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Testing Heterogeneity in Panel Data Models

with Interactive Fixed Effects∗

Qihui Chen

Singapore Management University

Abstract

This paper proposes a test for the slope homogeneity in large dimensional

panel data models with interactive fixed effects based on a measure of goodness-

of-fit (R2). We first obtain, for each cross-sectional unit, the R2 from the time

series regression of residuals on the constant and observable regressors and

then construct the test statistic R̄2 as an equally weighted average of the cross-

sectional R2’s. R̄2 is close to 0 under the null hypothesis of homogenous slopes

and deviates away from 0 otherwise. We show that after being appropriately

centered and scaled, R̄2 is asymptotically normally distributed under the null

and a sequence of Pitman local alternatives. To improve the finite sample

performance of the test, we also propose a bootstrap procedure to obtain the

bootstrap p-values and justify its validity. Monte Carlo simulations suggest

that the test has correct size and satisfactory power, and is superior to a

recent test proposed by Pesaran and Yamagata (2008) that neglects cross-

sectional dependence in panel data models. We apply our tests to study the

OECD economic growth model and the Fama-French three factor model for

asset returns.

∗E-mail: qihui.chen.2009@me.smu.edu.sg; Phone: +65 8260 8622.
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1 Introduction

Recently large dimensional panel data models with interactive fixed effects have

attracted huge attention in econometrics. Pesaran (2006) proposed a number

of estimators [referred to as common correlated effects (CCE) estimators] for

heterogeneous panels and derived their asymptotic normal distributions under

fairly general conditions. Bai (2009a) studied identification, consistency, and

the limiting distribution of the principal component analysis (PCA) estimators

and demonstrated that they are
√
NT consistent, where N and T refer to the

individual and time series dimensions, respectively. Kapetanios and Pesaran

(2007) proposed a factor-augmented estimator by augmenting a linear panel

data model with estimated common factors to account for cross sectional de-

pendence and studied its finite sample properties via Monte Carlo simulations.

Greenaway-McGrevy, Han and Sul (2010) formally established the asymptotic

distribution of this estimator and provided specific conditions under which the

estimated factors can be used in place of the latent factors in the regression.

Moon and Weidner (2010b) considered dynamic linear panel regression models

with interactive fixed effects, and found that there are two sources of asymp-

totic biases for the Gaussian quasi maximum likelihood estimator (QMLE):

one is due to correlation or heteroscedasticity of the idiosyncratic error term

and the other is the presence of predetermined regressor. In addition, Moon

and Weidner (2010a) discussed the validity of QMLE method for panel data

models when the number of factors as interactive fixed effects is unknown

and has to be chosen according to certain information criteria. Pesaran and

Tosetti (2011) considered estimation of panel data models with a multifactor

error structure and spatial error correlations and found that Pesaran’s CCE

procedure continues to yield consistent and asymptotically normal estimates

of the slope coeffi cients.

Panel data models with interactive fixed effects are useful modelling par-

adigm. In macroeconomics, incorporating interactive effects can account for
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the heterogenous impact of unobservable common shocks, while the regressors

can be such input as labor and capital. In finance, combination of unobserved

factors and observed covariates can explain the excess returns of assets. In mi-

croeconomics, panel data models with interactive fixed effects can incorporate

unmeasured skills or unobservable characteristics to study the individual wage

rate. Nevertheless, in most empirical studies it is commonly assumed that the

coeffi cients of the observed regressors are homogeneous. In fact, most of the lit-

erature reviewed above is developed for homogeneous panel data models with

interactive fixed effects. The only exceptions are Pesaran (2006), Kapetan-

ios and Pesaran (2007) and Pesaran and Tosetti (2011) that are applicable to

heterogeneous panels but typically require certain rank conditions to satisfy

in order to estimate individual slopes. Su and Jin (2010) extended Pesaran

(2006) to nonparametric regression with a multi-factor error structure.

Slope homogeneity assumption greatly simplifies the estimation and infer-

ence process and the proposed estimator can be effi cient if there is no hetero-

geneity in individual slopes. Nevertheless, if the slope homogeneity assumption

is not true, estimates based on panel data models with homogeneous slopes

can be inconsistent and lead to misleading statistical inference, see, for exam-

ple, Hsiao (2003, Chapter 6) and Baltagi, Bresson and Pirotte (2008). So it is

necessary and prudent to test for slope homogeneity before imposing it.

There are many studies on testing for slope homogeneity in the panel data

literature, see Pesaran, Smith and Im (1996), Phillips and Sul (2003), Pe-

saran and Yamagata (2008, PY hereafter), Blomquist (2010), Lin (2010), Jin

and Su (2011), among others. Pesaran, Smith and Im (1996) proposed a

Hausman-type test by comparing the standard fixed effects estimator with the

mean group estimator. Phillips and Sul (2003) also proposed a Hausman-type

test for slope homogeneity for AR(1) panel data models in the presence of

cross-sectional dependence. Recently, PY developed a standardized version of

Swamy’s test for the slope homogeneity in large panel data model with fixed
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effects and unconditional heteroscedasticity, and Blomquist (2010) proposed a

bootstrap version of PY’s Swamy test that is claimed to be robust to general

forms of cross-sectional dependence and serial correlation. Lin (2010) proposed

a test for slope homogeneity in a linear panel data models with fixed effects

and conditional heteroscedasticity. Jin and Su (2011) proposed a nonparamet-

ric test for poolability in nonparametric regression models with a multi-factor

error structure. Nevertheless, to the best of our knowledge, there is no avail-

able test of slope homogeneity for large dimensional panel data models with

interactive fixed effects.

