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Abstract

Social media changes the way people use the Web. It has transformed ordinary

Web users from information consumers to content contributors. One popular

form of content contribution is social tagging, in which users assign tags to Web

resources. By the collective efforts of the social tagging community, a new

information space has been created for information navigation. Navigation

allows serendipitous discovery of information by examining the information

objects linked to one another in the social tagging space. In this dissertation,

we study prediction tasks that facilitate navigation in social tagging systems.

For social tagging systems to meet complex navigation needs of users, two

issues are fundamental, namely link sparseness and object selection. Link

sparseness is observed for many resources that are untagged or inadequately

tagged, hindering navigation to the resources. Object selection is concerned

when there are a large number of information objects that are linked to the cur-

rent object, requiring to select the more interesting or relevant ones for guiding

navigation effectively. This dissertation focuses on three dimensions, namely

the semantic, social and temporal dimensions, to address link sparseness and

object selection.

To address link sparseness, we study the task of tag prediction. This task

aims to enrich tags for the untagged or inadequately tagged resources, such

that the predicted tags can serve as navigable links to these resources. For

this task, we take a topic modeling approach to exploit the latent semantic

relationships between resource content and tags.



To address object selection, we study the task of personalized tag recom-

mendation and trend discovery using social annotations. Personalized tag rec-

ommendation leverages the collective wisdom from the social tagging commu-

nity to recommend tags that are semantically relevant to the target resource,

while being tailored to the tagging preferences of individual users. For this

task, we propose a probabilistic framework which leverages the implicit social

links between like-minded users, i.e. who show similar tagging preferences, to

recommend suitable tags.

Social tags capture the interest of the users in the annotated resources at

different times. These social annotations allow us to construct temporal pro-

files for the annotated resources. By analyzing these temporal profiles, we

unveil the non-trivial temporal trends of the annotated resources, which pro-

vide novel metrics for selecting relevant and interesting resources for guiding

navigation. For trend discovery using social annotations, we propose a trend

discovery process which enables us to analyze trends for a multitude of seman-

tics encapsulated in the temporal profiles of the annotated resources.
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Chapter 1

Introduction

1.1 Motivation

The success of Web 2.0 in promoting user interactions and contributions has

resulted in different types of social media for people to learn, play and commu-

nicate with others online. Among them is social tagging, also known as social

bookmarking.

Social tagging refers to the practice of creating tags to annotate and orga-

nize Web resources in a shared, online setting. A tag is a freeform keyword not

restricted to any predefined vocabulary, and it carries the essential meaning a

user wants to assign to the annotated resource. By bookmarking and anno-

tating Web resource with tags, users have a means to collect and categorize

them. By storing these annotations at the social tagging sites, users are able to

retrieve their bookmarks from any machine connected to the Web. Moreover,

by exploring the bookmarks shared by other peers, users are able to find other

interesting resources collectively annotated by the social tagging community.

Social tagging creates a new alternative information space for users to nav-

igate vast amount of information. In this information space, the information

objects are resources, users and tags, and these objects are linked via the as-

signment relationships, denoted by 〈user, resource, tag : timestamp〉. An as-

1



Chapter 1. Introduction

signment relationship is formed when a user uses a tag to annotate a resource

at a certain timestamp. From the assignment relationships, links between pairs

of information objects, e.g. user-tag, tag-resource and resource-user, can be

extracted to support navigation. We regard navigation in the social tagging

space as the process of traversing from one information object(s) to another,

guided by the links from the current object(s) to the other object(s). At each

navigation step, the current object(s) can be a resource, a user, a tag or a

collection of multiple objects.

Navigation in social tagging systems is concerned with finding relevant and

interesting information via the links between resources, users and tags. In

most existing social tagging systems, navigation is supported by traversing the

explicit links extracted from the assignment relationships between information

objects, e.g. tag-resource etc. Given that the current object(s) at a navigation

step may be linked to thousands, or even millions, of other objects, specialized

navigational views can be provided to help users focus on a smaller set by

selecting and ordering (or visualizing) the linked objects. For example, Deli-

cious1 provides tag view to show a combined view of all resources annotated

with the given tag. In the tag view shown in Figure 1.1, resources are ordered

based on the number of times the tag socialmedia has been assigned to them.

Other example views provided by the existing social tagging systems are shown

in Appendix A.

For social tagging systems to meet more complex navigation needs of users,

two issues fundamental are to be addressed. The first issue is link sparseness,

especially links for resources. Resources are navigable only if there are ade-

quate links to them. The second issue is object selection. This may happen

when a single object (e.g. tag) is linked to many other objects (e.g. resources

or users). In the presence of object overloading, navigational views should

select and present the significant objects, e.g. in terms of relevance and in-

1www.delicious.com

2

www.delicious.com


Chapter 1. Introduction

Figure 1.1: An Example of Tag View

terestingness, with respect to the current object, helping users to navigate

effectively. This dissertation focuses on studying prediction tasks that address

the above two issues to facilitate navigation in social tagging systems. To

elaborate these tasks, we identify three dimensions for link prediction and link

selection, namely the semantic, social and temporal dimensions. Figure 1.2

depicts our conceptual model for navigating the social tagging space.

Figure 1.2: Three Dimensions for Navigational Links

In the semantic dimension, information objects are linked according to

3



Chapter 1. Introduction

their underlying semantics [23]. For example, an article that discusses the

release of iPad 2 is assigned tags such as iPad2, tabletPC and technology. In

the existing social tagging systems, semantics are represented by individual

tags, but the semantic dimension has not been fully exploited to link resources

and tags. For example, suppose one understands that iPad2 is a tablet PC

product, it is easy to infer the tag tabletPC for an article that was assigned the

tag iPad2, despite that no user has assigned tabletPC to the particular article.

Moreover, since social tags are freeform keywords created by different users,

the same meaning may be represented in numerous forms including synonyms

(e.g. car and automobile), acronyms (e.g. world trade organization and

WTO) and morphological variations (e.g. book and books). Therefore, semantic

groupings of related tags, such as topics, should be exploited to link resources

and tags.

In the social dimension, information objects are selected based on the so-

cial relationships between users. For example, in tag recommendation, the tags

recommended to users are those most frequently assigned by other users to the

given resource. The act of bookmarking the same resource implies the com-

mon interest relationship between users. Such relationships pervasively exist

between any two users as long as they bookmark the same resource. Another

example is in resource recommendation, the resources recommended to users

are selected from those bookmarked by the user’s friends or group members.

Friendships and group memberships specify the explicit social links between

users, which may indicate common interest between the users. Recommending

objects using explicit social links is based on the sociology theory known as ho-

mophily, which states that “users in the same group are like-minded, therefore

the actions taken by a group member are likely to be adopted by other group

members” [81]. In the existing social tagging systems, only pervasive and ex-

plicit social relationships are utilized for link selection, especially in the above

recommendation tasks. However, there are other meaningful social relation-

4



Chapter 1. Introduction

ships between users. For example, two users having similar tagging preferences

may be like-minded, even though there is no explicit social links specified be-

tween them. Therefore, link selection should also exploit these implicit social

relationships between users, e.g. for generating better recommendations to

users.

In the temporal dimension, the information objects are selected or ordered

according to their temporal attributes. For example, Delicious shows the most

recent bookmarks to a particular resource on top of the earlier bookmarks. In

the existing social tagging systems, timestamps of tag assignments are used

to show point-wise attributes but not continuous trend. Furthermore, these

point-wise attributes are not processed with respect to the different semantics

of the information objects. Since tagging captures the interest of the users in

the annotated resources at different times, one may construct temporal pro-

files for resources from their annotations over time. Such temporal profiles

can then be analyzed to show interesting trends for the annotated resources.

Trends with respect to the different semantic dimensions can be analyzed con-

currently to help users further understand the relevance and recency of the

annotated resources. For example, a resource on Gibbs sampling2 may have

been known to the statistical physics community for many decades. Yet, its

relevance to the computer science community has only surfaced in recent years

due to the introduction of Gibbs sampling techniques for parameter estimation

in the latent Dirichlet allocation model3 (LDA for short) [36]. When analyzed

with respect to these two semantic dimensions, namely statistical physics and

computer science, the temporal profile of this resource will likely demonstrate

different recency of relevance. Therefore, trend analysis exploiting the tem-

poral profiles of the information objects can provide useful information for

selecting objects, hence guiding navigation.

2A sampling technique for parameter estimation in probabilistic graphical models.
3A probabilistic Bayesian model for text mining.
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1.2 Research Overview

This dissertation focuses on three prediction tasks that analyze the semantic,

social and temporal aspects of information objects to facilitate navigation in

social tagging systems. Our research objectives are twofold. To address link

sparseness, we study tag prediction task. To address object selection, we study

personalized tag recommendation task and trend discovery task. In what fol-

lows, we further describe each task.

Tag prediction. Navigation to resources suffers from tag sparseness. Ear-

lier studies on different social tagging systems [17, 41, 46, 47, 107] reported

that, while a small amount of resources attracted extensive bookmarks, the vast

majority are left untagged or inadequately tagged. The problem of sparseness

is worsened by the fact that tags carrying the same meaning may appear in

numerous forms [97]. The need to enrich tags for untagged or inadequately

tagged resources is therefore critical. One way to enrich tags is to perform au-

tomated tag prediction. The predicted tags can then serve as navigable links

to the resources.

Personalized tag recommendation. Users perform tagging primarily

for personal consumption [78, 93, 120]. Specifically, users assign tags to orga-

nize resources within their personal bookmark collections, and relocate previ-

ously annotated resources through tags. Although the same meaning may be

described using different tags by different users, individual users tend to be

consistent in their own choice of tags even when other synonyms are present.

This is because inconsistent tag assignments are ineffective for organizing and

relocating resources within personal collections. Since resource organization is

personal, tag recommendations should also be personalized. On one hand, tag

recommendation should leverage the collective wisdom from the social tagging

community to recommend tags that are semantically relevant to the resource.

On the other hand, personalization should tailor to the tagging preferences of

individual users.
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Trend discovery. Social tags capture the interest of users in the anno-

tated resources at different times. From these social annotations, one may

construct temporal profiles for the annotated resource. By analyzing these

temporal profiles, interesting trends may emerge. These emerging trends can

be analyzed with respect to the different semantic dimensions encapsulated in

the temporal profiles. Such trends unveil the non-trivial temporal attributes

of the annotated resources, thus providing novel metrics for selecting relevant

and interesting resources for guiding navigation. We identify trend discovery

as a novel task that further facilitates navigation in social tagging systems. We

demonstrate our vision by discovering the emerging topical trends in scientific

publications.

1.3 Research Contributions

With respect to our research objectives, the contributions of this dissertation

can be summarized as follows.

We study three prediction tasks that address link sparseness and object

selection, which are major obstacles to effective navigation in social tagging

systems. We propose holistic approaches to develop methods that address

the challenges in these tasks. We empirically validate the effectiveness of our

proposed methods using real-world datasets, and report the key findings from

the empirical studies.

For tag prediction, we take a topic modeling approach to exploit the latent

semantic relationships between resources and tags. We propose a probabilistic

topic model, namely LDAtgg, which jointly models the content words and the

social tags of Web documents. We develop a Gibbs sampling algorithm for

learning the model parameters. We adopt Bayesian inference for estimating

the probabilities of candidate tags for the untagged Web documents. We con-

duct experiments on a novel collection of real-world tagging data crawled from
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Delicious. Our evaluation using this dataset shows significant advantage of

LDAtgg model over the strongest baseline methods in prediction accuracy. We

further analyze the prediction results with respect to a number of characteris-

tics of tags and documents to give deep insights of the various tag prediction

methods and the dataset. These characteristics include adequacy of the ground

truth tags (i.e. the amount of tags assigned to the test document), frequency

of tags (i.e. the number of times tags are seen in the corpus) and obviousness

of tags (i.e. whether tags are also content words in the corresponding test

document).

For personalized tag recommendation, we propose a probabilistic frame-

work which leverages on the implicit social links between users, i.e. like-

minded users who show similar tagging preferences, so as to find relevant tags

for recommendation. We address personalization by modeling the probabilis-

tic tagging preferences of individual users, namely personomy translations. We

devise distributional similarity measures, such as Jensen-Shannon divergence

and L1-norm, for comparing such tagging preferences between users, so as to

perform neighbor-based translations. We conduct experiments on a benchmark

dataset from BibSonomy, which has been used in the ECML PKDD4 Discovery

Challenge 2009. We evaluate the recommendation accuracy of the proposed

neighbor-based translation framework across a range of similarity measures for

finding neighbors (i.e. like-minded users), with variations on the formulation

of tagging preference patterns. Our experimental results show that neighbor-

based translations (trans-n) have clear advantage over their target-user-solely

counterparts (trans-u) under the same framework. We further analyze the pa-

rameters tuned for individual users, which gives us quantitative understanding

on personal preference vs. social influence for individual users.

For trend discovery, we propose a trend discovery process which enables us

to analyze trends for a multitude of semantics encapsulated in the temporal

4The European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases
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profiles of the annotated resources. We perform topic modeling to capture the

semantics in the temporal profiles. We propose trend estimation methods, such

as the sigmoid estimator, to effectively parameterize these temporal profiles,

supporting trend comparison and trend selection in terms of emergence am-

plitude, ruling gradient and emergence time. For empirical study, we include

social tags and citations as two forms of social annotations for scientific pub-

lications. We conduct experiments on real-world datasets from CiteULike (for

social tag annotations) and ACM Digital Library (for citation annotations).

We perform a range of trend analysis tasks using the proposed trend discovery

process, aiding researchers and information seekers to understand the impact

of individual publications as well as the annotation community on the whole.

We demonstrate the ability to select emerging publications for a given topic

and to select emerging topics for a given publication using the proposed trend

discovery process.

1.4 Dissertation Organization

The subsequent chapters of this dissertation are organized as follows:

• Chapter 2 summarizes the existing studies on social tagging systems,

including the role of social tags and folksonomies for information orga-

nization and the use of social tags for resource navigation. Following

these, the chapter also provides an overview of the existing studies on

prediction tasks closely related to ours.

• Chapter 3 formulates the tag prediction task, and describes the proba-

bilistic topic model we proposed for solving the task. We conduct exper-

iments on news articles annotated on Delicious, and discuss our findings

using the dataset.

• Chapter 4 focuses on the personalized tag recommendation task. We

present our proposed probabilistic framework for solving the task, and
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our empirical study on the benchmark dataset for the ECML PKDD

2009 Discovery Challenge.

• Chapter 5 introduces the trend discovery task for providing novel metrics

for link selection. We demonstrate the emerging trends found for scien-

tific publications using social tags and citations as two forms of social

annotations.

• Chapter 6 concludes the thesis by summarizing our contributions, main

findings, limitations on the current work, and gives our suggestions for

future research.
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Literature Review

Social tagging research can be broadly classified into the following three ar-

eas [111]:

(i) Tag-based information organization, which compares social tags with

traditional metadata for organizing and accessing information;

(ii) Tagging behaviors and dynamics, which studies the motivations for tag-

ging, the types of tags being generated, and the statistics of tagging

activities;

(iii) Enhancement to social tagging systems, which consumes tagging data

to facilitate better navigation, such as visualizing and ranking resources,

tags, and users.

The prediction tasks we study in this dissertation address the third area.

In this chapter, we first provide an overview of studies in the first two ar-

eas, and highlight the well-known findings, which lay the foundation for our

research. We then review previous studies that address useful and interest-

ing Web mining tasks by consuming tagging data. Following that, we present

a comprehensive summary of the existing approaches to tag prediction, per-

sonalized tag recommendation, and trend discovery, which are the three main

research tasks of this dissertation. We also present a summary of topic model
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research, since topic modeling is adopted intensively in our tag prediction and

trend discovery tasks.

2.1 Tag-based Information Organization

Tags have been regarded as an alternative to metadata (i.e. data about data)

in organizing and accessing information. Traditionally, metadata is created by

professional catalogers and librarians, who are specially trained for the task.

While professionally created metadata are of high quality, the small commu-

nity of such information professionals could not cope with the explosive growth

of Web content. An alternative solution to this is to let the authors create

metadata for their own content, such as bloggers labeling Weblog posts. This

approach does not work well as not all authors are willing and capable of as-

signing good quality metadata. Furthermore, the approach has left out many

other users who are interested in the content. Social tagging is therefore intro-

duced to engage all users in the process of creating metadata for Web content.

However, when compared with traditional metadata (with controlled vocabu-

lary, complex rule sets and ontologies), tag-based information organization has

both advantages and disadvantages.

The disadvantages of social tags for information organization include: (a)

polysemy : the same tag may be used to refer to different concepts [73, 80];

(b) synonymy : the same concept may be described using different tags by

different users [73, 80]; (c) lexical variants : the same word root may appear in

different forms for the same concept, such as singular vs. plural forms, verb

conjugations, acronyms, etc. [73, 80]; (d) misspellings and errors ; (e) lack of

precision: tags are too general, hence lack discriminative power [24, 73]; and

(f) lack of hierarchy : the folksonomy, that results from social tagging, is a flat

classification system, where tags are descriptors [73].

The advantages of social tags for information organization include: (a) it is
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based on the conceptual model of users : tags define the relationships between

the online resources and concepts in the users’ mind [39, 80]; (b) low barriers

and low cognitive costs : no training or prior knowledge is required to contribute

tags [80]; (c) findability : users invent personally meaningful tags, easing tasks

such as re-finding resources [99]; (d) self-normalization: the collective vocab-

ulary becomes more consistent over time, without external controls [34, 101];

and (e) social navigation: folksonomy supports serendipitous discovery through

browsing other users’ bookmark collections [80].

Given the advantages and disadvantages of folksonomy for information or-

ganization, a number of studies have tried to assess how effective tags can be

used for searching.

Lin et al. [70] reported three empirical studies on the characteristics of so-

cial classification, comparing social tags with controlled vocabularies and title-

based automatic indexing. They observed little overlap among terms derived

from these three indexing methods, but tags are more similar to automatic

indexing than to controlled vocabulary indexing. Their study also suggested

that tags can be categorized into meaningful and stable groups to improve

tag-based searching and browsing.

Al-Khalifa and Davis [1] examined the relationship between folksonomy

tags and keywords extracted by automated indexing systems. They employed

expert indexers to evaluate the quality of folksonomy tags vs. machine-generated

keywords, and the percentage of overlap between these two kinds of index terms

and human-generated keywords were calculated respectively. Folksonomy tags

overlapped significantly with human generated-keywords, in contrast to the au-

tomatically generated ones. Furthermore, the professional indexers preferred

the semantics of the tags over the automatically extracted keywords.

Smith [104] studied LibraryThing tags and the subject headings assigned

to a small sample of books and found that the tags identify latent subjects ac-

curately. Bischoff et al. [7] studied tagging data in different kinds of resources
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and systems, including Web pages (Delicious), music (Last.fm), and images

(Flickr). They concluded that for the three social tagging systems, tags add

new information to the resources, and a large proportion of tags are accurate

and reliable. Most tags can be used as search terms and in most cases tagging

behavior exhibits approximately the same characteristics as searching behav-

ior. Based on these observations, they concluded that tags, found in different

social tagging systems, could improve searching.

Chi and Mytkowicz [20] proposed an information theoretic approach to tag

quality assessment, defined as the reduction in entropy in retrieving a particu-

lar document using a tag. They observed that the mutual information between

tags and documents is linearly decreasing with time, so tags are becoming less

and less useful as search terms.

Most of the studies agree that: (i) folksonomy tags exhibit a high de-

gree of similarity to subject descriptors and controlled vocabularies used by

experienced human indexers, although the indexing behaviors of users and

professionals are different; and (ii) social tagging is unlikely to replace conven-

tional knowledge organization systems, but offers an alternative way to develop

vocabularies for supporting information access.

2.2 Tagging Behaviors and Dynamics

In this section, we focus on two groups of studies, namely the users’ motivations

in tagging and the evolving dynamics of the social tagging communities.

Users’ Motivations in Tagging

Tagging is considered a means of sense-making by individual users. The pri-

mary benefits from tagging are self-organization and re-discovery [93]. Since

tags are publicly visible to other users, they create social awareness that mo-

tivate users to tag.
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Ames and Naaman [4] presented a taxonomy of tagging motivations in

sociality and function dimensions: self vs. social, and organization vs. com-

munication. They surveyed users of ZoneTag, a mobile application dedicated

to tagging Flickr photos, and found that the participants were mainly moti-

vated to organize resources by tagging for themselves as well as the general

public. Similar findings were echoed in the work by Nov et al. [89], in which

quantitative evaluations were conducted. They found that tagging activity

levels were positively correlated with the self and public motivations, but were

not as strongly correlated with family and friends motivations.

Marlow et al. [78] also summarized the motivations for users to tag movies,

including: for contribution and sharing (e.g. communication), for expressing

opinions (e.g. recommendation to others), for getting attention, for self presen-

tation, for performance and activism [78], and for enabling other functionality

(e.g. profile creation [99]).

This multitude of motivations has resulted in various types of tags for

annotating resources. Based on data in Delicious, Golder and Huberman [34]

identified seven types of tags:

For identifying what (or who) it is about Including common nouns and

proper nouns, e.g. people or organizations;

For identifying what it is Such as article, blog and book etc;

For identifying who owns it Such as the owner of the Weblog post;

For refining existing categories Including numbers, which are often co-

assigned with other tags, e.g. 2008 co-assigned with election;

For identifying qualities or characteristics Including most adjectives e.g.

scary, funny, stupid, inspirational etc;

For self-referencing by the annotator e.g. mystuff and mycomments;

For organizing tasks Such as toread or jobsearch;
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Dynamics of Social Tagging Community

A number of studies found that social tagging data often follow power law

distribution [34, 96, 119]. Wetzker et al. [119] found that power law distribu-

tions were shown in relationships such as users-resources, tags-resources, and

bookmarks-resources. Based on a large dataset from Delicious, they observed:

(i) the top 1% of users generated 22% of all bookmarks, and the top 10%

generated 62%; (ii) 700 tags (among 7 million) accounted for 50% of all as-

signments; (iii) 39% of all bookmarks are dedicated to the top 1% of URLs

and 61% to the top 10%. They further noted that Delicious was dominated

by technologically sophisticated users [119].

Studies also found a remarkable stability in the tagging activities [34, 99].

Golder and Huberman [34] presented numerous quantitative analyses, also

focused primarily on data from Delicious. They noted that 67% of the URLs

reached their peak popularity within 10 days of appearing on Delicious. They

also found that the proportion of frequencies of tags for a given URL stabilized

after around being annotated 100 times.

Robu et al. [96] found that there was an implicit form of “consensus” from

different users annotating the same resource. They observed that the final tag

frequencies for most resources converged to power law distributions, and the

most used tags best describe the annotated resource.

While the above studies have taken the macro view on the social tagging

community as a whole, there are also studies taking the micro view to char-

acterize individual users and sub-communities. Marvasti and Skillicorn [79]

found little evidence of user communities among users using a given tag, and

little evidence of similarities among the documents tagged by a given user.

Their analysis suggested that each individual tends to have wide interests, as

expressed in what they tag. Körner et al. [60] proposed several measures for

examining the degree of contribution by individual users. They distinguished

categorizers from describers. The former typically uses a small set of tags as
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a replacement for hierarchical classification schemes, whereas the latter anno-

tates resources with a wealth of freely associated, descriptive keywords. They

found that verbose users (i.e. describers) were most useful for the emergence

of tag semantics. They further noted a subset containing only 40% of the

most verbose taggers can produce results that match and even outperform the

semantic precision obtained from the whole dataset.

Sen et al. [99] examined factors that influence individual users’ choice on

tags and the degree to which community members share a vocabulary. Within

the context of MovieLens1, a movie recommendation system, they presented a

quantitative model to study factors such as personal tendency (e.g. personal

interest and knowledge) and community influence (e.g. tags used by other

users). They found that prior exposure to a tag did influence individual’s tag

selection, leading towards consistency in tag vocabulary.

2.3 Applications Consuming Tagging Data

Hayes and Avesani [42] examined how tags can be used to cluster bloggers and

their blog posts. Their empirical study on 13,518 blogs suggested that tags can

be regarded as gold standard for cluster coherence. Based on the intuition that

tags reflect the interests of users, Li et al. [67] proposed to group users and

resources by topics of interests mined from tagging data. Kashoob et al. [58]

used tags to discover latent communities of users. Yin et al. [121] utilized tag

features to represent Web objects, and found improved performance in their

Web object classification task.

Among many applications, tagging data is mostly explored in recommender

systems, where tags are used to derive user profiles as well as resource descrip-

tors, and these profiles and descriptors may be matched for better resource

recommendation.

Tso-Sutter et al. [112] regarded tags as local descriptions to the items by

1www.movielens.org
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the users. They proposed to combine item-based and user-based collaborative

filtering approaches in the item recommendation task. Tags served as addi-

tional links between items and users other than rating data. They decomposed

the three-dimensional relations between items, users and tags into three two-

dimensional relations, namely item-user, item-tag and user-tag. Their exper-

iments on article recommendation in CiteULike showed that, when tags are

incorporated, the proposed item recommendation method yield significantly

higher accuracy than the baseline methods.

To perform article recommendation on CiteULike, Parra and Brusilosky [92]

explored the use of tags for finding neighbors for user-based collaborative fil-

tering. They proposed a modified version of the BM25 model based on users’

tags for computing the similarity between users. They suggested that tag-

based BM25 can be considered an alternative to Pearson correlation based on

users’ ratings. Sen et al. [100] described a preference inference algorithm based

on users’ annotations on movies, which leverages tags with users’ ratings to

recommend movies. They examined 11 signals of user’s preferences on tags,

including tag searches, with respect to item ratings. They found that a hybrid

tag-preference and collaborative filtering algorithm gave strong performance

for both the prediction (i.e. to predict ratings to items) and recommendation

(i.e. to recommend a list of items) tasks.

Traditional recommender systems suffer from the cold start problem, in

which there is too little information about the new user or the new resource

to make recommendations. Bogers and van den Bosch [13] suggested that

it took about two years for the cold start problem to disappear in the case

of CiteULike. Studies leveraging social tags for item recommendation and

their findings on improvement recommendation accuracy are encouraging in

the sense that, user-created tags provide useful information for profiling users

as well as items to perform collaborative filtering for item recommendations.
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2.4 Summary of Tag Prediction Research

Tag prediction aims at enriching tags for Web resources that are untagged

or inadequately tagged. In our discussion, we refer to the resource for which

tag are to be predicted as the target resource. We categorize the existing

approaches to tag prediction into the following seven categories:

Content-based approach extracts and selects keywords or keyphrases from

the text content of resources as predicted tags [22, 82, 87]. To automati-

cally select keyphrases from the text content of resources, Medelyan et al.

[82] proposed a two-stage method, which consists of keyphrase selection

and keyphrase filtering. To select candidate keyphrases, they extracted

n-grams (a sequence of consecutive n terms) from the resource content

based on the well-known Kea system [27]. They adopted n ≤ 3. To filter

candidate keyphrases, they performed binary classification on them us-

ing semantic features derived from a Wikipedia corpus. These features

include term frequency, inverse document frequency, position of the first

occurrence, the distance between its first and last occurrences, how often

a candidate keyphrase appears as tags, length of the candidate keyphrase,

the degree to which the candidate keyphrase is semantically related to

other candidate keyphrases, the probability of the candidate keyphrase ap-

pearing as anchor text in Wikipedia (also called Wikipedia linkage), and

inverse Wikipedia linkage. Murfi and Obermayer [87] proposed a concept-

based keyword extraction method, where concepts are latent dimensions

relating keywords and documents. They learned keyword-concept rela-

tionships and concept-resource relationships, and the candidate tags are

selected from the concept(s) rather than directly from the resource con-

tent. They found that allowing multiple concepts for each document gave

better performance than their single-concept based counterparts. The

document-concept-keyword relationship in their methods can be com-

pared to the document-semantic-term relationship in latent semantic in-
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dexing [48] and the document-topic-word relationship in latent Dirichlet

allocation [12, 30] for modeling the resource content. Diaz-Aviles et al.

[22] proposed to predict tags for each target resource by selecting con-

tent words from an ad hoc Web corpus, where each ad hoc Web corpus

is specifically constructed for the target resource by query the Web using

content words of the target resource and collecting the content of the top

results returned. Content-based approach requires the target resources

to contain text content, hence, is not easily applicable to multimedia

resources, such as images and videos. Moreover, this approach assumes

that tags originate from the content of the resources, it does not model

the tag vocabulary separately from the word vocabulary. Content-based

approach, on the other hand, can predict novel tags not seen in the exist-

ing tag vocabulary. In other words, this approach is capable of identifying

relevant novel tags from the resource content.

