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Abstract

Optimal Advertisement Scheduling
in Breaks of Random Lengths

by Ajay S. Aravamudhan

Broadcasters generate a large part of their revenue thradwgtrtising, especially
in live sports. Scheduling advertisements can be chalhgngilive broadcasting, how-
ever, for sports such as Cricket that have breaks of randogthie and number during
which the ads are shown. This uncertainty, coupled with tgk price of spots for ma-
jor competitions, means that improving ad scheduling cahsaghificant value to the
broadcaster. This problem shares similarities with thehststic cutting stock problem
and the dynamic stochastic knapsack problem, with appiecsiin the wood, steel and
paper industry and the transportation industry respdgtive

This dissertation adds to the existing literature on adsiag scheduling by tak-
ing stochasticity in break sizes into consideration. Weppse an optimal scheduling
rule under simplifying assumptions and prove that our potiatperforms traditional
scheduling methods. We also study the performance of déwauastics, and find that

a flexible heuristic that does not depend on creating buniigferms the best.
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Chapter 1

Introduction

Revenue for television broadcasters is generated priynidgmibugh the sale of local,
regional, and national advertising on the local statiortsthrir networks. At CBS, the
most-watched U.S. broadcast network, TV advertising actsalifor two-thirds of its
revenué. Major sporting events, such as the Super Bowl, the Olympitse Football
World Cup, greatly increase advertising revenues as adeestare willing to pay a
premium to air their ads during live broadcast.

In India, cricket is the main revenue earner for sports bcaating networks. Ac-
cording to a study from TAM Media Research’s advertising sueament arm AdEX,
ad volumes in cricket saw a growth of more than three timefiénfive years from
2002 to 2007 with the volumes showing an extra spurt durieg/torld Cups in 2003
and 200%. The biggest spurt was seen in the 2007 World Cup where thenes rose
nearly 100%, with 22% of the advertising volumes in live kettelecasts.

In recent times, the importance of advertising in cricked lmcreased even more,
with the introduction of shorter formats of the game such &® Twhich is aimed at
prime-time television viewers. Sony, the broadcaster lier indian Premier League
2010, was expected to have earned approximately USD 15@nsilfrom live broad-
casting for the tournament alone, with advertising spolisachat more than USD 1100

per secontl Thus, even a small percentage gain in advertising reveméranslate to

1Bloomberg Businessweek 2010
2www.indiantelevision.com/
3Wall Street Journal, Jan 2010
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a large increase in earnings.

Scheduling advertisements in live broadcasting can béestgahg, however, espe-
cially for sports that have breaks that are non-determmi$tis is the case for cricket,
in which the duration and also the number of breaks can beoran@reaks in cricket
are taken between overs, when a wicket falls, or there is akhrethe game for re-
freshments or due to an injury. While the length of the gamesisally predictable
(especially in the case of limited overs games such as ODIS2f)s), it is not fixed.
Teams have to take up to ten wickets within the allotted Querwever overs may run
out before all wickets are taken. Teams may also find thabhalf tvickets have fallen
before they have managed to bat out the overs. Thus, the muhbeeaks, time when
they occur, and lengths of breaks in a game cannot be foretoltibroadcasters have
to make ad scheduling decisionkile the break is ongoing.

To do this, networks usually employ several people with speed knowledge
of the sport when scheduling commercials. These ad scheduée a view of the
live game as it happens from a centralized control centeiciwélso has a list of ads
available on a mainframe, along with the orders (numberroés each ad has to be
shown). Before the match starts, the ad scheduling tearntesradew sample bundles,
giving priority to tournament sponsors. The bundles argailty scheduled as planned,
but are broken and ads are scheduled on the fly because lzealast stochastic. The
scheduling team is advised by an on-field director, who cedgetthe state of the game
and inform them about how long the break could be. Based anaitivice, and the
known break size distribution, the schedulers select alis tired in each break.

The job of the ad schedulers is stressful because of the neélop good sched-
ules while under constant pressure to satisfy schedulingtcaints. For instance, if
live action begins while an ad is running, then the ad has ®tdygped midway (the ad
is said to have ‘crashed’) in order to air live action, thugyong any revenue from the
crashed ad. Furthermore, networks have to satisfy seruedd promised to agencies
that get them the ad contracts, and these service levelsagssllon sponsorship sta-
tuses and geographical location. Thus, by reducing depegas human intervention,

there is an opportunity to maximize revenues by automabagommercial scheduling



process while generating near optimal schedules to megoals.

In this dissertation, we consider two approaches to studyptbblem. We begin
with Chapter 2, where we review literature from the strearfadvertising, random
yield, stochastic knapsack and stochastic programminly rgitourse to help us gain
insights for doing our study. In Chapter 3, we approach tloblem analytically, and
study optimal scheduling policies when faced with stodbdseak sizes for a simpli-
fied setting, in which we do not consider constraints othanttrashing. We consider
two cases, where the scheduling team either has prior irdtomabout the break du-
ration for the ongoing break, or it does not. In each case,ssarae that the inventory
contains ads of two size§ and 5, and consider scenarios where break sizes range
from zero to any multiple of, and where the number of breaks can be stochastic. In
Chapter 4, we do a numerical analysis to study the sengit¥ithe Optimal Policy to
variations in problem parameters relative to the myopice@yerule, which we define
as the ad schedule which generates the maximum revenueforgak in hand but does
not consider the subsequent breaks. Finally, in ChaptereStudy several heuristics
inspired by the current scheduling practice in order to wepra broadcaster’s rev-
enues. We use data provided by a major cricket broadcasteatgze the performance
of several heuristics which create bundles beforehand.dffsider generating bundles
at various points during a match, and compare performanttetine standard Greedy
heuristic. We include some constraints for this study, sagminimum service levels
for each client, to analyze how creating bundles beforelaffiedts revenue earned, and
how often they should be created.

Finally, we summarize our findings and present our conchsswith directions for

future research in Chapter 6.



Chapter 2

Literature Review

In this dissertation, we take two approaches to study thieleno of optimally schedul-
ing ads for random breaks: first we propose optimal poliaes€heduling ads during
breaks of random durations under simplifying assumptiand, secondly, we analyze
several heuristics inspired by current scheduling pradtioping to provide manage-
rial insight to sports broadcasters. This research has tmkevenue management with
random capacity, the dynamic stochastic knapsack problenstochastic cutting stock

problem and revenue management in media applications.

2.1 Revenue Management with Random Capacity

Our problem is related to revenue management with randomcdgp random yield,
with typical applications in production planning. The mostnmon choice to model
random yield has been stochastically proportional yieidyhich the yield is propor-
tional to the order.

Ciarallo et al. (1994) [7] are the first to explore the impdatamdom capacity. The
authors find that an order-up-to policy is optimal to minienjzroduction costs. The
order target includes a safety stock to account for randgmaaty in future periods
and is higher than the myopic order-up-to level. Wang anc:kede (1996) [27] revisit
the results found in Ciarallo et al. (1994) to offer a mor@raus proof of the order-up-

to policy. Khang and Fujiwara (2000) [15] prove under whidmditions the myopic



2.1 Revenue Management with Random Capacity

order-up-to policy is optimal in a multi-period setting. Hiag and Singh (1998) [14]
extend the analysis to a multi-stage production proces$iathdn optimal policy char-
acterized by a sequence of two critical numbers for eaclesaginimum input level
below which no production takes place and a maximum desireduygtion level. Fi-
nally, Wang and Gerchak (1996) [26] incorporate randonmdyaeld capacity and show
that the optimal policy is characterized by a single reopt@nt in each period. That
critical point is not a constant and depends on the inventonand.

Yano and Lee(1995)[29] review the literature in the areaotfsizing with ran-
dom yields, focusing on single-stage continuous review etwdnd single-stage pe-
riodic review models. They cover modeling of costs, modglih yield uncertainty,
and measures of performance of the system. Grosfeld-NiGardhak (2004)[13] re-
view papers discussing multiple lot sizing in productiomtder in multistage systems,
and review situations where both yield and demand are randBallapragada and
Morton(1999)[6] provide heuristics for dealing with ramdanventory by focusing on
inventory at the end of the period, after the demand is mesty Bhow that the random
yield problem is analogous to the newsvendor problem wighdémand distribution
dependent on the quantity ordered. Their research supiberegrgument that myopic
and near-myopic methods are useful across a wide spectrigtodifastic inventory
problems.

Our model differs in two important aspects from the randoeldyiand random
capacity papers above. First, we maximize revenues ratherminimize costs. All
the papers assume a single product whereas we work in a madtugt setting with
different prices and production costs. Therefore we neesthedule those products
based on their profitability and their capacity usage. Seécame assume integer units
or fixed-size order runs. Therefore, we cannot simply usa@apto its maximum and
hold inventory to complete an order across multiple peridéiach order needs to be

entirely processed within one production period.
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2.2 Dynamic Stochastic Knapsack Problem

The knapsack problem is one of the simplest and thus oldesiufation of a maxi-
mization problem. The knapsack problem has been extegsuedlied in operations
research, and has various industrial applications in aseels as resource allocation,
capital budgeting, portfolio selection problem, cargadiog, and cutting stock prob-
lems. Knapsack problems of this type are deterministic ligeall parameters are
known with certainty. However, in many situations, theseapaeters may be random
variables having a certain distribution. Kleywegt and Rag@aou have written a series
of papers on this topic ((1996) [19] [21],(2001) [20]), thizfine the Dynamic Stochas-
tic Knapsack problem as one in which items to be packed aadeerding to a known
distribution, and determine the optimal policy that maxaes expected value, given the
costs associated with waiting. They expand their researclages where the rewards
associated with an item are stochastic, and when the sizactfieem is also stochas-
tic. Our research, however, attempts to solve a problemmithiple knapsacks, whose
sizes are stochastic, and the items are of known size and.valu

More recently, Perry and Hartman (2009) [22] model a mudtiipd, single resource
capacity reservation problem as a dynamic, stochastidjpreiknapsack problem with
stochastic dynamic programming. They propose an apprdiamapproach which
utilizes simulation and deterministic dynamic programgnin order to allow for the
solution of longer horizon problems and ensure good time decisions. Their sim-
ulation based approach, however, does not sufficientlyucaphe complexities of our
problem.

Witchakul, Ayudhya, Charnsethikul(2008) [28] discussdam Knapsack capacity
with deterministic weights and costs. They model the Knelg'sacapacity as a random
variable with a known distribution. They use the expectatid Knapsack size, and
both underage and overage penalty costs, to estimate aptselection of ads. They
provide a heuristic for solving Stochastic Knapsack witmtdwous/Discrete Random
Capacity, and prove the validity of their heuristic analgtly and numerically using a

Monte Carlo Simulation. To the best of our knowledge, thieng of the few papers
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that address stochastic knapsack sizes. The problem weHaeever, can be seen
as a modified bin packing problem where multiple bins of sastic capacity have to
be optimally filled. Besides, unlike the above paper, we doconsider overage and

underage penalties.

2.3 Stochastic Cutting Stock Problem

The cutting stock problem originated as a knapsack problérohwminimizes unused
capacity rather than maximize revenue from the includadstelt is based on indus-
try applications which require to solve how to cut stock ofeatain dimension into
smaller, heterogeneous order sizes in such a way as to raminaste of material, e.g.
in the paper or steel industry. The problem was introduce&ibyore and Gomory
(1961) [10], and over a series of papers, the authors propmoset of specialized tech-
niques to solve the cutting stock problem (Gilmore and GgmMi&63 [11], 1965 [12]).
One line of extensions to this problem looks at stock witltlséstic dimensions. The
randomness can be due to the nature of the stock, e.g., raaviahdike wood or stone
slabs may come in unequal sizes, quality variation withe stock or defects at the
edges of the stock. Scull (1981) [23] introduces a stochastiting stock problem in
which the uncertainty in the stock length is due to defectiseaedges. The stock is then
cut into standard-length units, and the authors find thergdtilistance from the edge at
which to start cutting in order to minimize expected wastaspection of the stock and
its defects is not possible. Ghodsi and Sassani (2005) {&dace quality and length
variability of the stock and the orders. A cut pattern needsetdecided upon arrival of
each piece of stock. The authors propose a dynamic algowithioh first prioritizes the
orders based on their quality level and quantity and thepgses a suitable cut pattern
for the incoming stock. Even though the orders have diffeqerality requirements,
their revenue is assumed constant, and the objective isnonizie waste. Fathi and
Kianfar (2009) [16] acknowledge that variability in quglihay also lead to difference
in revenue, and formulate a similar problem with quality &mgth variability with the

objective to maximize revenue. They formulate the cut paggoblem as a dynamic
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program and conduct a numerical experiment to show thatf@asible to solve this
problem in real time. The authors, however, do not commerthermperformance of
their algorithm with respect to revenue or compare it acdifésrent heuristics.

Much research has been devoted in the field of stochastiacgroging to solve
multi-stage recourse problems, and Birge (1997)[3] givearamary of formulations
and solution techniques. He gives a general model ofiié stage stochastic linear
programming with recourse. This formulation shares some characteristics with the
problem at hand, since the inventory of ads available chafigen one break to the next
based on the realization of break size. Birge goes on to idbessolution procedures
such as extreme-point methods, interior point methods aharm splitting. However,
the challenges we face are different as our problem is agenfgrogramming problem,
while considerations of integrality are not touched upon.

Techniques for solving Stochastic Integer Programs anéaél@in Birge and Lou-
veaux (1997) [4]. The modified L-Shaped method suggesteldom integratebranch
and bound with the standard L-shaped method, thus an extra step idaddere in-
tegrality constraints are checked for every feasibility ioatroduced as part of the L-
Shaped method. However they also state that “loosely stétedhis class of prob-
lems, is very unlikely that an algorithm will be found that whd solve the problem
in a number of operations polynomial in the problem datd.thé second stage of a
stochastic problem corresponds to an NP-hard problempiiigtless to design an ex-
act method that would require the solution of the secondestageach realization of
the random variable”. Thus, it warrants a study of heusstc alternate algorithms
that can actually run in polynomial time - even if their sabuts are global sub-optimal
- that can improve on the performance of schedules createdaiig More recently,
Haneveld and Van der Vlerk(1999) [18] survey structuralparbies of and algorithms
for stochastic integer programming models, mainly corgigdinear two stage mod-
els with mixed integer recourse (and their multi-stage resitens). However, they also
observe that “special purpose algorithms will turn out tonkeessary to obtain good
computational results for many real-life applications&£nS2005) [24] studies algo-

rithms for both two-stage as well as multi-stage stochastked-integer programs. He
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presents stage wise (resource directive) decompositidhads for two-stage models,
and scenario (price directive) decomposition methods faltirstage models. He also
studies a variety of structures ranging from models thawalandomness in all data
elements, to those that allow only specific elements to baenfied by randomness.
He discussebranch and price and Lagrangian relaxation for multi-stage SMIP, but
states that stage wise decomposition algorithms for thestage case but states that
scalability of the stage wise decomposition to multi-stagenarios is suspect.

The literature survey on integer stochastic programmirnb v&course conveys that
a specialized algorithm is in order for us to solve the mtage stochastic integer pro-

gram we have in hand.