In this paper we consider a test of slope homogeneity in large dimensional

panel data models with interactive fixed effects based on a measure of goodness-

of-fit (R2). Under the null hypothesis of homogenous slopes, the residuals from

Bai’s (2009a) PCA estimation should not contain any useful information about

the observable regressors. This motivates us to construct a residual-based

test. We first estimate a restricted model by imposing slope homogeneity and

adopting the Bai’s estimation procedure. Then we obtain the cross-sectional

R2’s by running the time series regression of residuals on the constant and

observable regressors for each cross-sectional unit. Our test statistic R̄2 is

constructed as a simple average of these cross-sectional R2’s. Under the null,

R̄2 should be close to 0 and deviates away from 0 otherwise. We show that after

being appropriately standardized, R̄2 is asymptotically normally distributed

under the null hypothesis and a sequence of Pitman local alternatives. We

also propose a bootstrap method to obtain the bootstrap p-values to improve

the finite sample performance of our test and justify its asymptotic validity.

In the Monte Carlo experiments, we show that the test has correct size and

satisfactory power. We also compare it with a recent test proposed by PY

that neglects cross-sectional dependence in panel data models and Blomquist’s

(2010) bootstrap version of PY’s test. Simulations suggest that the latter test,

with or without bootstrapping, has huge size distortions in the presence of

3



cross-sectional dependence. We apply our test to the OECD economic growth

data and reject the null of homogeneous slopes. We also apply our test to

the Fama-French three factor model to assess how well these three factors can

approximate the latent factors in that model.

To sum up, our R2-based test has several advantages. First, the intuition

as detailed above is clear. Like many other goodness-of-fit types of tests in the

literature, it is a consistent test and has power in detecting local alternatives

converging to the null at the usual N−1/4T−1/2 rate which is also obtained

by PY. Second, unlike PY’s test that requires estimation under both the null

and alternative, we only require estimation of the panel data models under

the null hypothesis. This is extremely important because Bai’s (2009a) PCA

estimation is only applicable to homogeneous large dimensional panels with

interactive fixed effects. The estimation of the model under the alternative

would require us to assume certain rank conditions that are not needed here in

order to apply Pesaran’s (2006) CCE procedure. Third, the local asymptotic

behavior of our test statistic is tractable. In order to analyze the asymptotic

local power property of our test, we need to extend Bai’s (2009a) asymptotic

distribution theory from the case of homogenous slopes to the case where

local deviations from the null are allowed [see (3.2) below]. As demonstrated

in the appendix, this extension is nontrivial. The local deviations affect the

asymptotic behavior of the estimator of the dominant component, i.e., β in

(3.2), in the heterogenous slope parameters and the asymptotic mean of our

test statistic in a fairly complicated but tractable manner. Fourth, due to the

measurement-unit-free and self-normalizing nature of R2, our non-normalized

test statistic has transparent asymptotic bias and variance formulae, which

can be easily estimated.

The remainder of the paper is organized as follows. In Section 2, we in-

troduce the hypotheses and the test statistic. In Section 3 we derive the as-

ymptotic distributions of our test statistic under both the null and a sequence
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of local Pitman alternatives, and propose a bootstrap procedure to obtain the

p-values for our test. We also remark on the other potential applications and

extensions of our test. In Section 4, we conduct Monte Carlo experiments to

evaluate the finite sample performance of our test and apply it to the OECD

economic growth data and the Fama-French three factor model and data. Sec-

tion 5 concludes. All proofs are relegated to the Appendix.

To proceed, we adopt the following notation. For an m × n matrix A, we

use ||A|| to denote its Frobenius norm, i.e. [tr(A′A)]1/2. Let PA ≡ A(A′A)−1A′

and MA ≡ Im − A(A′A)−1A′ where ≡ means “is defined as”. When A is

a symmetric matrix, we use λmax(A) and λmin(A) respectively to denote its

maximum and minimum eigenvalues and A > 0 to denote that A is positive

definite. Let iT and Im denote a T × 1 vector of ones and an m ×m identity

matrix, respectively. Let L ≡ 1
T
iT i
′
T . We use p.s.d. to abbreviate positive

semidefinite. Moreover, the operator
p−→ denotes convergence in probability,

and d−→ convergence in distribution. We use (N, T )→∞ to denote the joint

convergence of N and T when N and T pass to the infinity simultaneously.

2 Basic Framework

In this section, we first specify the null and alternative hypotheses, then intro-

duce the estimation of the restricted model under the null, and finally propose

a test statistic based on the average of goodness-of-fit measures.

2.1 The model and hypotheses

Consider the heterogeneous panel data model with interactive fixed effects

Yit = β
′

iXit + λ
′

iFt + εit, i = 1, ..., N, t = 1, . . . , T, (2.1)

where Xit is a K×1 vector of strictly exogenous regressors, βi is a K×1 vector

of unknown slope coeffi cients, λi is a r×1 vector of factor loadings, and Ft is a
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r× 1 vector of common factors, εit is idiosyncratic error, and βi, λi, Ft and εit

are unobserved. Here {λi} and {Ft} may be potentially correlated with {Xit} .