Topic-based approach develops probabilistic topic models, e.g. by extend-

ing latent Dirichlet allocation (LDA for short), to model the generation

process for tags. This approach assumes that, each resource covers a

number of latent topics, and each tag is generated from one of the la-

tent topics covered by the respective resource. Such generation process

is described as sampling a term from the multinomial distribution over

the tag vocabulary. The latent topics differ in their multinomial distri-

butions, i.e. one topic may have a higher probability of generating some

tags over other tags, while other topics do otherwise. For tag prediction,

the model first estimates the likelihoods of the latent topics covered by

the target resource, and then computes the posterior probabilities of the

candidate tags given the likelihoods of the topics. Often, the likelihoods

of the latent topics for each resource is learned from the content words of

the resources. Krestel et al. [61, 62] modeled topics on tags exclusively,

i.e. without considering content words. Since no resource content is
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modeled, estimating the topic mixture for the target resource must rely

on the existing tags of the target resource. In other words, their approach

is limited to enriching tags for the (inadequately) tagged resources. This

same limitation was found in the rule-based approach described earlier.

A number of studies, including ours, exploit topic-based approach con-

sidering both tags and content words of the resources [18, 22, 71, 102].

These existing methods differ in: (i) modeling the correlation between the

topics for tags and the topics for words, such as the correspondence as-

sumption [71] and the conditionally independent assumption [102]; and,

(ii) modeling the additional information available for the type of target

resources, such as the authors of the underlying resources [18] and the

users’ preference of assigning tags [71].

Language-based approach develops probabilistic models, following the lan-

guage modeling framework in information retrieval, to capture the rela-

tionship between tags and content words of the resources. While language

models for information retrieval compute the likelihood of the query be-

ing generated by each document, language-based approach for tag pre-

diction computes the likelihood of the tag being generated by the target

resource. Different from information retrieval, tags and content words of

the resource do not share the same vocabulary, unlike query keywords.

In the training phase, the model estimates a joint probability distribu-

tion of the set of tags and the set of words from the same resource. In

the prediction phase, the model estimates the posterior probabilities of

the candidate tags given the observed words of the target resource. Dif-

ferent from topic-based approach, no latent topic is introduced to relate

tags with content words. Givon and Lavrenko [31] studied shelf labels

prediction for books in Goodreads2, where the shelf labels are assigned

collectively by the user community. They adopted relevance model, a

2www.goodreads.com
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relevance weighting technique under the language modeling framework,

for capturing the dependencies of the bags of labels on the bags of words

of the book descriptors. Sun et al. [108] studied tag prediction for scien-

tific publications in CiteULike3. In addition to language modeling, they

also incorporated link-based approach, where links are induced by con-

tent similarity, and content-based approach for post-hoc selection on the

candidate tags.

Link-based approach predicts tags from tags assigned to other resources that

are linked to the target resource [5, 17, 72, 97, 107]. This approach is

based on the hypothesis that linked resources are likely to share common

tags. Some previous methods based on this approach rely on explicit links

between resources, e.g. hyperlinks between Weblogs [107] and citation

links between scientific publication [17]. Since such explicit links may

not be available for all types of resources, some work also exploited the

use of implicit links between resources for propagating tags, e.g. based

on content similarity between resources [5, 72, 97]. Au Yeung et al. [5]

found that tag prediction based on user-induced links is significantly more

accurate than those based on existing hyperlinks. However, irrelevant

tags may also be erroneously propagated. Sarmanto et al. [97] discussed

two types of errors when propagating tags (named as topic labels in

their setting) for news feeds, namely mis-propagated location labels and

incorrect but relevant entity names.

Rule-based approach infers new tags from the existing tags of the target

resource using tag co-occurrence rules [6, 47, 84]. Such co-occurrence

rules are mined using association rule mining techniques, using the set

of tags assigned to the same resource as a transaction record. When

applied to tag prediction, existing tags (i.e. tags already assigned to

the resource) of the target resource are used to match the antecedent of

3www.citeulike.org
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the rules, and the consequents of the applicable rules are the candidate

tags. Often, the confidence of the applicable rules are used to weight the

candidate tags. Heymann et al. [47] found that, this approach can give

very high precision. Yet, mining co-occurrence rules from tagging data

can be challenging. Firstly, the quality of the rules or the candidate tags

is not equally high. Secondly, the number of rules mined can be very large

while the applicable rules for each target resource are usually small. To

address these challenges, Belemet al. [6] proposed to incorporate other

quality metrics for scoring both the antecedent and the consequents of

the applicable rules. Menezeset al. [84] studied on-demand rule mining

to improve space efficiency in tag prediction. Nonetheless, the rule-based

approach requires the target resource to have prior tags, otherwise no rule

can be applied for tag prediction. In other words, this approach suffers

from cold-start problem when the target resources are untagged.

Classification-based approach trains a binary classifier for each candidate

tag, and the target resource is then classified by every candidate classi-

fier to determine the tags to be assigned [47, 115]. Heymann et al. [47]

applied this approach for predicting tags for Web pages, and examined

features such as page text, anchor text and the structure of surrounding

hosts. They found that tags can be predicted with high precision but

low recall using these three types of features. The main drawback of this

approach is that, it is computationally prohibitive. To perform tag pre-

diction for a single target resource, it requires running all the classifiers

corresponding to all candidate tags. To reduce the computation over-

head, only a small set of tags are selected for building the classifiers, e.g.

the top 140 frequent tags on Delicious [115]. As a result, this approach

largely limits the number of candidate tags that can be predicted.

Cluster-based approach partitions the resources, together with their tags,

into clusters. When applied to tag prediction, it first determines the
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belonging cluster of the target resource, and then scores and ranks the

candidate tags within the belonging cluster as predicted tags for the

target resource. Song et al. [105] proposed to perform clustering by

partitioning the bipartite graph formed between resources and their con-

tent words. When hard clustering is adopted, i.e. each resource belongs

to one and only one cluster and clusters do not overlap, this approach

has the problem of making the same set of predicted tags for all resources

that fall into the same cluster.

Table 2.1 summarizes the existing literature based on the above categorization

of approaches. In general, the content words of the target resource are re-

Table 2.1: Literature for Tag Prediction

Approaches
Assumption for Output

Existing workTarget Resource Capability
CW PT LK MX ST UT

Content-based ! ! ! [22, 82, 87]

Topic-based ! ! [18, 52, 61, 71, 102]

Language-based ! ! [31, 108]

Link-based ! ! ! [5, 17, 72, 97, 107]

Rule-based ! ! [6, 47, 61, 84]

Classification-based ! ! [47, 115]

Cluster-based ! ! [105]

Legend :
CW : content words of the target resource;
PT : prior tags of the target resource;
LK : explicit links between resources, e.g. hyperlinks;
MX : may include all of the above and other types of data,

e.g. domain host;
ST : seen tags, i.e. terms in the tag vocabulary;
UT : unseen tags, i.e. new terms not yet available in the tag vocabulary.

quired as input for content-based, topic-based, and language-based approaches.

Topic-based and language-based approaches model the tag vocabulary sepa-

rately from the word vocabulary, whereas content-based approach does not.

Based on this distinction, we categorize the study by Diaz-Aviles et al. [22] into

content-based rather than topic-based approach, even though LDA is adopted

in their solution. Rule-based approach requires prior tags of the target resource
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as input, hence is not applicable to resources that are completely untagged.

Link-based approach requires links between resources as input, especially for

methods relying on explicit links other than induced links. Classification-

based and cluster-based approaches may require the content words and addi-

tional features for representing the resources. Lastly, it is worth noting that,

content-based approach is the only approach so far that can produce novel tags

not yet available in the tag vocabulary. All other approaches model the tag

vocabulary explicitly, hence can only predict tags learned before.

2.5 Summary of Topic Model Research

LDA is a probabilistic model for text mining introduced by Blei et al. [12].

Given a text corpus with D documents, in which each document has a bag of

words, LDA assumes that:

• There are K topics in total that describe this corpus;

• Each topic, denoted by k, has a mixture of words;

• Each document, denoted by d, has a mixture of topics;

• Each word token in each document belongs to one of the K topics.

LDA models each topic as a multinomial distribution over the word vocabulary,

denoted by φk, and models each document as a multinomial distribution over

the K topics, denoted by θd. The K topics are latent because they are not

directly observed in the corpus. The only variables observed in the corpus are

the word tokens for each document. The number of word tokens in document

d is denoted by Id.

LDA describes a text corpus as the result of a generative process, where

individual word tokens, denoted by wd,i, are generated by the following two

steps:

1. sample a topic zd,i from θd of document d, denoted by zd,i ∼ θd;
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2. sample a word wd,i from φzd,i of topic zd,i, denoted by wd,i ∼ φzd,i.

Where, the symbol ∼ denotes the process of sampling a variable or distribution

from its governing distribution.

Blei et al. [12] assumes that the topic mixtures for documents in the corpus

are governed by a Dirichlet distribution, denoted by θd ∼ Dirichlet (~α). The

Dirichlet hyperparameter ~α is a vector of dimension K, and the weights in ~α

allow priors to be assigned to the K topics. For example, if we have prior

beliefs that topic 1 has much higher probabilities of appearing in the corpus

than topic 2, then we may assign a much higher weight to topic 1 than to

topic 2 to incorporate such beliefs. However, when modeling an unseen text

corpus, prior beliefs are unknown, hence symmetric priors are usually adopted,

i.e. αk = α for all k ∈ [1, K] and θd ∼ Dirichlet (α). In plate notation4, the

original LDA model proposed by Blei et al. [12] is shown in Figure 2.1.a.

2.1.a: In Blei et al. [12]

2.1.b: In Griffiths and Steyvers [36]

Figure 2.1: Plate Notation for LDA

Legend of plate notation:
circles : random variables;

squares : hyperparameters;
rectangles : plates, repeated samples with the number

of repetitions noted at the bottom corners;
arrows : conditional dependencies between variables;
shaded : observed variables;

unshaded : latent variables.

4A representation of graphical probabilistic models with repeated variables.
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It is worth noting that, Blei et al. [12] did not assume any Dirichlet distri-

bution governing the word mixtures for topics, i.e. φk. The β in Figure 2.1.a

represents a matrix of parameters where the rows correspond to the K topics

and the columns correspond to the word vocabulary, i.e. β = [φ1 . . . φK ]
T . In

a later study, Griffiths and Steyvers [36] modified LDA by making the Dirich-

let assumption for these topic multinomials, denoted by φk ∼ Dirichlet (β).

Effectively, prior beliefs on the words for topics can be incorporated into the

model, similar to α. Moreover, this assumption has also made parameter es-

timation for this model more efficient by applying a collapsed Gibbs sampling

technique. Many other studies that extend LDA follow the model by Griffiths

and Steyvers [18, 71, 88], including ours to be introduced in Section 3.2. Fig-

ure 2.1.b shows the modified LDA model by Griffiths and Steyvers [36] in plate

notation. In this case, β represents a Dirichlet hyperparameter, similar to α.

Following [12], topic modeling has gained intense interest from the research

community. While the basic LDA model has been applied for solving vari-

ous tasks [36, 40, 75], many studies also proposed extended topic models for

capturing other characteristics in text corpora [9, 10, 11, 88, 116]. Blei et al.

[10] proposed a correlated topic model, which captures the hypothesis that,

topics appearing in a document together are likely to appear together in other

documents. In other words, the existence of topics in the same documents are

correlated. In another work, Blei et al. [11] also proposed a dynamic topic

model, which captures the evolution in topic compositions overtime. While

the topics may continue to be present in the text corpus, the contributing

words for the topics may be different due to topic shifts. This observation

is especially noted in corpora of scientific literature. While in these studies,

the contributing words to topics consist of only unigrams, Wang et al. [116]

proposed a topical n-gram model, which captures n-grams for topics. Their

basic assumption is that, a word token in a document may be generated either

independently from its preceding tokens (as the original LDA) or following the
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preceding token to make up a n-gram for the particular preceding topic. Each

word token in a document belongs to one (and only one) of the K topics. LDA

model describes the generative process for each word token in each document

by first sampling the topic assignment for the token followed by sampling a

word for that topic.

Here, we highlight the correspondence topic model (CorrLDA for short)

by Blei et al. [9] and the entity-topic model by Newman et al. [88]. Cor-

rLDA is proposed for modeling images and their caption words [9]. The model

assumes that an image may contain multiple regions, and each word in the

image caption corresponds to one of the regions. It follows LDA by modeling

image regions as topics, which have multinomial distributions over the word

vocabulary. Moreover, it also models regions as distributions of image features.

CorrLDA relates the distributions of topics in an image caption with the distri-

butions of regions in the same image by a correspondence assumption. Similar

idea has also been exploited for modeling named entities and their context

words [88]. In a text corpus, named entities are recognized proper nouns rep-

resenting persons, organizations or locations etc, and context words are those

that occur within certain proximity of the named entities. Newman et al. [88]

modeled topics as multinomials of named entities as well as multinomials of

context words, and also related the topics for named entities and the topics for

context words by a correspondence assumption. For our tag prediction task,

we also adopt the correspondence assumption to model the coupling between

the topics for tags and the topics for content words of Web pages.

2.6 Summary of Tag Recommendation Research

Personalized tag recommendation refers to the task of suggesting tags to a user

when she annotates a resource. The user and the resource are known as the

query user and the query resource respectively. There are two settings for the
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task, namely batch recommendation and dynamic recommendation.

Batch recommendation : Tags are recommended once to the query user

and query resource, and these recommendations do not change regardless

of any user input during the annotation process. This is the usual setting

studied in the literature [57, 76, 95, 118]. Traditional evaluation metrics

for recommender systems such as precision and recall are adopted for

comparing the performance between recommendation methods.

Dynamic recommendation : Tags are recommended as a series of recom-

mendations to query user and query resource, and the recommendations

are updated whenever the user picks up or enters a tag of her choice. In

other words, the set of tags chosen by the query user are regarded as part

of the input at each step. This setting is only seen in [28], where Garg

and Weber proposed a novel metric for evaluating the recommendation

accuracies in a series of tag recommendations. Intuitively, their metric

computes the cost incurred in the annotation process, assuming the user

examines the recommended tags sequentially and then enters a tag of

her choice either from or outside the set of recommendations.

Compared with the task of tag prediction discussed in the previous section,

which focuses on resources not yet tagged or inadequately tagged, the task

of tag recommendation does not focus on this kind of resources. Moreover,

the query resources often have previously been tagged by other users. One

approach to tag recommendation commonly adopted in many social tagging

systems is based on tag frequency for the query resource. Based on the intuition

that, the tags used by more user may more likely be used again, this approach

selects the top frequent tags for the query resource as recommendations. This

selection mechanism works for some users, who follow the general crowd in

their choice of tags. For these users, such phenomenon is sometimes referred

to as social influence or community influence [81, 99]. It is worth noting that,
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frequency-based approach to tag recommendation does not perform person-

alization. It recommends the same set of tags to all users given the same query

resource.

The challenge of tag recommendation arises from the need for personal-

ization. Since individual users have their own tagging preferences, the tags

used by others for the same resource may not suit the given query user. We

summarize the existing approaches to personalized tag recommendation into

the following five categories.

Collaborative-filtering-based approach applies collaborative filtering tech-

niques to select candidate tags from users who share similar preference

with the query user [77]. The recommendation algorithm first selects

k-nearest neighbors (kNN for short) for the query user, and then recom-

mends tags that are assigned to the query resource by those neighbors.

To compare the preferences between users, each user may be profiled

using the set of resources she has annotated or the set of tags she has

used. Marinho and Schmidt-Thieme [77] found that using user-tag pro-

file to find kNN neighbors outperformed the user-resource counterpart.

They suggested that, a user’s tag vocabulary is a better representation of

personal preferences. However, the main drawback of the collaborative-

filtering-based approach is that, the recommended tags must already

exist for the query resource, i.e. assigned by other users. This approach

may suffer from poor performance if the query user has an exclusive tag

vocabulary, i.e. tags not yet used by others for the same query resource.

Co-occurrence-based approach estimates the co-occurrence probabilities of

two tags given that they are assigned to the same resource. Given the tags

previously assigned to the query resource, tags co-occurring with these

prior tags are aggregated and ranked for tag recommendation. Previous

studies examined various kinds of tag co-occurrences [28, 94, 103, 118].

Rae et al. [94] studied the co-occurrence between tags under four types
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of social context, namely personal context, social contact context, social

group context and collective context (i.e. the entire social tagging com-

munity). They computed the co-occurrence probabilities of tags under

these contexts, and combined the recommendation candidates from these

contexts for recommending tags to users annotating images on Flickr.

Wetzker et al. [118] examined the co-occurrences between resource tags

(i.e. tags already assigned to the query resource) and personal tags (i.e.

tags used by the query user in the past, likely to be preferred by the

user). They proposed a personomy translation method for personalized

tag recommendation. They profiled users by the set of probabilities of

translating the resource tags to personal tags, and performed tag recom-

mendation using these probabilities.

Graph-based approach examines the tripartite graph formed among resources,

users and tags via the assignment relationships in a folksonomy. Jäschke

et al. [57] proposed FolkRank, a random walk technique which operates

on folksonomies. It follows the intuition and formulation of PageRank to

compute the stochastic popularity of resources, users and tags. Similar

to random walk techniques, Guan et al. [38] proposed a heat diffusion

algorithm that diffuses heat along links in the multi-type graph from the

query resource and the query user. For these two graph-based algorithms,

personalization is performed by biasing the preference vector towards the

query user and the query resource. Marinho et al. [76] described a rela-

tional learning approach that recommends tags from the neighborhood

in a graph of related objects. In their setting, the objects in the graph

are posts in the folksonomy, i.e. resource-user pairs. The strength of

relations between objects are exploited for estimating the probabilistic

weighted average from the neighborhood. However, only simple relations

were examined, i.e. user-tag profiles.

Gemmell et al. [29] examined the effect of ambiguous tags with respect to
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recommendation performance, where ambiguous tags are defined as those

appearing in more diverse clusters of resources. They experimented nu-

merous tag recommendation algorithms, including frequency-based rec-

ommendation, collaborative filtering, and FolkRank. They found that

collaborative filtering and FolkRank were less affected by the presence

of ambiguity than other simpler methods, such as those based on tag

frequency.

Tensor-based approach applies dimensionality reduction techniques on the

3-dimensional tensor corresponding to the resource-user-tag graph [57,

95, 110]. This approach uses the same data as in graph-based approach,

but adopts a multi-dimensional algebraic representation and techniques.

Symeonidis et al. [110], first unfold the 3-dimensional tensor into three

2-dimensional matrices, apply Singular Value Decomposition (SVD for

short) to these 2-dimensional matrices individually, and then combine

the decomposed matrices again to derive a denser tensor approximat-

ing the original graph. The algorithm then recommends candidate tags

whose weights in the dense tensor are above some threshold. Rendle

and Schmidt-Thieme [95] introduced two more efficient variants of this

approach using canonical decomposition and pairwise interaction tensor

factorization.

Topic-based approach leverages topic modeling techniques, i.e. LDA, for es-

timating the probabilities that candidate tags are relevant to the query

resource and the query user [63]. Krestel and Fankhauser [63] first for-

mulated the tag recommendation task as a general probabilistic ranking

problem: p(t|r, u) ∝ p(t|r)p(t|u)
p(t)

, where r denotes the query resource, u

denotes the query user, and t denotes a candidate tag. Krestel and

Fankhauser examined a language model and a topic model for estimat-

ing p(t|r) and p(u|r). Under the language model, p(t|r) = c(t,r)∑
t′ c(t

′,r)
,

where c(t, r) denotes the number of times the tag t is assigned to the re-
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source r, and t′ denotes any other tag. Under the topic model, p(t|r) =
∑

k p(t|k)p(k|r), where k denotes a latent topic. The probabilities for

users, i.e. p(t|u), can be formulated correspondingly. They adopted the

original LDA for probability estimation.

Note that many of the above approaches do not require the resource content

to make tag recommendations. They work well for resource that do not have

textual content, e.g. Flickr5 photos. Personalized tag recommendation also

adopts an assumption that the query resources should have previously assigned

tags by other users. This differentiates the task from tag prediction designed

for untagged resources.

2.7 Summary of Emerging Trend Discovery Re-

search

In this section, we first examine the different emerging trends studied in the

literature. The problem of discovering emerging trends refers to different tasks

in different contexts, and there has not been a consistent definition. We broadly

classify the previous work into phrase tracking and topic tracking tasks.

Phrase tracking focuses on monitoring the use of phrases as they ap-

pear in a stream of documents. In this task, the emerging trends are the

phrases showing interesting or significant changes in use over time. For exam-

ple, on Twitter6, the most frequently used phrases in recent time period are

considered trending topics7. To measure interestingness or significance of the

tracked phrases, techniques such as burst detection and trend estimation can

be deployed [35, 66, 85].

Topic tracking focuses on identifying topics and monitoring topic shifts in

a stream of documents over a long time span. In this task, the emerging trends

5www.flickr.com
6twitter.com
7twitter.com/#!/trendingtopics
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are the changes in the topic structures. For example, in analyzing scientific

publications, one topic tracking task is to find the various research specialties

and understand the evolution in these research specialties [10, 11, 12], such as

branching8 and merging9 and the shifts in focus10.

Unlike the phrase tracking and topic tracking tasks, which take phrase-

centric and topic-centric approaches respectively, our study on trend discovery

takes an item-centric approach. We track the publications using their social

annotations, including social tags and citing documents. We aim to discover

long-term trends revealed by these social annotations. In our study, emerg-

ing trends are prominent long-term trends associated with various semantic

dimensions of the annotated publications.

In what follows, we present an overview of the studies taking topic-centric

and phrase-centric (focusing on tags) approaches, and describe techniques for

burst detection and trend estimation.

Topic Detection and Tracking

The research on topic detection originates from detecting events from news

streams [2]. Traditionally, topic detection is performed by clustering news

articles into topics in an online fashion: Given the current document in the

stream, the task requires it to be assigned to: (i) an existing topic (or event)

among a set of previously formed topics (or events); or (ii) a new topic, when

no existing topic is found sufficiently similar to the current document. Due to

the rising popularity of Weblogs in the last decade, topic detection has also

been studied on Weblogs [83], which is one form of user-generated content

on the Web. Detecting emerging research frontiers and changes of research

focus has also become an active area of research [74]. For detecting topics and

topic evolution, the main challenge is to model and relate topics across time.

8One topic has developed into multiple subtopics.
9Multiple topics merge into one super topic.

10The keywords for describing the topics are different from before.
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The existing solutions regardless of the content sources can be categorized into

discriminative and generative approaches.

Discriminative approach models each topic as a distribution of words at

a certain discrete time windows, and changes in topics are compared using these

distributions post hoc [83, 86, 106]. Morinaga and Yamanishi [86] proposed

a finite mixture model for representing the topic structures in documents at

each time point. Emerging topics are discovered by detecting changes of main

component in the finite mixture model. Their detection strategy is based on the

theory of dynamic model selection. Mei et al. [83] proposed to detect subtopic

themes and spatiotemporal theme patterns in Weblogs using a probabilistic

model. They compared theme life cycles and theme snapshots to observe the

evolution of theme patterns. Spiliopoulou et al. [106] studied topic detection

based on clusters. They proposed a cluster transition model, which monitors

changes that involve more than one clusters. Their model is shown effective

when evaluated on the ACM Digital Library data set.

Generative approach models the data streams (e.g. publications at each

publication year) by a generative process, in which topics from an earlier time

window impose priors on those in the later time windows [3, 11, 85, 122].

Zhou et al. [122] proposed to model topics in scientific literature based on

the network relationships between the authors. In their work, topical trends

are monitored by counting the number of documents belonging to the topics.

They used author information to explain the increasing or decreasing trends

of topics from year to year. Blei and Lafferty [11] developed a dynamic topic

model, which uses Gaussian processes to relate topics across time. The use

of Gaussian processes allows topics at each time window to be centered on

topics from the previous time windows, e.g. by defining the means. Similar

to Zhou et al. [122], topic trends are monitored by counting the number of

documents belonging to the topics. Gohr et al. [32] studied topic adaptation

under evolving (possibly infinite) vocabulary. Based on probabilistic latent
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semantic analysis (PLSA for short) for modeling topics, they proposed a fold-

in technique that allows topics to be folded in with new words and documents

to be folded in with new topics.

Many recent studies following the generative approach to topic evolution

adopt LDA to model topics. LDA is originally proposed to model an archive

of scientific documents, i.e. assuming static topics. AlSumait et al. [3] de-

vised an Online-LDA model, which extends LDA to incorporate incremental

updates in topics from newly arrived documents. Bolelli et al. [14, 15] de-

veloped a generative author-topic model (GATM for short) that incorporates

the temporal order of documents for detecting topic trends. In GATM, topics

discovered at earlier time windows are propagated to later time window(s),

via topic priors. They also modeled citation links between publications in ad-

dition to the text content to identify the topic-bearing words. He et al. [44]

proposed a citation-aware topic evolution learning model, which incorporates

the citation links for modeling topic inheritance between the citing and the

cited publications. Their empirical study on a CiteSeer11 dataset suggested

that citations are helpful in tracking the evolution of topics.

Although many studies have taken citation links and citing documents into

detecting topics and topic evolution in scientific publications, we are aware of

no work on discovering topics and topical trends using social tags. In Chap-

ter 5, we consider both citing documents and social tags to be two forms of

social annotations for trend discovery in the annotated publications.

Phrase Tracking

Phrase-centric studies has gained increasing interest as more and more con-

tent on the Web are created by individual users instead of mainstream media.

Morchen et al. [85] proposed to identify emerging biomarkers as they appear

in biomedical literature. Leskovec et al. [66] monitored quoted phrases in

11citeseer.ist.psu.edu
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news articles and Weblogs. They first clustered phrases that may be muta-

tional variants of the same storyline, and developed quantitative model for

quantifying the temporal dynamics of the story lines. Goorha et al. [35] pro-

posed to identify interesting phrases centered around a named item of interest,

e.g. a named product or company. Studies on tags are concerned with mon-

itoring and analyzing the usage frequency, popularity or meaning of a single

tag [33, 50, 117] or a pair of tags [51] over time.

Hotho et al. [50] proposed to compute the popularities of tags using an

algorithm called FolkRank. FolkRank is formulated similarly to PageRank [91],

which simulates random walks on a graph to compute the stochastic stationary

probabilities of visiting each node of the graph. In PageRank, all nodes are of

the same type, i.e. Web pages. Whereas in folksonomies, linked objects may

be one of the three types, namely resources, users and tags. Hence, FolkRank

first projects the tripartite graph of a folksonomy into a monopartite graph.

It then computes the stochastic stationary probabilities for each node in the

projected graph. Hotho et al. proposed to measure the popularity change of a

tag by considering the popularity rankings of the tag and the total numbers

of tags in the respective time points.

A comparative study is given by Wetzker et al. [117], in which they pro-

posed a generative process to model the usage frequency of tags. Wetzker et

al. assumed that, the frequency of a tag in the current time window follows

a binomial process from the previous time window. They regarded trends as

statistical anomalies, and monitored tags that have the highest log usage fre-

quency from the estimated model. They also adopted the popularity change

measure proposed by Hotho et al. [50] but measured the frequency rankings

of tags instead of the stochastic popularity rankings used in [50]. They found

that the popularity change in their measure strongly favors new tags.

More recently, Hsu et al. [51] examined the co-occurrence relationships

between pairs of tags. By performing regression on the temporal correla-
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tions, they identified three types of long-term pair-wise trends, namely steadily-

shifting, stabilizing and cyclic. In steadily-shifting trend, the correlation be-

tween two tags increases or decreases linearly with time. In stabilizing trend,

the correlation between two tags may increase or decrease during the initial

period, but as time goes by, it approaches a constant level. In cyclic trend, peri-

odic peaks are found in the correlations between two tags. They demonstrated

the usefulness of the estimated trends in a tag prediction task, in which can-

didate tags are scored by their estimated correlation with the existing tags of

the target resource, i.e. similar to (co-occurrence) rule-based approach noted

in Section 2.4.

Different from the above, Gohr et al. [33] proposed to monitor the mean-

ings of tags across time. They observed that, “tags acquire multiple semantics

gradually, as users apply them to disparate documents” [33]. Based on this

observation, they aim to provide summaries using topic prototypes, such that

users may efficiently inspect the meanings of a given tag across time without

going through all associated documents. They modeled topics using Adaptive-

PLSA, which is proposed by them in a precedent work [32], for incorporating

the evolving vocabularies in the document streams. They proposed to visualize

the summary for each tag using topic table, which captures: (i) the top words

associated with each topic at each time window; (ii) the similarity between

the topic composition at a previous time window and the next; (iii) the rela-

tive strength of each topic among all topics at the same time window. They

demonstrated the effectiveness of their visual summary by spotting alien words

contained in a set of artificially inserted documents.

Time Series Analysis

Trend estimation and burst detection are tasks related to time series analy-

sis. Burst detection focuses on identifying the time intervals with unusually

large number of messages, mentions of some events, or transactions. It finds
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transient changes in the arrival of data. In contrast, trend estimation finds

continuous, relatively long-term trends in data streams.

Traditionally, burst detection monitors an aggregate function defined for

time intervals of a fixed size, often called the sliding window. It maintains a

moving sum of the function values over the sliding windows, and compares

the sum with a pre-defined threshold to determine if significant changes are

observed. However, this basic approach has its drawbacks. Zhu et al. [124]

observed that, bursts may be of unknown durations and to monitor many

sliding windows of varying sizes simultaneously takes quadratic time, which

is inefficient. They proposed a data structure called shifted wavelet tree for

efficient burst monitoring in elastic time intervals, and a streaming algorithm

that detect bursts with time complexity linear to the set of varying sliding

window sizes.

