating systems. The fast grow-

ing mobile device market has brought intense competition among smartphone man-

ufacturers, which has led to a variety of smartphone platforms upon which mobile

applications are developed. Security analysis of these platforms and their influence

on the corresponding applications as well as application development processes has

started to gain momentum in recent years. However, the lack of baseline for com-

parison makes such analysis difficult.

Thus, in our third work in this dissertation, we propose to investigate applica-

tions that run on diverse mobile platforms (e.g., Android and iOS) and to use them

as the baseline for comparing their security architectures. Assuming that such ap-

plications need the same set of privileges to provide the same functionalities on

different mobile platforms, our analysis of more than 2,000 applications shows that

those executing on iOS consistently ask for more permissions than their counterparts

running on Android. The additional permissions required are mainly on accessing

private data such as device ID, user contacts and calendar. We further investigate

the underlying reasons and find out that part of the permission usage differences are

caused by third-party libraries used in these applications. Finally, the application

permissions that are not supported on iOS but are requested by third-party Android

applications are also studied and the underlying rationale is revealed.

3

1.2 Diversity in Information Hiding

Different from software diversity, the fourth work in this dissertation focuses on the

diversity in data interpretation, which helps to defend against coercion attacks. By

utilizing existing steganographic file systems (stegfs), the same set of data on disk

can be interpreted in different ways given different decryption passwords. Such

a system hides encrypted user data among dummy data that contain only random

bits. Without the correct password, it is not possible to differentiate user data from

dummy (based on the assumption that the output of a block cipher is indistinguish-

able from random bits [18, 19]), even for an adversary who understands the mech-

anisms of the file system and is able to gain access to the storage devices. This

feature allows a data owner to selectively reveal some directories/files, but disclaim

the existence of his sensitive data.

To be believable, the disclaimer of the data owner must be consistent with the

information that the adversary is able to gather about the file system. This is much

more challenging to achieve in modern computing environments when the user data

are encrypted and stored in shared network storage, where the adversary is no longer

limited to a single snapshot of the disk content at the point of attack. Instead, the ad-

versary could now locate the physical server machines being used [89] and quietly

amass multiple snapshots of the file system over a period of time before launching

his attack. In earlier stegfs designs [19, 79, 64, 85], dummy data are created when

the disk is formatted and remain static thereafter. Thus, the differences across mul-

tiple snapshots will disclose the locations of user data, and could even reveal the

user passwords.

In order to address such threats, we introduce a Dummy-Relocatable Stegano-

graphic (DRSteg) file system to provide deniability in multi-user environments

where the adversary may have multiple snapshots of the disk content. With its novel

techniques for sharing and relocating dummy data during runtime, DRSteg allows a

data owner to surrender only some data and attribute the unexplained changes across

4

snapshots to the dummy operations. The level of deniability offered by DRSteg is

configurable by the users, to balance against the resulting performance overhead.

Additionally, DRSteg guarantees the integrity of the protected data, except where

users voluntarily overwrite data under duress.

1.3 Contributions and Organization

To summarize, the following contributions have been made in this dissertation:

• We systematically analyzed more than 6, 000 vulnerabilities published in the

year of 2007, to validate the assumption that diverse software which provides

similar functionalities is vulnerable only to different exploits. Our results

show that the majority of the vulnerable application software products either

do not have the same vulnerability, or cannot be compromised with the same

exploit code.

• We proposed an intrusion detection scheme which builds on two diverse pro-

grams providing semantically-close functionalities to detect sophisticated at-

tacks. Our model learns the underlying semantic correlation of the argument

values in these programs, and consequently gains more accurate context in-

formation, which is effective in detecting attacks that manipulate erratic argu-

ments.

• We investigated the detailed iOS application permissions, and compared them

to Android permissions. We also performed static analysis on over 1,000

pairs of applications that run on Android and iOS, the results of which reveal

the detailed permission usage differences for Android and iOS third-party

applications.

• Finally, we introduced a Dummy-Relocatable Steganographic file system to

provide deniability in multi-user environments where the adversary may have

5

multiple snapshots of the disk content. The diverse ways of interpreting data

in the storage allows a data owner to surrender only some data and attribute

the unexplained changes across snapshots to the dummy data which are ran-

dom bits.

The rest of this dissertation is organized as follows: Chapter 2 reviews the

existing studies from three perspectives – software diversity, mobile security and

steganographic file systems. Chapter 3 introduces our first work, which is the sys-

tematic study on vulnerabilities in diverse software. The technique of utilizing di-

verse application programs to construct intrusion detection systems is then proposed

in Chapter 4. Our third piece of work is presented in Chapter 5, which is another em-

pirical study. This study focuses on analyzing diverse mobile applications to com-

pare the security architectures of diverse smartphone platforms. Our fourth work

which utilizes the data interpretation diversity in information hiding is presented in

Chapter 6. Finally, Chapter 7 concludes the contribution of this dissertation and

describes the future direction of the current research.

6

Chapter 2

Literature Review

2.1 Software Diversity for Fault Tolerance and Intru-

sion Detection

The potential security risk brought by software monoculture has arisen great atten-

tion from computer security researchers. Although using homogeneous software

could result in improved interoperability and reduced costs, security researchers

still claim that the current lack of software diversity is troublesome and believe that

a reliable system and network security can only be achieved if a multitude of appli-

cation software and platforms is utilized [55, 99].

Research work has been done to introduce diversity at the system level through

a variety of techniques. Early works on software diversity construct intrusion-

tolerance and fault-tolerance systems [29, 88] with software providing semantically-

close functionalities. Methods that systematically generate stochastic diversification

within source code to increase system resistance and survivability were introduced

by [75]. Instruction-set randomization [21, 69] has also been implemented to safe-

guard systems against code-injection attacks. The basic heterogeneous networking

philosophy and models were introduced by [112] to achieve network survivabil-

ity. Distributed algorithms have also been proposed to improve network security by

7

reducing the ability of an attacker to move from system to system [82].

In the past ten years, diversity-based intrusion detection techniques [34, 51, 52,

68, 102] were also proposed, which use Commercial Off-The-Shelf (COTS) soft-

ware to build the detection models. Among those schemes, the techniques proposed

by Just et al. [68] and Totel et al. [102] are output voting schemes, which only com-

pare the final outputs (HTTP status codes and files) of the diverse software to detect

intrusions. However, as many of the intrusions may not result in observable devia-

tion in the responses of those server software, such intrusions can evade detections

of these techniques.

Behavioral Distance model by Gao et al. [51, 52, 53] was later proposed to

defend against stealthy attacks which are not addressed by both the output voting

schemes and traditional intrusion detection techniques which only monitor single

application. However, since the hidden Markov model used in their scheme (to train

the normal-behavior profiles of the system call sequences) is only able to handle

finite states, their model cannot be simply extended to detect attacks utilizing erratic

arguments, which is addressed in this dissertation.

2.2 Mobile Application Security

Previous studies on mobile security focus on either Android or iOS platform alone.

From programming perspective, Burns [27] provides a useful background for de-

velopers of Android applications, which includes discussions of common developer

errors, such as using Intent Filters instead of permissions. Enck et al. [43] examine

Android security policies and some of the developer pitfalls. They further inves-

tigate on the source code of a thousand Android applications [42], which reveals

a number of interesting findings for Android application security, some of which

are also confirmed by our results on Android. A large-scale evaluation for Android

applications is performed by Zhou et al. [114], which reveals hundreds of malicious

Android applications.

8

From the attacker’s perspective, Felt et al. [45] demonstrate that a less privileged

Android application is able to perform a privileged task through another third-party

application with higher privilege, which undermines the requirement for users to

approve each application’s access to privileged devices and data. A similar privi-

lege escalation attack which is implemented with return-oriented programming is

introduced by Davi et al. [35]. The defense mechanism for such privilege escalation

attack is proposed by Bugiel et al. [26].

There are also a number of research work focusing on analyzing and improv-

ing the Android permission model. Barrera et al. [22] present a methodology for

the empirical analysis of permission-based security models, and apply it to Android

permission model. In addition, Ongtang et al. [83] present a fine-grained access

control policy infrastructure for protecting applications on Android. Hornyack et

al. [65] also present two privacy controls to protect user data from exfiltration by

permission-hungry applications. A recent work by Grace et al. [59] systematically

analyzed several Android smartphone images and found they do not properly en-

force the Android permission model.

The most related work to this work on Android application analysis is from

Felt et al. [44]. They study Android applications to determine whether Android

developers follow least privilege with their permission requests. They develop a

static analysis tool Stowaway that detects overprivilege in Android applications.

They also create an Android API-to-permission mapping using dynamic testing,

and this mapping is used as one of the inputs in our Android static analysis tool.

This mapping could also be used in the permission check tool introduced by Vidas

et al. [105], which aids developers in specifying a minimum set of permissions

required for a given Android application with source code.

From the dynamic analysis perspective, TaintDroid developed by Enck et

al. [41] provides a system-wide dynamic taint tracking for Android. TaintDroid

is implemented as a post-production tool for real-time analysis and it found 68 po-

tential information misuse examples in 20 applications. However, this tool focuses

9

only on data flow, and does not consider action-based vulnerabilities, which is then

improved by ComDroid [31]. Another variant of such dynamic analysis tool on

Android is ScanDroid [48].

In comparison to the literature on Android, there are relatively less studies on

iOS platform. Seriot [96] demonstrated that any applications downloaded from the

iTunes Store to a standard iPhone device can access a significant quantity of per-

sonal data. He explains how malicious applications could pass Apple’s vetting pro-

cess unnoticed and harvest data through officially sanctioned iOS APIs. Egele et

al. [40] study the privacy threats that third-party iOS applications pose to users.

They present a static analysis tool that analyzes programs for possible leaks of sen-

sitive information from a mobile device to third parties. Our iOS static analysis

tool adopts a similar mechanism in resolving objc msgSend as their tool, but with

a different emphasis on resolving the API calls and parameters that are related to

application permissions.

To our best knowledge, there is no literature to date that systematically compares

the application security of Android and iOS platforms. Our research is the first work

that establishes the baseline of examining the massive cross-platform applications

to compare the effect of security mechanism utilized by Android and iOS, which

reveals interesting behavioral differences for the third-party applications on these

two platforms.

2.3 Cryptographic and Steganographic File Systems

Cryptographic file systems (e.g., [25, 28, 60, 111]) and their implementations (e.g.,

[11, 12]) have been studied extensively in the last two decades . A cryptographic file

system complements the access control mechanism of the operating system (OS).

Even if the OS is compromised or the data storage is removed from the OS, data

in the file system remain protected by the user’s password. A weakness of crypto-

graphic file systems is that they leave evidence of the existence of encrypted data,

10

such that a determined attacker may compel the users to reveal their decryption

passwords.

Utilizing diversity in the data interpretation to provide plausible deniability of

the secret data was first proposed by Anderson et al. [19], where two steganographic

file system (stegfs) schemes were introduced. In the first scheme, the disk is initial-

ized with several cover files that have equal length and contain random data. A se-

cret object is stored through an exclusive-or operation on a subset of the cover files,

identified by the corresponding bits in the access key. To protect against brute force

attacks, the number of cover files must be sufficiently large; this imposes heavy

I/O overheads as each read/write request for an object translates into operations on

multiple cover files. The scheme is effective against single-snapshot attacks but not

multiple-snapshot attacks. In particular, the differences between just two snapshots

of the storage can expose the access key used.

In Anderson’s second scheme [19], the disk is first filled with random bits. Sub-

sequently, secret data blocks are written to pseudorandom addresses. An implemen-

tation of this scheme on Linux is reported by McDonald et al. [79], a peer-to-peer

version by Hand et al. [64] and a distributed version by Giefer et al. [57]. The disad-

vantage of the scheme is that the probability of collision in the locations where data

are stored increases as more data are added to the disk. Although replicating each

data block in different locations reduces the likelihood of data loss, the risk cannot

be eliminated; hence data integrity is not guaranteed.

Pang et al. [85] utilized a bitmap to track block allocation to avoid overwriting

data and to improve system performance. To defend against single-snapshot attacks,

dummy data are added when the disk is initialized. The dummy data cannot be

changed or relocated at runtime, so the scheme is susceptible to multiple-snapshot

attacks. Zhou et al. [113] provided for the relocation of dummy blocks. Their

solution requires a trusted agent to manage all the user passwords and dummy data,

which effectively transfers the risk of password disclosure to the agent.

Diaz et al. [37] proposed to defend against traffic analysis [103] through a mix-

11

based stegfs that employs a local mix to relocate files in the remote storage. They

show that the security of the scheme depends on the file-size patterns in the system.

Another work by Domingo-Ferrer et al. [38] addressed the problem of data loss in

a stegfs with multiple users. It is not designed to defend against multiple-snapshot

attacks though. Furthermore, neither of the two schemes guarantees data integrity

under legitimate data operations.

TrueCrypt1, an open-source disk-encryption software package, enables a user to

create a deniable file system within a regular encrypted file or partition. The file

system is deniable if the adversary only sees the final content of the disk. How-

ever, it cannot defend against an adversary who possesses multiple snapshots of

the encrypted partition. The same weakness exists in similar products that provide

deniability for secret files, e.g., Phonebook2 and Rubberhose3.

Different from existing schemes, our proposed stegfs is designed to defend

against multiple-snapshot attacks. It employs novel techniques to share and relo-

cate dummy data at runtime, which enables users to surrender only some of their

data, and attribute any unexplained changes across snapshots to dummy operations.

The deniability provided by our stegfs is configurable individually, and our pro-

posed stegfs also guarantees the integrity of the protected data, except where users

voluntarily overwrite data under duress.

1TrueCrypt, http://www.truecrypt.org/
2Phonebook, http://www.freenet.org.nz/phonebook
3Rubberhose, http://iq.org/∼proff/rubberhose.org

12

http://www.truecrypt.org/
http://www.freenet.org.nz/phonebook
http://iq.org/~proff/rubberhose.org

Chapter 3

A Systematic Study on

Vulnerabilities in Diverse Software

3.1 Introduction

Software diversity has many advantages over mono-culture in improving system se-

curity [55, 99]. Linger [75] proposed methods that systematically generate stochas-

tic diversification in program source to increase system resistance and survivabil-

ity. Obfuscation techniques (e.g., instruction-set randomization [21, 69] and ad-

dress space randomization [24]) were proposed to safeguard systems against code-

injection attacks and other memory error exploits. N-variant systems [33] execute

a set of automatically diversified variants on the same inputs, and monitor their be-

havior to detect divergence that signals anticipated types of exploits, against which

the variants are diversified.

Instead of artificially introducing diversity, some recent work focused on uti-

lizing existing diverse software for network protection [82] and intrusion detec-

tion [51]. Some of these systems (e.g., the HACQIT system [67, 87] and its succes-

sor [101]) employed output voting to monitor outputs from diverse replicas, while

others (e.g., Behavioral Distance [51, 52, 53]) monitor the low-level behavior of the

diverse replicas.

13

An interesting and important assumption made by many of these systems utiliz-

ing off-the-shelf diverse software is that the diverse software is vulnerable only to

different exploits. With this assumption, replicas constructed using diverse off-the-

shelf software will not be compromised by the same attack. This is a reasonable

assumption because most of the off-the-shelf diverse software is developed inde-

pendently by different groups of developers, and so the same mistake/vulnerability

is unlikely to be introduced. However, to the best of our knowledge, there has not

been a systematic analysis to evaluate the extent to which this assumption is cor-

rect. Such analysis also guides users in choosing between artificially introducing

diversity (e.g., instruction-set randomization, address space randomization, and N-

variant systems) and utilizing off-the-shelf software products to introduce diversity.

In this chapter, we present a systematic analysis on the effectiveness of utiliz-

ing off-the-shelf diverse software for improving system security. In particular, we

evaluate the extent to which different off-the-shelf software suffers from the same

vulnerability and exploit. This is achieved by carefully analyzing over 6,000 vul-

nerabilities published in the year of 2007.

To get a better idea of what is to be analyzed and how this analysis benefits

systems that utilize off-the-shelf diverse software, consider an example in which a

system uses behavioral distance [51, 52, 53] for intrusion detection (see Figure 3.1).

In this example, a web service is provided by two diverse web servers running on

two diverse operating systems. The same input, which may potentially be an attack

input, is processed by both servers. Similar architectures, e.g., diverse servers on

the same operating system, have also been introduced [67, 87, 101].

This system detects an intrusion when deviations are found in the two replicas

when they are processing the same input. Such deviations may be detected in server

outputs [67, 87, 101] or in the low-level behavior, e.g., system calls [51, 52, 53].

A very important observation is that such deviations occur only if the two replicas

behave differently when processing the same malicious input. The system assumes

that either the two replicas do not have the same vulnerability, or they cannot be

14

IIS Server

on Windows

Apache Server

on Linux

User inputs

(potentially malicious)

Figure 3.1: An example (Behavioral Distance) of utilizing off-the-shelf diverse soft-
ware

exploited simultaneously with a single attack.

In order to evaluate the extent to which this assumption is valid, several ques-

tions need to be answered:

• Among the large number of vulnerable software products, how many of them

have potential substitutes that provide similar functionalities? For those that

are software substitutes of one another, do they have the same vulnerability?

If they do have the same vulnerability, can they be exploited with the same

attack?

• Among the large number of vulnerable software products, how many of them

can run on multiple operating systems? For those that run on multiple op-

erating systems, do vulnerabilities of the software on one operating system

propagate to the same software on a different operating system? If so, can

they be exploited by the same attack when running on different operating sys-

tems?

To the best of our knowledge, there is no closely related work which could an-

swer these questions. We systematically analyzed more than 6, 000 vulnerabilities

published in the year of 2007. In summary, our results show that more than 98.5%

of the vulnerable application software products have software substitutes (and there-

fore can be used in a replicated system to detect intrusion), and the majority of them

either do not have the same vulnerability, or cannot be compromised with the same

exploit code. In addition, among the application software products, nearly half are

15

officially supported to run on multiple operating systems. Although the different

operating system distributions of the same product are likely (more than 80%) to

suffer from the same vulnerability, the attack code is different in most cases. We

also found evidence that indicates the use of diversity in increasing attack tolerance

in other categories of vulnerable software.

It is not the objective of this work to build systems utilizing software diversity

or to evaluate how difficult it is to manage such systems. Instead, we measure the

extent to which software diversity could be utilized to increase system security in

using off-the-shelf software products.

In the rest of this chapter, we first present the data source we utilized and some

preliminary analysis (see Section 3.2). We then focus our analysis on the applica-

tion software vulnerabilities in which we analyzed whether diverse software prod-

ucts providing the same services could suffer from the same vulnerability (see Sec-

tion 3.3), and whether the same software product running on different operating

systems will suffer from the same vulnerability and exploit (see Section 3.4). In

Section 3.5, we present analysis on other vulnerable software products. Finally, we

conclude in Section 3.6.

3.2 Source of Information and Preliminary Analysis

The main source of information we used for our analysis was the NVD/CVE (Na-

tional Vulnerability Database/Common Vulnerabilities and Exposures) vulnerabil-

ity database. We analyzed all the vulnerabilities recorded in CVE in the year of

2007, which consist of 6,427 vulnerability entries1. To obtain detailed information

on the vulnerabilities and the corresponding software products, we also consulted

other sources including SecurityFocus, FrSIRT, CERT, Milw0rm, Secunia, OS-

VDB, IBM X-Force, as well as vulnerability advisories, security announcements,

1The CVE 2007 database published on April 25, 2008 was used (http://nvd.nist.gov/download/
nvdcve-2007.xml).

16

http://nvd.nist.gov/download/nvdcve-2007.xml
http://nvd.nist.gov/download/nvdcve-2007.xml

and bug lists from software vendors. After removing 87 entries that were rejected

by CVE, the total number of vulnerabilities that we focused on was 6,340.

Note that the limited information introduced errors in our analysis. First, not all

vulnerabilities are published. We only analyzed vulnerabilities found and published

in 2007. Second, we may not have found all information on some published vulner-

abilities. This is due to the limited resources we have, although we did our best in

searching various public resources; it might also be the fact that some information

about the vulnerabilities is not publicly available.

Our first step in the analysis was to find whether the vulnerable software has

any substitutes (software products that offer similar functionalities). We also cate-

gorized the vulnerabilities into five different types for further analysis.

3.2.1 Software without substitutes

To implement a replicated system with diverse replicas (e.g., the one shown in Fig-

ure 3.1), we need to find (at least) two software products that provide the same

service (software substitutes) and/or software products that run on multiple operat-

ing systems. If the software product does not have any substitutes and runs only on

a single operating system, then diversity using off-the-shelf software cannot work

and one has to introduce diversity via other artificial means (e.g., address space ran-

domization). Therefore, we first analyze all the vulnerable software products in the

CVE database to see if they have any substitutes.

We find that most software products do have substitutes and those that do not

have mostly fall into one of the following three categories:

• Hardware specific software: This includes hardware drivers and firmware

only provided by corresponding hardware vendors.

• OS specific software: This includes utilities that are specific to an operating

system, e.g., Mac Installer, Windows Login window. They are only provided

by the OS vendor.

17

• Domain specific and customized software: This includes software that is

used in medical, biological, nuclear and other specific domains. The cus-

tomized software refers to that developed for a specific company, e.g., man-

agement software that is used in a specific company; ActiveX controls devel-

oped and used for online transactions on a specific web site.

Vendor Product CVE entry
ATI Display driver CVE-2007-4315

NVIDIA Video driver CVE-2007-3532
Intel 2200BG Wireless driver CVE-2007-0686
HP Help and Support Center CVE-2007-3180
HP Quick Launch Button CVE-2007-6331

Alibaba Alipay ActiveX control CVE-2007-0827
Microgaming Download Helper ActiveX CVE-2007-2177

Table 3.1: Examples of software products without substitutes

Table 3.1 shows some examples of software products that do not have substi-

tutes. An interesting observation is that we did not find many vulnerable software

products from the CVE database that are domain specific or customized. This does

not necessarily mean that these software products do not have vulnerabilities. Do-

main specific and customized software products are used in a more controlled envi-

ronment and it is less likely that they are reported in public vulnerability resources.

3.2.2 Vulnerable software categorization

Some vulnerabilities exist in application software that runs as user-space programs

on an operating system. Others may exist in scripts that run on top of another soft-

ware program. The analysis we performed varies according to the type of vulnera-

ble software products. Therefore, we first put the vulnerable software into different

categories.

• Application software: Application software is the most interesting because

it is relatively easy to find the software substitutes. It is usually compiled into

18

binary format and run as a process of its own in the user space. Word pro-

cessors, web browsers, web servers and computer games are some examples

of application software. It also includes plug-ins, extensions, and add-ons to

application software, except those for a web server (see the next category).

• Web script modules2: These are light-weighted software modules which

only run on web servers. We put them into a separate category instead of

a sub-category of application software because of the large number of vulner-

abilities in them. Examples include Content Management Systems (CMS),

forums, bulletin boards, and other script modules.

• Operating systems: This category includes the operating system kernel and

utilities that are closely related to the operating system, e.g., Apple Installer

and the login window of Microsoft Windows.

• Languages and libraries: These include programming languages and li-

braries for general programming use, e.g., PNGlib (for decoding the PNG

image) and SMTPlib (for implementing the SMTP protocol).

• Others: For example, firmware (including Routers, IP phones, hardware fire-

walls, etc.), software that runs on mobile phone, video game consoles (e.g.,

XBox) and so on.

Figure 3.2 shows the number of vulnerabilities in each software category and

the corresponding percentage.

3.2.3 Vulnerabilities in application software

As shown in Figure 3.2, 41.4% of the vulnerabilities found in 2007 are in applica-

tion software. We focus our analysis on this category because it contains most of the

commonly used and critical software, and it is usually what an intrusion detection

2They may be called web applications (e.g., in SANS [36]). We call this category web script
modules, instead, to avoid the misunderstanding that it also contains web servers and browsers.

19

Web Script Module
Vulnerabilities

45.6%Application Software
Vulnerabilities

41.4%

Operating System 6.9%

Language & Library 2.7%

Other Vulnerabilities 3.3%

Web Script Module

Application Software

Operating System

Language & Library

Other

2,627

438

173

209

2,893

Figure 3.2: Vulnerabilities in different software categories

system tries to protect. Not only that, it is also easy to find substitutes for an applica-

tion software product, which makes it a natural candidate for introducing diversity.

This is also the category for which information is best available and therefore the

results of our analysis are most accurate.

The first analysis we did was to find the number of vulnerable application soft-

ware products that do not have substitutes. As discussed in Section 3.2.1, this is

important because one of the two ways of utilizing off-the-shelf software products

to introduce diversity is to use software substitutes (the other is to run the same

software on multiple operating systems). If many vulnerable application software

products do not have any substitutes, then we will have to rely on the other way of

introducing diversity.

We found 1,825 distinct application software products in all the 2,627 applica-

tion software vulnerabilities3, out of which only 25 (1.4%) do not have software

substitutes. Some of the examples were shown in Table 3.1. This result coincides

with our expectation in view of the highly competitive software industry market.

We have found that most software products in this category have software substi-

tutes. The next question is whether these software products and their corresponding

substitutes have the same vulnerability or not. In order to do this analysis, we fur-

3A total number of 4,120 different names of software products were found in the descriptions of
these vulnerabilities. Many of them were duplicates with different naming conventions or different
product versions. After eliminating these duplicates, we found 1,825 distinct software products.

20

ther classify the application software vulnerabilities (Box 1 in Figure 3.3) into two

sub-categories: vulnerabilities that exist in multiple software products (Box 2) and

vulnerabilities that exist in a single software product (Box 3).

The results of the classification are obtained by examining the vulnerable prod-

uct information and the description of each vulnerability in the CVE database. Fig-

ure 3.3 shows that majority of the vulnerabilities (2037 out of 2627) exist in only a

single software product, which is an evidence in favor of introducing diversity since

the replicas constructed in a replicated system are unlikely to suffer from the same

vulnerability. We look into each of the two categories for further analysis.

Application Software

Vulnerabilities

Multiple Products

Multiple OS Same Service Different Services

2.

Single Product
3.

5.4.7.

2627 CVE entries

5902037

Single OS

6.

Vulnerabilities that exist in

Vulnerable software

1.

Vulnerable software

runs on providing

Figure 3.3: Analysis on application software vulnerabilities

Among the vulnerabilities that exist in multiple software products (Box 2 in

Figure 3.3), we want to find out whether software products suffering from the same

vulnerability are substitutes of one another (i.e. whether they provide the same ser-

vice). This analysis is important because only software products providing the same

service can be used in an intrusion detection system using software diversity (such

as the behavioral distance system shown in Figure 3.1). If software programs and

their substitutes suffer from the same vulnerability (Box 4), then such intrusion de-

21

tection systems will not be effective in detecting intrusions. We present our detailed

analysis for this in Section 3.3. If multiple software products – which suffer from the

same vulnerability – are not providing the same service (Box 5), then they are not

used simultaneously for constructing the intrusion detection system and therefore

will not affect the effectiveness of diversity using off-the-shelf software products.

Among those vulnerabilities that exist in a single product (Box 3 in Figure 3.3),

we want to find out how many of these software products can execute on multiple

operating systems. For those that run on multiple operating systems (Box 7), it

is also important to find out whether their vulnerabilities can be exploited in the

same way when they are running on multiple operating systems. We present our

analysis of these problems in Section 3.4. If a software product can only run on a

single operating system (Box 6), then it cannot be used in a replicated system in

which replicas are constructed using the different distributions of a single software

product on multiple operating systems.

3.3 Vulnerabilities in Software Substitutes

As shown in Figure 3.3, there are 590 entries of vulnerabilities in multiple software

products. Each of these vulnerabilities exists in more than one software product,

which may or may not provide the same service. In this section, we first briefly

show our method for finding vulnerabilities in software substitutes and our findings

using this method (Section 3.3.1), and then discuss the attack code for exploiting

the same vulnerability in these software substitutes (Section 3.3.2).