For simplicity, we will assume that {εit} satisfies certain martingale difference

condition along time dimension and independent across individuals.

The null hypothesis of interest is

H0: βi = β for some β ∈ RK ∀i = 1, . . . , N. (2.2)

The alternative hypothesis is

H1: βi 6= βj for some i 6= j. (2.3)

To construct a residual-based test for the above null hypothesis, we need

to estimate the model under the null hypothesis and obtain the residuals from

the regression. Then for each cross sectional unit i, we run the linear regression

of the residuals on a constant and Xit, and calculate R2. Our test statistic is

constructed by averaging these cross sectional R2’s.

2.2 Estimation of the restricted model

To proceed, we introduce the following notation:

Yi ≡ (Yi1, Yi2, . . . , YiT )′ , Xi ≡ (Xi1, Xi2, . . . , XiT )′ , εi ≡ (εi1, εi2, . . . , εiT )′ ,

F ≡ (F1, F2, . . . , FT )′ , and Λ ≡ (λ1, λ2, . . . , λN)′.

Then under H0 we can write the model (2.1) in vector form as

Yi = Xiβ + Fλi + εi, i = 1, ..., N. (2.4)

For the restricted model in (2.4), Bai (2009a) studied the PCA estimators

of the homogeneous slope β, the factor loadings Λ, and the common factors
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F , which are given by the solutions of the following set of nonlinear equations

β̂ =

(
N∑
i=1

X ′iMF̂Xi

)−1 N∑
i=1

X
′

iMF̂Yi, (2.5)

[
1

NT

N∑
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)′

]
F̂ = F̂ VNT , (2.6)

and

Λ̂′ =
1

T
[F̂ ′(Y1 −X1β̂), . . . , F̂ ′(YN −XN β̂)], (2.7)

where VNT is a diagonal matrix that consists of the r largest eigenvalues of the

bracketed matrix in (2.6), arranged in decreasing order. To obtain the above

results, we need to impose some identification restrictions:

F ′F/T = Ir and Λ′Λ = diagonal.

Bai (2009a) suggested a robust iteration scheme to estimate (β, F,Λ). The

procedure goes as follows:

1. Obtain an initial estimator (F̂ , Λ̂) of (F,Λ).

2. Given F̂ and Λ̂, compute

β̂(F̂ , Λ̂) =

(
N∑
i=1

X ′iXi

)−1 N∑
i=1

X
′

i(Yi − F̂ λ̂i).

3. Given β̂, compute F̂ according to (2.6) (multiplied by
√
T due to the

restriction that F ′F/T = Ir) and calculate Λ̂ using formula (2.7).

4. Repeat steps 2 and 3 until (β̂, F̂ , Λ̂) satisfies certain convergence criterion.

After obtaining (β̂, F̂ , Λ̂), we can estimate εi by ε̂i = Yi − Xiβ̂ − F̂ λ̂i

under the null, where F̂ = (F̂1, F̂2, . . . F̂T )′, Λ̂ = (λ̂1, λ̂2, . . . , λ̂N)′ and ε̂i =
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(ε̂i1, ε̂i2, . . . , ε̂iT )′. Then it is easy to verify that

ε̂i = MF̂εi +MF̂Xi(β − β̂) +MF̂Fλi +MF̂Xi(βi − β) (2.8)

by noting that F̂ λ̂i = PF̂ (Yi −Xiβ̂) according to (2.7).

2.3 A R2-based test for slope homogeneity

We consider the time series linear regression model

ε̂it = δi + φ′iXit + ηit, t = 1, ..., T,

for each cross sectional unit i = 1, . . . , N, where ηit is the error term. Under

the null hypothesis of homogeneous slopes, we expect φi = 0 for all i, because

ε̂it = (β − β̂)′Xit + λ
′

iFt − λ̂
′

iF̂t + εit

where β̂ − β p−→ 0 and λ
′

iFt − λ̂
′

iF̂t
p−→ 0 under H0. Thus the goodness-of-fit

measure R2
i for the above regression should be close to 0. Under the alternative

hypothesis,

ε̂it = (βi − β̂)′Xit + λ
′

iFt − λ̂
′

iF̂t + εit.

In general, βi − β̂ does not converge to 0 in probability and hence R2
i should

deviate from 0. This enlightens us to propose a test based on an average of

cross sectional R2
i .

Under the null, we first estimate the restricted panel data model with

interactive fixed effects

Yi = Xiβ + Fλi + εi, i = 1, ..., N.

Then we run the individual time series regression of ε̂it on Z ′it = (1, X ′it) for

8



i = 1, . . . , N , i.e.,

ε̂i = Ziγi + ηi,

where γi ≡ (δi, φ
′
i)
′, Zi ≡ (iT , Xi), and ηi ≡ (ηi1, ηi2, . . . , ηiT )′. For each cross

sectional unit i, we calculate

R2
i ≡

ESSi
TSSi

≡

T∑
t=1

(Z ′itγ̂i − ε̂i)2

T∑
t=1

(ε̂it − ε̂i)2

=
ε̂′i(PZi − L)ε̂i
ε̂′iM0ε̂i

(2.9)

where ESSi ≡
∑T

t=1(Z ′itγ̂i − ε̂i)2, TSSi ≡
∑T

t=1(ε̂it − ε̂i)2, ε̂i ≡ T−1
∑T

t=1 ε̂it,

and M0 ≡ IT −L.We define the average goodness-of-fit for all individual time

series regressions as

R̄2
NT =

1

N

N∑
i=1

R2
i (2.10)

which is used to test for slope homogeneity in the panel data model with

interactive fixed effects. Clearly, 0 ≤ R̄2
NT ≤ 1 by construction. It is close

to 0 under H0 because {ε̂it} contains no useful information about {Xit} and

deviates from 0 otherwise. We will show that after being appropriately centered

and scaled, R̄2
NT is asymptotically normally distributed under the null and a

sequence of Pitman local alternatives.

