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Abstract

Optimal Advertisement Scheduling

in Breaks of Random Lengths

by Ajay S. Aravamudhan

Broadcasters generate a large part of their revenue throughadvertising, especially

in live sports. Scheduling advertisements can be challenging in live broadcasting, how-

ever, for sports such as Cricket that have breaks of random lengths and number during

which the ads are shown. This uncertainty, coupled with the high price of spots for ma-

jor competitions, means that improving ad scheduling can add significant value to the

broadcaster. This problem shares similarities with the stochastic cutting stock problem

and the dynamic stochastic knapsack problem, with applications in the wood, steel and

paper industry and the transportation industry respectively.

This dissertation adds to the existing literature on advertising scheduling by tak-

ing stochasticity in break sizes into consideration. We propose an optimal scheduling

rule under simplifying assumptions and prove that our policy outperforms traditional

scheduling methods. We also study the performance of several heuristics, and find that

a flexible heuristic that does not depend on creating bundlesperforms the best.
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Chapter 1

Introduction

Revenue for television broadcasters is generated primarily through the sale of local,

regional, and national advertising on the local stations and their networks. At CBS, the

most-watched U.S. broadcast network, TV advertising accounted for two-thirds of its

revenue1. Major sporting events, such as the Super Bowl, the Olympicsor the Football

World Cup, greatly increase advertising revenues as advertisers are willing to pay a

premium to air their ads during live broadcast.

In India, cricket is the main revenue earner for sports broadcasting networks. Ac-

cording to a study from TAM Media Research’s advertising measurement arm AdEx,

ad volumes in cricket saw a growth of more than three times in the five years from

2002 to 2007 with the volumes showing an extra spurt during the World Cups in 2003

and 20072. The biggest spurt was seen in the 2007 World Cup where the volumes rose

nearly 100%, with 22% of the advertising volumes in live cricket telecasts.

In recent times, the importance of advertising in cricket has increased even more,

with the introduction of shorter formats of the game such as T-20, which is aimed at

prime-time television viewers. Sony, the broadcaster for the Indian Premier League

2010, was expected to have earned approximately USD 150 millions from live broad-

casting for the tournament alone, with advertising spots valued at more than USD 1100

per second3. Thus, even a small percentage gain in advertising revenue can translate to

1Bloomberg Businessweek 2010
2www.indiantelevision.com/
3Wall Street Journal, Jan 2010
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a large increase in earnings.

Scheduling advertisements in live broadcasting can be challenging, however, espe-

cially for sports that have breaks that are non-deterministic. This is the case for cricket,

in which the duration and also the number of breaks can be random. Breaks in cricket

are taken between overs, when a wicket falls, or there is a break in the game for re-

freshments or due to an injury. While the length of the game isusually predictable

(especially in the case of limited overs games such as ODIs orT-20s), it is not fixed.

Teams have to take up to ten wickets within the allotted overs, however overs may run

out before all wickets are taken. Teams may also find that all their wickets have fallen

before they have managed to bat out the overs. Thus, the number of breaks, time when

they occur, and lengths of breaks in a game cannot be foretold, and broadcasters have

to make ad scheduling decisionswhile the break is ongoing.

To do this, networks usually employ several people with specialized knowledge

of the sport when scheduling commercials. These ad schedulers have a view of the

live game as it happens from a centralized control center, which also has a list of ads

available on a mainframe, along with the orders (number of times each ad has to be

shown). Before the match starts, the ad scheduling team creates a few sample bundles,

giving priority to tournament sponsors. The bundles are initially scheduled as planned,

but are broken and ads are scheduled on the fly because break sizes are stochastic. The

scheduling team is advised by an on-field director, who can judge the state of the game

and inform them about how long the break could be. Based on this advice, and the

known break size distribution, the schedulers select ads tobe aired in each break.

The job of the ad schedulers is stressful because of the need to develop good sched-

ules while under constant pressure to satisfy scheduling constraints. For instance, if

live action begins while an ad is running, then the ad has to bestopped midway (the ad

is said to have ‘crashed’) in order to air live action, thus forgoing any revenue from the

crashed ad. Furthermore, networks have to satisfy service levels promised to agencies

that get them the ad contracts, and these service levels are based on sponsorship sta-

tuses and geographical location. Thus, by reducing dependency on human intervention,

there is an opportunity to maximize revenues by automating the commercial scheduling
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process while generating near optimal schedules to meet allgoals.

In this dissertation, we consider two approaches to study the problem. We begin

with Chapter 2, where we review literature from the streams of advertising, random

yield, stochastic knapsack and stochastic programming with recourse to help us gain

insights for doing our study. In Chapter 3, we approach the problem analytically, and

study optimal scheduling policies when faced with stochastic break sizes for a simpli-

fied setting, in which we do not consider constraints other than crashing. We consider

two cases, where the scheduling team either has prior information about the break du-

ration for the ongoing break, or it does not. In each case, we assume that the inventory

contains ads of two sizes,S and 2S, and consider scenarios where break sizes range

from zero to any multiple ofS, and where the number of breaks can be stochastic. In

Chapter 4, we do a numerical analysis to study the sensitivity of the Optimal Policy to

variations in problem parameters relative to the myopic Greedy rule, which we define

as the ad schedule which generates the maximum revenue for the break in hand but does

not consider the subsequent breaks. Finally, in Chapter 5, we study several heuristics

inspired by the current scheduling practice in order to improve a broadcaster’s rev-

enues. We use data provided by a major cricket broadcaster toanalyze the performance

of several heuristics which create bundles beforehand. We consider generating bundles

at various points during a match, and compare performance with the standard Greedy

heuristic. We include some constraints for this study, suchas minimum service levels

for each client, to analyze how creating bundles beforehandaffects revenue earned, and

how often they should be created.

Finally, we summarize our findings and present our conclusions with directions for

future research in Chapter 6.



Chapter 2

Literature Review

In this dissertation, we take two approaches to study the problem of optimally schedul-

ing ads for random breaks: first we propose optimal policies for scheduling ads during

breaks of random durations under simplifying assumptions,and secondly, we analyze

several heuristics inspired by current scheduling practice hoping to provide manage-

rial insight to sports broadcasters. This research has links to revenue management with

random capacity, the dynamic stochastic knapsack problem,the stochastic cutting stock

problem and revenue management in media applications.

2.1 Revenue Management with Random Capacity

Our problem is related to revenue management with random capacity / random yield,

with typical applications in production planning. The mostcommon choice to model

random yield has been stochastically proportional yield, in which the yield is propor-

tional to the order.

Ciarallo et al. (1994) [7] are the first to explore the impact of random capacity. The

authors find that an order-up-to policy is optimal to minimize production costs. The

order target includes a safety stock to account for random capacity in future periods

and is higher than the myopic order-up-to level. Wang and Gerchak (1996) [27] revisit

the results found in Ciarallo et al. (1994) to offer a more rigorous proof of the order-up-

to policy. Khang and Fujiwara (2000) [15] prove under which conditions the myopic

5
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order-up-to policy is optimal in a multi-period setting. Hwang and Singh (1998) [14]

extend the analysis to a multi-stage production process andfind an optimal policy char-

acterized by a sequence of two critical numbers for each stage: a minimum input level

below which no production takes place and a maximum desired production level. Fi-

nally, Wang and Gerchak (1996) [26] incorporate random yield and capacity and show

that the optimal policy is characterized by a single reorderpoint in each period. That

critical point is not a constant and depends on the inventoryin hand.

Yano and Lee(1995)[29] review the literature in the area of lot sizing with ran-

dom yields, focusing on single-stage continuous review models and single-stage pe-

riodic review models. They cover modeling of costs, modeling of yield uncertainty,

and measures of performance of the system. Grosfeld-Nir andGerchak (2004)[13] re-

view papers discussing multiple lot sizing in production toorder in multistage systems,

and review situations where both yield and demand are random. Bollapragada and

Morton(1999)[6] provide heuristics for dealing with random inventory by focusing on

inventory at the end of the period, after the demand is met. They show that the random

yield problem is analogous to the newsvendor problem with the demand distribution

dependent on the quantity ordered. Their research supportsthe argument that myopic

and near-myopic methods are useful across a wide spectrum ofstochastic inventory

problems.

Our model differs in two important aspects from the random yield and random

capacity papers above. First, we maximize revenues rather than minimize costs. All

the papers assume a single product whereas we work in a multi product setting with

different prices and production costs. Therefore we need toschedule those products

based on their profitability and their capacity usage. Second, we assume integer units

or fixed-size order runs. Therefore, we cannot simply use capacity to its maximum and

hold inventory to complete an order across multiple periods. Each order needs to be

entirely processed within one production period.
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2.2 Dynamic Stochastic Knapsack Problem

The knapsack problem is one of the simplest and thus oldest formulation of a maxi-

mization problem. The knapsack problem has been extensively studied in operations

research, and has various industrial applications in areassuch as resource allocation,

capital budgeting, portfolio selection problem, cargo loading, and cutting stock prob-

lems. Knapsack problems of this type are deterministic because all parameters are

known with certainty. However, in many situations, these parameters may be random

variables having a certain distribution. Kleywegt and Papastavrou have written a series

of papers on this topic ((1996) [19] [21],(2001) [20]), thatdefine the Dynamic Stochas-

tic Knapsack problem as one in which items to be packed arriveaccording to a known

distribution, and determine the optimal policy that maximizes expected value, given the

costs associated with waiting. They expand their research to cases where the rewards

associated with an item are stochastic, and when the size of each item is also stochas-

tic. Our research, however, attempts to solve a problem withmultiple knapsacks, whose

sizes are stochastic, and the items are of known size and value.

More recently, Perry and Hartman (2009) [22] model a multi-period, single resource

capacity reservation problem as a dynamic, stochastic, multiple knapsack problem with

stochastic dynamic programming. They propose an approximation approach which

utilizes simulation and deterministic dynamic programming in order to allow for the

solution of longer horizon problems and ensure good time zero decisions. Their sim-

ulation based approach, however, does not sufficiently capture the complexities of our

problem.

Witchakul, Ayudhya, Charnsethikul(2008) [28] discuss random Knapsack capacity

with deterministic weights and costs. They model the Knapsack’s capacity as a random

variable with a known distribution. They use the expectation of Knapsack size, and

both underage and overage penalty costs, to estimate optimum selection of ads. They

provide a heuristic for solving Stochastic Knapsack with Continuous/Discrete Random

Capacity, and prove the validity of their heuristic analytically and numerically using a

Monte Carlo Simulation. To the best of our knowledge, this isone of the few papers
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that address stochastic knapsack sizes. The problem we face, however, can be seen

as a modified bin packing problem where multiple bins of stochastic capacity have to

be optimally filled. Besides, unlike the above paper, we do not consider overage and

underage penalties.

2.3 Stochastic Cutting Stock Problem

The cutting stock problem originated as a knapsack problem which minimizes unused

capacity rather than maximize revenue from the included items. It is based on indus-

try applications which require to solve how to cut stock of a certain dimension into

smaller, heterogeneous order sizes in such a way as to minimize waste of material, e.g.

in the paper or steel industry. The problem was introduced byGilmore and Gomory

(1961) [10], and over a series of papers, the authors proposed a set of specialized tech-

niques to solve the cutting stock problem (Gilmore and Gomory 1963 [11], 1965 [12]).

One line of extensions to this problem looks at stock with stochastic dimensions. The

randomness can be due to the nature of the stock, e.g., raw material like wood or stone

slabs may come in unequal sizes, quality variation within the stock or defects at the

edges of the stock. Scull (1981) [23] introduces a stochastic cutting stock problem in

which the uncertainty in the stock length is due to defects atthe edges. The stock is then

cut into standard-length units, and the authors find the optimal distance from the edge at

which to start cutting in order to minimize expected waste ifinspection of the stock and

its defects is not possible. Ghodsi and Sassani (2005) [9] introduce quality and length

variability of the stock and the orders. A cut pattern needs to be decided upon arrival of

each piece of stock. The authors propose a dynamic algorithmwhich first prioritizes the

orders based on their quality level and quantity and then proposes a suitable cut pattern

for the incoming stock. Even though the orders have different quality requirements,

their revenue is assumed constant, and the objective is to minimize waste. Fathi and

Kianfar (2009) [16] acknowledge that variability in quality may also lead to difference

in revenue, and formulate a similar problem with quality andlength variability with the

objective to maximize revenue. They formulate the cut pattern problem as a dynamic
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program and conduct a numerical experiment to show that it isfeasible to solve this

problem in real time. The authors, however, do not comment onthe performance of

their algorithm with respect to revenue or compare it acrossdifferent heuristics.

Much research has been devoted in the field of stochastic programming to solve

multi-stage recourse problems, and Birge (1997)[3] gives asummary of formulations

and solution techniques. He gives a general model of themultistage stochastic linear

programming with recourse. This formulation shares some characteristics with the

problem at hand, since the inventory of ads available changes from one break to the next

based on the realization of break size. Birge goes on to describe solution procedures

such as extreme-point methods, interior point methods and column splitting. However,

the challenges we face are different as our problem is an integer programming problem,

while considerations of integrality are not touched upon.

Techniques for solving Stochastic Integer Programs are available in Birge and Lou-

veaux (1997) [4]. The modified L-Shaped method suggested by them integratesbranch

and bound with the standard L-shaped method, thus an extra step is added where in-

tegrality constraints are checked for every feasibility cut introduced as part of the L-

Shaped method. However they also state that “loosely stated, for this class of prob-

lems, is very unlikely that an algorithm will be found that would solve the problem

in a number of operations polynomial in the problem data... If the second stage of a

stochastic problem corresponds to an NP-hard problem, it ispointless to design an ex-

act method that would require the solution of the second stage for each realization of

the random variable”. Thus, it warrants a study of heuristics or alternate algorithms

that can actually run in polynomial time - even if their solutions are global sub-optimal

- that can improve on the performance of schedules created manually. More recently,

Haneveld and Van der Vlerk(1999) [18] survey structural properties of and algorithms

for stochastic integer programming models, mainly considering linear two stage mod-

els with mixed integer recourse (and their multi-stage extensions). However, they also

observe that “special purpose algorithms will turn out to benecessary to obtain good

computational results for many real-life applications.” Sen (2005) [24] studies algo-

rithms for both two-stage as well as multi-stage stochasticmixed-integer programs. He
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presents stage wise (resource directive) decomposition methods for two-stage models,

and scenario (price directive) decomposition methods for multi-stage models. He also

studies a variety of structures ranging from models that allow randomness in all data

elements, to those that allow only specific elements to be influenced by randomness.

He discussesbranch and price andLagrangian relaxation for multi-stage SMIP, but

states that stage wise decomposition algorithms for the twostage case but states that

scalability of the stage wise decomposition to multi-stagescenarios is suspect.

The literature survey on integer stochastic programming with recourse conveys that

a specialized algorithm is in order for us to solve the multistage stochastic integer pro-

gram we have in hand.

2.4 Revenue Management in Media Applications

Literature for revenue management for advertising in TV broadcasting has looked at

the joint order acceptance and scheduling problem with deterministic break lengths.

For example, Kimms and Muller-Bungart(2007)[17] formulate an integer program that

maximizes the broadcaster’s revenue, while taking into account non-conflicting product

constraints and specific scheduling requests. The authors also propose several heuristics

and conduct extensive numerical analyses that compare performance across the differ-

ent solution methods. Bollapragada and Garbiras(2003)[5]also discuss ad scheduling

but assume a deterministic audience distribution and givenclient preferences. They

automate the commercial scheduling process while generating near optimal schedules

to meet constraints (such as product conflict requirements and position percentage),

and have implemented it in NBC. Zhang(2006)[30] uses a hierarchical structure using

a model that uses a two step hierarchical approach, where winners (advertisers) are

selected first and then slots are assigned to selected commercials.

There has also been work done in the area of slot allocation and contract selection

for deciding on the inventory of ads a network has at the time of broadcasting. Araman

and Popescu(2007) [1] develop a model for allocating advertising slots between up front

and scatter markets under audience uncertainty in up front and operational planning
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decisions. Kimms and Muller Bungart(2007) [17] discuss simultaneous optimization

of optimal contract selection and ad scheduling. They provide heuristics for optimal

ad scheduling based on contract constraints (such as at which position in the break an

ad can be shown, etc.) Our focus in this dissertation, however, will be on the optimal

selection of ads in a given break and not on contract selection.