One of the most famous algorithm for burst detection is the finite automa-

ton model proposed by Kleinberg [59]. It assumes that, messages arrive in a

stream with an arrival rate depending on the underlying state at the moment,

and the onset of a burst is signaled by a transition from a lower-rate state to a

higher-rate state. The advantages of this state automaton model are twofold.

First, by assigning cost to the state transitions, one can control the frequency

in state changes, preventing very short bursts. Second, “the bursts associated

with state transitions form a naturally nested structure, with a long burst of

low intensity potentially containing several bursts of higher intensity inside

it” [59]. Using this model, Kleinberg demonstrated how a hierarchical struc-

ture of burstiness can help to identify “landmark” messages in a large corpus

of emails.

More recently, He and Parker [43] challenged the definition of bursts in

Kleinberg’s model, and proposed to monitor bursts in data streams as the

interval in which momentum is increasing. They introduced definitions such

as position, mass, velocity, momentum and acceleration for time series based on
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kinetics concepts in physics. In the context of detecting bursting MeSH12 terms

(Medical Subject Headings), position is a measure of intensity (e.g. number of

articles containing the term) andmass is a measure of importance (e.g. number

of citations). Using the proposed model, they demonstrated the ability to

detect the bursts of MeSH terms, as they became as prominent as to be inserted

into the MeSH topic hierarchy. This new technique is shown to outperform

Kleinberg’s model in identifying bursty intervals.

Trend estimation focuses on long-term trends instead of changes in (rela-

tively) short intervals. Trend estimation on a time series requires constructing

a model (e.g. function) that can be used to describe the observed data or even

to predict future values. Often, the raw measurements of time series data are

noisy, e.g. stock prices and stock trading volume [54]. To remove short-term

fluctuations, smoothing may be applied prior to trend estimation, e.g. using

moving averages [43].

The simplest type of trend is the linear trend, which can be represented as

a linear model f (t) = a × t + b + ǫt. In this model, ǫt denotes the amount of

noise at time t, while a and b are model parameters to be estimated from the

time series data. Particularly, parameter a may be used to describe the upward

and downward linear trend. To fit a model to a time series, an optimizer is

used to determine the suitable set of parameter values that minimize the error

between the model and the actual data values, e.g. the sum of square error.

Morchen et al. [85] deployed such a linear model to describe the emergence of

MeSH terms. They monitored the log frequencies of the terms instead of the

absolute frequencies. The estimated increasing trend parameters were then

used to select emerging MeSH terms.

Depending on the data at hand, more complicated models may be needed.

Leskovec et al. [66] observed that story lines exhibit heart-beat patterns when

they are quoted in mainstream and social media. They proposed a model that

12www.ncbi.nlm.nih.gov/mesh
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incorporates imitation effect and recency effect to mathematically quantify such

patterns. Imitation effect takes into account the number of articles written

previously on the same story, and recency effect favors new stories over old

stories, assuming that all stories are competing for a fixed amount of media

attention. Based on the proposed model and a large corpus of news article and

blogs, they observed a typical lag of 2.5 hours between the news media and

blogs in the peak of attentions to political story lines.
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Tag Prediction: A Topic

Modeling Approach

3.1 Introduction

In this chapter, we study how to predict tags for the untagged Web resources.

Particularly, we focus on predicting tags for Web pages, which have content

words.

Given that tags are keywords that describe or summarize a page, one may

propose to select important words from the content as the predicted tags. tf

(term frequency) and tf-idf (term frequency × inverse document frequency) are

commonly used criteria for selecting important words. However, such selection

makes an implicit assumption that tags can only come from words that appear

in the page content. In reality, such an assumption does not always hold.

To overcome the limitation of the vocabulary of a single page, one may take

the link-based or topic-based approach to predict words or tags from other rel-

evant pages, e.g. those sharing similar content. In link-based approach, Web

pages are linked via explicit (e.g. hyperlinks) or implicit (e.g. similarity)

links, and tags are harvested from other pages to the target page via these

links [5, 17, 72]. In topic-based approach, a collection of web pages may cover
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multiple topics, and each topic is associated with a set of relevant terms. Tags

are predicted by first learning the topics covered by the target page and then

estimating the probabilities of candidate tags with respect to the learned top-

ics [18, 22, 102]. As opposed to link-based approach, topic-based approach

does not find pair-wise similar pages directly so as to propagate relevant tags.

Instead, the relevance of tags are learned via topics, which are learned from

many pages.

We observe that tags can be viewed as an abstraction of the content they

are assigned to. Often, they are general terms for representing a certain topic.

As a single page can cover multiple topics, one would expect the tags, which are

collectively assigned by multiple users, to match some of these topics. Based on

this observation, we tackle the tag prediction task by leveraging the multi-topic

nature of Web pages and the correspondence between tags and topics.

We propose a probabilistic topic model known as LDAtgg to capture these

intuitions. LDAtgg models the tag vocabulary explicitly, so that it is capable of

representing tags created by the user community of the social tagging system.

This overcomes the limitation of selecting content words from the target page

alone, such as in the tf and tf-idf approaches. We solve the tag prediction

task in two phases, namely training and testing. During training, we learn

the probabilities of tags being associated with the topics, based on pages with

known tags. During testing, we predict tags for news pages that are untagged.

In this research, we seek to answer the following questions:

(i) What is the relationship between content of Web pages and their tags?

(ii) How can one create a model to incorporate this relationship?

(iii) How can the model be used for the tag prediction task?

(iv) How does the model behave for Web pages with varying characteristics?

Our contribution in this research can be summarized as follows.
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• We propose LDAtgg, a probabilistic topic model for solving the tag pre-

diction task. Our model captures the correspondence between tags and

topics, as well as the correspondence between content words and topics.

• We formulate a Gibbs sampling procedure for learning the model param-

eters.

• We evaluate the effectiveness of LDAtgg model and compare it with other

tag prediction methods on a real and novel collection of news articles

and tagging data from Delicious1. Our experimental results show that,

topic-based approach outperforms the non-topic-based baselines.

• We conduct in-depth analysis to further examine the strengths and weak-

nesses of the proposed method. We find that LDAtgg is good at predicting

less exclusive tags, i.e. tags that are assigned to more pages, but poorer

at more exclusive tags. In other words, LDAtgg is good at predicting tags

at topical levels, and these tags provide links to Web pages at higher

semantic levels. Given this characteristic, we also highlight the possible

extensions to the model.

3.2 LDAtgg Model for Tag Prediction

We address the tag prediction task by following topic-based approach, and we

focus on predicting tags for Web pages with textual content, such as online

news articles. In what follows, we first introduce the notations used in our

discussion, and then give our definition to the specific tag prediction task

studied in this chapter. Following that, we describe our LDAtgg model for

solving the task.

We name each news article (the resources) as a document, and denote it

using d. Each document contains a bag of words (extracted from its news

1www.delicious.com
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content), denoted by ~wd. We use Id to denote the number of word tokens in

~wd, and use i to denote the sequence number of a word token wd,i. In a social

tagging system, such as Delicious2, each annotated document also has a bag of

tags, denoted by ~td, which are collectively assigned by multiple users. We use

Jd to denote the number of tag tokens in ~td, and use j to denote the sequence

number of a tag token td,j. Note that, each word token wd,i corresponds to a

unique word in the word vocabulary, denoted by w. We use W to denote the

size of the word vocabulary. Similar notations are used for a unique tag t and

the size of the tag vocabulary T . Table 3.1 lists the symbols we use to describe

a corpus of annotated documents, where each document has both words and

tags.

Table 3.1: Notations for Data
Symbol Definition

D the size of the document collection
W the size of the word vocabulary
T the size of the tag vocabulary
d the index of a document in the collection
w the index of a word in the word vocabulary
t the index of a tag in the tag vocabulary
~wd the bag of words for document d
~td the bag of tags for document d
Id the number of word tokens in document d
Jd the number of tag tokens in document d
i the sequence number of a word token in document d
j the sequence number of a tag token in document d

wd,i the i-th word token in document d
td,j the j-th tag token in document d

Given the above notations, our approach to the task of tag prediction for

textual Web documents can be described as follows: (i) Given a corpus of

annotated Web documents, in which each document has a bag of words and

a bag of tags, our task is to learn a model, denoted by M, using this set of

documents. (ii) When given a new Web document, which contains content

words but no social tag is available, our task is to produce a ranked list of

candidate tags using the modelM.

2delcious.com
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We proposed LDAtgg model to solve the tag prediction task. In LDAtgg, we

assume that there are K topics in total that describe this corpus of documents.

We use k ∈ [1, K] to denote an individual topic. Following Blei et al. [12], we

further assume that each document has a mixture of topics (denoted by θd),

and each topic has a mixture of words (denoted by φk) as well as a mixture of

tags (denoted by ψk). We adopt multinomial distributions to model θd, φk and

ψk respectively. Note that, we model the tag vocabulary separately from the

word vocabulary. In other words, the multinomial distributions φk and ψk are

based on two separate vocabularies. The reason is because tags are freeform

keywords, which are often not confined to the word vocabulary. For example,

some tags are concatenations of phrases such as socialmedia, and some tags

are very personal to the particular document annotator such as mustread.

In LDAtgg, we model the coupling between the topics for tags and the topics

for words based on the following assumption, “if a topic is discussed more

often in the content of the document, then it is more likely to have more tags

of the same topic assigned to the same document”. This is the correspondence

assumption adopted in our LDAtgg model. We model such correspondence

assumption as a uniform sampling process, in which the topic assignments for

tags are sampled uniformly from the topic assignments for words. We use zd,i

to denote the topic assignment for the word token wd,i, and use yd,j to denote

the topic assignment for the tag token td,j . Formally,

yd,j ∼ Uniform (zd,1, . . . , zd,Id) (Eq. 3.1)

Given the above assumptions, our LDAtgg model describes the corpus of anno-

tated Web documents as being generated by the following process:

For each document d:

(i) For each word token wd,i ∈ ~wd:

(a) sample a topic zd,i from the mixture of topics θd for d, denoted by
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zd,i ∼ θd;

(b) sample a word wd,i from the mixture of words φzd,i for zd,i, denoted

by wd,i ∼ φzd,i.

(ii) For each tag token td,j ∈ ~td:

(a) sample a topic yd,j uniformly from the topic assignments for word

tokens in d, denoted by yd,j ∼ Uniform (zd,1, . . . , zd,Id);

(b) sample a tag td,j from the mixture of tags ψyd,j for yd,j, denoted by

td,j ∼ ψyd,j .

The entire corpus is generated by repeating the above process for every docu-

ment. At this point, we would like to note that the above generative process

is the mathematical assumptions of the model. It does not mean that the doc-

uments must have been produced this way, or the authors must have followed

this process to write the content of the documents (or annotators followed this

process to assign the tags). It is a mathematical assumption which provides a

way for us to explain the words and tags we observe for the documents, when

the actual intermediate steps are not available.

Following Blei et al. [12], we assume that the mixture of topics for docu-

ments are governed by a Dirichlet distribution with prior denoted by α. Follow-

ing Griffiths and Steyvers [37], we further assume that the mixture of words for

topics are governed by a Dirichlet distribution with prior denoted by β, and

the mixture of tags for topics are governed by a Dirichlet distribution with

prior denoted by γ. Formally,

θd ∼ Dirichlet (α)

φk ∼ Dirichlet (β)

ψk ∼ Dirichlet (γ)

Table 3.2 summarizes the symbols we use to describe LDAtgg model. Figure 3.1

depicts LDAtgg model in plate notation.
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Table 3.2: Notations for LDAtgg Model
Symbol Definition

K the number of latent topics
k the index of a latent topic

zd,i the topic assignment to wd,i

yd,j the topic assignment to td,j
θd the multinomial of topics for document d
φk the multinomial of words for topic k
ψk the multinomial of tags for topic k
α the Dirichlet prior for θd
β the Dirichlet prior for φk

γ the Dirichlet prior for ψk

Figure 3.1: Plate Notation for LDAtgg

3.3 Parameter Estimation for LDAtgg Model

In LDAtgg, three sets of model parameters have to be learned to fully describe

a corpus of annotated Web document using the model. These parameters are:

θd, the mixture of topics for documents; φk, the mixture of words for topics;

and ψk, the mixture of tags for topics.

We adopt Gibbs sampling, which is a Markov Chain Monte Carlo (MCMC

for short) method, to learn the model parameters. Similar to expectation

maximization (EM for short) and variational inference techniques, Gibbs sam-

pling performs approximate inference on the model parameters when given

the observed variables. It was first adopted by Griffiths and Steyvers [37] for

learning topic models, and has been widely adopted as the inference technique

for topic models. Its popularity is due to its efficiency in estimating the joint

a posteriori probability of an individual variable given the assignments of all
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other variables. Particularly, the joint a posteriori probabilities we want to

estimate in LDAtgg model are p
(

zd,i|~z¬{d,i}, ~w, ~y,~t
)

and p
(

yd,j|~y¬{d,j},~t, ~z, ~w
)

.

These probabilities are computed by Eq. 3.2 and Eq. 3.3 respectively. We lay

out the detailed derivation of these equations in Appendix B. The symbol

¬{d, i} denotes the exclusion of the current word token wd,i in the current

document.

Algorithm 1 outlines our Gibbs sampler for learning a LDatgg model using

training data Dtrain. During training, the sampler iteratively samples and up-

dates the topic assignments for each word token based on the estimated proba-

bilities p
(

zd,i|~z¬{d,i}, ~w, ~y,~t
)

, and the exclusion denoted by symbol ¬{d, i} cor-

responds to lines 7 in Algorithm 1. Similarly for each tag token, the sampler

iteratively computes the probabilities p
(

yd,j|~y¬{d,j},~t, ~z, ~w
)

, and the exclusion

denoted by symbol ¬{d, j} corresponds to lines 17 respectively. Table 3.3 lists

the symbols used in the sampler.

p
(

zd,i = k|~z¬{d,i}, ~w, ~y,~t
)

∝
nk
d,¬i + α

∑K

k′=1

(

nk′

d + α
)

− 1

×
n
wd,i

k,¬{d,i} + β

∑Vw

w=1

(

nw
k,¬{d,i} + β

)

×

(

1 + nk
d,¬i

nk
d,¬i

)mk
d

(Eq. 3.2)

p
(

yd,j = k|~y¬{d,j},~t, ~z, ~w
)

∝
m

td,j
k,¬{d,j} + γ

∑Vt

t=1

(

mt
k,¬{d,j} + γ

)

×
n
yd,j
d

Id
(Eq. 3.3)

A learned modelM can be obtained after we run Algorithm 1 for a sufficient

number of iterations, denoted by R. The model parameters, namely θd, φk
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Table 3.3: Notations for Gibbs Sampler
Symbol Definition
Dtrain the set of training data, as described in Table 3.1

R the number of iterations to run the sampler

NK
D the parameter matrix of dimension D ×K

NW
K the parameter matrix of dimension D ×W

NT
K the parameter matrix of dimension K × T

nk
d the entry at the d-th row and the k-th column in NK

D , which
counts the number of word tokens that are assigned to topic k
and belong to document d in the training data

nw
k the entry at the k-th row and the w-th column in NW

K , which
counts the number of word w that are assigned to topic k in the
training data

mt
k the entry at the k-th row and the t-th column in NW

K , which
counts the number of tag t that are assigned to topic k in the
training data

¬{d, i} exclusion of the i-th word token in document d

and ψk, can be computed using the output NK
D , N

W
K and NT

K according to

Eq. 3.4, Eq. 3.5 and Eq. 3.6 respectively. These derivations are based on the

expectation of the Dirichlet distribution [45].

θkd =
nk
d + α

~nd + ~α
=

nk
d + α

∑K

k′=1

(

nk′

d + α
) (Eq. 3.4)

φw
k =

nw
k + β

~nk + ~β
=

nw
k + β

∑W

w′=1

(

nw′

k + β
) (Eq. 3.5)

ψt
k =

mt
k + γ

~mk + ~γ
=

mt
k + γ

∑T

t′=1

(

mt′

k + γ
) (Eq. 3.6)

One run of the Gibbs sampler is called one chain. Each iteration of the chain

produces a sample of the model. Since Gibbs sampling is an MCMC process,

the first few samples are often regarded as burn-in. For stable estimation,

we average the model parameters from multiple samples of the same chain

after burn-in, as suggested in [37, 45]. For tag prediction, we also average

the probabilities estimated for candidate tags from multiple chains, as we will

discuss in Section 3.4.2.

In the prediction phase, given each test document d′, where only the con-

tent words (~wd′) are observed, we are to produce a ranked list of candidate
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Algorithm 1: Gibbs Sampler for LDAtgg - Training

Input: Dtrain, R, K, α, β, γ
Output: NK

D , N
W
K , MT

K

initialize zd,i and yd,j randomly;1

initialize nk
d, n

w
k , and m

t
k according to zd,i and yd,j;2

repeat3

for d = 1 to D do4

for i = 1 to Id do5

remove current assignment zd,i of wd,i;6

decrement n
wd,i
zd,i and n

zd,i
d ;7

for k = 1 to K do8

compute p
(

zd,i = k|~z¬{d,i}, ~w, ~y,~t
)

according to Eq. 3.2;9

end10

sample a topic z from p
(

~k|~z¬{d,i}, ~w, ~y,~t
)

;
11

zd,i ← z;12

update n
wd,i
z and nz

d;13

end14

for j = 1 to Jd do15

remove current assignment yd,j of td,j ;16

decrement m
td,j
yd,j ;17

for k = 1 to K do18

compute p
(

yd,j = k|~y¬{d,j},~t, ~z, ~w
)

according to Eq. 3.3;19

end20

sample a topic y from p
(

~k|~y¬{d,j},~t, ~z, ~w
)

;
21

yd,j ← y;22

update m
td,j
y ;23

end24

end25

until R iterations ;26

tags based on the learned model M. In other words, we estimate the proba-

bility p (t|~wd′ ;M) for each candidate tag seen in the training data, and rank

these candidate tags by their probabilities. In LDAtgg model, the estimated

probability for a candidate tag t is computed by Eq. 3.7.

p (t|~wd′;M) =
∑K

k=1 p (t|k;M) p (k|~wd′;M) (Eq. 3.7)

To compute p (k|~wd′;M), we re-sample the topic assignments for the word to-

kens in d′, using the model parameter φk learned from training data. Different
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from sampling in the training phase, re-sampling for test documents does not

involve the steps for tag tokens. Algorithm 2 outlines the Gibbs sampler for

re-sampling for test documents. The joint a posteriori probability for each

word token at each step is derived according to Eq. 3.8. Note that, we use

the symbol ñ to denote the counts in the test documents, differentiating from

n in the learned model.

Algorithm 2: Gibbs Sampler for LDAtgg - Prediction

Input: Dtest, R′, K, α, β, NW
K

Output: ÑK
D′, ÑW

K

initialize zd′,i and yd′,j randomly;1

initialize ñk
d′ , ñ

w
k according to zd′,i and yd′,j;2

repeat3

for d′ = 1 to D′ do4

for i = 1 to Id′ do5

remove current assignment zd′,i of wd′,i;6

decrement ñ
wd′,i
zd′,i and ñ

zd′,i
d′ ;7

for k = 1 to K do8

compute p
(

zd′,i = k|~z¬{d′,i}, ~w
)

according to Eq. 3.8;9

end10

sample a topic z from p
(

~k|~z¬{d′,i}, ~w
)

;
11

zd′,i ← z;12

update ñ
wd′,i
z and ñz

d′ ;13

end14

end15

until R′ iterations ;16

p
(

zd′,i = k|~z¬{d′,i}, ~w;M
)

∝
ñk
d′,¬i + α

∑K

k′=1

(

ñk′

d′ + α
)

− 1

×
n
wd′,i

k + ñ
wd′,i

k,¬{d′,i} + β

∑Vw

w=1

(

nw
k + ñw

k,¬{d′,i} + β
) (Eq. 3.8)

Time Complexity

For time complexity analysis for Algorithms 1 and 2, let us count the number

of times Equations Eq. 3.2 and Eq. 3.3 are executed during training, and
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the number of times Equation Eq. 3.8 is executed during re-sampling for test

documents.

For training, Eq. 3.2 is executed for each latent topics (K topics) for each

word token (Id word tokens) in each training document (D documents) during

each iteration (R iterations), and Eq. 3.3 is executed for each latent topics

for each tag token (Jd tag tokens) in each training document during each it-

eration. Let us use I to denote the maximum number of word tokens in a

document, and J to denote the maximum number of tag tokens in a docu-

ment. Then, the upper bound time complexity for Gibbs sampler for training

is O (KD (I + J)R).

For re-sampling for test document, Eq. 3.8 is executed for each latent topic

(K topics) for each word token (Id′ word tokens) in each test document (D′

documents) during each iteration (R′ iterations). Hence, the upper bound time

complexity for Gibbs sampler for re-sampling is O (KD′IR′).

In summary, the proposed Gibbs sampler is a linear algorithm with respect

to all the variables K, D, I + J and R.

3.4 Dataset and Experimental Settings

We conduct experiments to evaluate the proposed LDAtgg model for the tag

prediction task. In this section, we first describe a novel dataset we collected

from the Web, and then report our measurements and analysis on the model

performances using this dataset. We include as evaluation baselines an exten-

sive set of content-based and topic-based methods, noted in Chapter 2. Lastly,

we report the run time of LDAtgg using our Gibbs sampler.

3.4.1 Data Preparation

We study tag prediction for online news articles. We chose this type of Web

documents because of the availability of text content. We collected news arti-
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cles from three online publishers, namely BBC3, CNN4 and USAToday5. We

notice that, all these publishers support social tagging via links to Delicious6

and other social media sharing tools. Our objective in data crawling is to

collect as many as possible news articles that contain both text content and

tags.

Starting from the home page of each news publisher, we performed breath

first search by following hyperlinks that are confined to the respective domain.

We searched up to a maximum depth of 4 to obtain an initial set of URLs.

For each URL in the initial set, we crawled the HTML source to extract news

content. We extracted news content by removing HTML markups and adver-

tisements. Meanwhile, we acquired tags from Delicious for URLs in this initial

set. We noted that not all news pages contain text content, and not all have

attracted tagging on Delicious. Our final set of URLs for each publisher is the

intersection of the set of URLs that contain text and the set of URLs that have

been assigned tags in Delicious. In other words, every URL in the final set

has text content as well as tags. Our crawls of the news content and tags were

conducted in April 2009. A summary of statistics about our data crawling is

shown in Table 3.4.

Table 3.4: Statistics for URLs in Data Crawling
Initial Contains Attracted Final

set text bookmarks set

BBC 6,887 4,836 (70.22%) 2,352 (34.15%) 1,956
CNN 7,894 5,702 (72.23%) 2,330 (29.52%) 1,994
USAToday 7,088 3,067 (43.27%) 544 (7.67%) 543

Total URLs 4,493

As shown in Table 3.4, news pages that have attracted bookmarks only

constitute a small portion among those in the initial set, which varies from

7.68% to 34.15% for the three news publishers. This demonstrates that scarcity

3news.bbc.co.uk
4www.cnn.com
5www.usatoday.com
6www.delicious.com
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in tags is prevalent.

Dataset Statistics

The dataset used in our experiments consists of the union of the final sets

of URLs for the three news publishers. The dataset contains 4,493 URLs or

documents hereafter. We preprocessed the documents by tokenizing them into

words, normalized all words to lowercase, and removed stopwords7. We further

removed words that appear in fewer than 3 documents. The preprocessed

vocabulary contains 24,322 words.

We collected 33,222 bookmarks for these URLs made by 16,272 users from

Delicious. Delicious tokenizes tags using whitespace by default. We further

preprocessed tags by removing the prefixing and suffixing punctuations and

normalized them to lowercase. This has resulted in a vocabulary of 12,468

tags.

Table 3.5: Statistics for the Dataset
Number of documents 4,493
Number of users 16,272
Number of bookmarks 33,222
Size of word vocabulary 24,322
Size of tag vocabulary 12,468
Average number of word tokens per document 344.49
Average number of tag tokens per document 16.64

Table 3.5 summarizes the statistics for documents in this dataset. We did

not stem words since it is the common practice when learning LDA models

on text corpora [12, 37]. We did not stem tags as well since tag predictions

are commonly evaluated by comparing exact match of tag terms instead of

their stems. As expected, the word vocabulary and the tag vocabulary are not

identical, as shown in Table 3.5.

After preprocessing, we obtained the bag of words and bag of tags repre-

sentations for each documents in the dataset. We now analyze the word dis-

tribution and tag distribution in documents. Figure 3.2 shows the histograms

7http://www.textfixer.com/resources/common-english-words.txt
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3.2.a: Word Tokens in Documents
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3.2.b: Distinct Words in Documents

Figure 3.2: Distributions for Words in Documents

(upper row) and the cumulative probability densities (lower row) of words for

documents, and Figure 3.3 shows the same statistics for tags. We observe

that the number of words and tags for documents are not equal. The longest

document contains 6,590 word tokens, with 2,524 distinct words. The docu-

ment mostly bookmarked contains 1,005 tag tokens, with 197 distinct tags.

However, as the median values suggest, many documents contain fewer than

308 word tokens and 207 distinct words, and are assigned fewer than 6 tag

tokens and 5 distinct tags. The distributions for tags (Figures 3.3.a and 3.3.b)

are more stewed than those for words (Figures 3.2.a and 3.2.b respectively).

Figures 3.3.a and 3.3.b also show that the cumulative probability densities of

tags demonstrate power law distributions, as many social tagging activities do

[34, 96, 119]. However, the cumulative probability densities of words in doc-

uments are less power-law-like than those for tags, for there are clear bends

between the long heads and the power law fits in Figure 3.2.a and Figure 3.2.b.
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3.3.b: Distinct Tags in Documents

Figure 3.3: Distributions for Tags in Documents

To better understand the documents in this dataset, we also summarize

the frequency of words and tags. In Tables 3.6, we list the top 10 words and

top 10 tags with the highest document frequency (shown in the column Doc)

and their corresponding cumulated frequency (shown in the column Cum), i.e.

the sum of frequencies in all documents.

Table 3.6: Statistics for Frequent Words and Tags

Word
Frequency
Doc Cum

people 2,759 9,787
time 2,447 5,649
years 2,270 5,058
year 1,954 4,310
make 1,928 3,928
world 1,707 4,251
back 1,593 2,916
work 1,569 3,431
made 1,563 2,535
cnn 1,562 2,960

Tag
Frequency
Doc Cum

news 821 2,063
bbc 587 1,564

politics 573 1,574
cnn 465 7,94

health 397 1,521
articles 255 354
obama 248 836

article 246 418
science 234 841

technology 224 859
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Table 3.6 suggests that, the document frequencies for the top 10 words are

high (i.e. from more than 1/3 to 1/2 of the documents in the dataset), whereas

the document frequencies for the top 10 tags are much lower (i.e. from around

1/20 to 1/5 of the documents in the dataset). It is interesting to note that,

the top words are seldom the top tags, except the word cnn. Moreover, the

top words do not seem to represent clear topics. In contrast, 4 of the top 10

tags represent clear topics, namely politics, health, science and technology.

The high frequencies of tags such as news and articles (or article) are not a

surprise, since our Web documents are all news articles. The same can be said

for the domain names bbc and cnn.

3.4.2 Experimental Setup

Parameter Settings

We evaluate our LDAtgg model for the tag prediction task based on 5-fold cross-

validation. We split all documents in the dataset into five equal-sized folds,

such that when taking one fold as the testing set, the other four folds are

regarded as the training set. Table 3.7 shows the statistics for these five folds.

Table 3.7: Statistics for the Five Folds

Fold
Training Testing

D I J D I J

1 3,595 1,224,287 59,237 898 323,508 15,821
2 3,594 1,241,733 57,945 899 306,062 17,113
3 3,594 1,249,681 61,514 899 298,114 13,544
4 3,594 1,234,732 60,545 899 313,063 14,513
5 3,595 1,240,747 60,991 898 307,048 14,067

Legend:
D : the total number of documents;
I : the total number of word tokens in all documents;
J : the total number of tag tokens in all documents.

For training, we learned the model parameters φk and ψk from 3 indepen-

dent chains. Each chain was seeded randomly. We run the Gibbs sampler for

1,000 iterations, where the first 100 iterations were for burn-in and the suc-

58



Chapter 3. Tag Prediction: A Topic Modeling Approach

ceeding samples at every 100 iterations were collected for model estimation.

Random seeds were re-drawn at every 100 iterations. For re-sampling on test

documents, we run the Gibbs sampler for 20 iterations. These settings are

suggested by Heinrich [45] and are commonly practiced for topic models.

We trained our LDAtgg model with predefined 50 topics and 100 topics for

the tag prediction task. We set the Dirichlet hyperparameters as α = 1
K
,

β = 0.01 and γ = 0.01 as suggested by Griffiths and Steyvers [36]. These

values were fixed for all folds and all chains.

Evaluation Metrics

We adopt five evaluation metrics, namely precision, recall, f1, r-precision and

NDCG. For evaluation metrics other than r-precision, we examine the top

5 predictions for each test document, and report the performance for each

method averaged over all test documents. The choice of top 5 follows the

convention in previous studies [56].