Alternatively, we can consider estimating the model (2.1) under the null

and alternative hypotheses respectively, and comparing the restricted and un-

restricted estimators of βi in the spirit of Hausman test. Nevertheless, Bai’s

(2009) iterative PCA method is not applicable to heterogenous panel data

models and we have to resort to Pesaran’s (2006) CCE method to obtain the

unrestricted estimators of βi, i = 1, ..., N. The latter method would require

that certain rank conditions must be satisfied, which are not needed in this

paper.

9



3 Asymptotic Distributions

In this section we first present a set of assumptions that are necessary for

asymptotic analyses, and then study the asymptotic distributions of R̄2
NT under

the null hypothesis and a sequence of Pitman local alternatives. We also

propose a bootstrap procedure to obtain the bootstrap p-values for our test.

3.1 Assumptions

Let F ≡ {F : F ′F/T = Ir}. Let Ft (εi) denote the σ-field generated by

{εit, ..., εi1}. LetM denote a generic positive constant whose value may change

across lines. We make the following assumptions.

Assumption A1. (i) E||Xit||4 ≤M and inf
F∈F

D(F ) > 0, where

D(F ) =
1

NT

N∑
i=1

X ′iMFXi −
1

T

[
1

N2

N∑
i=1

N∑
k=1

X ′iMFXkaik

]
(3.1)

and aik = λ′i(Λ
′Λ/N)−1λk.

(ii) E||Ft||4 ≤ M and T−1
∑T

t=1 FtF
′
t

p−→ ΣF > 0 for some r × r matrix

ΣF as T →∞.

(iii) E||λi||4 ≤ M and Λ′Λ/N
p−→ ΣΛ > 0 for some r × r matrix ΣΛ as

N →∞.

(iv) Let Zi ≡ (Zi1, ..., ZiT )′ where Zit ≡ (1, X ′it)
′ . T−1Z ′iZi

p−→ ΣZi > 0 for

some (K + 1)× (K + 1) matrix ΣZi as T → ∞. min1≤i≤N λmin (ΣZi) ≥ cZ for

some cZ > 0.

(v) Let ς it ≡ ||Xit||2−E||Xit||2. 1
N

∑N
i=1

∑N
j=1E (ς itςjt) ≤M and 1

T

∑T
t=1

∑T
s=1

E (ς itς is) ≤M.

(vi) Let ζ i ≡ ||λi||2−E||λi||2. There exists an even number ϑ ≥ 2 such that

E||ζ i||ϑ ≤M, and 1
Nϑ/2

∑
1≤i1,i2,...,iϑ≤N E

(
ζ i1ζ i2 ...ζ iϑ

)
≤M.

Assumption A2. (i) εit is independent of Xjs, λj, and Fs for all i, t, j

and s. E(ε8
it) ≤M.
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(ii) εi, i = 1, ..., N, are mutually independent of each other.

Assumption A3. (i) For each i, {εit,Ft (εi)} is a martingale difference

sequence (m.d.s.) such that E [εit|Ft−1 (εi)] = 0 a.s.

(ii) E [ε2
it|Ft−1 (εi)] = σ2

i a.s. such that cσ ≤ min1≤i≤N σ
2
i ≤ max1≤i≤N σ

2
i ≤

cσ for some cσ, cσ ∈ (0,∞) .

(iii) Let ξit ≡ ε2
it−σ2

i . E |ξit|
ϑ ≤M and 1

NTϑ/2

∑N
i=1

∑
1≤t1,t2,...,tϑ≤T E(ξit1ξit2

...ξitϑ) ≤M, where ϑ is given in A1(vi).

Assumption A4. (i) As (N, T )→∞, N/T 2 → 0, T/N3/2 → 0.

(ii) As (N, T )→∞, N1/2+2/ϑ/T → 0.

A1(i), A1(ii)-(iii), and A2(i) are identical to Assumptions A, B, and D

in Bai (2009a), respectively. They are required for identification and consis-

tent estimation of the parameters in the model. As Moon and Meidner (2010b)

show, we can relax A2(i) to allow lagged dependent variables as regressors, but

the proof strategy will be totally different from that in Bai (2009a). A1(iv)-

(vi) are new and needed to establish the asymptotic distribution of our test

statistic. A1(iv) implies that the minimum eigenvalue of T−1Z ′iZi is also uni-

formly bounded below from 0 with probability approaching 1 as (N, T )→∞.

A1(v) and (vi) impose restrictions on the dependence among {Xit} and {λi}.

In addition, A1(vi) strengthens the moment conditions of λi in A1(iii).