3.3.1 Finding vulnerabilities in software substitutes

An interesting observation is that the same vulnerability may be represented in mul-

tiple entries in the CVE database. For example, entries CVE-2007-2761 and CVE-

2007-2888 correspond to the same vulnerability (see Table 3.2). For this reason, we

cannot simply rely on different CVE entries to distinguish different vulnerabilities.

22

Different CVE entries that refer to the same vulnerability usually have similar

descriptions. We use Vector Space Model [91], one of the classical models in in-

formation retrieval, to compare the descriptions for all CVE entries. The similarity

between two vulnerability descriptions is calculated using

sim(d1, d2) =

−→
d1 · −→d2

|−→d1 | × |−→d2 |
=

∑t
i=1 wi,1 × wi,2√∑t

i=1 w2
i,1 ×

√∑t
i=1 w2

i,2

where
−→
d1 and

−→
d2 are the descriptions of two vulnerability entries, wi,j is the weight

for the ith term in description dj which is assigned with the frequency of the term.

The threshold for the similarity score is set to 0.65 by manual tuning to obtain a

good trade-off between the number of false positives and false negatives4.

After the automatic comparison process using Vector Space Model and addi-

tional manual verification and correction, 410 distinct vulnerabilities are obtained

from the 590 vulnerability entries that exist in multiple software products. We then

performed a detailed analysis for each vulnerability and found that 29 of them

(which involve 69 CVE entries) fall into the category in which the same vulner-

ability exists in multiple software products providing the same services (software

substitutes). Some examples are shown in Table 3.2.

The result shows that although many vulnerabilities (410) exist in multiple soft-

ware products, only a small portion of them (29) exist in multiple software products

that provide the same service. Note that although the Vector Space Model helped

a lot in finding similar descriptions in different vulnerability entries, some manual

analysis was needed to obtain the results shown above.

4This process is mainly manual inspection, while the automatic Vector Space Model analysis is
to assist the manual inspection. A simple false-positive rate does not apply here actually. Several
CVE entries may map into the same vulnerability after the automatic analysis, and then I manually
verify each group of CVE entries which are regarded as similar by the auto analysis. Sometimes, in
the same group, maybe only part of the entries is really the same vulnerability while other entries
are not (e.g., 4 entries are categorized as the same vulnerability by auto-analysis while only 2 of
them are actually the same vulnerability). Thus, it is very difficult to give a simple false positive
number. An approximate false-positive rate is 0.4; while the false-negative rate was not measured,
but is believed to be very small (<0.01).

23

CVE Entry Description

CVE-2007-2761 Stack-based buffer overflow in MagicISO 5.4 build 239 and ear-
lier allows remote attackers to execute arbitrary code via a long
filename in a .cue file.

CVE-2007-2888 Stack-based buffer overflow in UltraISO 8.6.2.2011 and earlier
allows user-assisted remote attackers to execute arbitrary code via
a long FILE string (filename) in a .cue file.

CVE-2007-0548 KarjaSoft Sami HTTP Server 2.0.1 allows remote attackers to
cause a denial of service (daemon hang) via a large number of
requests for nonexistent objects.

CVE-2007-3340 BugHunter HTTP SERVER (httpsv.exe) 1.6.2 allows remote at-
tackers to cause a denial of service (application crash) via a large
number of requests for nonexistent pages.

CVE-2007-3398 LiteWEB 2.7 allows remote attackers to cause a denial of service
(hang) via a large number of requests for nonexistent pages.

Table 3.2: Two examples of the same vulnerability in software substitutes

3.3.2 Exploit Code

In this step of the analysis, we further examine the 29 vulnerabilities that exist in

software products providing the same services. If it happens that these software

products are used to construct replicas in a replicated system (e.g., a behavioral

distance system in Figure 3.1), then both replicas suffer from the same vulnerability.

We want to find out whether the exploit codes on them are the same. If they are the

same, then both replicas will be compromised by a single attack, and the intrusion

detection system will fail to detect the intrusion.

We manage to find all the exploit codes (on multiple products) for 20 out of the

29 vulnerabilities. Exploit codes for the rest do not seem to be readily available to

the public. By comparing the exploit codes for each of the 20 vulnerabilities for all

the corresponding software substitutes, we found that the exploit code is the same

across multiple software products for 14 of the 20 vulnerabilities.

It is not surprising that the same vulnerability will be exploited in the same

way, even on different software products. A couple of notes are worth mention-

ing though. First, some of these vulnerabilities are about denial of service (DoS)

attacks, which are usually not the type of intrusions a replicated system utilizing

24

software diversity tries to detect [51, 52]. For example, the same exploit code for

sending a large number of requests for non-existent pages will cause a denial of

service in the three software products in the second group in Table 3.2. Therefore,

this result is not necessarily a strong evidence against the effectiveness of using off-

the-shelf software to introduce diversity. Second, we have not studied the effect of

using multiple operating systems at this point. In some cases, the exploit codes may

be dependent on the operating system, especially in code injection attacks (see the

next section).

3.3.3 Summary

To summarize, our analysis of the application software products shows that 22.5%

(590 out of 2627) of the vulnerability entries are vulnerabilities in multiple software

products, among which 7.1% (29 out of 410) are vulnerabilities in multiple soft-

ware products that provide the same service. For those vulnerabilities in multiple

software products providing the same service, there are roughly 70% (14 out of 20)

chances that the same exploit code can be used to compromise these software prod-

ucts. Although strictly speaking these three numbers cannot be multiplied together

directly5, they are very good indications that diverse off-the-shelf application soft-

ware products can be utilized effectively in replicated systems to detect intrusion

and increase system resilience against software attacks.

3.4 Software Products running on Multiple Operat-

ing Systems

Having analyzed the branch of vulnerabilities that exist in multiple software prod-

ucts in Figure 3.3 in Section 3.3, we now focus on the branch of vulnerabilities that

5This is due to the lack of knowledge about the number of vulnerabilities each software has,
the commonality of each software product in terms of the number of requests per unit time, the
consequence of a compromise, and etc.

25

exist in a single software product. As shown in Figure 3.3, this category consists

of the majority of vulnerabilities in application software. Therefore, understand-

ing how software products in this category can be utilized to introduce diversity is

important. Here we focus on diversity via running software on multiple operating

systems, since the vulnerability exists only on a single product and diversity via

running software substitutes will definitely work. Running the same software on

multiple operating systems is also a cheaper way of introducing diversity due to its

lower cost in managing the replicated system.

In this section, we first briefly show the different operating systems we consid-

ered (Section 3.4.1), and then examine whether the software products in this cate-

gory run on multiple operating systems (Section 3.4.2). Finally, similar to our anal-

ysis in Section 3.3.2, we analyze the corresponding exploit code in Section 3.4.3.

3.4.1 Different operating systems

Figure 3.4: Different operating systems

Figure 3.4 shows the different operating systems that we consider in our anal-

ysis. We classify operating systems into four families: Microsoft Windows,

Unix/Unix-like, Mac and others (see Figure 3.4). This is mainly due to their differ-

ent kernels and binary executable formats (Portable Executable for Windows sys-

tems, ELF for Unix and Unix-like systems, and Mach-O for Mac). Note that it is

an important requirement that these operating systems are diverse so that the same

exploit is unlikely to compromise the same program running on different operating

26

systems. Although Mac OS X shares part of the kernel code with BSD operating

systems, we show in Section 3.5.2 that they rarely share common vulnerabilities.

3.4.2 Software products running on multiple operating systems

Next, we want to find out whether software products in this category (in which

vulnerabilities exist only in one software product) can run on multiple operating

systems. Since a lot of manual work is required in this analysis, we randomly

picked 300 out of the 2, 037 vulnerability entries for analysis. Results are shown in

Figure 3.5.

Figure 3.5: Vulnerable software on multiple operating systems

Figure 3.5 shows that more than 54% (163 out of 300) of the software products

we analyzed officially supports only one operating system. However, note that it is

still possible to construct diverse replicas using software substitutes that provide the

same service for them.

Among the rest of the 45.7% software products that are supported to run on

multiple operating systems, 15.3% (21 out of 137) do not share the same vulnera-

bility among different operating system versions (e.g., the first entry in Table 3.3, in

which the vulnerability exists only on the Windows version of Mozilla Firefox, but

not on the Unix and Mac versions). From our analysis, this is mainly due to the fact

27

that many of these vulnerabilities are design errors, which easily propagate across

versions that run on multiple operating systems. One typical example is the vulner-

ability entry CVE-2007-5264, in which the client’s information is sent unencrypted

to the game server (second entry in Table 3.3).

CVE Entry Description

CVE-2007-3285 Mozilla Firefox before 2.0.0.5, when run on Windows,
allows remote attackers to bypass file type checks and
possibly execute programs via a (1) file:/// or (2)
resource:URIwith a dangerous extension, followed by
a NULL byte (%00) and a safer extension. (Vulnerability
in only one of the OS versions of the software product)

CVE-2007-5264 Battlefront Dropteam 1.3.3 and earlier sends the client’s
online account name and password unencrypted to the
game server. A remote attacker with administrative priv-
ileges could exploit this vulnerability to obtain user ac-
count, product key and other sensitive information. (Vul-
nerability in multiple OS versions of the software product)

Table 3.3: Vulnerabilities in software products that run on multiple OSes

3.4.3 Exploit Code

Similar to Section 3.3.2, in this subsection we look into the 116 vulnerabilities

(each of which exists on multiple OS versions of the single software product), to

see whether the same exploit code can be used to compromise the corresponding

software program that executes on multiple operating systems.

We first consider a naive attacker, who is not aware that a replicated system

where the vulnerable software is being executed on multiple operating systems. We

assume that the attacker is trying to exploit a known vulnerability to execute some

attack code, e.g., to overflow a buffer and overwrite a return address in order to

execute a shellcode. There are at least two reasons why such an exploit is unlikely

to succeed.

First, the source of the same software product on different OSes may be differ-

ent. This could cause many differences in, e.g., memory layout which is critical for

a successful buffer overflow. For example, calculating time intervals on Windows

28

usually requires two variables (SYSTEMTIME and FILETIME) and a conversion

between the two, whereas it usually takes only one variable (timeval) on Linux.

Second, even when the source is exactly the same for different OS distributions

of the same product, the attack code to be executed may be different due to the

different APIs and system calls across different operating systems. It is highly un-

likely that the same machine code can be used on different operating systems, e.g.,

to open a shell. The system interface could be different even across OSes in the

same family, e.g., different versions of Microsoft Windows. Table 3.4 shows some

of the typical system calls and their corresponding system call numbers on different

versions of the Windows operating system.

System Call NT 2000 XP 2003 Server Vista

NtClose() 0x000f 0x0018 0x0019 0x001b 0x002f
NtOpenFile() 0x004f 0x0064 0x0074 0x007a 0x00b8
NtReadVirtualMemory() 0x0089 0x00a4 0x00ba 0x00c2 0x0102
NtTerminateProcess() 0x00bb 0x00e0 0x0101 0x010a 0x014f

Table 3.4: System calls on Windows

Next, we consider a more sophisticated attack in which the attacker is aware that

a replicated system running the vulnerable software on multiple operating systems

is in use. If the attacker wants to evade the intrusion detection system, he/she will

most likely have to design and implement an exploit code that first figures out which

operating system is running and subsequently execute the corresponding exploit

code (see Algorithm 1).

Algorithm 1 Exploiting the same software running on multiple OSes
os ret ← os test();
if is win(os ret) then

win attack code();
else if is unix(os ret) then

unix attack code();
else if is mac(os ret) then

mac attack code();
end if

Note that Algorithm 1 is very different from one in which the attacker knows the

29

operating system (and its version) to be exploited before sending the attack code.

Many attack tools first interact with the vulnerable server to find out which operat-

ing system is running by using operating system fingerprinting techniques [49, 104].

After that, the attack packets specifically designed for the corresponding operat-

ing system are sent to the vulnerable server. This type of attacks will not work

here because 1) the replicated system (e.g., Figure 3.1) usually removes any non-

determinism in the system, which makes operating system fingerprinting impossible

or inaccurate; 2) the same operating-system-specific attack will be duplicated and

sent to all replicas, and the attack only compromises the vulnerable replica (the dif-

ference of the behaviors of the compromised and uncompromised replicas makes

such operating-system-specific attacks easily detectable).

There are at least two difficulties in implementing Algorithm 1. One is to im-

plement os_test() which not only executes on all different operating systems

but returns different outputs when executing on different operating systems. The

other is that such an exploit code, which is at least several times that of the exploit

code for any specific operating system, is usually too long to fit in the limited buffer

available in the vulnerable program. We have not found a real attack that employs

the technique shown in Algorithm 1.

Another observation is that only three cross-OS viruses have been reported in

Kaspersky Lab’s viruslist according to the statement issued by Kaspersky Lab6.

According to Kaspersky Lab, all the three viruses are proof-of-concept malicious

programs written purely with the intention of demonstrating that such viruses are

possible. None of these viruses actually had any practical applications so far.

3.4.4 Summary

In this section, we analyze the vulnerabilities that exist in a single application soft-

ware product. Our analysis shows that:

6 http://www.kaspersky.com/news?id=184875287

30

http://www.kaspersky.com/news?id=184875287

• 45.7% (137 out of 300) of the vulnerable software products involved in this

category are officially supported on multiple operating systems;

• Among those that are officially supported on multiple operating systems,

84.7% have the vulnerability propagated across multiple OS versions;

• At least two factors (different memory layout and different machine instruc-

tions) make it difficult to construct an exploit that can compromise software

running on multiple operating systems simultaneously. No such practical at-

tacks have been reported.

These findings show that roughly 50% of the software products are candidates

for a replicated system running the same software on multiple operating systems.

Even if the same vulnerability exists on multiple replicas, compromising them si-

multaneously remains difficult. However, due to the fact that most of these vulner-

abilities are shared among the different OS versions of the same software, utilizing

diverse operating systems is not as effective as utilizing software substitutes.

3.5 Vulnerabilities in Other Software Products

In this section, we present our analysis on the other three categories, namely web

script modules, operating systems, language and libraries.

3.5.1 Web script modules

Software in this category consists of light-weighted products that run on web servers

to provide web-based applications. Examples include forums, bulletin boards, shop-

ping carts and other script modules. We analyzed the CVE vulnerability database

and found close to 3, 000 entries that fall into this category. Some common and

well-known types are shown in Table 3.5.

An interesting finding is that most of the vulnerable software in this category

is operating system independent. For example, most PHP modules are deployed

31

Vulnerability Types Number of entries Percentage

Cross-site scripting 714 24.7%
SQL injection 669 23.1%
PHP remote file inclusion 634 21.9%
Directory/Path traversal 267 9.2%
Cross-site request forgery 50 1.7%
Others 559 19.3%

Total 2893 100%

Table 3.5: Vulnerabilities in web script modules

on Apache web servers, which can run on all common operating systems. This

means that we could use diverse operating systems to introduce software diversity.

However, it is different from the application software we analyzed in Section 3.4,

since many of the web script modules operate on top of a web server, and seldom

interact with the operating system. If the vulnerable software does not interact with

the operating system, then constructing replicas using diverse operating systems is

not an effective way of introducing diversity because the exploit code is likely to

be the same on different replicas. Therefore, we shift our focus of analysis to using

software substitutes for introducing diversity.

Cross-site scripting (XSS) vulnerabilities

Cross-site scripting (XSS) is one of the most common web script module vulnera-

bilities in the CVE database. Attackers exploit this vulnerability by injecting mali-

cious scripts into the output of an application (usually a web page) which is sent to

the client’s web browser. This script is then executed on the client’s web browser

and used to transfer sensitive data to a third party (i.e., the attacker) [106]. Unlike

other types of web vulnerabilities, XSS vulnerabilities exist and are exploited on the

server side but take effects on the client side. Thus, the protection and prevention

mechanisms are carried out both on the server side [109] and the client side [106].

In most cases, the server-side scripts are vulnerable no matter what operating

systems or web servers on which the scripts run (see an example in Figure 3.6,

32

the attack payload is usually some malicious HTML/JavaScript, which is first

posted to the server and then downloaded and run at the client side), thus introducing

diversity on the server side is not effective. However, introducing diversity on the

client side by utilizing diverse browsers is possible. Figure 3.7 shows two examples

of XSS attack payload in the exploit code as shown in Figure 3.6.

Description Cross-site scripting vulnerability in picture.php in Advanced
Guestbook 2.4.2 allows remote attackers to inject arbitrary web
script or HTML via the picture parameter.

Exploit code http://www.site.com/picture.php?picture=
[attack_payload]

Figure 3.6: CVE entry CVE-2007-0605 and the corresponding exploit code

[Payload 1] Works for Internet Explorer 6.0 but not Opera 9.0 or Firefox 2.0

<IMG SRC=javascript:location.replace(’http://evil.
com/steal/index.asp?cookies=’+encodeURI(document.
cookie))>

[Payload 2] Works for Opera 9.0 but not Internet Explorer 6.0 or Firefox 2.0

<IMG SRC=javascript:document.createElement(’IMG’).
setAttribute(’src’,’http://evil.com/steal/index.
asp?cookies=’+encodeURI(document.cookie))>

Figure 3.7: XSS attacks that have different impact on browsers

Both XSS attack payloads shown in Figure 3.7 utilize the HTML tag and

are used for stealing cookies from client machines that access the vulnerable web

site. The exploit codes do not have the same effect on the contemporary browsers

because of the implementation difference. The evidences that XSS attack codes

have different effects on different browsers can also be found from other resources.

For example, 68 out of the 110 XSS attack vectors on the XSS Cheat Sheet (

http://ha.ckers.org/xss.html) have different impacts on diverse web browsers. Note

that the application scenario here is slightly different from the example shown in

Figure 3.1: utilizing diverse browsers to construct the replicated system is a client-

side solution instead of the server-side example shown in Figure 3.1. Our results

show that by comparing the different impacts on different browsers when given the

33

http://ha.ckers.org/xss.html

same input, many XSS attacks could be detected. Analyzing the detection rate of

such a system is out of the scope of this chapter.

SQL injection

SQL injection arises when a user input is not correctly or sufficiently filtered. SQL

injection attacks are usually launched through specially crafted user inputs on web

applications that use strings to construct SQL queries [20]. Although simple SQL

statements are constructed exactly the same for different databases, they are differ-

ent in constructing sophisticated SQL Injection exploits. Consider Blind SQL In-

jection in CVE-2007-1166, CVE-2007-3051, and many other vulnerable products.

The exploit code utilizes the following SQL statements (simplified version).

IF ((SELECT user) = ′Alice′) SELECT 1 ELSE SELECT 1/0

After receiving this request, the SQL Server will throw a divide-by-zero error if

the current user is not Alice, while the MySQL server will report a parsing error.7

There has also been research on utilizing diverse off-the-shelf databases to obtain

fault tolerance [54].

Directory traversal

Directory traversal (or path traversal) vulnerabilities appear when web applications

do not sufficiently validate or sanitize the user-supplied file names. It may allow

attackers to gain access to directories and files that reside outside of the directory of

web documents.

A notable difference in traversing directories on diverse operating systems is

that Unix and Unix-like systems use “../”, while Windows systems use “..\”.

Not only that, the root directory on Windows uses the “<drive letter>:\”

7Example statement here was tested on SQL Server 2005 and MySQL 5.0. More resources on
different syntax for constructing SQL Injection attacks to different databases can be found on SQL
Injection Cheat Sheet at http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

34

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

format, which limits directory traversal to a single partition (e.g., C:\). There are

other differences, e.g., the file organization also varies a lot on different operating

systems.

Remote File Inclusion (RFI)

RFI vulnerabilities allow an attacker to include his own malicious PHP code on

a vulnerable web application. RFI attacks are possible because of several PHP

configuration flags that are not carefully set. This vulnerability could be avoided

easily by disabling two global flags in PHP [39]. Thus, RFI vulnerabilities are not

the focus of our study in this work.

Cross-site Request Forgery (CSRF)

By launching a successful CSRF attack to a user, an adversary is able to initiate ar-

bitrary HTTP requests from that user to the vulnerable web application [66]. CSRF

attacks are usually executed by causing the victim’s web browsers to create hidden

HTTP requests to restricted resources. Therefore, similar to XSS vulnerabilities,

using diverse browsers is a possible way of detecting CSRF vulnerabilities.

3.5.2 Operating systems, languages and libraries

For operating system vulnerabilities, we try to find out if diverse operating systems

have the same vulnerability. We find that Mac OS X has some common vulnerabil-

ities with BSD (e.g., CVE-2007-0229), mainly because the implementation of Mac

OS X kernel shares part of the code of BSD kernel [97]. However, these common

vulnerabilities only constitute 2% (2 out of 98) of all the vulnerabilities on Mac OS,

which indicates that utilizing Unix/Unix-like OS and Mac OS to construct replicas

is effective.

Another observation we have is that different Linux operating systems have

many common vulnerabilities, since they share the same kernel (e.g. CVE-2007-

35

3104, CVE-2007-6206 and others). These vulnerabilities contribute 64% (71 out of

111) of all the Linux OS vulnerabilities, which shows that different Linux operating

systems are not diverse enough. Finally, by examining all the 438 OS vulnera-

bilities, no evidence has been found that the same OS vulnerability exists in both

Windows and Unix/Unix-like or in both Windows and Mac operating systems.

Many programming languages and libraries (e.g., Java, PHP, Perl, and etc.) sup-

port multiple operating systems. However, our analysis in the CVE vulnerability

database shows that many of the vulnerabilities in these products are platform de-

pendent. For example, CVE-2007-5862 (a Java vulnerability that exists only in Mac

OS X) and CVE-2007-1411 (a PHP buffer overflow vulnerability that allows local,

and possibly remote, attackers to execute arbitrary code via several vulnerable PHP

functions that exist only in Windows8).

3.5.3 Summary

Although in general, software diversity is not very effective in web applications, it

is successful in detecting exploits of some web script module vulnerabilities by, for

example, utilizing diverse browsers to defend against XSS and CSRF attacks and

utilizing diverse databases to detect SQL Injection attacks.

Most OS vulnerabilities only exist in one OS family, which indicates that di-

versity is useful when utilizing diverse operating systems of different OS families.

Although most language and library vulnerabilities are platform independent, there

are cases in which they exist in only one particular OS version.

8This result is obtained by analyzing NVD/CVE, SecurityFocus and the PHP Buglists. Security-
Focus gives misleading information which indicates that this vulnerability exists on Unix/Unix-like
systems (see http://www.securityfocus.com/bid/22893/info). However, the PHP Bug Info (Bug
#40746) shows that it is a problem with the function dbopen() in the Microsoft ntdblib library, and
does not exist when compiled with FreeTDS version of the dblib library that is used by Unix/Unix-
like systems.

36

http://www.securityfocus.com/bid/22893/info

3.6 Discussion

In this work, we analyzed the vulnerabilities published in 2007 to evaluate the effec-

tiveness of two ways of introducing software diversity utilizing off-the-shelf soft-

ware: one is by utilizing different software products that provide the same service,

and the other is by utilizing the same software product on different operating sys-

tems.

The results show that more than 98.5% of the vulnerable application software

products have substitutes and the chance that these software substitutes be com-

promised by the same attack is very low. Nearly half of the application software

products are officially supported to run on multiple operating systems. Although

the different OS distributions of the same product have more than 80% of a chance

to suffer from the same vulnerability, their attack code is quite different. For the

web script modules and other types of software, although software diversity is less

effective than that in the application software, some evidence has been found that

there are possible ways to benefit from software diversity in these categories.

The limitation of our work mainly includes two parts. The first is that a large

amount of manual work has been spent in order to get the accurate statistical results,

which is too costly and time consuming. Other information retrieval and artificial

intelligence techniques could be applied in our future work to speed up the analysis

process. The other limitation is that we have not yet obtained the statistics for some

categories due to the large information search space and the lack of closely related

resources, which is a challenging task that remains to be done in the future.

37

Chapter 4

Software Diversity in Intrusion

Detection

4.1 Introduction

Host-based anomaly detection techniques based on behaviors of programs in terms

of system call sequences were first proposed by Forrest et al. [47], and improved

and extended by a number of research work [46, 50, 56, 58, 80, 95]. The normal-

behavior models of the applications are learnt from the behaviors observed during a

training phase; while during detection, any deviations from the established models

are interpreted as attacks to the programs monitored. Later research [23, 72, 86, 100]

further enhanced the behavioral model by capturing the information of system call

arguments.

Early schemes [72, 86, 100] model the argument behavior at the granularity of

different system calls, i.e., each system call (e.g., open, read, write) is assigned

with a profile. The granularity is then improved by differentiating the instances

of the same system call when their call stacks are different [23]. For example,

the legitimate arguments of open@callstack1 and open@callstack2 are

assigned with different profiles so that they can be tested differently in the detection

phase. However, since other context information is not captured during the training,

38

an adversary is able to evade the detection of these existing schemes. Consider the

following example code which assumes to contain a buffer overflow vulnerability:

int uid = geteuid();

char buf[128];

char* filename;

...

if (uid == 0)

filename = "/www/admin/configure.ini";

else

filename = "/www/user/configure.ini";

int fd = open(filename, O_RDWR);

write(fd, buf, sizeof(buf));

As illustrated in the example code, the system call open accepts two different

parameter values in the training phase, both of which correspond to the same call

stack. According to the existing schemes [23, 72, 100], both of these strings will be

treated as legitimate values during detection. Thus, an attack which overflows buf

and changes uid to 0 will be able to get the administrator privilege while evading

detection. Such a situation is more common in modern software applications where

code modules are extensively reused. Call stack is not able to tell a difference in the

privilege in different executions.

The fundamental difficulty in detecting such attacks stems from the erratic prop-

erty of function arguments. More formally, all legitimate values observed in differ-

ent normal program executions are not necessarily legitimate at a particular execu-

tion. In a particular execution context, only a subset of the values (possibly one) is

legitimate while others could potentially be malicious.

This problem seems deceptively simple. The fine-grained context information,

which is required to differentiate the legitimate values at run-time, is difficult to

gather when training merely one program [23, 72, 100], especially when the source

code is not provided. Even for schemes which utilize two diverse applications,

their model cannot be simply extended to detect such attacks. For example, hid-

den Markov models used in [51, 52, 53] (to train the normal-behavior profiles of

39

the system call sequences) are only able to handle finite states, while the space of

argument values is usually infinite.

In this work, we propose an intrusion detection scheme which builds on two

diverse programs providing semantically-close functionalities. Our model learns the

underlying semantic correlation of the argument values in these programs to detect

attacks manipulating erratic arguments, which are recognized as normal inputs by

existing schemes. Specifically, we make the following contributions:

• We provide a formal approach of detecting attacks utilizing erratic arguments,

by learning relations of the function arguments between programs providing

semantically-close functionalities.

• We utilize taint analysis to further refine the detection model, which elimi-

nates the coincident relations to decrease the false-positive rates.

• We implement a prototype of our scheme and present a detailed experimental

evaluation. The evaluation demonstrates that a number of real attacks which

are hard to detect by existing schemes can be effectively detected using our

technique. Specifically, it is shown that our detection model not only detects

sophisticated attacks on security-critical data, but also detects some Denial-

of-Service attacks which are not addressed by existing techniques, with com-

parable false alarm rates.

4.2 Diversity Detection Model

In this section, we first introduce the framework of our detection approach, which is

followed by the definitions of the argument relations. Different algorithms are then

provided to train the behavioral model for different types of arguments.

40

4.2.1 Overview

Figure 4.1 illustrates the basic idea of how our intrusion detection system (IDS) is

constructed. We regard two diverse software having semantically-close function-

alities if they provide same services. Examples of such diverse software could be

web servers like Apache and Lighttpd, or office software like Adobe PDF Reader

and Foxit PDF Reader. Similar to existing diversity-based intrusion detection

techniques, the framework in Figure 4.1 utilizes two diverse software providing

semantically-close functionalities to build the behavioral model, base on the obser-

vations that these software cannot be successfully exploited by the same attack [61].