We define the evaluation metrics for a test document d′ as follow. Let ti

denote the predicted tag ranked at position i by a method, nd′ denote the

number of distinct true tags assigned to the particular test document d′, and p

denote the current position in the ranked list at which evaluation takes place,

i.e. p ∈ [1, 5]. Let function I (d′, ti) return 1 if ti matches any one of true tags

assigned to d′ and 0 otherwise. We define precision@p, recall@p and f1@p in

Eq. 3.9, Eq. 3.10 and Eq. 3.11 respectively.

precision@p =

∑p

i=1 I (d
′, ti)

p
(Eq. 3.9)

recall@p =

∑p

i=1 I (d
′, ti)

nd′
(Eq. 3.10)

f1@p =
2× precision@p × recall@p

precision@p + recall@p
(Eq. 3.11)

As noted in Figure 3.3, more than half of the documents in our dataset have

fewer than 5 ground truth tags. This may due to that, at the time of data
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collection, the news articles have not attracted much attention or interest from

Delicious users. To alleviate the adverse effect of tag scarcity on the evalua-

tions, we also measure r-precision. R-precision is defined as the precision@nd′ ,

where nd′ is the number of distinct true tags for the test document d′. At

p = nd′ , precision@p=recall@p.

While precision, recall, f1 and r-precision are based on binary judgement of

relevance, i.e. I (d′, ti) = 1 or 0, NDCG (Normalized Discounted Cumulative

Gain) evaluates prediction accuracy when tags are associated with multiple

levels of relevance [55]. DCG@p is defined as

DCG@p =
∑p

i=1
2s(i)−1
log(i+1)

(Eq. 3.12)

where s (i) denotes the relevance level of the predicted tag at position i, i.e.

ti. NDCG@p is DCG@p normalized by the optimal DCG@p for the particular

test document, i.e. tags with higher levels of relevance always precede those

with lower levels of relevance. For the choice of s (i), there has not been a stan-

dard scoring methods for the task of tag prediction. However, the frequencies

observed for the ground truth tags of each test documents provide a reasonable

reference. Au Yeung et al. [5] used the tag frequency directly in their NDCG

evaluation. However, they also noted that, the resulting NDCG@p perfor-

mances stayed almost constant across different values of p. They attributed

such effect to the skewed distributions of the tag frequencies for documents.

In our study, we address such skewness by mapping the absolute frequen-

cies of the ground truth tags into discrete relevance levels of a small range,

e.g. [0, 2]. It is noted that, as more and more users annotate the same

resource, the top tags for the resource become stabilized [34, 96]. In other

words, even though the absolute frequencies for the most frequently assigned

tags to a document increase over time, the frequency ranks of these tags do

not change much. Hence, our mapping should assign higher relevance levels

to tags of higher frequency, while at the same time, the discretized relevance
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levels should not change drastically with respect to the number of annotating

users of individual document. Based on this intuition, we experimented with

six mapping variations for deriving the relevance level (s (i)) from the observed

tag frequency (f t
d′). However, the six variations demonstrate the same qualita-

tive results. Here we report only one representative of the mappings. We call

this representative map2, and the derivation from f t
d′ to s (i) in map2 is shown

in Table 3.8. P x
d′ denotes the x-percentile in the observed tag frequencies for

d′.

Table 3.8: Scoring for Ground Truth Tags in NDCG Evaluation
Notation s (i) Derivation

map2

0 f t
d′ = 0

1 f t
d′ ∈ [1, P 50

d′ )
2 f t

d′ ∈ [P 50
d′ , P

100
d′ )

Methods Compared

We include tag prediction methods following content-based approach and topic-

based approach for performance comparison. The content-based methods

include:

tf This method selects keywords from content of the particular test document

as tag predictions. The keywords are scored and ranked by their term

frequencies in the particular test document. It follows the intuition that,

the keywords appearing in the document more often, the more likely they

are used for annotating the document. Formally, p (t = w|d′) ∝ fw
d′ . Note

that this method does not rely on any training data.

tf-idf This method follows a similar procedure as tf for selecting keywords from

document content. It differs only in the way the keywords are scored

and ranked by the product of term frequency and inverse document fre-

quency in the dataset. The inverse document frequency gives higher

importance to more exclusive keywords in the test document. Formally,
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p (t = w|d′) ∝ fw
d′×log

D∑
d I(d,w)

, where D denote the total number of doc-

uments in the entire dataset, and I (d, w) is an indicator function that

returns 1 if keyword w appears in the content of the document denoted

by d, and 0 otherwise.

LDA This method also selects content words as tag predictions, but these words

are not directly extracted from the particular test document. It adopts

LDA for learning a topic model from the content words of a collection of

training documents, where each topic is parameterized by the posterior

probabilities p (w|k). To predict tags for a test document d′, it first esti-

mates the likelihoods that each topic is covered by the document, denoted

by p (k|d′), and then computes the likelihood of a candidate keyword w

from the topic posteriors. Formally, p (t = w|d′) =
∑

k p (w|k)× p (k|d
′).

The topic-based methods for comparison include our proposed LDAtgg model,

and the tagLDA model proposed by Si and Sun [102]:

tagLDA Figure 3.4 shows tagLDA model in plate notation. This model differs

from LDAtgg model only in modeling the topic variable yd,j for the tag

token td,j. Specifically, LDAtgg assumes that the distribution of ~yd follows

the same distribution of ~zd for the same document d, which is realized

by sampling yd,j uniformly from ~zd. In contrast, tagLDA assumes that ~yd

and ~zd are both independently drawn from θd, meaning that there is no

direct correspondence between ~yd and ~zd. For probability estimation in

the tagLDA model, we follow the formulations given by Si and Sun [102].

Following the same notations in Tables 3.2 and 3.3, Eq. 3.13 and Eq. 3.14
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Figure 3.4: Plate Notation for tagLDA

estimate the joint probabilities in tagLDA.

p
(

zd,i = k|~z¬{d,i}, ~w, ~y,~t
)

∝
nk
d,¬i + α
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k′=1

(

nk′

d + α
)

− 1

×
n
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∑Vw
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(

nw
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)

+
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(Eq. 3.13)

p
(

yd,j = k|~y¬{d,j},~t, ~z, ~w
)

∝
nk
d,¬i + α

∑K

k′=1

(

nk′

d + α
)

− 1

×
n
td,j
k,¬{d,j} + γ

∑Vt

t=1

(

mt
k,¬{d,j} + γ

)

+
∑Vw

w=1 (n
w
k + β)

(Eq. 3.14)

All methods that require topic modeling on the dataset, namely LDA, LDAtgg,

and tagLDA, follow the same experimental settings, such as the partitions for

cross-validation, the number of latent topics, the Dirichlet hyperparameters,

and the number of chains and samples for model estimations.

It is worth noting that the aforementioned methods following content-based

and topic-based approaches have been studied previously. For content-based

methods, while LDA can be compared to that proposed by Diaz-Aviles et al.

[22], and both tf and idf metrics are covered in [82], though Medelyan et al. [82]

extracted n-grams (where n ≤ 3) instead of only unigrams and examined other

features based on a Wikipedia8 corpus. For topic-based methods, the main dis-

8www.wikipedia.org
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tinction between LDAtgg and tagLDA is in the coupling between the topics for

tag tokens and the topics for word tokens: LDAtgg makes the correspondence

assumption, whereas tagLDA makes the conditional independent assumption9.

Lu et al. [71] introduced an additional set of latent variables for modeling the

users’ perspectives in annotating resources. They also adopted the correspon-

dence assumption in coupling the topics for tag tokens and the topics for word

tokens. Their study attempted to model two kinds of tags, namely tags that

are likely generated by the resource topics (i.e. topical and factual tags) and

tags that are likely generated by individual users who annotate the resource

(i.e. subjective and personal tags). One direct application of their model to

tag prediction is to use topical tags exclusively, other than user tags. However,

they did not explore this direction in [71], but suggested as future research.

3.5 Experimental Results

We first compare the tag prediction accuracy of the above methods using

evaluation metrics defined and conduct significance test (Section 3.5.1). To

understand the prediction performances between content-based methods and

topic-based methods, we further analyze the prediction results with respect to

three characteristics of tags and documents, namely obviousness of the tags

(Section 3.5.2), adequacy and exclusiveness of the ground truth tags for docu-

ments (Section 3.5.3). Following that, we identify two types of false positive

errors commonly found in the tag prediction methods, namely morphological

variations and partial matches (Section 3.5.4). To understand the prediction

performances between LDAtgg and tagLDA, we identify and examine example

documents for which the two methods give contrasting prediction results (Sec-

tion 3.5.5). Lastly, we report the run time of these topic-based methods using

Gibbs sampler (Section 3.5.6).

9In other studies, such as [18] and [71], topic models formulated similarly to LDAtgg is
also referred to as CorrLDA, and topic models formulated similarly to tagLDA is also referred
to as CI-LDA.
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3.5.1 Prediction Accuracy

Precision, Recall and F1

Figure 3.5 shows the precision@p, recall@p and f1@p measurements for all

methods at the top 5 predictions, i.e. p ∈ [1, 5]. These measurements are

the micro-averages derived from all test documents in the five folds. On the

whole, Figure 3.5 suggests that topic-based methods outperform content-based

methods.
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Figure 3.5: Tag Prediction Accuracy

Among the content-based methods, tf and tf-idf, which extract content

words from the target document, outperforms LDA, which selects top words

from the estimated topics. This observation suggests that top words selected

from the estimated topics are generally less relevant to the target documents
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than frequent words in the document content, even though the topics are rel-

evant. One possible reason for this is that the corpus for topic learning in

each fold covers many diverse documents other than the target document it-

self. This result is different from the work by Diaz-Aviles et al. [22], which

applied LDA for selecting top content words from topics as tag predictions.

Diaz-Aviles et al. first constructed an ad hoc corpus for each target document

by querying the Web, such that the ad hoc corpus was centered around the

target document. In their setting, LDA gives strong performance in tag predic-

tion. Nonetheless, they did not provide comparison with methods that extract

content words from the target document itself, such as tf and tf-idf.

We also note that, tf gives more accurate tag predictions than tf-idf. It

suggests that, users are likely to select content words that appear frequently

in the document as tags, but rare content words are less preferred.

Among the topic-based methods, tagLDA yields better accuracy than LDAtgg

at small p, i.e. p = 1 and p = 2, but LDAtgg is superior to tagLDA at larger

p, especially when p ≥ 4. This holds for precision, recall, as well as f1 mea-

surements. It is not a surprise that methods based on these two topic models

give competitive performances. In Section 3.5.5, we compare their prediction

results in greater detail.

Between the two settings of K, i.e. the number of topics assumed for the

corpus, LDAtgg-100 always outperforms LDAtgg-50, and tagLDA-100 always per-

forms better than tagLDA-50. This observation suggests that finer-grained top-

ics produces higher tag prediction accuracy for topic-based methods. Hence,

we may expect improved tag prediction accuracy using even larger number of

topics. However, the higher K, the more complex the model becomes, and

the longer it takes the model to learn. Moreover, given that the amount of

training data remains unchanged, the higher K, the more sparse data are avail-

able for learning each topic. This may lead to overfitting. For this dataset,

we find using both K = 50 and k = 100 give reasonably good tag prediction
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performance.

NDCG

Figure 3.6 shows the NDCG@p measurements for all methods. As noted in

Section 3.4.2, we apply map2 to derive the relevance level s (i) for each ground

truth tag of the test document using its observed frequency f t
d′ . For compari-

son, we also show the alternative freq, which uses the tag frequency directly as

the relevance level to compute NDCG scores, i.e. s (i) = f t
d′ .
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Figure 3.6: Tag Prediction Accuracy in NDCG

When using freq for scoring the ground truth tags, the NDCG@p values re-

main at almost the same level for p ∈ [1, 5]. Similar observations are also noted

in the work by Au Yeunget al. [5], in which Au Yeung et al. attributed this

effect to the skewness of the frequency distributions of the ground truth tags in

documents. In other words, the frequencies of the top few tags are much higher

than those less frequent ones. As a result, the normalization terms in NDCG@p

becomes extremely large, and when the DCG@p increases, the amount of cu-

mulative gain is largely discounted by the normalization terms. Exceptions

are shown in LDAtgg-50 and LDAtgg-100 methods, in which the NDCG@p values

begin to increase at p ≥ 3. It suggests that, LDAtgg ranks more tags with higher

relevance levels (cum frequency in this case) at higher p.

When using map2 for scoring the ground truth tags, the NDCG@p values are
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high at small p, and decrease as p increases. Moreover, LDAtgg-50 outperforms

tagLDA-50 at p ≥ 4, and LDAtgg-100 outperforms tagLDA-100 at p = 5. Figure 3.6

suggests that, even when the relevance levels of the ground truth tags are taken

into account, the performance comparisons between methods do not differ from

that in Figure 3.5.

R-precision and Significance Test

Figure 3.7.a shows the r-precision for all methods, measured for all test docu-

ments. We observe that all methods achieve r-precision=1 for some documents.

In other words, the respective top n′
d predictions by the methods match all

ground truth tags for the documents. We also note that, nd′ are mostly small

for these documents, i.e. in the range [1, 4].
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Figure 3.7: Tag Prediction Accuracy in R-precision

In Figure 3.7.a, although all methods are able to achieve r-precision=1

for some test documents, the median and inter quartile ranges still tell differ-

ences between the overall performances of the methods. On the whole, topic-

based methods give higher median r-precision measurements than content-

based methods. To test which method performs best and visualize its sig-

nificance, we conduct Friedman multiple comparison test, as shown in the

Figure 3.7.b. The use of Friedman multiple comparison test is suggested by
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Hull [53]. Since the measurements on r-precision do not conform to the nor-

mality assumption, as we have verified in quartile-quartile plots (also known as

QQ-plot), Friedman’s test is more appropriate than multiway ANOVA test [53].

The Friedman multiple comparison test shows that LDAtgg-100 performs the

best in r-precision, and all other methods fall to the left of the 95% confidence

interval of the best performer. In other words, LDAtgg-100 is significantly better

than all other methods, including its close competitor tagLDA-100.

3.5.2 Prediction Accuracy on Obvious Tags

In this section, we examine the methods’ abilities to predict obvious tags. As

noted by Farooq et al. [24], obvious tags are those appearing in the content of

the target resource. These tags are obvious since they can be picked up from

the document content for annotating the resources, as opposed to tag terms

that are made up by the users [24, 46]. Note that methods such as tf and tf-idf

are only able to predict tags that are obvious. This may be a disadvantage

for tf and tf-idf, as the pool of candidate tags for these methods are smaller

than those for the other methods. Hence, one may ask whether the good

performance of the topic-based methods are mainly gained from predicting the

non-obvious tags. Therefore, we conduct evaluation to compare the methods

by the prediction accuracy on obvious tags.

We perform post hoc filter on both the ground truth tags and the tag

predictions by the methods. For ground truth, we filter out the non-obvious

tags. For topic-based methods, we filter out the predictions that do not appear

in the content of the particular target document. As a result, the filtered

predictions by topic-based methods include only the tags that appear in the

tag vocabulary and appear as content words of the target document. For

content-based methods, we filter out the predictions that do not appear in the

tag vocabulary. As a result, the filtered predictions by content-based methods

include the same set of tags as the predictions by topic-based methods.
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3.8.b: Distinct Tags in Documents

Figure 3.8: Distributions for Obvious Tags in Documents

The post hoc filtering discarded from the evaluation a number of test doc-

uments that are only assigned non-obvious tags. For the remaining test doc-

uments, we plot the statistics of their ground truth tags in Figure 3.8. When

comparing the statistics shown in Figure 3.8 with those in Figure 3.3, there

are not only fewer documents, but also fewer tags for these documents. Now,

a document has at most 41 distinct obvious tags, instead of up to 197 distinct

assigned tags in Figure 3.3.b. This shows that a large proportion of tags are

non-obvious keywords that do not appear in the documents. Moreover, the

cumulative distribution for distinct tags in documents does not show as good

power law fit as in the unfiltered counterpart in Figure 3.8.

We show in Figure 3.9 the the precision@p, recall@p and f1@p measure-

ments of the various methods, computed based on the filtered ground truth

and predictions. As Figure 3.9 shows, all methods show improved precision@p,

recall@p and f1@p measurements than those in Figure 3.5. The performances
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Figure 3.9: Tag Prediction Accuracy for Obvious Tags

of tf and tf-idf are still worse than those of the topic-based methods, but by

a smaller margin. This is despite that we expect methods such as tf and tf-

idf to show strong performance in predicting obvious tags. This observation

suggests that topic-based methods is not merely good at predicting the non-

obvious tags, but also good at ranking the obvious tags.

We also notice that tf-idf now outperforms tf in Figure 3.9, as opposed to the

results shown in in Figure 3.5. This is because the rare content words, which

were ranked higher by tf-idf, are now filtered out, since they do not appear in

the tag vocabulary. After filtering out those rare content words as candidate

tags, tf-idf gives better ranking than tf.
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3.5.3 Prediction Accuracy vs. Characteristics of Docu-

ments

In this section, we examine the tag prediction accuracy of the methods with

respect to characteristics of the test documents. In particular, we identify two

characteristics for documents, namely tag adequacy and tag exclusiveness.

• We measure adequacy for each document as the total number of distinct

tags in the ground truth for the document. Formally, adq (d′) = nd′ =

∑

t I (d
′, t), where I (d′, t) is an indicator function that returns 1 if t

appears as a ground truth tag for the test document d′ and returns 0

otherwise.

• We measure exclusiveness for each document as the average exclusive-

ness of the distinct tags in the ground truth for the document. We

define exclusiveness for each tag as its inverse document frequency in

the entire dataset. Formally, exc (d′) = 1
nd′

∑

t exc (t)× I (d
′, t) and

exc (t) = log D∑
d I(t,d)

.

Intuitively, we expect the methods to perform better for documents with more

ground truth tags, and for documents with less exclusive tags. To conduct

the comparison, we first partition the documents by the quartile ranges in

the respective measurements, and then compute the average precision@5 for

documents in each partition. Figure 3.10 shows the average precision@5 given

by the methods when documents are partitioned by adequacy, and Figure 3.11

shows the same measurements for documents partitioned by exclusiveness.

In Figure 3.10, we observe that all methods give higher precision@5 for

documents with higher adequacy, i.e. documents with more ground truth

tags. This conforms to our expectation that tag predictions are easier for

documents with more distinct tags, and harder for documents with fewer tags.

The relative performance between methods in the different partitions does not

differ from that in Figure 3.5.
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Figure 3.10: Tag Prediction Accuracy vs. Adequacy for Documents

In Figure 3.11, we observe that all methods give higher precision@5 for

documents with lower exclusiveness of tags on average. The topic-based meth-

ods outperform the content-based methods by a large margin especially for

the lowest exclusiveness partition. This observation suggests that topic-based

methods are good at predicting tags that are less exclusive, i.e. tags assigned

to more documents. For the partition of documents in the highest quartile,

topic-based methods do not show much superior performance than content-

based methods. For this partition, tf-idf also gives performance comparable to
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Figure 3.11: Tag Prediction Accuracy vs. Exclusiveness for Documents

that of tf, and tagLDA gives better performance than LDAtgg. This suggests that

for documents with very exclusive tags, even though they are hard cases for

all methods, methods such as tf-idf and tagLDA show some advantage for some

cases.

Prediction Cases for Methods vs. Tag Exclusiveness

In this section, we sample some prediction cases for which one of the methods

achieves high precision@5, i.e. precision@5= 1. Table 3.9 shows one prediction

74



Chapter 3. Tag Prediction: A Topic Modeling Approach

case for each method, denoted as the best method, and the top 5 predictions

by all other methods. We highlight the correct predictions in boldface. For

methods based on topic models such as LDA, LDAtgg and tagLDA, we select their

100-topic representatives to show the prediction cases. For each predicted tag t,

we also show its corresponding exc (t) values, which indicate the exclusiveness

of the tag t in our dataset. Note that, higher exc (t) indicates more exclusive

tags, and lower exc (t) indicates more common tags. If the predicted tag is

a content word that does not appear in the tag vocabulary, particularly for

methods such as tf, tf-idf and LDA-100, we mark the exc (t) values for such

predictions as ‘–’.

Table 3.9: Prediction Cases for Methods
Rank

Best Method Other Methods
tf tf-idf LDA-100 LDAtgg-100 tagLDA-100

t exc (t) t exc (t) t exc (t) t exc (t) t exc (t)
1 ativision 7.717 ativision 7.717 games 4.649 games 4.649 games 4.649
2 blizzard 7.717 vivendi 7.717 game 5.845 gaming 4.884 gaming 4.884
3 games 4.649 blizzard 7.717 video 3.598 business 3.240 technology 2.999
4 vivendi 7.717 warraft 8.410 business 3.240 technology 2.999 business 3.240
5 business 3.240 games 4.649 world 3.623 online 4.106 google 5.114

URL http://news.bbc.co.uk/2/hi/technology/7123582.stm

Rank
Best Method Other Methods

tf-idf tf LDA-100 LDAtgg-100 tagLDA-100

t exc (t) t exc (t) t exc (t) t exc (t) t exc (t)
1 paush 8.410 paush 8.410 family 4.626 news 1.700 science 2.955
2 leture 7.717 leture 7.717 people 5.043 science 2.955 education 3.683
3 mellon 8.410 computer 4.604 years – tehnology 2.999 nn 2.268
4 arnegie 8.410 fun 5.232 life 4.459 nn 2.268 travel 3.078
5 randy 8.410 arnegie 8.410 time 6.331 history 3.174 family 4.626

URL http://www.cnn.com/2008/SHOWBIZ/books/07/25/obit.pausch/index.html

Rank
Best Method Other Methods
LDA-100 tf tf-idf LDAtgg-100 tagLDA-100

t exc (t) t exc (t) t exc (t) t exc (t) t exc (t)
1 ie 5.771 ie 5.771 ie 5.771 siene 2.955 limate 4.626
2 limate 4.626 arti 5.845 arti 5.845 globalwarming 4.604 environment 3.520
3 hange 5.078 scientists 7.717 hadow – bb 2.035 globalwarming 4.604
4 warming 5.771 expedition 7.717 expedition 7.717 limate 4.626 limatehange 4.421
5 global 4.721 mr 8.410 sledge – arti 5.845 siene 2.955

URL http://news.bbc.co.uk/2/hi/science/nature/7917266.stm

Rank
Best Method Other Methods
LDAtgg-100 tf tf-idf LDA-100 tagLDA-100

t exc (t) t exc (t) t exc (t) t exc (t) t exc (t)
1 environment 3.520 alaska 6.619 fairbanks – ice 5.771 environment 3.520
2 siene 2.955 university 7.024 alaska 6.619 change 5.078 siene 2.955
3 limate 4.626 warming 5.771 summers – limate 4.626 limate 4.626
4 limatehange 4.421 cold 6.331 warming 5.771 water 4.827 limatehange 4.421
5 globalwarming 4.604 fairbanks – trees 7.717 years – health 2.426

URL http://www.usatoday.com/weather/climate/2006-05-29-alaska-globalwarming_x.htm

Rank
Best Method Other Methods
tagLDA-100 tf tf-idf LDA-100 LDAtgg-100

t exc (t) t exc (t) t exc (t) t exc (t) t exc (t)
1 seurity 3.867 malicious 7.717 malicious 7.717 omputer 4.604 seurity 3.867
2 internet 3.527 programs 7.717 symante 7.717 online 4.106 internet 3.527
3 tehnology 2.999 report 5.771 programs 7.717 internet 3.527 tehnology 2.999
4 omputer 4.604 symante 7.717 criminals 7.024 information 5.191 privacy 4.855
5 omputers 4.721 code 7.024 detected – seurity 3.867 omputer 4.604

URL http://news.bbc.co.uk/2/hi/technology/7340315.stm

From Table 3.9, we observe that the tags predicted by methods such as

tf and tf-idf are more exclusive than the other methods on average. For ex-

ample, for the BBC article Video game giants in $18bn merger, for which tf
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achieves precision@5= 1, both methods tf and tf-idf rank activation, blizzard,

and vivend among the top 5 predictions, whose exclusiveness values are high.

Method tf-idf also picks up warcraft, whose exclusiveness value is even higher.

In contrast, methods LDA-100, LDAtgg-100 and tagLDA-100 all pick up games and

business, though predicted correctly, whose exclusiveness values are lower.

For this document, tf and tf-idf achieve better performance, partly due to that

the true tags for this document contain content words that are not common

to many other documents.

There are also cases where the true tags for the documents are commonly

assigned to other documents. For those cases, we do observe better perfor-

mance by topic-based methods. For example, for the USAToday article Alaska

the ‘poster state’ for climate concerns and the BBC article Computer viruses

hit one million, LDAtgg-100 and tagLDA-100 achieve good prediction performance

respectively. Although the top 5 tags predicted by these methods have rel-

atively low exclusiveness values, they find matches in the true tags for these

documents. Among the top 5 tags predicted by tf and tf-idf for these docu-

ments, there are tags very specific to the particular document, but are not

assigned as tags, such as fairbanks for the former document and malicious

for the latter document.

The insights suggested by these document cases are twofold. Firstly, these

ground truth tags are assigned by different users to the respective documents,

and they demonstrate different levels of exclusiveness. Therefore, for docu-

ments annotated with more exclusive tags, tf-idf performs well, whereas for

documents with less exclusive tags, topic-based methods perform well. Sec-

ondly, these ground truth tags are valid at the time of our data crawl, but will

become incomplete ground truth as more users assign tags to these URLs after

our crawl. Therefore, it is expected that as more tags are assigned, topical

tags may appear for the former document and exclusive tags may appear for

the others. This poses the possibilities and challenges in combining these two
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approaches for producing tag predictions that cover different levels of exclu-

siveness.

3.5.4 Summary of Error Types

In this section, we examine the errors made by the prediction methods. Since

the evaluation for tag prediction compares exact matches of tag terms, even

when a method predicts a tag of the same or similar meaning with one of the

ground truth tags, it is still judged as an error. Upon examining on the false

positive predictions of the various methods, we identified two types of errors

due to this stringent judgement, namely morphological variations and partial

matches.

Morphological variations A ground truth tag and a predicted tag have the

following relationships: (i) singular vs. plural forms: e.g. allergy and

allergies; and, (ii) noun vs. adjective of the same word root: e.g.

economy and economic. To find these types of matches between tag terms,

we experimented with a number of stemming and lemmatization meth-

ods, including Porter stemmer, Lancaster stemmer and the WordNet

lemmatizer. We found using Lancaster stemmer gave reasonable matches

between terms. Hence, the summary reported hereafter are based on the

stem matching results produced by the Lancaster stemmer module of the

NLTK Toolkit10.

Partial matches A ground truth tag is a concatenation of multiple atomic

terms, and one of the atomic terms matches a predicted tag, e.g. behavior

vs. behavior.intervention, behavioreconomics, and behaviormodification

etc. To split the concatenated tags into multiple atomic terms, a text

segmentation algorithm can be applied. In our experiments, we applied

the Viterbi segmentation algorithm [16, 26]. Running this algorithm usu-

ally requires a dictionary of the valid atomic terms, so as to compute the

10www.nltk.org
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likelihood of the candidate Viterbi paths for splitting [26]. The accuracy

of the segmentation results depends on the terms seen in the dictionary.

For example, if youtube is not recognized as an atomic term, then the al-

gorithm will suggest the most likely split to be you and tube since these

two terms may have been seen in the dictionary. Therefore, in order

to minimize over-splitting errors, we supplied a corpus consisting of the

content of all documents in our dataset.

In Table 3.10 and Table 3.11, we summarize the number of occurrences of

these types of errors made by the methods for documents in the five folds.

Note that, the left half of each table shows the prediction instances (i.e. false

positives), and the right half of the each table shows the true tag instances

(i.e. false negatives). Each table also shows the total number of non-exact

matching instances of the corresponding types found in each method.

On the whole, content-based methods make more of these types of errors

than topic-based methods. This observation suggests that when users assign

tags to annotate the news articles, they are likely to choose the word form

according to their own preferences or create complex (non-atomic) tags by

selecting important words from the news content. We also note that, even

though the total counts for topic-based methods are smaller than those of

content-based methods, the counts for individual tag instances are more skewed

in topic-based methods than in content-based methods. Particularly, the tag

news is found in 119 instances as partially matched false positives by LDAtgg-

100, while there are 428 false positive instances by the method in total. In

contrast, for method tf, among 797 false positive instances in total, the most

frequent tag north is only found in 22 instances.