2.4 Revenue Management in Media Applications

Literature for revenue management for advertising in TVabliegasting has looked at
the joint order acceptance and scheduling problem withrahetéstic break lengths.
For example, Kimms and Muller-Bungart(2007)[17] formelan integer program that
maximizes the broadcaster’s revenue, while taking intoactnon-conflicting product
constraints and specific scheduling requests. The autlsorpi@pose several heuristics
and conduct extensive numerical analyses that comparerperhce across the differ-
ent solution methods. Bollapragada and Garbiras(2003)§8)] discuss ad scheduling
but assume a deterministic audience distribution and gtWient preferences. They
automate the commercial scheduling process while gengragar optimal schedules
to meet constraints (such as product conflict requiremamispasition percentage),
and have implemented it in NBC. Zhang(2006)[30] uses a fghieal structure using
a model that uses a two step hierarchical approach, wheneevar(advertisers) are
selected first and then slots are assigned to selected camaiser

There has also been work done in the area of slot allocatidrcantract selection
for deciding on the inventory of ads a network has at the tiffe@adcasting. Araman
and Popescu(2007) [1] develop a model for allocating athreg slots between up front

and scatter markets under audience uncertainty in up frechtoperational planning



2.4 Revenue Management in Media Applications 11

decisions. Kimms and Muller Bungart(2007) [17] discussigtaneous optimization
of optimal contract selection and ad scheduling. They g@Wieuristics for optimal
ad scheduling based on contract constraints (such as at\wb&ition in the break an
ad can be shown, etc.) Our focus in this dissertation, hokewk be on the optimal
selection of ads in a given break and not on contract selectio

Finally, Degraeve and DeReyck(2003)[8] discuss broadadsscheduling using
SMS. Their model uses a linear decomposition of three sdbsdoat are prepared be-
fore the broadcast begins, given a limited capacity of brtaatitime slots, maximizing
customer response and revenues from retailers payingdborlaadcast. The problem
we analyze has different parameters from those outlineleérpapers above. Tradi-
tional ad scheduling heuristics consider deterministakrsizes, and differ only in the
number and type of constraints they face. To the best of oowlatdge, the problem of
scheduling ads in stochastic break sizes under similarti@nts as those faced when

break sizes are deterministic has never been studied before



Chapter 3
Optimal Policy

In this chapter, we will determine optimal selection p@githat maximize expected
revenue under some simplifying assumptions. Our objeddive find a general set of
rules that aids ad schedulers when faced with random bregkhs.

These rules are also applicable for a class of bin schedahdgutting stock prob-
lems where bin sizes are non-deterministic and items ar@@ivk weight and value.
Previous research in this area has focused on randomnéssiimalue and weight; our
contribution will be to add to this literature by considgyirandomness in bin sizes, and
extend it to cases where the number of bins is also stochascwill use the terms
“breaks” and “ads” throughout this document, but these @saubstituted with “bins”
and “items” for the general stochastic bin scheduling probl

We propose a dynamic programming solution methodology a/tte return func-
tion is a preference selection criterion and illustratedveditions required to guarantee
optimality of the selection. We also contrast the behavidhe Optimal Policy with

that of the Greedy Policy, and draw insights and implicagion

3.1 Assumptions

We consider a scenario where bredks, by, . .., by} occur sequentially. The number of
breaks has an upper bouNd> k > 1, and the capacities of the breaks follow a known

distribution, and are IID.

12
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A decision has to be made as to what ads are to be put in the vegldlde break.
For simplicity, we assume that we are always planning foakbg, and the index is
the number of remaining breaks expected to occur.

We assume that we only have two types of ads in the inventamgll fds of sizeS
and large ads of sizle= 2S. This is representative of the types of ads currently used in
American television networks, where ads are usually okeeiftb second or 30 second
durations.

We assume that the number of ads we have in our inventory rEtefiwith pos-
sibly a fraction of those ads having a non-zero value. Furthe ads are arranged in
descending order of value.

Thus, if S andL are the sets of small and large ads respectively, then

S={s1,%,...,0,...}
L={l,ly,...,0,...}

wheres > 5.1 > 0 andl; > lj,1 > 0Vi. We consider two scenarios: the size of the
current break is either known to the scheduler before henseggheduling, or it is

unknown. For each scenario, we consider the following cases

1. A base case, where the size of each break is limited tore8loe L, and the

number of breaks is fixed and known in advance,
2. An extension where the number of breaks is bounded butxeat, fi
3. An extension where break sizes are any bounded multige of

4. An extension where break sizes are any bounded multi@@ntl the number of

breaks is stochastic.

We assume that the revenue earned by each ad includes theosstatus of an
advertiser. We do not discuss per-client service levellisxdhapter, instead focusing
on service levels of large and small ads in general. We déspesclient service levels

in Chapter 5.
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We define the Greedy Policy as follows:

Definition 3.1 (Greedy Policy) For each break, select the combination of ads that
earns the highest revenue in that break.

We also assume that ads that are not fully aired do not earneseyue. Thus, by
Definition 3.1, the Greedy Policy only selects ads that caailexl completely within

the break.

3.2 Known Break Size

Our motivation to study this scenario comes from Cricketadi@asts where the on-
field director can predict the length of the current breakgaieling on the type of break
being taken and the state of the game. The ad schedulersebmledvhat ads to show
in the current break based on the advice given by the on-fiedgdtdr, keeping in mind
that the sizes of subsequent breaks are unknown.

This scenario could also occur in freight shipping where shipper knows the
capacity available in the next arriving ship but not thossufsequent ships, and has
to build an appropriate consignment given that an certambar of ships are expected
to follow.

Although the size of the current break is known, the schedieuld look ahead to
decide his selection, so that revenue earned ové&itmaks is maximized. The Greedy
Policy is not globally optimal because it fails to consides subsequent breaks and the
stochasticity in their sizes.

We now look at the four cases mentioned in section 3.1, ardisssOptimal Policy

for each.

3.2.1 Base Case

We assume that breaks are either of Soe of sizeL = 2S, and there is no uncertainty
about the number of breaks remaining. Breaks of Siaerive with probabilityp and

breaks of sizé. arrive with probability 1— p.
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One break

Only one ad of siz& can be scheduled in a small break. Thudyit= S s is always
packed. It is trivial to prove that this is the case irrespecdf the number of breaks
left, hence we will not discuss selection policy when therenir break size i in
subsequent sections.

In a large break, however, one ad of sizer two ads of siz&can be aired. Selec-
tion for a large break whek = 1 reduces to a Greedy Policy. The scheduler chooses
between the more profitable ¢;,s;) andl,. We state the following lemma without

proof:
Lemma 3.1. When k=1, and b; = L, the optimal policy is to:
1. sdectl1ifli > 5+

2. sdect (s1,%) ifsi+5> 1

Two breaks

b1 by Optimal selection

S s,
S1,$+S3 if s, +s532> 11
SR otherwise
S1+%,83 ifsg+s>11
L S .
1,91 otherwise
Si+9,8+S% ifss+sa>1
S1+S,11 fs+s>l1 >+
L L .
l1,81+ %2 ifli>s1+5>1s
I1,12 otherwise

Table 3.1: Possible selection options kot 2

Fork = 2, we can write an exhaustive list of all the possible casbes@& are listed

out in Table 3.1 From the table, we see that wber- L, the scheduler would choose

(s1,%) if:

(s1+S2)+pss+ (L—p)max{li,ss+ s} > 1+ psi+ (1— p)maxXlz, s1+ s} (3.1)
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We use the above equation to prove the optimal policy.
Lemma 3.2. When k = 2, and b; = L, the optimal policy is to:
1. sdectlifli1 >s+53
2. sdlect (s1,9) ifl1 <s+s3

Proof. Case 1
Letl; > ss+s3. Let R andRs be the revenues earned by seleclingrst ands; + s,

first respectively. From equation 3.1, we can write:

R—Rs
= [l1+ ps1+ (1 — p) max{l2, s1 + Sp}]
—[(s1+%2) + pss+ (1 — p) max{l1, S3+ Sa}]
> [li+psi+(1-p)(s1+2)]—[(s1+%2) + pss+ (1 — p)l4]
(lh>s+s3>3+%)
> p(li— (s2+%3))
>0 (1> s45s)

Therefore, wher; > s+ s3, R > R, solq is packed first. Similarly, we can prove

Case 2by showing thaRs— R, > 0 whenl; < sp+ S3. O

While the Greedy Policy comparés ands; + S, Lemma 3.2 comparelg and
S + s, setting a lower threshold fdg to be optimal, and improving its chances of
being selected.

If b, = L andCase lapplies, then the Optimal Policy selesist s, for by, (from
Lemma 3.1), while the Greedy Policy selelgtsand both policies earn equally.

Consider, however, the case when= S. The Greedy Policy then earest s, + Ss.
The Optimal Policy, however, earfs+ s which is more than the revenue earned by

the Greedy Policy, sindg > s, + ss.
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Whenlq < s+ s3, and we schedullg in by, then we are forced to sched@gin by
whenb, = S earningl1 +s;. However, we know thad; + s, 4+ S3 > |1+ S1, therefore it
is sub-optimal to schedule in b;. Thus, the condition ilCase 1describes the optimal
threshold forl; to be an attractive candidate foy.

We next take a look at the multiple break case.

Multiple breaks

When the number of breaks remaining is greater than two, eehse the policy out-

lined in Lemma 3.2 extends to look aheaditbthe remaining breaks.
Theorem 3.1.Whenk =n, and b; = L, the optimal policy isto:
1. selectlyifly > s+snia

2. select (s1,%) ifl1 < Sn+Snv1

Proof. Proofisin Appendix A. O

Consider the situation where all breaks subsequert; tare of sizeS. If we
schedule(s;, sp) in by, we would have scheduled afs, sy, ..., S, Sh+1) at the end of
the planning period. Therefore, we get a higher revenuelegtieg(11,s1,%, ... ,S1-1),
sincely > s+ Sy 1.

It is trivial to see that if one or more large breaks arrivaeasl, the Optimal Policy
would earn at least as much as the Greedy.

As the number of breaks remaining increases, the thresbholgeavhich it becomes
optimal to select; decreases, and selectingoecomes more attractive. Service levels
of large ads, therefore, are higher with the Optimal Poli@ntwith the Greedy Policy
when breaks of size occur and values of large ads fall in the rarige+ sh+1, S1+S2)-

Service levels of small ads are higher with the Greedy Patiay with the Optimal
Policy, since the Greedy Policy has a higher threshold foedaling large ads, and is

more likely to schedule small ads for the large breaks as well
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In extreme cases, the Greedy Policy can schedlilemall ads in the long breaks
and be left with small ads of value zero, losing the oppotyuto earn from small

breaks.

3.2.2 Stochastic Number of Breaks

In this section, we consider a scenario where the numbereafksrremaining has an
upper bound, but is not fixed. To model this scenario, we asghatall breaks arrive,
but that some breaks have size zero. We assign probabigitisat a break arrives
with size zero,p; that the break has siz&and p, that the break has side where
Po+ P1+p2=1.

The motivation to model this scenario comes from cases whieradcasting net-
works cannot predict how many breaks they can take in the ghut&know the max-
imum possible number of breaks possible). In cricket, fetance, a break is taken
every time a wicket falls. The maximum number of wickets et fall in an innings
is ten, however, the actual number of wickets that fall inhenings may be lower.
This scenario can occur in other situations as well, foransé in freight shipping,
where ships can arrive but have no space for accommodatngahsignment to be
shipped.

We study the decisions of the scheduler when the number akbreemaining are

one and two, then use induction to find the optimal policy & general case.

One break

Selecting ads to be scheduled for one break of known lengthivial, and exactly
the same as outlined in Lemma 3.1. The introduction of bredlssze zero does not
affect ad selection because we already know the size of tie) weak that has to be
scheduled. As before, if the break is of sgave schedule,;, and if it isL, we choose

the larger of; and(s; + ). If itis of size zero, we schedule nothing.
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Two breaks

When there are two breaks in the planning period, the OptiHoaty must look ahead

to b, to decide on the optimal selection fb§. The second break could be of size
zero, which would make the two break case the same as the eale taise. Therefore,
with probability po, the greater of; and(s; + ) should be selected. However, with
probability p; + p2, bo could be non-zero, and Lemma 3.2 applies. We state the Optima

Policy for two breaks formally below.

Lemma 3.3. Whenk = 2, and b, = L, the optimal policy when pg > 0 isto:
1. select 1 if (po+ p1)l1 > po(st+S2) + P1(S2+ Sa)
2. select (s1,5p) otherwise

Proof. Case 1
Let (po+ p1)l1 > po(S1+S2) + p1(S2+S3), and letR; andRs be the revenues earned by

selectind first ands; + s, first respectively. Then:

R —Rs=[l14 po0+ p1S1 + p2max{l2, s1 + Sy }]
—[(s1+92) + po0+ p1S3+ p2max{l1, Sz + 4}

However,

(Po+ p1)l1 > po(s1+S2) + pi(S2+S3)
= (Po+ P1)l1 > Po(S3+S4) + P1(S3+ %)

= 1> (S3+s4) assumingypp + py > 0

We assume thaip+ p1 > 0, otherwise we would have the degenerate case whetrel
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and all breaks would be of the same dizeSubstituting folRy — Rs, we get:

R —Rs>[l1+ pisi+ p2(s1+ )] — [(s1+S2) + p1S3+ p2li]
> (po+ p1)l1— po(s1+S2) — P1(S2+ S3)
>0 (. (po+ p1)lL> po(s1+92) + pr(S2+3))

Therefore, wher(po+ p1)l1 > po(s1+S2) + p1(S2 +S3), R > Rs, sol; is selected.
Similarly, we can prov€ase 2by showing thaRs— R > 0 when(po+ p1)l1 < po(s1+

$2) + P1(S2+ ). O

If b, =0, we comparé; and(s; + S), since nothing can be scheduled o In

other words, seledj if:

Pol1 > po(s1+%2) (3.2)

If b, =S selectind; in by earnd; +s; and selectings;, ) in by earns(sy + s+

s3), S0 we would seled if:

pi(li+s1) > pi(s1+S2+ %)
= p1l1 > pi(2+S3) (3.3)

Finally, whenb, = L, the Optimal Policy seleci{%;, s) in b, and the Greedy Policy
selectd in by, therefore both policies earn equally. Therefore, Lemm3acBecks the
expected value earned by selectiagagainst the expected value earned by selecting
(s1,S2) whenby is not of sizeL. Combining Equation 3.2 and Equation 3.3, we get the
condition described iCase 1

We next look at the multiple break case and use induction ewepthe Optimal

Policy.
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Multiple Breaks

When there are multiple breaks remaining, we look aheadl teedaining breaks to

form the rule. We state the Optimal Policy formally as folkow

Theorem 3.2.Whenk =n, pp > 0, and b; = L, the optimal policy isto:

. n-1 n—1 N
1. select Iy if (po+ p)" 1 > Z) K i ) Py V7P (51 +S2)
is

2. select (s1,sp) otherwise

Proof. Proof is in Appendix A. O

The intuition behind Theorem 3.2 is similar to that of Lemma. 3If a break of
sizeL were to occur subsequent to the current break, both the GRelity and the
Optimal Policy would earn equal revenues.

The Optimal Policy estimates the value of schedulingssuming that none of the
subsequent breaks are of sizeThe reasoning is similar to the one used in Equation 3.2
and Equation 3.3, except in the multiple break case wherentineber of breaks is
n—1,i breaks of siz&andn— 1—i breaks of size zero can occur with probability
" p(()n_l)_i p. The rest of the reasoning follows.

The threshold above whidh is an attractive ad to be scheduled has increased due
to the introduction ofpg. For instance, in the base case, lfpto be optimal when two
breaks remained; had to be greater thas + s3 . However,l; now has to be greater

than

m(p0(51+52)+ P +) >+

The Optimal Policy weighs the advantages of schedulingdlgelad against the
probability that many of the subsequent breaks could bezaf zero and hence earn
nothing. It does this by adjusting the threshold for schiedul, based on the break
size distribution.

The Optimal Policy helps networks decide on their prefemex of ads based on

the distribution of break sizes. When there is randomneseamumber of breaks,



3.2 Known Break Size 22

networks require a higher value for large ads to be shownpeoed to the case where

the number of breaks is fixed.

3.2.3 Multiple Break Sizes

In this section, we study the Optimal Policy when break saesdistributed between
[S,2S,...,MS. In addition, the size of the current break is assumed tm8ewhere
m < M. As before, we study Optimal Policy when the number of breaksaining are

one and two, and use induction to prove the Optimal Policyifermultiple break case.

One Break

For the one break case, we choose a set of ads that give ussihpadssible revenue

within the known break sizenS. This corresponds exactly with the Greedy Policy.

Lemma 3.4.1f by = mSand k = 1, then the Optimal Policyistoselect (I1,...,11,S1,---,Sm-21),
where A isthe largest index such that:

) >Snoai1tSm-2ay2
e 2A <m

Proof. LetO = (l1,...,15,81,...,Sn_22 ) be the set that we want to prove is optimal. To
prove optimality ofO, we have to prove that any changeflcwill cause the revenue to
decrease.