IDS

Application 1

Application 2

System call sequences
with parameters

Syst
em c

all se
quen

ces

with
para

mete
rs

s
a
m
e
in
p
u
t

(p
o
te
n
ti
a
lly
m
a
lic
io
u
s
)

Figure 4.1: Our diversity IDS framework

In this work, we focus on building a normal-behavior model by extracting

the function arguments of both applications. Since these applications provide

semantically-close functionalities, there are semantic relations between the behav-

iors of these applications when they process the same input. Such semantic rela-

tions will exhibit as the relations between the related function calls and their

argument values. For example, two web servers processing the same HTTP request

need to access the same local file on the disk. Thus, consequently, there should be

functions in both applications whose argument values contain the same file name. In

the following, we will briefly introduce how our model captures the argument rela-

tions between the two diverse applications. Once the argument relations are trained,

they will be utilized to detect attacks that attempt to fool traditional IDS with erratic

41

function arguments.

In the model of Figure 4.1, the same inputs, which are assumed to be free of

attacks in the training phase, are passed to both of these applications (app1, app2).

In order to process the input, each of these applications will invoke a series of system

calls (for each input):

S1 = 〈s1,1, s1,2, ..., s1,l1〉 S2 = 〈s2,1, s2,2, ..., s2,l2〉 (4.1)

Each system call si,j has a vector of arguments. In the training phase, all infor-

mation for each si,j will be recorded by corresponding monitor module of appi, and

is used to extract the information of the arguments. Specifically, in our model, each

argument is identified by:

argi,x where i ∈ {1, 2},

x = 〈index, type, s name, callstack〉.

In the above representation, i in argi,x indicates this argument appears in the trace

of appi. index is the position of this argument in the corresponding system call,

whose name is s name; type is the type of the argument (e.g. string or integer);

callstack stores the call stack information of the corresponding invocation of this

particular system call.

In the training phase, we first obtain a pair of system call traces (S1, S2) for

each input. With all pairs of the system call traces, we then get a set of argu-

ment pairs. For each argument pair (arg1,p, arg2,q), arg1,p is an argument in app1,

which is identified by a unique set of 〈index, type, s name, callstack〉 appearing

in the training set, and arg2,q is defined similarly. From the training data, we col-

lect a set of value pairs Valuep,q for each argument pair, where Valuep,q = {(v1, v2)|
arg1,p = v1, arg2,q = v2}. According to Valuep,q, we then produce a database of

relations R = {〈arg1,p R arg2,q〉}. This relation set R is finally utilized to detect

42

whether there is any violation for each pair of parameter values. If the relation of

a pair of parameter instances (〈arg1,p = vx〉 and 〈arg2,q = vy〉) does not satisfy the

corresponding 〈arg1,p R arg2,q〉 in R, the IDS will raise an alarm.

4.2.2 Relationships of the Arguments

In our model, we focus on two most common types of system call arguments – string

and integer, the definitions of which follow the standard definition in programming

language: a string is a sequence of zero or more characters followed by a NULL

(“\0”) character; while an integer is a numeric variable holding whole numbers.

We define binary relation R that captures the relationship between two system

call arguments in the diverse applications. The relation between two arguments is

expressed as 〈arg1 R arg2〉, where arg1 is a particular argument in the first applica-

tion, and arg2 is a particular argument in the second application. Different sets of

candidate relations are given to string and integer since these two argument types

have different characteristics.

We provide the following basic relations for string arguments:

• equal captures equality relation of the given two arguments, e.g., the file name

passed to an open system call in app1 could be the same as the file name

passed to another open (or stat64) system call in app2.

• samePrefix(n) indicates that the two string arguments have the same prefix,

the length of which is at least n. For example, if arg1 = "/home/usr/xyz"

and arg2 = "/home/usr/abc", then 〈arg1 samePrefix(10) arg2〉 holds.

• sameSuffix(n) indicates that the two string arguments have the same suffix

substring with length at least n.

• contain means that the second argument is a substring of the first argument.

• partOf is the reverse of contain relation, in which the first argument is a

substring of the second argument.

43

Note that for the same pair of arguments, more than one of the above re-

lations may hold. For example, if arg1 = "/home/configure.ini" and

arg2 = "/home/conf.ini", then both 〈arg1 samePrefix(10) arg2〉 and 〈arg1

sameSuffix(4) arg2〉 hold. The above five relations defined are sufficient to cover

the binary relations of string arguments proposed in existing approaches, which are

defined for modeling the binary relations of arguments in a single program, such as

isWithinDir, hasSameDirAs, hasSameExtensionAs [23].

For integer arguments, we use a polynomial equation to represent the relation of

the two arguments. That is, let x = arg1 and y = arg2 (or x = arg2 and y = arg1), the

following equation holds:

y = cmxm + cm−1x
m−1 + ... + c1x + c0 (4.2)

For example, for the two malloc calls which create a memory region to store

the uri string parsed from the same request, the parameter values of these two

malloc could have the form y = 1 · x + c0. The value of c0 may not be 0 because

the internal structures which store the uri are different in these two programs. Note

that in Equation 4.2, when c1 = 1 and ∀i 6= 1, ci = 0, then arg1 = arg2. In our model,

this equal relation between numeric arguments is able to capture most relations of

flag arguments (such as O_RDONLY and O_RDWR), because they usually appear as

the same in the diverse software providing semantically-close functionalities.

Polynomial relation does not cover all the binary relations between two integer

arguments, e.g., exponential relation or bitwise relation may also exist under some

circumstances. In our current model, we only preserve polynomial relation for inte-

ger parameters as it is the most common relation we observed in real applications.

4.2.3 Training Algorithms

The training procedure can be generally divided into three stages: argument pair

extraction, relation acquisition and relation refinement.

44

Argument pair extraction

In this first stage, our purpose is to extract a set of Valuep,q for each pair of

〈arg1,p, arg2,q〉. Each Valuep,q set will contain all the value pairs occurred in the

whole training procedure. All the sets of Valuep,q will then be used to train the

relation R between 〈arg1,p, arg2,q〉. The algorithm of extracting each pair of argu-

ments and its corresponding values are given in Algorithm 2, after which a set PV=

{(arg1,p, arg2,q, Valuep,q)} will be collected. This PV set will then be used as input

in Algorithm 3 and Algorithm 4.

Algorithm 2 Argument-pair extraction
1: for each (S1, S2) pair in the training set do
2: for each s1,j in S1 and each s2,k in S2 do
3: if comparable(s1,j , s2,k) then
4: for each arg1,p belonging to s1,j , and each arg2,q belonging to s2,k do
5: v1 = value of arg1,p

6: v2 = value of arg2,q

7: if (arg1,p.type = arg2,q.type) then
8: if (arg1,p, arg2,q,Valuep,q) already exists in PV then
9: add (v1, v2) to Valuep,q if (v1, v2) 6∈ Valuep,q

10: else
11: Valuep,q = {(v1, v2)}
12: add (arg1,p, arg2,q,Valuep,q) to PV
13: end if
14: end if
15: end for
16: end if
17: end for
18: end for

This step is critical to the rest of the training procedure. The amount of all the

combinations of 〈arg1,p, arg2,q〉 could be huge, however, we only consider argument

pairs which appear in comparable function calls (as shown in line 3 of Algo-

rithm 2). We define comparable function calls as those functions which have the

same function names or whose functionalities are semantically related. For exam-

ple, system calls open and stat64 are comparable, and library calls malloc,

calloc and realloc are comparable. System calls like setuid and open are

45

not comparable since their functionalities are not semantically related. Our current

implementation of Algorithm 2 reads in a configuration file that specifies which

function calls are comparable. This configuration file is carefully constructed ac-

cording to the platform on which the target applications are running. Our current

implementation only considers the Linux operating systems with GNU C library.

Relation acquisition

The next step is to learn the relations between each pair of arguments gained by Al-

gorithm 2. Here we introduce two algorithms for learning the relations: Algorithm 3

is used to learn the relations between two string arguments; while Algorithm 4 is

for integer arguments. We use ∅ to denote that there is no relation between two

arguments (arg1 ∅ arg2).

Algorithm 3 String-relation learning
Require: set PV.

1: for each (arg1,p, arg2,q,Valuep,q) in PV do
2: if arg1,p.type = arg2,q.type = string then
3: for each (v1, v2) in Valuep,q do
4: calculate R ∈{equal, samePrefix(n), sameSuffix(n), contain, partOf, ∅},

which satisfies v1 R v2.
5: if R 6= ∅ then
6: for each Rc that 〈arg1,p,Rc, arg2,q〉 ∈ R do
7: if R conflicts with Rc then
8: remove all 〈arg1,p,Rc, arg2,q〉 in R
9: add 〈arg1,p, ∅, arg2,q〉 to R

10: else
11: add 〈arg1,p,R, arg2,q〉 to R
12: end if
13: end for
14: else if 〈arg1,p, ∅, arg2,q〉 6∈ R then
15: add 〈arg1,p, ∅, arg2,q〉 to R
16: end if
17: end for
18: end if
19: end for

Note that there is an update procedure in the learning process of Algorithm 3

for the relation of samePrefix(n) and sameSuffix(n), which is not shown in the algo-

46

rithm. Take samePrefix(n) for example, suppose the existing relation for arg1, arg2

in R is samePrefix(nold) and the new learnt relation is samePrefix(nnew). The new

relation of arg1, arg2 in R will be updated as samePrefix(min(nold, nnew)).

Another important detail not shown in Algorithm 3 is that, a threshold N can be

set for the relations samePrefix(n) and sameSuffix(n), to reduce the false positives

caused by small n. During learning, if the calculated n < N , then set R = ∅. And

different N should be assigned for samePrefix(n) and sameSuffix(n). Also note

that a set of confliction rules for the relations is needed in Algorithm 3 (at line 7).

Generally, ∅ conflicts with other relations, and equal, contain, partOf conflict with

each other since the equal relation will always be verified first.

In Algorithm 4, the given order m should be at least 2, and should not be too

large so as to avoid the overfitting problem. m can also be dynamically adjusted

according to the size of each Valuep,q. However, the value of m should be at most

Valuep,q.size−1 in order to have enough value pairs for solving the equation set and

leave at least one value pair to verify the results.

The whole learning process is optimized by utilizing the ∅ relations. The PV set

does not need to be fully computed before running Algorithm 3 and Algorithm 4. If

〈arg1,p ∅ arg2,q〉 already appears in R, then the remaining instances of 〈arg1,p, arg2,q〉
do not need to be added into PV. The ∅ relations will be dropped at the end of the

training.

4.2.4 Model Refinement

In this subsection, we include an additional training phase to refine the relations

we have obtained by the above algorithms. The relations R gained by using pre-

vious algorithms are patterns on the values we observed. However, certain trained

relations may be due to the coincidence in the training data set, which could cause

false alarms in detection. Thus, it will be better if we can remove those trained pat-

terns in R which are not caused by the semantic relations between the two diverse

47

Algorithm 4 Integer-relation learning
Require: set PV, order m.

1: for each (arg1,p, arg2,q,Valuep,q) in PV do
2: if arg1,p.type = arg2,q.type = integer then
3: if Valuep,q.size < m then
4: add 〈arg1,p, ∅, arg2,q〉 to R
5: else
6: use the first m pairs of (v1, v2) in Valuep,q to solve the equation set of

Equation (4.2) to get (cm, ..., c0), for both (x = arg1,p, y = arg2,q) and
(x = arg2,q, y = arg1,p).

7: if the equation set is solvable then
8: R = {x, y, (cm, ..., c0)}
9: for each (v1, v2) left in Valuep,q do

10: if Equation (4.2) does not hold then
11: R = ∅
12: end if
13: end for
14: add 〈arg1,p,R, arg2,q〉 to R
15: else
16: add 〈arg1,p, ∅, arg2,q〉 to R
17: end if
18: end if
19: end if
20: end for

applications.

However, it is not an easy task to validate the semantic relations of arguments

and refine the trained model. Even with the source code, it is difficult for a human

to capture the exact semantic meaning of a given function in a complex applica-

tion. Thus, to automatically capture the semantic meanings of functions without the

source code is an even harder problem. One way of learning the semantic relations

between arguments is to use taint analysis [94]. Since the semantics of different set

of function calls vary a lot, the detailed method of carrying out taint analysis needs

to be customized accordingly. It is difficult to design a universal solution to perform

the taint analysis for all the function calls.

In our current work, we develop a method of mapping memory management

library calls (such as malloc, free, realloc, etc.) of two diverse web servers,

48

according to the semantics gained by taint analysis. The basic idea is as follows:

First of all, by tainting the request stream sent from client, we gain the knowledge

that which portions of the request are mapped to which heap memory regions. Since

these memory regions are created by the corresponding memory library calls, each

library call can be correlated with a certain portion of the request. We mapped

the two memory library calls (e.g., one malloc in Apache and one calloc in

Lighttpd) whose memory regions store the same part of the request (e.g. the uri).

We then preserve the argument relations that belong to the mapped library calls,

and remove other unmapped relations from R. The implementation detail is given

in Section 4.3, the effect of such refinement will be further evaluated in Section 4.4.

4.2.5 Detection

After the relation set R is trained, the detection phase is quite straightforward. Dur-

ing detection, for each argument pair (arg1,p, arg2,q) that appears in R, each instance

of (arg1,p = vx, arg2,q = vy) will be tested. If an instance does not satisfy the

corresponding 〈arg1,p R arg2,q〉 in R, the IDS will raise an alarm. Although the

complexity of the training is relatively high, the detection only involves simple and

fast computation. The main cost of detection depends on the cost of monitoring and

logging the function calls.

4.3 Implementation

We have implemented our approach on Ubuntu 8.04 (Linux kernel 2.6.24). The

implementation consists of two online components and an offline component.

The two online components are both monitor modules (referred to as tracer),

one of which is used to trace system calls, the other is used to trace library calls of

the monitored programs. For the system call tracer, we utilize ptrace to intercept

each system call made by the monitored program and log the following information:

(a) the PC value from where the system call was invoked, (b) values of arguments,

49

and (c) the call stack information which contains a set of absolute return addresses.

For the library call tracer, we modify the GNU C library (glibc) under Ubuntu to

output similar information for a selected set of library calls. Since the backtrace

method cannot be used within the implementation of some library calls such as

malloc, we implement our own backtrace method in the glibc to log the call

stack information.

Each time when the monitored program starts, all the base addresses of its

loaded shared libraries are also recorded, which is retrieved from corresponding

/proc/[pid]/maps. These addresses will be used to convert the absolute ad-

dresses in the call stack recorded by the tracer to relative addresses, in the form of

[libname+offset]. By having relative call stacks, we are able to identify the

same instance of function call across different runs of the same program.

The offline component of our implementation includes the parsers of the logged

traces and the training module that implements the algorithms in Section 4.2. As

mentioned earlier, a configuration file is also provided to the training module, which

specifies the function calls that are comparable. The implementation of the offline

component is about 3.5K LOC.

For the model refinement part in the training, we utilize TEMU [15] to carry out

the taint analysis. Web server programs running in TEMU are provided with tainted

request stream and tainted local disk files, and the instructions of the monitored web

server will be recorded when processing each request. The recorded instruction

traces are then translated by the trace_reader tool in Vine [15] and used as

inputs to the trace parsers we implemented. According to the taint information in

the trace files, our trace parser will be able to extract the information that each

memory library calls is related to which part of the request stream (or is related to

which file on the disk). Then two library calls (in two diverse servers) which are

related to the same part of the request (or the same local file) are recorded as the

mapped library calls as mentioned in the previous section. This TEMU trace parser

is around 1K LOC.

50

4.4 Evaluation

In this section, we first investigate the effectiveness of our approach in detecting real

attacks and then analyze the false alarm rates. Performance overheads for intrusion

detection are also discussed. All experiments are conducted under Ubuntu 8.04 and

the training and testing are performed in offline mode.

4.4.1 Detection Effectiveness

Since the code injection attacks have been extensively addressed in prior re-

search [46, 47, 50, 56, 58, 80, 95], we focus on evaluating the detection effectiveness

of our model against attacks on security-critical data utilizing erratic arguments.

Table 4.1 lists the set of attacks tested in our evaluation. The first two attacks in

Table 4.1 are detectable by our approach since they both violate the string argument

relations trained in our model, while the other two attacks in Table 4.1 violate the

integer argument relations.

Reference
Vulnerable
Program

Attack Description
Alternative

Program
Type

S.Chen et al. [30] Ghttpd stack overflow to overwrite
filename data

Null-httpd String

S.Chen et al. [30] Null-httpd heap overflow to corrupt
cgi-bin configuration string

Ghttpd String

S.Chen et al. [30] Wu-ftpd format string attack to
overwrite userid data

Pure-ftpd Integer

CVE-2008-4298 Lighttpd memory leak via duplicate
request headers

Cherokee Integer

Table 4.1: Selected non-control-flow attacks

Detection of anomalous string arguments

The first attack in Table 4.1 exploits a stack overflow vulnerability in Ghttpd’s

logging function [30], which occurs in the following code fragment in function

serverconnection():

51

1: if (strstr(ptr, "/.."))

2: reject the request;

3: log(...);

4: if (strstr(ptr, "cgi-bin"))

5: execve(ptr, ...)

In the above code, ptr is a char pointer to the string of URL requested by a re-

mote client. The first two lines in the code are used to check the absence of “/..” in

the URL, before the CGI request is parsed and handled in line 4–5. The stack buffer

overflow vulnerability is in function log(), where a long user input string can

overrun a 200-byte stack buffer. Chen et al. [30] managed to construct a stealthy at-

tack which changes ptr to point to a string cgi-bin/../../../../bin/sh

by exploiting the vulnerability in log(). Their attack neither injects code nor alters

the return address, thus, it is difficult to be detected by most of the existing models.

Our approach is able to detect this attack. During training, our model learns the

equal relation between the first parameter of execve in Ghttpd and the parameter

of corresponding execve in Null-httpd (in function cgi_main()). Since this

relation is later violated when this attack has successfully changed the value of ptr

in Ghttpd, an alarm is raised by the IDS.

Although this attack is also detectable by the dataflow model [23], their mech-

anism is different. Their system first learns that all files executed at line 5 should

be within the "cgi-bin" directory. The attack is detected when it accesses a

file outside this directory. However, such isWithinDir [23] relation (trained

by monitoring the program itself) may not be sufficient in practical scenarios. For

example, in typical business applications, files under the same directory may have

different access policies. A user x is only allowed to execute program A under the

directory, but not program B. Due to the overflow attack, adversary with the priv-

ilege of user x is able to gain the access to program B. Under such a scenario, the

isWithinDir relation will not be able to detect such attacks since all the pro-

grams are under the same directory, while our model is still able to detect attacks in

cases like these.

52

The second attack in Table 4.1 targets on a heap overflow vulnerability exists in

Null-httpd. This vulnerability is triggered when a special POST command is re-

ceived by the server. This vulnerability can be used to corrupt the CGI-BIN con-

figuration of Null-httpd and will result in root compromise without executing any

external code. In the attack illustrated by Chen et al. [30], two POST commands are

issued to precisely overwrite four characters in the CGI-BIN configuration so that

it is changed from "/usr/local/httpd /cgi-bin\0" to "/bin\0". After

the corruption, /bin/sh can be started as a CGI program and any shell command

can be sent as the standard input to /bin/sh.

This attack cannot be easily detected by control-flow schemes [46, 47, 50, 56,

58, 80, 95], and is not addressed by the dataflow scheme [23]. However, our diver-

sity model is able to detect such an intrusion due to the same reason in the first attack

– the equal relation (of the first parameter of the two execve calls in Null-httpd

and in Ghttpd learnt during training) is violated when Null-httpd is exploited.

Note that although both of these two servers (Ghttpd and Null-httpd) have vul-

nerabilities, we can still use them together to build our diversity detection model

because their vulnerabilities are not exploitable by the same attack code. In gen-

eral, the probability that the same vulnerability exists in two diverse applications

providing semantically-close functionalities is very low [61].

Detection of anomalous integer arguments

The third attack in Table 4.1 exploits a format string vulnerability in Wu-ftpd. The

vulnerable code fragment is within the getdatasock() function:

1: seteuid(0);

2: setsockopt(...);

...

3: seteuid(pw->pw_uid);

The above function is invoked when a user issues data transfer commands, such

as downloading or uploading a file. It requires root privilege in order to perform

53

the setsockopt() operation. Thus, the privilege is temporarily escalated using

seteuid(0) and then changed back by the second seteuid(). The data struc-

ture pw->pw_uid is a cached copy of the user ID saved on the heap. The attack

proposed in [30] exploits the format-string vulnerability to change pw->pw_uid

to 0, which maintains the root privilege for the attacker so that arbitrary files can be

uploaded and downloaded by the attacker as a root user.

Our model detects this attack when monitoring Wu-ftpd together with Pure-ftpd.

Since the two servers have the same configurations, the parameter of seteuid()1

function call on line 3 in Wu-ftpd always has the same value as the parameter

of the seteuid() calls in function doport3() in Pure-ftpd. These integer

parameter relations are violated when the adversary overflow the heap to change

pw->pw_uid to 0.

The fourth attack in Table 4.1 exploits a memory leak vulnerability exists in

Lighttpd. When a duplicated field appears in a request header (e.g., “User-Agent

:Mozilla/4.0” and “User-Agent:MSIE/8.0” both appear in the header),

the http_request_parse() method in Lighttpd will allocate a memory re-

gion to store the content of the second field (i.e., MSIE/8.0), but will not recycle

this resource afterwards. An adversary can utilize this vulnerability to consume the

memory of the server running Lighttpd by sending many requests with duplicate

fields (with a maximum field length of 2KB).

Such Denial-of-Service attack cannot be directly detected by the existing ap-

proaches trained on a single server, especially when the total memory consumed is

not large enough to cause any exception. The difficulty comes from the memory

management behaviors of these web servers. For the most commonly used servers

(such as Apache, Lighttpd, etc.), the allocated memory will be reused in processing

the following requests and never be explicitly freed. Thus, for both normal request

and attack request processing, only memory allocation methods (such as malloc,

realloc ...) are observed, no deallocation method (such as free) will appear

1The underlying system call invoked is setresuid32().

54

in the library call sequences obtained. This makes it difficult for an IDS to pre-

cisely model the memory behaviors, as it requires simulating the complex internal

memory management of these server applications.

Our diversity IDS is able to learn the integer argument relations of the corre-

sponding memory allocation calls in the two servers monitored. To be specific,

the IDS learns that 16 pairs of the parameter values to the malloc and realloc

calls of Lighttpd and Cherokee servers are equal or have fixed difference (which is

actually due to the size difference of the internal structures in these two servers).

In the detection phase, the IDS detects the memory leak attack immediately

when the attack request causes one of Lighttpd’s malloc parameter to increase

(in buffer_copy_string_len() invoked by http_request_parse()),

which violates the integer relations that have been trained in the model.

4.4.2 False Alarm Analysis

There are three pairs of programs in Table 4.1. All of them are used to evaluate

the false alarm rates of our approach, as shown in Table 4.2. Two pairs of them are

http servers (Lighttpd and Cherokee, Ghttpd and Null-httpd), which are configured

to hold the same content of the web site of our university. In the training phase,

the two web servers in the same pair are provided with the same series of requests

(10K requests) obtained from the real log of our university’s web server. In the

detection phase, another set of requests (50K requests) from the logs are sent to

these servers to evaluate the false alarm rates. Applications in the third pair are FTP

server programs (Wu-ftpd and Pure-ftpd). Since we do not have the access to the

log of large amount of real FTP requests, we configure these two FTP servers to

hold the files downloaded from GNU FTP2, and simulate the requests by randomly

issuing commands (such as put, get, dir, passive, type, etc.) for random

files or directories on the servers.
2GNU Software FTP server, ftp.gnu.org/gnu .

55

ftp.gnu.org/gnu

Diverse Programs
Training Trace Detection Trace False alarms

of Sys calls (×105) # of Sys calls (×105) (×10−5)

Pair 1
Lighttpd 2.29 10.90

0.826
Cherokee httpd 5.19 24.35

Pair 2
Ghttpd 7.24 39.51

1.948
Null httpd 20.62 98.57

Pair 3
Wu ftpd 10.78 54.15

0.617
Pure ftpd 4.37 12.96

Table 4.2: False alarm rate

We construct two different experiments to test our false alarm rates (as shown

in Table 4.2 and Table 4.3). The first experiment only focuses on monitoring the

system calls and their arguments so that it can be compared with existing approaches

which also utilize system call arguments [23, 72] (e.g., the result of the dataflow

model [23] shows the false-positive rate of the tested HTTP server is 64.12× 10−5,

and the rate for SSH server is 0.02 × 10−5). Note that the rates shown in Table 4.2

are “raw” false alarm rates, i.e., the fraction of system calls that caused violations,

without combining the same type of violations. For example, the false alarm rate

for Lighttpd in Table 4.2 is 0.826 × 10−5, which means that one false alarm will

be raised for every 100K system calls processed. This indicates that one out of

10K requests will cause false alarms, as on average 10.9 system calls are invoked to

process one request for Lighttpd.

Programs
Training Trace Detection Trace False alarms (×10−5)

of Lib calls (×105) # of Lib calls (×105) Original After Refine

Lighttpd 2.31 11.06
5.286 1.762

Cherokee 0.46 2.27

Table 4.3: Model refinement by taint analysis

The results show that the second pair of applications have much higher false

alarm rate than the other two pairs, as in Table 4.2. We investigated the reason

for this higher false alarm rate, and found that this is due to the fact that during

the training, there are several coincident contain relations for the string arguments

56

between Ghttpd and Null-httpd, which are violated in the detection phase for benign

requests. Our current implementation of the training algorithm regards two string

arguments as contain as long as their values satisfy this relation, even if these pair

of arguments only appear once in the training. However, some rules in the training

phase could be added to further decrease the false alarm rate. For example, any

string relations should have at least two instances of value pairs in the training phase

so that one instance of values is used to set up the relation and other values can be

used to validate the relation in the training (and any argument pairs which only have

one instance should be regarded as ∅ relation in R). Such modification could reduce

the false positives of our model but should be carefully designed so that it would

not decrease the detection capability as well. Investigation on this trade-off is left

as future work.

In the second experiment (as shown in Table 4.3), we investigate the false-

positive rate when our model monitors the memory management library calls of

the diverse applications. Note that different from Table 4.2, only library calls are

considered in Table 4.3. We further investigate the effectiveness on false positive

reduction by refining our model using taint analysis. The result shows that after

removing the library call argument patterns which are not mapped by the semantic

relations, the false-positive rate decreases. It is possible to refine the relations of

other arguments by using taint analysis. However, since the semantics of differ-

ent set of library/system call arguments vary, taint analysis needs to be carefully

customized accordingly.

4.4.3 Performance Overheads

Table 4.4 shows the size of the programs used in our evaluation, along with the

model sizes in terms of the number of relations learnt. Note that the sizes of the

programs in the first pair include some of their own shared libraries. This is be-

cause part of the functionalities of these servers are compiled as shared libraries in

57

default (e.g., many of the commonly used functions in cherokee are compiled in

libcherokee-base.so and libcherokee-server.so), which is differ-

ent from standalone programs. It can be seen from the table that the size of our

models are relatively smaller compared to the sizes of the programs.