It is worth pointing out that the stemming procedure is not perfect for

matching morphological variations. We do observe pairs of tags which actually

have different meanings but were deemed as morphological variations, e.g. book

vs. booking, and new vs. news. This is partly due to the Lancaster stemmer
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Table 3.10: Statistics for Errors due to Morphological Variations

(a) tf

False Pos. Count False Neg. Count
economic 15 jobs 13

job 13 economics 11
game 12 science 11
book 11 books 10

financial 11 finance 10
Total Instances 688

(b) tf-idf

False Pos. Count False Neg. Count
iraqi 11 iraq 14
afghan 11 afghanistan 13

israeli 10 israel 10
olympic 10 olympics 10

game 8 employment 9
Total Instances 753

(c) LDA-50

False Pos. Count False Neg. Count
economic 35 politics 32

financial 33 finance 31
political 32 jobs 28

job 28 cars 21
car 21 economics 21

Total Instances 300

(d) LDA-100

False Pos. Count False Neg. Count
economic 37 finance 30

financial 32 jobs 26
job 26 movies 24

movie 24 politics 24
political 24 cars 20

Total Instances 399

(e) LDAtgg-50

False Pos. Count False Neg. Count
politics 27 new 24

news 25 political 23
economy 23 economics 16

election 7 economic 7
finance 7 job 7

Total Instances 166

(f) LDAtgg-100

False Pos. Count False Neg. Count
news 26 new 25

politics 26 political 23
economy 22 economics 14

election 10 movie 10
movies 10 elections 9

Total Instances 214

(g) tagLDA-50

False Pos. Count False Neg. Count
economy 34 economics 25

politics 26 political 23
jobs 14 job 14

election 11 movie 11
finance 11 elections 10

Total Instances 194

(h) tagLDA-100

False Pos. Count False Neg. Count
economy 34 economics 24

politics 25 political 22
election 11 job 11
finance 11 movie 11

jobs 11 elections 10
Total Instances 220

we adopted, which trims off more suffix than the Porter stemmer in general.

For example, economy becomes econom and economics becomes economi when

Porter stemmer is applied, but both become econom when Lancaster stemmer

is applied. Lancaster stemmer allows us to find more meaningfully matched

morph, e.g. economy vs. economics in the above case, but also produces

mismatched pairs.

This set of results pose two related questions. The first is on the judgement

of tag predictions. In most existing studies, tag predictions are judged based

on exact matches with the ground truth. Such a stringent judgement would

consider morphological variations and partial matches to be errors, even though

the predicted tags are semantically relevant. There are studies that perform

stemming or splitting on tags [6, 84], and evaluate the tag prediction accuracy

based on the processed forms. However, no empirical comparison has been
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Table 3.11: Statistics for Errors due to Partial Matches
(a) tf

False Pos. Count False Neg. Count
north 22 climatechange 20
obama 17 northkorea 14

climate 14 barackobama 10
change 11 north korea 9

job 9 globalwarming 7
Total Instances 797

(b) tf-idf

False Pos. Count False Neg. Count
north 16 northkorea 13

climate 14 climatechange 10
obama 12 north korea 8
korea 11 barackobama 7

warming 7 hillaryclinton 5
Total Instances 703

(c) LDA-50

False Pos. Count False Neg. Count
change 40 climatechange 35
world 37 northkorea 17
obama 32 barackobama 12
north 26 globalwarming 11

global 18 climate change 10
Total Instances 450

(d) LDA-100

False Pos. Count False Neg. Count
change 33 climatechange 33
obama 32 northkorea 16
world 27 globalwarming 14
north 25 videogames 13

global 20 barackobama 12
Total Instances 533

(e) LDAtgg-50

False Pos. Count False Neg. Count
news 117 bbcnews 26

obama 28 news stories 16
health 21 barackobama 10

bbc 20 climatechange 8
climate 14 bbczimnews 7

Total Instances 381

(f) LDAtgg-100

False Pos. Count False Neg. Count
news 119 bbcnews 24

obama 29 news stories 15
health 20 climatechange 13

climate 19 barackobama 10
election 18 election08 10

Total Instances 428

(g) tagLDA-50

False Pos. Count False Neg. Count
obama 31 climatechange 17
news 30 election08 14

climate 23 bbcnews 12
election 23 barackobama 11
health 23 news stories 7

Total Instances 370

(h) tagLDA-100

False Pos. Count False Neg. Count
obama 29 climatechange 18

climate 24 barackobama 11
health 22 election08 11

election 21 bbcnews 8
korea 18 northkorea 7

Total Instances 384

made between these design choices. The second question is on the performance

comparison between the methods: if we take into account these types of errors

and consider them correct predictions, will this invalidate the performance

comparison observed in the previous sections? To answer this question, we

further conduct a novel set of evaluation.

To evaluate the prediction accuracy by incorporating morphological varia-

tions and partial matches, we recompute precision@p, recall@p and f1@p mea-

surements, but modify the judgement on tag predictions, defined as I (d′, ti)

in Eq. 3.9 and Eq. 3.10. Recall that ti denotes the candidate tag ranked at

position i by a method for a test document, and d′ denotes the test document.

Now, we set I (d′, ti) = 1 if and only if there exist a ground truth tag t̃ for d′

such that:

1. ti and t̃ are exact match or morphological variations or partial matches;
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and

2. There does not exist tj such that j < i and tj matches t̃ in any of the

above forms.

The second condition is to avoid doubly counting a ground truth tag for which

a match is found at a prior ranked position. For example, if a test docu-

ment has ground truth tags such as movie, and the top predictions given by a

method include movies and movie, we can only judge one of the morphological

variations as relevant. In this case, movies is ranked prior to movie, when deter-

mining I (d′, ti = movie), since there exist tj = movies such that I (d′, tj) = 1,

we will assign I (d′, ti) = 0. Note that based on the modified judgement, the

precision@p and recall@p values computed according to Eq. 3.9 and Eq. 3.10

are still in the range [0, 1]. We plot the resulting accuracy measurements in

Figure 3.12.a.

As expected, when morphological variations and partial matches are incor-

porated into the tag prediction judgement, the performances of content-based

methods improved by a large margin as compared to that in Figure 3.5, es-

pecially for methods tf and tf-idf. When both types of non-exact matches

are incorporated simultaneously, tf even outperforms LDAtgg-50 and tagLDA-50.

Nonetheless, the two methods performed strongest previously, namely LDAtgg-

100 and tagLDA-100, still outperform the others under this setting. Moreover,

the same observations from Figure 3.5 still hold, i.e. tagLDA-100 performs better

at lower p and LDAtgg performs superiorly at higher p.

Similar to Figure 3.7, we apply Friedman multiple comparison test on R-

precision measurements, shown in Figure 3.12.b, 3.12.c and 3.12.d. We note

that the Friedman test statistics for tf and tf-idf shifted rightward by a large

margin as compared to Figure 3.7, but LDAtgg-100 remains significant over all

other methods even when both types of non-exact matches are incorporated.
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Figure 3.12: Tag Prediction Accuracy Incorporating Non-exact Matches
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3.5.5 Comparison between Topic-based Methods

From the accuracy measurements shown in the previous sections, we observe

that LDAtgg and tagLDA give competitive performances. In this section, we seek

to answer the following questions:

1. Do the two models perform similarly for most of the documents? Or do

they perform drastically different for most of the documents?

2. How are the performance differences related to the design of the models?

To answer the first question above, we plot the correlation on precision@5

between methods based on LDAtgg and tagLDA models, shown in Figure 3.13.

The size of markers in the figure are proportional to the number of documents

having the particular precision@5 values. We observe that the markers on the

diagonal are of much larger size than those off the diagonal, and this holds for

both K = 50 and K = 100. This suggests that LDAtgg and tagLDA produce the

same precision@5 measurements for a large number of documents. Among the

markers off the diagonal, those closer to the diagonal are of larger size than

those more distant from the diagonal. This suggests that for these documents,

the precision@5 measurements for LDAtgg do not differ drastically from that

for tagLDA. There are only few documents for which methods based on these

two models result in very large differences in prediction accuracy.

To answer the second question above, we identify the documents for which

methods based on the two models perform contrastingly. We consider a method’s

performance poor if precision@5 ≤ 0.2, and strong if precision@5 ≥ 0.8. Ta-

bles 3.12 and 3.13 show two prediction cases, in which one document favors

LDAtgg-100, i.e. demonstrating strong performance by LDAtgg-100 but poor

performance by tagLDA-100, while the other document favors tagLDA-100, i.e.

demonstrating strong performance by tagLDA-100 but poor performance by

LDAtgg-100. In each table, we first list the URL of the document and the set of

true tags of the corresponding document. We then report, for both LDAtgg-100
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Figure 3.13: Correlation between Topic-based Methods on Precision@5

Table 3.12: A Prediction Case Favoring LDAtgg-100
URL http://news.bbc.co.uk/2/hi/europe/7851292.stm

True Tags

article bbc cyber cyberattack cybersecurity cyberwar cyberwarfare defence dossier otan eu europe

european fis2304 frikifeeds internet it mct3328 nato news online p2p warfare research security

sota technology tietoyhteiskunta u.s. union www www hack
LDAtgg-100 seurity bb news tehnology internet
Chain 1

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
20.0% security computer information software security internet crime virus hacking

9.7% iraq troops afghanistan military war iraq war military afghanistan terrorism

5.5% president meeting united policy deal usa us world russia iran

Chain 2

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
21.3% security information data computer security privacy internet technology fbi

12.2% pakistan iraq afghanistan military troops pakistan iraq afghanistan war military

4.7% europe european france french eu europe russia france eu bbc

Chain 3

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
21.6% security information computer data security privacy surveillance nsa

9.1% afghanistan iran obama president policy usa afghanistan iran politics obama

4.5% internet web online google bbc internet google bbc news technology

tagLDA-100 seurity iraq war politics privacy

Chain 1

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
18.8% security computer software programs security internet virus crime hacking

11.0% iraq afghanistan troops military war iraq war military afghanistan usa

5.3% information data intelligence made privacy privacy surveillance usatoday technology

Chain 2

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
16.5% china chinese security computer security china privacy politics internet

11.7% iraq afghanistan troops military war iraq war military afghanistan iran

3.4% day time hours night sleep sleep cnn funny stress misc

Chain 3

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
18.0% security computer information data security rss privacy politics internet

9.0% iraq afghanistan troops forces security iraq afghanistan terrorism war military

4.3% europe european french eu france europe france germany italy eu

and tagLDA-100, the top 5 predictions produced for the document, with correct

predictions highlighted in boldface, the top topics (i.e. topic k’s having highest

p (k|d′)s) estimated from the document content , and the top words (i.e. word

w’s having highest p (w|k)) and the top tags (i.e. tag t’s having highest p (t|k))

for the corresponding topics. We show the estimations for each document from

the three Gibbs sampling chains, as noted in Section 3.4.2.
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Table 3.13: A Prediction Case Favoring tagLDA-100
URL http://www.cnn.com/2008/US/12/08/chicago.labor.protest/index.html

True Tags
bankruptcy barack obama chicago cnn currentevents economiccrisis economics economy illinois

leftist manufacturing national politics recession stupidity text unions

LDAtgg-100 politis news career jobs obama

Chain 1

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
14.1% job jobs workers work company career jobs employment job work

8.4% clinton campaign democratic vote election politics election elections campaign

7.5% financial money market mortgage banks finance economics economy business

Chain 2

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
13.8% cnn u.s. monday told tuesday news commentary cnn satire mobius

10.9% bank financial money banks mortgage finance economics business glossary crisis

8.9% job work workers jobs company career jobs work employment job

Chain 3

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
13.5% job work jobs workers company career jobs work employment job

12.5% bill senate house republican secretary politics government republicans opinion

10.0% money bank credit financial pay money finance bank business banking

tagLDA-100 eonomy politis reession news eonomis
Chain 1

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
10.4% financial bank money banks mortgage economics finance economy crisis business

9.6% people care american health americans alex michelle ny 2008prezdebate3

7.4% economy economic jobs year industry economy recession unemployment

Chain 2

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
12.0% job workers jobs work company career jobs work employment business

9.1% bank credit mortgage banks house money finance bank banking banks

7.1% told cnn monday statement thursday news satire mobius parody commentary

Chain 3

p (k|d′) Words with High p (w|k) for Topic Tags with High p (t|k) for Topic
16.6% jobs job workers people economy economy recession unemployment greenjobs

10.8% financial bank banks money crisis economy economics finance crisis business

8.1% illinois seat governor blagojevich senate bank charges corruption clagg colson

For the document shown in Table 3.12, LDAtgg-100 achieves precision@5=

1.0, whereas tagLDA-100 achieves precision@5= 0.2. We observe that the tag

security is correctly predicted by both methods. Upon a closer look at the

topic mixtures estimated from the three Gibbs sampling chains, we see that

security appears top, i.e. having highest p (t|k), in one of the main topics, i.e.

having highest p (k|d′), in all three chains. This holds for both LDAtgg-100 and

tagLDA-100. The tag iraq is among the top 5 predictions by tagLDA-100, and it

also appears top in one of the main topics in all three chains for this method.

Unfortunately, iraq is not among the true tags of the document.

For this document, we note that the top topics, especially top 2 topics,

are more consistent across the three chains in tagLDA-100 than in LDAtgg-100.

Such consistency may sometimes benefit the predictions, e.g. for the case

of security, and may also harm the predictions, e.g. for the case of iraq.

Note that the final predictions produced by these topic-based methods are the

combined predictions from the three chains. The predicted tags internet and

technology are ranked above other candidate tags by LDAtgg-100, due to their
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high probabilities in the combined predictions from three chains.

For the document shown in Table 3.13, LDAtgg-100 achieves precision@5=

0.2, whereas tagLDA-100 achieves precision@5= 0.8. We observe that the tag

politics is correctly predicted by both methods. We also note that the top

topics estimated for the document are not as consistent across the three chains

as for the document shown in Table 3.13. This holds for both methods LDAtgg-

100 and tagLDA-100. For this document, tagLDA-100 predicts more relevant tags,

such as economy and economics. Upon a closer look at the topic mixtures,

these relevant tags come from the relevant topics, such as topic 57 in chain

1 and topic 76 in chain 2. tagLDA-100 also successfully identifies the topic on

recession and unemployment, such as topic 25 in chain 1 and 43 in chain 2.

Unfortunately, LDAtgg-100 fails to assign higher probabilities to these topics. It

identifies the topic on jobs and career for this document, such as topic 19 in

chain 1, topic 76 in chain2 and topic 95 in chain 3. Although the document

content is relevant to these topic words, the top tags for these topics are less

relevant. In this case, the tag unemployment should be more suitable than the

tag employment.

We also note that for both documents, the tag news is among the top

predictions by LDAtgg-100. As have shown in Table 3.6, news is one of the most

frequent tags in our dataset. This tag also appears in the top predictions for

many other documents. This observation suggests that, LDAtgg model is likely

to predict tags seen more often in the training.

3.5.6 Run Time Measurements

We implemented our Gibbs sampler in MatLab, and executed our experiments

on a Windows work station with Intel Core Duo CPU 2.33 GHz and 3.25 GB of

RAM. Table 3.14 shows the run time measurements for training, re-sampling

and prediction for each of the 5 folds, where measurements are averaged over

the three independent chains. h denotes hours and s denotes seconds.
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Table 3.14: Run Time of Topic-based Methods

K=50
Train Re-sample Prediction

LDAtgg tagLDA LDAtgg tagLDA LDAtgg tagLDA

Fold 1 5.7482 h 3.7550 h 60.5303 s 60.4389 s 0.1680 s 0.1638 s
Fold 2 5.8221 h 3.8000 h 56.9431 s 57.2860 s 0.1776 s 0.1687 s
Fold 3 5.8984 h 3.8138 h 55.5393 s 55.8087 s 0.1716 s 0.1693 s
Fold 4 5.8201 h 3.7674 h 58.5637 s 58.3934 s 0.1772 s 0.1694 s
Fold 5 5.8337 h 3.7851 h 57.6721 s 57.3371 s 0.1731 s 0.1654 s

K=100
Train Re-sample Prediction

LDAtgg tagLDA LDAtgg tagLDA LDAtgg tagLDA

Fold 1 12.3926 h 7.9981 h 122.3870 s 123.2093 s 0.2840 s 0.2526 s
Fold 2 12.5086 h 8.1168 h 115.8642 s 116.4983 s 0.2666 s 0.2581 s
Fold 3 12.6512 h 8.1947 h 113.3178 s 113.4284 s 0.2729 s 0.2611 s
Fold 4 12.4778 h 8.0700 h 119.8158 s 119.0074 s 0.2668 s 0.2588 s
Fold 5 12.5871 h 8.1213 h 116.5329 s 116.6661 s 0.2715 s 0.2534 s

These measurements show that the run time for Gibbs sampler is linear

with respect to the number of latent topics, as the time taken for K = 100

almost doubles the time taken for K = 50. Although the training time is long,

once the models are trained, predictions can be done efficiently. Note that

the measurements for re-sampling and prediction are shown as the total time

taken for all test documents in the respective fold. In other words, the time

taken for each test document is much less, e.g. 0.0676 seconds on average to

conduct re-sample and produce predictions when using LDAtgg-50. We expect

the run time to increase as the number of latent topics increases.

LDAtgg and tagLDA take almost the same run time for re-sampling and pre-

diction. Their run times differ at training. The time complexities of these two

models using Gibbs sampler are the same. It is likely due to the power term

in Eq. 3.2 that makes LDAtgg slower.

3.6 Summary

In this chapter, we discussed the task of tag prediction, which is an important

task to address link sparseness between resources and tags in social tagging

systems. For this task, we took a probabilistic topic-based approach to exploit

the semantic relationships between resources, tags and content words. We

proposed the LDAtgg model, which assumes correspondence on the distributions
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between the topics of tags and the topics of content words for the same resource.

We developed a Gibbs sampling algorithm for learning model parameters, and

conducted empirical evaluations using a novel dataset crawled from Delicious.

From our empirical evaluations, we found that tag prediction methods

based on LDAtgg model gave superior performance than an extensive set of

baseline methods. These baselines include content-based methods that selects

content words from the target resource and a competitive topic-based method

named tagLDA [18, 102]. tagLDA models the same set of variables as our LDAtgg

model but assumes conditional independence between the topics of tags and the

topics of content words. The tag prediction accuracy of LDAtgg is significantly

higher than all other methods in terms of R-precision.

We make a number of observations. First, topic-based methods showed

advantages over content-based methods, not only for all ground truth tags

but also for obvious tags. Second, tag predictions are generally harder for

documents with fewer ground truth tags and documents with more exclusive

ground truth tags. Third, the tag predictions given by content-based methods

and by topic-based methods are of different levels of specificity. In general,

topic-based methods are likely to predict tags that are seen often in the (train-

ing) dataset, whereas content-based methods are likely to predict tags that

are more exclusive to the target resource. Forth, we noted a number of pre-

diction errors due to morphological variations and partial matches. However,

even when these non-exact matches are incorporated into the evaluation of tag

prediction accuracy, topic-based methods still showed superior performances

than content-based methods. Lastly, when comparing the predicted tag by the

two topic-based models, we found that the two models performed similarly for

most of the documents but different for fewer documents. The tagLDA model

has shown slight advantage in the average precision@5 for documents with very

exclusive tags. Nonetheless, the Friedman multiple comparison test has shown

that LDAtgg is significantly better in R-precision for all test documents.
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The task of tag prediction is challenging on its own merit. One challenge

faced by all tag prediction methods is the offline evaluation on the predicted

tags. When more users bookmark the resources, tags which were not in the

ground truth for a particular resource previously may become available. There-

fore, for more thorough comparison between the tag prediction methods, online

evaluation may be carried out. Nonetheless, there are ample room for improve-

ments in the tag prediction methods studied in this chapter. For example,

one may seek to combine topic-based methods with content-based methods

to cover a broader range of specificity in the tag predictions. One may also

seek to design criteria for selecting K for topic-based methods, or design a

non-parametric topic-based model that does not require the number of topics

to be pre-set. Studies continuing this research may explore these possibilities.
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Chapter 4

Personalized Tag

Recommendation: A

Probabilistic Framework

4.1 Introduction

Tag recommendation is an important task in social tagging systems. Tags are

recommended at the time when a user initiates the annotation of a resource.

Figure 4.1 shows the screenshot of Delicious1 offering recommended tags to

users when a resource is selected. Most social tagging systems recommend the

most frequent (popular) tags that have earlier been assigned to the selected

resource. While tags recommended as such can help consolidate the tag assign-

ments across different users [34, 96, 99], the main purpose of tag recommen-

dation is really to ease the annotation process for individual users. Therefore,

it is important to recommend tags according to individual’s tagging habits,

because tagging activities are primarily for personal consumption [89, 78, 120].

Personal preference is prevalent in social tagging. For example, between

synonyms, e.g. Web and www, users tend to be consistent in the choice of

1www.delicious.com
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Figure 4.1: An Example of Tag Recommendation

tags, e.g. a user may always use Web or always use www, but not both at the

same time. Intuitively, consistent tag assignments within personal collection

of resources are better for organizing and retrieving the resources. Therefore,

if a user prefers to use Web instead of www in annotating resources, a good tag

recommendation algorithm should recommend Web when www is relevant in the

context, so that resources related to Web and www are grouped under the same

tag for this user. Since tag-based information organization and consumption is

highly personal, personalized tag recommendations can better help the users

organize the resources and increase the utility of the tagging data.

In our discussions, we refer to the selected resource for annotation as the

query resource, and refer to the user to whom tag recommendations are pro-

vided as the query user. In social tagging systems such as Delicious, person-

alization in tag recommendation is done by simply matching the popular tags

of the query resource with the existing vocabulary of the query user. Such

recommendations based on tag popularity are not suitable for query users who

do not follow the general crowd. Let us consider the following three scenarios:

(i) When the tag that the query user intends to use has only been previously
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used by very few other users to annotate the query resource.

(ii) When the tag that the query user intends to use has not been previously

used by any other user on this query resource, but is in the query user’s

tag vocabulary.

(iii) When the tag that the query user intends to use has not been assigned

to this query resource, nor has it been used by the query user herself,

but it has been used by other users for annotating other resource(s).

Recommendations based on tag popularity fails to address scenario (i), because

the intended tag is not a popular tag for the resource. However, re-scoring the

existing tags of the resource may solve the problem. Collaborative filtering

has been used to address scenario (i) [29, 77], but fails to handle scenario

(ii), because the intended tag has not yet been used for the query resource.

However, if one can translate from the existing tags of the query resource to

the relevant tags in the personal vocabulary of the query user, it may solve the

problem in this case. This method is known personomy translation. Personomy

translation has been explored to address scenario (ii) [118, 120], but it fails to

handle scenario (iii), because the intended tag has not been used by the query

user in the past. For solving the problem, we seek to bridge the personomy

translation of users.

In this chapter, we propose a probabilistic framework based on personomy

translation that handles all three scenarios in a unified way. To reach out more

candidate tags beyond the existing vocabularies of the query resource and the

query user, we propose to leverage the personomy translations from other users.

The solution we propose is inspired by the multilingual composition of the user

population in social tagging systems. In the case of BibSonomy2, a notable

number of tags in German are observed besides the majority English tags. We

also find that for resources with German tags (e.g. foto), the English equiv-

2www.bibsonomy.org
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alent tags (e.g. photo) have also been assigned. Hence, we expect to see the

German-speaking users sharing common translation patterns, i.e. translating

from an English tag in the vocabulary of the query resource to a German tag

in the vocabulary of the query user. This allows us to borrow the personomy

translation performed by similar users for recommending tags relevant to the

query user in the context.

In this research, we seek to answer the following questions:

(i) How to model personomy translations and use it for personalized tag

recommendation?

(ii) How to identify users similar in personomy translation patterns?

(iii) How to incorporate the borrowed translation patterns into the tag rec-

ommendation algorithms?

(iv) Will personalized tag recommendation benefit from the borrowed trans-

lation patterns?

Our research contributions in this study can be summarized as follows:

• We solve the task of personalized tag recommendation as a probabilistic

ranking problem, and propose a probabilistic framework for neighbor-

based translation methods, which performs personomy translation and

leverages the translation patterns from like-minded users.

• We propose to use distributional divergence metrics to measure the sim-

ilarity between users in the context of personomy translation.

• We conduct experiments on a benchmark dataset collected from BibSon-

omy, and compare our proposed framework with baseline methods based

on collaborative filtering and personomy translation by the query user

solely. Our experimental results show that our neighbor-based transla-

tion methods outperform these baseline methods significantly. Moreover,
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we show that the translations borrowed from neighbors indeed help rank-

ing relevant tags higher than that based solely on the query user.

4.2 A Probabilistic Framework for Personal-

ized Tag Recommendation

In this section, we first introduce the essential concepts in a social tagging

system and the notations to be used in our discussions. Next, we describe the

probabilistic formulation on solving the tag recommendation task, and sketch

a probabilistic framework that incorporates personomy translation from like-

minded users. Lastly, we propose to use distributional divergence for measur-

ing the similarity (dissimilarity) between users in the context of personomy

translation, and discuss two variations in particular, namely JS-diversion and

L1-norm.

4.2.1 Problem Definition

We represent a social tagging system as a folksonomy [34, 113], denoted by F.

A folksonomy consists of three types of objects, namely resources, users and

tags, as well as the ternary relationships formed between these objects. Each

relationship specifies a tag used by a user when she bookmarks a resource.

Formally, we use R to denote a resource and R to denote a set of resources.

We use U to denote a user and U to denote a set of users. We use T to

denote a tag and T to denote a set of tags. A triplet A = 〈R,U, T 〉 denote the

relationship between R, U and T , and A denote the set of ternary relationships

that exist in a folksonomy F. We therefore have,

F = 〈R,U,T,A〉 (Eq. 4.1)

A ⊆ R× U× T (Eq. 4.2)
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Table 4.1: Notations for Describing a Folksonomy
Symbol Definition

R a resource variable
U a user variable
T a tag variable
A an assignment variable, denoting a ternary relationship 〈R,U, T 〉
r an instance of a resource
u an instance of a user
t an instance of a tag
a an instance of an assignment relationship
F a folksonomy
R the set of all resource instances in the folksonomy
U the set of all user instances in the folksonomy
T the set of all tag instances in the folksonomy
A the set of all assignment instances in the folksonomy
ru the set of resources in the subspace projection for u
tu the set of tags in the subspace projection for u
tr the set of tags in the subspace projection for r
au the set of assignments in the subspace projection for u

Table 4.1 lists these symbols and their definitions. For clarity and consis-

tency, we use an uppercase letter to denote a variable and a lowercase letter to

denote a particular value (instance) of a variable. We use a blackboard bold

letter to denote the set of values for a variable.

Let us consider the example folksonomy shown as Figure 4.2. The set of

resources are R = {r1, r2, r3, r4}. The set of users are U = {u1, u2, u3, u4}.

The set of tags are T = {t1, t2, t3, t4, t5, t6, t7, t8, t9}. The assignment relation-

ships observed in this folksonomy include: 〈r1, u1, t1〉, 〈r1, u1, t2〉, 〈r1, u1, t3〉,

〈r1, u2, t2〉, 〈r1, u2, t3〉, 〈r1, u2, t5〉, 〈r2, u2, t4〉, 〈r2, u2, t6〉, 〈r2, u2, t7〉, 〈r2, u4, t4〉,

〈r2, u4, t8〉, 〈r2, u4, t9〉, 〈r3, u2, t4〉, 〈r3, u2, t8〉, 〈r4, u3, t2〉, and 〈r4, u3, t5〉.

One may project a folksonomy onto its subspaces. For example, given an

instance of user, denoted by u, the subspace on u consists of the resources

annotated by u (denoted by ru), the set of tags used by u (denoted by tu),

as well as the set of assignment relationships specified by u (denoted by au).
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Figure 4.2: An Example of Folksonomy

Formally,

ru = {r ∈ R : 〈R,U, T 〉 ∈ A, R = r, U = u} (Eq. 4.3)

tu = {t ∈ T : 〈R,U, T 〉 ∈ A, U = u, T = t} (Eq. 4.4)

au = {〈R,U, T 〉 ∈ A : U = u} (Eq. 4.5)

The subspace on u is also called the personomy of u [49, 118].

The tag recommendation task is to predict instances of the assignment

relationship 〈r, u, t〉, when given the resource r and the user u. The input

given to the recommender is a pair of query resource and query user, 〈r, u〉q

(or equivalently 〈rq, uq〉). The expected output is the set of recommended tags

that are relevant for describing the query resource by the query user, which

we denote as {t}q. Like an information retrieval task, the set of recommended

tags are ranked by scores of relevance, δ (rq, uq, t).

4.2.2 A Probabilistic Framework

We solve the tag recommendation task as a probabilistic ranking problem. To

compute the relevance score for a candidate tag, we estimate the likelihood of

the tag given the pair of query resource and query user. Our main idea is that

we can recommend a tag based on not only the query user’s preference but also

other like-minded users. We therefore formulate our probabilistic framework
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in Eq. 4.7.

δ (rq, uq, t) = p (t|rq, uq) (Eq. 4.6)

=

∑

u sim (u, uq)× p (t|rq, u)
∑

u sim (u, uq)
(Eq. 4.7)

The overall likelihood p (t|rq, uq) of a candidate tag t is the weighted average of

the likelihoods p (t|rq, u) from other similar users u, also known as neighbors,

and the weight is the similarity between each neighbor u and the query user

uq, determined by sim (u, uq). The proposed framework is general and offers

flexibility in three aspects. First, a neighbor (conceptually) can be the query

user himself/herself or any other like-minded user in the social tagging space.