A2(ii) rules out cross sectional dependence between εi’s and A3(i) rules

out serial dependence among {εit, t ≥ 1} . It is worth mentioning that either

assumption can be relaxed and neither one causes much further technical dif-

ficulty in establishing the asymptotic normal distribution of our test statistic

under the null provided the other one is assumed. Nevertheless, given the com-

plicated form of the dominant term in our test statistic, it seems extremely

diffi cult to relax both assumptions simultaneously unless one wants to impose

that certain version of central limit theorem (CLT) holds for a complicated

U -statistic as in Bai (2009a).1 In this paper, we impose both assumptions for

1Without using either A2(ii) or A3(i), Bai (2009a) assumes instead that a high level CLT
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the simplicity of estimating the asymptotic variance of our test statistic. See

Remark 2 after Theorem 3.1.2

A3(ii) imposes conditional homoskedasticity along the time dimension but

not along the cross sectional dimension. It can be relaxed at the cost of further

complication in the derivation of our distributional theory. A3(iii) imposes

some moment conditions that are needed to verify the martingale CLT and to

prove the consistency of the estimates for the asymptotic bias and variance for

our test statistic.

A4 imposes some conditions on the rate at which N and T pass to the

infinity, and the interaction of (N, T ) with ϑ. A4(i) is also assumed in previous

literature on panel data models with interactive fixed effects [e.g., Bai (2009a),

Theorem 4]. A4(ii) is new and will be needed to establish the consistency of

the estimate of the asymptotic variance of our test statistic. Under A4(ii),

N/T 2 → 0 in A4(i) becomes redundant.

3.2 Asymptotic null distribution

Let hi,ts denote the (t, s)th element of Hi ≡MF (PZi − L)MF . Define

BNT ≡ 1√
N

N∑
i=1

T∑
t=1

ε2
ithi,tt

T−1TSSi
,

VNT ≡ 2

N

N∑
i=1

∑
1≤t6=s≤T

h2
i,ts,

JNT ≡
√
NTR̄2

NT −BNT .

The following theorem states the asymptotic null distribution of the infeasible

statistic JNT .

holds for some U -statistic under some moment conditions. Nevertheless, the U -statistic that
drives the asymptotic normal distribution of our test statistic is much more complicated than
that studied by Bai (2009a). Moreover, even though we can assume ad hoc that some CLT
holds for our U -statistic, we find that it seems impossible to estimate the asymptotic variance
consistently under the null without either A2(ii) or A3(i).

2Assumptions A2(i)-(ii) are also implied by Assumptions 1-3 in Pesaran (2006).
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Theorem 3.1 Suppose Assumptions A1-A4 hold. Then under H0,

JNT
d−→ N(0, V0)

where V0 ≡ lim(N,T )→∞ VNT .

Remark 1. The proof of the above theorem is tedious and relegated to

the appendix. The key step in the proof is to show that under H0, JNT =

R1NT,1 + oP (1), where

R1NT,1 =
1√
N

N∑
i=1

σ−2
i

∑
1≤s 6=t≤T

εitεishi,ts.

With this, we can apply the martingale central limit theorem (CLT) to show

that R1NT,1
d−→ N(0, V0) under Assumptions A1-A4. 3 Note that VNT would

be observed if the factor F were observable. In this sense, we can say that JNT

is almost asymptotically pivotal. This is one of the advantages to base a test

on the measure of goodness-of-fit.

Remark 2. As mentioned above, either Assumption A2(ii) or A3(i) can be

relaxed. If we relax A2(ii) to allow for cross sectional dependence among εi, we

can modify the proof of (B.1) in Appendix B and show that R1NT,1 continues

to satisfy the martingale CLT under some auxiliary conditions. Specifically,

we can replace A2(ii) by the following assumption:

Assumption A5. Let ε·t ≡ (ε1t, ..., εNt)
′. Let FN,t (εi, εj) and FN,t (ε) de-

note the σ-field generated by {(εit, εjt) , (εi,t−1, εj,t−1) , ..., (εi1, εj1)} and {ε·t, ε·t−1,

. . . , ε·1}, respectively.

(i) For all (i, j) , E[εit|FN,t−1 (εi, εj)] = 0 a.s.

3Note that hi,ts depends on F and Xi.Without Assumptions A2-A3, we cannot establish
this asymptotic normality result.
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(ii) For all (i, j, k, l) , E[εitεjt|FN,t−1 (ε)] = ωij a.s. andE[εitεjtεktεlt|FN,t−1 (ε)] =

κijkl a.s. Moreover

1

N

∑
1≤i,j≤N

|ωij| ≤M,
1

N2

∑
1≤i,j,k,l≤N

|κijkl| ≤M, and max
1≤i,j≤N

κiijj ≤M.

Then under Assumptions A1, A2(i), A3-A5, we can show that R1NT,1
d−→

N(0, V1), where V1 = lim(N,T )→∞ V1NT , and

V1NT =
4

N

N∑
i=1

N∑
j=1

T∑
t=2

t−1∑
s=1

σ−2
i σ−2

j ω2
ijhi,tshj,ts.

Obviously V1NT = VNT under Assumption A2(ii).