Programs Program Size (KB) String Relations Integer Relations

Pair 1
Lighttpd 767.9

143 367
Cherokee httpd 1165.7

Pair 2
Ghttpd 43.6

120 342
Null httpd 34.3

Pair 3
Wu ftpd 385.3

171 496
Pure ftpd 87.8

Table 4.4: Program size and model size

We also studied the time cost of our model for both learning and detection

phases, which is illustrated in Table 4.5. The original size of the training traces

were between 110MB and 526MB, consisting of 0.2 to 2 million system calls. As

shown in Table 4.5, we measure the performance overheads of monitoring the sys-

tem calls and library calls, which are the dominate overheads during detection. It

shows that the overhead of monitoring system calls could be quite high for web

servers (up to 83.4%). The overhead is mainly due to our system call tracer. As

explained in Section 4.3, our monitor module utilizes ptrace for system call in-

terception with our own implementation of the backtrace which records the call

stack information of each system call. Similar overhead was also reported by exist-

ing approach [23] using ptrace. This cost can be reduced to less than 6% [50], by

a kernel implementation of the interceptor.

Programs Training time
Detection Overheads

Monitoring sys calls Monitoring lib calls

Lighttpd & Cherokee 93.8 sec 29.10% 18.38%

Ghttpd & Null-httpd 1620.9 sec 83.39% 11.41%

Wu-ftpd & Pure-ftpd 2091.3 sec 17.56% 1.37%

Table 4.5: Training time and detection overhead

58

4.5 Discussion

Traditional intrusion detection techniques [32, 46, 47, 50, 56, 58, 80, 95, 107]

mainly focus on utilizing only system call sequences to detect code injection at-

tacks. Recent works [23, 72, 78, 86, 100] further incorporate system call argument

information to defend against attacks which do not modify control flows. However,

these approaches have difficulties in deciding which legitimate argument value is

really benign, when multiple legitimate values appear in the training phase.

Early works on software diversity construct intrusion tolerance systems [29, 88]

with software providing semantically-close functionalities. This architecture is then

utilized for developing diversity-based intrusion detection techniques [34, 51, 52,

68, 102]. Most of these techniques use Commercial Off-The-Shelf (COTS) soft-

ware to build the detection models. Among those schemes, the techniques proposed

by Just et al. [68] and Totel et al. [102] are output voting schemes, which only com-

pare the final outputs (HTTP status codes and files) of the diverse software to detect

intrusions. However, as many of the intrusions may not result in observable devia-

tion in the responses of those server software, such intrusions can evade detections

of these techniques.

Behavioral Distance model by Gao et al. [51, 52] was later proposed to de-

fend against stealthy attacks which are not addressed by both the output voting

schemes and traditional intrusion detection techniques which only monitor single

application. However, since hidden Markov model used in their scheme (to train

the normal-behavior profiles of the system call sequences) is only able to handle fi-

nite states, their model cannot be simply extended to detect attacks utilizing erratic

arguments.

Our approach proposed in this chapter is the first work that captures the under-

lying semantic correlation of the argument values in diverse programs. Our model

gains more accurate context information compared to existing schemes. Such con-

text information is critical in detecting sophisticated attacks on security-critical data

59

utilizing erratic arguments. When deployed, our model can be combined with the

existing system call sequence or control flow models to defend against a wider range

of attacks. The main limitation of our scheme is the additional cost on the manage-

ment of diverse software. However, such a cost could be negligible for some existing

fault-tolerant system where diverse software have already been deployed to prevent

simultaneous failure.

60

Chapter 5

Application Security Comparison of

Diverse Mobile Platforms

5.1 Introduction

The current intensive competition among mobile platforms sparks heated debate

over the question which platform has a better architecture for security and privacy

protection. Among these platforms, Google’s Android and Apple’s iOS are the top

players in terms of user base, which are often compared to each other [7, 8, 16, 17].

Some articles [8, 17] claimed Android is better due to 1) the complete permission

list visible to the user and 2) the open-source nature of Android. In the mean-

time, some other media [7, 16] argued that iOS is actually better for the following

reasons: 1) Apple screens applications before they let them appear in the iTunes

Store (also known as Apple’s vetting process); 2) Apple controls their hardware

completely so that OS patches and security fixes are issued immediately on all de-

vices; 3) The open source nature of Android also brings advantages for malicious

software developers. There are also other reports [9, 14] that conclude these two

platforms achieve comparable security but in different ways. These different voices

raise a question on how we can provide a reliable baseline for security compari-

son among the security architecture of different mobile platforms. Obviously, the

61

prior efforts [7, 8, 16, 17, 9, 14] in only comparing abstract and general practices

are not sufficient. We need to go deeper to investigate how the platform difference

influences the root of their security, the applications.

In this work, we make the first attempt to establish a reliable baseline for com-

paring security of mobile platforms by investigating permission usage of cross-

platform applications. A cross-platform application is an application that runs on

multiple mobile platforms (particularly, on Android and iOS). For example, the of-

ficial Facebook application releases both Android and iOS versions with almost

same functionalities. We start with searching these cross-platform applications by

crawling both Android Market and iTunes App Store. Our web crawler collects the

information for more than 200,000 Android applications and 300,000 iOS applica-

tions. Several data mining techniques are then adopted to match the applications

released for different platforms. We find that 10.9% of the applications on Android

Market have a replica on iTunes Store. Among them, we select 2,100 applications

(1,050 pairs) for further analysis.

In order to analyze the similarity and differences of permission usage, the first

challenge is to develop a mapping from Android permissions to iOS permissions,

as there is currently no official permission list for iOS. Based on the permission de-

scriptions of Android, we create a permission list for iOS and map these permissions

to corresponding Android permissions. Our analysis produces a list of permissions

supported on both Android and iOS, and also the list of permissions which are not

supported on iOS for various reasons. After that, the second challenge that needs

to be solved is to construct an API-to-permission mapping for iOS. This mapping

will be used by our static analysis tool to automatically extract the permission us-

age from corresponding API invocations. We reuse the API-to-permission mapping

on Android provided by a recent research [44]. With these mappings available, we

build our static analysis tools to perform massive static analysis for cross-platform

applications, which use Android Dalvik binaries and iOS Objective-C executables

as inputs.

62

By analyzing 1,050 pairs of cross-platform applications stratified sampled from

most popular applications, our results show that 81% of the applications on iOS

turn to request additional permissions (2.7 on average), compared to their replicas

on Android. The additional permission required are mostly for accessing sensitive

resources such as device ID, camera device, user contacts and calendar, which may

cause serious privacy breaches or security risks without being noticed. We then fur-

ther investigate the underlying reasons by separately analyzing third-party libraries

and applications’ own code. Our results show that the commonly used third-party li-

braries on iOS, especially advertisement and analytics libraries turn to require more

permissions compared to the libraries on Android. Similar phenomenon is also ob-

served from analyzing the applications’ own code. The reason of such differences

is because sensitive resources can be accessed more stealthily on iOS, compared to

Android where all the permissions required by an application has to be shown to

the user during installation. We also detect and confirm with the original Android

application developers that sensitive permissions may be intentionally avoided as

they will appear in the permission list. These results imply that Apple’s vetting pro-

cess is not as effective as what most users might think, particularly in the aspect of

protecting users’ private data from third-party applications.

The contributions of this work are as follows:

• We establish the first reliable baseline for comparing the security architec-

ture of different mobile platforms by examining permission usage of cross-

platform applications. This baseline provides a more comprehensive under-

standing on characterizing how the platform difference influences applica-

tions in security and privacy.

• We investigate the permissions of iOS platform and their relations to Android

permissions, which complement the knowledge on the security architecture

of contemporary mobile platforms. We also construct a mapping from iOS

APIs to iOS permissions, which is essential for automatic static analysis of

63

permission usage.

• We implement static analysis tools for both Android and iOS applications,

which is required to perform massive static analysis for cross-platform appli-

cations. Our results show the significant differences in permission usage for

Android and iOS third-party applications. The detailed analysis implies that

Apple’s vetting process is not as effective as Android’s explicit permission

list mechanism in restricting permission usage by application developers.

5.2 Background and Overview

5.2.1 Security Model: Android vs. iOS

Mobile security is very different from desktop PC – the security goal of mobile op-

erating systems is to make the platforms inherently secure rather than to force users

to rely upon third-party security software. Thus, various security mechanisms are

adopted and enabled as default on current mobile operating systems. The security

features used by Android and iOS are listed in Table 5.1, where the general security

models of these two platforms are compared.

Security Feature Android iOS
Permission Notification Yes Little*

Approval/Vetting Process Partial Yes

Digital Signing Yes Yes

Binary Encryption No Yes

Sandboxing Yes Yes

Data Encryption Yes Yes

Damage Control Yes Yes

Address Space Layout Randomization After v4.0 After v4.3
* Only two: using location information and allowing push notifications.

Table 5.1: Security model comparison: Android vs.iOS

Permission Notification: On Android, an application has to explicitly declare what

permissions it requires, which indicates the services/data it intends to access. The

64

user is informed with the list of permissions before installing each application, so

that he can choose not to install this application if he is unwilling to grant certain

permissions to it. On iOS, however, all third-party applications are “equal”, in the

sense that they are all given the same set of data and resource access as default, with-

out the users’ awareness. The only iOS resources which require user to explicitly

allow are location information and push notifications. Actually, iOS applications do

not really have the permission concepts 1.

Approval/Vetting Process: Apple must approve an application before it is distributed

via the iTunes Store, which is the only way to get applications on iOS unless it is

jail broken. Apple screens each uploaded application to check whether it contains

malicious code or violates Apple’s privacy policy before releasing it to the iTunes

Store. This vetting process is not well-documented, and there have been cases where

malicious applications passed the vetting process but had to be removed later from

the iTunes Store [98]. On the Android platform, Bouncer [77] is recently revealed

by Android team, which provides automated scanning of Android Market for poten-

tially malicious software. However, different from Apple’s vetting process, Bouncer

does not require developers to go through an application approval process, it per-

forms a set of analyses on new applications, applications which already exist in

Android Market, and also developer accounts.

Signing and Encryption: On both platforms, every application is digitally signed

with a certificate. This signature authenticates the identity of the distributor of the

application and ensures that the application has not been modified or corrupted since

it was signed. The difference is, Android applications are signed by developers

but iOS applications are signed by Apple. In addition to signing, iOS application

binaries are also partially-encrypted to mitigate unauthorized distribution. Each

application downloaded from the iTunes Store has to be decrypted first in memory,

1Security entitlements are used in OS X applications, which are semantically similar to permis-
sions. However, entitlements are not fine grained. And most importantly, entitlements are used
mainly in OS X applications, not in iOS applications.

65

each time it is launched.

Other features: iOS uses a sandboxing policy and Android uses UNIX UIDs to sep-

arate each individual application. Both platforms provide the service of encrypting

users’ confidential data, which could also be remotely erased once the device is lost.

In addition, both platforms have kill switches in the hands of Google/Apple, which

can be used to remove malicious applications from the users’ phones remotely. This

feature limits the damage of a malicious application by preventing it from spreading

widely. Finally, starting from Android v4.0 and iOS v4.3, both platforms provide

address space layout randomization to help protect system and applications from

exploitation due to memory management vulnerabilities.

From the general security model comparison, we can see that both platforms

employ a number of common defense mechanisms, but also have their own distinct

features. Android’s permission notification has some security advantage, but it also

pushes most of the security checking work to its end users who are not expertise in

security and may not even read or understand those permissions listed during appli-

cation installation. From the iOS’s perspective, the approval process does provide

certain degree of defense against malicious applications. However, its capability is

limited and can be bypassed sometimes [98]. Thus, a systematic comparison of the

applications on these two platforms is needed to fully understand the effect of these

diverse security architectures.

5.2.2 Comparison Framework Overview

To perform a fair comparison, we choose the cross-platform applications on these

two platforms as our main comparison objects. The overview of our comparison

framework is given in Figure 5.1, and the rest of this chapter is organized accord-

ing to the flow of this comparison framework. Section 5.3 provides the statistics

of the cross-platform third-party applications running on both Android and iOS.

Section 5.4 then compares the application-level permissions on Android and iOS in

66

(Java reflection resolving,

content providers, inheritance...)

(App cracking, disassembling,

_objc_msgSend resolving...)

Figure 5.1: The overview of our comparison framework.

detail, where we obtain a list of permissions that are supported on both platforms.

The design and implementation of our static analysis tools are presented in Sec-

tion 5.5. Given the permission mapping and static analysis tools on both Android

and iOS, we then perform our static analysis on the 2,100 applications selected,

and the results are presented in Section 5.6. Finally, we summarize and discuss the

contribution of this chapter in Section 5.7.

5.3 Cross-platform Applications

5.3.1 Preliminary Data Collection

In order to find out what are the applications that exist on both Android and iOS,

we need to compare their detailed information such as application name, developer,

application description, etc. The application product pages from Android Market

or iTunes App Store do provide such information, but neither Google nor Apple

provides public API for their online application stores. Thus, we build our own web

67

crawlers for both Android Market and iTunes Store.

Our crawler tools first collect the general information for each application by

browsing all the category pages. However, this direct method is not enough to

thoroughly collect the application information, especially for Android Market, as

it only shows at most 800 applications for each category. Thus, we construct our

own search strings2 and collect the information from each returned search result

page. When the web crawling ends, the general information of each application

(such as ID, name, URL...) is obtained. Following the URL of each application, the

crawler then downloads the corresponding page to record detailed information such

as developer, description, category, rating, etc. The results of the raw data finally

collected from both online app stores are shown in Table 5.2. Unfortunately, we are

not able to retrieve part of the application detail pages, which makes the coverage

for the detailed information smaller.

Android Apps iOS Apps

of apps for general information

(appID, appName, URL...)
230,133 368,752

Total # of apps expected* 250,000 by July 2011** 425,000 by June 2011***

Coverage for general information 92.05% 86.77%

of Apps for detailed information

(description, developer, rating...)
183,070 352,129

Coverage for detailed information 73.23% 82.85%
* All the data are collected from July to August 2011. Thus, we choose the total # of apps

announced in July and June as the total expected #.
** Android Wellness News, http://www.androidwellness.com/?p=537 .
*** Apple Event, http://www.apple.com/apple-events/wwdc-2011 .

Table 5.2: Data collected from Android Market and iTunes Store

2We utilize every possible permutation of 3-letter string and digit as the search keyword. A
popular noun and adjective word dictionary is also utilized to construct the search queries. Together
with the different combination of Free and Paid search options, the number of search queries finally
produced for Android Market is around 90,000.

68

http://www.androidwellness.com/?p=537
http://www.apple.com/apple-events/wwdc-2011

5.3.2 Identifying Cross-platform Applications

We regard two applications (one on Android, the other one on iOS) to be two ver-

sions of the same cross-platform application if they were designed to have the same

set of functionalities. For example, the official Facebook application is supposed

to provide the same set of functionalities on both platforms. However, given such

large sets of applications, it is not practical to manually check each possible com-

bination. Thus, five non-overlapping candidate sets of applications (CS1 to CS5)

are automatically produced to help identify the cross-platform applications. The

detailed descriptions of these five candidate sets are given in Table 5.3.2. Generally,

we use Vector Space Model [92] to compare the application descriptions and we use

Levenshtein Distance [74] to measure the similarity of application names.

Candidate
Set

Conditions* Unique
App Pairs

Percentage
True Positive

Rate

CS1

same appName,
same Company,
high similarity Description

9,845 5.38% ≈ 100%

CS2

same appName,
same Company,
low similarity Description

2,098 1.15% > 98.3%

CS3

same appName,
different Company,
high similarity Description

4,130 2.26% 83.3%

CS4

similar appName,
same Company,
high similarity Description

5,408 2.95% 75%

CS5

same appName,
different Company,
low similarity Description

8,430 4.60% 6.67%

* The high/low similarity threshold for Description is set to 0.45, and the edit dis-
tance threshold for similar appName is set to ≤ 5.

Table 5.3: Candidate sets for cross-platform applications: conditions and statistical
results

As shown in Table 5.3.2, the conditions of selecting the candidate pair of appli-

cations depend mainly on three attributes: appName, Company and Description. We

use Vector Space Model [92], one of the classical models in information retrieval,

69

to compare the descriptions. The similarity between two application descriptions is

calculated using:

sim(d1, d2) =
−→
d1 · −→d2

|−→d1| × |−→d2|
=

∑t
i=1 wi,1 × wi,2√∑t

i=1 w2
i,1 ×

√∑t
i=1 w2

i,2

where
−→
d1 and

−→
d2 denote the descriptions of two applications (one on Android, and

the other one on iOS), after removing stop words, pure numbers and special HTML

tags like
, <p> from the descriptions. wi,j is the weight for the ith term in

description dj which is assigned with the frequency of the term. The threshold

for the high/low similarity score is set to 0.45 by manual tuning to obtain a good

trade-off between the number of false positives and false negatives.

The similarity of the application names (as used in the rule of candidate set

CS4), however, are measured with Levenshtein Distance [74], as names are usually

short string which contains only a few characters. The well-known Wagner-Fischer

algorithm [108] is used to calculate the distance and the threshold for similar names

is set to≤ 5. One example for the cross-platform applications with similar names is

ActDroid on Android and ActPhone on iOS [1] – their name distance is 4 and their

description similarity is 0.56.

Out of the three conditions, the condition “same company” is the easiest con-

dition to determine, but it is not as straight forward as it may appear. On each

application page of iTunes Store, there are three fields which indicate the ownership

of this application – developer company, developer name and copyright company

name. However, on Android Market, there is only one field – the developer’s name.

To make the analyses more tedious and difficult, all kinds of abbreviations are used

in these fields (such as Ltd., Inc., LLC) and sometimes even part of the company’s

own name is abbreviated. Thus, instead of a strict string matching, we choose the

“contain” relation – if the developer name on Android contains any of the three

fields on iOS (or the other direction holds), then we regard the two given applica-

tions are from the same company.

70

We apply the corresponding rules to our whole data set, and the number of

unique application pairs satisfying each candidate set is shown in Table 5.3.2. The

percentage shown in the table is calculated base on the total number of Android

applications collected with valid detailed information, which is 183,070. After ob-

taining those candidate sets, we then randomly choose 60 application pairs in each

set to perform a manual validation – we manually read the descriptions of these two

applications, examine their companies, icons and screenshots to judge whether they

are actually cross-platform applications.

We did not find any false positives in the CS1 set (first row in Table 5.3.2), but

did find one false positive in the CS2 set which is actually caused by parsing er-

ror of some non-unicode characters. There are quite a number of cross-platform

applications which exist in candidate set CS3. The main reason of this is that, for

some applications, it indicates a general developer name (like “Android Software

Programmer”) on one of the application stores, which is very different from what is

given on the other application store. A typical example is the HCPCS [2] applica-

tion.

Finally, such analysis enables us to estimate the total number of cross-platform

applications that exists on Android and iOS. Applying formula
∑

i PercentCSi ×
TPRCSi (where i ∈ {1, 2, ...5}, and TPRCSi is the true positive rate of the corre-

sponding candidate set), we get the result 10.9%. This indicates that, among those

existing third-party applications on Android, approximately 1/10 of them have a

replica application provided for iOS.

5.3.3 Stratified Sampling

We choose only application pairs from the first two candidate sets (CS1 and CS2) as

our cross-platform application resource to perform further static analysis, as they

rarely contain false positives. After removing invalid pairs (whose names con-

tains double-question-mark characters) from CS2, the two sets finally provide a total

71

number of 11,879 unique application pairs. The distribution of these applications

according to the 20 iOS categories are given in Figure 5.2, together shown with the

distribution of the entire third-party applications on iOS.

47424

59280

1600

2000

#+of+same+apps+in+NCD+and+NC+(left+axis)

#+of+apps+on+iOS+(right+axis)

35568

47424

59280

1200

1600

2000

#+of+same+apps+in+NCD+and+NC+(left+axis)

#+of+apps+on+iOS+(right+axis)

11856

23712

35568

47424

59280

400

800

1200

1600

2000

#+of+same+apps+in+NCD+and+NC+(left+axis)

#+of+apps+on+iOS+(right+axis)

0

11856

23712

35568

47424

59280

0

400

800

1200

1600

2000

B
o
o
k
s

B
u
si
n
e
ss

E
d
u
ca
ti
o
n

e
rt
a
in
m
e
n
t

F
in
a
n
ce

G
a
m
e
s

th
+&
+F
it
n
e
ss

Li
fe
st
y
le

M
e
d
ic
a
l

M
u
si
c

N
a
v
ig
a
ti
o
n

N
e
w
s

h
o
to
g
ra
p
h
y

P
ro
d
u
ct
iv
it
y

R
e
fe
re
n
ce

N
e
tw

o
rk
in
g

S
p
o
rt
s

T
ra
v
e
l

U
ti
li
ti
e
s

W
e
a
th
e
r

#+of+same+apps+in+NCD+and+NC+(left+axis)

#+of+apps+on+iOS+(right+axis)

0

11856

23712

35568

47424

59280

0

400

800

1200

1600

2000

B
o
o
k
s

B
u
si
n
e
ss

E
d
u
ca
ti
o
n

E
n
te
rt
a
in
m
e
n
t

F
in
a
n
ce

G
a
m
e
s

H
e
a
lt
h
+&
+F
it
n
e
ss

Li
fe
st
y
le

M
e
d
ic
a
l

M
u
si
c

N
a
v
ig
a
ti
o
n

N
e
w
s

P
h
o
to
g
ra
p
h
y

P
ro
d
u
ct
iv
it
y

R
e
fe
re
n
ce

S
o
ci
a
l+
N
e
tw

o
rk
in
g

S
p
o
rt
s

T
ra
v
e
l

U
ti
li
ti
e
s

W
e
a
th
e
r

#+of+same+apps+in+NCD+and+NC+(left+axis)

#+of+apps+on+iOS+(right+axis)

0

11856

23712

35568

47424

59280

0

400

800

1200

1600

2000

B
o
o
k
s

B
u
si
n
e
ss

E
d
u
ca
ti
o
n

E
n
te
rt
a
in
m
e
n
t

F
in
a
n
ce

G
a
m
e
s

H
e
a
lt
h
+&
+F
it
n
e
ss

Li
fe
st
y
le

M
e
d
ic
a
l

M
u
si
c

N
a
v
ig
a
ti
o
n

N
e
w
s

P
h
o
to
g
ra
p
h
y

P
ro
d
u
ct
iv
it
y

R
e
fe
re
n
ce

S
o
ci
a
l+
N
e
tw

o
rk
in
g

S
p
o
rt
s

T
ra
v
e
l

U
ti
li
ti
e
s

W
e
a
th
e
r

#+of+same+apps+in+NCD+and+NC+(left+axis)

#+of+apps+on+iOS+(right+axis)

Figure 5.2: The distribution of the cross-platform apps in CS1 and CS2 vs. the
distribution of the whole iOS app set.

In Figure 5.2, the ratio of the right axis compared with left axis is set to 29.64,

which is the same ratio for the total number of iOS applications (352,129) compared

to the total number of application pairs in CS1 and CS2 (11,879). This setting gives

us a direct visual comparison of the distribution of these two data sets. We can see

that cross-platform applications are more likely to appear in “Business” and “News”

categories (as the blue bar is higher than the orange bar for these two categories in

Figure 5.2); while cross-platform applications are less likely to appear in “Books”

and “Games”.

Among the cross-platform applications in CS1 and CS2, we then selected 1,050

pairs (2,100 applications) to perform detailed static analysis on the application exe-

cutables. To improve the representativeness of this sample set, we perform a strati-

fied sampling for the whole CS1 and CS2 application set according to the category

72

distribution. We then pick the most popular free applications within each category.

The results of the static analysis on these selected applications will be presented in

Section 5.6.

5.4 Permission Comparisons

To compare the security architecture of two mobile platforms, one of the most im-

portant comparison perspectives is to find out the similarity and differences on re-

stricting access permissions to the applications running on these platforms. How-

ever, to our best knowledge, such systematic analysis has not been conducted in the

literature. On the Android platform, Google has provided a comprehensive list of

application permissions, which is publicly available [10]. However, on the iOS plat-

form, there are no official documentation specifying what permissions are allowed

for third-party applications, and what are available only for firmware – this is one

of the iOS mysteries we need to reveal in our work.

To make a fair comparison for Android and iOS platforms, we choose Android

2.2 (API level 8, which is released in May 2010), and iOS 4 (released in June 2010).

These two OS versions are contemporary, and they have about one year of time to

stabilize since they were released (until the time we download those applications),

so that the majority of the applications available on these two platforms are com-

patible with these OS versions. Given the 112 application permissions supported

on Android [10], we first find out what is the exact meaning of each permission by

understanding the functionality of each API related to this permission, according to

the existing Android permission to API mapping provided by [44]; we then care-

fully go through both online advisories and offline iOS documentations on Xcode3

to find out whether this permission is supported, and how it is supported on iOS

platform. The overview of the analysis result is given in Table 5.4.

3Xcode is a suite of tools by Apple, for developing software for Mac OS X and iOS. It provides
iOS API documentations for registered developers. http://developer.apple.com/xcode/ .

73

http://developer.apple.com/xcode/

Type of Permissions # of Permissions

Not exist anywhere in Android
3 + 4 = 7Already deprecated in Android, or no Android API corre-

sponds to this permission.

Android system permissions

38
Only for OEMs, not granted to third-party application de-
velopers. i.e., these permissions are only used by applica-
tions signed with system keys.

Permissions not supported by iOS

46
Either iOS does not have such device e.g., removable stor-
age; or iOS does not allow third-party application to have
such permission.

Permissions supported by iOS
21Third-party applications have these permissions on iOS as

default.

Total # of Permissions 112

Table 5.4: Overview of permission analysis result

Among these 112 permissions, three of them (PERSISTENT ACTIVITY,

RESTART PACKAGES and SET PREFERRED APPLICATIONS) have already been dep-

recated in Android 2.2. And according to the existing Android API-to-permission

mapping provided by Felt et al. [44], four permissions (such as BRICK) do not really

exist in Android, as there are no API calls, content providers or intents in Android

related to these permissions. The rest of the permissions are then divided into three

large groups according to our findings.

5.4.1 Android system permissions

The openness concept of Android and its online permission documentation [10] may

have given a misleading understanding to both users and developers that a third-

party Android application can have any permission. However, this is not true – some

permissions are only provided for original equipment manufacturers (OEMs), and

are not granted to third-party applications. Examples of these permissions include

DELETE CACHE FILES, INSTALL LOCATION PROVIDER, FACTORY TEST, etc.

74

As there are no official documentation specifying which permissions are re-

served for OEMs, we obtain the list of system permissions by analyzing per-

mission tags in the frameworks/base/core/res/AndroidManifest.xml file, as system

permissions are labeled as android:protectionLevel=“signatureOrSystem” or an-

droid:protectionLevel=“signature” in this firmware configuration file. In order to

validate this list, we also write a testing application which tries to request for all

112 permissions and then check those permissions that are denied to this testing

application. Finally, 38 permissions are found to be reserved for the system appli-

cations, which will not be granted to third-party applications unless users explicitly

give them the root privilege.

5.4.2 Permissions not supported by iOS

Among the rest of 67 permissions on Android which can be granted to third-party

applications, we are interested in finding out how many of them are also supported

by iOS. Surprisingly, our analysis result shows that about 2/3 of these permissions

are not supported on iOS. The reasons are either because iOS does not have cor-

responding functionality/device, or iOS just does not allow third-party applications

to have such permissions. Some permissions which are not supported on iOS are

given in Table 5.5.

Among the permissions that are disallowed on iOS, it is interesting to notice

that some of them are not due to security reasons. Although not officially docu-

mented, permissions for global settings which would involve modifying the user

experience (UX) are usually disallowed by Apple, and that is one of the reasons

why there are still many people who jailbreak their iPhones. Examples of such

permissions include MODIFY AUDIO SETTINGS, SET TIME ZONE, SET WALLPAPER,

WRITE SETTINGS, etc. Although this would limit the capability of third-party appli-

cations, it is still reasonable from the UX perspective. For example, it could be a

disaster if you are waiting for an important call, but a third-party application mutes

75

Reason (1) iOS does not have corresponding functionality/device:

Permission Permission Description iOS Explanation

EXPAND STATUS BAR
Allows an application
to expand or collapse
the status bar.

iOS 4.0 does not have ex-
panded status bar, it is
added in after iOS 5.0

MOUNT FORMAT
FILESYSTEMS

Allows formatting file
systems for removable
storage.