The framework can assign the query user with the most weight. Second, many

existing methods proposed in the literature [38, 57, 95, 118] can be adopted to

estimate the likelihood p (t|rq, u), such as the graph-based method described

in [38] and the tensor-based method described in [95]. Finally, the measure of

similarity between users can also be varied, taking into account various aspects

of the user profiles [77, 76].

In this study, for estimating the likelihood p (t|rq, u), we focus on the per-

sonomy translation methods proposed by Wetzker et al. [118, 120]. We first

describe the methods in Section 4.2.3. We then introduce the distributional di-

vergence metrics for measuring the (dis)similarity between users in the context

of personomy translation in Section 4.2.4.

Table 4.2 summarizes the symbols used in our discussions.

4.2.3 Translating to Personal Preferences

The idea of personomy translation exploits the the relationships between a

personal tag (i.e. t ∈ tu) of the user and the prior tags of the resources (i.e.

tr ∈ tr) [118, 120]. It estimates the likelihood of translating a resource tag

to a personal tag of the query user, denoted by p (t|u, tr). A resource tag,
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Table 4.2: Notations for Tag Recommendation Task
Symbol Definition

rq the query resource (input) for tag recommendation
uq the query user (input) for tag recommendation
{t}q the set of recommended tags (output)

δ (rq, uq, t) the relevance score of t to the query resource and query user
p (t|r, u) the likelihood of tag t given the resource r and the user u

sim (u1, u2) the similarity between two users, e.g. u1 and u2
p (t|u, tr) the probability of translating tr to t by the user u
p (tr|r) the probability of the tag tr given the resource r

simJS (X, Y ) the similarity between two distributions X and Y ,
converted from JS-divergence

simL1 (X, Y ) the similarity between two distributions X and Y ,
converted from L1-norm distance

simtr (u1, u2) the similarity between two users, u1 and u2, on their
translation probability distribution for tr

p (tr|u) the probability of the user u seeing the resource tag tr

denoted by tr, is a tag that has been assigned to the query resource prior to

when the query user annotates the resource. A personomy tag, denoted by

t, is a tag that has been used by the query user to annotate other resources.

Wetzker et al. [118, 120] described two methods for estimating this likelihood

based on tag-tag co-occurrences (i.e. (t, tr)) perceived by the query user. We

re-write both estimations in Eq. 4.9 and Eq. 4.10 respectively. Although [120]

introduced a matrix-and-tensor based formulation, we provide a probabilistic

view of the estimation in Eq. 4.10.

p (t|rq, u) =
∑

tr∈tr
p (t|u, tr)× p (tr|rq) (Eq. 4.8)

p (t|u, tr) =
∑

r∈ru
p (t|r, u)× p (r|tr) (Eq. 4.9)

p (t|u, tr) =
∑

r∈ru
p (t|r, u)× p (tr|r) (Eq. 4.10)

4.2.4 Measuring Preference Similarities

In the context of personomy translation, our hypothesis is that users are simi-

lar to one another if they have similar translation patterns. For instance, when-

ever annotating resources about photo, u1 always assign foto, and whenever

annotating resources about Web, u1 always assign netz. So does u2. In other
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words, u1 and u2 share common translation patterns, denoted by photo→foto

and Web→netz. We therefore have reasons to believe that u1 and u2 are like-

minded, and they may share even more common translation patterns in future

tag assignments.

Formally, we say u2 is similar to u1, if their translation probabilities p (t|u1, tr)

and p (t|u2, tr) are high and low together for different t and tr pairs. Based

on this intuition, we use distributional divergence to measure the similarity

between users based on their translation probabilities.

Distributional divergence is the measure of distance between distributions.

In this study, we describe and examine two distributional divergence metrics,

namely Jensen-Shannon divergence and L1-norm, that are found useful in the

literature [65]. Jensen-Shannon divergence (JS-divergence for short) is the

symmetrized version of Kullback-Leibler divergence (KL-divergence for short).

In information theory, KL-divergence is a measure for indicating the number of

extra bits needed to represent the code samples in X using the code samples

from Y , as compared to using the code samples from X itself. This inter-

pretation fits our intuition of representing the translation probability from u1

using the translation probabilities from u2. However, KL-divergence is not a

symmetric measure, which makes it not a true distance metric. Therefore, we

use JS-divergence, which is symmetric:

DJS (X, Y ) =
1

2
[DKL (X‖M) +DKL (Y ‖M)] (Eq. 4.11)

DKL (X‖Y ) =
∑

iX (i) log X(i)
Y (i)

(Eq. 4.12)

M (i) =
1

2
(X (i) + Y (i)) (Eq. 4.13)

In Eq. 4.11, M is the average of the two distributions X and Y .

The L1-norm distance metric is written in Eq. 4.14. It is the sum of absolute
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distance between elements in the two distributions X and Y .

DL1 (X, Y ) =
∑

i |X (i)− Y (i)| (Eq. 4.14)

To converte distance measure into similarity measure, we adopt the approach

by Lee [64].

simJS (X, Y ) = 10−βDJS(X,Y ) (Eq. 4.15)

simL1 (X, Y ) = (2−DL1 (X, Y ))
β (Eq. 4.16)

The β in Eq. 4.15 and Eq. 4.16 are not equivalent. However, they have similar

effect on the resulting measurements: higher β gives less importance to the

distant neighbors. Following [64], we do not normalize the similarity scores

across different metrics, even though they take different value ranges. For

instance, simJS (X, Y ) ∈ [0, 1] and simL1 (X, Y ) ∈
[

0, 2β
]

. The effect of value

range will be cancelled out by the denominator in Eq. 4.7.

In personomy translation, each user has multiple sets of translation prob-

abilities p (T |u, tr), one set for each tr. Note that, p (T |u, tr) denotes a trans-

lation probability distribution. If two users have translation probabilities on a

common tr, we first measure the similarity between p (T |u1, tr) and p (T |u2, tr)

using the metrics defined above. We use simtr (u1, u2) to denote this interme-

diate similarity measure. To derive the overall similarity between two users,

we take the weighted average of simtr (u1, u2) on different tr, and the weight

is p (tr|u1).

simtr (u1, u2) = sim (p (T |u1, tr) , p (T |u2, tr)) (Eq. 4.17)

sim (u1, u2) =

∑

tr
p (tr|u1)× sim

tr (u1, u2)
∑

tr
p (tr|u1)

(Eq. 4.18)

We interpret p (tr|u1) as the likelihood of u1 having seen tr during tagging, e.g.

tr was assigned to the resource prior to u1’s annotation of the same resource.
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This likelihood can be estimated from the tag collections of the resources that

u1 has annotated in the past.

p (tr|u1) =
|{〈R,U, T 〉 ∈ A : R = r ∈ ru1 , T = tr}|

|{〈R,U, T 〉 ∈ A : R = r ∈ ru1}|
(Eq. 4.19)

4.3 Dataset and Experimental Settings

We conduct experiments to demonstrate the effectiveness of the proposed prob-

abilistic framework. We evaluate if the idea of borrowing personomy transla-

tion from similar users can expand the set of relevant tags beyond the existing

tag vocabularies of the query resource and of the query user, hence getting

better recommendation performance than the methods solely relying on the

translations by the query user. We also compare with methods that are based

on collaborative filtering [29, 77].

4.3.1 Data Preparation

Our datasets are collected from BibSonomy. Snapshots of BibSonomy have also

been used as benchmark datasets in the ECML PKDD Discovery Challenge

2009 (DC’09 for short).

We create three datasets for our experiments, namely training, validation

and test sets. We learn the translation probabilities and the similarities be-

tween users from the training set. We tune the parameters for optimal per-

formance using the validation set. At last, we apply the optimal parameter

settings when recommending tags for the query bookmarks in the test set.

We use the 2-core dataset provided in DC’09 as our training set. It is the

snapshot of the BibSonomy before January 1, 2009. The dataset is 2-core as

every resource, user and tag appear in at least 2 bookmarks in this training

set [49].

We take the task2 dataset used for DC’09 contest as our validation set. All
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bookmarks in this validation set were made between January 1, 2009 and July

1, 2009, and only bookmarks for which the resources, the users and all the tags

have appeared in the training set are included [49].

Our test set is taken from the most recent snapshot of BibSonomy, dated on

January 1, 2010. This test set is collected by us, which was not used in DC’09.

We follow the convention adopted in DC’09 for removing non-alphabetic and

non-digit characters in the tags and normalizing them to their lowercase NFKC

forms3. We extracted only query bookmarks that satisfy the following three

requirements:

• The bookmarks are created between July 1, 2009 and January 1, 2010;

• The users of these bookmarks appear in the validation set;

• The resources and all tags in these bookmarks appear in the training set.

Table 4.3 shows the statistics of the three datasets.

Table 4.3: Statistics for BibSonomy Dataset
Train Validation Test

Time frame
start date 2009-JAN-01 2009-JUL-01

– – –
2008-DEC-31 2009-JUN-30 2009-DEC-31

Number of resources 22,389 667 258
Number of users 1,185 136 57

Number of distinct tags 13,276 862 525
Number of assignments 253,615 2,604 1,262

Average bookmarks per user 53.695 5.699 4.895
Average tags per bookmark 3.955 3.360 4.523
Average distinct tags per user 61.833 13.191 14.667

4.3.2 Experimental Setup

Evaluation Metrics

We adopt the batch recommendation setting, where tags are recommended

once to the query user and query resource and these recommendations do not

3NFKC stands for Normalization Form Canonical Composition.
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change regardless of any user input during the annotation process, as noted

in Chapter 2. We adopt precision-recall curve and f1@5 as the main metrics

for performance comparison and optimization. f1@5 is the harmonic mean of

precision and recall at the 5-th position in the ranked list of recommended

tags for a query post. f1@5 is also the evaluation metric used in DC’09 for the

contest.

To define the evaluation metrics, we use ti to denote the tag at position i in

the ranked list of recommended tags, nq to denote the total number of ground

truth tags for the query bookmark, and p to denote the position in the list of

recommended tags at which the evaluation takes place. Hence,

precision@p =

∑p

i=1 Iq(ti)

p
(Eq. 4.20)

reall@p =

∑p

i=1 Iq(ti)

nq

(Eq. 4.21)

f1@p =
2× precision@p × recall@p

precision@p + recall@p
(Eq. 4.22)

where the function Iq(ti) returns 1 if ti matches one of the ground truth tags

for the query bookmark and 0 otherwise.

We compute the metrics at p ∈ [1, 5] for each query bookmark in the

test set. To gain a user-centric view of tag recommendation performance, we

compare the macro-average performance of methods. Macro-average is the

average of the per-user average performances.

Methods Compared

We evaluate our proposed probabilistic framework by including three groups

of methods.

trans-n1 and trans-n2: Both methods follow our proposed probabilistic frame-

work in estimating the likelihood p (t|rq, uq). We use letter n to indicate the

inclusion of translations from neighbors. The two variations differ in the es-

timation of p (t|u, tr). trans-n1 follows Eq. 4.9, and trans-n2 follows Eq. 4.10.
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We compute the similarities between users based on the estimated p (t|u, tr)

for these two variations accordingly. When computing the similarity between

users, there are two parameters to be determined: (i) β for converting the dis-

tributional divergence measure into similarity measure; (ii) k for selecting the

number of nearest neighbors. For β, we explore in the range β ∈ {1, 2, 4, 8}

for JS-divergence and β ∈ {1, 2, 4, 8, 12, 16} for L1-norm. For k, we explore in

the range k ∈ {5, 10, 20, 50, 100, 200, 300, 400, 500}.

trans-u1 and trans-u2: These methods are special cases of the proposed frame-

work. They remove other users when estimating p (t|rq, u). In other words,

they rely on the translation probabilities estimated solely for the query user,

but do not borrow translation from neighbors. We use letter u to indicate such

distinction from the trans-n methods. For the estimation of p (t|u, tr), trans-u1

follows Eq. 4.9, and trans-u2 follows Eq. 4.10 respectively.

knn-ur and knn-nt: These methods are direct application of collaborative

filtering to tag recommendation in folksonomies [29, 77]. They first select the

k-nearest neighbors (knn for short) for the query user and recommend tags

that have been assigned by the neighbors to the query resource. The overall

relevance score of a candidate tag is the average similarity of the corresponding

neighbors who have assigned the tag. The two variations differ in profiling

the users for computing the similarity between users. In knn-ur, each user is

represented as a vector of resources, and the vector weights are binary-valued

to indicate whether the user has annotated each of the resources. Whereas

in knn-ut, each user is represented as a vector of tags. The vector weights

are the frequency of tags that have been used by the user4. The similarity

between users is then computed as the cosine similarity in vector space. There

is one parameter to be determined in this group of methods: k for selecting

the number of nearest neighbors. We explore k in the same range as that for

4We have also tried using binary-valued weights in the user-tag representation. However,
it shows similar performance with that using frequency-valued weights. Therefore, we do
not include the binary-valued variation of this method.
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trans-n methods, i.e. k ∈ {5, 10, 20, 50, 100, 200, 300, 400, 500}.

Finally, we also include the baseline method freq-r, as shown in Eq. 4.23.

It recommends tags based on the frequency in which the tag has been assigned

to the query resource. The underlying assumption is that, the more often a

tag has been assigned to the resource, the more likely it would be used again.

p (t|rq, uq) =
|{〈R,U, T 〉 ∈ A : R = rq, T = t}|

|{〈R,U, T 〉 ∈ A : R = rq}|
(Eq. 4.23)

Although not performing personalization itself, freq-r has been reported to work

well for tag recommendation tasks [29], especially when combined with meth-

ods that do perform personalization [118]. For exploring the performance

space, we also combine freq-r with methods listed above. We adopt linear in-

terpolation when calculating the interpolated likelihood of a candidate tag

p (t|rq, uq), shown in Eq. 4.24.

pinterpolated (t|rq, uq)

= ω × pfreq-r (t|rq, uq) + (1− ω)× p (t|rq, uq) (Eq. 4.24)

where ω is an additional parameter to be tuned in the interpolated estima-

tions.

4.4 Experimental Results

4.4.1 Tag Recommendation Accuracy

We first examine the precision-recall curve (PR-curve for short) of the six

recommendation methods listed in Section 4.3.2, with and without interpolated

with freq-r. We then look at the macro-average f1@5 of the methods.
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4.3.a: Global Setting, without freq-r
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4.3.b: Global Setting, with freq-r
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4.3.c: Individual Setting, without freq-r
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4.3.d: Individual Setting, with freq-r

Figure 4.3: PR-Curve for Tag Recommendation on the Test Set

PR-curve on the Test Set

Figure 4.3 shows the performance on the test set in PR-curve, for which the

corresponding optimal parameter settings are determined by the validation

set. Global setting refers to applying the same set of parameters to all users,

which have been tuned to optimize the macro-average f1@5 on the validation

set. Individual setting refers to individualized parameters that optimize the

average f1@5 for each user on the validation set. L1-norm metric is used for

trans-n1 and trans-n2.

Without interpolated with freq-r, trans-n methods show clearly large advan-
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tage over trans-u methods. This holds for both global and individual settings.

This consolidates our intuition that borrowing translations from similar users

is able to help recommending more relevant tags to the query user for the

query resource. On the whole, trans-n2 performs stronger than trans-n1. trans-n2

performs the best on the test set.

knn-ur always outperforms knn-ut. This observation is consistent with those

made in [29, 77]. It suggests that users who are similar in their tag vocabularies

are more likely to assign same tags(s) to the same resource, than those who

are similar in their collections of annotated resources.

When interpolated with freq-r, all methods, except knn-ut, give largely im-

proved performance over their non-interpolated counterparts. The perfor-

mance by knn-ur is brought closer to that by knn-ut. However, the interpolated

trans-u and trans-n outperform knn methods by an ample margin. This can be

explained by the composition of candidate tags of knn methods. knn methods

always recommend tags that have already been assigned to the query resource,

in this case, by the k-nearest neighbors. In other words, the candidate tags

of knn is a subset of that for freq-r. Hence, freq-r brings little additional benefit

to knn-ut when the interpolation parameter ω is optimized. On the contrary,

both trans-u and trans-n methods are able to bring non-existing tags to the query

resource. These non-existing tags, some of which are indeed adopted by the

query user to annotate the query resource, contributes to better performance

for the translation based methods over freq-r and knn methods.

Although not performing well by themselves, trans-u1 and trans-u2 methods

achieve large improvement when interpolated with freq-r. The candidate set of

trans-u methods includes all tags that have been used by the query user in the

past, be it relevant or less relevant to the current query resource. Applying

trans-u methods alone may recommend highly personal tags that are less rel-

evant to the current query resource. However, when interpolated with freq-r,

tags that are relevant to the resource can be included as recommendations.
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Therefore, we observe significant lift in the performance by trans-u1 and trans-u2

when interpolated with freq-r using optimized parameter settings.

To our surprise, individual setting does not outperform global setting on

the test set. To find the explanation, we next examine the macro-average f1@5

achieved for the validation set as well as for the test set.

F1@5 on the Validation and Test Set

Table 4.4 and 4.5 show the macro-average f1@5 of the settings for the corre-

sponding methods on the validation and test set respectively. The best per-

former within each column are highlighted in boldface. Again, L1-norm metric

is used in trans-n1 and trans-n2 methods. Note that, the optimal parameter set-

tings are obtained by optimizing the macro-average f1@5 on the validation set,

and these settings are applied to the test set without re-optimization. In indi-

vidual setting, they are optimized for each individual user. Whereas in global

setting, they are optimized for all users.

Table 4.4: Macro-average f1@5 for the Validation Set
Global setting Individual setting

without freq-r with freq-r without freq-r with freq-r

trans-u1 0.238 0.363 0.238 0.401
trans-u2 0.244 0.363 0.244 0.401
trans-n1 0.301 0.366 0.342 0.429
trans-n2 0.310 0.367 0.359 0.430
knn-ur 0.248 0.317 0.264 0.347
knn-ut 0.294 0.321 0.303 0.348

Table 4.5: Macro-average f1@5 for the Test Set
Global setting Individual setting

without freq-r with freq-r without freq-r with freq-r

trans-u1 ▽0.238 0.359 ▽0.238 ▽0.344
trans-u2 ▽0.244 0.358 ▽0.244 0.354
trans-n1 0.298 0.363 0.281 ▽0.330
trans-n2 0.310 0.362 0.293 0.349
knn-ur ▽0.248 ▽0.312 ▽0.222 ▽0.260
knn-ut 0.290 ▽0.321 0.244 ▽0.263

In Table 4.4, we observe that trans-n2 is consistently the best performer in
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all settings. Individual setting always achieves higher (or equal) average f1@5

than the corresponding global setting counterpart. This set of results matches

our expectation, since not all users have equal number of like-minded neighbors

or prefer equal number of resource tags, thus the parameter settings tailored

to individual users should outperform the parameter settings equally applied

to all users. This set of results also reaffirms the strong performance of trans-n2

method.

In Table 4.5, we observe that the best performer are not consistent across

the different columns. Method trans-n2, however, is the best performer in both

global and individual settings without interpolated with freq-r. When interpo-

lated with freq-r, the interpolated trans-n1 is the best performer under global

setting, and the interpolated trans-u2 is the best performer under individual

setting.

To compare the best performer against the rest of the methods in each col-

umn, we conduct paired right-tail t-test with significance level of 0.05. We put

a ▽ besides the macro-average f1@5 value of the non-best-performing method

if the t-test indicates that the best performer outperforms the method signifi-

cantly. We note that, when trans-n2 is the best performer, it always outperforms

trans-u methods significantly. When trans-u2 is not the best performer, it shows

very close performance to the best performer and its disadvantage is not sig-

nificant.

By comparing Table 4.4 with Table 4.5, we find that even when the pa-

rameter settings are optimized on the validation set, these settings do not

guarantee similar performance on the test set. This contrast is more obvious

for individual settings. One reason for the downgraded performance on the

test set is that users’ tagging preferences change over time. As we noted in

Table 4.3, when comparing the statistics on the validation set with those on

the test set, users assign more tags per bookmark and use more distinct tags.

It remains a research question on what other optimization criteria are suitable
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in the context, e.g. precision@1 and area under the croc-curve [98]? Future

research on the same task may explore these questions.

4.4.2 Effect of the Divergence Metrics

We observe little performance difference due to the divergence metrics when the

respective parameters are optimized. In Section 4.2.4, we have introduced two

divergence metrics for measuring the divergence between users in the context of

personomy translation, namely JS-divergence and L1-norm. Figure 4.4 shows

the pr-curves by trans-n2 when using these two divergence metrics. Under both

global and individual settings, the performance by the two metrics are close,

though L1-norm shows slight overall advantage. Similar observation are made

when trans-n1 is used. Therefore, we report the performance by trans-n1 and

trans-n2 using L1-norm metric only in Figure 4.3 and Table ??.
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4.4.a: Global Setting, without freq-r
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4.4.b: Individual Setting, without freq-r

Figure 4.4: Effect of Divergence Metrics

4.4.3 Parameter Tuning

Lastly, we look at the parameter settings tuned on the validation set. For

global setting, we optimize the macro-average f1@5, and the chosen parameters

by methods are shown in Table 4.6. For individual setting, we optimize the
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average f1@5 for each user, and plot the distribution of the chosen ω, β and k

by users for the interpolated trans-n2 in Figure 4.5.

Table 4.6: Global Setting Tuned on the Validation Set

Method Metric
Without freq-r With freq-r

β k ω β k

trans-n1
l1 4 100 0.5 16 100
js 2 200 0.5 8 300

trans-n2
l1 4 100 0.3 8 100
js 2 200 0.1 4 400

knn-ur – – 400 0.9 – 200
knn-ut – – 400 0.9 – 200
trans-u1 – – – 0.4 – –
trans-u2 – – – 0.4 – –

For global setting without interpolated with freq-r, trans-n1 and trans-n2 show

same preference on the joint settings of β and k. This holds for both JS-

divergence and L1-norm metrics. On the whole, L1-norm favors higher β and

smaller k, whereas JS-divergence favors lower β and larger k.

For global setting when interpolated with freq-r, both the interpolated trans-

n1 and trans-n2 favor β larger than their non-interpolated counterparts. When

k is constant, larger β concentrates more weights on the nearer neighbors than

those that are more distant. The increased β is larger for trans-n1 than for

trans-n2. When JS-divergence is used, the interpolated trans-n1 and trans-n2 also

favor larger k. In other words, more neighbors are leveraged for borrowing

translations. In addition, the interpolated trans-n1 prefers higher ω than the

interpolated trans-n2.

For global setting on knn methods, knn-ur and knn-ut favor the same k setting

for selecting the number of nearest neighbors. Interpolating freq-r reduces the

favored k in both methods, suggesting that fewer neighbors are needed when

the frequency of tags is available.

The interpolated trans-u1 and trans-u2 favor the same setting on ω. They also

do show competitive performance in Figure 4.3.

For individual setting on the interpolated trans-n2, we observe that small β

and small k are chosen for the optimal individual performance, as shown in
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4.5.a: trans-n2 using JS-divergence
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4.5.b: trans-n2 using L1-norm

Figure 4.5: Distribution of Individual Settings on the Validation Set

Figure 4.5. This indicates that, users concentrate on small neighborhood and

the nearer neighbors are not assigned much higher importance than the more

distant neighbors, although nearer neighbors are preferred than more distant

neighbors. When the optimal β and k are set, the interpolated trans-n2 depend

less on freq-r. This is observed as the more users found at ω = 0.0 and ω = 0.1.

This suggests that, using trans-n2 alone, when the optimal β and k are chosen,

it is able to recommend tags that are relevant to both the query user and the

query resource, with little help from freq-r. However, there are users who favor

freq-r exclusively. This is observed as the relatively more users found at ω = 1.

It suggests that there are users who mostly follow the general crowd in assigning

112



Chapter 4. Personalized Tag Recommendation

tags and prefer less personalization. This observation is consistent with Sen

et al. [99] on MovieLens5 that when presented with prior tags (assigned by

others) for the resource, users have certain tendency of adopting these tags,

also known as social influence.

4.5 Summary

In this study, we proposed a probabilistic framework for solving the personal-

ized tag recommendation task. This task addresses tag selection in social tag-

ging space. Our main contribution includes leveraging the implicit social links

between users that are extracted from their tagging history to find suitable tags

for recommendation. Based on the approach of personomy translation, which

translates the resource tags to personal tags to the query user, we proposed to

leverage translations from like-minded users (neighbors). By doing so, we are

able to enlarge the set of candidate tags beyond the existing vocabularies of

the query resource and the query user. We found ample improvement in the

recommendation performance when the set of candidate tag is enlarged.

We also noted that, while some users are more likely to use personal tags

when annotating resources (known as personal preference), there are some

other users who are more likely to follow the general crowd (known as social

influence). For users having stronger personal preferences than social influence,

we noted that, while their optimal parameter settings may include a broader

neighborhood, i.e. k = 100, nearer neighbors have larger impact than the more

distant neighbors, as β favors small values.

In this study, we have focused on the perspective of users. We started

from the intuition that individual’s tagging preference require personalized

tag recommendation. However, it is also possible that the difficulty in tag

recommendation may be due to the characteristics of the resources. Future

research continuing this work may exploit from the perspective of resources.

5www.movielens.com
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Chapter 5

Trend Discovery using Social

Annotations

5.1 Introduction

Social annotations are auxiliary information users create for resources on the

Web. Specifically for the scientific literature, both social tags and citing docu-

ments are social annotations to the published work. When there is an increas-

ing attention given to a topic or an individual work, it shows up in these social

annotations. In this work, we propose the task of trend discovery using social

annotations, focusing on scientific publications.

Discovering and analyzing trends using social annotations for scientific pub-

lications has several useful applications. In library science and information

studies, profiling the publications to support better search and reference is an

important task. While the content of a publication becomes immutable once

it is published, the impact it has on subsequent work can be observed over a

period of time. Such impact can be shown in the social annotations, since these

annotations provide temporal and topical relevance from the perspectives of

the annotators. For information seekers, especially junior researchers who want

to survey unfamiliar research areas, selecting interesting publications among
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a large collection is a challenging task. Given a selected publication, one may

want to ask: How much interest do people have on this work? When did such

interest emerge? How fast was the emergence? One may further pinpoint a

particular research topic or community, e.g. When did the interest on this work

emerge from wireless networks research?

Traditional approach to determining the impact of the published work

mainly relies on citation indexes, known as bibliometrics. However, most cita-

tion indexes provide only a snapshot view of the citation database. Although

there has been previous studies on bibliometrics with timestamps, such as ci-

tation count or journal impact factor, these studies are confined to visualizing

bibliometrics at different times [19, 75]. Other than visualizing the traditional

bibliometrics over time, deeper analysis on the annotation content are needed

to unveil the topical impact of the published work. There has been previous

studies that leverage on topic modeling to analyze the content of citing doc-

uments [75]. However, the proposed impact measure remained at the topic

level, and did not include trend analysis on individual publications.

In this work, we make use of the temporal information in the social anno-

tations to construct social annotation profiles for the annotated work. Based

on each social annotation profile, we derive the corresponding time series, on

which trend estimation can be performed to discover emerging trends. The es-

timated trends then allow us to compare and select interesting trends based on

how much, when and how fast they emerge. Furthermore, we perform content

analysis, through topic modeling, on the annotation content to decapsulate the

multitude of impact shown in the social annotation profiles.

As noted in Chapter 2, trend discovery is a task different from event detec-

tion or burst detection. Event detection focuses on significant topic changes

in a stream of documents, while burst detection detects abrupt changes in fre-

quency in the arrival of data. In our study, an emerging trend may demonstrate

gradual change in its social annotation time series.
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In this study, we seek to answer the following research questions:

(i) How to find emerging trends from social annotations?

(ii) How to compare emerging trends to answer questions that are useful to

researchers and information seekers?

We summarize our contributions in this research as follows.

• We use social annotations to profile scientific publications for trend dis-

covery. Such social annotation profiles provide temporal dynamics to the

annotated work from the perspectives of the annotators. We derive time

series from these social annotation profiles for trend estimation.

• We propose to use sigmoid function as the trend estimator to model

the social annotation time series. Such an estimator allows us to find

and parameterize emerging trends, capturing characteristics such as how

much, when and how fast the trends emerge. These characteristics pro-

vide us with useful metrics for comparing emerging trends and selecting

interesting trends.

• We study three types of social annotation profiles, namely the item-wise

annotation profiles, the corpus-wise topic profiles and the item-wise topic

profiles. We examine the corpus-wise topic profiles to gain an overview of

the emerging research topics. We also examine publication-specific topic

profiles, seeking to understand the topical impact of individual publica-

tions as well as the important publications for a given topic. We perform

topic modeling on the annotation content to construct the corpus-wise

and item-wise topic profiles.

• We conduct empirical experiments using data from CiteULike (for social

tags) and ACM Digital Library (for citing documents). On one hand,

we perform trend analysis tasks to identify the emerging topic trends,

focusing on using citing documents to the annotated work. On the other
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hand, we compare the emerging trends found using these two types of

social annotations to commonly annotated work.

5.2 A Trend Discovery Process

An overview of our proposed trend discovery process is depicted in Figure 5.1.