We note thatifgA : 1, € O, thenVi < A, |; € O, since

li>1) > Sn-2a+1+Sn-2142 = Sm-2i+1+Sm-2i42and 2<22 <m

Now consider the case where we do not select Sprmé1,1,]. Then, we can either
include(Sm_2x11,Sm-_2112), Or we can include, . ;.

Selecting(Sm_23 +1,Sm_21+2) IS inferior becausd; > 1, > (Sy_2141+ Sn-2142):
therefore our revenue will decrease. Similatly> 1,1, so substitutind; with | 1

will also decrease our revenue. It is trivial to prove thaarmhing anys € [S1,Sn_2x]
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with sy, 1 Will similarly cause a drop in revenue. Therefddds the optimal set of

ads to be scheduled when= 1. O

The proof for Lemma 3.4 shows that evdrye [I1,1,] should be scheduled for
maximum revenue. In general, it is sufficient to prove thdas defined in Lemma 3.4)
must be scheduled; since evéri |, belongs to the optimal set, optimality of selecting
[, implies optimality of selecting.

We now look at the two break case.

Two Breaks

The two breaks case follows Lemma 3.2; we now check if theeladj, earns more
than the sum of the small ads at indexas- 2A +2 andm— 2A + 3. We state the

Lemma formally below.

Lemma 3.5.1f by = mSand k = 2, then the Optimal Policyistoselect (I1,...,15,S1,---,Sm-21),
where A isthe largest index such that:

e ) >Snoari2tSm a3
e 2A <m
Proof. As before, leO = (I1,...,1,,S1,...,Sn_21)-

Let:

O = (|17"'7IA7IA+17317"'7SH’172A*2)

Os= (lla'~'7|A717sla'~'73’n72/\+2)

Let Ry, be the revenue earned by selecting the ads,iand letR, andRs be the
revenues earned by selecti@gandOs respectively.

We have to prove that:
1. R, >R and

2. Ro>Rs
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It is trivial to prove that ifl y .1 > Sp_21 +Sm_21+1 and ZA +1) > m, then substi-
tutinglj > 1, 1 from O and introducingd, . ; is sub optimal (for the same reason that
we packiy in a break of lengtlt, notly).

We useV(l,s) to denote expected revenue earned from scheduling adsdakior
onwards, and the indexes of the first large ad and the firstl sich&h our inventory are

| andsrespectively. Then,

A m—2A

Ro = zln + 5 Si+Va(A+1,m-24+1) (3.4)
i= =1
A+1 m—2A -2

R = Zl|i+ S si+Ve(A+2m—-22 - 1) (3.5)
i= =1
A-1 m—2A+2

Rs = Zh-{— z Sj+V2(A,m—2A+3) (3.6)
i= =1

Case 1:
A m—2A

Ro—R = Zl|i+ z Sj+Vo(A+1,m—2A +1)
= =i

A+1 m—2A—2
Zlh—f- z Sj+Vo(A+2,m—2A —1)
= =

=—hi1tsma-1+Sma
V(A +1,m=24 +1) — V(A +2,m—2A — 1)

If 1x11 <Sm_2x +Sm_2r+1. thenly o <Sp2r_2+Sm_21_1. Then by induction, if
bp > 2S, V(A +2,m—2A — 1) would earn(sy_») —1 + Sn_2x ) followed by the sum of
values of ads selected from the $b{_ 5, ...,Sn_21,1,-- -} For a break of correspond-

ing size V2(A +1,m—2A + 1) would earnat least |,  ; followed by the sum of values



3.2 Known Break Size 25

of ads from the sefl) ,»,...,Sn_2141,---}- Thus, we can write:

Vi(A+1m—2A+1)—Vi(A +2,m—2A —1)

> P1(Sm—22+1—Sm-21-1) (3.7)

M
+ ;pr (IA+1—[Sm-22—1+Sm-21])

Substituting forR, — R}, we get:

Ro—R > -y 1+Sn2a-1+Sn-2x

+ P1(Sm-22+1—Sm-21-1)
M
+ ;pr (a1 —[Sm-22—1+Sm-21])
=
> P1[—Irs1+Sm-20-1+Sn-21 +Sn-22+1 — Sm-22—1)

> P1[—lr41+Sm-21 +Sm-2441]

>0 (1 <Sm2a +Sm-2141)

Case 2:R, — Rs > 0 can be similarly proved:

A m—2A
RO—RS=ZIi+ z Sj+Vi(A +1,m—2A +1)
i= =1

A-1 m—2A+2
lei+ z Sj +Vi(A,m—2A +3)
= =

=1y —(Sm-2r 11+ Sm-2112)
+Vi(A +1,m—2A +1) —Vi(A,m—2A 4+ 3)
Using similar arguments as before,
Vi(A+1,m—2A +1) —Vi(A,m—2A +3)

> P1(Sm-2141 — Sm-21+3)

M
+ ; Pr (=) + [Sn-2r41+Sm-21+2])
r=
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After substituting folR, — Rs, we get:

Ro—Rs> 1) —(Sm_2r+1+Sm-2142)

+ P1(Sm-22+1 — Sm-24+3)
M
+ ZQIOr (—=Ix +[Sm-21+1+Sm-2242))
=
> Py — (Sme2a4+2+Sm-2243))
>0 (1) > Sn2a12+Sm-21+43)
]

By setting the threshold on tHeast valuable large ad that can be scheduled, the
scheduler only needs to check backwards ftagp for the least valuable large ad that
satisfiegCase 1 When the appropriate ad is found, all large ads that ha\egrealue
are scheduled, and the remaining time in the break is fill¢ll thie most valuable small

ads.

Multiple Breaks

The multiple breaks case uses induction, and the intuitedmiia the proof is similar to

that used in Lemma 3.5. We state the Theorem formally below.

Theorem 3.3.1f by = mSand k = n, then the Optimal Policyistoselect (I1,...,15,S1,.--,Sn-22 )
where:

° ) >snoaintSm2rinia
e 2A <m
Proof. Proofis given in Appendix A. O

Consider the case wheke= 1, and the break of siz@Sis splitinto | 7] breaks of
size S (and an additional break of si&if mis an odd number). Then by Theorem 3.1,
l1 would be compared t0y,2 + Sn/2+1), and if it is lower, to(Sy 211 + Sm/2+2), and

so on until eithet; is greater than some combinationspf-s .1, wherei > m/2, or the
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large breaks are exhaustedllfs not scheduled in the fir$%‘j —1 breaks, thely will
finally be compared t@sm_1+ Sm), which corresponds t(s,, ) 11+ Sn_2142) Where
A=1.

To see why this is true for ady whereA > 1, assume thatitis true fof,..., 1, _;.

If 1, _1 has been selected for airing, thgn, > (Sy_21 13+ Sm-_21+4)- If 1y_1 is sched-
uled for thelast large break, then ad$,, . 3,Sn_21.+4) are not scheduled, and the
last small ads to be scheduled ésg_5) . 1,Sn_2142)- Forl, to be an attractive candi-
date to be scheduled, therefore, it has to be more valuastettie two least valuable
small ads whicthave been selectedsy, 23 11,Sm-2112)-

Whenk > 1, the index of small ads th&t has to be compared against increases
by exactlyk, because the optimal policy assumes the worst case wherg leneak
subsequent to the current one is small, similar to the iotin Section 3.2.1.

From a managerial perspective, the Optimal Policy reducegptexity; the Greedy
Policy would have to generate every combination of ads thatlie break and select
the most profitable. Thus, despite the added complexity wihigabreaks of multiple

sizes, the Optimal Policy scales well.

3.2.4 Stochastic Number of Breaks of Multiple Sizes

In this section, we study the Optimal Policy when break saesdistributed between
[0,S,2S,...,MS. The size of the current break is assumed tavi% wherem < M.
As we did in Section 3.2.2, we allow breaks of size zero to mtudecase where the
number of breaks is stochastic. We use probab'[hityo denote the probability of a
break of size occurring, where € [0,M] and Z)p, =1.

We study the Optimal Policy when the number of breaks remgimaire one and

two, and use induction to prove the Optimal Policy for the tiple break case.

One Break

When the current break is the only break to be scheduled,rensdize of the break is

known, we use the same policy as outlined in Lemma 3.4. Weregd the lemma here
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without proof.

Lemma 3.6. If by = mS pg > 0, and k = 1, then the Optimal Policy is to select
(I1,...,15,81,...,Sn_22 ), Where A isthe largest index such that 2A < mand:

1A = Sm2r11+Sm-2142

Two Breaks

We know that Lemma 3.6 applies fop when it is the only break remaining. We will
use induction to prove optimality when two breaks remain.
As we did for Lemma 3.5, we prove that it is optimal to sellgctvhen it satisfies

the rule for optimality, from which we can infer optimality selecting alll; > 1, .

Lemma 3.7.I1f by = mS pg > 0, and k = 2, then the Optimal Policy is to select
(I1,...,15,81,...,Sn_22 ), Where A isthe largest index such that 2A < mand:

(Po+ P1)lx > Po(Sm-22+1+Sm-21+2) + P1(Sm-21+2+Sm-21+3)

Proof. Let:

A

O=(|1,...,|A,Sl,...,8m,2;\)
O = (.-, 1a,h41,81, - S22 —2)

Os = (lla .. '7|)\—17sla .. '7Sm—2)\+2)
LetR,, R, andRs denote the revenues earned by seledﬁn@ andQOg respectively.
We have to prove that
1. Rh>R
2. Rb>Rs

We again us#/(l,s) to denote expected revenue earned when selecting ads &k bre
i onwards, when the indexes of the first large ad and the firstl daarel ands

respectively.
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Case 1:By definition:

(Po+P1)lx > Po(Sm-22+1+Sm-21+2) + P1(Sm-2242+Sm-2243)  (3.8)
and(po+ P1)la+1 < Po(Sm-2a—1+Sm-21) + P1(Sm-22 +Sm-2a+1)  (3.9)

Then,

A m—2A
RO_RlzzllijL > sj+Ve(A+1m-2A +1)
i= =1

[)\ +1 m—2A —2

lei-i— z Sj+V2(A+2,m—-2A —1)
= =

=—hi1+Snaa1+Sna
+Vo(A+1,m—2A +1) —Vo(A +2,m—2A —1)

From eq. 3.9, we have:

(Po+P1)las1 < Po(Sm2a—1+Sm-21) + P1(Sm_22 +Sm-2441)
< Po(Sm-22—2+Sm-21-1) + P1(Sm-21 -1+ Sm-21)
— (Po+P1)lr+2 < Po(Sm-22—2+Sm-22-1) + P1(Sm-21—1+Sm-21)

(sincely 2 <lyi1)

Then by induction, foby > 2S V(A +2,m—2A —1) earns u§Sy,_2) —1+Sm-21)
followed by the sum of values of ads selected from thgbet,, ...,Sy 21 11,---}. On
the other hand, witN>(A +1,m—2A +1) we earnat least |, _; followed by the sum

of values of ads from the s¢t) 5,...,Sn_2111,--.}. Thus, we can write:

Vo(A+1,m—2A+1)—Vo(A +2,m—2A —1)
> P1(Sm—21 41— Sm-22-1)

M
+ZZ Pi(h+1—[Sm-2r-1+Sm-22])
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Substituting forR, — R}, we get:

Ro—R > -y 1+Sn2a-1+Sn-2x

+ P1(Sm-224+1—Sm-21-1)
M

+_§2 Pi(a+1—[Sm-2r-1+Sm-22])
i=

> (po+P1) [~1r+1+Sm-22-1+Sm-22] + P1[Sm-21+1 — Sm-21 1]
> —(po+P1)lr+1+ Po(Sm-2r—1+Sm-21) + P1(Sm—21 +Sm-22+1)
>0 (fromeq. 3.9

Case 2R, — Rs > 0 can be similarly proved using eq. 3.8. O

It can be seen that the intuition behind Lemma 3.7 is simdaour discussion in
Section 3.2.3: the revenue earned by the Optimal Policyusleg the case where we
have|m/2| breaks of size 8 (and one break of siz8, if mis an odd number). Since
po > 0, Theorem 3.2 would apply for each break of si&e 2

The intuition behind the probabilities follows the disaassin Section 3.2.2. The
Optimal Policy adjusts the threshold above which large adsatractive based on the
break size distribution, and these thresholds increagg agreases and other proba-
bilities decrease.

Thus the case of multiple break sizes with stochastic numbereaks can be seen

as a combination of Sections 3.2.2 and 3.2.3.

Multiple Breaks

The multiple breaks case uses induction, and the intuitedmiria the proof is similar to

that of Lemma 3.7. We state the Theorem formally below.

Theorem 3.4.1f by = mS, pg > 0, and k = n, then the Optimal Policy is to select
(I1,...,15,81,.--,Sn_22 ), Where A isthe largest index such that 2A < mand:

B n—1 n—1 o
(Po+p1)" M) > Z) K i )IOB TpL(Smo22 4141+ S22 4i42)
i=
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Proof. Proofis given in Appendix A O

As discussed in section 3.2.2, the threshold has once ageaieased fot1; this
is because of the introduction of breaks of size zero. Ouglms from Section 3.2.2
still apply. The Optimal Policy sets a threshold, based @nlteak size distribution,
that each large ad should exceed to be scheduled. As we haliedstthe higher the
probability of breaks of size zero, the higher the value thege ads should have to
make them attractive candidates for scheduling, givendheesset of small ads.

In this section, we have studied the Optimal Policy for schied ads in breaks
of stochastic sizes, when the size of the break for which wecarrently scheduling
is known but those of subsequent breaks is not. We concluttetih@ most general
case, Theorem 3.4 where settikigand pg to appropriate values will give us the rules
described in Theorem 3.1, Theorem 3.2 and Theorem 3.3. Thusave described the
rule for the full set of scenarios when the scheduler is awhtke size of the break to
be scheduled next.

In the next section, we study the Optimal Policy for casesmthe scheduler does
not know the size of any of the breaks, but knows only the ibistion of break sizes

based on which he can create a sequence of ads to be scheduled.

3.3 Unknown Break Size

In this section we study scenarios where we do not know treeddiany of the breaks
at the time of scheduling. Our motivation arises from cashkeres the break begins
without the on-field director being able to advice the sch&duon what the break
length is expected to be, and an ad schedule has to be madkdrdgen the break
length distribution. We assume that break sizes are IID.

As before, we discuss Optimal Policy for the four cases meetl in section 3.1.
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3.3.1 Base Case

In the Base Case, breaks can be of two sizes, s®alid largell =2S). A small break
occurs with probabilityp, and a large break occurs with probability-Jp. We study
our selection options when a choice has to be made betwesstisgleither(s;, s) or

I, before the break size is observed.

One break

When scheduling for one break unknown size, we choose themaxof the expected
revenues from selecting eithlaror (s1,sp). If a small break occurs, selectirig, s;)
earnsss, since onlys; can be completely aired. Selectihgearns nothing, since it
cannot be fully aired. If a large break occurs, selectimgs,) andl, earns; + s, and
[1 respectively.

Therefore the expected revenue from selectigs,) is ps; + (1 — p)(s1+s2), and
the expected revenue from selectlags (1— p)l;.

We state the following lemma without proof:

Lemma 3.8. If k = 1, and the break size is unknown, the Optimal Policy isto:
1. selectly if (1—p)l1 > psp+ (1— p)(s1+ %)
2. select (s1,5p) otherwise

We next look at the Optimal Policy when two breaks remain.

Two breaks

Unlike Lemma 3.2, where the Optimal Policy compalednds, + s,.1, the absence
of ex-ante information forces us to choose myopically between the ebqukerevenues
earned by selectinly and(si,s,) irrespective of the number of breaks remaining. We

state the optimal policy formally as follows.
Lemma 3.9. When k = 2, and the break size is unknown, the optimal policy isto:

1. sdlectly if (1—p)ly > psy+ (1—p)(s1+S2)
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2. sdect (s1,9) if (1—p)li < ps2+ (1—p)(2+)
3. select either 17 or (s1,S) otherwise

Proof. From Lemma 3.8, the rule holds good for one break. ReandRs denote the
expected revenues from schedulingand (s1,sp) respectively. LeV(l,s) denote the
revenue earned from breaknwards, when the indexes of the first large ad and the first
small ad ard ands respectively.