Similarly, if A3(i) is relaxed to allow for some sort of weak dependence

among {εit, t ≥ 1} for each i, then under A2(ii), we can apply the CLT for

independent heterogenous processes to derive the asymptotic null distribution

of our test statistic. In this case, we can replace A3(i) by the following high

level assumption:

Assumption A6. Let ς i,ts ≡ εitεis−E (εitεis) and σ2
i ≡ E (ε2

it) . σ
2
i is uni-

formly bounded and uniformly bounded below from 0. QNT ≡ N−1
∑N

i=1 σ
−8
i∑

1≤t1 6=t2≤T
∑

1≤t3 6=t4≤T
∑

1≤t5 6=t6≤T
∑

1≤t7 6=t8≤T E (ς i,t1t2ς i,t3t4ς i,t5t6ς i,t7t8) hi,t1t2

hi,t3t4hi,t5t6hi,t7t8 = OP (1) .

Noting that each element of hi,ts is OP (T−1), A6 can be satisfied by as-

suming some strong mixing conditions on the process {εit, t ≥ 1} and it en-

sures that the Lindeberg condition holds. Under Assumptions A1, A2, A3(iii),

A4 and A6, we can show that R1NT,1 − B2NT
d−→ N(0, V2), where B2NT =

N−1/2
∑N

i=1 (T−1TSSi)
−1∑

1≤s 6=t≤T E (εitεis)hi,ts is the bias term to be cor-

rected, V2 = lim(N,T )→∞ V2NT , and

V2NT =
1

N

N∑
i=1

∑
1≤s 6=t≤T

∑
1≤r 6=q≤T

σ−4
i Cov (εitεis, εirεiq)hi,tshi,rq.
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Under Assumptions A3(i)-(ii), straightforward calculations show that V2NT =

VNT and B2NT = 0.

To implement the test, we need to estimate the asymptotic variance V1NT

in the presence of cross sectional dependence, and the asymptotic variance

V2NT and the asymptotic bias B2NT in the presence of serial dependence. Un-

fortunately, the estimation of such objects seems to be a daunting task which

is beyond the scope of this paper.4 For this reason, we restrict our attention to

the case where the idiosyncratic error terms εit exhibit neither cross sectional

dependence nor serial dependence. Then we only need consistent estimates of

both BNT and VNT defined above.

We propose to estimate BNT by

B̂NT =
1√
N

N∑
i=1

T∑
t=1

ĥi,tt =
1√
N

N∑
i=1

tr(Ĥi)

and VNT by

V̂NT =
2

N

N∑
i=1

∑
1≤t,s≤T

ĥ2
i,ts =

2

N

N∑
i=1

tr(Ĥ2
i )

where ĥi,ts is the (t, s)th element of Ĥi ≡MF̂ (PZi−L)MF̂ . Then we can define

a feasible test statistic:

J̄NT ≡
(√

NTR̄2
NT − B̂NT

)
/

√
V̂NT .

The following corollary establishes the consistency of B̂NT and V̂NT and the

asymptotic distribution of J̄NT under H0.

Corollary 3.2 Suppose Assumptions A1-A4 hold. Then under H0, B̂NT =

BNT + oP (1) , V̂NT = VNT + oP (1) , and J̄NT
d−→ N(0, 1).

4In a related framework, Kim (2010) considers the estimation of the asymptotic variance-
covariance (VC) of the coeffi cient estimators in linear panel data models that is robust to
both spatial and serial dependence. Nevertheless, the structure of his VC matrix is much
simpler than that of our asymptotic variance here.
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Remark 3. Corollary 3.2 implies that the test statistic J̄NT is asymptot-

ically pivotal. We can compare J̄NT with the one-sided critical value zα, i.e.,

the upper αth percentile from the standard normal distribution, and reject the

null when J̄NT > zα at the asymptotic α significance level.

Remark 4. We obtain the above distributional results despite the fact

that the unobserved factors and factor loadings can only be estimated at slower

rates (N−1/2 for the former and T−1/2 for the latter) than that at which the

homogeneous slope parameter β can be estimated under the null. The slow

convergence rates of these factor and factor loadings estimates do not have

adverse asymptotic effects on the estimation of the bias term BNT , the variance

term VNT , and the asymptotic distribution of J̄NT . Nevertheless, they can play

an important role in finite samples. For this reason, we will also propose a

bootstrap procedure to obtain the bootstrap p-values for the J̄NT test.

3.3 Asymptotic local power property

To examine the asymptotic local power property of our test, we consider the

following sequence of Pitman local alternatives:

H1,NT : βi = β +N−1/4T−1/2δi for i = 1, 2, . . . , N , (3.2)

where the δi’s are K × 1 vectors of fixed constants such that ‖δi‖ < M for all

i and δi 6= δj for some pair i 6= j. Let

Θ0 ≡ plim
(N,T )→∞

1

NT

N∑
i=1

σ−2
i

{
Xiδi −XiD(F )−1 1

NT

N∑
k=1

Π′kXkδk −
1

N

N∑
k=1

aikXkδk

}′
Hi

×
{
Xiδi −XiD(F )−1 1

NT

N∑
k=1

Π′kXkδk −
1

N

N∑
k=1

aikXkδk

}
, (3.3)

where D(F )−1 1
NT

∑N
k=1 Π′kXkδk can be viewed as a weighted average of δk’s,

and 1
N

∑N
k=1 aikXkδk is a weighted average ofXkδk, andΠi ≡MFXi− 1

N

∑N
k=1 aikMFXk.
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Clearly, Θ0 = 0 under the null and is no less than 0 otherwise. See the discus-

sion in Remark 6 below.