In order to perform trend analysis tasks that address publication-specific and

topic-specific questions, we decompose the trend discovery process into three

main modules, namely topic modeling, trend estimation and trend selection

and ranking.

Figure 5.1: An Overview of Trend Discovery using Social Annotations

The topic modeling module performs content analysis on the social an-

notations. Social annotations for the same annotated work may come from

different topics of interest. By analyzing the annotation content, we are able

to decapsulate the multitude of interest. This allows us to perform trend anal-

ysis tasks that address topic-specific questions, such as How much interest does

the wireless networks research community have on the annotated work?

The trend estimation module finds and parameterizes the emerging trends

shown in the social annotations. To perform trend estimation, we first con-

struct temporal profiles using the social annotations, and then derive time se-

ries corresponding to the temporal profiles. Given each time series, we perform
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function fitting to find the estimated trend. The trend estimator (function)

should allow us to capture characteristics such as how much, when and how

fast the trend emerges.

The trend selection and rankingmodule identifies interesting and significant

emerging trends using the estimated trend parameters. To demonstrate the

usefulness of the emerging trends found, we perform various topic-specific and

publication-specific trend analysis tasks.

In what follows, we focus on discussing the trend estimation and trend

selection and ranking modules. We leave out the details about topic modeling

in this chapter, since they are discussed in Chapter 2 and Chapter 3.

5.2.1 Constructing Social Annotation Profiles

A social annotation profile consists of a stream of annotation documents. From

the two types of social annotation communities, namely the social tagging com-

munity and the scientific research community, two types of social annotation

documents are observed. In the social tagging community, each annotation

document corresponds to one bookmark, which contains a set of tags assigned

to the annotated work and a timestamp. In the scientific research community,

each annotation document corresponds to one citing document, which contains

the content words in citing document and a timestamp, i.e. the publication

year. By aligning a collection of annotation documents with their correspond-

ing timestamps, we build up a stream of annotation documents, which we call

the social annotation profile.

We now define some terms and notations for formally representing publi-

cations and their social annotation profiles. Table 5.1 summarizes the symbols

used in our discussions. We use the term item, denoted as i, to refer to a

publication being annotated. We use the term topic, denoted as k, to refer to

a (latent) research community specializing in an area of interest. We use the

symbol D to denote a social annotation profile. In this study, we focus on the
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Table 5.1: Notations for Social Annotation Profiles
Symbol Definition

i an item being annotated, i.e. a resource
d a social annotation document,

e.g. a social bookmark or a citing document
~wd the content words in the annotation document d

e.g. the bag of tag terms in d for social tagging
or the bag of words in d for citing documents

sd the timestamp of the annotation document d
k a latent topic
t a time window
D a social annotation profile
Q a time series constructed from an annotation profile

Q̂ an estimated trend for a time series
λ the emergence amplitude of an emerging trend
∆ the ruling gradient of an emerging trend
τ the emergence time (when ruling gradient is reached)

of an emerging trend

following three types of social annotation profiles.

• Item-wise document profile, denoted as Di, consists of the stream of an-

notation documents that are used to annotate item i.

• Corpus-wise topic profile, denoted as Dk, consists of the stream of anno-

tation documents that are associated with topic k.

• Item-wise topic profile, denoted as Dk
i , consists of the stream annotation

documents that are associated with topic k and are used to annotate

item i.

Our definition for topics follows Blei et al. [12]. Given a corpus consisting

of a set of annotation documents, we assume that there are K topics in the

corpus, i.e. k ∈ [1, K]. Each topic has a mixture of words, where each word

has a probability of being generated by the topic, denoted by p (w|k). Each

annotation document has a mixture of topics, where each topic has a prob-

ability of being associated with the document, denoted by p (k|d). We learn

the association of each annotation document with topics by performing topic

modeling on the annotation corpus.
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For each social annotation profile D, we construct the corresponding time

series Q = {(t, qt) : 1 ≤ t ≤ T}, where t denotes a time window and qt denotes

the number of annotation documents at time window t in the social annotation

profile D. We use calendar months and publication years as time windows for

social tags and citing documents respectively. Note that, each time series Q

always shares the same superscript and/or subscript with its corresponding

social annotation profile D, i.e. Qi for Di, Q
k for Dk, and Qk

i for Dk
i . Without

loss of generality, we omit their superscripts and subscripts in the following

discussion.

To define D and Q, we use d to denote an annotation document, which

consists of its annotation content (denoted by ~wd) and a timestamp (denoted

by sd), and st to denote the starting timestamp of the time window t. Formally,

D =
{

dn : n ∈ N, sdn ≤ sdn+1

}

Q =
{

(t, qt) : 1 ≤ t ≤ T, qt =
∑

d∈D I (st ≤ sd < st+1), qt > 0
}

where I (∗) is the indicator function that returns 1 if the condition ∗ is true,

and 0 otherwise.

Although our current study focuses on scientific publications, the proposed

model is generally applicable to other forms of Web objects with social anno-

tations. For example, in Digg1, the items are articles on the Web, and their

social annotation profiles can be the votes (i.e. thumbups) from users to these

articles, and the corresponding time series can be the daily number of votes.

In Google Trends2, the items are query keywords, and their annotation profiles

can be the online news articles containing these keywords, and the correspond-

ing time series can be the weekly number of these containing articles.

1digg.com
2www.google.com/trends
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5.2.2 Estimating Trend from Time Series

For each time series derived from a social annotation profile, we apply function

fitting to obtain its estimated trend, denoted as Q̂ (t). Given a time series, we

are interested in how much, when, and how fast a trend emerges, if there is

any. Based on these three requirements, we choose the sigmoid function as our

trend estimator. It is defined with three parameters in Eq. 5.1.

Q̂ (t) =
λ

1 + e−σ(t−τ)
(Eq. 5.1)

Parameter λ represents the asymptotic amplitude of the curve as time goes to

infinity. Parameter τ indicates the time at which the series reaches half of the

asymptotic amplitude, i.e. Q̂ (τ) = λ
2
. It is also the time at which the curve

has its largest gradient. Parameter σ controls how fast the curve approaches

its asymptote. The higher σ, the faster it approaches. When the parameters

are set as λ = 1, τ = 0 and σ = 1, Q̂ (t) degenerates into the standard logistic

function, shown in Figure 5.2.a.

5.2.a: Standard and Parameterized Sigmoid
Functions
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5.2.b: Example Time Series with Fitted Sig-
moid Functions

Figure 5.2: Sigmoid Functions and Fitting Examples

The choice of sigmoid function also matches with our observation from the

data at hand. When plotting the Qi time series for items and Qk time series

for topics, we see a vivid S shape, where there is a phase with low values,

followed by a transition phase from low to high values, and lastly a phase of

plateau, in which values remain high and do not drop much. Figure 5.2.b

shows four examples of Qi time series, which correspond to the citing docu-
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ment profiles for four publications in ACM Digital Library. It also plots the

estimated sigmoid functions fitted to these time series. We observe that these

time series exhibit different amplitudes, emergence times and gradients. All of

these characteristics are captured by the proposed sigmoid estimator.

There exists a number of candidate functions exhibiting an S shape. For ex-

ample, the exponential basis function (Q̂ (t) = 1−e−at

a
) is often used for model-

ing financial data series [54]. However, this function assumes fastest transition

at the beginning of the series. Unfortunately, this assumption is too stringent

and does not apply to all data series. Another example is the Gompertz func-

tion (Q̂ (t) = aebe
c(t−τ)

). While also showing an S shape, this function assumes

asymmetry in the S shape with respect to τ , hence, it requires more param-

eters to control the shape of the curve. Based on empirical explorations, we

choose logistic sigmoid function, for it captures the three key characteristics of

emerging trends, yet makes the most general assumption about the particular

shapes of the curves.

Not all time series have emerging trends. We observe the following three

cases where the corresponding time series cannot find any emerging trend.

(i) The series does not fit any sigmoid curve. This happens when the trend

estimator cannot find the set of suitable parameters for the series or the

sum-of-squares error in the resulting fit is too large3.

(ii) The series fits a sigmoid curve, but the estimated transition is not visible

within the time range of the series. This happens when the estimated τ

falls beyond the time range of the series.

(iii) The series fits a sigmoid curve with visible transition, but the transition

is downward. This happens when the estimated σ is negative. The

proposed sigmoid estimator is capable of capturing such downward trend.

3At present, we do not set a threshold on this error. We adopt the default setting of the
optimizer for determining goodness of fit.
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However, since downward trends are of less interest than upward trends,

we do not focus on downward trends in this study.

By excluding the above three cases, we define a data series as having an emerg-

ing trend if it has fitted an upward sigmoid curve with the upward transition

shown within its time range. In other words, a trend is emerging if its fitted

curve satisfies both τ ∈ [1, T ] and σ > 0.

5.2.3 Interpreting Emerging Trend Parameters

Given a time series with an estimated sigmoid curve satisfying an emerging

trend, we interpret the three parameters defining the sigmoid curve as follows.

We interpret parameter λ as the amplitude of the emerging trend. It char-

acterizes how much the trend emerges. We interpret parameter τ as the emer-

gence time of the emerging trend. It characterizes when the trend emerges. We

interpret the gradient ∆ at t = τ as the ruling gradient of the emerging trend.

It is derived as ∆t=τ = (λσ)
4
. It characterizes how fast the trend emerges.

5.3 Dataset and Experimental Settings

In this section, we evaluate our proposed trend estimation model. We show

how our model can be used in the following trend analysis tasks, which can po-

tentially help the researchers and information seekers understand the different

research specialties as well as the individual publications.

(i) Discovering emerging topic trends (Section 5.4.1). For this task, we use

the corpus-wise topic profiles to find emerging topic trends. We further

compare the topic trends derived from the citations and those from tag-

ging annotations to understand the different interests of the two social

annotation communities.

(ii) Selecting important publications for a given citing topic (Section 5.4.2);

and,
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(iii) Understanding the topical impact of a given publication (Section 5.4.3).

To address these topic-specific and item-specific tasks, we compare and

rank the emerging trends derived from the item-wise topic profiles.

(iv) Identifying the most influential papers for a given conference (Section 5.4.4).

We propose trend-based metrics to select the influential papers. For eval-

uation, we take the ACM ICSE (International Conference on Software

Engineering) conference proceedings papers as a case study.

Due to data sparseness in the social tags dataset, we conducted the experiments

for task 1 on both the tagging and citation datasets. The experiments for tasks

2, 3 and 4 were conducted on the citation dataset only.

5.3.1 Data Collections

Our two data sources are CiteULike4 (for tagging annotations) and ACM Digi-

tal Library5 (for citation annotations). In this section, we provide an overview

of the two datasets and an overlapping subset of items we identified from both

data sources.

Our data dump from CiteULike is dated on May 19, 2010. It contains

bookmark records to 2,419,452 items, by 49,509 users with 10,577,486 tag

assignments. The bookmarks were posted between 2004 and 2010. The mostly

annotated item received 879 bookmarks (i.e. users) with 1,455 distinct tags.

The most active annotation user contributed 32,074 bookmarks (i.e. items)

with 2,293 distinct tags.

Our data dump from ACM DL is dated on November 14, 2010. It contains

1,634,599 publication records, covering 14 types of publications. The earliest

publication was published in 1956, and the latest in 20116. After extracting

4www.citeulike.org
5portal.acm.org
6Since publications with recorded publication year of 2011 are minorities, we excluded

them and kept those whose publication year is no later than 2010.

124

www.citeulike.org
portal.acm.org


Chapter 5. Trend Discovery using Social Annotations

the citation links among these publications, we identified 495,190 publications

citing others and 549,098 publications being cited.

The Joint Set of Items

Our task 1 of discovering emerging topic trends is concerned with publications

having both tagging and citation annotations. However, the publication col-

lections covered by CiteULike and the ACM DL are not identical, although

there exist overlaps between them. We therefore seek publications that have

both tagging annotations in CiteULike and citation annotations in ACM DL.

Fortunately, CiteULike provides linkout data from items in CiteULike to other

digital libraries. The linkout data we obtained, dated on December 9, 2010,

contains 6,311,250 linkout records, in which 66,388 items are linked to ACM

DL . We noticed that multiple CiteULike items linking to the same ACM DL

publication. After resolving co-references in these links, we identified 64,066

distinct publications in ACM DL. Having extracted annotations for these pub-

lications from both sources, 44,123 publications are identified as having both

tagging and citation annotations. In what follows, we refer to publications in

this subset as items. The statistics of the extracted data are shown in Table 5.2.

Table 5.2: Statistics of Items in ACM DL, CiteULike and the Joint Set
Statistics ACM DL CiteULike

Number of distinct items 64066 66388
Number of items having annotations 51936 52223

Number of items having annotations in both 44123

For all items in the joint set, we construct the annotation profiles from

both the citation and tagging data sources. All annotation documents con-

tained in these profiles constitute our annotation corpora for citations and

tags respectively.
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5.3.2 Topic Modeling on the Datasets

We compiled a topic learning corpus consisting of the content of all items in

the joint set and the content of all citing documents for these items in ACM

DL . Specifically, for the 44,123 items in the joint set, 327,857 ACM DL records

(cum documents), including the cited and the citing documents, are included

for topic learning.

For each record in the corpus, we concatenate its title and abstract to

form the document content. Stopwords and words appearing in fewer than

5 documents are removed. Consequently, documents with fewer than 5 valid

word tokens are also removed. As a result, 313,268 documents containing

68,725 distinct words are used for topic learning.

We adopt the GibbsLDA++7 software tool for learning topics from the corpus.

Following the settings in [75], we also set the total number of topics to 200,

i.e. K = 200. Given the topic learning result, we associate a document with

a topic if more than 10% word tokens in the document are assigned to the

particular topic [75]. The choice of 10% is to filter out minor topics assigned

to the documents by chance. As a result, each document is associated with

2.03 topics on average.

The learned topic model is further used for learning topic associations for

the tagging annotation corpus, which consists of all annotation documents

assigned to items in the joint subset.

5.4 Experimental Results

5.4.1 Topic Trends for Annotation Corpora

In this section, we present the topic trends found in the two annotation corpora.

We seek to compare the emerging topic trends by answering the following

questions:

7gibbslda.sourceforge.net
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• What are the topics that emerge mostly in each annotation community?

• What are the topics that emerge fastest in each annotation community?

• What are the topics that emerge most (or least) recently in each annota-

tion community?

To answer these questions, we examine the corpus-wise topic profiles Dk and

the corresponding time series Qk. We apply the sigmoid estimator to find

emerging topic trends and compare the trends by their emergence amplitude

(λk), ruling gradient (∆k) and emergence time τk, as defined in Section 5.2.3.

We discuss the different trends found in the citation vs. those in the tagging

communities.

Topic Trends in the Citation Community

Tables 5.3, 5.4 and 5.5 list the top 10 topics in the citation annotation corpus

with the highest emergence amplitude, largest ruling gradient and most recent

(5.5(a)) and least recent (5.5(b)) emergence time respectively.

Table 5.3: Topics in Citation Community with Highest Amplitude
λk Topic Top Keywords
1273.5 155 channel channels capacity interference spectrum power
1260.4 160 image images segmentation color regions region method
1141.5 145 sensor networks nodes network wireless node sensors
1081.0 189 routing networks ad hoc network nodes multicast protocol
1040.4 073 wireless networks access network throughput protocol mac
989.1 006 genetic evolutionary algorithm algorithms optimization
934.5 138 3d camera images image scene 2d reconstruction
911.2 106 key secure security signature protocol authentication
895.4 013 coding compression codes encoding binary rate error
826.1 103 user interface interaction interfaces users input interactive

The emergence amplitude λk indicates how much topic k emerges in the

annotation community, estimated as of the latest time window. Topics that

emerge with the largest amplitude in the citation community, shown in Ta-

ble 5.3, include: topic 155 on channel capacity, topic 160 on image segmenta-
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tion, topics 145 and 073 related to wireless sensor networks and topic 106 on

security and authentication.

Table 5.4: Topics in Citation Community with Largest Ruling Gradient
∆k Topic Top Keywords
6474.8 155 channel channels capacity interference spectrum power
262.4 145 sensor networks nodes network wireless node sensors
223.0 166 number asynchronous show strong consensus synchronous
172.6 073 wireless networks access network throughput protocol mac
168.1 184 medical diagnosis health patients clinical care using
152.7 160 image images segmentation color regions region method
143.1 135 face recognition fusion facial using expressions features
136.4 157 social community online communities users email people
123.5 189 routing networks ad hoc network nodes multicast protocol
122.3 130 security attacks attack secure malicious authentication

The ruling gradient ∆k indicates how fast topic k emerges in the annota-

tion community. Topics emerge fastest in the citation community, shown in

Table 5.4, include: topic 155 on channel capacity, topics 145 and 073 related

to wireless sensor networks, topics 160 and 135 related to computer vision and

topic 157 on social community.

By comparing the topics listed in Table 5.3 and those in Table 5.4, we note

that, although topic 157 (on social community) is not among the most popular

topics (i.e. high emergence amplitude), it has shown very intense growth of

interest (i.e. large ruling gradient) in the citation community. In contrast,

topic 155 is both popular and has most intense growth of interest.

The emergence time τk indicates the time at which the most intense emer-

gence of topic k is observed. Table 5.5(a) shows the topics with the most

recent τk in the citation community, and Table 5.5(b) shows the topics with

the least recent τk. Topics showing intense emergence most recently include:

topic 013 on coding and compression, topic 057 on neural prediction networks

and topic 161 on machine learning. We also note topic 020, which does not

seem to represent a meaningful topic.

Topics that show intense emergence least recently include: topic 173 on

rendering techniques for computer graphics, topic 185 on hardware circuits de-
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Table 5.5: Topics in Citation Community Ranked by Emergence Time

(a) Top 10 Topics with Most Recent Emergence

τk Topic Top Keywords
2009.3 013 coding compression codes encoding binary rate error
2009.3 110 conditions sufficient condition given certain whether
2009.0 158 simulation simulations results using simulator realistic
2008.9 069 errors fault reliability failure failures error recovery
2008.3 064 linear matrix sparse matrices polynomial symmetric
2008.2 121 system operating hardware platform implementation
2008.2 172 estimation parameters error estimate parameter accuracy
2008.1 020 one two another hand latter ie different paper former
2008.1 076 task tasks transfer perform performing performed using
2008.0 155 channel channels capacity interference spectrum power

(b) Top 10 Topics with Least Recent Emergence

τk Topic Top Keywords
2004.0 027 retrieval information relevance terms documents term
2004.1 079 may however often many lead result even conflict occur
2004.1 107 study results experiment effects effect found participants
2004.2 125 service services qos composition providers quality web
2004.2 048 complexity bound bounds lower upper polynomial number
2004.3 169 matching match string length pattern two common pair
2004.3 083 data sets collected processing large amount warehouse raw
2004.3 053 average using 10 rate times less per 20 compared percent
2004.3 039 state hybrid continuous states markov transition discrete
2004.3 051 sequence sequences gene cell biological expression protein

sign, topic 068 on web sites and pages and topic 174 on frequent pattern mining.

Unfortunately, topic 079, which is among the least recently emerging topics,

appears to be a non-genre topic.

Topic Trends in the Tagging Community

For the corpus-wise topic profiles using tagging annotations, the top 10 topics

with the highest emergence amplitude, largest ruling gradient and most (vs.

least) recent emergence time are shown in Tables 5.6, 5.7 and 5.8 respectively.

We note that the top topic trends in Tables 5.6 and 5.7 are mostly related

to web and text mining. These topics include topic 157 on social community,

topic 089 on recommender systems, topic 027 on information retrieval and topic

104 on tagging. This observation suggests that the annotation community of

CiteULike have been actively annotating publications in web and text mining
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Table 5.6: Topics in Tagging Community with Highest Amplitude
λk Topic Top Keywords
124.1 122 2006 2007 2005 2008 2004 thesis 2009 acm vldb sigmod
62.7 157 social community wiki email socialnetwork blogs blog
55.2 089 recommender collaborativefiltering personalization
50.2 027 ir retrieval relevancefeedback relevance queryexpansion
44.5 103 hci interaction interface ui user usability userinterface
41.9 104 tagging folksonomy tag tags folksonomies 519 flickr
40.4 068 web hypertext www hypermedia pagerank accessibility
40.2 038 search ranking websearch google rank informationretrieval
39.1 195 informationretrieval text wikipedia summarization
38.9 167 ontology semantic annotation semanticweb taxonomy

Table 5.7: Topics in Tagging Community with Largest Ruling Gradient
∆k Topic Top Keywords
35.1 122 2006 2007 2005 2008 2004 thesis 2009 acm vldb sigmod
29.6 027 ir retrieval relevancefeedback relevance queryexpansion
24.3 148 p2p network networks peertopeer dht overlay topology
23.9 068 web hypertext www hypermedia pagerank accessibility
20.4 189 routing manet adhoc sensornetworks multicast dtn mobil
20.4 082 collaboration cscw collaborative awareness supported work
19.1 007 mobile ubicomp pervasive ubiquitous mobility computing
18.9 157 social community wiki email socialnetwork blogs blog
18.6 089 recommender collaborativefiltering personalization
16.3 104 tagging folksonomy tag tags folksonomies 519 flickr

related research. In contrast, users from other research specialty have been

less active in CiteULike.

The time range in the tagging annotation corpus is drastically different

from that in the citation annotation corpus. The emergence time shown in

Table 5.8 indicates the time at which the tagging community in CiteULike

demonstrates the most intense surge of interest in tagging the topics. We note

that topic 134 on arithmetic computing shows the most recent surge, while

topic 147 on digital libraries and metadata surges the earliest.

Note that the topic mixtures have changed after learning on the tags. Many

abbreviations now have higher probabilities of being generated by the topics.

For example, the tag ir in topic 027 and the tag hci in topic 103, shown in

Table 5.6.
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Table 5.8: Topics in Tagging Community Ranked by Emergence Time

(a) Top 10 Topics with Most Recent Emergence

τk Topic Top Keywords
2009.5 134 computation floatingpoint fast computing fixedpoint
2009.5 129 efficiency redundant redundancy naturallanguageproce
2009.5 077 energy power consumption lowpower efficiency energyeff
2008.6 099 log isi iui time ni datastructure diameter computing
2008.3 093 java compiler staticanalysis compilers program debugging
2008.0 025 svm kernel vector support machine regression kernels
2007.7 084 structure qa questionanswering structured structures
2007.7 141 parallel gpu mapreduce gpgpu multicore parallelism
2007.7 122 2006 2007 2005 2008 2004 thesis 2009 acm vldb sigmod
2007.6 024 characterization family definition classic generalization

(b) Top 10 Topics with Least Recent Emergence

τk Topic Top Keywords
2004.8 020 ie hand variants humanfactors anomalydetection
2004.9 117 contribution machinelearning second longtail
2005.0 047 problems classic complexity problem solutions algorithmic
2005.1 043 input function output operator fp bent functions
2005.1 154 video multimedia streaming media stream streams trecvid
2005.2 118 design methodology usercentered ucd prototyping
2005.2 048 complexity dnf informationtheory seminal combinatorics
2005.2 182 knowledge knowledgemanagement expertise expert
2005.2 164 km enterprise management ict organization organizations
2005.3 147 metadata digital library book hardcopy content browsing

5.4.2 Influential Items for Topics

Given a topic, which are the influential publications? To answer this question,

we examine the topic trends estimated from the item-wise topic profiles Dk
i .

In particular, for a topic k, we are interested in items with the largest λki . The

parameter λki indicates the popularity of the item i being annotated for the

topic k. We select two topics noted previously in the citation corpus, namely

topic 155 and topic 157, as case studies.

For each topic, we show its corpus-wise emergence time τk and its top

keywords learned from the citation corpus. We rank the items for each topic

by the emergence amplitude λki of their item-wise topic trends. For comparison,

we also show the corresponding emergence time τki , ruling gradient ∆k
i and the

citation count statistics cci in ACM DL. Lastly, we show the item ID, title and
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publication type in recorded in ACM DL, where WB denotes whole book, JA

denotes journal articles and PP denotes conference proceeding papers.

Table 5.9: Top Items for Topic 155
Topic τk Top Keywords
155 2008.0 channel channels capacity interference spectrum power

λki τki ∆k
i cci Item Title Type

200.0 2008.1 1018.6 2410 129837 Elements of information theory WB

194.5 2008.1 1378.9 1239 993483 Convex Optimization WB

146.5 2008.1 782.5 487 609324 On Limits of Wireless Communications in a Fad-
ing Environment when Using Multiple Antennas

JA

93.0 2008.1 562.5 242 1162470 NeXt generation/dynamic spectrum access/cog-
nitive radio wireless networks: a survey

JA

43.5 2008.1 224.2 1121 248979 Matrix computations (3rd ed.) WB

25.0 2008.1 143.8 76 1161129 Hot topic: physical-layer network coding PP

15.0 2008.1 73.9 57 1282425 Embracing wireless interference JA

13.0 2007.2 33.9 114 1148681 Raptor codes JA

12.0 2008.1 75.8 139 1159942 XORs in the air: practical wireless network cod-
ing

JA

12.0 2008.1 86.0 191 19572 Topics in matrix analysis WB

Table 5.10: Top Items for Topic 157
Topic τk Top Keywords
157 2005.6 social community online communities users email people

λki τki ∆k
i cci Item Title Type

14.7 2007.1 68.6 107 1240772 Why we tag: motivations for annotation in mo-
bile and online media

PP

11.3 2006.0 60.4 101 988739 Information diffusion through blogspace PP

11.0 2007.1 54.9 50 1242685 Analysis of topological characteristics of huge
online social networking services

PP

10.3 2007.1 65.4 34 1240695 A familiar face(book): profile elements as signals
in an online social network

PP

10.1 2001.0 51.5 196 358975 Interaction and outeraction: instant messaging
in action

PP

10.0 2008.0 47.3 60 1341558 Can social bookmarking improve web search? PP

9.5 2008.1 48.3 23 1397742 Growth of the flickr social network PP

8.0 2007.1 38.8 61 1124885 Understanding photowork PP

8.0 2008.1 43.4 50 1242598 Wherefore art thou r3579x? PP

7.3 2007.0 59.1 108 1316740 Combating web spam with trustrank PP

Table 5.9 shows the top 10 items with the largest λki for topic 155. Among

these items, the top journal papers and top conference proceedings papers appear

more directly addressing specific research problems in the field of network

coding, while the top books appear more on fundamental theories. In Table

5.9, we also highlight the items whose item-wise topic trends emerge earlier

than the corpus-wise topic trend for the corresponding topic, i.e. τki < τk. For

topic 155, the journal paper Raptor codes qualifies this selection.

Table 5.10 lists the top 10 items with the largest λki for topic 157. Inter-

estingly, unlike topic 155, no book is found among the top items for topic 157.
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These top items all appear mostly addressing specific social Web services, and

no fundamental book has been commonly adopted. For topic 157, the paper

Interaction and outeraction: instant messaging in action shows early emer-

gence, i.e. its item-wise topic trend emerges earlier than the corpus-wise topic

trend for topic 157.

By comparison, topic 155 and topic 157 demonstrate different patterns in

the top cited items. Topic 155 has theory-oriented books to serve as its intel-

lectual bases, whereas topic 157 does not. Upon examination, we find these

two patterns generally exist in the top cited items for other topics.

5.4.3 Emerging Topics for Items

In this section, we study the emerging trends for individual publications.

Specifically, we examine the item-wise topic profiles Dk
i for a given item. Trends

that emerge from the respective annotation series Qk
i reveal the timeline of im-

pact an items has made in the respective topics. We select two publications

noted in the previous section, which are among the top items for the shown

topics in Table 5.9 and Table 5.10.

Figure 5.3 plots the top emerging topics for the book Convex optimization

by Boyd and Vandenberghe. Two notable, and related, topics citing this book

are topic 012 on optimization theory, and topic 155 on channel capacity, which

is an application domain of the theory. While the topic related to optimization

theory shows a steady growth over the years, the topic on the application

shows sharp and intense surge in citing this book. This observation suggests

that much attention on the book comes from the applications, such as channel

capacity for network coding.

In our extended studies, we also observe similar patterns in other items,

e.g. the book Elements of Information Theory by Cover and Thomas, seen

in Table 5.9. In general, for emerging trends found in citing the same theory-

oriented item, topics on fundamental theories show steady growth, while topics
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Figure 5.3: Emerging Trends for the Book Convex optimization

on applications may show intense surge.

07 08 09 10
0

2

4

6

8

10

12

14

16

18

157 : 2007.1
104 : 2007.1
049 : 2008.5
007 : 2007.0
147 : 2007.0
089 : 2008.0

157 : social community online communities users email people personal
104 : identification using identify paper ii identifying tags used use based
049 : factors study influence use impact research perceived results findings
007 : mobile devices computing device ubiquitous smart mobility pervasive
147 : digital content library metadata paper libraries use contents creation
089 : users user preferences recommendation items profile profiles
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For the conference proceedings paper Why we tag: motivations for anno-

tation in mobile and online media by Ames and Naaman (the first item in

Table 5.10), the top emerging topic trends for this paper are plotted in Fig-

ure 5.4. Among six topics that emerge, four shows sharp and intense emergence

soon after the paper’s publication. Two having large emergence amplitude are

topic 157 on social community and topic 104 on tag-based identification. Two

topics with lower emergence amplitude are topic 007 on mobile devices and 147

on digital libraries. Work studying tag recommendation (topic 089) begin to

cite this paper only later with a lower volume.