Case 1:When(1—p)l; > ps;+ (1 — p)(s1+ ),

R —Rs=p(0+V2(1,1)) +(1—p)(l1+V2(2,1))
—Pp(s1+V2(1,2)) — (1—p)(s1+ 52+ V2(1,3))
=(1-ph-psi—(1-p)(s1+%)
+ p[V2(1,1) = V2(1,2)] + (1 - p)[V2(2,1) — V2(1,3)]
>(1-pli-pss—(1-p)(s1+%)
+p[(1—-p)li—(1—p)l]
+(1-p)p(s1) + (1 - p)(s1+2) — (1= p)l4]
(V2(2,1) = p(s1) + (1= p)(s1+ )
> pl(1-pli—psi—(1-p)(s1+%)]
>0

R —Rs >0 = itis optimal to select; first.

Case 2:When(1—p)l1 < psz+ (1— p)(S2 + S3)

Re—R =psi+(1-p)(s1+s)— (1-p)l
+P[V2(1,2) =V2(1,1)] + (1= p)[V2(1,3) = V2(2,1)]
>psi+(1-p)(si+%) —(1-pli+p[(1-p)li—psi—(1-p)(s1+)]
+(1=p)[1=p)(l1) —ps1— (1= p)(s1+)]
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("."V2(1,2) andV»(1,3) > (1—p)(I11))

>(1-p—(1-p)pst+(1-p)(s1+S2)—(1—p)l4]
0

v

Rs—R >0 = itis optimal to selec{s;, s) first.

Case 3:Whenps;+ (1—p)(s1+S) > (1—p)l1 > ps2+ (1— p) (2 + ),

R—Rs=(1-pli—psi—(1-p)(s1+)
+ PVa(1,1) = Va(L,2)] + (1 - P)Va(2, 1) ~ Va(1.3)
=[1-pli—psi—(1-p)(s1+%)
+p|psi+ (1—p)(si+52) — (1P
+(1-p) [P+ (- p)(s1+52) — (1— Pl
=0

R =Rs = we are indifferent between selectihgnd(s;, sp). O

The Optimal Policy shows that there is a region where selgtiiis strongly prefer-
able, a region where selectiig, s,) is strongly preferable, and a region where we are
indifferent between selectirlg and(s;,sz). We shall look into the multiple break case

before discussing the implications of such a partition.

Multiple breaks

Theorem 3.5. When k = n, and the break size is unknown, the Optimal Policy isto:
1. selectly if (1= p)l1 > psy+ (1—p)(s1+S2)
2. select (s, ) if (1= p)l1 < psn+ (1= p)(sn+Sn+1)

3. select either 15 or (s1,S) otherwise

Proof. Proofis given in Appendix A O
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Theorem 3.5 extends Lemma 3.9. There are two regions whectieduler has a
strong preference over the possible choices, separateddgyam of indifference.

In the first region Case 1, |1 is strongly preferable based on a myopic comparison
of the expected revenues earned from seledtirand (s;,S). Sinces; ands, are the
most profitable small add; earns a higher expected revenue than any combination of
small ads to be selected.

The same can be said of the third regi@aée 3; since expected revenue from
selectingl; is lower than that from selectin@n, sh+1), we select the smaller ads first.
If we are faced with a series of only small breaks, we sche@ule. ., s,) through the
match, earning more than if we had schedulefirst. If a large break were to arrive
subsequently, the strategy would checlkCdse lapplies, earning at least as much as
the Greedy Policy.

The indifference exists because when breaks can only be®8sir L, and (1 —
p)l1 > sh+ (1— p)sh+1, then the Optimal Policy expects to schedylethen(1— p)ly
is greater than som; + (1 — p)sj+1), wherej > 1, andCase lapplies.

In the worst case, suppos$g— p)l; = sh+ (1 — p)sh+1, and small ads have been
scheduled for the first— 1 breaks, which are found to be short. For tfiebreak, ex-
pected revenue from selectihgwill be compared to expected revenue from scheduling
(sn,Sn+1), andCase lapplies. Thereforg is guaranteed to be selected for some break
in the match.

Similarly, since selectings;,s;) earns higher expected revenue tlaag large ad,
then in the worst casé, is repeatedly selected for the first- 1 breaks which turn out
to be short. Then for thé" break,Case 2will apply and(sy, sp) will be selected. Thus
(s1,S2) is also guaranteed to be selected for some break in the match.

Therefore we are indifferent between selectingnd(s;, sz) for b;.

From a managerial perspective, the region of indiffereneesgthe network flexi-
bility when accepting orders with client constraints at $kert of the match. Consider
a scenario where a client wishes the network to scheduleya &a when a particular
wicket falls (and breaks in the match can only be of stzer L). The network can

accept this scheduling constraint on a long ad as long axpgexted value from airing
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the ad is higher than the expected value of airing two smalimtheir inventory which
fall in the nt" and(n+1)t" position, wheren is the total number of breaks in the match.
It is possible, however, that the above condition is satisteit the ad is not the most
valuable large ad in the inventory when the break occurs.nBtwork can still use the
Optimal Policy and the break size distribution to quote aigdb the client to make the
ad a viable candidate for that break. The exact methodobggyond the scope of our
current discussion, however pricing policies based on ghien@l Policy is an area for

future research.

3.3.2 Stochastic Number of Breaks

In this subsection we consider an extension where the nuofli®eaks is stochastic.
As in Section 3.2.2, we introduce a probabilpy of having a break of size 0, while
we assume that break could be of s&eith probability p;, and of sizeL = 2S with
probability p.. We do not consider breaks of size greater than

As before, we assume that a break of size zero might arriveapaint in the
match, and that we are always aware of the arrival of such abend discount the
number of breaks remaining accordingly. All other assuorgiand notations as listed

in Section 3.1 still remain.

One break

With only one break possible, the scheduler chooses gyebdtiveen the expected
values of selectingg and(s;,s). If the last break turns out to be of size zero, either
strategy earns zero; if it is of siZ& we earn zero witly ands; with (s1,S); if it is of
sizeL we earnl; ands; + s, respectively.

As before, we propose a lemma without proof for the one braak:c

Lemma 3.10.When k = 1, pp > 0, and break sizes are unknown, the Optimal Policy is

to:

1. selectlqif paly > p1S1+ p2(s1+S2)
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2. select (s1,5p) otherwise

Two breaks

For the two break case, the strategy continues to be a mybpicebetween the ex-
pected revenues earned from selectinand(s, s;), despite the introduction of breaks

of size zero.

Lemma 3.11.When k = 2, pp > 0, and break sizes are unknown, the Optimal Policy is

to:
1. select |y if poly > p1si+ pa(si+ )
2. select (s1,5p) otherwise

Proof. Let poly =t+ p1S1+ pa(s1+S2). We useR,Rs, andV(l,s) as defined in the
previous subsections. From Lemma 3.10, the rule holds gmoahie break.

With the introduction ofpp, expected revenues earned are as follows:

R = (po+ p1)Va(1,1) + p2(l1 +V1(2,1))
Rs = poV1(1,1) + p1(s1+Vi(1,2)) + pa(s1 + 2 +Vi(1,3))

Case 1 When(1—p)l1 > psi+ (1— p)(s1+ %),

R —Rs= (po+ p1)Va(1,1) + p2(l1 +V1(2,1))

—poV1(1,1) — pa(s1 +Va(1,2)) — p2(s1+ 52+ Va(1,3))
=p1(Vi(1,1) —=s1—Va(1,2)) + p2(l1 +V1(2,1) — (s1 + 52) —Va(1,3))
=t+p1[Vi(1,1) —V1(1,2)] + p2[V1(2,1) — V41(1,3)]
> 1+ pa[p1s1+ P2(s1+S2) — P2la] + P2[pasi + p2(s1 +S2) — pali]
> t+ pa(—t) + p2(-t)
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> Pot

>0.pp=>0,t>0

Thus,R — Rs > 0 = itis optimal to selectiom first.
Case 2 When(1—p)l1 < ps1+ (1—p)(s1+S2), lett + pali = p1S1+ p2(s1 + S2),
wheret > 0.

Proceeding along similar lines @ase 1 we can prove tha®s— R, > pot > 0. [

Case landCase 2correspond with the cases in Lemma 3.9. The additiopgof
does not affect the two regions of strong preference bedhesxpected revenue when
the break is of size zero is the same whether we seleltion(s;, sp). Therefore, our
decision is solely based gn andpy, and the expected revenues earned thereby.

There is noCase 3corresponding to Lemma 3.8 becai&andL are not the only
break sizes possible. When the expected revenue from isgléctis less than that
from selecting sy, s2), Case 2applies. From the proof for Lemma 3.11, the difference
between the two expected revenues is at I@gst wheret > 0 is the difference in
expected revenue. Singg > 0, we are indifferent between schedulingand (s, s;)

only whent = 0; i.e. pal1 = p1S1+ P2(S1 + S2).

Multiple breaks

From Lemmas 3.10 and 3.11, we can see that the myopic rule golad when we plan
for either one break or two. In this section, we use the previ@sults and prove by

induction that the rule holds good for any number of breaksaiaing.

Theorem 3.6.When k= n, pg > 0, and break sizes are unknown, the Optimal Policy is

to:
1. select Iy if pal1 > p1sy+ P2(S1+ %)
2. select (s1,5p) otherwise

Proof. Proofis given in Appendix A O
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Theorem 3.6 can be seen as a special case of Theorem 3.5pghef® As before,
we have two regions where the scheduler has strong pretsebgt there is no region
of indifference (except for the point where expected reeeinam selectind, equals
that from selectings;,s;)). Therefore, when the number of breaks is not fixed and
break sizes are not known in advance, the scheduler is foocselect betweeh and

(s1,S2) myopically based on the expected revenues earned.

3.3.3 Multiple Break Sizes and its variants

In this section, we consider the case where breaks can beedf$:ES 3S, ..., MS), and
the size of the break is not known in advance.

As shown in Theorem 3.5 when breaks are of s&ges2S, the Optimal Policy when
break sizes are unknown is based on a myopic comparison @&xiected revenues
earned. When the maximum break size $ ®e choose betwedn and(s;,sz). This
policy is independent of the number of breaks remainingiesbreaks are IID and break
size is unknown for each break.

When the maximum break size S, the Optimal Policy should provide thper-
mutation of ads to be scheduled based on the break size distributiomsider, for
example, the case whévi = 3. Let us assume that the probability of breaks of sizes
S2Sand $Soccurring ispz,p2 and ps, wherep; + p2 + p3 = 1. Then the ad schedules

that can be generated and the revenues earned are shownar8Tab

Schedule Revenue earned
$1,%2,%3  S1+(P2+ P3)S2 + P33
S, 11 S|+ p3|1

l1,51 (P2+ P3)l1+ pss1

Table 3.2: Revenues earned with each possible schedule

As shown, the revenue earned with each schedule is diffeagnt the Optimal
Policy should select the schedule which generates the nuiemimvenue based on the
probabilitiesp; and the values of the ads scheduled.

It can be shown that the number of possible combinations ®f@deach value of

M is a Fibonacci sequence as shown in table 3.3.
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M  Number of ad schedules
1 1
2 2
3 3
4 5
5 8
6 13
7 21

Table 3.3: Number of possible ad schedules for each valiw of

This can be explained as follows: let us assume that eack lsrdvided into ‘slots’
of lengthS, thus whenM = n, there aren slots available to be scheduled. Lagtand
On+1 be the number of ad schedules possible wiklea n andM = n+ 1 respectively.
Then forM = n+ 2, an additional slot is added at the endmof 1 slots, and this
slot can either be programmed with an ad of stzer an ad of sizd = 2S5 starting
from slotn+ 1. If an ad of sizeSis scheduled in sloh+ 2, the previous1+ 1 slots
can be scheduled ia, 1 ways. If, however, an ad of sideis scheduled across slots
n+1 andn+ 2, then the previous slots can be scheduled oy, ways, thus giving
On+2 = On+ On+1.

By the well known Binet’s formull whenM = n, the number of possible combi-

nations®(n) is

i) = ¢“—%—¢>” _ ¢“—<¢—§1/¢>“

Where¢ = 15 ~ 1.6180339887..

The number of ad schedules that can be programmed incregsaseatially with
the value ofM, resulting in a 'Hughes effect’, or a 'curse of dimensiotal?, a clas-
sical problem that arises when dealing with problems offestic recourse. For any
M = n, the Optimal Policy would be the maximum of the expected mees earned
from each of thed(n) schedules. As discussed in Section 2.3, the problem isrbette
solved with specialized heuristics, rather than attengpdim analytical solution for the

generah- case.

1Theory of Binet formulas for Fibonacci and Lucas p-numk2sp|
2Dynamic programming[2]



Chapter 4

Numerical Analysis

In this chapter we perform a numerical analysis of the OptiRdicy discussed in
Chapter 3. We compare the Optimal Policy to the Greedy Palicgrder to find the
conditions under which the Optimal Policy most outperfotims Greedy Policy. We
also study the impact of service level commitments and thgaohof uncertainty on

the performance of the Optimal Policy.

4.1 Performance with deterministic number of breaks

We begin with cases where the number of breaks is fixed, amd #re no breaks of
size zero. A study of how the Optimal Policy performs as patans change will give
us an idea of how stable it is, and allow us to find conditionsnght is most beneficial
to use the Optimal Policy.

We begin with listing the parameters we will use for the sfuayd subsequently

study the impact of various parameters on revenues andedeviels.

4.1.1 Parameters

To evaluate the performance of the policies, we generatgahees for the large and
small ads based on the parameters listed in Table 4.1.

Results were averaged over 500 runs, and at each iteraganuéntory and spot

41
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values were changed. This was done to ensure that we tegtedréitegies across a

broad range of data sets, and that the results were repa&serdf average scenarios.

Parameter Value
Number of breaks 50

Break size (s) 10 sec or 20 sec
Number of large ads 50
Number of small ads 100

Large ads values ($) 10601200
Small ads values ($) 2001000

Table 4.1: Parameters for numerical analysis of Optimakkand Greedy Policy

In Table 4.1, the number of breaks, 50, is typical of the nunatb&reaks found in
a T-20 match, where each of two innings has twenty over breaildten wickets are
expected to fall during the course of the match. We assuntdédtbhaks can be of sizes
10 seconds or 20 seconds only with equal probability, hemeertean break length is
15 seconds. The range of values earned by long ads and skatetypical of orders
received by major sports broadcasters for internatior2f Tournaments, and we select
random values within these ranges.

We next look at performances of the Optimal Policy and Greedlcy when air

time sold (i.e., number of ads available in the inventoryjas

4.1.2 Impact of variation in air time sold

We analyze how change in the amount of air time sold affe@g#rformance of the
Optimal Policy and the Greedy Policy. We start with 50 large and 100 short ads,
as listed in Table 4.1, and remove two short ads for everneladyremoved from the
inventory, to keep the ratio of air time between large andllsaas constant. Air time
sold ranged from half the expected air time over the coursemhtch, to more than
twice.

Cricket broadcasters oversell air time for important teunents, particularly those
that involve India, and expect to make good the ads not shawingl live broadcast

in non-live segments later. By overselling, networks haweerflexibility in what ads
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they show, and are able to cash in on opportunities when ldoteak time in matches
exceeds the expected break time significantly.

Underselling air time is usually done when the penalty of achieving service
levels is severe, or the network expects a curtailed madchngtance, due to rain. By
decreasing the air time sold, networks often aim to providbér service levels, while
putting a premium on the spot value per second. We observegekan service levels
of large and small ads, along with change in revenues eaoreglath policy as the
amount of air time sold is varied.

The result of the numerical analysis when lengths of breakistiaeir number are
known at the time of scheduling is summarized in Table 4.2.

When air time sold is close to the expected air time avail&blé50s), we see that
the Optimal Policy outperforms the Greedy Policy by almd4i 3This translates to
an average of $1262 per match, equivalent to the expectad ealrned by airing two
small ads more per match than the Greedy Policy.

Service levels for the Optimal Policy and the Greedy Polloyve that the Optimal
Policy consistently schedules more large ads than thend@reelicy does, whereas
the Greedy Policy relies more on small ads. As a consequesrgcgge that when the air
time sold is 800s, approximately 97% of the small ads hava Beewn by the Greedy
Policy, yet almost one small break in a 50 break matchrutising scheduled in it.
This is because the Greedy Policy schedules small ads evkmde breaks early in the
match and runs out of ads to schedule when small breaks occur.