In the appendix we show that we can extend the asymptotic analysis of

Bai’s (2009a) PCA estimator to allow for non-homogeneous slopes, but the

extension works only when we consider local deviations from the null hypoth-

esis of homogenous slopes. In particular, we demonstrate that under H1,NT in

(3.2), β̂ − β = OP (N−1/4T−1/2) and the convergence rates of the estimates of

Ft and λi (after certain matrix rotation) are the same as those under H0.With

this and some tedious calculations, we can establish the local power property

of our test.

Theorem 3.3 Suppose Assumptions A1-A4 hold. Then the local power of our

test satisfies

P
(
J̄NT > zα|H1,NT

)
→ 1− Φ

(
zα −Θ0/

√
V0

)

where Φ (·) is the cumulative distribution function (CDF) of the standard nor-

mal distribution.

Remark 5. Theorem 3.3 implies that our test has nontrivial asymptotic

power against the sequence of local alternatives that deviate from the null at

the rateN−1/4T−1/2 provided Θ0 > 0, and the asymptotic local power increases

with the magnitude of Θ0. In this case, as either N or T increases, the power

of our test will increase but it is expected to increase faster as T → ∞ than

as N →∞. The rate N−1/4T−1/2 is the same as that obtained by PY (2008),

indicating that the estimation of factors and factor loadings does not affect the

rate at which our test can detect the local alternatives.

Remark 6. The requirement Θ0 > 0 imposes some restrictions on the de-

gree of slope heterogeneity under the local alternatives, and on the interaction

between the heterogeneity parameters δi, the observed regressors Xi, and the
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unobserved factors F. In terms of degree of slope heterogeneity, it requires that

βi and βj differ from each other for a “large”number of pairs (i, j) with i 6= j.

In particular, it rules out the case where only a finite fixed number of slope

parameters are distinct from a finite number of others (e.g., only β1 is different

from a finite number of others), or the case where the cardinality of the set

{β1, β2, ..., βN} is diverging to infinity as N →∞ but at a rate slower than N.

In terms of interaction between δi, Xi, and F, the expression of Θ0 in (3.3) is

too complicated to analyze. Clearly, the complicated form of Θ0 arises mainly

due to the presence of the unobservable factors (or factor loadings). If F were

observable, as in Bai (2009a), the second term in the expression of D (F ) in

(3.1) and the terms associated with aik in (3.3) and the definition of Πi would

drop. In this case, Θ0 reduces to the probability limit of

1

NT

N∑
i=1

σ−2
i

{
Xiδi −XiD

−1
F

1

NT

N∑
k=1

X ′kMFXkδk

}′
Hi

{
Xiδi −XiD

−1
F

1

NT

N∑
k=1

X ′kMFXkδk

}
,

where DF ≡ 1
NT

N∑
i=1

X ′iMFXi and Xiδi−D−1
F

1
NT

∑N
k=1X

′
kMFXkδk denotes the

residual from the L2 projection of Xiδi on the space spanned by the columns

of MFXi. In the special case where F is absent in the panel data model, then

Θ0 further reduces to the probability limit of

1

NT

N∑
i=1

σ−2
i δ′iX

′
i(PZi − L)Xiδi.

Noting that PZi−L ≥ 0 as it is a projection matrix, now it becomes transparent

that the requirement that the probability limit of the above object is strictly

positive does not seem stringent at all.

Remark 7. Under the global alternative H1, we cannot study the asymp-

totic properties of Bai’s (2009a) PCA estimator because the latter imposes

homogeneity on the slope parameters. For this reason, we cannot study the

consistency of our test against global alternatives. Even so, we conjecture
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that the J̄NT test statistic diverges to infinity for fixed alternatives at the rate

N1/2T as (N, T ) → ∞ provided Θ0 > 0 in (3.3) where δi is now redefined as

βi − β.

3.4 A bootstrap version of the test

As mentioned above, because of the slow convergence rates of the factors and

factor loadings estimates, the asymptotic normal null distribution of our test

statistic may not approximate its finite sample distribution well in practice.

Therefore it is worthwhile to propose a bootstrap procedure to improve the

finite sample performance of our test. Below we propose a fixed-regressor

bootstrap method to obtain the bootstrap p-values for out test. The procedure

goes as follows:

1. Estimate the restricted model in (2.4) and obtain the residuals ε̂it =

Yit− β̂
′
Xit− λ̂

′
iF̂t, where β̂, λ̂i and F̂t are obtained by Bai’s (2009a) PCA

method. Calculate the test statistic J̄NT based on {ε̂it, Xit}.

2. For i = 1, ..., N, obtain the bootstrap error ε∗it randomly from {ε̂i1 −

ε̂i, ε̂i2 − ε̂i, . . . , ε̂iT − ε̂i}. Generate the bootstrap analogue Y ∗it of Yit by

holding (Xit, F̂t) as fixed: Y ∗it = β̂
′
Xit + λ̂

′
iF̂t + ε∗it for i = 1, 2, . . . , N and

t = 1, 2, . . . , T.

3. Given the bootstrap resample {Y ∗it , Xit}, run the restricted model estima-

tion and obtain the bootstrap residuals ε̂∗it = Y ∗it − β̂
∗′
Xit− λ̂

∗′
i F̂
∗
t , where

β̂
∗
, λ̂
∗
i and F̂

∗
t are obtained by Bai’s (2009a) PCA method. Calculate the

test statistic J̄∗NT based on {ε̂
∗
it, Xit}.