5.4.4 Identifying Influential Papers for ICSE Confer-

ence

In this section, we propose to use trend-based metrics to identify influential

publications. We use proceedings papers from proceedings of the ACM Inter-

national Conference on Software Engineering (ICSE for short)as a case study.

We demonstrate that our trend-based metrics are effective in ranking the most

influential papers among their peers than pure citation count.

The ACM ICSE conference has the tradition of giving awards to papers

that [90]

is judged to have had the most influence on the theory or prac-

tice of software engineering during the 10 years since its original

publication.

From 1989 to 2010, ICSE has given 22 papers themost influential paper awards

(ICSE Award for short). In each award year, one or two awards are given.

There are two years in which no award was given, i.e. 2000 and 2006; there

are also two years in which two papers received the award, i.e. 1997 and 2010.

Among the 22 papers receiving the award, we identified 21 papers in ACM

Digital Library.
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5.4.4.1 Ranking Task

We define our ranking task as follows.

• For each conference year (denoted by Yc), we first collect the papers

published in Yc as the assessment candidates. We use Nc to denote the

total number of candidates for each corresponding Yc.

• We then collect annotation data from ACM DL for these candidates up

to the assessment year (denoted by Ya). We define Ya to be the ICSE

Award year for each corresponding Yc.

• We compute the ranking metrics for each candidate paper based on data

collected up to Ya.

• We rank the candidate papers for each Yc and evaluate against the ground

truth at the corresponding Ya.

We adopt a two-phase ranking strategy. In the first phase, we shortlist candi-

date papers for each Yc by their citation count up to Ya. We use Mc to denote

the size of the shortlist. In the second phase, we re-rank these shortlisted

candidates using the various metrics. We adopt this strategy because it best

reflects the selection process for ICSE Award.

5.4.4.2 Ranking Metrics

We categorize our ranking metrics into three groups, shown as follows:

• sum.cd, which counts the total number of citing documents up to Ya. This

metric is not based on emerging trend estimation. Given that the ICSE

Award first shortlists candidate papers by citation count, this ranking

metric is a very strong baseline.

• Metrics based on the emerging trends estimated for Qi include

136



Chapter 5. Trend Discovery using Social Annotations

– amp.cd, the emergence amplitude (λi) estimated for Qi; This metric

indicates how much interests does the research community have on

the candidate paper;

– grd.cd, the ruling gradient (∆i) at t = τ estimated forQi; This metric

indicates the maximum surge of interest in the candidate paper;

– est.cd, the accumulated values on the estimated sigmoid curve for

Qi. Formally, it computes the sum
∑

t Q̂i(t) where t ∈ [Yc, Ya] for

each candidate i.

Note that, candidates not showing emerging trend in Qi will not be

ranked by this group of metrics.

• Metrics based on the emerging topic trends estimated for Qk
i include

– numser, the number of emerging topic trends estimated for the candi-

date. Formally, it computes
∑

k I
(

Qk
i

)

where I
(

Qk
i

)

is an indicator

function that returns 1 if the corresponding Q̂k
i (t) is emerging and

0 otherwise;

– ampsum, the sum of the emergence amplitude of the emerging topic

trends estimated for the candidate, i.e.
∑

k λ
k
i × I

(

Qk
i

)

;

– grdmax, the maximum ruling gradient among the emerging topic

trends estimated for the candidate, i.e. maxk ∆
k
i × I

(

Qk
i

)

;

Note that, candidates not showing emerging topic trend in Qk
i for any

k will not be ranked by this group of metrics. For ampsum, grdmax and

estsum, the summation operator can also be replaced by the maximum

operator, and vice versa. We explored both settings, and report only the

results using the listed operator in this section.
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To construct the Qi and Qk
i time series for deriving trend-based metrics, we

prefix a zero at Yc for each candidate. Formally,

Q =
{

(t, qt) : Yc ≤ t ≤ Ya, qt =
∑

d∈D I (st ≤ sd < st+1), qt > 0, qYc
≥ 0
}

5.4.4.3 Ranking Evaluation

Table 5.11 shows the rankings of the ICSE Award-winning papers by the var-

ious metrics. We set Mc = 10 for all Yc. For each paper, we show its corre-

sponding year of publication (denoted by Yc), year of award (denoted by Ya),

total number of candidate peers for the same year (denoted by Nc), its item ID

and its cumulative citation count up to Ya (denoted by ccci). For each ranking

metric, we show the ranking position of the award-winning paper and the total

number of candidates that qualify the ranking metric, i.e. candidates showing

emerging trends. When an award-winning paper is successfully ranked ahead

of all other candidate peers by a ranking metric, we highlight the correspond-

ing cell in boldface. Note that, for Yc = 2000 and Yc = 1987, two papers were

given the ICSE Award.

Table 5.11: Ranking ICSE Award Papers
Yc Ya Nc Item ccci sum.cd amp.cd grd.cd est.cd numser ampsum grdsum

2000 2010 182 337234 256 1/10 1/9 3/9 1/9 1/9 1/9 3/9
2000 2010 182 337209 41 13/10 –/9 –/9 –/9 –/9 –/9 –/9

1999 2009 115 302457 232 1/10 1/8 3/8 1/8 1/8 1/8 2/8
1998 2008 68 302181 92 1/10 1/4 2/4 1/4 1/4 1/4 1/4
1997 2007 123 253236 45 1/10 3/8 3/8 2/8 1/8 2/8 2/8
1995 2005 33 225016 13 8/10 2/5 5/5 4/5 4/5 4/5 4/5
1994 2004 45 257745 89 1/10 –/6 –/6 –/6 –/6 –/6 –/6
1993 2003 49 257610 16 1/10 –/8 –/8 –/8 –/8 –/8 –/8
1992 2002 34 143098 10 9/10 5/6 3/6 5/6 –/5 –/5 –/5
1991 2001 46 256748 29 2/10 2/9 9/9 2/9 1/9 1/9 3/9
1989 1999 64 74588 45 1/10 –/6 –/6 –/6 –/4 –/4 –/4
1988 1998 44 55861 36 1/10 –/8 –/8 –/8 –/6 –/6 –/6

1987 1997 43 41767 19 7/10 –/3 –/3 –/3 –/2 –/2 –/2
1987 1997 43 41766 97 1/10 –/3 –/3 –/3 –/2 –/2 –/2

1985 1996 58 319624 7 5/10 7/8 3/8 6/8 1/4 3/4 2/4
1984 1995 75 801999 6 9/10 5/8 4/8 4/8 –/4 –/4 –/4
1982 1994 48 807765 4 8/10 6/8 3/8 7/8 –/5 –/5 –/5
1981 1993 51 802557 17 2/10 3/6 3/6 3/6 1/5 1/5 1/5
1979 1992 60 802918 15 3/10 5/8 4/8 4/8 5/7 4/7 7/7
1978 1991 47 803218 8 3/10 5/9 4/9 4/9 3/7 6/7 4/7
1976 1986 104 807708 6 17/10 –/4 –/4 –/4 –/4 –/4 –/4
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As expected, sum.cd performs strongly. Among the 21 award-winning pa-

pers, it is able to rank them ahead of other candidate peers for 9 different Yc.

We also note that, for Yc = 2000 and Yc = 1976, even the award-winning pa-

pers were not among the shortlisted candidates. There are 5 years, namely

Yc = 1994, 1993, 1989, 1988, 1987 respectively, for which sum.cd successfully

ranks the award-winning paper ahead but none of the trend-based metrics

is able to. Nonetheless, there are 3 years, namely Yc = 1991, 1985, 1981 respec-

tively, for which sum.cd is not able to rank the award-winning paper at top but

some trend-based metrics do. These award-winning papers include Program

slicing by Mark Weiser (1981) and Tolerating inconsistency by Robert Balzer

(1991). To understand why they are supported by the trend-based metrics, we

plot the emerging trends estimated for these papers, shown in Figures 5.5 and

5.6.

81 82 83 84 85 86 87 88 89 90 91 92 93
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1982.0

5.5.a: Trends Estimated for Qi
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Figure 5.5: Emerging Trends for the Paper Program slicing

Both Figures 5.5 and 5.6 show a number of emerging topic trends for the

two papers, namely 3 and 5 respectively. The metric numser ranks these pa-

pers ahead of their candidate peers. This suggest that these papers attracted

interest from a wide range of research communities as compared to their peers.
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Figure 5.6: Emerging Trends for the Paper Tolerating inconsistency

5.5 Summary

In this research, we proposed using social annotations to profile scientific pub-

lications for trend discovery. We proposed a trend discovery process (shown in

Figure 5.1) and a trend estimation method (the sigmoid estimator) for the task

at hand. Leveraging on topic modeling, we derived topic series from the anno-

tation profiles, and performed trend estimation to find emerging topic trends.

With the discovered trends from the social annotations, we were able to per-

form analysis tasks for understanding, comparing and selecting the scientific

publications.

Our empirical findings from the proposed trend analysis tasks can be sum-

marized as the following:

• We find a number of topics that have attracted intense emergence of in-

terest in the citation annotation corpus. These include topics on wireless

channels and sensor networks and social community.

• When examining the top cited items for these topics, we observe notable

differences in the most important publications for the topics. On one

hand, the topic on wireless channels and sensor networks has been citing

theory-oriented books as its intellectual bases. On the other hand, there

is no commonly cited book found for the topic on social community. The
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top cited papers focus on specific problems related to different online

social media.

• We have also observed different trends in citing theory-oriented books.

While the core theory topics show steady growth over the years, the

application topics may surge with intense emergence.

• We also demonstrated the ability to select influential papers using trend-

based metrics. Our case study using the ICSE Award showed that even

when pure citation count was not able to rank the award winning paper

ahead of their candidate peers, our trend-based metrics support these

papers for their number of emerging topic trends found.

Based on the proposed trend discovery process, future research can explore

more interesting trend analysis tasks for understanding the scientific literature.

For example, one may be interested in finding co-emerging topics, e.g. two or

more topics show strong correlation in citing the same or similar work, or in

finding late-emerging topics, e.g. a topic was not seen impacted by some work

published earlier, but as time goes by, these work begin to have impact on the

topic. How to formally define and solve these tasks are the steps forwards.

Our proposed trend discovery process provides quantitative measures that can

potentially benefit these tasks.
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Conclusion

6.1 Concluding Remarks

As social media continues to grow, users are equipped with more and more

interactive means for contributing content to the Web and learning from the

Web. Social tagging, as one of the most popular activities on social media,

has created an information space for navigating vast amount of content on the

Web. Navigation in this information space relies fundamentally on the links

between information objects. To meet the complex information needs of users,

more tools are demanded to select the information objects. This dissertation

focused on studying tasks that facilitate navigation in social tagging systems.

To address link sparseness, we study the task of tag prediction to increase

the navigability of the resources. To address object selection, we study the

task of personalized tag recommendation and propose new metrics based on

the temporal profiles of the resources, helping users navigate this information

space effectively.

In Chapter 3, we studied the tag prediction task, which aims to predict

tags for the untagged or inadequately tagged resources. This task addresses

link sparseness between resources and tags. The task of tag prediction is chal-

lenging on its own merit. The novelty of our approach includes the use of a
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probabilistic topic model which provides probabilistic interpretations on the

semantic relationships between resources and tags via topics. By hypothe-

sizing that topics that are discussed more often in the document are likely to

have more tags corresponding to these topics, we proposed LDAtgg model for

predicting tags for Web pages. We formulated the solution into two phrases,

namely training and prediction. We developed a Gibbs sampling algorithm for

training the model parameters. We adopted Bayesian inference for estimating

the probabilities of candidate tags for the test pages.

Our experiments conducted using a novel collection of news articles showed

promising performance in the tag prediction accuracy. Our LDAtgg model using

100 topics outperforms the strongest baseline method by over 20% for the top

5 predictions. Upon further analysis on the prediction errors, we noted two

major challenges of the current approach. First, evaluation on the prediction

accuracy is non-trivial. This is partly due to the varying adequacy of the

ground truth tags for the test documents, and partly due to the morphological

mismatches between the ground truth tags and the predicted tags. Second,

LDAtgg model favors frequent tags in the tag vocabulary. In other words, tags

seen more frequently in the training documents are more likely to be predicted

for the test documents. Since frequent tags are likely to represent the coarse

grain semantics, e.g. tabletPC has a coarser grain semantics than iPad2, this

characteristic of the model has two folds. On one hand, the predicted links

between the resources and the coarser grain tags make the resource navigable

from other resources more easily. On the other hand, if limited to the top few,

these tags may not represent the unique semantics of the resources.

In Chapter 4, we studied the personalized tag recommendation task. The

objectives of personalized tag recommendation are twofold. On one hand, the

recommended tags should be relevant to the particular resource. On the other

hand, the recommended tags should also be consistent with the personal tag-

ging preferences of the query user. This task addresses link selection on tags
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for a given pair of resource and user. The need for personalization distin-

guishes this task from tag prediction. We proposed a probabilistic framework

that leverages the implicit social links between users, i.e. like-minded users

who show similar tagging preference patterns, to find candidate tags for recom-

mendation. We addressed personalization by modeling the probabilistic tag-

ging preference patterns of individual users, i.e. the probabilities of translating

resource tags to personal tags. We devised distributional similarity measures

for comparing such tagging preference patterns between users.

Our experiments conducted on a benchmark dataset from BibSonomy sug-

gested that leveraging like-minded users had clear advantage over their target-

user-solely counterparts in terms of recommendation accuracy. Based on pa-

rameters tuned for individual users across a range of similarity measures and

neighborhood sizes, we discussed the degree of personal preferences vs. social

influences shown by users in BibSonomy.

Lastly in Chapter 5, we proposed to discover trends from the social an-

notation temporal profiles. This is a novel task we identified to enhance ob-

ject selection by incorporating non-trivial temporal features of the annotated

objects. We demonstrated the utility of analyzing such non-trivial temporal

features for scientific publications. We proposed a trend discovery process that

enabled us to perform topic-specific and resource-specific trend analysis tasks.

We proposed a trend estimation method that allowed us to parameterize and

compare the emerging trends from the annotation temporal profiles. Although

our study focused on the annotation profiles for scientific publications, the pro-

posed trend discovery process and trend estimation methods can be applied

directly to other types of temporal profiles, as noted in Section 5.2.1.

We experimented with two forms of social annotations for scientific publi-

cations, namely social tags and citing documents, to study the different trends

in these two social communities. We evaluated our proposed trend discovery

process and trend estimation method by performing a range of trend analysis
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tasks. These tasks include: (i) discovery of emerging topic trends; (ii) selec-

tion of important publications for given topics, as well as selection of emerging

topics for given publications; (iii) identification of the most influential papers

using trend-based metrics. The corpus-wise topic trends suggested reasonably

significant topics rising from the research community in last decade. For two

identified emerging topics, we examined the important publications being cited

for these topics. For two identified publications, we examined the item-wise

emerging topics citing these publications. One is a theory-oriented book, two

groups of citing topics showed contrasting patterns of emergence. Another is

an application case study paper, groups of topics showing similar emergence

patterns are reasonably coherent. When comparing the two types of social an-

notations, we found that the temporal profiles formed by social tags are much

sparser than those formed by citing documents for the same set of publications.

Since trend analysis tasks consume tagging data, tags sparseness is again seen

critical for these tasks.

In summary, this dissertation reported our studies on link prediction and

object selection to facilitate navigation in social tagging systems. Our phi-

losophy is that, there are three dimensions for navigating the social tagging

space, namely the semantic, social, and temporal dimensions, and prediction

tasks for link prediction and object selection can benefit from exploiting these

dimensions.

6.2 Suggestions for Future Research

We identify the following possible future extensions for the tasks reported in

this thesis.
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Tag Prediction with Multiple Levels of Specificity

One characteristic of the proposed LDAtgg model is that topics are flat. In other

words, the topics are assumed independent, and within each topic, the tags are

associated with the topic independent with other tags. From the experimental

results shown in Chapter 3, we found that, tags that are seen more often in the

training set are more likely to be predicted by LDAtgg model. As a result, the

model achieved good performance on documents with less exclusive tags, i.e.

tags assigned to many documents, but poorer performance on documents with

more exclusive tags. In general, tags of higher exclusiveness are more specific

to the annotated resource. Hence, one possible improvement is to incorporate

multiple levels of specificity.

To predict tags with multiple levels of specificity, two approaches are possi-

ble. The first approach is to exploit the semantic relations between tags within

each topic [123]. To do that, additional sources of semantic information may

be consulted from WordNet [25] or Wikipedia1 [114] to improve the bag-of-tags

representations in LDAtgg model. Second is to model topics with multiple levels

of specificity, e.g. to learn a topic hierarchy using non-parametric models [8].

Tag Prediction for Non-textual Resources

LDAtgg model can also be extended to suit resource representations other than

text. For instance, the image retrieval community has studied using social

tags as image annotations for indexing and retrieval [69, 68, 21]. The ability

to predict tags for untagged images, or multimedia content in general, would

benefit such retrieval tasks. The key to extend LDAtgg model for multimedia

content is to incorporate the suitable representations for the content features.

In the setting of social tagging, such as Flickr and YouTube, interpreting the

relevance of a user-created tag with respect to the visual content of a resource

also imposes new challenges for such tasks.

1www.wikipedia.org
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Tag Prediction using Trends

A promising direction to improve tag prediction is to consider the temporal

aspect of social tagging data. We note that people annotate resources based on

their current interest or current events, such as worldup2010 or iphone4. Hence,

being able to capture the current trends in the social tagging community may

lead to promising results in the prediction performance. The trend estimator

we proposed in Chapter 5 may serve to bridge the two tasks.

Personalized Tag Recommendation using Topic Models

Adopting topic models for personalized tag recommendation may lead to promis-

ing results. For this direction, we foresee two challenges. The first challenge

is to model user-specific topic multinomials and their relationships with the

community topic multinomials. For the task of tag prediction studied in Chap-

ter 3, we modeled the community topic multinomials despite which tags are

used by which user. Such information may not be critical to tag prediction,

but is critical to personalized tag recommendation. The second challenge is

to learn topics for the target resource on-demand. Since the task of tag rec-

ommendation is, in general, more time-critical than the task of tag prediction,

adopting topic models for personalized tag recommendation should be able to

estimate the topic mixture for resources

Personalized Resource Search

One dual problem to personalized tag recommendation is personalized resource

search in social tagging systems. The objective is to retrieve target resource(s)

that the query user will annotate with the query tag. Formulated also as a

probabilistic ranking problem, it is to estimate the probability p (r|uq, tq). In

this case, the query tag is a tag in the query user’s personomy. For retrieving

the relevant resources, we now translate the personomy tag to resource tags.
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Following the same intuition on borrowing translations from neighbors, we can

also devise a probabilistic framework as written in Eq. 6.1.

p (r|uq, tq) =

∑

u sim (u, uq)× p (r|u, tq)
∑

u sim (u, uq)
(Eq. 6.1)

We may adopt L1-norm and JS-divergence metrics to compute the similarity

between users or explore other metrics [64]. To maximally reach candidate

resources, we first translate personomy tags to resource tags (Eq. 6.3), and

search for resources that have been assigned the translated tag (Eq. 6.2).

p (r|u, tq) =
∑

tr∈T
p (r|tr)× p (tr|u, tq) (Eq. 6.2)

p (tr|u, tq) =
∑

r∈ru
p (tq|r, u)× p (tr|r) (Eq. 6.3)

This problem, however, raises challenges in the evaluation in offline settings.

To quantitatively evaluate the performance on resource search, ground truth

should be given as the set of relevant resources for the query user when he/she

meant to annotate with the query tag. In an offline setting, where evaluation

is conducted on a static snapshot of the social tagging system, we cannot

conclude irrelevance for resources not bookmarked by the query user. In other

words, the resources not yet bookmarked by the query user are not judged for

relevance. An online setting can be adopted to address this problem, where

judgment can be collected from users on a real-time basis. However, conducting

online judgment is time-consuming and sometimes involve monetary cost.

Suggestions for Trend Discovery

In Chapter 5, we use social annotations to profile scientific publications for

trend discovery. Leveraging topic modeling, we derive topic series from the an-

notation profiles and perform trend estimation to find emerging topic trends.

With the discovered trends, we are able to perform analysis tasks for under-

standing the scientific literature.
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Chapter 6. Conclusion

In the evaluation on the discovered trends, we face a number of challenges.

Unlike TDT tasks in TREC, where test documents have manually labeled by

human subjects, quantitative evaluation can be conducted. Direct evaluation

on topic trends in scientific literature have been mostly qualitative [11, 44, 122].

In Chapter 5, we demonstrated a task to identify the most influential papers

for evaluating the discovered emerging trend indirectly.

Given the proposed trend estimator, we are able to explore more interesting

trend analysis tasks for understanding the scientific literature using social an-

notations. One task is to find (latent) connections between topics. Aside from

using content-based similarity and direct citation links, one may use emerg-

ing trends to find co-emerging topics. Another interesting task is to discover

late-emerging topics for individual publications. Such topics will be useful to

understand the re-discovered value a publication has in new research special-

ties. To formally define and solve these tasks are future steps forward.
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Appendix A

Navigational Views on Social

Tagging Systems

There are many popular social tagging sites in existence. For instances, De-

licious is the largest social tagging site to date for annotating web URLs; Ci-

teULike1 and BibSonomy2 are designed for annotating scientific references for

the research community; LibraryThing3 and Goodreads4 allow users to create

their own library catalogs for books; Last.fm5 supports users to tag artists,

albums and songs. Social tagging systems can be a web site by its own, such

as the above mentioned, where the content of the web resources are not hosted

on the tagging site. Social tagging can also be embedded in other content-

publishing sites, such as Flickr6 and YouTube7, where tags serve as metadata

to organize and identify the published content. Besides the basic function of

tagging, many existing social tagging systems also provide aggregated views of

tagging data, such as the following, to help users navigate the social tagging

space.

Tag cloud presents a visualization to feature tags used for a resource

1www.citeulike.org
2www.bibsonomy.org
3www.librarything.com
4www.goodreads.com
5www.last.fm
6www.flickr.com
7www.youtube.com
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Chapter A. Navigational Views on Social Tagging Systems

collection. The more frequently used tags are shown in larger font in the

cloud. Figure A.1 shows a tag cloud from Delicious. By selecting a tag in the

cloud, one can examine all resources annotated with the selected tag.

Figure A.1: An Example of Tag Cloud

Tag view presents a combined view of everyone’s bookmarks for a given

tag. Figure 1.1 in Chapter 1 shows an example tag view for the tag socialmedia

on Delicious. It allows the users to explore resources that other users have

bookmarked with the given tag. Furthermore, resources are ordered by the

number of users using the given tag for annotating them.

Resource view presents a combined view of everyone’s bookmarks for a

given resource, such as the one shown in Figure A.2. This resource view has two

parts. On the left hand side, it shows a link to the user by whom the resource

was first bookmarked, plots the volume of bookmarks received over time, and

lists the most recent bookmarks (cum users and their tag assignments) the

given resource has received. On the right hand side, it summarizes the most

frequent tags assigned to the resource. Provided that there has been adequate

bookmarks to the given resource, these top frequent tags are regarded as the

primary semantics of the resource, representing the consensus from the social

tagging community [34, 99].

User view presents the collection of resources bookmarked by the given

user and the collection of tags used by the user for annotating resources, such

xx



Chapter A. Navigational Views on Social Tagging Systems

Figure A.2: An Example of Resource View

as the example shown in Figure A.3. On Delicious, everyone’s bookmarks are

visible to everyone else, unless a user explicitly specifies a bookmark to be

private. Finding resources through viewing others’ bookmarks is analogous

to watching and following others or taking their advices. This is, as noted by

Dourish and Chalmers in [23] and Svensson in [109], a form of social navigation.

Figure A.3: An Example of User View

Tag recommendation is provided to help a user choose the appropriate

tags when bookmarking a resource. Figure 4.1 in Chapter 4 shows an example

of tag recommendations on Delicious. Often, the recommended tags are those

most frequently assigned by other users annotating the given resource (if there

has been any). This, again, demonstrates social navigation, where the recom-
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mended tags are collected from other users in the social tagging community.

Resource recommendation recommends new resources to users that

aims to meet their interest in consumption. For example, CiteULike rec-

ommends scientific articles not yet annotated by the user, and Last.fm rec-

ommends music playlist to users. Such recommendations are often based

on the annotation profiles of the users and the tags associated with the re-

sources [13, 92, 100].

In summary, these navigational views are built upon the assignment re-

lationships between information objects in the social tagging space to meet

diverse user needs. They unveil the semantic, social, or temporal attributes of

the current object(s) by aggregating and ordering the links from the current

object(s) to the most emergent others. They enable users to navigate the social

tagging space from the presented views.
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Appendix B

Conditional Probabilities in

LDAtgg Model

In what follows, we lay out the derivations of Eq. 3.2 and Eq. 3.3, which com-

putes the joint a posteriori probabilities of topics for word tokens and tag

tokens respectively in Algorithm 1. These derivations are largely guided by

the technical report by Heinrich [45]. We follow the same set of notations

shown in Table 3.3.

B.1 Sampling Topics for Word Tokens

p
(

zd,i|~z¬{d,i}, ~w, ~y,~t
)

=
p
(

zd,i, ~z¬{d,i}, ~w, ~y,~t
)

p
(

~z¬{d,i}, ~w, ~y,~t
)

=
p (~z) p (~w|~z) p (~y|~z) p

(

~t|~y
)

p
(

~z¬{d,i}
)

p
(

~w|~z¬{d,i}
)

p
(

~y|~z¬{d,i}
)

p
(

~t|~y
)

=
p (~z)

p
(

~z¬{d,i}
) ×

p (~w|~z)

p
(

~w|~z¬{d,i}
) ×

p (~y|~z)

p
(

~y|~z¬{d,i}
) (Eq. B.1)
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Let function ∆ () denote the Dirichlet integral [45]. We express the three

components in Eq. B.1 as follows:

p (~z)

p
(

~z¬{d,i}
) ∝

∆(~nd + ~α)

∆
(

~nd,¬{d,i} + ~α
)

∝
n
zd,i
d,¬i + α

∑K

k=1

(

nk
d + α

)

− 1
(Eq. B.2)

p (~w|~z)

p
(

~w|~z¬{d,i}
) =

p (~w|~z)

p
(

~w¬{d,i}|~z¬{d,i}
)

p
(

wd,i|~z¬{d,i}
)

∝
∆
(

~nk + ~β
)

∆
(

~nk,¬{d,i} + ~β
)

∝
n
wd,i

k,¬{d,i} + β

∑W

w=1

(

nw
k,¬{d,i} + β

) (Eq. B.3)

p (~y|~z)

p
(

~y|~z¬{d,i}
) =

p (~yd|~zd)

p (~yd|~zd,¬i)
∝ p (~yd|~zd)

=
∏Jd

j=1 p (yd,j|~zd)

=
∏Jd

j=1

n
yd,j

d

Id
(Eq. B.4)

Let mk
d denote the number of tag tokens in document d that is assigned to

topic k. Thus, Eq. B.4 can be re-written as:

p (~y|~z)

p
(

~y|~z¬{d,i}
) =

∏Jd
j=1

n
yd,j
d

Id
=
∏K

k=1

(

nk
d

Id

)mk
d

(Eq. B.5)

During sampling, instead of having nk
d, we have nk

d,¬i for each particular topic

k. Hence, when computing p
(

zd,i = k|~z¬{d,i}, ~w, ~y,~t
)

for a given k, we should

assign nk
d := 1 + nk

d,¬i, and keep the counts for all other topics unchanged.

Let P̄ denote the product
∏K

k=1

(

nk
d,¬i

Id

)mk
d

, then at p
(

zd,i = k|~z¬{d,i}, ~w, ~y,~t
)

we have,

∏K

k=1

(

nk
d

Id

)mk
d

= P̄ ×
(

1+nk
d,¬i

nk
d,¬i

)mk
d

(Eq. B.6)
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The term P̄ in Equation Eq. B.6 can omitted in the computation, since it is

constant for all k. We substitute Eq. B.2, Eq. B.3 and Eq. B.6 into Eq. B.1,

then we have Eq. 3.2 shown in Algorithm 1.

B.2 Sampling Topics for Tag Tokens

p
(
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=
p
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~y¬{d,j},~t, ~z, ~w
)

=
p (~z) p (~w|~z) p (~y|~z) p

(

~t|~y
)

p (~z) p (~w|~z) p
(

~y¬{d,j}|~z
)
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)
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p
(
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) ×

p
(
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p
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) (Eq. B.7)

p (~y|~z)

p
(

~y¬{d,j}|~z
) =

p
(

~y¬{d,j}|~z
)

p (yd,j|~z)

p
(

~y¬{d,j}|~z
) = p (yd,j|~zd)

=
n
yd,j
d

Id
(Eq. B.8)
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) (Eq. B.9)

We substitute Eq. B.8 and Eq. B.9 into Eq. B.7, then we have Eq. 3.3 shown

in Algorithm 1.
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