This is an important result for broadcast networks. The os#ance of the Greedy
Policy on small ads to earn revenue may lead to lost oppdiesnivhereas the Optimal
Policy schedules large ads whenever possible and holdsaveasf small ads for small
breaks, leading to improved service levels and revenuaslbve

We plot the revenues earned by the Optimal Policy and thedgrPelicy against
air time sold in Figure 4.1. The difference in revenues eaisg@ronounced when the
service level is between 80% and 90%, which correspondstioaisold of around
800 seconds (from Table 4.2), which is roughly equal to thpeeted air time. The ser-

vice level mark of 80% is significant, since this is the ses\&vel usually promised by
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Figure 4.1: Average total revenue versus air time sold

the network to advertisers during most tournaments. Thai©tbtimal Policy is signif-
icantly better than the Greedy Policy in conditions thatrapph real world situations.

We next consider the case where the number of breaks in a nsatohfixed. The
maximum difference between the Optimal Policy and the Grd&alicy occurs when
the time sold is 800 seconds, which corresponds to 40 smabiad 10 large ads sold.
Since the number of breaks is 50, the Greedy Policy schedlidesmall ads in the
large breaks and is left with almost one small break left hadaled (Table 4.2). When
airtime sold is higher, both policies have a greater chof@ae to choose from and the
difference between policies reduces; and when the airtoteeis lower, both policies
suffer from a lack of ads equally.

The efficient frontier helps managers determine what sereeel is most optimal.
Promising lower service levels can yield higher revenudsclvshould be balanced,
however, with the possible loss of goodwill. Managers carstiecide on a target

service level by considering both the benefits and costdvado

4.1.3 Value of flexibility

Small ads can be shown in both small and large breaks, whiarggsads can only be

shown in large breaks. Thus, small ads offer more flexibityhe broadcaster as to
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which break they can be shown in. To analyze the value of filyibwe study the
change in revenue as we change the mix of small and large atie inventory. We
begin with the parameters as outlined in Table 4.1, and 8pitarge ads randomly
into two, thus creating equally valued small ads, and irgirepthe ratio of small ads
to large ads in the inventory.

We begin with a numerical analysis when the number of breaksmatch is fixed.
Table 4.3 shows the average revenue earned per match by timeaDpolicy and the
Greedy Policy as the mix of large and small ads is varied aachtimber of breaks is

fixed.
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Figure 4.2: Change in revenue with split of large ads

The percentage change in revenue for each policy is the ambadhange that each
policy earns in comparison to the case when the ratio ofrai ts equally split between
small ads and large ads, which is our starting ratio. Theclalsimn lists the percentage
difference in revenues between the Greedy Policy and themapPolicy. We see that
as the ratio of small ads to large ads increases, the differbatween the two policies
decreases. We plot the percentage change of the OptimayRwid the Greedy Policy
in Figure 4.2. The Optimal Policy does not vary much from rigioal value, whereas
the Greedy Policy displays an increase of almost 2.5% frerariginal.

The increase in the revenue earned by the Greedy Policy laieggd by the pref-

erence of the Greedy Policy for small ads: as discussed tioset.1.2, the Greedy
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Policy schedules more small ads than long ads, therefoenues increase when the
number of small ads increase.

From a managerial perspective, the ability of the Optimdidgdo maintain rev-
enue earned despite substantial change in the ratio of améllarge ads is of impor-
tance. Thus the Optimal Policy is a robust strategy despaeging inventory mix, and
ensures the network a stable revenue regardless of theanyeomposition.

Figure 4.3 plots the difference between the Optimal Poliny the Greedy Policy.
We see that the difference is most significant when the ae tsrequally divided be-
tween the large ads and the small ads, and this differenceatss as the proportion of
small ads increases. As expected, when the inventory ¢emsis/ of small ads, there
is no difference in revenue earned between the Optimal yatid the Greedy Policy.
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Figure 4.3: Difference between Greedy and Optimal witht gifliarge ads

4.1.4 Impact of Variability

We next investigate the impact of variability on the perfamoe of the Optimal Policy,
as defined in Theorem 3.3. The distribution of break lengtiustae size of our inven-
tory are listed in Table 4.4, and all other parameters arsdhee as listed in Table 4.1.

To simulate variability, we use a Uniform Distribution with mean of 60 sec-

onds Although the break lengths were generated from a UnifDrstribution, they
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are rounded down to the nearest multiple of 10 seconds, whittte size of the small
ad. Large ads are of size 20 seconds, as before. We vary therstgr the break size
distribution from a constant 60 §d0,110. This corresponds to varying the standard
deviation betweer0, %], and the range betweé®, 100. As before, however, break
sizes that are not a multiple of 10 are rounded down to theesearultiple of 10, since
the remaining break time will remain unutilized. For sinegly, we will only consider
the range when discussing variability. Finally, we note tha expected air time has
increased substantially, necessitating an increase isizeeof our inventory as shown
in Table 4.4.

The results have been tabulated in Table 4.5. We find thatthet®ptimal Policy
and the Greedy Policy are not affected significantly by iasesin variability. The
‘percentage change’ row for each policy shows the changevenues earned compared
to zero variability case. In this case, we see that there gdigiele change in the
revenues earned by the Optimal Policy and the Greedy Pdisxaability increases.
Service levels also do not show significant changes withalbsdity, thus supporting
our inference that the effect of variability on revenueshedris negligible. Figure 4.4
shows the percentage change in revenues with increasege.ran
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- - - Greedy Policy

- | | | | |
0'150 20 40 60 80 100

Range

Figure 4.4: Change in revenue with variability

From a managerial perspective, as long as the expectatlmeak lengths is steady,

increased variability does not significantly affect revesiu As variability increases,
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breaks of large sizes are complemented by breaks of smali,dkeeping the overall
revenues earned from fluctuating. The order in which largaks and small breaks
occur causes the small gains for the Optimal Policy over ttee@y Policy. The Greedy
Policy has a preference for scheduling small ads in the llargaks, so when matches
have a sequence of large breaks followed by small ones, ted@Policy is left with
less valuable small ads for the small breaks. In contrasiQgbtimal Policy has a lower
threshold for scheduling large ads as discussed in sectib8, 3herefore it is able to
gain more from the short breaks in the latter part of the match

In this chapter, we studied the behavior of the Optimal Rotiamerically, and
derived insights from the results. In the next chapter, wiediscuss specialized algo-
rithms and heuristics that will attempt to solve harder peois, such as having ads of

multiple lengths with diversity constraints.



Air time sold (sec) \ 2000 1600 1200 800 400
OP 54,935.46 52,349.08 49,523.60 44,489.78 23,034.12
Revenue GP 54,733.86 51,927.26 48,673.94 43,227.58 23,034.12
% Difference 0.37 0.81 1.72 2.84 0.00
oP L ads 22.52 39.26 67.15 99.44 100.00
Service Levels (% Sads 52.37 54.42 57.92 87.34 100.00
GP L ads 16.50 29.31 50.35 88.11 100.00
Sads 58.40 64.37 74.72 96.62 100.00
oP L breaks - - - 0.03 14.64
Unused Breaks Sbreaks - - - 0.01 5.39
GP L breaks - - - 0.02 10.70
Sbreaks - - - 0.84 13.15

Table 4.2: Revenues and Service levels with change in ag $ioid
(L: large,S small, OP: Optimal Policy, GP: Greedy Policy)
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. Optimal Policy Greedy Policy ,

Long ads split (%) Average Value % change Average Value % Chané)éfference (%)
0 48,304 0 47,132 0 2.43
10 48,358 +0.11 47,965 +1.77 0.81
20 48,340 +0.08 48,195 +2.26 0.30
30 48,248 -0.17 48,215 +2.30 0.07
40 48,199 -0.22 48,183 +2.23 0.03
50 48,267 -0.08 48,261 +2.40 0.01
60 48,347 +0.09 48,343 +2.57 0.01
70 48,275 -0.06 48,274 +2.42 0
80 48,369 +0.14 48,369 +2.62 0
90 48,229 -0.15 48,229 +2.33 0

100 48,306 +0.00 48,306 +2.49 0

Table 4.3: Value of Flexibility

Parameter Value
Break lengths ~U(U—0,U+0)
1 =60, d € [0,50]
Number of large ads 100
Number of small ads 200

Table 4.4: Parameters for analyzing impact of variability@ptimal Policy



Range | O 20 40 60 80 100
OP 191,411 191,335 191,184 191,420 191,564 191,404
Average Revenue % change 0.00 -0.04 -0.12 +0.01 +0.08  -0.003
GP 191,411 191,313 191,180 191,408 191,559 191,396
% change 0.00 -0.05 -0.12 -0.001  +0.08 -0.01
oP L ads| 88.94 89.22 89.30 89.01 88.82 89.16
Service Levels (% Sads| 61.06 60.78 60.70 60.99 61.18 60.84
GP L ads| 88.94 87.90 88.84 88.08 88.34 88.49
Sads| 61.06 62.10 61.16 61.92 61.66 61.51

Table 4.5: Impact of variability
(L: large,S small, OP: Optimal Policy, GP: Greedy Policy)

Syealq JO Jaquinu dISIUILIBIBP YIM dduewlouad T v
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Chapter 5

Applications in Practice: Scheduling

ads for Cricket

In previous chapters, we have studied the Optimal Policg fiylized model of the real
world problem. The motivation for this research came fromdiscussions with a ma-
jor cricket broadcaster, who also provided us with realldvdata, based on which we
generated parameters for numerical analysis. We now testadescheduling heuristics
under more constraints and present the analysis of the aatady of the heuristics

tested and the results obtained, and create relevant maadagsights.

5.1 Data Description

In order to have an estimate of the parameters and constiaiathich ad scheduling
was done, we received production logs of ads aired and thesipe for each of those

ads during a T-20 tournament.

5.1.1 Break Lengths

Our findings are shown in Table 5.1, and the break lengthiligion is shown in
Fig 5.1. The breaks recorded here were measured betweendlaf an over and the

start of the next one, creating a slight skew towards the (gjhce actual time available

52
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to show ads is shorter than the time between two such overs).

Parameter Value(seconds)
Average break length 68.4
Standard Deviation 23
Minimum break length 10
Maximum break length 170
Number of samples (breaks) 983

Table 5.1: Analysis of break length data

Frequency

0 60 180

80 100
Break size (seconds)

Figure 5.1: Break length distribution

For our numerical simulation, we estimated the break letgtve a mean of 40
seconds and to be uniformly distributed between 10 secamdi¥@seconds.

For our study of T-20 matches, we estimated a total of 50 lsreak match (40
breaks in between overs and 10 wicket breaks). As a simpiditaf match conditions,

we set the number of breaks to be 50 while estimating the pe&ice of our heuristic.

5.1.2 Ad Lengths, Service Levels and Demands

The lengths of the ads contracted from clients was giverctiyr®y the sports broad-
caster, and a summary of the data is shown in Table 5.2. Faralysis, we consider
ad lengths of 10 seconds, 20 seconds, and 30 seconds. Tées afpsely with the data
from the broadcaster. On average, ads from 20 advertiseesshewn in each match,

and their demands were as shown in Table 5.3:
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Parameter Value(seconds)
Average ad length 20.82
Standard Deviation 7.84
Minimum ad length 10
Maximum ad length 40
Number of samples (ads) 2393

Table 5.2: Analysis of ad length data

Parameter Value(seconds)
Average Demand 83.82
Standard Deviation 9.84
Minimum Demand 20
Maximum Demand 180
Number of samples (matches) 25

Table 5.3: Analysis of Client Demands

In our discussions with the broadcaster, we found that tbadwaster had to satisfy
service level commitments of between 75% to 80% of the tatatahd of each adver-
tiser (i.e. 75%-80% of the demand had to be successfullgrifEhese commitments
could be satisfied across the duration of the tournamentpbour study we limit our
service level commitments to each game. For our simulati@gestimate demands
from advertisers such that we can satisfy the service Ig@relsised to most, if not all
advertisers. To achieve this, we use ‘penalties’ in the meddhat unsatisfied demand
below the promised service level decrease the profits eafliedlP model with service

level guarantee is given in Section 5.3.1.

5.1.3 Spot Values

Spot values in the tournament we analyzed were linear witlelagth. This made it
easier to characterize the value of each advertiser in tefrhew much revenue per
second each of his ads earned, so broadcaster concernsssgieing higher value to
‘sponsors’ of a tournament could be incorporated by addalgesto the revenue per
second that that advertiser earns. For our simulation, ae dandom values from the

range[350Q0 5500. The number of advertisers per match varied in the tourngmsth
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Parameter Value($)
Average Rev/Sec 4110
Standard Deviation 583
Minimum Rev/Sec 3714.28
Maximum Rev/Sec 5714.29
Number of samples (advertisers / match) 20

Table 5.4: Analysis of spot values

an average of 20 advertisers per match.
From the data collected, we could characterize the adeestitheir demands, and
the break lengths for each match and run simulations thaebjaeflected real world

requirements. We discuss the heuristics considered faithelation below.

5.2 Assumptions

To simplify the models we examine, we assume the following:

1. Spot prices for ads are linear in ad length. This is suppoby the data we

received from the sports broadcaster (see Section 5.1.3).

2. Two ads from the same advertiser cannot be shown in the Beak; but there

is no restraint on showing two ads from one advertiser insgisnt breaks.

In later sections, we will add an assumption that servicelleemmitments must

be met, and the broadcaster pay a penalty if he doesn’t mes# ttonstraints.

5.3 Knapsack Model

In this section we study the basic Knapsack model and a i@riatith service level
guarantees. The Knapsack model aims to fit the best possiliiination of ads into a
break. The size of the knapsack is taken as the expectedhlehtjte break. Similar to
Witchakul et al [28] we consider penalties for crashes ardkeuutilization, but unlike
them, we build a model for multiple periods, where ad inventatlhanges from break to

break.
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The model is as follows:

maxz = zZZra,*xam
n a

subject to:

Zxaln < 1,van (5.1)
XZ('*XaJn) < b,vn (5.2)
a

zxaln < Ng ,Va,l (5-3)

n

Xan = 0Oorl (5.4)

where

a is the index of advertisers,

| is the length of each ad

n is the break sequence number

b is the expected / predicted break length

Ny is the number of ads of lengticontracted from advertiser
Xan IS the decision variable

Constraint(5.1) restricts the number of times an advertiser’s ad can be showan

break;

Constraint(5.2) specifies that the sum of all ads per break should be lowertti@an

break length expected;
Constraint(5.3) ensures that we only show as many ads as we have a contract for;

Constraint(5.4) makes this model a binary integer programming model
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5.3.1 Knapsack model with service guarantee

Sports broadcasters, ensure service levels (usually ahdr80%) to their clients, and
usually have to make good or pay a penalty when the serviet temmitments are
not met. We include this constraint to the earlier Knapsaoki@hdiscussed in section
5.3:

maxz = ;ZZM *Xajn_PZSa

subject to:

Zxam < 1,van (5.5)
;Z(I*XM < b,vn (5.6)
zxajn < Ng ,Va,l (5.7)

nt1
Zxam < 1,val,n (5.8)
Z;(I*Xam)—i—sa > S*Z(I*Nm),b’a (5.9)
Xan = 0Oorl (5.10)
Sa >0 (5.11)

where

P is the penalty for not meeting the promised service level

Sa is the duration by which the service level was not met

S is the promised service level

and all other variables have the same meaning as beforedsienss.3).

Constraint(5.9) ensures that the service level guarantees, if not met, ara@iped in

the Objective.
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5.4 Heuristics

In this section we describe a few heuristics that we evalioateecommendation to the
sports broadcaster. These heuristics work on data asedtlrsection 5.1. Finally, we
compare the revenues earned by each approach with the eegamed in the perfect
information case (Pl), where the lengthsabf breaks are known in advance of the

schedule generation, which is the theoretical upper bound.

5.4.1 Greedy Policy

The Greedy Policy assumes that break lengths are known imnady and then uses
the Knapsack model for each (known) break without plannorgstibsequent breaks.
We have compared a simplified version of the Greedy PolichédQptimal Policy in
Chapter 3, and we will extend that study and compare the @rBeticy with other

heuristics.