Finally, Degraeve and DeReyck(2003)[8] discuss broadcastad scheduling using

SMS. Their model uses a linear decomposition of three schedules that are prepared be-

fore the broadcast begins, given a limited capacity of broadcast time slots, maximizing

customer response and revenues from retailers paying for each broadcast. The problem

we analyze has different parameters from those outlined in the papers above. Tradi-

tional ad scheduling heuristics consider deterministic break sizes, and differ only in the

number and type of constraints they face. To the best of our knowledge, the problem of

scheduling ads in stochastic break sizes under similar constraints as those faced when

break sizes are deterministic has never been studied before.



Chapter 3

Optimal Policy

In this chapter, we will determine optimal selection policies that maximize expected

revenue under some simplifying assumptions. Our objectiveis to find a general set of

rules that aids ad schedulers when faced with random break lengths.

These rules are also applicable for a class of bin schedulingand cutting stock prob-

lems where bin sizes are non-deterministic and items are of known weight and value.

Previous research in this area has focused on randomness in item value and weight; our

contribution will be to add to this literature by considering randomness in bin sizes, and

extend it to cases where the number of bins is also stochastic. We will use the terms

“breaks” and “ads” throughout this document, but these can be substituted with “bins”

and “items” for the general stochastic bin scheduling problem.

We propose a dynamic programming solution methodology where the return func-

tion is a preference selection criterion and illustrate theconditions required to guarantee

optimality of the selection. We also contrast the behavior of the Optimal Policy with

that of the Greedy Policy, and draw insights and implications.

3.1 Assumptions

We consider a scenario where breaks{b1,b2, . . . ,bn} occur sequentially. The number of

breaks has an upper boundN ≥ k ≥ 1, and the capacities of the breaks follow a known

distribution, and are IID.

12



3.1 Assumptions 13

A decision has to be made as to what ads are to be put in the next available break.

For simplicity, we assume that we are always planning for break b1, and the indexn is

the number of remaining breaks expected to occur.

We assume that we only have two types of ads in the inventory: small ads of sizeS

and large ads of sizeL = 2S. This is representative of the types of ads currently used in

American television networks, where ads are usually of either 15 second or 30 second

durations.

We assume that the number of ads we have in our inventory is infinite, with pos-

sibly a fraction of those ads having a non-zero value. Further, the ads are arranged in

descending order of value.

Thus, ifS andL are the sets of small and large ads respectively, then

S= {s1,s2, . . . ,0, . . .}

L= {l1, l2, . . . ,0, . . .}

wheresi ≥ si+1 ≥ 0 andli ≥ li+1 ≥ 0 ∀i. We consider two scenarios: the size of the

current break is either known to the scheduler before he begins scheduling, or it is

unknown. For each scenario, we consider the following cases:

1. A base case, where the size of each break is limited to either S or L, and the

number of breaks is fixed and known in advance,

2. An extension where the number of breaks is bounded but not fixed,

3. An extension where break sizes are any bounded multiple ofS,

4. An extension where break sizes are any bounded multiple ofS and the number of

breaks is stochastic.

We assume that the revenue earned by each ad includes the sponsor status of an

advertiser. We do not discuss per-client service levels in this chapter, instead focusing

on service levels of large and small ads in general. We discuss per-client service levels

in Chapter 5.
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We define the Greedy Policy as follows:

Definition 3.1 (Greedy Policy). For each break, select the combination of ads that

earns the highest revenue in that break.

We also assume that ads that are not fully aired do not earn anyrevenue. Thus, by

Definition 3.1, the Greedy Policy only selects ads that can beaired completely within

the break.

3.2 Known Break Size

Our motivation to study this scenario comes from Cricket broadcasts where the on-

field director can predict the length of the current break, depending on the type of break

being taken and the state of the game. The ad schedulers then decide what ads to show

in the current break based on the advice given by the on-field director, keeping in mind

that the sizes of subsequent breaks are unknown.

This scenario could also occur in freight shipping where theshipper knows the

capacity available in the next arriving ship but not those ofsubsequent ships, and has

to build an appropriate consignment given that an certain number of ships are expected

to follow.

Although the size of the current break is known, the scheduler should look ahead to

decide his selection, so that revenue earned over allk breaks is maximized. The Greedy

Policy is not globally optimal because it fails to consider the subsequent breaks and the

stochasticity in their sizes.

We now look at the four cases mentioned in section 3.1, and discuss Optimal Policy

for each.

3.2.1 Base Case

We assume that breaks are either of sizeS or of sizeL = 2S, and there is no uncertainty

about the number of breaks remaining. Breaks of sizeS arrive with probabilityp and

breaks of sizeL arrive with probability 1− p.
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One break

Only one ad of sizeS can be scheduled in a small break. Thus, ifb1 = S, s1 is always

packed. It is trivial to prove that this is the case irrespective of the number of breaks

left, hence we will not discuss selection policy when the current break size isS in

subsequent sections.

In a large break, however, one ad of sizeL or two ads of sizeS can be aired. Selec-

tion for a large break whenk = 1 reduces to a Greedy Policy. The scheduler chooses

between the more profitable of(s1,s2) andl1. We state the following lemma without

proof:

Lemma 3.1. When k = 1, and b1 = L, the optimal policy is to:

1. select l1 if l1 ≥ s1+ s2

2. select (s1,s2) if s1+ s2 > l1

Two breaks

b1 b2 Optimal selection

S S s1, s2

S L
s1,s2+ s3 if s2+ s3 ≥ l1
s1, l1 otherwise

L S
s1+ s2,s3 if s1+ s2 ≥ l1
l1,s1 otherwise

L L

s1+ s2,s3+ s4 if s3+ s4 ≥ l1
s1+ s2, l1 if s1+ s2 ≥ l1 > s3+ s4
l1,s1+ s2 if l1 > s1+ s2 ≥ l2
l1, l2 otherwise

Table 3.1: Possible selection options fork = 2

For k = 2, we can write an exhaustive list of all the possible cases. These are listed

out in Table 3.1 From the table, we see that whenb1 = L, the scheduler would choose

(s1,s2) if:

(s1+ s2)+ ps3+(1− p)max{l1,s3+ s4} ≥ l1+ ps1+(1− p)max{l2, s1+ s2} (3.1)
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We use the above equation to prove the optimal policy.

Lemma 3.2. When k = 2, and b1 = L, the optimal policy is to:

1. select l1 if l1 ≥ s2+ s3

2. select (s1,s2) if l1 < s2+ s3

Proof. Case 1:

Let l1 ≥ s2+ s3. Let Rl andRs be the revenues earned by selectingl1 first ands1+ s2

first respectively. From equation 3.1, we can write:

Rl −Rs

= [l1+ ps1+(1− p)max{l2, s1+ s2}]

− [(s1+ s2)+ ps3+(1− p)max{l1,s3+ s4}]

≥ [l1+ ps1+(1− p)(s1+ s2)]− [(s1+ s2)+ ps3+(1− p)l1]

(∵ l1 ≥ s2+ s3 ≥ s3+ s4)

≥ p(l1− (s2+ s3))

≥ 0 (∵ l1 ≥ s2+ s3)

Therefore, whenl1 ≥ s2+ s3, Rl ≥ Rs, so l1 is packed first. Similarly, we can prove

Case 2by showing thatRs −Rl ≥ 0 whenl1 < s2+ s3.

While the Greedy Policy comparesl1 and s1 + s2, Lemma 3.2 comparesl1 and

s2+ s3, setting a lower threshold forl1 to be optimal, and improving its chances of

being selected.

If b2 = L andCase 1applies, then the Optimal Policy selectss1+ s2 for b2, (from

Lemma 3.1), while the Greedy Policy selectsl1, and both policies earn equally.

Consider, however, the case whenb2= S. The Greedy Policy then earnss1+s2+s3.

The Optimal Policy, however, earnsl1+ s1 which is more than the revenue earned by

the Greedy Policy, sincel1 ≥ s2+ s3.
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Whenl1 < s2+ s3, and we schedulel1 in b1, then we are forced to schedules1 in b2

whenb2 = S, earningl1+ s1. However, we know thats1+ s2+ s3 > l1+ s1, therefore it

is sub-optimal to schedulel1 in b1. Thus, the condition inCase 1describes the optimal

threshold forl1 to be an attractive candidate forb1.

We next take a look at the multiple break case.

Multiple breaks

When the number of breaks remaining is greater than two, we see that the policy out-

lined in Lemma 3.2 extends to look ahead toall the remaining breaks.

Theorem 3.1.When k = n, and b1 = L, the optimal policy is to:

1. select l1 if l1 ≥ sn + sn+1

2. select (s1,s2) if l1 < sn + sn+1

Proof. Proof is in Appendix A.

Consider the situation where all breaks subsequent tob1 are of sizeS. If we

scheduled(s1,s2) in b1, we would have scheduled ads(s1,s2, . . . ,sn,sn+1) at the end of

the planning period. Therefore, we get a higher revenue by selecting(l1,s1,s2, . . . ,sn−1),

sincel1 ≥ sn + sn+1.

It is trivial to see that if one or more large breaks arrive instead, the Optimal Policy

would earn at least as much as the Greedy.

As the number of breaks remaining increases, the threshold above which it becomes

optimal to selectl1 decreases, and selectingl1 becomes more attractive. Service levels

of large ads, therefore, are higher with the Optimal Policy than with the Greedy Policy

when breaks of sizeL occur and values of large ads fall in the range(sn+sn+1, s1+s2).

Service levels of small ads are higher with the Greedy Policythan with the Optimal

Policy, since the Greedy Policy has a higher threshold for scheduling large ads, and is

more likely to schedule small ads for the large breaks as well.
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In extreme cases, the Greedy Policy can scheduleall small ads in the long breaks

and be left with small ads of value zero, losing the opportunity to earn from small

breaks.

3.2.2 Stochastic Number of Breaks

In this section, we consider a scenario where the number of breaks remaining has an

upper bound, but is not fixed. To model this scenario, we assume thatall breaks arrive,

but that some breaks have size zero. We assign probabilitiesp0 that a break arrives

with size zero,p1 that the break has sizeS and p2 that the break has sizeL, where

p0+ p1+ p2 = 1.

The motivation to model this scenario comes from cases wherebroadcasting net-

works cannot predict how many breaks they can take in the game(but know the max-

imum possible number of breaks possible). In cricket, for instance, a break is taken

every time a wicket falls. The maximum number of wickets thatcan fall in an innings

is ten, however, the actual number of wickets that fall in each innings may be lower.

This scenario can occur in other situations as well, for instance in freight shipping,

where ships can arrive but have no space for accommodating the consignment to be

shipped.

We study the decisions of the scheduler when the number of breaks remaining are

one and two, then use induction to find the optimal policy for the general case.

One break

Selecting ads to be scheduled for one break of known length istrivial, and exactly

the same as outlined in Lemma 3.1. The introduction of breaksof size zero does not

affect ad selection because we already know the size of the (one) break that has to be

scheduled. As before, if the break is of sizeS, we schedules1, and if it isL, we choose

the larger ofl1 and(s1+ s2). If it is of size zero, we schedule nothing.
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Two breaks

When there are two breaks in the planning period, the OptimalPolicy must look ahead

to b2 to decide on the optimal selection forb1. The second break could be of size

zero, which would make the two break case the same as the one break case. Therefore,

with probability p0, the greater ofl1 and(s1+ s2) should be selected. However, with

probabilityp1+ p2, b2 could be non-zero, and Lemma 3.2 applies. We state the Optimal

Policy for two breaks formally below.

Lemma 3.3. When k = 2, and b1 = L, the optimal policy when p0 ≥ 0 is to:

1. select l1 if (p0+ p1)l1 ≥ p0(s1+ s2)+ p1(s2+ s3)

2. select (s1,s2) otherwise

Proof. Case 1:

Let (p0+ p1)l1 ≥ p0(s1+s2)+ p1(s2+s3), and letRl andRs be the revenues earned by

selectingl1 first ands1+ s2 first respectively. Then:

Rl −Rs = [l1+ p00+ p1s1+ p2max{l2, s1+ s2}]

− [(s1+ s2)+ p00+ p1s3+ p2max{l1,s3+ s4}]

However,

(p0+ p1)l1 ≥ p0(s1+ s2)+ p1(s2+ s3)

=⇒ (p0+ p1)l1 ≥ p0(s3+ s4)+ p1(s3+ s4)

=⇒ l1 ≥ (s3+ s4) assumingp0+ p1 > 0

We assume thatp0+ p1> 0, otherwise we would have the degenerate case wherep2= 1
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and all breaks would be of the same sizeL. Substituting forRl −Rs, we get:

Rl −Rs ≥ [l1+ p1s1+ p2(s1+ s2)]− [(s1+ s2)+ p1s3+ p2l1]

≥ (p0+ p1)l1− p0(s1+ s2)− p1(s2+ s3)

≥ 0 (∵ (p0+ p1)l1 ≥ p0(s1+ s2)+ p1(s2+ s3))

Therefore, when(p0 + p1)l1 ≥ p0(s1+ s2) + p1(s2 + s3), Rl ≥ Rs, so l1 is selected.

Similarly, we can proveCase 2by showing thatRs−Rl ≥ 0 when(p0+ p1)l1< p0(s1+

s2)+ p1(s2+ s3).

If b2 = 0, we comparel1 and(s1+ s2), since nothing can be scheduled intob2. In

other words, selectl1 if:

p0l1 ≥ p0(s1+ s2) (3.2)

If b2 = S, selectingl1 in b1 earnsl1+ s1 and selecting(s1,s2) in b1 earns(s1+ s2+

s3), so we would selectl1 if:

p1(l1+ s1)≥ p1(s1+ s2+ s3)

=⇒ p1l1 ≥ p1(s2+ s3) (3.3)

Finally, whenb2 = L, the Optimal Policy selects(s1,s2) in b2 and the Greedy Policy

selectsl1 in b2, therefore both policies earn equally. Therefore, Lemma 3.3 checks the

expected value earned by selectingl1 against the expected value earned by selecting

(s1,s2) whenb2 is not of sizeL. Combining Equation 3.2 and Equation 3.3, we get the

condition described inCase 1.

We next look at the multiple break case and use induction to prove the Optimal

Policy.
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Multiple Breaks

When there are multiple breaks remaining, we look ahead to all remaining breaks to

form the rule. We state the Optimal Policy formally as follows.

Theorem 3.2.When k = n, p0 ≥ 0, and b1 = L, the optimal policy is to:

1. select l1 if (p0+ p1)
n−1l1 ≥

n−1

∑
i=0

[(

n−1
i

)

p(n−1)−i
0 pi

1 (si+1+ si+2)

]

2. select (s1,s2) otherwise

Proof. Proof is in Appendix A.

The intuition behind Theorem 3.2 is similar to that of Lemma 3.3. If a break of

sizeL were to occur subsequent to the current break, both the Greedy Policy and the

Optimal Policy would earn equal revenues.

The Optimal Policy estimates the value of schedulingl1 assuming that none of the

subsequent breaks are of sizeL. The reasoning is similar to the one used in Equation 3.2

and Equation 3.3, except in the multiple break case where thenumber of breaks is

n− 1, i breaks of sizeS andn− 1− i breaks of size zero can occur with probability
(n−1

i

)

p(n−1)−i
0 pi

1. The rest of the reasoning follows.

The threshold above whichl1 is an attractive ad to be scheduled has increased due

to the introduction ofp0. For instance, in the base case, forl1 to be optimal when two

breaks remained,l1 had to be greater thans2+ s3 . However,l1 now has to be greater

than
1

(p0+ p1)
(p0(s1+ s2)+ p1(s2+ s3))≥ s2+ s3

The Optimal Policy weighs the advantages of scheduling the large ad against the

probability that many of the subsequent breaks could be of size zero and hence earn

nothing. It does this by adjusting the threshold for scheduling l1 based on the break

size distribution.

The Optimal Policy helps networks decide on their preferredmix of ads based on

the distribution of break sizes. When there is randomness inthe number of breaks,
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networks require a higher value for large ads to be shown, compared to the case where

the number of breaks is fixed.

3.2.3 Multiple Break Sizes

In this section, we study the Optimal Policy when break sizesare distributed between

[S,2S, . . . ,MS]. In addition, the size of the current break is assumed to bemS, where

m ≤ M. As before, we study Optimal Policy when the number of breaksremaining are

one and two, and use induction to prove the Optimal Policy forthe multiple break case.

One Break

For the one break case, we choose a set of ads that give us the best possible revenue

within the known break sizemS. This corresponds exactly with the Greedy Policy.

Lemma 3.4. If b1=mS and k =1, then the Optimal Policy is to select (l1, . . . , lλ ,s1, . . . ,sm−2λ ),

where λ is the largest index such that:

• lλ ≥ sm−2λ+1+ sm−2λ+2

• 2λ ≤ m

Proof. Let Ô = (l1, . . . , lλ ,s1, . . . ,sm−2λ ) be the set that we want to prove is optimal. To

prove optimality ofÔ, we have to prove that any change toÔ will cause the revenue to

decrease.