There is no removable
storage for iPhone/iPad/i-
Pod.

Reason (2) iOS does not allow it to third-party applications:

Permission Permission Description

KILL BACKGROUND
PROCESSES Allows an application to kill background processes.

PROCESS OUTGOING
CALLS

Allows an application to monitor, modify, or abort
outgoing calls.

RECEIVE SMS
Allows an application to monitor incoming SMS
messages, to record or process on them.

Table 5.5: Examples of unsupported permissions on iOS

the sound globally without your awareness.

5.4.3 Permissions supported by iOS

Finally, we obtain 21 permissions which are supported both on Android and iOS. A

comprehensive list of these permissions and corresponding explanations are given

in Table 5.4.3.

Note that some permission may not be an exact match on Android and iOS. For

example, the meaning of READ PHONE STATE is not exactly the same. This permis-

sion corresponds to at least 18 Android API calls, which can be used to read the

device ID, phone number, SIM serial number and some other information. How-

ever, on iOS, only device ID is allowed to read since version 4.0 of iOS. Other

information is forbidden to be accessed by third-party applications due to security

reasons.

Another special case is the ACCESS COARSE LOCATION and AC-

CESS FINE LOCATION permission. There are 20+ API calls related to these

two permissions on Android, but all of them only require either one of the

76

Permission Description & Explanation
ACCESS COARSE
LOCATION

Allows an application to access coarse (e.g., Cell-ID, WiFi)
location.

ACCESS FINE
LOCATION Allows an application to access fine (e.g., GPS) location.

ACCESS NETWORK
STATE Allows an application to access information about networks

ACCESS WIFI STATE Allows access to information about Wi-Fi networks.

BATTERY STATS Allows an application to collect battery statistics.

BLUETOOTH Allows to connect to paired bluetooth devices.

BLUETOOTH ADMIN Allows to discover and pair bluetooth devices.

CALL PHONE Allows an application to initiate a phone call.

CAMERA Required to be able to access the camera device.

CHANGE WIFI
MULTICAST STATE Allows applications to enter Wi-Fi Multicast mode

FLASHLIGHT Allows access to the flashlight.

INTERNET Allows an application to open network sockets.

READ CALENDAR Allows to read the user’s calendar data.

READ CONTACTS Allows to read the user’s contacts data.

READ PHONE STATE
Allows read only access to phone state. On iOS, only device
ID and iOS version are allowed to read, others like SIM ID
or phone # are all forbidden.

RECORD AUDIO Allows an application to record audio.

SEND SMS Allows an application to send SMS messages.

VIBRATE Allows access to the vibration.

WAKE LOCK Allows to disable auto-lock or screen-dimming.

WRITE CALENDAR Allows to write the user’s calendar data.

WRITE CONTACTS Allows to write the user’s contacts data.

Table 5.6: Permissions supported on both Android and iOS

two permissions. But on iOS, the corresponding APIs (e.g., CLLocationMan-

ager.startUpdatingLocation) need both location permissions. Similar as Android,

iOS devices employ a number of different techniques for obtaining information

about the current geographical location, including GPS, cell tower triangulation and

most inaccurate Wi-Fi connections. However, which mechanism is actually used

by iOS to detect the location information is transparent to the application and the

system will automatically use the most accurate solution that is available. Thus, for

an iOS application which invokes the location-related API calls, it actually requires

both ACCESS COARSE LOCATION and ACCESS FINE LOCATION permissions.

77

Note that although there are only 21 permissions both supported on Android and

iOS, these permissions cover the access rights to the most common resources/ser-

vices, including user calendar, contacts, Bluetooth, Wi-Fi state, camera, vibration,

etc.

5.5 Static Analysis Tools

To compare the permission usage for third-party applications on Android and iOS,

we build static analysis tools for both Android applications (Dalvik bytecode) and

iOS applications (Objective-C executables). We will explain the work flow of both

tools in this section. The API resolving rates of both analysis tools are reported in

Section 5.6.1.

5.5.1 Android Static Analysis Tool

As introduced in Section 5.2, each Android application has a list of permissions

that is shown to the user during installation, which is recorded in the AndroidMan-

ifest.xml in each application package file. However, this is not the exact list of

permissions that this application actually uses – many third-party applications are

overprivileged by requesting a superset of permissions [44]. Thus, the ultimate goal

of our Android static analysis tool is to output a minimum set of permissions that

a given third-party application actually uses. The work flow of our Android tool is

given in Figure 5.3.

As shown in Figure 5.3, for each Android application, we first get the corre-

sponding Dalvik executable (DEX), which is then disassembled into a set of .ddx

files using the Dedexer tool [84]. With the existing Android API call to permission

mapping provided by Felt et al. [44], our tool then perform multiple iterations on

parsing and analyzing the disassembled files to produce a candidate list of permis-

sions that this application needs. However, this candidate permission list is not the

minimum permission set due to the ambiguity in the Android API-to-permission

78

Figure 5.3: The work flow of our Android static analysis tool.

mapping, which is caused by Android’s permission validation mechanism. For

example, android.app.ActivityManager.killBackgroundProcesses API call requires

either RESTART PACKAGES or KILL BACKGROUND PROCESSES permission – i.e., ei-

ther permission is sufficient for the application to invoke this API call. Thus, the

tool is not able to determine which permission is actually needed when such APIs

are observed, which in turn adds unnecessary permissions into the produced candi-

date permission list. In order to remove those unnecessary permissions and output

a minimum set of permissions, our tool then takes the intersection of the candidate

permission list and the claimed permission list (parsed from AndroidManifest.xml).

This minimum set of permissions will later be compared with the set of permissions

used by the replica application on iOS.

There are several technical challenges in analyzing the disassembled application

files and outputting the candidate permission list, including: resolving Java reflec-

tions; analyzing content providers and intents; tracking third-party libraries.

79

API calls and Java reflection

On Android, API calls which require permissions may be invoked with different

class names due to inheritance. By analyzing class information in the disassembled

files, our tool rebuild the class hierarchy so that it can recognize the API calls in the

application’s own classes, which are actually inherited from API classes. Recogniz-

ing these inherited methods are crucial, as they require the same set of permissions

as original API calls.

API calls may also be invoked through Java reflection. Reflection gives

developers the flexibility to inspect and determine API characteristics at run-

time, which allows the leverage of new APIs where available while still sup-

porting the older devices. Utilizing reflection, methods can be invoked with

java.lang.reflect.Method.invoke, where the method instance can be obtained pre-

viously by calling java.lang.Class.getMethod, and the class instance can be ob-

tained by invoking java.lang.Class.forName (or several other methods). Thus, from

the point of each java.lang.reflect.Method.invoke, our tool performs backward slic-

ing [110] to resolve the method name and class name actually invoked – it traverses

the code backwards, resolving all instructions that influence the method variable and

class variable used in corresponding reflection. We also apply specific heuristics to

resolve inter-procedural or inter-classes reflections. However, Java reflection is still

a challenging problem [76, 93] and it is not possible to completely resolve all reflec-

tions statically. Fortunately, Android applications rarely use reflections according

to our results reported in Section 5.6.1.

Content providers and Intents

On Android, content providers store and retrieve data and make it accessible to all

applications. Android ships with a number of system content providers for com-

mon data such as SMS, contacts, calendar, etc. These content providers are ac-

cessed by retrieving it through a URI that identifies the corresponding provider.

80

The URI can be obtained by either directly specifying a string value or using

the public URI constant given in the corresponding provider class. For exam-

ple, user contacts can be retried by either using “content://contacts” or using an-

droid.provider.Contacts.CONTENT URI constant. Thus, similar as the Stowaway

tool [44], our tool maintains a list of all known URI constants in order to recognize

content providers. Another important component in Android architecture is Intent.

An intent is an abstract description of an operation to be performed, which provides

a facility for performing late runtime binding between the code in different applica-

tions. We also utilize the intent to permission mapping provided by [44] to discover

the permissions needed by sending or receiving Android intents.

Library tracking

Additionally, our static analysis tool maintains a list of popular third-party libraries,

and tracks the permission usage of these libraries. This would help us distinguish

whether the required permissions are due to these libraries or the applications’ own

code.

5.5.2 iOS Static Analysis Tool

Compared to the open Android platform, static analysis on iOS platform is even

more challenging, as iOS is a closed-source architecture. Apple tries to control all

software executed on iOS devices (iPhone, iPad, or iPod), which has several effects.

First of all, the only way for an unchanged iOS device to install third-party applica-

tions is through iTunes App Store, which is typically accessed via iTunes. When an

application is downloaded via iTunes Store, it will be encrypted and digitally signed

by Apple. The decryption key for the application is added to the device’s secure key

chain, so that each time this application is launched, it can be decrypted and then

start to run on the iOS device.

It is not possible to directly perform static analysis on encrypted application

81

binaries. Thus, before analyzing a third-party application downloaded from iTunes

Store, the first step is to obtain the decrypted application binary, which requires

to jailbreak the iOS device. iOS jailbreaking (which is legal according to the US

Copyright Office [71]), allows users to gain root access to the operating system, and

also allows iOS device to run even unsigned binary by modifying the system loader.

Jailbreaking the iOS device give us the capability to install the customized GNU

Debugger, the Mach-O disassembler oTool and also the OpenSSH server on the

device. With these development tools, we are then able to crack any installed ap-

plication on the device. After obtaining the decrypted iOS application binary, we

utilize IDA Pro. [13] to disassemble the binary, and then perform the static analysis

on assembly ARM instructions. The work flow of our iOS static analysis tool is

given in Figure 5.4. In the following, we will describe several technical problems

in building our iOS static analysis tool including extracting Objective-C metadata,

marking method boundaries, resolving API calls and constructing the permission to

iOS API mapping.

Figure 5.4: The work flow of our iOS static analysis tool.

Application Cracking

Development tools such as GNU Debugger, the Mach-O disassembler oTool and

also the OpenSSH server are crucial in order to crack an installed application on

the device. First of all, the disassembler is used to collect information in the given

encrypted application binary, where the most important two fields are cryptoff and

82

cryptsize. cryptoff indicates the offset in the binary file from where the file content

begins with encrypted data; while cryptsize records the length of the encrypted

data. We then launch the application and attach the debugger to this application’s

process. Now as the application has been started, it is sure that the system loader

has performed the decryption. Thus, according to cryptoff and cryptsize, we can

calculate the position of corresponding decrypted binary data in memory and dump

it to a separate file. Finally, we replace the encrypted part with the decrypted data in

the original binary and transmit the decrypted binary out of the device through the

SSH server.

Extract Objective-C metadata

Objective-C runtime specification requires the metadata that describe all Objective-

C classes, protocols, and categories that are implemented in a binary. These meta-

data are stored in a number of segments, where we can extract the class name, the

instance method list, the class method list, the instance variable list, the property

list, the protocols that a class conforms to, and the categories that add new meth-

ods to an existing class. For a method, we can get the method name, the method

signature string, and the start address of the method body. For a class, we can also

get its super class so that the whole class hierarchy implemented in the binary can

be reconstructed. Protocol information does not directly tell the position of imple-

mented methods (probably imported from external frameworks), but it shows the

extra methods that an object may respond to. The method and class description data

extracted will be used in the next stage to mark the method boundaries.

Mark method boundaries

This stage reconstructs the method boundaries. IDA is only able to mark a very

small portion of methods, especially when the symbols are stripped in the binary.

The underlying reason is that iOS binaries are allowed to interchangeably use two

instruction sets, ARM and THUMB, which have different instruction sizes and

83

alignments. Without knowing the starting point of a method, IDA may not correctly

disassemble the binary data into code, and very likely to treat a code fragment as

a data entry by mistake. Thus, we use the metadata previously collected to guide

IDA, where the starting address of a method can be found in the class structure.

And the disassembling mode (ARM/THUMB) can be decided by the last bit of that

address. There are a number of implementation complexities in this stage, where

mistakes made by IDA are corrected. For example, we need to detect and delete

any unexpected data items or misaligned instructions generated in IDA’s first round

analysis; we also need to mark no-return functions and handle the conditional return

instructions; otherwise IDA cannot correctly determine the method boundaries.

Resolve API calls

After disassembling all methods in IDA, the next step is to resolve the API calls in

the disassembled Objective-C code. In order to resolve the API calls, the key step

is to handle the objc msgSend function. In the iOS executable, all accesses to a

method or attribute of an Objective-C object at runtime utilize this objc msgSend

function, which is used to send messages to an instance of class in memory [81].

The first parameter to objc msgSend is called the receiver, which is a pointer that

points to the instance of the class that is to receive the message. The second param-

eter to objc msgSend is the selector of the method that handles the message. The

rest of the parameters form a variable argument list containing the arguments to the

method. This objc msgSend function is responsible for dynamically resolving and

invoking the proper method that corresponds to the given selector. Thus, in order

to observe what API call has been invoked in the application code, one has to lo-

cate the receiver and selector that are passed to each objc msgSend function, and

determine the corresponding class name and method name. To statically determine

the API call related to each observed objc msgSend, we adopt the backward slicing

and forward constant propagation proposed by [40] in our iOS static analysis tool.

84

Permission to iOS API mapping

In the last step, in order to output the set of permissions required for an iOS appli-

cation, our tool also needs the API-to-permission mapping on iOS to check whether

a resolved API call requires certain permissions. However, unlike on Android plat-

form, there is no existing API-to-permission mapping available for iOS platform.

Thus, we manually create such mapping according to the 21 permissions both sup-

ported on Android and iOS. For each permission, we first thoroughly collects the

functionalities related to this permission by checking each Android API call which

requires this permission, and then we carefully go through iOS documentations to

find corresponding API calls which perform these functionalities.

Most permissions can be directly recognized through corresponding API classes

and methods, for example, user contacts are operated through ABPerson and ABAd-

dressBook related APIs on iOS. However, some permissions like CALL PHONE and

SEND SMS require further analysis of the parameter value. For example, given

an API call as [[UIApplication sharedApplication] openURL:[NSURL URLWith-

String:[NSString stringWithFormat:@“tel:123-456-7890”]]], this will only launch the

phone dialer when the string parameter starts with “tel:” prefix. SEND SMS has

both forms – the SMS sending view can be triggered by openURL with “sms:”

prefix; an application can also call API such as MFMessageComposeViewCon-

troller.setMessageComposeDelegate to send SMS. We carefully handle each of the

cases for every resolved API call and corresponding parameter values in order to

detect such permissions.

5.6 Comparison Analysis Results

We applied our static analysis tools to the 1,050 pairs of cross-platform applications,

which is a stratified sample among the whole application set. The direct outputs of

our analysis tools are the lists of permissions required for the cross-platform ap-

85

plications on iOS and Android. By obtaining such permission lists, we are then

able to compare the permission usage of those applications. After finding out the

permission usage differences of these two platforms, we further investigate the un-

derlying reasons from two perspectives: third-party libraries and applications’ own

code. Finally, in order to have a comprehensive view of the permission usage of

these two platforms, an additional analysis is carried out on the permissions that are

not supported on iOS, but only on Android.

5.6.1 API Resolving Rate of Analysis Tools

On the Android platform, Java reflection is found to be commonly used [44], which

is also confirmed by our observation. Among the 1,050 Android applications, we

found that 629 (60%) use Java reflections to make API calls. However, the abso-

lute number of reflections invoked is only 5,148, which means each application only

makes 4.9 reflection calls on average. This is a small amount compared to 7,087 API

calls 4 made by each application on average. Our Android static analysis tool is able

to resolve 4,017 (78%) reflections, which indicates that out of thousands of API calls

issued per application, only 1.1 API call is not resolved on average. Our tool failed

to resolve the reflection call if the method name or class name is not generated stat-

ically. For example, some reflections invoke java.lang.Class.getDeclaredMethods

with no parameters which simply return an array of methods, and then according to

some dynamic rules, the code will pick one of the methods to invoke. Cases like this

are very difficult to be resolved in a static manner, which is one of the limitations in

our current implementation.

On the iOS platform, on average, 16.82% of the instructions in each application

belong to C/C++ code and 82.85% instructions belong to Objective-C code; while

the rest 0.33% are dummy instructions or the instructions that our tool is unable

to interpret. Our tool is able to capture all the invocations for the API calls that

4This number does not contain the number of method calls that are defined within the application,
which are not API calls by definition.

86

are invoked through C/C++ functions; while for the API calls in the disassembled

Objective-C code, our tool is able to resolve 93% of the objc msgSend encoun-

tered. There are at least two cases where a given objc msgSend is usually not able

to be resolved. 1) The corresponding class instance is passed from the runtime as

an argument of a callback function. Callback functions are common for mobile ap-

plications, as they are the major mechanisms to handle user interaction events sent

from the runtime. 2) The class instance is retrieved from a collection object such

as an array that can hold any types of objects. Such a limitation also exists in other

static analysis tools on iOS platform [40]. Although it has certain impact on the

static analysis which ideally requires to resolve all objc msgSend methods, it only

has quite limited influence in our experiments. The reason is that actually a number

of API call invocations for the same permissions are usually observed in an appli-

cation, so that missing a small portion of API calls will not make our tool overlook

the corresponding permission in most cases.

5.6.2 Comparisons on Both-supported Permissions

Our first comparison focuses on the 21 permissions that are both supported on An-

droid and iOS. We are interested in finding out how differently these permissions

are required on the two platforms for these cross-platform applications. The results

show that 3,652 permissions are required by 1,050 applications on Android, which

has on average 3.5 permissions per application. In comparison, 6,562 permissions

are required by 1,050 iOS applications, which has on average 6.2 permissions per

iOS application. 849 (81%) of the applications on iOS need additional permissions

compared to its Android version.

Among those 21 permissions, some of them are required almost equally by the

applications on both platforms. For example, INTERNET permission is required by

996 Android applications, and 1,011 iOS applications; BLUETOOTH is required by

10 Android applications and 13 iOS applications. However, some permissions are

87

required much more often by iOS applications compared to Android applications.

The top 12 permissions that are required more often on iOS compared to Android

are listed in Table 5.6.2.

Permission
of

Android app
of

iOS app
Main Reason

Only on
iOS1

ACCESS WIFI STATE 122 782 OS API 671
CAMERA 76 382 App & Lib 314
READ PHONE STATE 455 732 App & Lib 309
ACCESS COARSE LOCATION 274 543 OS API 301
ACCESS FINE LOCATION 317 543 OS API 241
ACCESS NETWORK STATE 632 782 OS API 237
VIBRATE 201 318 App & Lib 202
READ CONTACTS 94 263 App & Lib 183
WRITE CONTACTS 41 180 App & Lib 151
SEND SMS 16 129 App & Lib 123
RECORD AUDIO 43 109 App & Lib 78
READ CALENDAR 6 82 App & Lib 77

Permission
Only on
Android

On both
platforms

App / Lib (Purely Lib)
Ratio2

ACCESS WIFI STATE 11 111 95% / 35% (5%)
CAMERA 8 68 82% / 36% (18%)
READ PHONE STATE 32 423 74% / 61% (26%)
ACCESS COARSE LOCATION 32 242 80% / 44% (20%)
ACCESS FINE LOCATION 15 302 77% / 52% (23%)
ACCESS NETWORK STATE 87 545 96% / 18% (4%)
VIBRATE 85 116 60% / 63% (40%)
READ CONTACTS 14 80 65% / 43% (35%)
WRITE CONTACTS 12 29 67% / 43% (33%)
SEND SMS 10 6 81% / 25% (19%)
RECORD AUDIO 12 31 99% / 1% (1%)
READ CALENDAR 1 5 52% / 51% (48%)

1 The number of applications which have the corresponding permission only in the iOS
version, but not in the Android version.

2 This is a break-down for the source of the permission requirements: (a) from the app’s
own code; (b) from third-party libraries; (c) purely caused by the third-party libraries (i.e.,
the corresponding permission is not required by the app’s own code). The base of the ratio
is the number in column “Only on iOS”.

Table 5.7: Permissions with greatest disparity that are required by the appli-
cations on Android and iOS.

88

Among those permissions that are required much more often on iOS, some of

them are actually caused by the underlying difference in the OS API, as marked

in Table 5.6.2. For example, Android provides APIs for checking the status (e.g.,

availability or connectivity) of different network types (e.g., WiFi or 3G). However,

iOS APIs do not distinguish the different network types, but just check the reach-

ability of a given host or IP address. Thus, a given iOS application needs both

ACCESS NETWORK STATE and ACCESS WIFI STATE permissions when an API call

like reachabilityWithHostName is observed in this application. Another typical case

is the ACCESS COARSE LOCATION and ACCESS FINE LOCATION, which has been ex-

plained in Section 5.4.3. If we add the number of Android applications which have

ACCESS COARSE LOCATION and the number of Android applications which have

ACCESS FINE LOCATION permission, the sum will be very close to the number of

iOS applications which have ACCESS FINE LOCATION permission alone. Similar re-

sult applies to ACCESS NETWORK STATE and ACCESS WIFI STATE permissions.

However, the differences of the other 8 permissions listed in Table 5.6.2 are

caused by the differences in the code of the cross-platform applications. For ex-

ample, the famous chatting application – eBuddy Messenger [3] does not require

READ PHONE STATE permission on Android, however, on its iOS version, we ob-

serve 7 locations in its code which read the device ID. Another typical instance is

the famous free game “Words With Friends” [4] application. Compared to its An-

droid version, the additional permissions required by its iOS version include (but

are not limited to):

• BATTERY STATS, as API call UIDevice.setBatteryMonitoringEnabled is observed;

• CALL PHONE, as UIApplication.openURL with “tel:” parameter is observed in

IMAdView.placeCallTo and two other locations;

• CAMERA, as UIImagePickerController.setSourceType with argument value 0x1

(which is UIImagePickerControllerSourceTypeCamera) is observed in Mob-

clixRichMediaWebAdView.takePhotoAndReturnToWebview;

89

• FLASHLIGHT, as AVCaptureDevice.setTorchMode is observed in MobclixRichMe-

diaWebAdView.turnFlashlightOnWithSuccess; etc.

Some of these API calls are listed above in order to provide a detailed view of

the static analysis. As can be seen from such detailed example, an iOS application

does turn to require more permissions compared to its replica version on Android.

More interestingly, we also check the most popular game applica-

tion Angry Birds, although it does not belong to our sampling set

as it is not free on iOS. We found out that, compared to its An-

droid version, Angry Birds on iOS additionally reads the user contacts

data, as API call ABAddressBookGetPersonWithRecordID and ABAddress-

BookCopyArrayOfAllPeople are observed in the code section of CCPrivateSes-

sion.getArrayOfAddressBookEmailAddressesNamesAndContactIDs and four other

locations.

As shown in Table 5.6.2, our findings in the comparisons (on the 21 permissions

both supported on Android and iOS) show that iOS third-party applications turn

to require more permissions on some devices (such as camera and vibration) and

are more likely to access the sensitive data such as device ID, user contacts and

calendar. Thus, our next step of analysis is to find out the underlying reason why

such phenomenon exists. As one may notice from the examples given above, some

of these permissions are actually caused by the third-party libraries used in these

applications (such as IMAdView and MobclixRichMediaWebAdView classes in the

WordsWithFriends application). Thus, our next step is to analyze the permission

usage of the third-party libraries on both platforms.

5.6.3 Reason Probing 1: Permission Usage of Third-party Li-

braries

In order to analyze the permission usage of the third-party libraries, first of all, we

need to identify the third-party libraries within each application. As there are no

90

clear boundaries that an included library or package in a given application is written

by the application developer or is actually a third-party library, we first process the

whole application set to count for the different package names (on Android) or class

names (on iOS). Then the packages or classes that appear in more than 10 applica-

tions (and at least belong to two different companies) are automatically collected.

We then manually check this list to identify the third-party libraries, which include

advertisement libraries, analytic libraries or just third-party development libraries.

Some of the packages or classes are combined because they actually belong to the

same third-party library. Finally, we identified 79 third-party libraries on Android

and 72 third-party libraries on iOS that are commonly used. The 8 most commonly

used advertising and analytics libraries on Android are listed in Table 5.6.3, and the

8 most common libraries on iOS are listed in Table 5.6.3.

Library Name App Ratio Permissions*

com/google/ads 18.1% ANS, INT
com/flurry/android 16.7% LOC, INT
com/admob/android/ads 13.0% LOC, INT
com/google/android/apps/analytics 11.1% ANS
com/millennialmedia/android 8.7% ANS, INT, RPS
com/adwhirl 5.1% LOC, INT
com/mobclix/android/sdk 3.9% ANS, LOC, INT, RPS
com/tapjoy 3.5% INT, RPS
* ANS = ACCESS NETWORK STATE; INT = INTERNET; LOC = AC-

CESS COARSE/FINE LOCATION; RPS = READ PHONE STATE.

Table 5.8: Most common ads and analytics libraries on Android

By tracking the code regions of these libraries, our static analysis tools are able

to determine the origin of the API call which causes the permissions in each ap-

plication. We are then able to find out the permission usage of third-party libraries

on both platforms, as shown in Table 5.6.3 and Table 5.6.3. The data from these

two tables clearly indicate that libraries on iOS turn to require more permissions

compared to Android third-party libraries. Thus, the permission usage difference

for the cross-platform applications on Android and iOS is indeed partially caused

91

Library Name App Ratio Permissions*

Flurry 19.2% LOC, INT, RPS
AdMob 17.2% LOC, INT, CON, RPS
GoogleAds 16.4% ANS, AWS, INT, RPS, SMS, VIB, WAK
Millennial Media 11.6% ANS, AWS, LOC, INT, CON, RPS, VIB
Google Analytics 10.1% INT
AdWhirl 7.6% ANS, AWS, LOC, INT, RPS
TapJoy 7.5% ANS, AWS, INT, RPS
Medialets 6.4% LOC, INT, RPS, SMS, VIB
* ANS, INT, LOC, RPS refer to Table 5.6.3; AWS = ACCESS WIFI STATE; SMS

= SEND SMS; CON = READ/WRITE CONTACTS; VIB = VIBRATE; WAK
= WAKE LOCK.

Table 5.9: Most common ads and analytics libraries on iOS

by the third-party libraries.

In order to quantify the influence of the third-party libraries on the permission

usage difference, for each permission, we first identify those applications which

have the corresponding permission only on its iOS version, but not on Android ver-

sion (which is the “Only on iOS” column in Table 5.6.2). We then check the source

which causes this permission for each application, and the results are summarized

in the last column of Table 5.6.2. The first two ratios in this column represent the

percentage of applications that: (a) the application’s own code causes the corre-

sponding permission; (b) the third-party libraries used in the application cause the

permission. As can be seen from the table that the sum of these two ratios is usually

more than 100%. This is because in some applications, both the application’s own

code and the third-party library used require this permission. Thus, the third ratio is

given, which shows the application percentage that the corresponding permission is

purely caused by the third-party libraries, not by the applications’ own code.

From the data given in the last column of Table 5.6.2, we can see that the third-

party libraries do have certain impacts on the difference of application permission

usage. For example, 40% applications which requires additional VIBRATE permis-

sion on iOS is purely because of the third-party libraries it uses. And from Ta-

ble 5.6.3 we can find the exact source – libraries such as GoogleAds, Millennial

92

Media and Medialets all need VIBRATE permission. Thus, any application which

includes these libraries will in turn need this permission. Similar links can be drawn

from Table 5.6.2 and Table 5.6.3 for other permissions such as READ CONTACTS and

READ PHONE STATE.

Comparing the data in Table 5.6.3 and Table 5.6.3, the result shows that the

most commonly used third-party libraries, especially advertisement and analytics

libraries on iOS, require much more permissions compared to the libraries on An-

droid. The most possible reason for this phenomenon could be because on iOS, the

user private data can be collected more stealthily compared to on Android, where

applications need to list out the permissions they require during installation. The

permissions on iOS are granted to third-party applications as default without users’

awareness, which gives certain freedom for these advertisement and analytics li-

braries to access user data and device resources.