5.4.2 Certainty Equivalent Heuristic

The Certainty Equivalent heuristic (CE) builds a schedfikeds based on the expected
break length (based on the knapsack model with service tvalantee outlined in
section 5.3.1). Having generated the breaks (which ard &hgth equal to the mean
break length), we schedule them against the actual breakisahout how it performs.
This gives us a lower bound on how any variation of the cetyadguivalent heuristic

should perform.

5.4.3 Dynamic Certainty Equivalent Heuristic

For Dynamic Certainty Equivalent (DCE) , we generate ‘bestto fit an expected
distribution of break lengths and that satisfies all constraints. The 8 igutlined in
section 5.3.1. The scheduler, who knows the length of thalkyischedules the bundle
that best matches the break size. If there are multiple lesnafl equal size that fit in

the break, the scheduler chooses the first one among them.
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5.4.4 Dynamic Modified Certainty Equivalent Heuristic

The Dynamic Modified Certainty Equivalent Heuristic (DMGE) variation of DCE,
we now generate bundles not only at the beginning of the maitllso periodically
during of the match. The periods of bundle generation coslddsied: bundles could
be generated at specific points during the match, or whenak laecurs with no per-

fectly matching bundles at hand. We study both cases andtrieg@hts.

5.4.5 Perfect Information

The Perfect Information heuristic (PI) is the theoretiegdper bound’, so we can com-
pare the performance of heuristics as a percentage the maximevenue attainable.
We assume that sizes of all breaks are known before the feakband run a knapsack

that schedules ads with the given constraints in all breaks.

5.5 Comparative Statics with Service Constraints

In this section, we study results of numerical analysis doaged on the heuristics
proposed in Section 5.4, under service constraints. Tha mai of this study was to
find out which of the heuristics was most promising, and tolide & suggest the most
promising direction in which the sports broadcaster magditheir efforts to maximize

the revenue in real world situations.

5.5.1 Parameters

Our assumptions for the following sections are as given cti&e 5.2. The parameters
for the numerical simulation are listed in Table 5.5.

For this simulation, we assume that advertisers order &idey time from the net-
work, and that the network commits to a certain service l&val is a percentage of
the time sold to each advertiser. In our simulation, we agstirat this value is 80%.
Further, to discourage not meeting the service level, wa pehalty value of 1000$ for

each second short of the promised service level. In the red¢iynetworks either make
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Parameter Value

Number of breaks per match 50

Number of advertisers 20

Ad lengths (s) 10, 20, 30

Revenue per second per advertiser Randomly drawn [8&®0 5500
Break length distribution (s) ~ U (10,60)

Number of random trials (matches) 100

Target Service Level 80% of time sold

Penalty for not reaching service level 1000$ for each sebetmlv target

Table 5.5: Parameters for Numerical Simulation

good on their contract in subsequent tournaments, or shevatithe end of the game
to make up on advertising time. For our simplified setup, afigof 1000$ suffices to

show us the general direction in which we must direct ourreffo

5.5.2 Results

Greedy:99% of PI
CE: 74% of PI
DCE: 90% of PI
DMCE: 93% of PI

Revenues

Greedy CE DCE DMCE Pl

Figure 5.2: Performance of heuristics with service comsisa

Among the heuristics selected, while the Greedy does natergundles before-
hand, the CE, DCE and DMCE heuristics rely on creating busdtgher before the
match or during the match. From the results, we see that teedgrperforms almost
on par with the PI, while heuristics that depend on creatungdbes before the match

do not perform as well.
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Heuristic % of PI
Greedy 99%
CE 74%
DCE 90%
DMCE 93%

Table 5.6: Performance of heuristics relative to Pl

When break sizes are known before the commencement of thk, lmmeating bun-
dles and trying to fit the best one offers us no advantage oyepioally choosing the
best ads to fit the break. Since the size of the bundle is fixednwve run out of appro-
priately sized bundles to fit into the break, we are forcecttedule a bundle that is of
smaller size than the break, hence losing out on earningrappbes. Having bundles
that fit the break by regenerating them (DMCE) does not gueeans optimum ad se-
lection, since valuable ads that could have been schedulde icurrent break may be
included in a bundle of a different size, and hence not sdeddirherefore, the Greedy
is able to best capitalize on the advance knowledge of biigak.s

We note that the Optimal Policy as described in Chapter 3 doeely on creating
bundles before the realization of breaks. In our discussiath the sports broadcaster,
we found that the ad scheduling team did create bundlesddedad, but the bundles
were discarded when they didn’t have the right bundle foreabkr The network should
therefore stick to a flexible schedule that does not depemutewcreated bundles, af-
fording flexibility in scheduling and giving them a betteracite to earn higher rev-

enues.

5.6 Comparison of Greedy and Optimal Policies

We next study numerically the conditions that determine @i the Optimal Policy
performs over the Greedy Policy. In this study, we only cdesithe Base Case as
presented in Section 3.2.1, where breaks and ads are of r&®, short (15 seconds)
and long (30 seconds), and the number of breaks is fixed.

We vary parameters across the relative value of small agd kdls, the distribution

of the two types of ads, and the Service Level, defined as ttoepege of air time sold
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that is expected to be aired (the lower the percentage, ¢fiiehthe air time sold). The

parameters are summarized in Table 5.7.

Parameter Values

Ratio of values of small to large ads 1, 0.55, 0.50, 0.45,,0045%, 0.30
Ratio of number of small to large ads 3, 2,1, 1/2, 1/3

Service Level 80%,90%,100%,110%

Table 5.7: Parameters for comparison of Greedy and OptioladyP

The results are presented in Appendix B. The Revenues tabBetion B.1 show
the potential revenue that could be earned if all orders et accepted could be
shown, as well as the performance of the Greedy Policy andfttenal Policy as
a percentage of this total. The Service Level tables showseiction B.1 show the
percentage of ads, small and long, that were shown, and theation tables in Sec-

tion B.3 show the percentage of total break time that waieatfor showing ads.

5.6.1 Results

The percentage gain of the Optimal Policy over the Greedicyafainst the variation
in the relative value of small ads is shown in Figure 5.3, whesach graph is drawn for
a particular service level.

We observe that gains of Optimal Policy over Greedy Policynatonically de-
crease as the value of small ads decreases in comparisagealds. While the great-
est gains are seen when small ads are almost as valuablgasadms; when the relative
value of small ads is 0.45 or less, the Optimal Policy showgaiaos over the Greedy
Policy.

This behavior can be explained by the Optimal Policy havitmpeaer threshold for
large ads, and therefore its tendency to schedule moredaigthan the Greedy Policy
(as discussed in Section 3.2.1 and Section 4.1.2). Wher adwhre as valuable as
large ads, the Greedy Policy schedules small ads up frohieitarge breaks, since it
earns twice as much with two small ads than one large ad. Hiiawor causes it to
run out of small ads earlier than the Optimal Policy would] @tiails to schedule small

ads in the small breaks that occur at some point after it ruhsfesmall ads.
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The difference in the service levels (tables in Section Bf2arge ads is acute when
the ratio of small ads to large ads is 1:2, where we have halfaag/ small ads as large
ads, causing the Greedy Policy to run out of small ads eadynratch.

When the ratio of small ads to large ads is 1:3, however, tivesgaade by Optimal
Policy drop below those made when the ratio is 1:2. While tp&r@al Policy does not
exhaust its inventory of small ads as early as the Greedg thie number of small ads
is small enough for it to lose scheduling opportunities irmBioreaks at the later stages
of a game. Tables in Section B.3 show that the utilizationrefaks by the Optimal
Policy when we have a 1:3 distribution is consistently lé&s1t100%, and is always
less than the utilization when ads are distributed by a i@.ra

When the relative value of small ads is 0.45 or less, the Gré&eadicy schedules
large ads just as often as the Optimal Policy, since two satdIno longer have as
much value as one large ad. Thus we see no difference in #ieevenues earned, or
the service levels of small and large ads.

It can be argued that when the relative value of small adstgr than 1, we would
see that the gains made by the Optimal Policy decrease oate @@mpared to the
case where the relative value of small ads is 1). Despite fht@r@l Policy having
a low threshold for large ads, the small ads be valuable éntarghe most valuable
large ad to not make that threshold, causing the Optimatyald the Greedy Policy
to schedule similarly. Having small ads of relative valueager than 1, however, is
only of academic interest, and we do not discuss it in detalil.

From a managerial perspective, we see that the Greedy Policst as effective as
the Optimal Policy when the inventory has small ads thatese than half the value of
large ads. The Greedy Policy is easily implemented, andeh&ark broadcaster need
not invest in forward looking heuristics in such a case. @os®ly, as the relative value
of small ads increases above the 0.5 mark, the network bassefccan significantly
improve his revenues by implementing the Optimal Policy.

We also note that the greatest gains made by using the Ofiolialy occur when
the ratio of small ads to large ads is 1:2. This may occur whenbroadcaster has

priced his small ads to a level where advertisers see moue valbuying large ads,
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Figure 5.3: Performance of Optimal Policy over Greedy Bolic

thereby skewing the ad distribution.
Finally, we note that service levels between 80% and 90%igedhe best returns
for using the Optimal Policy, and we note that our discussieith the network broad-

caster showed that service levels in that range were usiaadjgted.



Chapter 6

Conclusion

TV networks showing live sports are often challenged by mgareaks of non deter-
ministic size, and the high profit margins in live sports licasting demand a bet-
ter way of scheduling ads in such situations. In this dissiern we have discussed a
method to schedule ads optimally when breaks are of randzarasid number, and the
broadcaster has ads of two lengths.

Earlier literature related to advertising scheduling asstixed break durations, and
do not sufficiently answer how ads must be scheduled wheil fatd uncertainty in
break sizes. Literature related to Random Yield, Stocbd§tapsack, and Stochastic
Recourse do not sufficiently match the setting typical offnablem.

We find that the Optimal Policy when faced with non-deterstinibreaks is a for-
ward looking Greedy implementation. Bundling strategeabstb sufficiently account
for the stochasticity in break sizes, and earn less than #lgekeuristic such as the
Greedy Policy. Further, we show that the Optimal Policy edirms the Greedy Pol-
icy when small ads have a value equal to or greater than teifdlue of a large ad.

While we do not account for all the constraints that broacadace, our model
is general enough to be applied to a class of bin packing enodl for instance, cargo
shipping when containers have non-deterministic capaditys simple model, how-
ever, does not fully meet the network broadcaster’s reqmerds. There is scope for

the following extensions to this work:
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1. Inclusion of diversity constraints into the Optimal glitwo ads from the same

advertiser, or from competing advertisers, cannot be showrbreak.

2. Optimal Policy when breaks are not all 1ID: for instanceia break or an injury

break takes a longer time than mid-over breaks.

3. Incorporating service levels constraints for adversisegencies, and geographic

regions.

4. Extension to help managers in making pricing decisiomsauatepting spot or-

ders based on the Optimal Policy.

5. A study of Broadcaster-Advertiser behavior based on GHEne®retic principles

when the broadcaster employs the Optimal Policy.

To conclude, the area of Optimal scheduling of items (adsyozaetc) in non-
deterministic containers is an area that has many posebifor research and devel-
opment. It is hoped that this dissertation is a steppingestorestablishing improved

heuristics in this area.
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Appendix A

Proofs of theorems

| Notation Explanation |

Vi(l,s) Expected revenue earned from breanwards, when the indexes pf
the first large ad and the first small ad availablel aedsrespectively
R Expected revenue earned by selectinm the current (large) break
Rs Expected revenue earned by selecttag- s, in the current (large
break
b Number of breaks remaining

Table A.1: Summary of notation

A.1 Proof of Theorem 3.1

Proof. From Lemma 3.1 and Lemma 3.2, we know the rule to be true whermbtwo
breaks remain.

Let us assume the rule be true for breaks
2, ..., n. We will use then use induction to prove this theorem.

Then,

R=1I +V2(27 1)
R3281—|—SQ—|—V2(1,3)
Vn(l, 1) - maX{R|,R5}

70
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We prove thaR — Rs > 0 whenly > 53+ Sha1.

R-Rs=11 +V2(2, 1) — [Sl—}-Sz—i—Vz(l, 3)]

=(lh—(s1+%))+ (V2(2,1) —V5(1,3))

Expanding the above to a look ahead of two breaks, we get:

R-Rs=(l1—(s1+%))

+ pls1+V3(2,2)] — p[sz+Va(1,4)]

124+V3(3,1), iflo>s 1+
+ (1— p) max

s1+S+V3(2,3) otherwise

—(1-p)(I1+V3(2,3))

Though we have no information abautands, 1 + S5, the max operator guarantees

that the value 0¥>(2,1) must at least be; + s, +V3(2,3). Thus we get:

R—-Rs>(l1—(s1+%2))
+ p[s1+V3(2,2) —s3—Va(1,4)]
+(1-p)[s1+S2+Va(2,3) — 11 —V3(2,3)]
> p[li— (2+53) +V3(2,2) — V3(1,4))]

Continuing enumeration to look ahead fot n breaks, we get

R—Rs> P Hl1— (8 +8:1) + Vo 1(2) —Vai(Li+2)]
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Thus, fori =n—1, we get:

R —Rs> P 2[l1— (114 ) +Va(2n—1) ~Va(L,n+1)|
> 21— (sh1 )
P11 Sn) + (1= P)(sr-1+ 0= 1)
> 572 [p(l1 — (sn+$n:) |

>0 (p=0,11>(sh+Sns1)

Therefore we have proved that when the number of breaks némgais n and|l; >
Sh+ She1, it is optimal to pack first.

The reverse case, i.Bs— R > 0 whens, + s,.1 > |1 can be proved similarly. [J

A.2 Proof of Theorem 3.2

Proof. From Lemma 3.1 and Lemma 3.3, we know the rule to be true wheraod

two breaks remain.
Let us assume the rule be true when the number breaks remairgn
1,2 ...,n—1. We will use then use induction to prove this theorem. A®tefwe

useR andRs to denote the revenues earned by scheduliramd (s, sp) respectively

in b;. We have:

R = ll +V2(27 1)

Rs = S]_—|—SQ—|—V2(1, 3)
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Then,

R —Rs=11+V2(2,1) — [sg+ 2+ V2(1,3)]
=(l1— (s1+%)) +(V2(2,1) —Vo(1,3))
=(h—-(s1+%))
+ [po(Vs(Z 1) —V3(1,3))
+ pa(s1+Va(2,2) —s3—Va(1,4))
+ pa(max{la+Va(3,1),5 452+ V3(2,3)}
—max{|1+v3(2,3),sS+S4+v3(1,5)})}

We can trivially prove that

n—-1 ]
(Po+p1)" H1 > Z) [C 1 p 0} (Sic1+Si42)]
i=

= (po+py)" L > ni (M2 P52 P (Siva+5i44)] (A1)
i=
Using Equation A.1 and using induction, we can say that
V2(1,3) = poVa(1,3) + pa(ss+Va(1,4)) + pa(l1 +V3(2,3))
Substituting folR — Rs, we get:

R—-—Rs>(li—(s1+9))
+ | Po(Va(2.2) - Va(1,3))
+ Pu(s1+V3(2,2) —s3—V3(1,4))
+ Polsit 2+ Va(2,3) — 11— Vs(2,3))]
>(1-p2)(i—(s1+%2))
[po(Vs(Za 1) —V3(1,3))

+
+ pa(s1+V3(2,2) —s3—V3(1, 4))}
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> (Po+ P1)l1— Po(s1+2) — Pr(S2+8)
+ po(Vg(Z, 1) —Vg(l, 3))
+ p]_(Vg(Z, 2) —V3(1, 4))
On expanding, and applying induction throughout,

Po(Va(2,1) —V3(1,3)) + pa(Va(2,2) — V3(1,4))
> po| Po(Va(2,1) ~Va(1,3))
+ Pu(s1+Va(2,2) —s3—Va(1,4))
+ pz(sl+82+V4(2,3)—|1—V4(2,3))}
+p1 [DO(V4(2, 2) —Va(1,4))
+ Pa(s2+Va(2,3) — 4 —Va(1,5))
+ Pa(S+ S+ Va(2.4) — 11— Va(2,9))]

Substituting folR — Rs, we get:

R —Rs> (po+ p1)2ls
— Ph(S1+S2) — 2pop1(S2+S3) — Pi(S3+ )
+ P5(Va(2,1) —Va(1,3))
+ 2pop1(Va(2,2) —Va(1,4))
+ Pi(Va(2,3) = Va(1,5))
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Continuing to enumerate in this fashion and applying inductwe get:

R —Rs> (po+p1)" 2l
— P 2(s1+%2) — (N—2)pg °pa(S2+88) —. — P A(S-1+ )
+ Py 2(Vn(2,1) —Va(1,3))
+ (n=2)pg °p1(Va(2,2) —Va(1,4))

+ pIA(Va(2,n—1) —Vih(1,n+1))
n—-1 o
> (po+ p)" M1 — Z} [C(n—1,i) py* 7P} (Sv1+S2)]

> 0 (by definition)

The proof for the reverse case, iRs— R > 0 when

n-1 )
(Po+pr)" H1 < Z) [C(n—1,i) IOB’l" Pi (S+1+S+2)]
i=

can be proved similarly. O

A.3 Proof of Theorem 3.3

Proof. We have proved the strategy to be true wikea 1 (Lemma 3.4) ank = 2
(Lemma 3.5).