We note that if∃λ : lλ ∈ Ô, then ∀i ≤ λ , li ∈ Ô, since

li ≥ lλ ≥ sm−2λ+1+ sm−2λ+2 ≥ sm−2i+1+ sm−2i+2 and 2i ≤ 2λ ≤ m

Now consider the case where we do not select someli ∈ [l1, lλ ]. Then, we can either

include(sm−2λ+1,sm−2λ+2), or we can includelλ+1.

Selecting(sm−2λ+1,sm−2λ+2) is inferior becauseli ≥ lλ ≥ (sm−2λ+1+ sm−2λ+2),

therefore our revenue will decrease. Similarly,li ≥ lλ+1, so substitutingli with lλ+1

will also decrease our revenue. It is trivial to prove that changing anysi ∈ [s1,sm−2λ ]
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with sm−2λ+1 will similarly cause a drop in revenue. ThereforeÔ is the optimal set of

ads to be scheduled whenb = 1.

The proof for Lemma 3.4 shows that everyli ∈ [l1, lλ ] should be scheduled for

maximum revenue. In general, it is sufficient to prove thatlλ (as defined in Lemma 3.4)

must be scheduled; since everyli ≥ lλ belongs to the optimal set, optimality of selecting

lλ implies optimality of selectingli.

We now look at the two break case.

Two Breaks

The two breaks case follows Lemma 3.2; we now check if the large adlλ earns more

than the sum of the small ads at indexesm− 2λ + 2 andm− 2λ + 3. We state the

Lemma formally below.

Lemma 3.5. If b1=mS and k =2, then the Optimal Policy is to select (l1, . . . , lλ ,s1, . . . ,sm−2λ ),

where λ is the largest index such that:

• lλ ≥ sm−2λ+2+ sm−2λ+3

• 2λ ≤ m

Proof. As before, letÔ = (l1, . . . , lλ ,s1, . . . ,sm−2λ ).

Let:

Ol = (l1, . . . , lλ , lλ+1,s1, . . . ,sm−2λ−2)

Os = (l1, . . . , lλ−1,s1, . . . ,sm−2λ+2)

Let Ro, be the revenue earned by selecting the ads inÔ, and letRl andRs be the

revenues earned by selectingOl andOs respectively.

We have to prove that:

1. Ro ≥ Rl and

2. Ro ≥ Rs
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It is trivial to prove that iflλ+1 ≥ sm−2λ + sm−2λ+1 and 2(λ +1) > m, then substi-

tuting li ≥ lλ+1 from Ô and introducinglλ+1 is sub optimal (for the same reason that

we packl1 in a break of lengthL, not l2).

We useVi(l,s) to denote expected revenue earned from scheduling ads for breaki

onwards, and the indexes of the first large ad and the first small ad in our inventory are

l ands respectively. Then,

Ro =
λ

∑
i=1

li +
m−2λ

∑
j=1

s j +V2(λ +1,m−2λ +1) (3.4)

Rl =
λ+1

∑
i=1

li +
m−2λ−2

∑
j=1

s j +V2(λ +2,m−2λ −1) (3.5)

Rs =
λ−1

∑
i=1

li +
m−2λ+2

∑
j=1

s j +V2(λ ,m−2λ +3) (3.6)

Case 1:

Ro −Rl =
λ

∑
i=1

li +
m−2λ

∑
j=1

s j +V2(λ +1,m−2λ +1)

−
[

λ+1

∑
i=1

li +
m−2λ−2

∑
j=1

s j +V2(λ +2,m−2λ −1)

]

=−lλ+1+ sm−2λ−1+ sm−2λ

+V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

If lλ+1 < sm−2λ + sm−2λ+1, thenlλ+2 < sm−2λ−2+ sm−2λ−1. Then by induction, if

b2 ≥ 2S, V2(λ +2,m−2λ −1) would earn(sm−2λ−1+ sm−2λ ) followed by the sum of

values of ads selected from the set{lλ+2, . . . ,sm−2λ+1, . . .}. For a break of correspond-

ing size,V2(λ +1,m−2λ +1) would earnat least lλ+1 followed by the sum of values
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of ads from the set{lλ+2, . . . ,sm−2λ+1, . . .}. Thus, we can write:

V1(λ +1,m−2λ +1)−V1(λ +2,m−2λ −1)

≥ p1(sm−2λ+1− sm−2λ−1) (3.7)

+
M

∑
r=2

pr (lλ+1− [sm−2λ−1+ sm−2λ ])

Substituting forRo −Rl, we get:

Ro −Rl ≥−lλ+1+ sm−2λ−1+ sm−2λ

+ p1(sm−2λ+1− sm−2λ−1)

+
M

∑
r=2

pr (lλ+1− [sm−2λ−1+ sm−2λ ])

≥ p1 [−lλ+1+ sm−2λ−1+ sm−2λ + sm−2λ+1− sm−2λ−1]

≥ p1 [−lλ+1+ sm−2λ + sm−2λ+1]

> 0 (∵ lλ+1 < sm−2λ + sm−2λ+1)

Case 2:Ro −Rs ≥ 0 can be similarly proved:

Ro −Rs =
λ

∑
i=1

li +
m−2λ

∑
j=1

s j +V1(λ +1,m−2λ +1)

−
[

λ−1

∑
i=1

li +
m−2λ+2

∑
j=1

s j +V1(λ ,m−2λ +3)

]

= lλ − (sm−2λ+1+ sm−2λ+2)

+V1(λ +1,m−2λ +1)−V1(λ ,m−2λ +3)

Using similar arguments as before,

V1(λ +1,m−2λ +1)−V1(λ ,m−2λ +3)

≥ p1(sm−2λ+1− sm−2λ+3)

+
M

∑
r=2

pr (−lλ +[sm−2λ+1+ sm−2λ+2])
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After substituting forRo −Rs, we get:

Ro −Rs ≥ lλ − (sm−2λ+1+ sm−2λ+2)

+ p1(sm−2λ+1− sm−2λ+3)

+
M

∑
r=2

pr (−lλ +[sm−2λ+1+ sm−2λ+2])

≥ p1(lλ − (sm−2λ+2+ sm−2λ+3))

≥ 0 (∵ lλ ≥ sm−2λ+2+ sm−2λ+3)

By setting the threshold on theleast valuable large ad that can be scheduled, the

scheduler only needs to check backwards froml⌊m/2⌋ for the least valuable large ad that

satisfiesCase 1. When the appropriate ad is found, all large ads that have greater value

are scheduled, and the remaining time in the break is filled with the most valuable small

ads.

Multiple Breaks

The multiple breaks case uses induction, and the intuition behind the proof is similar to

that used in Lemma 3.5. We state the Theorem formally below.

Theorem 3.3.If b1=mS and k = n, then the Optimal Policy is to select (l1, . . . , lλ ,s1, . . . ,sm−2λ ),

where:

• lλ ≥ sm−2λ+n + sm−2λ+n+1

• 2λ ≤ m

Proof. Proof is given in Appendix A.

Consider the case wherek = 1, and the break of sizemS is split into⌊m
2 ⌋ breaks of

size 2S (and an additional break of sizeS, if m is an odd number). Then by Theorem 3.1,

l1 would be compared to(sm/2+ sm/2+1), and if it is lower, to(sm/2+1+ sm/2+2), and

so on until eitherl1 is greater than some combination ofsi+si+1, wherei > m/2, or the
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large breaks are exhausted. Ifl1 is not scheduled in the first⌊m
2 ⌋−1 breaks, thenl1 will

finally be compared to(sm−1+ sm), which corresponds to(sm−2λ+1+ sm−2λ+2) where

λ = 1.

To see why this is true for anylλ whereλ > 1, assume that it is true forl1, . . . , lλ−1.

If lλ−1 has been selected for airing, thenlλ−1 ≥ (sm−2λ+3+sm−2λ+4). If lλ−1 is sched-

uled for thelast large break, then ads(sm−2λ+3,sm−2λ+4) are not scheduled, and the

last small ads to be scheduled are(sm−2λ+1,sm−2λ+2). For lλ to be an attractive candi-

date to be scheduled, therefore, it has to be more valuable than the two least valuable

small ads whichhave been selected:(sm−2λ+1,sm−2λ+2).

Whenk > 1, the index of small ads thatli has to be compared against increases

by exactlyk, because the optimal policy assumes the worst case where every break

subsequent to the current one is small, similar to the intuition in Section 3.2.1.

From a managerial perspective, the Optimal Policy reduces complexity; the Greedy

Policy would have to generate every combination of ads that fits the break and select

the most profitable. Thus, despite the added complexity of having breaks of multiple

sizes, the Optimal Policy scales well.

3.2.4 Stochastic Number of Breaks of Multiple Sizes

In this section, we study the Optimal Policy when break sizesare distributed between

[0,S,2S, . . .,MS]. The size of the current break is assumed to bemS, wherem ≤ M.

As we did in Section 3.2.2, we allow breaks of size zero to model the case where the

number of breaks is stochastic. We use probabilitypi to denote the probability of a

break of sizei occurring, wherei ∈ [0,M] and
M

∑
i=0

pi = 1.

We study the Optimal Policy when the number of breaks remaining are one and

two, and use induction to prove the Optimal Policy for the multiple break case.

One Break

When the current break is the only break to be scheduled, and the size of the break is

known, we use the same policy as outlined in Lemma 3.4. We reiterate the lemma here
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without proof.

Lemma 3.6. If b1 = mS, p0 ≥ 0, and k = 1, then the Optimal Policy is to select

(l1, . . . , lλ ,s1, . . . ,sm−2λ ), where λ is the largest index such that 2λ ≤ m and:

lλ ≥ sm−2λ+1+ sm−2λ+2

Two Breaks

We know that Lemma 3.6 applies forb2 when it is the only break remaining. We will

use induction to prove optimality when two breaks remain.

As we did for Lemma 3.5, we prove that it is optimal to selectlλ when it satisfies

the rule for optimality, from which we can infer optimality of selecting allli ≥ lλ .

Lemma 3.7. If b1 = mS, p0 ≥ 0, and k = 2, then the Optimal Policy is to select

(l1, . . . , lλ ,s1, . . . ,sm−2λ ), where λ is the largest index such that 2λ ≤ m and:

(p0+ p1)lλ ≥ p0(sm−2λ+1+ sm−2λ+2)+ p1(sm−2λ+2+ sm−2λ+3)

Proof. Let:

Ô = (l1, . . . , lλ ,s1, . . . ,sm−2λ )

Ol = (l1, . . . , lλ , lλ+1,s1, . . . ,sm−2λ−2)

Os = (l1, . . . , lλ−1,s1, . . . ,sm−2λ+2)

Let Ro, Rl, andRs denote the revenues earned by selectingÔ, Ol andOs respectively.

We have to prove that

1. Ro ≥ Rl

2. Ro ≥ Rs

We again useVi(l,s) to denote expected revenue earned when selecting ads for break

i onwards, when the indexes of the first large ad and the first small ad are l and s

respectively.
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Case 1:By definition:

(p0+ p1)lλ ≥ p0(sm−2λ+1+ sm−2λ+2)+ p1(sm−2λ+2+ sm−2λ+3) (3.8)

and(p0+ p1)lλ+1 < p0(sm−2λ−1+ sm−2λ )+ p1(sm−2λ + sm−2λ+1) (3.9)

Then,

Ro −Rl =
λ

∑
i=1

li +
m−2λ

∑
j=1

s j +V2(λ +1,m−2λ +1)

−
[

λ+1

∑
i=1

li +
m−2λ−2

∑
j=1

s j +V2(λ +2,m−2λ −1)

]

=− lλ+1+ sm−2λ−1+ sm−2λ

+V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

From eq. 3.9, we have:

(p0+ p1)lλ+1 < p0(sm−2λ−1+ sm−2λ )+ p1(sm−2λ + sm−2λ+1)

< p0(sm−2λ−2+ sm−2λ−1)+ p1(sm−2λ−1+ sm−2λ )

=⇒ (p0+ p1)lλ+2 < p0(sm−2λ−2+ sm−2λ−1)+ p1(sm−2λ−1+ sm−2λ )

(sincelλ+2 ≤ lλ+1)

Then by induction, forb2 ≥ 2S, V2(λ +2,m−2λ −1) earns us(sm−2λ−1+ sm−2λ )

followed by the sum of values of ads selected from the set{lλ+2, . . . ,sm−2λ+1, . . .}. On

the other hand, withV2(λ +1,m−2λ +1) we earnat least lλ+1 followed by the sum

of values of ads from the set{lλ+2, . . . ,sm−2λ+1, . . .}. Thus, we can write:

V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

≥ p1(sm−2λ+1− sm−2λ−1)

+
M

∑
i=2

pi (lλ+1− [sm−2λ−1+ sm−2λ ])
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Substituting forRo −Rl, we get:

Ro −Rl ≥−lλ+1+ sm−2λ−1+ sm−2λ

+ p1(sm−2λ+1− sm−2λ−1)

+
M

∑
i=2

pi (lλ+1− [sm−2λ−1+ sm−2λ ])

≥ (p0+ p1) [−lλ+1+ sm−2λ−1+ sm−2λ ]+ p1 [sm−2λ+1− sm−2λ−1]

≥−(p0+ p1)lλ+1+ p0(sm−2λ−1+ sm−2λ )+ p1(sm−2λ + sm−2λ+1)

> 0 (from eq. 3.9)

Case 2Ro −Rs ≥ 0 can be similarly proved using eq. 3.8.

It can be seen that the intuition behind Lemma 3.7 is similar to our discussion in

Section 3.2.3: the revenue earned by the Optimal Policy is equal to the case where we

have⌊m/2⌋ breaks of size 2S (and one break of sizeS, if m is an odd number). Since

p0 ≥ 0, Theorem 3.2 would apply for each break of size 2S.

The intuition behind the probabilities follows the discussion in Section 3.2.2. The

Optimal Policy adjusts the threshold above which large ads are attractive based on the

break size distribution, and these thresholds increase asp0 increases and other proba-

bilities decrease.

Thus the case of multiple break sizes with stochastic numberof breaks can be seen

as a combination of Sections 3.2.2 and 3.2.3.

Multiple Breaks

The multiple breaks case uses induction, and the intuition behind the proof is similar to

that of Lemma 3.7. We state the Theorem formally below.

Theorem 3.4. If b1 = mS, p0 ≥ 0, and k = n, then the Optimal Policy is to select

(l1, . . . , lλ ,s1, . . . ,sm−2λ ), where λ is the largest index such that 2λ ≤ m and:

(p0+ p1)
n−1lλ ≥

n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i+1+ sm−2λ+i+2)

]
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Proof. Proof is given in Appendix A

As discussed in section 3.2.2, the threshold has once again increased forl1; this

is because of the introduction of breaks of size zero. Our insights from Section 3.2.2

still apply. The Optimal Policy sets a threshold, based on the break size distribution,

that each large ad should exceed to be scheduled. As we have studied, the higher the

probability of breaks of size zero, the higher the value thatlarge ads should have to

make them attractive candidates for scheduling, given the same set of small ads.

In this section, we have studied the Optimal Policy for scheduling ads in breaks

of stochastic sizes, when the size of the break for which we are currently scheduling

is known but those of subsequent breaks is not. We conclude with the most general

case, Theorem 3.4 where settingM andp0 to appropriate values will give us the rules

described in Theorem 3.1, Theorem 3.2 and Theorem 3.3. Thus we have described the

rule for the full set of scenarios when the scheduler is awareof the size of the break to

be scheduled next.

In the next section, we study the Optimal Policy for cases when the scheduler does

not know the size of any of the breaks, but knows only the distribution of break sizes

based on which he can create a sequence of ads to be scheduled.

3.3 Unknown Break Size

In this section we study scenarios where we do not know the size of any of the breaks

at the time of scheduling. Our motivation arises from cases where the break begins

without the on-field director being able to advice the schedulers on what the break

length is expected to be, and an ad schedule has to be made based only on the break

length distribution. We assume that break sizes are IID.

As before, we discuss Optimal Policy for the four cases mentioned in section 3.1.
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3.3.1 Base Case

In the Base Case, breaks can be of two sizes, small (S) and large (L=2S). A small break

occurs with probabilityp, and a large break occurs with probability 1− p. We study

our selection options when a choice has to be made between selecting either(s1,s2) or

l1 before the break size is observed.