In order to confirm our findings on the third-party iOS libraries, we further check

each library listed in Table 5.6.3 to see whether it is an open-source library. For

the open-source libraries, e.g., the AdWhirl [5], we manually look into its code

and confirmed all five permissions it requires. For those closed-source libraries,

such as Flurry, we also find evidences that this library collects the device ID in its

official documentation [6], which mentioned “Because Apple allows the collection

of UDID for the purpose of advertising, we continue to collect this data as the Flurry

SDK includes AppCircle, Flurry’s mobile advertising solution”.

From the data given in the last column in Table 5.6.2, one can observe that

third-party libraries only contribute a portion of the difference for application per-

mission usage; the other part of the difference is caused by the applications’ own

code. By removing the permissions that are purely caused by third-party libraries,

our static analysis tools manage to output the lists of permissions that are caused

by the applications’ own code on both platforms. The comparison result shows that

1,050 Android applications now require 3,045 permissions, while iOS applications

require 5,609 permissions – there is still an obvious difference for the application

93

permission usage on the two platforms. This difference leads us to investigate fur-

ther into the applications’ code logic so as to find out the underlying reasons.

5.6.4 Reason Probing 2: Microanalysis on Application Code

Logic

In order to perform the microanalysis on the code logic of the cross-platform ap-

plications, it will be ideal to have the full access to the applications’ source code.

Applications which are open-source on both platforms are rare, given the fact that

iOS platform only has very little open-source applications. We manage to find 8

applications that are open-source on both platforms, as shown in Table 5.10. We

retrieve the source code of these applications and analyze the underlying reasons

of their permission usage differences. The detailed API information collected from

closed-source applications is also utilized to assist the analysis. From our manual

inspection, there are at least two main reasons which cause the iOS applications turn

to use more permissions compared to their corresponding Android applications.

Permissions*on Android Permissions*on iOS

WordPress LOC, CAM, INT, VIB LOC, ANS, AWS, CAM, INT, RPS

Mixare LOC, CAM, INT, WAK LOC, CAM, INT, WAK

MobileOrg INT ANS, AWS, INT

andRoc/iRoc CWM, INT, RPS CWM, INT, WAK

Mp3tunes ANS, INT, RPS, WAK INT, RPS

ZXing(Barcodes) AWS, CAM, INT, CON, VIB, WAK ANS, AWS, CAM, FLA, INT, CON

DiceShaker INT INT, VIB

MobileSynth None None

* ANS = ACCESS NETWORK STATE; AWS = ACCESS WIFI STATE; CAM
= CAMERA; CWM = CHANGE WIFI MULTICAST STATE; LOC = AC-
CESS COARSE/FINE LOCATION; INT = INTERNET; RPS = READ PHONE STATE;
CON = READ/WRITE CONTACTS; WAK = WAKE LOCK; VIB = VIBRATE; FLA =
FLASHLIGHT.

Table 5.10: The 8 applications which are open-source on both platforms and their
permission usage.

94

Coding difference

The most natural reason which has been expected is the implementation differ-

ence for the cross-platform applications on Android and iOS. For example, AC-

CESS NETWORK STATE permission is only required by the iOS version of Word-

Press, but not on the Android version. In the iOS version, this permission is required

because several methods in WPReachability class are invoked, which are used to

test the reachability to the WordPress hosts. However, for the Android version of

WordPress, there is no code for testing any reachability. When posting a blog to

the server, for example, the code will simply check the return value to see whether

the connection is successful or failed. However, on iOS, many classes of WordPress

will actively check the reachability beforehand, and notify the users if the network is

not reachable. Such implementation difference causes the result that WordPress on

iOS requires the additional ACCESS NETWORK STATE permission. Similar evidence

can be found in the code of MobileOrg application.

Such coding difference is also the main reason causing the difference in requir-

ing the CAMERA permission. Take the popular applications eBuddyMessenger and

SmackIt for examples. In their iOS versions, the photo of their user profile setting

can be chosen either from the picture library, or directly from taking the photo with

the device’s camera. However, their Android versions do not provide such “taking

photo” option. Note that such implementation difference does not only exist in the

applications’ own code, but also for the same third-party libraries on two platforms.

For example, the CAMERA permission is required by OpenFeint library on iOS, but

not by its Android version, which is caused by the same reason mentioned above.

Intentional avoidance

We start to explain this reason from the evidence found in the open-source applica-

tion WordPress, which is one of the most popular applications on both platforms.

Compared to its Android version, WordPress on iOS also requires the additional

95

READ PHONE STATE permission. In the WordPress iOS code, runStats method

of WordPressAppDelegate reads the device uuid, os version, app version, lan-

guage, device model, and then sends them to “ http://api.wordpress.org/iphoneapp/

update-check/1.0/ ” to check whether this application needs to be updated. But

actually, in order to check the update, the information of device uuid is not really

needed. On the Android platform, the code of WordPress does perform almost the

same functionality – in the wpAndroid class, uploadStats method tries to retrieve the

information of uuid, device version, device language, mobile country code, mo-

bile network type, etc., and sends these data back to WordPress server to check for

update.

However, there is a major difference of the WordPress code on Android com-

pared to the WordPress code on iOS. In its iOS code, the uuid is retrieved by ac-

cessing UIDevice.uniqueIdentifier, which is really the device unique ID. However,

on its Android version, the uuid read is a random ID which is unique, but not re-

ally the device ID. It is a unique ID that is randomly generated and stored as the

first record in WordPress’s own SQLite database on the Android device. Note

that information such as os version, device language, mobile country code, mo-

bile network type is not considered as privacy data, so retrieving such information

does not require READ PHONE STATE permission on both Android and iOS. Thus,

the difference of obtaining uuid is the reason causing the difference of requiring

READ PHONE STATE permission.

The special way of obtaining the uuid on Android makes us believe that the pro-

grammers intentionally try to avoid triggering the READ PHONE STATE permission

on Android. This is further confirmed by consulting one of the WordPress develop-

ers, who gives the explanation as: “a random id is better than the device id because

it doesn’t require that permission which reads quite poorly as ‘read phone state and

identity’ ”. Thus, why they do not try to avoid using the device ID on iOS is be-

cause of the same reason mentioned in Section 5.6.3 – on Android, an application

needs to show the permissions it requires to the user during installation; while on

96

http://api.wordpress.org/iphoneapp/update-check/1.0/
http://api.wordpress.org/iphoneapp/update-check/1.0/

iOS, no such notification is given to the user. We believe this is also the main reason

which causes the difference in requiring permissions such as READ CONTACTS and

READ CALENDAR. But unfortunately, due to the limited access to the applications’

source code, we are not able to get the ground-truth evidence for these permissions,

as what has been done for the READ PHONE STATE permission.

5.6.5 Comparisons on Full Permissions

Previous analyses focus on the 21 permissions that are both supported on Android

and iOS, without taking into account of the additional 46 application permissions

that are only supported on Android platform. Thus, the purpose of our final analysis

is to find out how frequently the 1,050 Android applications apply for these 46

permissions that are not supported on iOS, and what are the characteristics of these

permissions.

Taking into account of the 46 permissions, our result shows that the 1,050 An-

droid applications require an additional number of 1,056 permissions in total. As

shown in Table 5.11, the most frequently required permission that is not supported

on iOS is WRITE EXTERNAL STORAGE, which are required by more than 80% of

the applications. This is actually quite normal for Android applications. Different

from iOS devices which have 4GBytes to 32GBytes of internal storage, Android

devices usually have less than 200MBytes of internal storage. Thus, all Android

devices support external storage such as microSD card. As a result, Android ap-

plications which need to write their application data usually need to require the

WRITE EXTERNAL STORAGE permission in order to save the free space of the inter-

nal storage.

After removing the WRITE EXTERNAL STORAGE permission, the rest in those

46 permissions that are not supported on iOS are required very rarely (only 218 in

total, and 0.2 per application on average). Such a result shows that the 21 both-

supported permissions are the most common permissions used for third-party ap-

97

Permission not supported on iOS # of Android Apps

WRITE EXTERNAL STORAGE 838
RECEIVE BOOT COMPLETED 40
GET ACCOUNTS 35
GET TASKS 27
CHANGE WIFI STATE 14
READ LOGS 13
RECEIVE SMS 11
DISABLE KEYGUARD 10

Table 5.11: Usage of unsupported permissions on iOS for Android apps

plications. For those permissions listed in Table 5.11, they are simply not allowed

on iOS. For example, the RECEIVE SMS allows an application to “monitor incoming

SMS messages, to record or perform processing on them”, which is not allowed for

iOS third-party application for security reason. iOS also does not allow any third-

party application to “read the low-level system log files”, which is the meaning

of READ LOGS permission on Android. And as mentioned in Section 5.4.2, per-

missions like CHANGE WIFI STATE which modifies the global settings and in turn

changes the user experience are also forbade on iOS.

5.7 Discussion

Our work made the first attempt towards systematically comparing mobile applica-

tion security for diverse mobile platforms. We established the first reliable baseline

by comparing permission usage of cross-platform applications. Two most popu-

lar mobile platforms, Android and iOS, are chosen to investigate how the platform

difference influences application in security and privacy. We investigated the per-

missions of iOS and their relations to Android permissions, which are previously

unclear. We also constructed the mapping from iOS APIs to iOS permission re-

quired by automatic permission analysis. With these mapping available, we built

our static analysis tools to perform massive static analysis for cross-platform appli-

cations.

98

Our findings have shown that third-party applications on iOS require more per-

missions compared to applications on Android, especially for the access to sensitive

resources like device ID, camera and user contacts data. The immediate implica-

tion of such findings is that users on iOS have higher risks of leaking their private

data compared to on Android. The underlying reason is because users’ private data

can be accessed more stealthily on iOS compared to on Android, where applica-

tions need to list out the permissions they require during installation. Although our

findings do not necessarily imply that Android has better security compared to iOS,

because iOS restricts certain permissions to third-party applications (as shown in

Section 5.4) and also orthogonal research works [45, 26] have shown that third-party

applications on Android could gain additional permissions by launching privilege-

escalation attacks. Nevertheless, our findings indicate that it is insufficient to solely

rely on Apple’s approval process, and the security on iOS can be further improved

if a permission notification mechanism is adopted on iOS platform, similarly as on

Android.

We remark that our comparison analysis framework is still in its preliminary

stage. Although we tried our best to search for all the related API calls that will

lead to a corresponding permission, it is very difficult to test the completeness of

this API-to-permission mapping. We may still miss some API calls that will require

the corresponding permission. Permissions like INTERNET or BLUETOOTH relate to a

huge number of Objective-C APIs provided by different frameworks and also some

C libraries. For example, a third-party iOS program could just create its own socket

and access the internet, which requires our tool to adopt a much more thorough way

for the static analysis. The test for the completeness of the API mapping will be

investigated in our future work.

Finally, an important assumption is used in our analysis when comparing iOS

version and Android version of the cross-platform applications. We assume these

two versions should ask for similar permissions and should have similar function-

alities. There could be cases that the developers first implemented a full-functioned

99

version on one platform and are just in the process of integrating new functionality

into the other version on another platform. However, we believe that this assump-

tion holds when it is considered in a large scale context. In order to validate this

assumption, massive manual work has to be involved, which is left as future work.

100

Chapter 6

Data Interpretation Diversity in

Information Hiding

6.1 Introduction

Diverse ways of interpreting the same set of data are used by steganographic file

systems (stegfs), which are intended to provide plausible deniability to data owners

in the event that they are forced to disclose their secret data [19]. A stegfs hides en-

crypted user data among dummy data that contain only pseudo-random bits. With-

out the correct password, it is not possible to differentiate user data from dummy

(based on the assumption that the output of the block cipher is indistinguishable

from random bits [18, 19]), even for an adversary who understands the mechanisms

of the file system and is able to gain access to the storage devices. Given differ-

ent password, the data in the storage can be interpreted in different ways, which

allows a data owner to selectively reveal some directories/files by revealing some

passwords, but disclaim the existence of his sensitive data.

To be believable, the disclaimer of the data owner must be consistent with the

information that the adversary is able to gather about the file system. This is much

more challenging to achieve in modern computing environments when the user data

are encrypted and stored in shared network storage. Compared to portable and local

101

storage, network storage dramatically increases the availability and accessibility of

user data. However, it also brings new challenges in securing user data. With shared

network storage, the adversary is no longer limited to a single snapshot of the disk

content at the point of attack. Instead, the adversary could now locate the physical

server machines being used [89] and quietly amass multiple snapshots of the file

system over a period of time before launching his attack. The additional knowledge

that the adversary gleams from the multiple snapshots must be factored into the

stegfs design.

In earlier stegfs designs [19, 79, 64, 85], dummy data are created when the

disk is formatted and remain static thereafter. These schemes are effective against

adversaries who only see the final state of the storage, but cannot defend against

adversaries who possess multiple snapshots of the storage. Indeed, changes among

different snapshots not only reveal the location of secret data, but could even be

utilized to recover the access keys (for example, when the first scheme by Anderson

et al. [19] is utilized). Recent stegfs schemes, which are proposed to defend against

multiple-snapshots attacks, either cannot guarantee the integrity of user data even

under legitimate data operations [37, 38], or require a trusted agent to manage all

the user passwords and dummy data [113], which effectively presents a single point

of disclosure for user passwords.

In this chapter, we propose a multi-user stegfs for shared storage systems, which

is named as DRSteg – Dummy Relocatable Steganographic file system. DRSteg is

designed to meet the following requirements:

• Security: To provide plausible deniability of secret data in a multi-user envi-

ronment in which the adversary could obtain multiple snapshots of the stor-

age content. This protection should extend to any user even when the storage

server and all the other users are completely compromised, i.e., they have

surrendered all the information in their possession.

• Usability: To guarantee data integrity, and at the same time enable individual

102

users to trade off between deniability and system performance.

To the best of our knowledge, DRSteg is the first stegfs that allows I/O opera-

tions observed on shared storage to be plausibly attributed to dummy data without

requiring a trusted agent as used by Zhou et al. [113]. In addition, our work also

manages to increase the deniability provided to individual users by sharing dummies

among multiple users in the system. It is technically challenging to satisfy both the

security and usability requirements, especially when dummies are shared. DRSteg

incorporates a special dummy relocation mechanism that enables individual users

to distinguish dummies from other users’ data (in order to free dummies without

destroying data), and to prevent adversaries from discerning the difference between

dummy and user data even after obtaining multiple snapshots.

This is also the first work that formalizes the deniability achieved by a multi-

user stegfs. The formalization enables us to develop a tunable mechanism for users

to balance between deniability and system responsiveness. In DRSteg, the deniabil-

ity enjoyed by individual users could be maintained beyond a specified threshold,

whether or not all the other users are fully compromised. The amount of dummy

operations is controlled individually; a user who specifies a more aggressive amount

enjoys higher deniability at the expense of slower file operations.

To substantiate the usability of DRSteg, we present results of an empirical eval-

uation using file operation logs collected from 12 graduate students in our school.

The results confirm that DRSteg is capable of achieving a wide range of user-

specified deniability levels. We also implemented a prototype of DRSteg as a file

system module in Linux kernel. Performance experiments on the prototype show

that security and performance can be traded off against each other.

103

6.2 Problem Definition

6.2.1 Threat Model

Figure 6.1 depicts our model of a multi-user file system. In the model, user data

are stored on a shared storage. The stegfs functionalities are implemented in the

client module that runs on the user computers. This client module is secured so that

sensitive data that are operated on as well as any passwords used for encrypting and

decrypting the data are protected. The storage server manages the shared storage

devices which provide block-level operations, including DAS (direct attached stor-

age) and SAN (storage area network). Different from the model where the server

manages all the user passwords [113], the storage server and shared storage in our

model are not stegfs specific.

untrusted server and storage,

which can be monitored by adversaries

Figure 6.1: A multi-user stegfs with untrusted shared storage

The server and the storage devices are not trusted. This means that an adversary

may infiltrate the server or the storage devices directly (or the backup of these de-

vices) to copy and analyze the stored content. Although our scheme provides better

protection when the communication between users and the server is anonymized,

it is not a necessary condition for DRSteg to provide deniability to users. We will

analyze the deniability of DRSteg under different scenarios in Section 6.4.

In this work, we focus on adversaries who are after the user data, and we explic-

itly rule out considerations of sabotage like overwriting/deleting data and denial of

service. The threat posed by the adversary thus hinges on two factors: (a) his knowl-

104

edge of the file system state, and (b) his access to the users of the system. These

two factors together determine the adversary’s ability to make deductions about the

hidden data on the storage, and to verify any claims elicited from the users.

The first factor, knowledge of the storage state, is characterized by the number of

observations of the storage content. An adversary who is able to access the storage

only once (i.e., at the point of attack) only gains a single snapshot of the storage.

An example is someone who is captured by criminals and forced to reveal all the

contents in his portable drive. However, when the adversary has more than one

chance to access the storage, he can record multiple snapshots. The information in

those snapshots is then utilized to deduce the existence of secret data.

The second factor that defines the adversary’s ability concerns his access to the

users. Here, we make the following assumption:

Victim isolation assumption. In coercing information from the users, it would be

effective for the adversary to interrogate them separately and cross-check the infor-

mation elicited. Placed in isolation, a victim knows neither which other users have

been compromised nor what information they have surrendered. Consequently, each

victim has to assume the worst, i.e., that all the other users are compromised and

all their secrets are revealed. He thus has to independently decide what data he can

hide without being contradicted by other users’ disclosure.

Multi-user encrypting file systems [12, 25, 28] are inadequate under the victim

isolation assumption, as it is not safe for a user to claim his data to belong to some-

one else. A solution is to use dummy blocks, which should be operated on in similar

ways as encrypted data blocks in order to defend against multiple snapshot attacks.

6.2.2 Definition of Deniability

To formalize the threat, an adversary has access to a sequence of snapshots S =

{s1, s2, . . . , sT} of the stegfs partition on the disk, where sT is the snapshot at the

time of coercion. Following the victim isolation assumption, the adversary extracts

105

all the passwords from other users (P′) at the time of attack, and also coerces the

victim to reveal his passwords Pt = {p1, p2, . . . , pt}. The adversary then utilizes

the passwords obtained to decode the information in each snapshot.

Let Hdummy
i and Hdata

i denote the hypotheses that an allocated block blki is a

dummy block and a data block, respectively. Let ei denote the evidence on blki

observed from S, and E = {ei} the aggregate evidence across all the disk blocks.

We define the plausible deniability of blki as follows.

Definition 1 Given the evidence E = {ei} = S∪P′∪Pt, where S = {s1, s2, . . . , sT}
is a sequence of snapshots taken by the adversary and P′∪Pt is the set of passwords

revealed to the adversary (along with the blocks decrypted with these passwords),

the deniability of an allocated block blki is the posterior probability that ei was

generated by operations on dummy block blki:

denyi = Pr(Hdummy
i |ei) (6.1)

A steganographic file system is said to be α-deniable if

denyi ≥ α

for all blki that cannot be decrypted with P′ ∪Pt, for any t ≥ 1 of the user’s choice.

An α-deniable stegfs guarantees that any evidence gathered by an adversary

(e.g., disk images across multiple snapshots) is caused by dummy data operations

with at least a probability of α. This means that a user of the system can attribute

the evidence to dummy operations without revealing his secret data.

6.3 Design of DRSteg

DRSteg is designed to enable a user to selectively disclose some of his data, while

enjoying α-deniability for the rest of the data that he is withholding from the adver-

106

sary. We begin this section with an overview of the DRSteg design, before present-

ing the detailed data structures and implementation considerations.

6.3.1 Overview of DRSteg

In DRSteg, each user must be able to protect his data with different passwords, so

that he can surrender some data but not others. To achieve α-deniability for the

data blocks that he is withholding, our approach is to (a) enforce a joint ownership

for allocated disk blocks to prevent the adversary from associating with certainty a

withheld block with any particular user, and (b) introduce dummy blocks that are

operated on at runtime, so that changes to the withheld blocks can be plausibly

explained by dummy operations.

We realize the joint ownership through a voting protocol. For every allocated

block, m ownership shares are created and distributed to m users, including the user

who requested for the block (also known as the creator). A block can subsequently

be altered or freed only after all the m shares have been garnered from consenting

owners. By following this policy, we ensure that the block is never deallocated

without the creator’s share, yet the creator of the block is obfuscated among the

share owners. The creator may use an allocated block either for his data or as a

dummy.

For each user, the disk blocks that hold his data are protected by one of his

passwords p1, p2, . . . , pn. The number of passwords n is expected to vary from user

to user, though we use the same symbol n across users for brevity. Moreover, the

passwords are generated as a hash chain [73], i.e., pl = h(pl+1) for a hash function

h and 1 ≤ l < n (as illustrated in the upper part of Figure 6.2). By supplying any

password pl, 1 ≤ l ≤ n, the user can access all the secret data at and below level l.

As for those disk blocks that are allocated as dummies, no bookkeeping infor-

mation is maintained to track them directly; otherwise, the adversary can simply de-

mand the bookkeeping information from the users, and with it discover the dummy

107

blocks in the file system. Instead, a dummy block can only be identified through

the cooperation of its owners: Each shareholder of the block checks whether it is

protected with one of his passwords; if not, the block is a potential dummy – it may

indeed be a dummy, or it may hold the data of some other user. It is freed in the

same way as data blocks, i.e., after gathering m shares.

In the event of an attack, our DRSteg design allows a coerced user to supply

some password pt, 1 ≤ t < n, to the adversary and deny the existence of the

passwords pj for t < j ≤ n. The data blocks that are protected by pj then appear to

be potential dummies, thus enabling the user to hide the existence of the data.

6.3.2 Detailed Design of DRSteg

Drawing on the approaches introduced above, we now put together the concrete

DRSteg design. Each user u keeps track of a set of blocks Au on which he currently

holds a share. Moreover, each password pl protects a set of data blocks Du,l. The set

difference Au−∪lDu,l gives the blocks that exclude u’s data, and dummy blocks are

the allocated blocks that contain nobody’s data, i.e., ∩u(Au − ∪lDu,l). Figure 6.2

depicts our detailed design for DRSteg (the encryption is done at the granularity of

individual blocks).

Ep Du, n-1

Ep Du, n

Low

High

pu, n-1 pu, n

u,n

Ep Du, 1u,1
pu, 1 pu, 2

u,n-1

u

Appear to u as random bits, and

are part of Au if u holds a share

Always

part of Au

u

Figure 6.2: Key management and user view of the storage

108

Whenever a user u requires a disk block blk from the file system to write data

or dummy patterns, a free disk block is allocated and shares of the block are also

created. One share is given to u, while the remaining shares of blk are distributed

to other users u′, i.e., Au ← Au ∪ {blk} and Au′ ← Au′ ∪ {blk}. If user u encrypts

data with his password pl and stores it in blk, then Du,l ← Du,l ∪ {blk}.

Any user u may propose the deletion of a block in his Au. The deletion is

effected only after all the users who hold shares of the block have acquiesced. Ob-

viously, if the block holds the data of user u′, he would relocate the data before

supporting the deletion. This is to avoid leaving clues for differentiating between

dummy and data blocks.

With DRSteg, user u can surrender any password pt, 1 ≤ t < n and claim that

data blocks in Au − ∪1≤j≤tDu,j are not his data. Claiming that data blocks in Du,j

for t < j ≤ n are dummy blocks is plausible since they also appear in Au′−∪lDu′,l

of other users u′ who hold shares of the blocks.

Joint ownership of blocks

We implement the joint ownership of disk blocks through a voting protocol and two

data structures – a set of encrypted user share boxes (USB) and a global voting table

(GVT) in clear text. A USB is used to track the Au of each user, and a GVT records

the votes surrendered by users. Two other structures are additionally maintained in

clear text in the storage: a list of the users’ public keys, and a bitmap to track the

allocation status of the disk blocks.

When a user allocates a disk block blki, he 1) sets the bit of this block to “1”

in the bitmap; 2) creates m shares and writes them to the corresponding USBs;

3) writes the encrypted/random data content to the block. The format of each en-

crypted share is given as E(Kpub,u, i), an encryption of i with a user’s public key.

The encrypted shares denote the ownership of this block. A block blk ∈ Au if the

share E(Kpub,u, i) exists in the USB of user u. The m owners of a block include the

creator and m− 1 other users randomly selected from the public-key list.

109

Any of the m owners can subsequently initiate the deletion of the block blk by

writing i to the global voting table (GVT) and removing his share from his USB.

To support the deletion, other owners also contribute their shares into GVT. When

the number of accumulated shares of a block reaches m, this block can be removed

from GVT and its bit in the bitmap is set to “0” (indicating that this block is free).

The share constitution ensures that the block can be deallocated only when block

creator signals his agreement by surrendering his share to the GVT.

Management of data blocks

In order to provide plausible deniability against multiple-snapshot attacks, disk

blocks that contain data must be managed carefully so that they leave the same

evidence as operations on dummy blocks.

First, consider the modification of secret data. By comparing snapshots, the

adversary may discover that the content of a block changes before all the m shares

are added into GVT. This would never happen to a dummy block according to our

voting protocol. Therefore, instead of overwriting data blocks, each user always

migrates his updated content to new blocks, and initiates the deletion of the outdated

blocks in GVT so that they will be freed in due course. However, the initiation of

the deletion operation is delayed, in order to break the temporal correlation between

the allocation of new blocks and the deallocation of outdated blocks.

Next, consider the case where some user’s data block is registered for dealloca-

tion in GVT by other users. If the user never concurs, the adversary will suspect that

the block contains data, since deallocation of dummy blocks are supported readily.

To avoid suspicion, the user has to migrate the content to a fresh disk block, before

relinquishing his share to the old data block.

In real implementations, the block creating operations are carried out immedi-

ately, but the voting (including removing shares from USB and writing block num-

bers into GVT) are delayed. We pass the voting operations to a background user

process that survives beyond user log-off. The background process repeatedly ini-

110

tiates the deletion of a block in its pool after sleeping for a random duration. This

makes the operations for data blocks plausible since the creation and voting could

be caused by either creating and freeing dummy blocks or creating, modifying and

freeing data blocks.

6.3.3 Discussions

Comparing to naive designs

There also exist alternatives in designing a multi-user steganographic file system.

A naive one could simply let each user manage his own blocks (including data and

dummy). Since dummy blocks are no longer shared, one has to create many more

dummy blocks in order to achieve the same deniability compared to our design,

when anonymous channels are used between the users and the storage server. When

this channel is not anonymized, our design still provides similar security and disk

utilization compared to the naive design. The deniability provided by DRSteg under

both scenarios is analyzed in the next section.

Encryption of the block shares

Another security issue relates to the encryption of the shares in USB. If the shares

are stored in clear text, it will be straightforward for an adversary to identify who

the owners of any particular block are. By encrypting the shares, the owners of

any block are obfuscated so long as multiple blocks have been allocated between

snapshots. In this way, our approach safeguards shareholders from being earmarked

to be the next target of coercion.

Organization of the user passwords

The last design issue concerns the organization of the user passwords. One option is

to have only one password in each account and to give every user multiple accounts.

Under coercion, a user reveals some of his accounts and tries to hide the remaining

111

ones. However, this simple option fails when the adversary captures all the users

of the system. When that happens, the adversary can check whether there are m

shares among the surrendered accounts for every allocated block; if not, there must

exist more user accounts. This is why we choose to allow multiple passwords (for

different security levels) in each user account.

Organizing multiple passwords in a hash chain has been proposed in other

stegfs [19, 57, 85], and its one-way property meets our requirements well. Under

coercion attack, the disclosure from surrendering t independent passwords is the

same as giving up the t lowest-level passwords in a hash chain. Thus, in our system

design, the hash chain mechanism is chosen due to the performance and usability

benefits gained compared to independent passwords.