To prove the strategy is true whén= n, let us assume the strategy hold good for
breaks(2,3,...,n), i.e. for all subsequent breaks.

As before, 1e0 = (I1,...,1),S1,...,Sm_21 )-

LetO = (I1,...,1x,1a 41,81, --,Sm_2r—2) andOs = (l1,...,1x_1,S1,.-.,Sm-2112)-

LetR,, be the revenue earned by selecting the ad®; and letR, andRs be the revenues
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earned by selectin@, andOs respectively.

A m—2A

Ry = Z|i+ Z Sj+Vo(A +1,m—2A + 1) (A.2)
i= j=1
A+1 m—2A -2

R::Zh+ z Sj+Va(A +2,m—2A —1) (A.3)
i= =1

A-1 m—2A +2
Rg:Zh+ Y Si+Va(A,m=21 +3) (A.4)
i= j=1

We have to prove that:
1. Rb>R and
2. Ro>Rs

Case 1:

A m—2A
RO_Rl:Z|i+ z Sj+Vo(A+1,m—-2A+1)
= =

A+1 m—2A -2
Z|i+ Z Sj+Vo(A +2,m—2A — 1)
i= j=1

=—hi1tsma-1+Sma
FVo(A +1,Mm—22 +1) —Vo(A +2,m—21 —1)

Note thatlly ;o < Sp_2r1n_2+Sm_21+n_1. By a similar argument as given in Equa-

tion 3.7, we can write:

Vo(A +1,m—22 +1) —Vo(A +2,m—24 — 1)
> D1<Sn72/\+1+V3()\ +1,m-2A+2)

~Sn-21-1-Vs(A +2,m=22))

M

+ kZZ Pk (1r 41— [Sm-22-1+Sm-22])
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Substituting inR, — R, we get:

Ro—R > -y 1+Sn2a-1+Sn-2x
+P1 (21 +Va(A +1,m—2) +2)

~Sn21-1- V(A +2.m-21))
M
+ ;pk(lm— [Sm-22-11Sm-21])
k=
> Pa[~lr41+Sm-2x +Sm-2a41
FVa(A +1,m—2A +2) —V5(A +2,m—2A)]

Continuing enumeration of the above to expand tm&lieaks, we get:

Ro—R > Pl [~lhi1+Sn2rin2+Sn 24 n 1]

>0( a1 <Sm20+1)+n+Sm20A +1)1n+1)

Similarly, we can prov&€ase 2by showing that

Ro—Rs> Pl [IA —Sn-244n—Sm_2r4ns1) >0

A.4 Proof of Theorem 3.4

Proof. We have proved the strategy to be true wikea 1 (Lemma 3.6) ank = 2
(Lemma 3.7).

To prove the strategy is true whén= n, let us assume the strategy hold good for
breaks(2,...,n), i.e. for all subsequent breaks.

We defined, O, Os as before.

LetR,, R, andRs denote the revenues earned by seledﬁn@ andOg respectively.

We have to prove that
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1. Ro=R
2. Ro>Rs

Case 1

By definition:

(Po+p1)" Hp > Z) K - )IOS . Ipl(srn—Z)\+i+1+5m—2)\+i+2)} (A.5)
and(po+ p1)" 41 < Z)K : ) 5 Pi(Sn-2asi1t Sme m.)} (A.6)

As before,

Ro—R=—lhi1+Sm2r-1+Sn-2
VoA +1,Mm—22 +1) —Va(A +2,m—21 —1)

From eq. A.6,

[ /n—1
(Po+p1)" Hyig < Z) < i )pS Pl (S 4io1+ Sm m.)}

n-1
— (Po+p)" Hyio< Z) < i )pS Pl (Sm2a4io1+ Sm m.)}

n-1
— (Po+p)" Hyin< Z) < i )pS L (Sno2ati3+Sm24is z)]

Then by induction, foby > 2S, Vo(A +2,m—2A — 1) earns u§Sy,_2y —1+Sm-21)
followed by the sum of values of ads selected from thebet,, ...,Sn_2111,---}. On
the other hand, witN>(A +1,m—2A + 1) we earnat least |, ; followed by the sum

of values of ads from the s¢t) . 5,...,Sn_2r11,---}-
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Therefore:

VoA +1,m—2A +1) —Va(A +2,m—2A — 1)
> po(Va(A +1,m—2A +1) —Va(A +2,m—2X — 1))

+P1(Sm-21+1—Sm2A—-1+V3(A +1,m—2A +2) —V3(A +2,m—21))

M
+_; Pi(lxt1—[Sm2r—1+Sm-21])

Substituting forR, — R, we get:

Ro—R > -l i1+Sm2r-1+Sm2
+ po(Vg(A +1,m—2A +1) —Vg(A +2,m—2A — 1))

+P1(Sm-2r 41— Sm-2a -1t V3(A +1,m—2A +2) —V3(A +2,m—2A))

M
+ZZ (K1 —[Sm-2r-1+Sm-2a])

—(Po+P1)la+1+ Po(Sm—2a—1+Sm-21) + P1(Sn-21 +Sm-21+1)

+Po(V3(A +1,m—2A +1) —Va(A +2,m—2A — 1))

Po+ P1)lx+1+ Po(Sm-22-1+Sm-21) + P1(Sm-21 +Sm-21+1)

(V

+p1(Va(A +1,m—2A +2) —V3(A +2,m—21))
—(
(

+ P2(Va(A +1,m— 2 +1) —Vi4(A +2,m—2A — 1))

+ PoP1(Sm-24+1— Sm-21-1) + PoP1(Va(A +1,m—2A + 2)
M
+ po;(b\ﬂ— (Sm-2a-1+Sm-21))

+ P1Po(Va(A +1,m—2A +2) —Va(A +2,m—21))

—V4(A +2,m—21))

+ PL(Sm-22+2— Sm-21) + PE(Va(A +1,m—24 +3) —Va(A +2,m—2A + 1))

M
+p1 ;(|/\+1 —(Sm-22 +Sm-2241))
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> Ir11(=Po—P1+ Po(1—po—p1) + P1(1—Po—p1))
+Sm-21-1(Po — PoP1 — Po(1— po— p1))

+Sm_21 (Po+ P1— Po(1— po— P1) — Pf — pa(1— Po— 1))
+Sm-2xr11(P1+ Pop1— P1(1—po—P1))

+Sm_2212(P%)

+PR(Va(A +1,m—2A +1) —Va(A +2,m—2) — 1))
+2pop1(Va(A +1,m—2A +2) —V4(A +2,m—2A))
FP2(Va(A +1,m—24 +3) —Vg(A +2,m—2) +1))

> —ly11(Po+ p1)?

+ P5(Sm-22 -1+ Sm-24) + 2PoP1(Sm-22 + Sm-22+1) + PL(Sm-21 11+ Sm-2242)
+ P3(Va(A +1,m—2A +1) —V4(A +2,m—2A — 1))
+2pop1(Va(A +1,m—2A +2) —V4(A +2,m—2A))
+P2(Va(A +1,m— 2 +3) —V4(A +2,m— 2 +1))

Continuing to enumerate in this fashion, and applying iniduc after expanding up to

Vi, we get:

n—-2 n—2 o
Ro—R > —ly 1(po+p)" %+ Z} < i ) Py 2 Ph(Sm_2a i1+ Smo2a+i)
i=
n-2 n—2 o
+y ( | )pgz' BL(Va(A +1,M—24 +i+1) —Va(A +2,m—2) +i—1))
i=
> —(po+p1)" s

+ Tg Kn N 1) P Pi(Sm-2a+i-1+ Sm-2x +i)]

>0fromeqA.6

Case 2 R, — Rs > 0 can be similarly proved using eq. A.5. O
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A.5 Proof of Theorem 3.5

Proof. We have proved all three cases to be true when one break arid¢aios remain.

Let the rule be true for all subsequent bredks, .., b,. We will then prove by induction

that it is true for brealk;.

Case l:iLet(1—p)li=ps1+(1—p)(s1+S) +t, wheret > 0.
Then,

RI = pV2(1, 1) + (1_ p)(|1+V2(2, 1))
Rs = p(s1+V2(1,2)) + (1 - p)(s1+S2 +V2(1,3))

Thus, we get:

R —Rs = p[V2(1,1) — 51— V2(1,2)]
+ (1_ p) [Il - (51+SQ) +V2(27 1) _V2(17 3)]
=t+p[V2(1,1) —Va(1,2)] + (1 - p)[V2(2,1) —V2(1,3)]

Expanding the above to look ahead two breaks, we get:

R —Re=t+pV2(L,1) ~V2(1,2)] 4+ (1 p)V2(2, 1) V(L 3]
> t4p[PVa(L 1) + (1 - p)(11+V5(2 1)
— PV3(1,2) — (1= P)(l1+V5(2,2)|
+(1-p) [pls1+V5(2,2)) + (1~ P)(s1+ 5+ V5(2,3))
— pVa(1,3) - (1- p)(l1+V5(2,3)|
> t4p[P(Va(1,1) ~Va(1.2)) + (1 - p)Va(2,1)
+(1-p) [psi+ (1= P)(s1+52) — PVa(L,3) — (1 Pl
> t+p[p(Va(1,1) ~V5(1,2))

+(1-p)(Va(2.2) - Va(1,3))] - (1~ p)t
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> p|t+pVa(1,1) ~ V(1 2)]

+(1-p)Va(2,1) ~ Vs(1,3)]|
Continuing to expand the above to look aheadferl breaks, we get:

R =R > P"2|t+pVa(1,1) ~Va(1,2)] + (1 P)Va(2. 1) ~ V(1,3)
> P2t pl(1— Pl — (1Pl
+(1=p)lpsi+(1-p)(si+s2)—(1-p)l
> P2t (1- p)(1)|
>p

>0, sincet>0,p>0

ThereforeR, —Rs > 0 —> selectind is profitable wher{1— p)l1 > ps;+ (1—p)(s1+

S2)
Case 2:Let (1—p)l1 < psh+ (1—p)(sh+Sne1) Then

Re—R =psi+(1-p)(si+s)—(1-p)h
+PIV2(L,2) ~Va(L 1)) + (1 - p)Va(1,3) V(2 1]
> psi+(1-p)(si+s) - (1-ph
+p|PVa(1,2) + (1 - p) (11 +V5(2,2))
— p(s1+Vs(1,2)) — (1— p) s+ 2+ Va(1,3)|
+(1—p)[PVa(1,3) + (1— P)(12+V5(2.3))
— p(s1+V5(2.2) — (1 - p)(s1+ 52+ V5(2,3))|

Va(L) > (1= p) (I +Va(2,))vi < n)

>0

Rs—R >0 =

it is optimal to scheduls; +s, when(1— p)ly < psh+ (1— p)(Sh+ Sn+1)-
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Case 3 Let ps;+ (1—p)(s1+S2) = (1— p)l1+t wheret >0

R—Rs=(1-plli—psi—(1-p)(s1+%)
+PIVa(1, 1) = Va(1,2)] + (1 - ) V2(2 1) ~ V(1. 3)]
= —t+p|plsL+V5(1,2)) + (1 p)(s1+ 2+ Vs(1,3))
~PV3(1,2) — (1 P)(l1+V5(2,2))]
+(1-p) [Pl +Va(2,2) + (1 - P)(s1+82+V5(2.3))

— PV3(1,3) — (1= p)(11+V5(2.3))|

In the above step, note that fgs(1,1), in breakb,, (1— p)l; need not exceeds,_1 +
(1—p)(sh-1+Sn), howeverps; + (1—p)(s1+S2) > (1— p)l1. Since we assume that
the policy holds good in subsequent breaks, either Caé® () preferred) or Case 3
(indifference) will apply, therefore we sele@, ;). The expansion for the other terms

is similarly explained.

— Ri—Ro= ~t+p|t+PplVs(1,2) = V5(L,2)] + (1 - P)V5(L 3) - V5(2.2)
(1—p) [t+PIVa(2.2) ~V(1,3)]
+(1-p)V3(2,3) ~ V5(2.3)]
=—t+pt+(1—pt
=0

R —Rs=0 = selecting ands; + s, are both equally profitable. O

A.6 Proof of Theorem 3.6

Proof. Let poly =t + p1S1+ p2(sy +S2) wheret > 0.
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Case 1

R —Rs= (Po+p1)V2(1,1) + p(l1 +V2(2, 1))

—poVa(1,1) — pr(s1+V2(1,2)) — pa(s1+ 2+ Va(1,3))

= p1(V2(1,1) —s51 —V2(1,2))
+P2(l1+V2(2,1) — (s1+52) —V2(1,3))

=t+ p1[V2(1,1) —V2(1,2)] + p2[V2(2,1) — V2(1, 3)]

>t+p [poVs(L 1)+ pu(s1+Va(1,2)) + pa(s1 +2+V3(1,3)
— (Po+P1)(Va(1,2) = pa(l1 +V3(2.2)|
+ P2 |:pOV3(27 1)+ pa(s1+V3(2,2)) + pa(s1+ 52+ V3(2,3)
— (Po+ P1)(V3(1,3) — p2(l1+V3(2, 3):

= Po [t + pl(VS(]-, 1) _V3(17 2)) + p2(v3(27 1) _V3(17 3))]

Continuing enumeration, we get:

R —Rs > pl-2 :t 4 p1(Va(1,1) — Va(1,2)) + pa(Va(2, 1) — Vi(1, 3))]

> pg? :t + p1(past+ P2(s1+S2) — P2l1) + p2(past + P2(s1+2) — p2|1>}

> P2 [t+ pu(—t) + pa(—t)|
> pp it

>0

R —Rs >0 = itis optimal to schedulég first.
Case 2can be similarly proved by showing thig{ — R, > p[)“lt >0.
For both cases abovB, > R;andRs > R, if t > 0 andpp > 0. There is no interval

whereR, = R, unlike the cases where the number of breaks is fixed. O
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In this section, we present the results of the study of Sed&i6.