One break

When scheduling for one break unknown size, we choose the maximum of the expected

revenues from selecting eitherl1 or (s1,s2). If a small break occurs, selecting(s1,s2)

earnss1, since onlys1 can be completely aired. Selectingl1 earns nothing, since it

cannot be fully aired. If a large break occurs, selecting(s1,s2) andl1 earns1+ s2 and

l1 respectively.

Therefore the expected revenue from selecting(s1,s2) is ps1+(1− p)(s1+s2), and

the expected revenue from selectingl1 is (1− p)l1.

We state the following lemma without proof:

Lemma 3.8. If k = 1, and the break size is unknown, the Optimal Policy is to:

1. select l1 if (1− p)l1 ≥ ps1+(1− p)(s1+ s2)

2. select (s1,s2) otherwise

We next look at the Optimal Policy when two breaks remain.

Two breaks

Unlike Lemma 3.2, where the Optimal Policy comparedl1 andsn + sn+1, the absence

of ex-ante information forces us to choose myopically between the expected revenues

earned by selectingl1 and(s1,s2) irrespective of the number of breaks remaining. We

state the optimal policy formally as follows.

Lemma 3.9. When k = 2, and the break size is unknown, the optimal policy is to:

1. select l1 if (1− p)l1 ≥ ps1+(1− p)(s1+ s2)



3.3 Unknown Break Size 33

2. select (s1,s2) if (1− p)l1 < ps2+(1− p)(s2+ s3)

3. select either l1 or (s1,s2) otherwise

Proof. From Lemma 3.8, the rule holds good for one break. LetRl andRs denote the

expected revenues from schedulingl1 and(s1,s2) respectively. LetVi(l,s) denote the

revenue earned from breaki onwards, when the indexes of the first large ad and the first

small ad arel ands respectively.

Case 1:When(1− p)l1 ≥ ps1+(1− p)(s1+ s2),

Rl −Rs = p(0+V2(1,1))+(1− p)(l1+V2(2,1))

− p(s1+V2(1,2))− (1− p)(s1+ s2+V2(1,3))

= (1− p)l1− ps1− (1− p)(s1+ s2)

+ p[V2(1,1)−V2(1,2)]+(1− p)[V2(2,1)−V2(1,3)]

≥ (1− p)l1− ps1− (1− p)(s1+ s2)

+ p[(1− p)l1− (1− p)l1]

+(1− p)[p(s1)+(1− p)(s1+ s2)− (1− p)l1]

(∵V2(2,1)≥ p(s1)+(1− p)(s1+ s2))

≥ p[(1− p)l1− ps1− (1− p)(s1+ s2)]

≥ 0

Rl −Rs ≥ 0 =⇒ it is optimal to selectl1 first.

Case 2:When(1− p)l1 < ps2+(1− p)(s2+ s3)

Rs −Rl = ps1+(1− p)(s1+ s2)− (1− p)l1

+ p[V2(1,2)−V2(1,1)]+(1− p)[V2(1,3)−V2(2,1)]

≥ ps1+(1− p)(s1+ s2)− (1− p)l1+ p[(1− p)l1− ps1− (1− p)(s1+ s2)]

+(1− p)[(1− p)(l1)− ps1− (1− p)(s1+ s2)]
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(∵V2(1,2) andV2(1,3)≥ (1− p)(l1))

≥ (1− p− (1− p))[ps1+(1− p)(s1+ s2)− (1− p)l1]

≥ 0

Rs −Rl ≥ 0 =⇒ it is optimal to select(s1,s2) first.

Case 3:Whenps1+(1− p)(s1+ s2)> (1− p)l1 ≥ ps2+(1− p)(s2+ s3),

Rl −Rs = (1− p)l1− ps1− (1− p)(s1+ s2)

+ p[V2(1,1)−V2(1,2)]+(1− p)[V2(2,1)−V2(1,3)]

= (1− p)l1− ps1− (1− p)(s1+ s2)

+ p
[

ps1+(1− p)(s1+ s2)− (1− p)l1
]

+(1− p)
[

ps1+(1− p)(s1+ s2)− (1− p)l1
]

= 0

Rl = Rs =⇒ we are indifferent between selectingl1and(s1,s2).

The Optimal Policy shows that there is a region where selectingl1 is strongly prefer-

able, a region where selecting(s1,s2) is strongly preferable, and a region where we are

indifferent between selectingl1 and(s1,s2). We shall look into the multiple break case

before discussing the implications of such a partition.

Multiple breaks

Theorem 3.5.When k = n, and the break size is unknown, the Optimal Policy is to:

1. select l1 if (1− p)l1 ≥ ps1+(1− p)(s1+ s2)

2. select (s1,s2) if (1− p)l1 < psn +(1− p)(sn+ sn+1)

3. select either l1 or (s1,s2) otherwise

Proof. Proof is given in Appendix A
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Theorem 3.5 extends Lemma 3.9. There are two regions where the scheduler has a

strong preference over the possible choices, separated by aregion of indifference.

In the first region (Case 1), l1 is strongly preferable based on a myopic comparison

of the expected revenues earned from selectingl1 and(s1,s2). Sinces1 ands2 are the

most profitable small ads,l1 earns a higher expected revenue than any combination of

small ads to be selected.

The same can be said of the third region (Case 2); since expected revenue from

selectingl1 is lower than that from selecting(sn,sn+1), we select the smaller ads first.

If we are faced with a series of only small breaks, we schedule(s1, . . . ,sn) through the

match, earning more than if we had scheduledl1 first. If a large break were to arrive

subsequently, the strategy would check ifCase 1applies, earning at least as much as

the Greedy Policy.

The indifference exists because when breaks can only be of size S or L, and(1−
p)l1 ≥ sn +(1− p)sn+1, then the Optimal Policy expects to schedulel1 when(1− p)l1

is greater than some(s j +(1− p)s j+1), where j > 1, andCase 1applies.

In the worst case, suppose(1− p)l1 = sn +(1− p)sn+1, and small ads have been

scheduled for the firstn−1 breaks, which are found to be short. For thenth break, ex-

pected revenue from selectingl1 will be compared to expected revenue from scheduling

(sn,sn+1), andCase 1applies. Thereforel1 is guaranteed to be selected for some break

in the match.

Similarly, since selecting(s1,s2) earns higher expected revenue thanany large ad,

then in the worst case,l1 is repeatedly selected for the firstn−1 breaks which turn out

to be short. Then for thenth break,Case 2will apply and(s1,s2) will be selected. Thus

(s1,s2) is also guaranteed to be selected for some break in the match.

Therefore we are indifferent between selectingl1 and(s1,s2) for b1.

From a managerial perspective, the region of indifference gives the network flexi-

bility when accepting orders with client constraints at thestart of the match. Consider

a scenario where a client wishes the network to schedule a large ad when a particular

wicket falls (and breaks in the match can only be of sizeS or L). The network can

accept this scheduling constraint on a long ad as long as the expected value from airing
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the ad is higher than the expected value of airing two small ads in their inventory which

fall in thenth and(n+1)th position, wheren is the total number of breaks in the match.

It is possible, however, that the above condition is satisfied, but the ad is not the most

valuable large ad in the inventory when the break occurs. Thenetwork can still use the

Optimal Policy and the break size distribution to quote a value to the client to make the

ad a viable candidate for that break. The exact methodology is beyond the scope of our

current discussion, however pricing policies based on the Optimal Policy is an area for

future research.

3.3.2 Stochastic Number of Breaks

In this subsection we consider an extension where the numberof breaks is stochastic.

As in Section 3.2.2, we introduce a probabilityp0 of having a break of size 0, while

we assume that break could be of sizeS with probability p1, and of sizeL = 2S with

probability p2. We do not consider breaks of size greater thanL.

As before, we assume that a break of size zero might arrive at any point in the

match, and that we are always aware of the arrival of such a break, and discount the

number of breaks remaining accordingly. All other assumptions and notations as listed

in Section 3.1 still remain.

One break

With only one break possible, the scheduler chooses greedily between the expected

values of selectingl1 and(s1,s2). If the last break turns out to be of size zero, either

strategy earns zero; if it is of sizeS, we earn zero withl1 ands1 with (s1,s2); if it is of

sizeL we earnl1 ands1+ s2 respectively.

As before, we propose a lemma without proof for the one break case:

Lemma 3.10.When k = 1, p0 ≥ 0, and break sizes are unknown, the Optimal Policy is

to:

1. select l1 if p2l1 ≥ p1s1+ p2(s1+ s2)
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2. select (s1,s2) otherwise

Two breaks

For the two break case, the strategy continues to be a myopic choice between the ex-

pected revenues earned from selectingl1 and(s1,s2), despite the introduction of breaks

of size zero.

Lemma 3.11.When k = 2, p0 ≥ 0, and break sizes are unknown, the Optimal Policy is

to:

1. select l1 if p2l1 ≥ p1s1+ p2(s1+ s2)

2. select (s1,s2) otherwise

Proof. Let p2l1 = t + p1s1+ p2(s1+ s2). We useRl,Rs, andVi(l,s) as defined in the

previous subsections. From Lemma 3.10, the rule holds good for one break.

With the introduction ofp0, expected revenues earned are as follows:

Rl = (p0+ p1)V1(1,1)+ p2(l1+V1(2,1))

Rs = p0V1(1,1)+ p1(s1+V1(1,2))+ p2(s1+ s2+V1(1,3))

Case 1: When(1− p)l1 ≥ ps1+(1− p)(s1+ s2),

Rl −Rs = (p0+ p1)V1(1,1)+ p2(l1+V1(2,1))

− p0V1(1,1)− p1(s1+V1(1,2))− p2(s1+ s2+V1(1,3))

= p1(V1(1,1)− s1−V1(1,2))+ p2(l1+V1(2,1)− (s1+ s2)−V1(1,3))

= t + p1[V1(1,1)−V1(1,2)]+ p2[V1(2,1)−V1(1,3)]

≥ t + p1[p1s1+ p2(s1+ s2)− p2l1]+ p2[p1s1+ p2(s1+ s2)− p2l1]

≥ t + p1(−t)+ p2(−t)
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≥ p0t

≥ 0∵ p0 ≥ 0, t ≥ 0

Thus,Rl −Rs ≥ 0 =⇒ it is optimal to selectionl1 first.

Case 2: When(1− p)l1 < ps1+(1− p)(s1+ s2), let t + p2l1 = p1s1+ p2(s1+ s2),

wheret > 0.

Proceeding along similar lines asCase 1, we can prove thatRs −Rl ≥ p0t ≥ 0.

Case 1andCase 2correspond with the cases in Lemma 3.9. The addition ofp0

does not affect the two regions of strong preference becausethe expected revenue when

the break is of size zero is the same whether we selectionl1 or (s1,s2). Therefore, our

decision is solely based onp1 andp2, and the expected revenues earned thereby.

There is noCase 3corresponding to Lemma 3.8 becauseS andL are not the only

break sizes possible. When the expected revenue from selecting l1 is less than that

from selecting(s1,s2), Case 2applies. From the proof for Lemma 3.11, the difference

between the two expected revenues is at leastp0t, wheret ≥ 0 is the difference in

expected revenue. Sincep0 > 0, we are indifferent between schedulingl1 and(s1,s2)

only whent = 0; i.e. p2l1 = p1s1+ p2(s1+ s2).

Multiple breaks

From Lemmas 3.10 and 3.11, we can see that the myopic rule holds good when we plan

for either one break or two. In this section, we use the previous results and prove by

induction that the rule holds good for any number of breaks remaining.

Theorem 3.6.When k = n, p0 ≥ 0, and break sizes are unknown, the Optimal Policy is

to:

1. select l1 if p2l1 ≥ p1s1+ p2(s1+ s2)

2. select (s1,s2) otherwise

Proof. Proof is given in Appendix A
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Theorem 3.6 can be seen as a special case of Theorem 3.5 wherep0 > 0. As before,

we have two regions where the scheduler has strong preferences, but there is no region

of indifference (except for the point where expected revenue from selectingl1 equals

that from selecting(s1,s2)). Therefore, when the number of breaks is not fixed and

break sizes are not known in advance, the scheduler is forcedto select betweenl1 and

(s1,s2) myopically based on the expected revenues earned.

3.3.3 Multiple Break Sizes and its variants

In this section, we consider the case where breaks can be of size(S,2S,3S, ...,MS), and

the size of the break is not known in advance.

As shown in Theorem 3.5 when breaks are of sizesS or 2S, the Optimal Policy when

break sizes are unknown is based on a myopic comparison of theexpected revenues

earned. When the maximum break size is 2S, we choose betweenl1 and(s1,s2). This

policy is independent of the number of breaks remaining, since breaks are IID and break

size is unknown for each break.

When the maximum break size isMS, the Optimal Policy should provide theper-

mutation of ads to be scheduled based on the break size distribution. Consider, for

example, the case whenM = 3. Let us assume that the probability of breaks of sizes

S,2S and 3S occurring isp1,p2 andp3, wherep1+ p2+ p3 = 1. Then the ad schedules

that can be generated and the revenues earned are shown in Table 3.2.

Schedule Revenue earned
s1,s2,s3 s1+(p2+ p3)s2+ p3s3

s1, l1 s1+ p3l1
l1,s1 (p2+ p3)l1+ p3s1

Table 3.2: Revenues earned with each possible schedule

As shown, the revenue earned with each schedule is different, and the Optimal

Policy should select the schedule which generates the maximum revenue based on the

probabilitiespi and the values of the ads scheduled.

It can be shown that the number of possible combinations of ads for each value of

M is a Fibonacci sequence as shown in table 3.3.
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M Number of ad schedules
1 1
2 2
3 3
4 5
5 8
6 13
7 21
...

...

Table 3.3: Number of possible ad schedules for each value ofM

This can be explained as follows: let us assume that each break is divided into ‘slots’

of lengthS, thus whenM = n, there aren slots available to be scheduled. Letσn and

σn+1 be the number of ad schedules possible whenM = n andM = n+1 respectively.

Then for M = n + 2, an additional slot is added at the end ofn + 1 slots, and this

slot can either be programmed with an ad of sizeS or an ad of sizeL = 2S, starting

from slot n+1. If an ad of sizeS is scheduled in slotn+2, the previousn+1 slots

can be scheduled inσn+1 ways. If, however, an ad of sizeL is scheduled across slots

n+ 1 andn+2 , then the previousn slots can be scheduled inσn ways, thus giving

σn+2 = σn +σn+1.

By the well known Binet’s formula1, whenM = n, the number of possible combi-

nationsΦ(n) is

Φ(n) =
ϕn − (1−ϕ)n

√
5

=
ϕn − (−1/ϕ)n

√
5

Whereϕ = 1+
√

5
2 ≈ 1.6180339887. . .

The number of ad schedules that can be programmed increases exponentially with

the value ofM, resulting in a ’Hughes effect’, or a ’curse of dimensionality’ 2, a clas-

sical problem that arises when dealing with problems of stochastic recourse. For any

M = n, the Optimal Policy would be the maximum of the expected revenues earned

from each of theΦ(n) schedules. As discussed in Section 2.3, the problem is better

solved with specialized heuristics, rather than attempting an analytical solution for the

generaln- case.

1Theory of Binet formulas for Fibonacci and Lucas p-numbers[25]
2Dynamic programming[2]



Chapter 4

Numerical Analysis

In this chapter we perform a numerical analysis of the Optimal Policy discussed in

Chapter 3. We compare the Optimal Policy to the Greedy Policy, in order to find the

conditions under which the Optimal Policy most outperformsthe Greedy Policy. We

also study the impact of service level commitments and the impact of uncertainty on

the performance of the Optimal Policy.

4.1 Performance with deterministic number of breaks

We begin with cases where the number of breaks is fixed, and there are no breaks of

size zero. A study of how the Optimal Policy performs as parameters change will give

us an idea of how stable it is, and allow us to find conditions where it is most beneficial

to use the Optimal Policy.

We begin with listing the parameters we will use for the study, and subsequently

study the impact of various parameters on revenues and service levels.

4.1.1 Parameters

To evaluate the performance of the policies, we generate thevalues for the large and

small ads based on the parameters listed in Table 4.1.

Results were averaged over 500 runs, and at each iteration the inventory and spot

41
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values were changed. This was done to ensure that we tested the strategies across a

broad range of data sets, and that the results were representative of average scenarios.

Parameter Value

Number of breaks 50
Break size (s) 10 sec or 20 sec
Number of large ads 50
Number of small ads 100
Large ads values ($) 1000−1200
Small ads values ($) 200−1000

Table 4.1: Parameters for numerical analysis of Optimal Policy and Greedy Policy

In Table 4.1, the number of breaks, 50, is typical of the number of breaks found in

a T-20 match, where each of two innings has twenty over breaks, and ten wickets are

expected to fall during the course of the match. We assume that breaks can be of sizes

10 seconds or 20 seconds only with equal probability, hence the mean break length is

15 seconds. The range of values earned by long ads and short ads are typical of orders

received by major sports broadcasters for international T-20 tournaments, and we select

random values within these ranges.