6.4 Plausible Deniability of DRSteg

Having introduced the design of DRSteg, we now quantify the deniability it pro-

vides under a spectrum of progressively challenging attack scenarios. Based on the

last and most demanding scenario, we then show how to operationalize the DRSteg

design so as to sustain the system security above user-specified deniability thresh-

olds. Table 6.1 summarizes the terms and notations which are used in the analysis.

6.4.1 Analysis of Deniability

We first expand Equation 6.1.

denyi = Pr(Hdummy
i |ei) =

Pr(ei|Hdummy
i)× Pr(Hdummy

i)

Pr(ei)
(6.2)

According to our problem formulation in Section 6.2, the adversary is capa-

ble of taking multiple snapshots of the storage content. He may also augment the

snapshots with secrets that he coerced from one or more users. The following at-

tack scenarios differ on the amount of secrets thus extracted, and deserve particular

112

Notation Explanation
S = {s1, s2, . . . , sT} Snapshots (of the stegfs partitions) taken by the adversary.

Pt = {p1, p2, . . . , pt} Passwords revealed to the adversary under coercion.

E = {ei} = S ∪ P′ ∪ Pt Evidence possessed by the adversary.

sk = {BLK,USB,GVT}k

BLK = {blki}: Blocks in the stegfs partition (blki is
the i-th block).

USB = {USBu}: User share boxes (USBu is the USB
of user u).

GVT: Global voting table.

blki = 〈texti, flagi〉
texti: If blki is dummy, texti contains random bits;

If blki holds user data, texti = E(p,plaintexti)
flagi: A flag indicating whether blki has been allocated.

Hdummy
i , Hdata

i Hypothesis that blki is a dummy/data block in sT.

Table 6.1: Summary of notations used

attention in deploying DRSteg. These scenarios will be further evaluated in Sec-

tion 6.5. In the following analysis, we consider the case where the evidence con-

tains two snapshots. The analysis extends easily to multiple snapshots. Note that

Equation 6.2 implicitly takes the frequency of these snapshots into consideration by

evaluating ei, i.e., the more frequently snapshots are taken, the more information ei

would include.

Passive-adversary scenario

In this scenario, the adversary may be curious and has not resorted to force, or he

may not be ready to expose himself just yet. Thus he only relies on the snapshots

collected, i.e., the evidence E = S. By comparing any two recorded snapshots

(s1, s2), the adversary could observe a lot of user activities, e.g., new blocks being

created, deleted, and etc.

Let us first consider the creation of new blocks. A block blki is created between

s1 and s2 if flagi changes from 0 in s1 to 1 in s2. Let crtdata represent the net number

of data blocks created between s1 and s2, and crtdummy the net number of dummy

blocks created in the same period. ttls2 , ttldummy
s2

, and ttldata
s2

denote, respectively,

the total number of allocated blocks, the total number of dummy blocks, and the

113

total number of data blocks in s2. Given an evidence that blki is newly allocated, the

probability that blki is a dummy block in s2 is calculated with Equation (6.2) as

denyi =
crtdummy

ttldummy
s2

× ttldummy
s2

ttls2
/
crtdata + crtdummy

ttls2
=

crtdummy

crtdata + crtdummy

This derivation extends to block deletion and other evidence listed in Table 6.2.

Denoting the number of data/dummy block operations between s1 and s2 by opdata

and opdummy, the deniability can be calculated as opdummy/(opdata + opdummy).

Evidence DRSteg operation

flagi changes from 0 to 1 and new shares ap-
pear in some USBs

Create blki as a new dummy or data
block

A share of blki is moved from USBu to GVT User u votes to delete blki

flagi changes from 1 to 0, and blki’s entry is
removed from GVT

Delete blki as enough votes are present
in GVT

Some combination of the above Some combination of the above

Table 6.2: Evidences and the corresponding DRSteg operations

For an individual user u in DRSteg, let opdata
u denote the number of data blocks

operated on in ∪lDu,l between s1 and s2, and opdummy denote the number of dummy

blocks operated on in the system. The deniability that DRSteg provides for u under

this scenario is expressed as

denyu,i =
opdummy

opdata
u + opdummy

(6.3)

Anonymous-channel scenario

Once the adversary starts to coerce users, by the victim isolation assumption in

Section 6.2, one has to assume that all of the users have been captured and be wary

about offering conflicting information to the adversary. In this scenario, we consider

a victim u who discloses the passwords for up to level t of his files and attempts to

hide his remaining data, when all the other users are compromised (E = S∪P′∪Pt).

We assume that all the user requests were sent through an anonymous channel to

114

the storage server, so that the adversary is not able to trace each request to a specific

user.

With all the passwords of every user except u, the adversary not only sees all the

data of the other users, he also uncovers the dummy blocks for which the ownership

is limited to those users. The only outstanding blocks are those on which u holds a

share (Au). Figure 6.3 illustrates the distinction between various groups of blocks

in the system, and also the ones used in the calculation of denyu,i.

u

t

t

u

u

u

u,i u

Figure 6.3: System view of allocated blocks

Taking into account the organization of the user data into different password

levels n and Pt, operations on data blocks in level t and below are disclosed to the

adversary. Let opdata
u,l denote the number of data blocks in Du,l, and opdummy

u denote

the number of dummy blocks recorded in USBu. The deniability of a user u (who

has revealed pt) is a function of the undisclosed blocks held by him:

denyu,i =
opdummy

u∑
l>t opdata

u,l + opdummy
u

(6.4)

The disclosed passwords do not affect opdummy
u in the above equation. Therefore,

a bigger t improves the deniability for the data of user u being withheld from the

adversary. This is intuitive, since a bigger t means that there is less user data to be

115

hidden among the fixed pool of dummy blocks.

Worst-case scenario

When the user-server channel is not anonymized and the storage server is compro-

mised by the adversary, the adversary is able to distinguish the creator from other

share holders by monitoring the requests sent to the server. Under such a scenario,

a user cannot utilize the dummy blocks that are not created by himself to provide

deniability for his secret data (even if he is one of the owners of these dummy

blocks). This leads to the worst-case deniability denyu,i for DRSteg since opdummy
u

in Equation 6.4 only contains dummy blocks created by user u himself.

6.4.2 α-deniable DRSteg

We now show how to operationalize the dummy manipulation mechanism to secure

DRSteg under the worst-case scenario described above. Specifically, we demon-

strate how to manipulate dummy data to maintain the deniability above a given

threshold αT , thus making DRSteg αT -deniable.

Number of Dummy Blocks to Manipulate

Let σu,l = opdummy
u,l /opdata

u,l . The number of dummy blocks operated on by u,

opdummy
u =

∑
l opdummy

u,l =
∑

l opdata
u,l × σu,l. Substituting into Equation (6.4), we

have

denyu,i =

∑
l(opdata

u,l × σu,l)∑
l>t opdata

u,l +
∑

l(opdata
u,l × σu,l)

(6.5)

In order to ensure that every blki ∈ Au meets the deniability threshold of αT no

matter which password level user u chooses to surrender, we need

denyu,i =

∑
l(opdata

u,l × σu,l)∑
l opdata

u,l +
∑

l(opdata
u,l × σu,l)

> αT

116

Simplifying the above equation, we get

σu,l >
αT

1− αT

(6.6)

Since σu,l = opdummy
u,l /opdata

u,l , Equation (6.6) implies that to achieve the target de-

niability threshold αT , the number of dummy blocks manipulated must be at least

αT

1−αT
times opdata

u,l , the number of data operations.

Controlling dummy operations

Having determined the number of dummy blocks to manipulate, we give the pro-

cedures for controlling the dummy manipulation in DRSteg in order to achieve the

deniability configured by users.

There are three types of operations on the dummy blocks – creating, deleting and

voting – among which dummy creation is the easiest to control. When a user logs

in at security level l, he configures σl (which is bigger than αT

1−αT
). If x free blocks

are allocated for creating or modifying a secret file, then after a random delay, the

DRSteg client creates x · σl dummy blocks to maintain the deniability.

Deletion is more complex because a user does not know which blocks are really

dummy blocks (he can only identify blocks that are not his data, as illustrated in

Figure 6.2). To conceal the deletion of x data blocks, the DRSteg client has to

delete x · σl dummy blocks. This is done by moving the shares of x · σl randomly

selected blocks in Au − ∪lDu,l from USBu to GVT after a random delay. Although

some of these x · σl blocks may be data blocks of other users, the respective data

owners will turn these (data) blocks into dummy anyway as explained next.

Now suppose that user u′ logs in, and discovers that a block blk ∈ Au′ has

been put up in GVT for deletion. If blk does not contain his data, i.e., if blk ∈
(Au′ − ∪lDu′,l), u′ will support the deletion by adding his votes on blk in GVT. If

blk is a data block of u′ (i.e., blk ∈ ∪lDu,l), then u′ has to migrate the content to

a new block before voting for the deletion. As discussed in Section 6.3.2, this is to

117

avoid leaving clues that blk contains user data.

Security Discussions

There are several security concerns relating to dummy manipulation. First, in our

current design, every block operation is either a direct data operation or the effect

of a data operation. Besides introducing random delays, their association could be

masked by breaking each of the dummy creations and block deletions into smaller

steps and interleaving them with data block operations. In addition, DRSteg could

initiate dummy operations independently of data operations. These enhancements

will be incorporated in future work.

Second, the parameter σu,l is of special interest to the adversary, who might

force the victims to reveal their choices of σu,l. With the σu,l values, the adversary

may estimate the actual number of data block operations, thus limiting the victims’

flexibility to attribute as dummy those data blocks that they are trying to hide. To

substantiate his denial in the event of an attack, DRSteg furnishes each user u with a

fake σfake
u,t at log-out, where t is the password level that the user is willing to disclose.

σfake
u,t is calculated as the ratio between the number of blocks claimed to be dummy

(including dummy blocks and hidden data blocks), and the number of revealed data

blocks: σfake
u,t = (Σl>topdata

u,l + opdummy
u)/Σl≤topdata

u,l .

Another potential security threat is, if the adversary is able to take snapshots of

the storage content with infinitesimal delay, he may be able to distinguish dummy

blocks from data blocks. Troncoso et al. [103] showed that this distinction is pos-

sible because data blocks belonging to the same file are often accessed one after

another, whereas dummy blocks are accessed individually and are not likely to ex-

hibit the same access pattern. To mitigate against such a threat, one possible solution

is to introduce dummy files into DRSteg. A dummy file would span several dummy

blocks, which are then accessed sequentially like data blocks. In order to present

similar access pattern as data files, dummy files should also be accessed frequently.

Such an improvement in dummy file operations is left for future work.

118

6.5 Evaluation

6.5.1 Empirical Evaluation on Deniability

To investigate DRSteg’s ability to maintain user-specified deniability thresholds un-

der multiple-snapshot attacks, we perform an empirical evaluation by re-playing file

operations logged in a typical office environment. We deployed a logger to record

the file operations (operation type and time) on the computers of 12 graduate stu-

dents in our lab. Over 9 days, we recorded more than 50,000 user file operations1.

We begin by mirroring the user files of all 12 computers in DRSteg, which add

up to about 1 Tbyte of data. We also initialize the same number of dummy blocks,

making the original utilization of data blocks 0.5. The shares for data and dummy

blocks are distributed randomly among the 12 users. We assume that users are

automatically logged out from the stegfs system after some period of inactivity (10

minutes in our experiments), and they login again right before their next observed

data operations. For each session, the user enters the password to one of his security

levels l (randomly chosen by our simulator) and picks a σu,l value (chosen to follow

a power-law distribution p(σ) ∝ L(σ)σ−ξ assuming that more users will tend to

choose lower σ values to minimize overhead). We set αT = 0.4, σmin = 0.7 and

ξ = 3.0 for all users. The parameters and statistics are summarized in Table 6.3.

We use the first two days of logs to warm up DRSteg. As the remaining seven

days of traces are executed, we take a snapshot of the disk image every 10 min-

utes. Figure 6.4 shows the deniability for one of the (randomly chosen) users by

comparing each successive snapshot with the first one.

Figure 6.4(a) shows the deniability under the passive-adversary scenario, cal-

culated with Equation 6.3. The upper graph gives the deniability with respect to

block creation evidence, while the lower is for delete operations. As seen from the

graphs, sharing dummy blocks among users enables individual users to enjoy high

1We assume that the operating system and software programs are not installed in the stegfs par-
tition.

119

Simulation Parameters Value

Number of users 12
αT 0.4
Number of security levels 5
Interval before auto logout 10 mins
Average number of shares per block 3

User-log Statistics Value
Total logging time 9 days
Number of file operations 50,113
Data blocks created 26.613 GB
Data blocks deleted 80.069 GB
Data blocks modified 160.317 GB

Simulated DRSteg Statistics Value
Initial amount of data blocks 1011.34 GB
Initial amount of allocated blocks 2022.68 GB
Number of user sessions 294
Final amount of data blocks 970.60 GB
Final amount of allocated blocks 1995.89 GB

Table 6.3: Simulation parameters and statistics

deniability.

Next, we examine Figure 6.4(b) for the anonymous-channel scenario, which is

calculated with Equation 6.4. Here, the selected user has revealed up to level t of

his passwords (the lines in the graphs represent different settings of t), whereas the

other users have revealed all their passwords. Since the selected user can only rely

on the operations on dummy blocks which are recorded in his UMB, the deniability

is lower than that in the previous scenario. Nevertheless, DRSteg still manages to

achieve high deniability.

Turning to the worst-case scenario where the adversary is aware of the creator

of every block, Figure 6.4(c) shows the deniability levels achieved. In this scenario,

deniability is derived solely from operations on the dummy data created by the user

himself, which explains the much reduced deniability. Even so, DRSteg manages

to keep the deniability above the configured threshold of αT = 0.4.

The deniability for the other 11 users are similar to the results in Figure 6.4

120

0 86400 172800 259200 345600 432000 518400 604800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 no password revealed

D
e
n
ia

b
ili

ty
 o

f
C

re
a
te

 O
p
e
ra

ti
o
n
s

Time (sec)

0 86400 172800 259200 345600 432000 518400 604800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 no password revealed

D
e
n
ia

b
ili

ty
 o

f
D

e
le

te
 O

p
e
ra

ti
o
n
s

Time (sec)

(a) Passive-adversary scenario

0 86400 172800 259200 345600 432000 518400 604800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
n
ia

b
ili

ty
 o

f
C

re
a
te

 O
p
e
ra

ti
o
n
s

Time (sec)

 no password revealed

 level 1 pwd revealed

 level 2 pwd revealed

 level 3 pwd revealed

 level 4 pwd revealed

0 86400 172800 259200 345600 432000 518400 604800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
n
ia

b
ili

ty
 o

f
D

e
le

te
 O

p
e
ra

ti
o
n
s

Time (sec)

 no password revealed

 level 1 pwd revealed

 level 2 pwd revealed

 level 3 pwd revealed

 level 4 pwd revealed

(b) Anonymous-channel scenario

0 86400 172800 259200 345600 432000 518400 604800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
n
ia

b
ili

ty
 o

f
C

re
a
te

 O
p
e
ra

ti
o
n
s

Time (sec)

 no password revealed

 level 1 pwd revealed

 level 2 pwd revealed

 level 3 pwd revealed

 level 4 pwd revealed

0 86400 172800 259200 345600 432000 518400 604800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
n
ia

b
ili

ty
 o

f
D

e
le

te
 O

p
e
ra

ti
o
n
s

Time (sec)

 no password revealed

 level 1 pwd revealed

 level 2 pwd revealed

 level 3 pwd revealed

 level 4 pwd revealed

(c) Worse-case scenario

Figure 6.4: Deniability of DRSteg under different scenarios

quantitatively and qualitatively. In particular, the lowest deniability observed for

the worst-case attack scenario is 0.46. These results affirm the security property of

our proposed DRSteg.

6.5.2 Implementation and Performance Evaluation

We have implemented DRSteg as a file system module in parallel with ext3 in

Linux kernel 2.6, on the client machines which communicate with the shared stor-

121

age through a server (see Figure 6.1). The client module manages the blocks in the

shared storage automatically according to the password entered by the user. This in-

cludes creating new data and dummy blocks (and allocating shares to other owners),

voting blocks for deallocation, etc. We explain below how the storage is organized

by the system and benchmark the performance of DRSteg.

File system construction

In our DRSteg file system, the (remote) disk storage is partitioned into blocks of

1 Kbyte in size by default. A bitmap tracks the allocation status of the blocks: 1

corresponds to an allocated block and 0 a free block. An allocated block is either a

dummy or a data block, both of which appear to contain random patterns.

Free
Entry

u3, L5
Dummy

Entry

u5, L1

Dummy Free
Entry

usr x, L y

Entry Dummy

Free

… …

Root Block Pointer
(for Level 1 Data of user 5)

Redundancy

Disk

Super Block Entry Structure

0 1 1 1

1 0 1 0

1 1 … …

1 1 1 1 0 1

0 1 1 1 1 1

1 1 0 … …

Bitmap
(super block)

Bitmap
(whole disk)

Super

Block

Free

Dummy

Dummy

Data

u2, L3

Data

usr x, L y

Data

u3, L1

Dummy

Free

Data

u1, L5
Free Dummy

Data

u1, L2
Dummy

Data u5, L1

(Root Block

of inodes)

………

Figure 6.5: Block organization in DRSteg

To accelerate access to directories and files, DRSteg uses a designated storage

area, called the super block (see Figure 6.5), to store inode structures so that they

can be located efficiently. The super block is essentially a mini-DRSteg system for

the addresses of inode roots, and is calved into fixed-size slots that are capable of

122

holding one address each. A slot may be a free slot, a dummy slot, or may contain

the encrypted address of an inode root (with redundancy so that it is distinguishable

from random bits upon decryption). Each password level of a user is allocated one

slot. Since the super block is expected to be only a few Kbytes in size, it can be

scanned quickly to find the inode roots for each user. The super block has its own

bitmap to track slot allocation, while it shares the same set of user share boxes and

the global voting table with the main file system.

Performance Evaluation

The key parameters of the computing hardware for our experiments are listed in

Table 6.4, while Table 6.5 summarizes the workload parameters and their default

settings.

The first experiment is designed to study how well DRSteg performs. For

comparison, we include StegCover, StegRand [19] and NSteg [85] as baselines.

StegCover is configured with 20 cover files (the authors recommended 16 to

100 [19]). For StegRand, we use a replication factor of 4 to reduce the proba-

bility of data loss [79]. NSteg is set to populate 30% of the disk with dummy blocks

during initialization. We also include two settings of the native Linux file system

(ext3) in our tests. In the CleanDisk setting, data files are loaded into a freshly for-

matted native Linux partition, so that the files occupy contiguous disk blocks; with

file operations translating to sequential I/Os, CleanDisk gives the best-case timings.

In contrast, results of FragDisk are obtained with a well-used ext3 partition in which

the free space is fragmented.

In the first experiment, we configure DRSteg with σu,l = 0.25, which produces

a worst-case deniability of 0.2. For a given concurrency level, we generate file

creation requests one after another for each user and measure the elapse time. Fig-

ure 6.6 shows the average write time for various file systems, with the number of

concurrent users ranging from 1 to 32. Every performance result is averaged over

1000 observations.

123

Parameter Value

CPU Intel Duo Core 2.53GHz

RAM 2GB (1GB DDR2-667 x 2)

Hard Disk SATA 7200rpm, 250 GB with 8MB cache

Table 6.4: Hardware parameters

Parameter Default Value

Capacity of the test partition 40 Gbytes

Size of each disk block 1 Kbytes

Number of blocks for each file 1024

File access pattern Interleaved

Table 6.5: Workload parameters

1 2 4 8 16 32
number of concurrent users

0

100

200

300

400

500

600

700

800

av
er

ag
e

w
ri

te
 ti

m
e

(m
s/

K
B

) CleanDisk
FragDisk
NSteg
StegRand
StegCover
DRSteg

Figure 6.6: Performance compared with previous stegfs designs

The results show that StegCover is the worst performer; this is because each

file operation translates into disk I/Os on several cover files. StegRand is also slow

because it has to modify all the replicas. DRSteg and NSteg use a bitmap to track

the status of disk blocks, so they can ensure data integrity with just one copy of each

data file. Consequently, they are substantially faster than StegCover and StegRand.

They are slower than FragDisk though, because they encrypt the protected files

block by block and spread them across the disk, resulting in higher fragmentation.

Recall that DRSteg needs to write additional messages into the USBs during

block creation and generates dummy operations dynamically. As the file creation

124

requests in our experiment are issued one after another with no delay, the file sys-

tem is fully loaded, leaving no idle period for DRSteg to schedule its dummy op-

erations. Thus, the dummy operations add directly to the write times, and the ob-

served timings represent the worst-case performance of DRSteg. For example, with

σu,l = 0.25 it is roughly 30% slower than NSteg. This is the cost paid by DRSteg to

achieve better security protection, compared to NSteg which is not able to relocate

its dummy blocks.

In the second experiment, we investigate the performance of DRSteg under dif-

ferent load conditions. The load condition is determined by various factors, includ-

ing the σ parameter that controls the amount of dummy operations, the concurrency

level, and the activity level of each user. We model the activity level after a Poisson

process with mean arrival rate of λ block operations per minute. The results are

summarized in Figure 6.7, which plots the average write time against λ for several

σ-concurrency combinations.

256 512 1024 2048 3092 4096 5120 6144
expected number of data block operations per minute

0

30

60

90

120

150

180

210

240

270

300

av
er

ag
e

w
ri

te
 ti

m
e

(m
s/

K
B

) DRSteg-0.25, one user
DRSteg-1.0, one user
DRSteg-5.0, one user
DRSteg-0.25, 2 users
DRSteg-1.0, 2 users
DRSteg-0.25, 4 users

Figure 6.7: Trade-off between deniability and performance

We first consider the impact of λ. For every σ-concurrency combination,

DRSteg’s write time is short initially because there are ample lull periods during

which dummy operations can be scheduled so as to reduce contention with data

operations. Such opportunities diminish with increasing λ, leading to longer write

times observed in the figure. Next, we compare the three σ-concurrency combina-

125

tions with σ = 0.25. With the same σ and λ settings, raising the concurrency level

introduces more contention between the data and dummy operations and lengthens

the write time. Similarly, a bigger σ generates more dummy operations to cover the

data operations, again resulting in longer write times.

In summary, our experiment demonstrates that DRSteg is capable of striking

a wide range of trade-offs between deniability and system performance. If high

deniability is required, the file system should be configured with enough resources

to prevent it from becoming overloaded. On the other hand, to support a heavy

workload, we could configure DRSteg for a lower deniability assurance.

6.6 Discussion

In this work, we address the threat to steganographic file systems (stegfs) that arises

when the underlying storage is untrusted and shared by multiple users. In such

systems, an adversary could obtain and analyze multiple snapshots of the storage

content to deduce the existence of secret user data. To counter the threat, we in-

troduce a Dummy-Relocatable Steganographic (DRSteg) file system that employs

novel techniques to share and relocate dummy data at runtime. This enables users

to surrender only some of their data, and attribute any unexplained changes across

snapshots to dummy operations. The deniability enjoyed by users is configurable

individually. DRSteg guarantees the integrity of the protected data, except where

users voluntarily overwrite data under duress. A trace-driven simulation confirms

the security of our scheme. Further experiments on a Linux prototype demonstrate

that DRSteg is able to effectively trade off deniability with system performance.

126

Chapter 7

Dissertation Conclusion and Future

Work

7.1 Summary of Contribution

This dissertation makes valuable contributions on utilizing diversity in software se-

curity and information hiding. Our first work systematically analyzed more than

6, 000 vulnerabilities published in the year of 2007, to validate the assumption that

diverse software which provides similar functionalities is vulnerable only to dif-

ferent exploits. Our results show that the majority of the vulnerable application

software products either do not have the same vulnerability, or cannot be compro-

mised with the same exploit code. This work has been published in the Proceedings

of the 6th Conference on Detection of Intrusions and Malware & Vulnerability As-

sessment (DIMVA 2009) [61].

In the second work, we proposed an intrusion detection scheme which builds on

two diverse programs providing semantically-close functionalities to detect sophis-

ticated attacks. Our model learns the underlying semantic correlation of the argu-

ment values in these programs, and consequently gains more accurate context in-

formation, which is effective in detecting attacks that manipulate erratic arguments.

This work has been published in the Proceedings of the 7th International ICST

127

Conference on Security and Privacy in Communication Networks (SecureComm

2011) [63].

The third work investigated on the detailed iOS application permissions, while

comparing to Android permissions. We also performed static analysis on over 1,000

pairs of applications that run on Android and iOS, the results of which reveal the

detailed permission usage differences for Android and iOS third-party applications.

This work has been submitted to a security conference at the time when this disser-

tation was submitted.

Finally, we introduced a Dummy-Relocatable Steganographic file system to pro-

vide deniability in multi-user environments where the adversary may have multiple

snapshots of the disk content. The diverse ways of interpreting data in the stor-

age allows a data owner to surrender only some data and attribute the unexplained

changes across snapshots to the dummy data which are random bits. This work has

been published in the Proceedings of the 26th Annual Computer Security Applica-

tions Conference (ACSAC 2010) [62].

7.2 Future Direction

The four works presented in this dissertation mainly provide three future directions

which can be followed with – intrusion detection, mobile security and stegano-

graphic file systems. Within these directions, mobile security is the most promising

topic which has attracted growing attention in the research literature recently. For

instance, there are 5 (out of 46) papers accepted in the 19th Annual Network & Dis-

tributed System Security Symposium (NDSS 2012), which are on mobile security.

However, most of the existing mobile security research works focus on Android

security, because it is an open platform which is relatively easy to analyze and im-

plement with. In comparison to the literature on Android, there are relatively less

studies on iOS platform.

One possible direction to take is to design and implement an information-flow

128

tracking system for iOS devices (iPhone/iPad/iPod Touch) to monitor real-time pri-

vacy leakage on these portable devices. The advantage we have in investigating this

research topic is that currently we already have static analysis tools on iOS, so it will

be much easier to identify potential “harmful” third-party applications by first ap-

plying static analysis to large amount of applications before performing the dynamic

analysis. Once we manage to design and implement such information-flow tracking

system for iOS, the direct output would be hard evidences (behavior of real appli-

cations) that leak some private data to developers or advertising companies. Such

observations will be newsworthy and are valuable to both research community and

common iOS users.

129

Bibliography

[1] ActDroid on Android, https://market.android.com/details?id=actforex.trader ; Act-
Phone on iOS, http://itunes.apple.com/sg/app/actphone/id385112430 .

[2] HCPCS on Android, https://market.android.com/details?id=a1.com.HCPCSList ;
HCPCS on iOS, http://itunes.apple.com/sg/app/hcpcs/id362345765 .

[3] eBuddy Messenger, iOS version: http://itunes.apple.com/sg/app/ebuddy-messenger/
id320087242 ; Android version: https://market.android.com/details?id=com.
ebuddy.android .

[4] Words With Friends Free, iOS version: http://itunes.apple.com/sg/app/
words-with-friends-free/id321916506 ; Android version: https://market.android.
com/details?id=com.zynga.words.

[5] AdWhirl Developer’s Resources, https://www.adwhirl.com/home/dev .

[6] Flurry Product Updates, http://blog.flurry.com/updates/bid/33715/
New-Flurry-SDK-Available-for-iPhone-OS-4-0-iOS .

[7] 3 Reasons iOS Has Better Security than Google Android.
Pronet, June 2011. http://www.pronetadvertising.com/articles/
3-reasons-ios-has-better-security-than-google-android.html .

[8] Android App Security Better than iPhones. GWL News, August 2010. http://www.
geekwithlaptop.com/android-app-security-better-than-iphones .

[9] Android, iPhone security different but matched. CNET News, July 2010. http://
news.cnet.com/8301-27080 3-20009362-245.html .