B.1 Revenues

Value of Small ad to Large ad = 1:1

Ad Distribution 31 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level”
G 487050  86.59% 446389  84.74% 378272 80.78% 324126 76.69% 301423 75.26%
oP 562507 499215  88.75%| 926768 465490  88.37% | 468266 407503  87.020| 422645 30522  85.30%| 400530 334538  8352% 0.8
G 256156 91.27% 421150  90.00% 362125  86.49% 312025  8351% 292008 82.16%
oP 499790 470848 9s21%| 27940 441146 0s27%| *1859°  39088s  0336%| 37993 zasss1  o2aswe| %% 3p0e42  00.22% 09
G 430013 95.53% 399202 94.40% 341916 91.56% 300653 89.03% 282890  88.51%
oP 450114 yao7as  ogaewe| 22809 415556 ago7oe| 373*0  3ee165  08.05%| S°//0% 327070 96.85%| °1°7 304156 95.16% 1
G 202782 98.31% 374863 97.91% 327816 95.78% 288663 94.37% 271519 92.88%
oP 409715 408688  99.75%| 382869 382253  99.84% | 342268 341317  99.720%| 305894 302620  98.93%| 292337 285320  97.60% 1.1
Value of Small ad to Large ad = 0.55:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level
G 311747  83.66% 308653 84.11% 302933 83.64% 201868 81.04% 280061 78.78%
oP 372654 311766  83.66%| 366942 308720  84.13%| 362189 303530  83.80%| 360137  2oggas  82.98%| 355506  2gosg1  81.46% 0.8
G 303806  91.64% 300211 91.72% 294839 90.75% 280060  88.00% 271274 85.90%
oP 331519 304306 0179%| 527327 301177 9201%| 5289 297660  o16206| 318249 2gos13  o0.0796| 315820 2g03s0  8B77% 09
G 290187  97.41% 286524 97.01% 278910  96.39% 268923 93.68% 261446 92.16%
oP 297895 591189 97.75%| 20°°°3 288230 97.50%| 20947 2g2774  07.73%| 287996 o76476  06.31%| 28%672 267508 04.33% L
G 269744 9957% 265670  99.48% 262879 98.97% 253669  97.49% 250240 96.14%
oP 270900 270154  99.72%| 267059 266203  99.71%| 265620 264705  99.66% | 260188 257028  98.79%| 260286 253500  97.39% 11
Value of Small ad to Large ad = 0.50:1
Ad Distribution 31 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level”
G 293129  83.31% 292226 83.40% 293012 83.63% 291053 82.40% 282769  80.71%
op 351843 293132  83.31%| 390388 292236  83.40%| 390378 293066  83.64%| 353217 292116  82.70%| 350352 284670  81.25% 0.8
G 287301 91.81% 286621 91.93% 287615 91.64% 281689  90.11% 272300 87.41%
oP 312939 547320 o181%| SM1780  ogeea3  o1.04%| 519802 87836 o17196| 31261°  ogaosa  o0s7oe| SM530 574473 8B10% 09
G 275030  97.61% 274845  97.68% 273326 97.50% 268788 95.44% 262200 93.83%
oP 281754 575086 97.63%| 20171 274035 o7.71%| 280336 573002 o7.74%| 281636 570085 06.2206| 27°%%7 263617 94.34% L
G 255250  99.65% 253425  99.68% 255184 99.50% 251154 98.33% 248140  97.13%
oP 256159 255300  99.66% | 254232 253509  99.7206| 256459 255659  99.69% | 255425 251969  98.65%| 255463 248766  97.38% 1.1

sanuanay T'g

98



Value of Small ad to Large ad = 0.45:1

Ad Distribution 3:1 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level
G 276433 83.63% 278749 83.95% 284475 84.00% 285041 82.69% 279550  80.95%
oP 330546 276436  83.63%| 332031 278755  83.95% | 338309  ogas01 8410w | 345789 2gs9s0  82.70%| 349354 279576  80.95% 0.8
G 270251 92.16% 272470 92.07% 277522 9152% 277815 90.95% 270744 88.36%
oP 293251 570954 g216%| 20291 270475 ozo7we| 303227 o77s52  o153%| S0°9% 277014 00.98%| 0%l 570860  88.40% 09
G 258437 97.69% 261356 98.00% 264983 97.99% 265810  96.03% 259288 94.02%
oP 264550 558433 97.60%| 266097 261358 08.00%| 27013 265007  98.00%| 279806 2g5010  06.06%| 270777 250351  94.04% L
G 239698 99.73% 240636 99.76% 246843 99.70% 247082 98.82% 245994 97.40%
oP 240346 239698  99.73%| 241203 240636  99.76% | 247575 246860  99.71%| 250021 247004  98.83%| 252560 246005  97.40% 11
Value of Small ad to Large ad = 0.40:1
Ad Distribution 31 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level
G 260721 84.10% 266555  84.78% 276571 84.60% 280042 82.85% 275459 80.98%
oP 310024 260722  84.10%| 314426 266557  84.78% | 326934 276577  84.60%| 33908l 280943  82.85%| 340170 275459  80.98% 0.8
G 253379 92.18% 258561 92.42% 269167  91.98% 272878 91.10% 265616 87.95%
oP 274868 553380 02.18%| 270770 258561 92.42%| 202049 260173 o108 | 299%47 272870 or10%| 0199 265617 87.95% 09
G 242651 97.95% 247337 97.86% 256250 98.10% 260204 96.38% 255066 94.23%
oP 247739 oape51  97.95%| 222792 o47337  or.sew| 201218 o5e60  98.10%| 209972 260204  96.38%| 271632 255066 094.23% 1
G 224529 99.69% 227722 99.77% 238394 99.73% 242504 98.59% 241756 97.29%
oP 225236 204529  99.69% | 228246 227722 99.77%| 239049 233394  09.730%6| 245975 242504  0859%| 248498 241756  97.20% 11
Value of Small ad to Large ad = 0.35:1
Ad Distribution 31 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level
G 245652 85.20% 254473 85.70% 268947  85.24% 274394 82.60% 260381 80.36%
oP 288319 245652  85.20%| 296923 254473  85.70% | 315499 268047  85.24%| 332214 374304  82.60%| 335219 269381  80.36% 0.8
G 237395 92.67% 245706 93.05% 261611 9251% 266182 90.70% 261492 87.87%
oP 256171 537305 o267 | 204080 oas706  o305%| 28279 se1e11 o251 293474 oee182  00.70%| 207 261402 87.87% 09
G 225361 98.09% 234222 97.98% 247013 98.00% 255561 96.43% 251432 93.77%
oP 229758 555351 98.00%| 2590 234220 o7.08%| 292903 247013 oso0%| 209018 o5sse1  o6.43%| 208123 251432 03.77% L
G 209950  99.76% 215153 99.72% 230244 99.75% 236896 98.58% 238007 96.97%
oP 210459 209950  99.76%| 215751 215153  99.7206| 230812 230244  99.7506| 240302 236896  98.58%| 245440 238007  96.97% 1.1
Value of Small ad to Large ad = 0.30:1
Ad Distribution 3:1 2:1 1:1 1:2 1:3
Sold Earned % Sold Earned % Sold Earned % Sold Earned % Sold Earned % Service Level
G 230602 86.38% 243588 87.26% 261839 86.08% 268216 82.271% 265376 80.20%
oP 266957 230602  86.38%| 279147 243588  87.26% | 304171 261839  86.08%| 326007 268216  82.27%| 330878 265376  80.20% 0.8
G 221652 93.21% 232355 93.70% 253118 93.26% 260789 91.06% 257646 87.89%
oP 237807 oy1e52 93210 | 247977 232355  9370%| 271416 253118 03260 | 286%91  oeo780  or06%| 2%°13! 257646 87.80% 09
G 209595  98.05% 220168 98.29% 238571 98.15% 249160  95.93% 247027 93.68%
oP 213766 500505 08.05% | 22°9%% 220168 98.20%| 2%°9%6 23571 081506 | 229721 240160  05.03%| 26%8l 247027  03.68% L
G 194133 99.70% 202990  99.76% 222287 99.65% 231532 98.54% 234358 97.22%
oP 194713 194133  99.70%| 203484 202990  99.76% | 223077 222287  99.65%| 234956 231532  0854%| 241067 234358  97.22% 11
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B.2 Service Levels

B.2 Service Levels

Value of Small ad to Large ad = 1:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 100% 100% 100% 100% 100%
G 30 41% 49% 57% 60% 62%
15 99% 99% 99% 99% = 99% 0.8
OpP 30 51% 61% 71% 75% 74%
15 100% 100% 100% 100% 100%
G 30 61% 66% 69% 71% 72%
15 99% 99% 99% 99% 100% 0.9
OopP 30 75% 81% 85% 87%  85%
15 100% 100% 100% 100% 100%
G 30 80% 81% 80% 81% 82%
15 100% 100% 99% 100% 100% 1
OpP 30 93% 95% 96% 95%  92%
15 100% 100% 100% 100% 100%
G 30 93% 93% 90% 90% 89%
15 100% 100% 100% 100% 100% 1.1
OopP 30 99% 100% 99% 98%  96%
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Value of Small ad to Large ad = .55:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 88% 90% 94% 99% 100%
G 30 68% 71% 73% 72% 71%
15 880% 90% 92% 95% 99% 0.8
OoP 30 69% 71% 75% 76%  74%
15 96% 97% 99% 100% 100%
G 30 | 80% 82% 84% 82% 80%
15 96% 97% 97% 99% 100% 0.9
OP 30 81% 84% 86% 87% 84%
15 99% 100% 100% 100% 100%
G 30 93% 93% 94% 90% 89%
15 99% 99% 99% 100% 100% 1
OP 30 95% 95% 96% 95% = 92%
15 | 100% 100% 100% 100% 100%
G 30 | 99% 99% 98% 96% 95%
15 | 100% 100% 100% 100% 100% 1.1
OpP 30 99% 99% 99% 98%  96%

Value of Small ad to Large ad = .50:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 | 80% 81% 82% 92% 999
G 30 80% 80% 79% 76% 74%
15 | 80% 80% 80% 88% 97% 0.8
OP 30 80% 80% 80% 78%  75%
15 | 90% 90% 92% 99% 100%
G 30 | 90% 90% 89% 86% 83%
15 | 90% 90% 90% 96% 100% 0.9
OoP 30 | 90% 90% 90% 88% 84%
15 | 97% 97% 98% 100% 100%
G 30 | 97% 97% 96% 93% 91%
15 | 97% 97% 97% 100% 100% 1
OP 30 97% 97% 97% 95%  92%
15 | 100% 100% 100% 100% 100%
G 30 | 100% 100% 99% 98%  96%
15 | 100% 100% 100% 100% 100% 1.1
OopP 30 | 100% 100% 100% 98%  96%
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Value of Small ad to Large ad = .45:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 72% 71% 69% 84% 9794
G 30 | 92% 90% 87% 79%  75%
15 72% 71% 68% 83% 96% 0.8
Sl 30 | 92% 91% 87% 79%  75%
15 850 83% 80% 93% 99%
G 30 | 98% 97% 94% 88%  84%
15 850% 83% 79% 92% 9994 0.9
OoP 30 | 98% 97% 95% 89% 84%
15 95% 95% 95% 99% 100%
G 30 | 100% 100% 99% 95% 929
15 95% 95% 94% 99% 100% 1
OP 30 | 100% 100% 99% 95% 920
15 99% 99% 99% 100% 100%
G 30 | 100% 100% 100% 98%  96%
15 99% 99% 99% 100% 100% 1.1
OpP 30 100% 100% 100% 98% 97%

Value of Small ad to Large ad = .40:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 66% 63% 58% 81% 96%4
G 30 99% 98% 92% 80% 75%
15 66% 62% 57% 81% 96% 0.8
OP 30 99% 98% 92% 80%  75%
15 | 82% 80% 74% 92% 999
G 30 | 100% 100% 97% 89% 84%
15 | 82% 80% 74% 92% 99% 0.9
OoP 30 | 100% 100% 97% 89% 849
15 | 95% 94% 93% 99% 100%
G 30 | 100% 100% 99% 95% 929
15 | 95% 94% 93% 99% 100% 1
OP 30 | 100% 100% 99% 95%  92%
15 | 99% 99% 99% 100% 100%
G 30 | 100% 100% 100% 98%  96%
15 | 99% 99% 99% 100% 100% 1.1
OopP 30 | 100% 100% 100% 98%  96%
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Value of Small ad to Large ad = .35:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 66% 61% 5/% 81% 96%
G 30 | 100% 100% 93% 80% 75%
15 66% 61% 57% 81% 96% 0.8
OpP 30 100% 100% 93% 80% 759
15 82% 80% 74% 92% 99%
G 30 100% 100% 97% 89% 849
15 82% 80% 74% 92%  99% 0.9
OopP 30 | 100% 100% 97% 89% 84%
15 95% 94% 93% 99% 100%
G 30 | 100% 100% 99% 95%  92%
15 95% 94% 93% 99% 100% 1
OopP 30 | 100% 100% 99% 95% 929
15 99% 99% 99% 100% 100%
G 30 | 100% 100% 100% 98%  96%
15 99% 99% 99% 100% 100% 1.1
OpP 30 100% 100% 100% 98%  96%

Value of Small ad to Large ad =.30:1

Heuristic| Ad length| 3:1 2:1 1:1 1:2 1:3 | Service Level
15 66% 62% 55% 82% 96%
G 30 | 100% 100% 93% 79% 75%
15 66% 62% 55% 82% 96% 0.8
OopP 30 | 100% 100% 93% 79% 759
15 82% 80% 74% 92% 99%
G 30 100% 100% 98% 89% 849
15 82% 80% 74% 92%  99% 0.9
OpP 30 100% 100% 98% 89% 84%
15 95% 94% 93% 99% 100%
G 30 | 100% 100% 99% 95% 92%
15 95% 94% 93% 99% 100% 1
OopP 30 | 100% 100% 99% 95% 92%
15 99% 99% 99% 100% 100%
G 30 | 100% 100% 100% 98%  96%
15 99% 99% 99% 100% 100% 1.1
OpP 30 100% 100% 100% 98%  96%
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B.3 Utilization of breaks

Value of Small ad to Large ad = 1:1
Addist:  3:1 2:1 1:1 1:2 1:3 Service Level
G 96% 93% 89% 85% 84%

OoP 100% 100% 100% 100% 97% 0.8
G 94% 92% 88% 85% 84% 0.9
OoP 100% 100% 100% 99% 95% '
G 92% 90% 87% 84% 83% 1
OoP 97% 97% 97% 96% 92%

G 88% 87% 85% 83% 82% 11

OoP 91% 90% 91% 89% 88%

Value of Small ad to Large ad = .55:1
Addist: 3:1 2:1 1:1 1:2 1:3 Service Level
G 100% 100% 100% 97% 93%

OoP 100% 100% 100% 100% 97% 0.8
G 100% 99% 99% 95% 91% 0.9
OoP 100% 100% 100% 99% 95% '
G 97% 97% 95% 93% 90% 1

OP  97% 98% 97% 96% 92%
G 91% 90% 90% 88% 87%
OP  91% 91% 91% 90% 88% 11

Value of Small ad to Large ad = .50:1
Addist: 3:1 2:1 1:1 1:2 1:3 Service Level
G 100% 100% 100% 99% 96%

OoP 100% 100% 100% 100% 97% 0.8
G 100% 100% 100% 98% 94% 0.9
OoP 100% 100% 100% 99% 95% '
G 97% 97% 97% 95% 92% 1
OoP 97% 97% 97% 96% 92%

G 91% 91% 91% 90% 88% 11

OoP 91% 91% 91% 90% 88%
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Value of Small ad to Large ad = .45:1
Addist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97% 08

OP 100% 100% 100% 100% 97% '

G 100% 100% 100% 99% 95% 0.9

OP 100% 100% 100% 99% 95% '

G 98% 97% 97% 96% 92% 1

OP 98% 97% 97% 96% 92%

G 91% 90% 91% 89% 88%
OP  91% 90% 91% 89% 88% 11

Value of Small ad to Large ad = .40:1
Addist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97% 08

OoP 100% 100% 100% 100% 97% '

G 100% 100% 100% 99% 95% 0.9

OoP 100% 100% 100% 99% 95% '

G 97% 97% 97% 96% 92% 1

OoP 97% 97% 97% 96% 92%

G 91% 90% 91% 90% 88%
OP  91% 90% 91% 90% 88% 11

Value of Small ad to Large ad = .35:1
Addist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97% 08

OP 100% 100% 100% 100% 97% '

G 100% 100% 100% 99% 95% 0.9

OP 100% 100% 100% 99% 95% '

G 97% 97% 97% 96% 92% 1

OP 97% 97% 97% 96% 92%

G 91% 91% 91% 90% 88%
OP  91% 91% 91% 90% 88% 11

Value of Small ad to Large ad = .30:1
Addist: 3:1 2:1 1:1 1:2 1:3 Service Level

G 100% 100% 100% 100% 97% 08

OP 100% 100% 100% 100% 97% '

G 100% 100% 100% 99% 95% 0.9

OP 100% 100% 100% 99% 95% '

G 98% 97% 97% 96% 92% 1

OoP 98% 97% 97% 96% 92%

G 91% 91% 91% 90% 88% 11
OoP 91% 91% 91% 90% 88% '
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