We next look at performances of the Optimal Policy and GreedyPolicy when air

time sold (i.e., number of ads available in the inventory) varies.

4.1.2 Impact of variation in air time sold

We analyze how change in the amount of air time sold affects the performance of the

Optimal Policy and the Greedy Policy. We start with 50 large ads and 100 short ads,

as listed in Table 4.1, and remove two short ads for every large ad removed from the

inventory, to keep the ratio of air time between large and small ads constant. Air time

sold ranged from half the expected air time over the course ofa match, to more than

twice.

Cricket broadcasters oversell air time for important tournaments, particularly those

that involve India, and expect to make good the ads not shown during live broadcast

in non-live segments later. By overselling, networks have more flexibility in what ads
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they show, and are able to cash in on opportunities when actual break time in matches

exceeds the expected break time significantly.

Underselling air time is usually done when the penalty of notachieving service

levels is severe, or the network expects a curtailed match, for instance, due to rain. By

decreasing the air time sold, networks often aim to provide higher service levels, while

putting a premium on the spot value per second. We observe changes in service levels

of large and small ads, along with change in revenues earned for each policy as the

amount of air time sold is varied.

The result of the numerical analysis when lengths of breaks and their number are

known at the time of scheduling is summarized in Table 4.2.

When air time sold is close to the expected air time available(∼ 750s), we see that

the Optimal Policy outperforms the Greedy Policy by almost 3%. This translates to

an average of $1262 per match, equivalent to the expected value earned by airing two

small ads more per match than the Greedy Policy.

Service levels for the Optimal Policy and the Greedy Policy show that the Optimal

Policy consistently schedules more large ads than then Greedy Policy does, whereas

the Greedy Policy relies more on small ads. As a consequence,we see that when the air

time sold is 800s, approximately 97% of the small ads have been shown by the Greedy

Policy, yet almost one small break in a 50 break match hasnothing scheduled in it.

This is because the Greedy Policy schedules small ads even for large breaks early in the

match and runs out of ads to schedule when small breaks occur.

This is an important result for broadcast networks. The overreliance of the Greedy

Policy on small ads to earn revenue may lead to lost opportunities, whereas the Optimal

Policy schedules large ads whenever possible and holds a reserve of small ads for small

breaks, leading to improved service levels and revenues overall.

We plot the revenues earned by the Optimal Policy and the Greedy Policy against

air time sold in Figure 4.1. The difference in revenues earned is pronounced when the

service level is between 80% and 90%, which corresponds to airtime sold of around

800 seconds (from Table 4.2), which is roughly equal to the expected air time. The ser-

vice level mark of 80% is significant, since this is the service level usually promised by
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Figure 4.1: Average total revenue versus air time sold

the network to advertisers during most tournaments. Thus the Optimal Policy is signif-

icantly better than the Greedy Policy in conditions that approach real world situations.

We next consider the case where the number of breaks in a matchis not fixed. The

maximum difference between the Optimal Policy and the Greedy Policy occurs when

the time sold is 800 seconds, which corresponds to 40 small ads and 10 large ads sold.

Since the number of breaks is 50, the Greedy Policy schedulesthe small ads in the

large breaks and is left with almost one small break left unscheduled (Table 4.2). When

airtime sold is higher, both policies have a greater choice of ads to choose from and the

difference between policies reduces; and when the airtime sold is lower, both policies

suffer from a lack of ads equally.

The efficient frontier helps managers determine what service level is most optimal.

Promising lower service levels can yield higher revenues, which should be balanced,

however, with the possible loss of goodwill. Managers can thus decide on a target

service level by considering both the benefits and costs involved.

4.1.3 Value of flexibility

Small ads can be shown in both small and large breaks, whereaslarge ads can only be

shown in large breaks. Thus, small ads offer more flexibilityto the broadcaster as to
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which break they can be shown in. To analyze the value of flexibility, we study the

change in revenue as we change the mix of small and large ads inthe inventory. We

begin with the parameters as outlined in Table 4.1, and splitthe large ads randomly

into two, thus creating equally valued small ads, and increasing the ratio of small ads

to large ads in the inventory.

We begin with a numerical analysis when the number of breaks per match is fixed.

Table 4.3 shows the average revenue earned per match by the Optimal Policy and the

Greedy Policy as the mix of large and small ads is varied and the number of breaks is

fixed.
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Figure 4.2: Change in revenue with split of large ads

The percentage change in revenue for each policy is the amount of change that each

policy earns in comparison to the case when the ratio of air time is equally split between

small ads and large ads, which is our starting ratio. The lastcolumn lists the percentage

difference in revenues between the Greedy Policy and the Optimal Policy. We see that

as the ratio of small ads to large ads increases, the difference between the two policies

decreases. We plot the percentage change of the Optimal Policy and the Greedy Policy

in Figure 4.2. The Optimal Policy does not vary much from its original value, whereas

the Greedy Policy displays an increase of almost 2.5% from its original.

The increase in the revenue earned by the Greedy Policy is explained by the pref-

erence of the Greedy Policy for small ads: as discussed in section 4.1.2, the Greedy
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Policy schedules more small ads than long ads, therefore revenues increase when the

number of small ads increase.

From a managerial perspective, the ability of the Optimal Policy to maintain rev-

enue earned despite substantial change in the ratio of smalland large ads is of impor-

tance. Thus the Optimal Policy is a robust strategy despite changing inventory mix, and

ensures the network a stable revenue regardless of the inventory composition.

Figure 4.3 plots the difference between the Optimal Policy and the Greedy Policy.

We see that the difference is most significant when the air time is equally divided be-

tween the large ads and the small ads, and this difference decreases as the proportion of

small ads increases. As expected, when the inventory consists only of small ads, there

is no difference in revenue earned between the Optimal Policy and the Greedy Policy.
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Figure 4.3: Difference between Greedy and Optimal with split of large ads

4.1.4 Impact of Variability

We next investigate the impact of variability on the performance of the Optimal Policy,

as defined in Theorem 3.3. The distribution of break lengths and the size of our inven-

tory are listed in Table 4.4, and all other parameters are thesame as listed in Table 4.1.

To simulate variability, we use a Uniform Distribution witha mean of 60 sec-

onds Although the break lengths were generated from a Uniform Distribution, they
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are rounded down to the nearest multiple of 10 seconds, whichis the size of the small

ad. Large ads are of size 20 seconds, as before. We vary the support for the break size

distribution from a constant 60 to[10,110]. This corresponds to varying the standard

deviation between[0, 50√
3
], and the range between[0,100]. As before, however, break

sizes that are not a multiple of 10 are rounded down to the nearest multiple of 10, since

the remaining break time will remain unutilized. For simplicity, we will only consider

the range when discussing variability. Finally, we note that the expected air time has

increased substantially, necessitating an increase in thesize of our inventory as shown

in Table 4.4.

The results have been tabulated in Table 4.5. We find that boththe Optimal Policy

and the Greedy Policy are not affected significantly by increase in variability. The

‘percentage change’ row for each policy shows the change in revenues earned compared

to zero variability case. In this case, we see that there is negligible change in the

revenues earned by the Optimal Policy and the Greedy Policy as variability increases.

Service levels also do not show significant changes with variability, thus supporting

our inference that the effect of variability on revenues earned is negligible. Figure 4.4

shows the percentage change in revenues with increase in range.
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Figure 4.4: Change in revenue with variability

From a managerial perspective, as long as the expectation ofbreak lengths is steady,

increased variability does not significantly affect revenues. As variability increases,
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breaks of large sizes are complemented by breaks of small sizes, keeping the overall

revenues earned from fluctuating. The order in which large breaks and small breaks

occur causes the small gains for the Optimal Policy over the Greedy Policy. The Greedy

Policy has a preference for scheduling small ads in the largebreaks, so when matches

have a sequence of large breaks followed by small ones, the Greedy Policy is left with

less valuable small ads for the small breaks. In contrast, the Optimal Policy has a lower

threshold for scheduling large ads as discussed in section 3.2.3, therefore it is able to

gain more from the short breaks in the latter part of the match.

In this chapter, we studied the behavior of the Optimal Policy numerically, and

derived insights from the results. In the next chapter, we will discuss specialized algo-

rithms and heuristics that will attempt to solve harder problems, such as having ads of

multiple lengths with diversity constraints.
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Air time sold (sec) 2000 1600 1200 800 400

Revenue
OP 54,935.46 52,349.08 49,523.60 44,489.78 23,034.12
GP 54,733.86 51,927.26 48,673.94 43,227.58 23,034.12
% Difference 0.37 0.81 1.72 2.84 0.00

Service Levels (%)
OP

L ads 22.52 39.26 67.15 99.44 100.00
S ads 52.37 54.42 57.92 87.34 100.00

GP
L ads 16.50 29.31 50.35 88.11 100.00
S ads 58.40 64.37 74.72 96.62 100.00

Unused Breaks
OP

L breaks - - - 0.03 14.64
S breaks - - - 0.01 5.39

GP
L breaks - - - 0.02 10.70
S breaks - - - 0.84 13.15

Table 4.2: Revenues and Service levels with change in air time sold
(L: large,S: small, OP: Optimal Policy, GP: Greedy Policy)
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Long ads split (%)
Optimal Policy Greedy Policy

Difference (%)
Average Value % change Average Value % change

0 48,304 0 47,132 0 2.43
10 48,358 +0.11 47,965 +1.77 0.81
20 48,340 +0.08 48,195 +2.26 0.30
30 48,248 -0.17 48,215 +2.30 0.07
40 48,199 -0.22 48,183 +2.23 0.03
50 48,267 -0.08 48,261 +2.40 0.01
60 48,347 +0.09 48,343 +2.57 0.01
70 48,275 -0.06 48,274 +2.42 0
80 48,369 +0.14 48,369 +2.62 0
90 48,229 -0.15 48,229 +2.33 0
100 48,306 +0.00 48,306 +2.49 0

Table 4.3: Value of Flexibility

Parameter Value

Break lengths ∼ U (µ −δ ,µ +δ )
µ = 60, δ ∈ [0,50]

Number of large ads 100
Number of small ads 200

Table 4.4: Parameters for analyzing impact of variability on Optimal Policy
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Range 0 20 40 60 80 100

Average Revenue

OP 191,411 191,335 191,184 191,420 191,564 191,404
% change 0.00 -0.04 -0.12 +0.01 +0.08 -0.003
GP 191,411 191,313 191,180 191,408 191,559 191,396
% change 0.00 -0.05 -0.12 -0.001 +0.08 -0.01

Service Levels (%)
OP

L ads 88.94 89.22 89.30 89.01 88.82 89.16
S ads 61.06 60.78 60.70 60.99 61.18 60.84

GP
L ads 88.94 87.90 88.84 88.08 88.34 88.49
S ads 61.06 62.10 61.16 61.92 61.66 61.51

Table 4.5: Impact of variability
(L: large,S: small, OP: Optimal Policy, GP: Greedy Policy)



Chapter 5

Applications in Practice: Scheduling

ads for Cricket

In previous chapters, we have studied the Optimal Policy fora stylized model of the real

world problem. The motivation for this research came from our discussions with a ma-

jor cricket broadcaster, who also provided us with real-world data, based on which we

generated parameters for numerical analysis. We now test several scheduling heuristics

under more constraints and present the analysis of the data,a study of the heuristics

tested and the results obtained, and create relevant managerial insights.

5.1 Data Description

In order to have an estimate of the parameters and constraints in which ad scheduling

was done, we received production logs of ads aired and the spot price for each of those

ads during a T-20 tournament.

5.1.1 Break Lengths

Our findings are shown in Table 5.1, and the break length distribution is shown in

Fig 5.1. The breaks recorded here were measured between the end of an over and the

start of the next one, creating a slight skew towards the right (since actual time available

52
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to show ads is shorter than the time between two such overs).

Parameter Value(seconds)

Average break length 68.4
Standard Deviation 23
Minimum break length 10
Maximum break length 170
Number of samples (breaks) 983

Table 5.1: Analysis of break length data
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Figure 5.1: Break length distribution

For our numerical simulation, we estimated the break lengthto have a mean of 40

seconds and to be uniformly distributed between 10 seconds and 70 seconds.

For our study of T-20 matches, we estimated a total of 50 breaks per match (40

breaks in between overs and 10 wicket breaks). As a simplification of match conditions,

we set the number of breaks to be 50 while estimating the performance of our heuristic.

5.1.2 Ad Lengths, Service Levels and Demands

The lengths of the ads contracted from clients was given directly by the sports broad-

caster, and a summary of the data is shown in Table 5.2. For ouranalysis, we consider

ad lengths of 10 seconds, 20 seconds, and 30 seconds. This agrees closely with the data

from the broadcaster. On average, ads from 20 advertisers were shown in each match,

and their demands were as shown in Table 5.3:
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Parameter Value(seconds)

Average ad length 20.82
Standard Deviation 7.84
Minimum ad length 10
Maximum ad length 40
Number of samples (ads) 2393

Table 5.2: Analysis of ad length data

Parameter Value(seconds)

Average Demand 83.82
Standard Deviation 9.84
Minimum Demand 20
Maximum Demand 180
Number of samples (matches) 25

Table 5.3: Analysis of Client Demands

In our discussions with the broadcaster, we found that the broadcaster had to satisfy

service level commitments of between 75% to 80% of the total demand of each adver-

tiser (i.e. 75%-80% of the demand had to be successfully aired). These commitments

could be satisfied across the duration of the tournament, butfor our study we limit our

service level commitments to each game. For our simulation,we estimate demands

from advertisers such that we can satisfy the service levelspromised to most, if not all

advertisers. To achieve this, we use ‘penalties’ in the model, so that unsatisfied demand

below the promised service level decrease the profits earned. The IP model with service

level guarantee is given in Section 5.3.1.

5.1.3 Spot Values

Spot values in the tournament we analyzed were linear with adlength. This made it

easier to characterize the value of each advertiser in termsof how much revenue per

second each of his ads earned, so broadcaster concerns such as giving higher value to

‘sponsors’ of a tournament could be incorporated by adding value to the revenue per

second that that advertiser earns. For our simulation, we draw random values from the

range[3500,5500]. The number of advertisers per match varied in the tournament, with
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Parameter Value($)

Average Rev/Sec 4110
Standard Deviation 583
Minimum Rev/Sec 3714.28
Maximum Rev/Sec 5714.29
Number of samples (advertisers / match) 20

Table 5.4: Analysis of spot values

an average of 20 advertisers per match.

From the data collected, we could characterize the advertisers, their demands, and

the break lengths for each match and run simulations that closely reflected real world

requirements. We discuss the heuristics considered for thesimulation below.

5.2 Assumptions

To simplify the models we examine, we assume the following:

1. Spot prices for ads are linear in ad length. This is supported by the data we

received from the sports broadcaster (see Section 5.1.3).

2. Two ads from the same advertiser cannot be shown in the samebreak; but there

is no restraint on showing two ads from one advertiser in subsequent breaks.

In later sections, we will add an assumption that service level commitments must

be met, and the broadcaster pay a penalty if he doesn’t meet those constraints.

5.3 Knapsack Model

In this section we study the basic Knapsack model and a variation with service level

guarantees. The Knapsack model aims to fit the best possible combination of ads into a

break. The size of the knapsack is taken as the expected length of the break. Similar to

Witchakul et al [28] we consider penalties for crashes and underutilization, but unlike

them, we build a model for multiple periods, where ad inventory changes from break to

break.
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The model is as follows:

max z = ∑
n

∑
a

∑
l

ral ∗ xaln

subject to:

∑
l

xaln ≤ 1 ,∀a,n (5.1)

∑
a

∑
l

(l ∗ xaln) ≤ b ,∀n (5.2)

∑
n

xaln ≤ Nal ,∀a, l (5.3)

xaln = 0 or 1 (5.4)

where

a is the index of advertisers,

l is the length of each ad

n is the break sequence number

b is the expected / predicted break length

Nal is the number of ads of lengthl contracted from advertisera

xaln is the decision variable

Constraint(5.1) restricts the number of times an advertiser’s ad can be shownin a

break;

Constraint(5.2) specifies that the sum of all ads per break should be lower thanthe

break length expected;

Constraint(5.3) ensures that we only show as many ads as we have a contract for;

Constraint(5.4) makes this model a binary integer programming model
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5.3.1 Knapsack model with service guarantee

Sports broadcasters, ensure service levels (usually of around 80%) to their clients, and

usually have to make good or pay a penalty when the service level commitments are

not met. We include this constraint to the earlier Knapsack model discussed in section

5.3:

max z = ∑
n

∑
a

∑
l

ral ∗ xaln −P∑
a

sa

subject to:

∑
l

xaln ≤ 1 ,∀a,n (5.5)

∑
a

∑
l

(l ∗ xaln) ≤ b ,∀n (5.6)

∑
n

xaln ≤ Nal ,∀a, l (5.7)

n+1

∑
n

xaln ≤ 1 ,∀a, l,n (5.8)

∑
l

∑
n
(l ∗ xaln)+ sa ≥ S ∗∑

l

(l ∗Nal), ∀a (5.9)

xaln = 0 or 1 (5.10)

sa ≥ 0 (5.11)

where

P is the penalty for not meeting the promised service level

sa is the duration by which the service level was not met

S is the promised service level

and all other variables have the same meaning as before (see section 5.3).