[10] Android Permission List. Android Manifest.permission API Level 8, http://
developer.android.com/reference/android/Manifest.permission.html .

[11] eCryptfs, a POSIX-compliant enterprise-class stacked cryptographic filesystem for
Linux. https://launchpad.net/ecryptfs .

[12] Encrypting File System in Windows XP and Windows Server 2003. http://www.
microsoft.com/technet/prodtechnol/winxppro/deploy/cryptfs.mspx .

[13] IDApro, a multi-processor disassembler and debugger. Hex-Rays, http://www.
hex-rays.com/products/ida/index.shtml .

[14] Smartphone Security Smackdown: iPhone vs. Android. InformationWeek, July
2011. http://www.informationweek.com/news/security/mobile/231000953 .

[15] TEMU and Vine. The BitBlaze Dynamic Analysis Component. http://bitblaze.cs.
berkeley.edu .

130

https://market.android.com/details?id=actforex.trader
http://itunes.apple.com/sg/app/actphone/id385112430
https://market.android.com/details?id=a1.com.HCPCSList
http://itunes.apple.com/sg/app/hcpcs/id362345765
http://itunes.apple.com/sg/app/ebuddy-messenger/id320087242
http://itunes.apple.com/sg/app/ebuddy-messenger/id320087242
https://market.android.com/details?id=com.ebuddy.android
https://market.android.com/details?id=com.ebuddy.android
http://itunes.apple.com/sg/app/words-with-friends-free/id321916506
http://itunes.apple.com/sg/app/words-with-friends-free/id321916506
https://market.android.com/details?id=com.zynga.words.
https://market.android.com/details?id=com.zynga.words.
https://www.adwhirl.com/home/dev
http://blog.flurry.com/updates/bid/33715/New-Flurry-SDK-Available-for-iPhone-OS-4-0-iOS
http://blog.flurry.com/updates/bid/33715/New-Flurry-SDK-Available-for-iPhone-OS-4-0-iOS
http://www.pronetadvertising.com/articles/3-reasons-ios-has-better-security-than-google-android.html
http://www.pronetadvertising.com/articles/3-reasons-ios-has-better-security-than-google-android.html
http://www.geekwithlaptop.com/android-app-security-better-than-iphones
http://www.geekwithlaptop.com/android-app-security-better-than-iphones
http://news.cnet.com/8301-27080_3-20009362-245.html
http://news.cnet.com/8301-27080_3-20009362-245.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
https://launchpad.net/ecryptfs
http://www.microsoft.com/technet/prodtechnol/winxppro/deploy/cryptfs.mspx
http://www.microsoft.com/technet/prodtechnol/winxppro/deploy/cryptfs.mspx
http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
http://www.informationweek.com/news/security/mobile/231000953
http://bitblaze.cs.berkeley.edu
http://bitblaze.cs.berkeley.edu

[16] Trend Micro: Android much less secure than iPhone. Electronista News,
January 2011. http://www.electronista.com/articles/11/01/11/trend.micro.warns.
android.inherently.vulnerable/ .

[17] Why Android App Security Is Better Than for the iPhone. PCWorld News.
August 2010. http://www.pcworld.com/businesscenter/article/202758/why android
app security is better than for the iphone.html .

[18] Ross J. Anderson and Eli Biham. Two practical and provably secure block ciphers:
Bears and lion. In Proceedings of the Third International Workshop on Fast Software
Encryption, pages 113–120, 1996.

[19] Ross J. Anderson, Roger M. Needham, and Adi Shamir. The steganographic file
system. In Proceedings of the 2nd International Workshop on Information Hiding,
pages 73–82, 1998.

[20] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Can-
did: preventing sql injection attacks using dynamic candidate evaluations. In Pro-
ceedings of the 14th ACM conference on Computer and communications security
(CCS ’07), pages 12–24, New York, NY, USA, 2007. ACM.

[21] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and
Dino Dai Zovi. Randomized instruction set emulation to disrupt binary code injection
attacks. In Proceedings of the 10th ACM conference on Computer and communica-
tions security (CCS ’03), pages 281–289, New York, NY, USA, 2003. ACM.

[22] David Barrera, H. G üne ş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A
methodology for empirical analysis of permission-based security models and its ap-
plication to android. In Proceedings of the 17th ACM conference on Computer and
communications security (CCS ’10), pages 73–84, New York, NY, USA, 2010. ACM.

[23] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow anomaly detection.
In Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages 48–62,
2006.

[24] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: an effi-
cient approach to combat a board range of memory error exploits. In Proceedings
of the 12th conference on USENIX Security Symposium (SSYM’03), Berkeley, CA,
USA, 2003. USENIX Association.

[25] Matt Blaze. A cryptographic file system for unix. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, pages 9–16, 1993.

[26] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on an-
droid. In 19th Annual Network & Distributed System Security Symposium (NDSS),
Feb 2012.

[27] Jesse Burns. Developing Secure Mobile Applications for Android. iSEC Partners,
October 2008, http://www.isecpartners.com/files/iSEC Securing Android Apps.pdf
.

[28] Giuseppe Cattaneo, Luigi Catuogno, Aniello Del Sorbo, and Pino Persiano. The de-
sign and implementation of a transparent cryptographic file system for unix. In Pro-
ceedings of the 2001 USENIX Annual Technical Conference, pages 199–212, 2001.

131

http://www.electronista.com/articles/11/01/11/trend.micro.warns.android.inherently.vulnerable/
http://www.electronista.com/articles/11/01/11/trend.micro.warns.android.inherently.vulnerable/
http://www.pcworld.com/businesscenter/article/202758/why_android_app_security_is_better_than_for_the_iphone.html
http://www.pcworld.com/businesscenter/article/202758/why_android_app_security_is_better_than_for_the_iphone.html
http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf

[29] L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach to
reliability of software operation. In Digest of 8th International Symposium on Fault-
Tolerant Computing (FTCS), pages 3–9, Tolouse, France, June 1978.

[30] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-
control-data attacks are realistic threats. In Proceedings of the 14th conference on
USENIX Security Symposium, 2005.

[31] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in android. In Proceedings of the 9th international
conference on Mobile systems, applications, and services (MobiSys ’11), pages 239–
252, New York, NY, USA, 2011. ACM.

[32] Lap chung Lam and Tzi cker Chiueh. Automatic extraction of accurate application-
specific sandboxing policy. In Proceedings of the International Symposium on Recent
Advances in Intrusion Detection, pages 1–20, 2004.

[33] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser. N-variant systems – A secretless framework for security through
diversity. In Proceedings of the 15th USENIX Security Symposium, August 2006.

[34] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems:
a secretless framework for security through diversity. In Proceedings of the 15th
conference on USENIX Security Symposium, 2006.

[35] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege escalation attacks on android. In Proceedings of the 13th international con-
ference on Information security (ISC’10), pages 346–360, Berlin, Heidelberg, 2011.
Springer-Verlag.

[36] Rohit Dhamankar. SANS Top-20 Security Risks, 2007. http://www.sans.org/top20/
2007/ .

[37] Claudia Diaz, Carmela Troncoso, and Bart Preneel. A framework for the analysis of
mix-based steganographic file systems. In Proceedings of the 13th European Sympo-
sium on Research in Computer Security, pages 428–445, 2008.

[38] Josep Domingo-Ferrer and Maria Bras-Amorós. A shared steganographic file sys-
tem with error correction. In Proceedings of the 5th International Conference on
Modeling Decisions for Artificial Intelligence, pages 227–238, 2008.

[39] Jake Edge. Remote file inclusion vulnerabilities. Octobor 2006. http://lwn.net/
Articles/203904/ .

[40] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks in
iOS Applications. In Proceedings of the Network and Distributed System Security
Symposium (NDSS ’11), San Diego, CA, February 2011.

[41] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation (OSDI’10),
pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

132

http://www.sans.org/top20/2007/
http://www.sans.org/top20/2007/
http://lwn.net/Articles/203904/
http://lwn.net/Articles/203904/

[42] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study
of android application security. In Proceedings of the 20th USENIX conference on
Security, Berkeley, CA, USA, 2011. USENIX Association.

[43] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding android
security. IEEE Security and Privacy, 7:50–57, January 2009.

[44] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security (CCS ’11), pages 627–638, New York, NY,
USA, 2011. ACM.

[45] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika
Chin. Permission re-delegation: attacks and defenses. In Proceedings of the 20th
USENIX conference on Security, Berkeley, CA, USA, 2011. USENIX Association.

[46] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly detection using call stack information. In Proceedings of the 2003
IEEE Symposium on Security and Privacy, 2003.

[47] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. A
sense of self for unix processes. In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, 1996.

[48] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. Scandroid: Automated secu-
rity certification of android applications. Technical report, University of Maryland,
2009.

[49] Gordon Lyon Fyodor. Remote os detection via tcp/ip stack fingerprinting. Technical
report, INSECURE.ORG, October 1998.

[50] Debin Gao, Michael K. Reiter, and Dawn Song. Gray-box extraction of execution
graphs for anomaly detection. In Proceedings of the 11th ACM conference on Com-
puter and Communications Security, pages 318–329, 2004.

[51] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance for intrusion
detection. In Proceedings of the 8th International Symposium on Recent Advances in
Intrusion Detection, pages 63–81, 2005.

[52] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance measurement
using hidden markov models. In Proceedings of the 9th International Symposium on
Recent Advances in Intrusion Detection, pages 19–40, 2006.

[53] Debin Gao, Michael K. Reiter, and Dawn Song. Beyond output voting: Detecting
compromised replicas using HMM-based behavioral distance. IEEE Transactions on
Dependable and Secure Computing (TDSC), July 2008.

[54] Ilir Gashi and Peter Popov. Fault tolerance via diversity for off-the-shelf products: A
study with sql database servers. IEEE Transactions on Dependable Secure Comput-
ing, 4(4):280–294, 2007. Member-Lorenzo Strigini.

[55] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J. S. Quarterman, and
B. Schneier. Cyberinsecurity: The cost of monopoly. Technical report, CCIA, 2003.

133

[56] Anup K. Ghosh and Aaron Schwartzbard. A study in using neural networks for
anomaly and misuse detection. In Proceedings of the 8th conference on USENIX
Security Symposium, 1999.

[57] Charles Giefer and Julie Letchner. Mojitos: A distributed steganographic file system.
Technical report, Univerisity of Washington, 2004.

[58] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Efficient context-sensitive
intrusion detection. In Proceedings of the Network and Distributed System Security
Symposium, 2004.

[59] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of
capability leaks in stock android smartphones. In 19th Annual Network & Distributed
System Security Symposium (NDSS), Feb 2012.

[60] Frank Graf and Stephen D. Wolthusen. A capability-based transparent cryptographic
file system. In Proceedings of the 2005 International Conference on Cyberworlds,
pages 101–108, 2005.

[61] Jin Han, Debin Gao, and Robert H. Deng. On the effectiveness of software diversity:
A systematic study on real-world vulnerabilities. In Proceedings of the Detection of
Intrusions and Malware and Vulnerability Assessment, pages 127–146, July 2009.

[62] Jin Han, Meng Pan, Debin Gao, and HweeHwa Pang. A multi-user steganographic
file system on untrusted shared storage. In Proceedings of the 26th Annual Com-
puter Security Applications Conference (ACSAC ’10), pages 317–326, New York,
NY, USA, December 2010. ACM.

[63] Jin Han, Qiang Yan, Debin Gao, and Robert H. Deng. On detection of erratic ar-
guments. In Proceedings of the 7th International ICST Conference on Security and
Privacy in Communication Networks (SecureComm ’11), September 2011.

[64] Steven Hand and Timothy Roscoe. Mnemosyne: Peer-to-peer steganographic stor-
age. In Proceedings of the First International Workshop on Peer-to-Peer Systems,
pages 130–140, 2002.

[65] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-
all. These aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications. In Proceedings of the 18th ACM conference on Com-
puter and communications security (CCS ’11), pages 639–652, New York, NY, USA,
2011. ACM.

[66] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing Cross Site Re-
quest Forgery Attacks. In IEEE International Conference on Security and Privacy
for Emerging Areas in Communication Networks (Securecomm), 2006.

[67] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich, and J. Rowe.
Learning unknown attacks - A start. In Proceedings of the 5th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID ’02), 2002.

[68] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich, and J. Rowe.
Learning unknown attacks - A start. In Proceedings of the 5th International Sympo-
sium on Recent Advances in Intrusion Detection, 2002.

134

[69] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Proceedings of the 10th ACM
conference on Computer and communications security (CCS ’03), pages 272–280,
New York, NY, USA, 2003. ACM.

[70] Christine Kinealy. This Great Calamity: The Irish Famine 1845-52. Gill & Macmil-
lan, 1995.

[71] David Kravets. Jailbreaking iPhone Legal, U.S. Government Says. ABCNews, http:
//abcnews.go.com/Technology/story?id=11254253 .

[72] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna. On the
detection of anomalous system call arguments. In European Symposium on Research
in Computer Security, 2003.

[73] Leslie Lamport. Password authentication with insecure communication. Communi-
cations of the ACM, 24(11), 1981.

[74] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Re-
versals. Soviet Physics Doklady, 10, 1966.

[75] Richard C. Linger. Systematic generation of stochastic diversity as an intrusion bar-
rier in survivable systems software. In Proceedings of the Thirty-Second Annual
Hawaii International Conference on System Sciences-Volume 3 (HICSS ’99), Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[76] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for java.
In Asian Symposium on Programming Languages and Systems, November 2005.

[77] Hiroshi Lockheimer. Android and Security. Google Mobile Blog, Feb 02, 2012.
http://googlemobile.blogspot.com/2012/02/android-and-security.html .

[78] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting intrusions
through system call sequence and argument analysis. IEEE Transactions on De-
pendable and Secure Computing (TDSC), 7:381–395, 2010.

[79] Andrew D. McDonald and Markus G. Kuhn. StegFS: A steganographic file system
for Linux. In Proceedings of the 3rd International Workshop on Information Hiding,
pages 462–477, 2000.

[80] C. C. Michael and Anup Ghosh. Simple, state-based approaches to program-based
anomaly detection. ACM Transactions on Information and System Security (TIS-
SEC), 5(3):203–237, 2002.

[81] Nemo. The Objective-C Runtime: Understanding and Abusing. Phrack, Volume 4,
Issue 66, http://www.phrack.org/issues.html?issue=66&id=4 .

[82] Adam J. O’Donnell and Harish Sethu. On achieving software diversity for improved
network security using distributed coloring algorithms. In Proceedings of the 11th
ACM conference on Computer and communications security (CCS ’04), pages 121–
131, New York, NY, USA, 2004. ACM.

[83] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. Se-
mantically rich application-centric security in android. In Proceedings of the 2009
Annual Computer Security Applications Conference (ACSAC ’09), pages 340–349,
Washington, DC, USA, 2009. IEEE Computer Society.

135

http://abcnews.go.com/Technology/story?id=11254253
http://abcnews.go.com/Technology/story?id=11254253
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://www.phrack.org/issues.html?issue=66&id=4

[84] Gabor Paller. Dedexer. http://dedexer.sourceforge.net/ .

[85] HweeHwa Pang, Kian-Lee Tan, and Xuan Zhou. StegFS: A steganographic file sys-
tem. In Proceedings of the 19th International Conference on Data Engineering,
pages 657–668, 2003.

[86] Niels Provos. Improving host security with system call policies. In Proceedings of
the 12th conference on USENIX Security Symposium, 2003.

[87] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The design and imple-
mentation of an intrusion tolerant system. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN ’02), 2002.

[88] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The design and imple-
mentation of an intrusion tolerant system. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN), 2002.

[89] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer and Communications Secu-
rity, pages 199–212, 2009.

[90] Stephen A. Ross, Randolph W. Westerfield, and Bradford D. Jordan. Fundamentals
of corporate finance. Irwin/McGraw-Hill, 8th. edition edition, 2008.

[91] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[92] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18:613–620, November 1975.

[93] Jason Sawin and Atanas Rountev. Improving static resolution of dynamic class load-
ing in java using dynamically gathered environment information. Automated Soft-
ware Engineering, 16:357–381, June 2009.

[94] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the 2010 IEEE Symposium on Security
and Privacy, pages 317–331, 2010.

[95] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method
for detecting anomalous program behaviors. In Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, 2001.

[96] Nicolas Seriot. iPhone Privacy. BlackHat Technical Security Conference: DC 2010,
http://seriot.ch/resources/talks papers/iPhonePrivacy.pdf .

[97] Amit Singh. Mac OS X Internals: A Systems Approach. Addison-Wesley, 2006.

[98] Charlie Sorrel. Apple Approves, Pulls Flashlight App with Hidden Teth-
ering Mode. Wired. July, 2010. http://www.wired.com/gadgetlab/2010/07/
apple-approves-pulls-flashlight-app-with-hidden-tethering-mode .

[99] Mark Stamp. Risks of monoculture. Communications of the ACM, 47(3), 2004.

136

http://dedexer.sourceforge.net/
http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf
http://www.wired.com/gadgetlab/2010/07/apple-approves-pulls-flashlight-app-with-hidden-tethering-mode
http://www.wired.com/gadgetlab/2010/07/apple-approves-pulls-flashlight-app-with-hidden-tethering-mode

[100] G. Tandon and P. Chan. Learning rules from system call arguments and sequences
for anomaly detection. In ICDM Workshop on Data Mining for Computer Security
(DMSEC ’03), pages 20–29, 2003.

[101] E. Totel, F. Majorczyk, and L. Me. COTS diversity based intrusion detection and
application to web servers. In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID ’05), 2005.

[102] E. Totel, F. Majorczyk, and L. Me. COTS diversity based intrusion detection and
application to web servers. In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection, 2005.

[103] Carmela Troncoso, Claudia Diaz, Orr Dunkelman, and Bart Preneel. Traffic analysis
attacks on a continuously-observable steganographic file system. In Proceedings of
the 9th Information Hiding, pages 220–236, 2008.

[104] Chris Trowbridge. An overview of remote operating system fingerprinting. Technical
report, The SANS Institute, July 2003.

[105] Timothy Vidas, Nicolas Christin, and Lorrie Cranor. Curbing Android permission
creep. In Proceedings of the Web 2.0 Security and Privacy 2011 workshop (W2SP
2011), Oakland, CA, May 2011.

[106] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross-site scripting prevention with dynamic data
tainting and static analysis. In Proceeding of the Network and Distributed System
Security Symposium (NDSS ’07), February 2007.

[107] David Wagner and Drew Dean. Intrusion detection via static analysis. In Proceedings
of the 2001 IEEE Symposium on Security and Privacy, 2001.

[108] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21:168–173, January 1974.

[109] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnera-
bilities. In Proceedings of the 30th international conference on Software engineering
(ICSE ’08), pages 171–180, New York, NY, USA, 2008. ACM.

[110] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering (ICSE ’81), pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

[111] Charles P. Wright, Michael C. Martino, and Erez Zadok. NCryptfs: A secure and
convenient cryptographic file system. In Proceedings of the 2003 USENIX Annual
Technical Conference, pages 197–210, 2003.

[112] Yongguang Zhang, Harrick Vin, Lorenzo Alvisi, Wenke Lee, and Son K. Dao. Het-
erogeneous networking: a new survivability paradigm. In Proceedings of the 2001
workshop on New security paradigms (NSPW ’01), pages 33–39, New York, NY,
USA, 2001. ACM.

[113] Xuan Zhou, HweeHwa Pang, and Kian-Lee Tan. Hiding data accesses in stegano-
graphic file system. In Proceedings of the 20th International Conference on Data
Engineering, pages 572–583, 2004.

137

[114] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. In 19th Annual
Network & Distributed System Security Symposium (NDSS), Feb 2012.

138

Glossary

Commercial Off-The-Shelf (COTS) Commercially Off-The-Shelf is a Federal Ac-
quisition Regulation term defining a nondevelopmental item of supply that is both com-
mercial and sold in substantial quantities in the commercial marketplace, and that can be
procured or utilized under government contract in the same precise form as available to the
general public.

Common Vulnerabilities and Exposures (CVE) CVE is a list or dictionary that
provides common names for publicly known information security vulnerabilities and expo-
sures. http://cve.mitre.org/

Cross-site Request Forgery (CSRF) Cross-site Request Forgery is a type of mali-
cious exploit of a website whereby unauthorized commands are transmitted from a user that
the website trusts.

Cross-site Scripting (XSS) Cross-site scripting is a type of computer insecurity vul-
nerability typically found in Web applications (such as web browsers through breaches of
browser security) that enables attackers to inject client-side script into Web pages viewed
by other users.

Dalvik Executable (DEX) Dalvik is the process virtual machine (VM) in Google’s
Android operating system. Programs on Android are commonly written in a dialect of Java
and compiled to bytecode, which are then converted from Java Virtual Machine-compatible
.class files to Dalvik-compatible .dex (Dalvik Executable) files before installation on An-
droid devices.

Denial of Service (DoS) A denial-of-service attack (DoS attack) is an attempt to make
a computer or network resource unavailable to its intended users.

Dummy-Relocatable Steganographic (DRSteg) This is a multi-user stegano-
graphic file system we proposed for shared storage systems, which is able to provide plau-
sible deniability of secret data in a multi-user environment in which the adversary could
obtain multiple snapshots of the storage content.

Erratic Arguments Erratic arguments are function arguments which have the erratic
property – in a particular execution context, only a subset of the argument values (possibly
one) is legitimate while other values could potentially be malicious.

139

http://cve.mitre.org/

Executable and Linkable Format (ELF) In computing, the Executable and Linkable
Format (ELF, formerly called Extensible Linking Format) is a common standard file format
for executables, object code, shared libraries, and core dumps.

GNU C Library (glibc) The GNU C Library, commonly known as glibc, is the C
standard library released by the GNU Project, which was originally written by the Free
Software Foundation (FSF) for the GNU operating system.

GNU Debugger (GDB) The GNU Debugger, usually called just GDB and named gdb
as an executable file, is the standard debugger for the GNU software system. It is a portable
debugger that runs on many Unix-like systems and works for many programming languages,
including Ada, C, C++, Objective-C, Free Pascal, Fortran, Java[1] and partially others.

Global Voting Table (GVT) In DRSteg, the global voting table records the votes sur-
rendered by users, which is maintained in clear text in the storage.

Host-based Intrusion Detection System (HIDS) A host-based intrusion detection
system (HIDS) is an intrusion detection system that monitors and analyzes the internals of
a computing system and/or the network packets on its network interfaces.

Intrusion Detection System (IDS) An intrusion detection system (IDS) is a device or
software application that monitors network and/or system activities for malicious activities
or policy violations and produces reports to a Management Station.

National Vulnerability Database (NVD) The National Vulnerability Database is the
U.S. government repository of standards based vulnerability management data represented
using the Security Content Automation Protocol (SCAP), http://nvd.nist.gov/ .

Original Equipment Manufacturer (OEM) An original equipment manufacturer
(OEM) manufactures products or components that are purchased by a company and retailed
under that purchasing company’s brand name.

Portable Executable (PE) The Portable Executable (PE) format is a file format for
executables, object code and DLLs, used in 32-bit and 64-bit versions of Windows operating
systems.

Private Information Retrieval (PIR) In cryptography, a private information retrieval
(PIR) protocol allows a user to retrieve an item from a server in possession of a database
without revealing which item he is retrieving.

Remote File Inclusion (RFI) Remote File Inclusion (RFI) is a type of vulnerability
most often found on websites, which allows an attacker to include a remote file, usually
through a script on the web server.

Software Substitutes Software substitutes refer to two software products that provide
the same service.

140

http://nvd.nist.gov/

Steganographic File Systems (Stegfs) A steganographic file system is a storage
mechanism designed to give its users a high level protection against being compelled to
disclose its contents. It delivers the secret content to any user who knows the password;
but an attacker who does not possess this information can nether guess it, nor gain any
information about whether the content is present.

System Call In computing, a system call is how a program requests a service from an op-
erating system’s kernel, which provides the interface between a process and the underlying
operating system.

Universally Unique Identifier (UUID) A UUID is an identifier standard used in soft-
ware construction, standardized by the Open Software Foundation as part of the Distributed
Computing Environment.

User Share Box (USB) In DRSteg, each user has a user shared box, which is used to
track the set of blocks on which the corresponding user holds a share. Shares in the user
shared boxes are encrypted with the user’s public key.

141

	Novel Techniques of Using Diversity in Software Security and Information Hiding
	Citation

	1 Introduction
	1.1 Diversity in Software Security
	1.2 Diversity in Information Hiding
	1.3 Contributions and Organization

	2 Literature Review
	2.1 Software Diversity for Fault Tolerance and Intrusion Detection
	2.2 Mobile Application Security
	2.3 Cryptographic and Steganographic File Systems

	3 A Systematic Study on Vulnerabilities in Diverse Software
	3.1 Introduction
	3.2 Source of Information and Preliminary Analysis
	3.2.1 Software without substitutes
	3.2.2 Vulnerable software categorization
	3.2.3 Vulnerabilities in application software

	3.3 Vulnerabilities in Software Substitutes
	3.3.1 Finding vulnerabilities in software substitutes
	3.3.2 Exploit Code
	3.3.3 Summary

	3.4 Software Products running on Multiple Operating Systems
	3.4.1 Different operating systems
	3.4.2 Software products running on multiple operating systems
	3.4.3 Exploit Code
	3.4.4 Summary

	3.5 Vulnerabilities in Other Software Products
	3.5.1 Web script modules
	3.5.2 Operating systems, languages and libraries
	3.5.3 Summary

	3.6 Discussion

	4 Software Diversity in Intrusion Detection
	4.1 Introduction
	4.2 Diversity Detection Model
	4.2.1 Overview
	4.2.2 Relationships of the Arguments
	4.2.3 Training Algorithms
	4.2.4 Model Refinement
	4.2.5 Detection

	4.3 Implementation
	4.4 Evaluation
	4.4.1 Detection Effectiveness
	4.4.2 False Alarm Analysis
	4.4.3 Performance Overheads

	4.5 Discussion

	5 Application Security Comparison of Diverse Mobile Platforms
	5.1 Introduction
	5.2 Background and Overview
	5.2.1 Security Model: Android vs. iOS
	5.2.2 Comparison Framework Overview

	5.3 Cross-platform Applications
	5.3.1 Preliminary Data Collection
	5.3.2 Identifying Cross-platform Applications
	5.3.3 Stratified Sampling

	5.4 Permission Comparisons
	5.4.1 Android system permissions
	5.4.2 Permissions not supported by iOS
	5.4.3 Permissions supported by iOS

	5.5 Static Analysis Tools
	5.5.1 Android Static Analysis Tool
	5.5.2 iOS Static Analysis Tool

	5.6 Comparison Analysis Results
	5.6.1 API Resolving Rate of Analysis Tools
	5.6.2 Comparisons on Both-supported Permissions
	5.6.3 Reason Probing 1: Permission Usage of Third-party Libraries
	5.6.4 Reason Probing 2: Microanalysis on Application Code Logic
	5.6.5 Comparisons on Full Permissions

	5.7 Discussion

	6 Data Interpretation Diversity in Information Hiding
	6.1 Introduction
	6.2 Problem Definition
	6.2.1 Threat Model
	6.2.2 Definition of Deniability

	6.3 Design of DRSteg
	6.3.1 Overview of DRSteg
	6.3.2 Detailed Design of DRSteg
	6.3.3 Discussions

	6.4 Plausible Deniability of DRSteg
	6.4.1 Analysis of Deniability
	6.4.2 -deniable DRSteg

	6.5 Evaluation
	6.5.1 Empirical Evaluation on Deniability
	6.5.2 Implementation and Performance Evaluation

	6.6 Discussion

	7 Dissertation Conclusion and Future Work
	7.1 Summary of Contribution
	7.2 Future Direction