Constraint(5.9) ensures that the service level guarantees, if not met, are penalized in

the Objective.
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5.4 Heuristics

In this section we describe a few heuristics that we evaluatefor recommendation to the

sports broadcaster. These heuristics work on data as outlined in section 5.1. Finally, we

compare the revenues earned by each approach with the revenue earned in the perfect

information case (PI), where the lengths ofall breaks are known in advance of the

schedule generation, which is the theoretical upper bound.

5.4.1 Greedy Policy

The Greedy Policy assumes that break lengths are known in advance, and then uses

the Knapsack model for each (known) break without planning for subsequent breaks.

We have compared a simplified version of the Greedy Policy to the Optimal Policy in

Chapter 3, and we will extend that study and compare the Greedy Policy with other

heuristics.

5.4.2 Certainty Equivalent Heuristic

The Certainty Equivalent heuristic (CE) builds a schedule of ads based on the expected

break length (based on the knapsack model with service levelguarantee outlined in

section 5.3.1). Having generated the breaks (which are all of length equal to the mean

break length), we schedule them against the actual breaks and find out how it performs.

This gives us a lower bound on how any variation of the certainty equivalent heuristic

should perform.

5.4.3 Dynamic Certainty Equivalent Heuristic

For Dynamic Certainty Equivalent (DCE) , we generate ‘bundles’ to fit an expected

distribution of break lengths and that satisfies all constraints. The IP isas outlined in

section 5.3.1. The scheduler, who knows the length of the break, schedules the bundle

that best matches the break size. If there are multiple bundles of equal size that fit in

the break, the scheduler chooses the first one among them.
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5.4.4 Dynamic Modified Certainty Equivalent Heuristic

The Dynamic Modified Certainty Equivalent Heuristic (DMCE)is a variation of DCE,

we now generate bundles not only at the beginning of the matchbut also periodically

during of the match. The periods of bundle generation could be varied: bundles could

be generated at specific points during the match, or when a break occurs with no per-

fectly matching bundles at hand. We study both cases and report insights.

5.4.5 Perfect Information

The Perfect Information heuristic (PI) is the theoretical ’upper bound’, so we can com-

pare the performance of heuristics as a percentage the maximum revenue attainable.

We assume that sizes of all breaks are known before the first break, and run a knapsack

that schedules ads with the given constraints in all breaks.

5.5 Comparative Statics with Service Constraints

In this section, we study results of numerical analysis donebased on the heuristics

proposed in Section 5.4, under service constraints. The main aim of this study was to

find out which of the heuristics was most promising, and to be able to suggest the most

promising direction in which the sports broadcaster may direct their efforts to maximize

the revenue in real world situations.

5.5.1 Parameters

Our assumptions for the following sections are as given in Section 5.2. The parameters

for the numerical simulation are listed in Table 5.5.

For this simulation, we assume that advertisers order advertising time from the net-

work, and that the network commits to a certain service levelthat is a percentage of

the time sold to each advertiser. In our simulation, we assume that this value is 80%.

Further, to discourage not meeting the service level, we seta penalty value of 1000$ for

each second short of the promised service level. In the real world, networks either make
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Parameter Value

Number of breaks per match 50
Number of advertisers 20
Ad lengths (s) 10, 20, 30
Revenue per second per advertiser Randomly drawn from[3500,5500]
Break length distribution (s) ∼U(10,60)
Number of random trials (matches) 100
Target Service Level 80% of time sold
Penalty for not reaching service level 1000$ for each secondbelow target

Table 5.5: Parameters for Numerical Simulation

good on their contract in subsequent tournaments, or show ads at the end of the game

to make up on advertising time. For our simplified setup, a penalty of 1000$ suffices to

show us the general direction in which we must direct our efforts.

5.5.2 Results
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Figure 5.2: Performance of heuristics with service constraints

Among the heuristics selected, while the Greedy does not create bundles before-

hand, the CE, DCE and DMCE heuristics rely on creating bundles, either before the

match or during the match. From the results, we see that the Greedy performs almost

on par with the PI, while heuristics that depend on creating bundles before the match

do not perform as well.
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Heuristic % of PI
Greedy 99%
CE 74%
DCE 90%
DMCE 93%

Table 5.6: Performance of heuristics relative to PI

When break sizes are known before the commencement of the break, creating bun-

dles and trying to fit the best one offers us no advantage over myopically choosing the

best ads to fit the break. Since the size of the bundle is fixed, when we run out of appro-

priately sized bundles to fit into the break, we are forced to schedule a bundle that is of

smaller size than the break, hence losing out on earning opportunities. Having bundles

that fit the break by regenerating them (DMCE) does not guarantee us optimum ad se-

lection, since valuable ads that could have been scheduled in the current break may be

included in a bundle of a different size, and hence not scheduled. Therefore, the Greedy

is able to best capitalize on the advance knowledge of break sizes.

We note that the Optimal Policy as described in Chapter 3 doesnot rely on creating

bundles before the realization of breaks. In our discussions with the sports broadcaster,

we found that the ad scheduling team did create bundles beforehand, but the bundles

were discarded when they didn’t have the right bundle for a break. The network should

therefore stick to a flexible schedule that does not depend onpre-created bundles, af-

fording flexibility in scheduling and giving them a better chance to earn higher rev-

enues.

5.6 Comparison of Greedy and Optimal Policies

We next study numerically the conditions that determine howwell the Optimal Policy

performs over the Greedy Policy. In this study, we only consider the Base Case as

presented in Section 3.2.1, where breaks and ads are of two sizes, short (15 seconds)

and long (30 seconds), and the number of breaks is fixed.

We vary parameters across the relative value of small and large ads, the distribution

of the two types of ads, and the Service Level, defined as the percentage of air time sold
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that is expected to be aired (the lower the percentage, the higher the air time sold). The

parameters are summarized in Table 5.7.

Parameter Values

Ratio of values of small to large ads 1, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30
Ratio of number of small to large ads 3, 2, 1, 1/2, 1/3
Service Level 80%,90%,100%,110%

Table 5.7: Parameters for comparison of Greedy and Optimal Policy

The results are presented in Appendix B. The Revenues tablesin Section B.1 show

the potential revenue that could be earned if all orders thatwere accepted could be

shown, as well as the performance of the Greedy Policy and theOptimal Policy as

a percentage of this total. The Service Level tables shown inSection B.1 show the

percentage of ads, small and long, that were shown, and the Utilization tables in Sec-

tion B.3 show the percentage of total break time that was utilized for showing ads.

5.6.1 Results

The percentage gain of the Optimal Policy over the Greedy Policy against the variation

in the relative value of small ads is shown in Figure 5.3, where each graph is drawn for

a particular service level.

We observe that gains of Optimal Policy over Greedy Policy monotonically de-

crease as the value of small ads decreases in comparison to large ads. While the great-

est gains are seen when small ads are almost as valuable as large ads, when the relative

value of small ads is 0.45 or less, the Optimal Policy shows nogains over the Greedy

Policy.

This behavior can be explained by the Optimal Policy having alower threshold for

large ads, and therefore its tendency to schedule more largeads than the Greedy Policy

(as discussed in Section 3.2.1 and Section 4.1.2). When small ads are as valuable as

large ads, the Greedy Policy schedules small ads up front in the large breaks, since it

earns twice as much with two small ads than one large ad. This behavior causes it to

run out of small ads earlier than the Optimal Policy would, and it fails to schedule small

ads in the small breaks that occur at some point after it runs out of small ads.
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The difference in the service levels (tables in Section B.2)of large ads is acute when

the ratio of small ads to large ads is 1:2, where we have half asmany small ads as large

ads, causing the Greedy Policy to run out of small ads early ina match.

When the ratio of small ads to large ads is 1:3, however, the gains made by Optimal

Policy drop below those made when the ratio is 1:2. While the Optimal Policy does not

exhaust its inventory of small ads as early as the Greedy Policy, the number of small ads

is small enough for it to lose scheduling opportunities in small breaks at the later stages

of a game. Tables in Section B.3 show that the utilization of breaks by the Optimal

Policy when we have a 1:3 distribution is consistently less than 100%, and is always

less than the utilization when ads are distributed by a 1:2 ratio.

When the relative value of small ads is 0.45 or less, the Greedy Policy schedules

large ads just as often as the Optimal Policy, since two smallads no longer have as

much value as one large ad. Thus we see no difference in eitherthe revenues earned, or

the service levels of small and large ads.

It can be argued that when the relative value of small ads is greater than 1, we would

see that the gains made by the Optimal Policy decrease once again (compared to the

case where the relative value of small ads is 1). Despite the Optimal Policy having

a low threshold for large ads, the small ads be valuable enough for the most valuable

large ad to not make that threshold, causing the Optimal Policy and the Greedy Policy

to schedule similarly. Having small ads of relative value greater than 1, however, is

only of academic interest, and we do not discuss it in detail.

From a managerial perspective, we see that the Greedy Policyis just as effective as

the Optimal Policy when the inventory has small ads that are less than half the value of

large ads. The Greedy Policy is easily implemented, and the network broadcaster need

not invest in forward looking heuristics in such a case. Conversely, as the relative value

of small ads increases above the 0.5 mark, the network broadcaster can significantly

improve his revenues by implementing the Optimal Policy.

We also note that the greatest gains made by using the OptimalPolicy occur when

the ratio of small ads to large ads is 1:2. This may occur when the broadcaster has

priced his small ads to a level where advertisers see more value in buying large ads,
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Figure 5.3: Performance of Optimal Policy over Greedy Policy

thereby skewing the ad distribution.

Finally, we note that service levels between 80% and 90% provide the best returns

for using the Optimal Policy, and we note that our discussions with the network broad-

caster showed that service levels in that range were usuallytargeted.



Chapter 6

Conclusion

TV networks showing live sports are often challenged by having breaks of non deter-

ministic size, and the high profit margins in live sports broadcasting demand a bet-

ter way of scheduling ads in such situations. In this dissertation we have discussed a

method to schedule ads optimally when breaks are of random size and number, and the

broadcaster has ads of two lengths.

Earlier literature related to advertising scheduling assume fixed break durations, and

do not sufficiently answer how ads must be scheduled when faced with uncertainty in

break sizes. Literature related to Random Yield, Stochastic Knapsack, and Stochastic

Recourse do not sufficiently match the setting typical of ourproblem.

We find that the Optimal Policy when faced with non-deterministic breaks is a for-

ward looking Greedy implementation. Bundling strategies fail to sufficiently account

for the stochasticity in break sizes, and earn less than a flexible heuristic such as the

Greedy Policy. Further, we show that the Optimal Policy outperforms the Greedy Pol-

icy when small ads have a value equal to or greater than half the value of a large ad.

While we do not account for all the constraints that broadcasters face, our model

is general enough to be applied to a class of bin packing problems, for instance, cargo

shipping when containers have non-deterministic capacity. This simple model, how-

ever, does not fully meet the network broadcaster’s requirements. There is scope for

the following extensions to this work:
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1. Inclusion of diversity constraints into the Optimal Policy: two ads from the same

advertiser, or from competing advertisers, cannot be shownin a break.

2. Optimal Policy when breaks are not all IID: for instance a rain break or an injury

break takes a longer time than mid-over breaks.

3. Incorporating service levels constraints for advertisers, agencies, and geographic

regions.

4. Extension to help managers in making pricing decisions and accepting spot or-

ders based on the Optimal Policy.

5. A study of Broadcaster-Advertiser behavior based on GameTheoretic principles

when the broadcaster employs the Optimal Policy.

To conclude, the area of Optimal scheduling of items (ads, cargo, etc) in non-

deterministic containers is an area that has many possibilities for research and devel-

opment. It is hoped that this dissertation is a stepping stone in establishing improved

heuristics in this area.
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Appendix A

Proofs of theorems

Notation Explanation

Vi(l,s) Expected revenue earned from breaki onwards, when the indexes of
the first large ad and the first small ad available arel ands respectively

Rl Expected revenue earned by selectingl1 in the current (large) break
Rs Expected revenue earned by selectings1 + s2 in the current (large)

break
b Number of breaks remaining

Table A.1: Summary of notation

A.1 Proof of Theorem 3.1

Proof. From Lemma 3.1 and Lemma 3.2, we know the rule to be true when one or two

breaks remain.

Let us assume the rule be true for breaks

2, . . . , n. We will use then use induction to prove this theorem.

Then,

Rl = l1+V2(2,1)

Rs = s1+ s2+V2(1,3)

Vn(1,1) = max{Rl,Rs}
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We prove thatRl −Rs ≥ 0 whenl1 ≥ sn + sn+1.

Rl −Rs = l1+V2(2,1)− [s1+ s2+V2(1,3)]

= (l1− (s1+ s2))+(V2(2,1)−V2(1,3))

Expanding the above to a look ahead of two breaks, we get:

Rl −Rs = (l1− (s1+ s2))

+ p[s1+V3(2,2)]− p[s3+V3(1,4)]

+(1− p)max











l2+V3(3,1), if l2 > sn−1+ sn

s1+ s2+V3(2,3) otherwise

− (1− p)(l1+V3(2,3))

Though we have no information aboutl2 andsn−1+ sn, the max operator guarantees

that the value ofV2(2,1) must at least bes1+ s2+V3(2,3). Thus we get:

Rl −Rs ≥ (l1− (s1+ s2))

+ p[s1+V3(2,2)− s3−V3(1,4)]

+(1− p)[s1+ s2+V3(2,3)− l1−V3(2,3)]

≥ p
[

l1− (s2+ s3)+V3(2,2)−V3(1,4))
]

Continuing enumeration to look ahead fori < n breaks, we get

Rl −Rs ≥ pi−1
[

l1− (si + si+1)+Vn−i(2, i)−Vn−i(1, i+2)
]
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Thus, fori = n−1, we get:

Rl −Rs ≥ pn−2
[

l1− (sn−1+ sn)+Vn(2,n−1)−Vn(1,n+1)
]

≥ pn−2
[

l1− (sn−1+ sn)

+ p(sn−1− sn+1)+(1− p)(sn−1+ sn − l1)
]

≥ pn−2
[

p(l1− (sn + sn+1))
]

≥ 0 (∵ p ≥ 0, l1 ≥ (sn + sn+1)

Therefore we have proved that when the number of breaks remaining is n and l1 ≥
sn + sn+1, it is optimal to packl1 first.

The reverse case, i.e.Rs −Rl ≥ 0 whensn + sn+1 ≥ l1 can be proved similarly.

A.2 Proof of Theorem 3.2

Proof. From Lemma 3.1 and Lemma 3.3, we know the rule to be true when one and

two breaks remain.

Let us assume the rule be true when the number breaks remaining are

1, 2, . . . , n−1. We will use then use induction to prove this theorem. As before, we

useRl andRs to denote the revenues earned by schedulingl1 and(s1,s2) respectively

in b1. We have:

Rl = l1+V2(2,1)

Rs = s1+ s2+V2(1,3)
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Then,

Rl −Rs = l1+V2(2,1)− [s1+ s2+V2(1,3)]

= (l1− (s1+ s2))+(V2(2,1)−V2(1,3))

= (l1− (s1+ s2))

+
[

p0(V3(2,1)−V3(1,3))

+ p1(s1+V3(2,2)− s3−V3(1,4))

+ p2(max{l2+V3(3,1),s1+ s2+V3(2,3)}

−max{l1+V3(2,3),s3+ s4+V3(1,5)})
]

We can trivially prove that

(p0+ p1)
n−1l1 ≥

n−1

∑
i=0

[

Cn−1
i pn−1−i

0 pi
1 (si+1+ si+2)

]

=⇒ (p0+ p1)
n−2l1 ≥

n−2

∑
i=0

[

Cn−2
i pn−2−i

0 pi
1 (si+3+ si+4)

]

(A.1)

Using Equation A.1 and using induction, we can say that

V2(1,3) = p0V3(1,3)+ p1(s3+V3(1,4))+ p2(l1+V3(2,3))

Substituting forRl −Rs, we get:

Rl −Rs ≥ (l1− (s1+ s2))

+
[

p0(V3(2,1)−V3(1,3))

+ p1(s1+V3(2,2)− s3−V3(1,4))

+ p2(s1+ s2+V3(2,3)− l1−V3(2,3))
]

≥ (1− p2)(l1− (s1+ s2))

+
[

p0(V3(2,1)−V3(1,3))

+ p1(s1+V3(2,2)− s3−V3(1,4))
]
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≥ (p0+ p1)l1− p0(s1+ s2)− p1(s2+ s3)

+
[

p0(V3(2,1)−V3(1,3))

+ p1(V3(2,2)−V3(1,4))
]

On expanding, and applying induction throughout,

p0(V3(2,1)−V3(1,3))+ p1(V3(2,2)−V3(1,4))

≥ p0

[

p0(V4(2,1)−V4(1,3))

+ p1(s1+V4(2,2)− s3−V4(1,4))

+ p2(s1+ s2+V4(2,3)− l1−V4(2,3))
]

+ p1

[

p0(V4(2,2)−V4(1,4))

+ p1(s2+V4(2,3)− s4−V4(1,5))

+ p2(s2+ s3+V4(2,4)− l1−V4(2,4))
]

Substituting forRl −Rs, we get:

Rl −Rs ≥ (p0+ p1)
2l1

− p2
0(s1+ s2)−2p0p1(s2+ s3)− p2

1(s3+ s4)

+ p2
0(V4(2,1)−V4(1,3))

+ 2p0p1(V4(2,2)−V4(1,4))

+ p2
1(V4(2,3)−V4(1,5))
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Continuing to enumerate in this fashion and applying induction, we get:

Rl −Rs ≥ (p0+ p1)
n−2l1

− pn−2
0 (s1+ s2)− (n−2)pn−3

0 p1(s2+ s3)− . . .− pn−2
1 (sn−1+ sn)

+ pn−2
0 (Vn(2,1)−Vn(1,3))

+ (n−2)pn−3
0 p1(V1(2,2)−V1(1,4))

...

+ pn−2
1 (V1(2,n−1)−Vn(1,n+1))

≥ (p0+ p1)
n−1l1−

n−1

∑
i=0

[

C(n−1, i) pn−1−i
0 pi

1 (si+1+ si+2)
]

≥ 0 (by definition)

The proof for the reverse case, i.e.Rs −Rl ≥ 0 when

(p0+ p1)
n−1l1 <

n−1

∑
i=0

[

C(n−1, i) pn−1−i
0 pi

1 (si+1+ si+2)
]

can be proved similarly.

A.3 Proof of Theorem 3.3

Proof. We have proved the strategy to be true whenk = 1 (Lemma 3.4) andk = 2

(Lemma 3.5).

To prove the strategy is true whenk = n, let us assume the strategy hold good for

breaks(2,3, . . . ,n), i.e. for all subsequent breaks.

As before, letÔ = (l1, . . . , lλ ,s1, . . . ,sm−2λ ).

Let Ol = (l1, . . . , lλ , lλ+1,s1, . . . ,sm−2λ−2) andOs = (l1, . . . , lλ−1,s1, . . . ,sm−2λ+2).

Let Ro, be the revenue earned by selecting the ads inÔ, and letRl andRs be the revenues



A.3 Proof of Theorem 3.3 76

earned by selectingOl andOs respectively.

Ro =
λ

∑
i=1

li +
m−2λ

∑
j=1

s j +V2(λ +1,m−2λ +1) (A.2)

Rl =
λ+1

∑
i=1

li +
m−2λ−2

∑
j=1

s j +V2(λ +2,m−2λ −1) (A.3)

Rs =
λ−1

∑
i=1

li +
m−2λ+2

∑
j=1

s j +V2(λ ,m−2λ +3) (A.4)

We have to prove that:

1. Ro ≥ Rl and

2. Ro ≥ Rs

Case 1:

Ro −Rl =
λ

∑
i=1

li +
m−2λ

∑
j=1

s j +V2(λ +1,m−2λ +1)

−
[

λ+1

∑
i=1

li +
m−2λ−2

∑
j=1

s j +V2(λ +2,m−2λ −1)

]

=−lλ+1+ sm−2λ−1+ sm−2λ

+V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

Note thatlλ+2 < sm−2λ+n−2+ sm−2λ+n−1. By a similar argument as given in Equa-

tion 3.7, we can write:

V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

≥ p1

(

sm−2λ+1+V3(λ +1,m−2λ +2)

− sm−2λ−1−V3(λ +2,m−2λ )
)

+
M

∑
k=2

pk (lλ+1− [sm−2λ−1+ sm−2λ ])
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Substituting inRo −Rl, we get:

Ro −Rl ≥−lλ+1+ sm−2λ−1+ sm−2λ

+ p1

(

sm−2λ+1+V3(λ +1,m−2λ +2)

− sm−2λ−1−V3(λ +2,m−2λ )
)

+
M

∑
k=2

pk (lλ+1− [sm−2λ−1+ sm−2λ ])

≥ p1[−lλ+1+ sm−2λ + sm−2λ+1

+V3(λ +1,m−2λ +2)−V3(λ +2,m−2λ )]

Continuing enumeration of the above to expand to alln breaks, we get:

Ro −Rl ≥ pn−1
1 [−lλ+1+ sm−2λ+n−2+ sm−2λ+n−1]

≥ 0 (∵ lλ+1 < sm−2(λ+1)+n + sm−2(λ+1)+n+1)

Similarly, we can proveCase 2by showing that

Ro −Rs ≥ pn−1
1 [lλ − sm−2λ+n − sm−2λ+n+1]≥ 0

A.4 Proof of Theorem 3.4

Proof. We have proved the strategy to be true whenk = 1 (Lemma 3.6) andk = 2

(Lemma 3.7).

To prove the strategy is true whenk = n, let us assume the strategy hold good for

breaks(2, . . . ,n), i.e. for all subsequent breaks.

We defineÔ,Ol,Os as before.

Let Ro, Rl, andRs denote the revenues earned by selectingÔ, Ol andOs respectively.

We have to prove that
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1. Ro ≥ Rl

2. Ro ≥ Rs

Case 1:

By definition:

(p0+ p1)
n−1lλ ≥

n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i+1+ sm−2λ+i+2)

]

(A.5)

and(p0+ p1)
n−1lλ+1 <

n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i−1+ sm−2λ+i)

]

(A.6)

As before,

Ro −Rl =− lλ+1+ sm−2λ−1+ sm−2λ

+V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

From eq. A.6,

(p0+ p1)
n−1lλ+1 <

n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i−1+ sm−2λ+i)

]

=⇒ (p0+ p1)
n−1lλ+2 <

n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i−1+ sm−2λ+i)

]

=⇒ (p0+ p1)
n−1lλ+2 <

n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i−3+ sm−2λ+i−2)

]

Then by induction, forb2 ≥ 2S, V2(λ +2,m−2λ −1) earns us(sm−2λ−1+ sm−2λ )

followed by the sum of values of ads selected from the set{lλ+2, . . . ,sm−2λ+1, . . .}. On

the other hand, withV2(λ +1,m−2λ +1) we earnat least lλ+1 followed by the sum

of values of ads from the set{lλ+2, . . . ,sm−2λ+1, . . .}.
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Therefore:

V2(λ +1,m−2λ +1)−V2(λ +2,m−2λ −1)

≥ p0(V3(λ +1,m−2λ +1)−V3(λ +2,m−2λ −1))

+ p1(sm−2λ+1− sm−2λ−1+V3(λ +1,m−2λ +2)−V3(λ +2,m−2λ ))

+
M

∑
i=2

pi (lλ+1− [sm−2λ−1+ sm−2λ ])

Substituting forRo −Rl, we get:

Ro −Rl ≥−lλ+1+ sm−2λ−1+ sm−2λ

+ p0(V3(λ +1,m−2λ +1)−V3(λ +2,m−2λ −1))

+ p1(sm−2λ+1− sm−2λ−1+V3(λ +1,m−2λ +2)−V3(λ +2,m−2λ ))

+
M

∑
i=2

pi (lλ+1− [sm−2λ−1+ sm−2λ ])

≥−(p0+ p1)lλ+1+ p0(sm−2λ−1+ sm−2λ )+ p1(sm−2λ + sm−2λ+1)

+ p0(V3(λ +1,m−2λ +1)−V3(λ +2,m−2λ −1))

+ p1(V3(λ +1,m−2λ +2)−V3(λ +2,m−2λ ))

≥−(p0+ p1)lλ+1+ p0(sm−2λ−1+ sm−2λ )+ p1(sm−2λ + sm−2λ+1)

+ p2
0(V4(λ +1,m−2λ +1)−V4(λ +2,m−2λ −1))

+ p0p1(sm−2λ+1− sm−2λ−1)+ p0p1(V4(λ +1,m−2λ +2)−V4(λ +2,m−2λ ))

+ p0

M

∑
i=2

(lλ+1− (sm−2λ−1+ sm−2λ ))

+ p1p0(V4(λ +1,m−2λ +2)−V4(λ +2,m−2λ ))

+ p2
1(sm−2λ+2− sm−2λ )+ p2

1(V4(λ +1,m−2λ +3)−V4(λ +2,m−2λ +1))

+ p1

M

∑
i=2

(lλ+1− (sm−2λ + sm−2λ+1))
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≥ lλ+1(−p0− p1+ p0(1− p0− p1)+ p1(1− p0− p1))

+ sm−2λ−1(p0− p0p1− p0(1− p0− p1))

+ sm−2λ (p0+ p1− p0(1− p0− p1)− p2
1− p1(1− p0− p1))

+ sm−2λ+1(p1+ p0p1− p1(1− p0− p1))

+ sm−2λ+2(p2
1)

+ p2
0(V4(λ +1,m−2λ +1)−V4(λ +2,m−2λ −1))

+2p0p1(V4(λ +1,m−2λ +2)−V4(λ +2,m−2λ ))

+ p2
1(V4(λ +1,m−2λ +3)−V4(λ +2,m−2λ +1))

≥−lλ+1(p0+ p1)
2

+ p2
0(sm−2λ−1+ sm−2λ )+2p0p1(sm−2λ + sm−2λ+1)+ p2

1(sm−2λ+1+ sm−2λ+2)

+ p2
0(V4(λ +1,m−2λ +1)−V4(λ +2,m−2λ −1))

+2p0p1(V4(λ +1,m−2λ +2)−V4(λ +2,m−2λ ))

+ p2
1(V4(λ +1,m−2λ +3)−V4(λ +2,m−2λ +1))

Continuing to enumerate in this fashion, and applying induction, after expanding up to

Vn we get:

Ro −Rl ≥−lλ+1(p0+ p1)
n−2+

n−2

∑
i=0

(

n−2
i

)

pn−2−i
0 pi

1(sm−2λ+i−1+ sm−2λ+i)

+
n−2

∑
i=0

(

n−2
i

)

pn−2−i
0 pi

1(Vn(λ +1,m−2λ + i+1)−Vn(λ +2,m−2λ + i−1))

≥−(p0+ p1)
n−1lλ+1

+
n−1

∑
i=0

[(

n−1
i

)

pn−1−i
0 pi

1(sm−2λ+i−1+ sm−2λ+i)

]

≥ 0 from eq A.6

Case 2: Ro −Rs ≥ 0 can be similarly proved using eq. A.5.
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A.5 Proof of Theorem 3.5

Proof. We have proved all three cases to be true when one break and twobreaks remain.

Let the rule be true for all subsequent breaks,b2, ...,bn. We will then prove by induction

that it is true for breakb1.

Case 1:Let (1− p)l1 = ps1+(1− p)(s1+ s2)+ t, wheret ≥ 0.

Then,

Rl = pV2(1,1)+(1− p)(l1+V2(2,1))

Rs = p(s1+V2(1,2))+(1− p)(s1+ s2+V2(1,3))

Thus, we get:

Rl −Rs = p[V2(1,1)− s1−V2(1,2)]

+(1− p)[l1− (s1+ s2)+V2(2,1)−V2(1,3)]

= t + p[V2(1,1)−V2(1,2)]+(1− p)[V2(2,1)−V2(1,3)]

Expanding the above to look ahead two breaks, we get:

Rl −Rs = t + p[V2(1,1)−V2(1,2)]+(1− p)[V2(2,1)−V2(1,3)]

≥ t + p
[

pV3(1,1)+(1− p)(l1+V3(2,1))

− pV3(1,2)− (1− p)(l1+V3(2,2)
]

+(1− p)
[

p(s1+V3(2,2))+(1− p)(s1+ s2+V3(2,3))

− pV3(1,3)− (1− p)(l1+V3(2,3)
]

≥ t + p
[

p(V3(1,1)−V3(1,2))+(1− p)V3(2,1)
]

+(1− p)
[

ps1+(1− p)(s1+ s2)− pV3(1,3)− (1− p)l1
]

≥ t + p
[

p(V3(1,1)−V3(1,2))

+(1− p)(V3(2,1)−V3(1,3))
]

− (1− p)t
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≥ p
[

t + p[V3(1,1)−V3(1,2)]

+(1− p)[V3(2,1)−V3(1,3)]
]

Continuing to expand the above to look ahead forn−1 breaks, we get:

Rl −Rs ≥ pn−2
[

t + p[Vn(1,1)−Vn(1,2)]+(1− p)[Vn(2,1)−Vn(1,3)]
]

≥ pn−2
[

t + p[(1− p)l1− (1− p)l1]

+(1− p)[ps1+(1− p)(s1+ s2)− (1− p)l1]
]

≥ pn−2
[

t +(1− p)(−t)
]

≥ pn−1t

≥ 0, sincet ≥ 0, p ≥ 0

ThereforeRl −Rs ≥ 0 =⇒ selectingl1 is profitable when(1− p)l1≥ ps1+(1− p)(s1+

s2)

Case 2:Let (1− p)l1 < psn +(1− p)(sn + sn+1) Then

Rs −Rl = ps1+(1− p)(s1+ s2)− (1− p)l1

+ p[V2(1,2)−V2(1,1)]+(1− p)[V2(1,3)−V2(2,1)]

≥ ps1+(1− p)(s1+ s2)− (1− p)l1

+ p
[

pV3(1,2)+(1− p)(l1+V3(2,2))

− p(s1+V3(1,2))− (1− p)(s1+ s2+V3(1,3)
]

+(1− p)
[

pV3(1,3)+(1− p)(l1+V3(2,3))

− p(s1+V3(2,2))− (1− p)(s1+ s2+V3(2,3))
]

[

∵V2(1, i)≥ (1− p)(l1+V3(2, i))∀i < n
]

≥ 0

Rs −Rl ≥ 0 =⇒
it is optimal to schedules1+ s2 when(1− p)l1 < psn +(1− p)(sn+ sn+1).
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Case 3: Let ps1+(1− p)(s1+ s2) = (1− p)l1+ t wheret ≥ 0

Rl −Rs = (1− p)l1− ps1− (1− p)(s1+ s2)

+ p[V2(1,1)−V2(1,2)]+(1− p)[V2(2,1)−V2(1,3)]

=−t + p
[

p(s1+V3(1,2))+(1− p)(s1+ s2+V3(1,3))

− pV3(1,2)− (1− p)(l1+V3(2,2))
]

+(1− p)
[

p(s1+V3(2,2))+(1− p)(s1+ s2+V3(2,3))

− pV3(1,3)− (1− p)(l1+V3(2,3))
]

In the above step, note that forV2(1,1), in breakb2, (1− p)l1 need not exceedpsn−1+

(1− p)(sn−1+ sn), howeverps1+(1− p)(s1+ s2) ≥ (1− p)l1. Since we assume that

the policy holds good in subsequent breaks, either Case 2 ((s1,s2) preferred) or Case 3

(indifference) will apply, therefore we select(s1,s2). The expansion for the other terms

is similarly explained.

=⇒ Rl −Rs =−t + p
[

t + p[V3(1,2)−V3(1,2)]+(1− p)[V3(1,3)−V3(2,2)]
]

(1− p)
[

t + p[V3(2,2)−V3(1,3)]

+(1− p)[V3(2,3)−V3(2,3)]
]

=−t + pt +(1− p)t

= 0

Rl −Rs = 0 =⇒ selectingl1 ands1+ s2 are both equally profitable.

A.6 Proof of Theorem 3.6

Proof. Let p2l1 = t + p1s1+ p2(s1+ s2) wheret ≥ 0.
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Case 1:

Rl −Rs = (p0+ p1)V2(1,1)+ p2(l1+V2(2,1))

− p0V2(1,1)− p1(s1+V2(1,2))− p2(s1+ s2+V2(1,3))

= p1(V2(1,1)− s1−V2(1,2))

+ p2(l1+V2(2,1)− (s1+ s2)−V2(1,3))

= t + p1[V2(1,1)−V2(1,2)]+ p2[V2(2,1)−V2(1,3)]

≥ t + p1

[

p0V3(1,1)+ p1(s1+V3(1,2))+ p2(s1+ s2+V3(1,3)

− (p0+ p1)(V3(1,2)− p2(l1+V3(2,2)
]

+ p2

[

p0V3(2,1)+ p1(s1+V3(2,2))+ p2(s1+ s2+V3(2,3)

− (p0+ p1)(V3(1,3)− p2(l1+V3(2,3)
]

≥ p0

[

t + p1(V3(1,1)−V3(1,2))+ p2(V3(2,1)−V3(1,3))
]

Continuing enumeration, we get:

Rl −Rs ≥ pn−2
0

[

t + p1(Vn(1,1)−Vn(1,2))+ p2(Vn(2,1)−Vn(1,3))
]

≥ pn−2
0

[

t + p1(p1s1+ p2(s1+ s2)− p2l1)+ p2(p1s1+ p2(s1+ s2)− p2l1)
]

≥ pn−2
0

[

t + p1(−t)+ p2(−t)
]

≥ pn−1
0 t

≥ 0

Rl −Rs ≥ 0 =⇒ it is optimal to schedulel1 first.

Case 2can be similarly proved by showing thatRs −Rl ≥ pn−1
0 t ≥ 0.

For both cases above,Rl > Rs andRs > Rl if t > 0 andp0 > 0. There is no interval

whereRl = Rs, unlike the cases where the number of breaks is fixed.
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In this section, we present the results of the study of Section 5.6.

B.1 Revenues

Value of Small ad to Large ad = 1:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

562507
487050 86.59%

526768
446389 84.74%

468266
378272 80.78%

422645
324126 76.69%

400530
301423 75.26%

0.8OP 499215 88.75% 465490 88.37% 407503 87.02% 360522 85.30% 334538 83.52%
G

499790
456156 91.27%

467940
421150 90.00%

418699
362125 86.49%

373653
312025 83.51%

355398
292008 82.16%

0.9
OP 470848 94.21% 441146 94.27% 390884 93.36% 345551 92.48% 320642 90.22%
G

450114
430013 95.53%

422869
399202 94.40%

373440
341916 91.56%

337703
300653 89.03%

319617
282890 88.51%

1
OP 442744 98.36% 415556 98.27% 366165 98.05% 327070 96.85% 304156 95.16%
G

409715
402782 98.31%

382869
374863 97.91%

342268
327816 95.78%

305894
288663 94.37%

292337
271519 92.88%

1.1OP 408688 99.75% 382253 99.84% 341317 99.72% 302620 98.93% 285320 97.60%

Value of Small ad to Large ad = 0.55:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

372654
311747 83.66%

366942
308653 84.11%

362189
302933 83.64%

360137
291868 81.04%

355506
280061 78.78%

0.8OP 311766 83.66% 308720 84.13% 303530 83.80% 298844 82.98% 289581 81.46%
G

331519
303806 91.64%

327327
300211 91.72%

324898
294839 90.75%

318249
280060 88.00%

315820
271274 85.90%

0.9
OP 304306 91.79% 301177 92.01% 297660 91.62% 289513 90.97% 280349 88.77%
G

297895
290187 97.41%

295353
286524 97.01%

289347
278910 96.39%

287066
268923 93.68%

283672
261446 92.16%

1
OP 291189 97.75% 288230 97.59% 282774 97.73% 276476 96.31% 267598 94.33%
G

270900
269744 99.57%

267059
265670 99.48%

265620
262879 98.97%

260188
253669 97.49%

260286
250240 96.14%

1.1OP 270154 99.72% 266293 99.71% 264705 99.66% 257028 98.79% 253500 97.39%

Value of Small ad to Large ad = 0.50:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

351843
293129 83.31%

350388
292226 83.40%

350378
293012 83.63%

353217
291053 82.40%

350352
282769 80.71%

0.8OP 293132 83.31% 292236 83.40% 293066 83.64% 292116 82.70% 284670 81.25%
G

312939
287301 91.81%

311786
286621 91.93%

313862
287615 91.64%

312619
281689 90.11%

311536
272300 87.41%

0.9
OP 287322 91.81% 286643 91.94% 287836 91.71% 284084 90.87% 274473 88.10%
G

281754
275030 97.61%

281371
274845 97.68%

280336
273326 97.50%

281636
268788 95.44%

279427
262200 93.83%

1
OP 275066 97.63% 274935 97.71% 273992 97.74% 270985 96.22% 263617 94.34%
G

256159
255259 99.65%

254232
253425 99.68%

256459
255184 99.50%

255425
251154 98.33%

255463
248140 97.13%

1.1OP 255300 99.66% 253509 99.72% 255659 99.69% 251969 98.65% 248766 97.38%
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Value of Small ad to Large ad = 0.45:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

330546
276433 83.63%

332031
278749 83.95%

338309
284475 84.09%

345789
285941 82.69%

345354
279550 80.95%

0.8OP 276436 83.63% 278755 83.95% 284501 84.10% 285980 82.70% 279576 80.95%
G

293251
270251 92.16%

295951
272470 92.07%

303227
277522 91.52%

305453
277815 90.95%

306411
270744 88.36%

0.9
OP 270254 92.16% 272475 92.07% 277552 91.53% 277914 90.98% 270860 88.40%
G

264550
258437 97.69%

266697
261356 98.00%

270413
264983 97.99%

276806
265810 96.03%

275777
259288 94.02%

1
OP 258438 97.69% 261358 98.00% 265007 98.00% 265910 96.06% 259351 94.04%
G

240346
239698 99.73%

241203
240636 99.76%

247575
246843 99.70%

250021
247082 98.82%

252560
245994 97.40%

1.1OP 239698 99.73% 240636 99.76% 246860 99.71% 247094 98.83% 246005 97.40%

Value of Small ad to Large ad = 0.40:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

310024
260721 84.10%

314426
266555 84.78%

326934
276571 84.60%

339081
280942 82.85%

340170
275459 80.98%

0.8OP 260722 84.10% 266557 84.78% 276577 84.60% 280943 82.85% 275459 80.98%
G

274868
253379 92.18%

279775
258561 92.42%

292649
269167 91.98%

299547
272878 91.10%

301994
265616 87.95%

0.9
OP 253380 92.18% 258561 92.42% 269173 91.98% 272879 91.10% 265617 87.95%
G

247739
242651 97.95%

252752
247337 97.86%

261218
256259 98.10%

269972
260204 96.38%

271632
255966 94.23%

1
OP 242651 97.95% 247337 97.86% 256260 98.10% 260204 96.38% 255966 94.23%
G

225236
224529 99.69%

228246
227722 99.77%

239049
238394 99.73%

245975
242504 98.59%

248498
241756 97.29%

1.1OP 224529 99.69% 227722 99.77% 238394 99.73% 242504 98.59% 241756 97.29%

Value of Small ad to Large ad = 0.35:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

288319
245652 85.20%

296923
254473 85.70%

315499
268947 85.24%

332214
274394 82.60%

335219
269381 80.36%

0.8OP 245652 85.20% 254473 85.70% 268947 85.24% 274394 82.60% 269381 80.36%
G

256171
237395 92.67%

264060
245706 93.05%

282793
261611 92.51%

293474
266182 90.70%

297596
261492 87.87%

0.9
OP 237395 92.67% 245706 93.05% 261611 92.51% 266182 90.70% 261492 87.87%
G

229753
225361 98.09%

239045
234222 97.98%

252063
247013 98.00%

265018
255561 96.43%

268123
251432 93.77%

1
OP 225361 98.09% 234222 97.98% 247013 98.00% 255561 96.43% 251432 93.77%
G

210459
209950 99.76%

215751
215153 99.72%

230812
230244 99.75%

240302
236896 98.58%

245440
238007 96.97%

1.1OP 209950 99.76% 215153 99.72% 230244 99.75% 236896 98.58% 238007 96.97%

Value of Small ad to Large ad = 0.30:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3

Service LevelSold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned %
G

266957
230602 86.38%

279147
243588 87.26%

304171
261839 86.08%

326007
268216 82.27%

330878
265376 80.20%

0.8OP 230602 86.38% 243588 87.26% 261839 86.08% 268216 82.27% 265376 80.20%
G

237807
221652 93.21%

247977
232355 93.70%

271416
253118 93.26%

286391
260789 91.06%

293131
257646 87.89%

0.9
OP 221652 93.21% 232355 93.70% 253118 93.26% 260789 91.06% 257646 87.89%
G

213766
209595 98.05%

223994
220168 98.29%

243056
238571 98.15%

259721
249160 95.93%

263681
247027 93.68%

1
OP 209595 98.05% 220168 98.29% 238571 98.15% 249160 95.93% 247027 93.68%
G

194713
194133 99.70%

203484
202990 99.76%

223077
222287 99.65%

234956
231532 98.54%

241067
234358 97.22%

1.1OP 194133 99.70% 202990 99.76% 222287 99.65% 231532 98.54% 234358 97.22%
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B.2 Service Levels

Value of Small ad to Large ad = 1:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 100% 100% 100% 100% 100%

0.8
30 41% 49% 57% 60% 62%

OP
15 99% 99% 99% 99% 99%
30 51% 61% 71% 75% 74%

G
15 100% 100% 100% 100% 100%

0.9
30 61% 66% 69% 71% 72%

OP
15 99% 99% 99% 99% 100%
30 75% 81% 85% 87% 85%

G
15 100% 100% 100% 100% 100%

1
30 80% 81% 80% 81% 82%

OP
15 100% 100% 99% 100% 100%
30 93% 95% 96% 95% 92%

G
15 100% 100% 100% 100% 100%

1.1
30 93% 93% 90% 90% 89%

OP
15 100% 100% 100% 100% 100%
30 99% 100% 99% 98% 96%



B.2 Service Levels 89

Value of Small ad to Large ad = .55:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 88% 90% 94% 99% 100%

0.8
30 68% 71% 73% 72% 71%

OP
15 88% 90% 92% 95% 99%
30 69% 71% 75% 76% 74%

G
15 96% 97% 99% 100% 100%

0.9
30 80% 82% 84% 82% 80%

OP
15 96% 97% 97% 99% 100%
30 81% 84% 86% 87% 84%

G
15 99% 100% 100% 100% 100%

1
30 93% 93% 94% 90% 89%

OP
15 99% 99% 99% 100% 100%
30 95% 95% 96% 95% 92%

G
15 100% 100% 100% 100% 100%

1.1
30 99% 99% 98% 96% 95%

OP
15 100% 100% 100% 100% 100%
30 99% 99% 99% 98% 96%

Value of Small ad to Large ad = .50:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 80% 81% 82% 92% 99%

0.8
30 80% 80% 79% 76% 74%

OP
15 80% 80% 80% 88% 97%
30 80% 80% 80% 78% 75%

G
15 90% 90% 92% 99% 100%

0.9
30 90% 90% 89% 86% 83%

OP
15 90% 90% 90% 96% 100%
30 90% 90% 90% 88% 84%

G
15 97% 97% 98% 100% 100%

1
30 97% 97% 96% 93% 91%

OP
15 97% 97% 97% 100% 100%
30 97% 97% 97% 95% 92%

G
15 100% 100% 100% 100% 100%

1.1
30 100% 100% 99% 98% 96%

OP
15 100% 100% 100% 100% 100%
30 100% 100% 100% 98% 96%
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Value of Small ad to Large ad = .45:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 72% 71% 69% 84% 97%

0.8
30 92% 90% 87% 79% 75%

OP
15 72% 71% 68% 83% 96%
30 92% 91% 87% 79% 75%

G
15 85% 83% 80% 93% 99%

0.9
30 98% 97% 94% 88% 84%

OP
15 85% 83% 79% 92% 99%
30 98% 97% 95% 89% 84%

G
15 95% 95% 95% 99% 100%

1
30 100% 100% 99% 95% 92%

OP
15 95% 95% 94% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1
30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 97%

Value of Small ad to Large ad = .40:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 66% 63% 58% 81% 96%

0.8
30 99% 98% 92% 80% 75%

OP
15 66% 62% 57% 81% 96%
30 99% 98% 92% 80% 75%

G
15 82% 80% 74% 92% 99%

0.9
30 100% 100% 97% 89% 84%

OP
15 82% 80% 74% 92% 99%
30 100% 100% 97% 89% 84%

G
15 95% 94% 93% 99% 100%

1
30 100% 100% 99% 95% 92%

OP
15 95% 94% 93% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1
30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 96%
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Value of Small ad to Large ad = .35:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 66% 61% 57% 81% 96%

0.8
30 100% 100% 93% 80% 75%

OP
15 66% 61% 57% 81% 96%
30 100% 100% 93% 80% 75%

G
15 82% 80% 74% 92% 99%

0.9
30 100% 100% 97% 89% 84%

OP
15 82% 80% 74% 92% 99%
30 100% 100% 97% 89% 84%

G
15 95% 94% 93% 99% 100%

1
30 100% 100% 99% 95% 92%

OP
15 95% 94% 93% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1
30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 96%

Value of Small ad to Large ad = .30:1
Heuristic Ad length 3:1 2:1 1:1 1:2 1:3 Service Level

G
15 66% 62% 55% 82% 96%

0.8
30 100% 100% 93% 79% 75%

OP
15 66% 62% 55% 82% 96%
30 100% 100% 93% 79% 75%

G
15 82% 80% 74% 92% 99%

0.9
30 100% 100% 98% 89% 84%

OP
15 82% 80% 74% 92% 99%
30 100% 100% 98% 89% 84%

G
15 95% 94% 93% 99% 100%

1
30 100% 100% 99% 95% 92%

OP
15 95% 94% 93% 99% 100%
30 100% 100% 99% 95% 92%

G
15 99% 99% 99% 100% 100%

1.1
30 100% 100% 100% 98% 96%

OP
15 99% 99% 99% 100% 100%
30 100% 100% 100% 98% 96%
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B.3 Utilization of breaks

Value of Small ad to Large ad = 1:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 96% 93% 89% 85% 84%
0.8

OP 100% 100% 100% 100% 97%
G 94% 92% 88% 85% 84%

0.9
OP 100% 100% 100% 99% 95%
G 92% 90% 87% 84% 83%

1
OP 97% 97% 97% 96% 92%
G 88% 87% 85% 83% 82%

1.1OP 91% 90% 91% 89% 88%

Value of Small ad to Large ad = .55:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 97% 93%
0.8

OP 100% 100% 100% 100% 97%
G 100% 99% 99% 95% 91%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 95% 93% 90%

1
OP 97% 98% 97% 96% 92%
G 91% 90% 90% 88% 87%

1.1OP 91% 91% 91% 90% 88%

Value of Small ad to Large ad = .50:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 99% 96%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 98% 94%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 97% 95% 92%

1
OP 97% 97% 97% 96% 92%
G 91% 91% 91% 90% 88%

1.1OP 91% 91% 91% 90% 88%
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Value of Small ad to Large ad = .45:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 98% 97% 97% 96% 92%

1
OP 98% 97% 97% 96% 92%
G 91% 90% 91% 89% 88%

1.1OP 91% 90% 91% 89% 88%

Value of Small ad to Large ad = .40:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 97% 96% 92%

1
OP 97% 97% 97% 96% 92%
G 91% 90% 91% 90% 88%

1.1OP 91% 90% 91% 90% 88%

Value of Small ad to Large ad = .35:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 97% 97% 97% 96% 92%

1
OP 97% 97% 97% 96% 92%
G 91% 91% 91% 90% 88%

1.1OP 91% 91% 91% 90% 88%

Value of Small ad to Large ad = .30:1
Ad dist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97%
0.8

OP 100% 100% 100% 100% 97%
G 100% 100% 100% 99% 95%

0.9
OP 100% 100% 100% 99% 95%
G 98% 97% 97% 96% 92%

1
OP 98% 97% 97% 96% 92%
G 91% 91% 91% 90% 88%

1.1
OP 91% 91% 91% 90% 88%
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