4. Repeat steps 2 and 3 forB times and index the bootstrap test statistics as

{J̄∗NT,l}Bl=1. The bootstrap p-value is calculated by p
∗ ≡ B−1

∑B
l=1 1{J̄∗NT,l >

J̄NT}, where 1 {·} is the usual indicator function.
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Remark 8. It is straightforward to implement the above bootstrap proce-

dure. Note that we impose the null hypothesis of homogeneous slopes in Step

2. In the proof of Theorem 3.4 below, we also verify that Assumptions A2

and A3 are satisfied in the bootstrap world. This is important and will greatly

facilitate the proof of the bootstrap’s validity.5

Remark 9. Even though the asymptotic analysis in Bai (2009a) does

not allow predetermined regressor in the model, simulations there indicate

that the slope estimators continue to work well with the inclusion of a lagged

dependent variable as a regressor. In fact, Moon and Weidner (2010b) allow

for lagged dependent variables and demonstrate that in this case the QMLE

estimator of the slope coeffi cient continues to be
√
NT -consistent under some

conditions despite some difference in the bias formula. Below we also consider a

dynamic panel data model in our simulations, where Yit is generated according

to: Yit = ρYi,t−1 + β′Xit + λ′iFt + εit. Despite the presence of Yi,t−1 on the

right hand side of the last equation, it is well known that we can treat it, like

Xit, as a fixed regressor in the bootstrap world. In this case, we generate the

bootstrap analogue of Yit as follows: Y ∗it = ρ̂Yi,t−1 + β̂
′
Xit + λ̂

′
iF̂t + ε∗it.

The following theorem states the main result in this subsection.

Theorem 3.4 Suppose that Assumptions A1-A4 hold. Then J̄∗NT
d→ N (0, 1)

conditionally on the observed sample WNT ≡ {(X1, Y1) , ..., (XN , YN)} .

The above theorem shows that the bootstrap provides an asymptotic valid

approximation to the limit null distribution of J̄NT . This holds as long as we

generate the bootstrap data by imposing the null hypothesis. If the null hy-

pothesis does not hold in the observed sample, then we expect J̄NT to explode

at the rate N1/4T 1/2, which delivers the consistency of the bootstrap-based

test J̄∗NT .

5Kapetanios (2008) considers various resampling scheme for panel data models to account
for either cross-sectional dependence or serial dependence. Neither of them is needed here
under our assumptions on the idiosyncratic error terms.
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3.5 Discussions and extensions

The focus of this paper is to design a test for the slope homogeneity in large

dimensional panel data models with interactive fixed effects. It turns out

that our test statistic J̄NT can be used for other testing purposes after minor

modifications.

3.5.1 Test of model (2.1) against a pure factor model

First, we can test the specification of the model (2.1) against a pure factor

model. Specifically, we can test the null hypothesis

H∗0 : βi = 0K×1 for all i = 1, ..., N,

against the alternative hypothesis

H∗1 : βi 6= 0K×1 for some i = 1, ..., N,

where 0K×1 is a K×1 vector of zeros. Under H∗0, βi is a constant that does not

vary across i and it is identically equal to 0, implying that the regressor Xit

has no explanatory power for Yit. Under H∗1, we may have either heterogeneous

slopes or homogeneous non-zero slopes.

There are various locations where such a test is applicable. Here we focus

on a potential application to the asset returns in finance. With the advance

of the capital asset pricing model (CAPM) and the arbitrary pricing theory

(APT), factor models have become one of the most important tools in modern

finance. The traditional factor model specifies the excess returns of asset i at

time t as

Rit = λ′iFt + ηit

where λi is a r × 1 vector of factor loadings and Ft is a r × 1 vector of la-

tent factors, and ηit is the usual idiosyncratic error term. Even though the
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development of the asset pricing theory can proceed without a complete speci-

fication of how many and what factors are required, empirical testing does not

have this luxury. For this reason, some authors [e.g., Lehmann and Modest

(1988), Connor and Korajzcyk (1998)] use estimated factors to test the asset

pricing theory despite the drawback that the statistically estimated factors do

not have immediate economic interpretation. A more popular approach is to

rely on economic intuition and theory as a guideline to come up with a list of

observed variables/factors Gt to serve as proxies of the unobservable factors

Ft. The most eminent example is the three observable risk factors discussed in

Fama and French (1993, FF hereafter): the market excess return, small minus

big factor, and high minus low factor. Then an appealing question is whether

these observable factors are, in fact, the underlying latent factors. In their

seminal paper Bai and Ng (2006) considered statistics to determine if the ob-

served and latent factors are exactly the same and applied their tests to assess

how well the FF factors and several business cycle indicators can approximate

the latent factors in portfolio and stock returns.

Here we offer an alternative approach by considering the following model

Rit = β′iGt + λ′iFt + εit (3.4)

where Gt denotes a K×1 vector of observable factors and plays the role of Xit

in (2.1). Clearly, we cannot estimate the above model by using either Bai’s

(2009a) PCA method or Pesaran’s (2006) CCE method. Nevertheless, as Bai

(2009b) demonstrates, the above model is identified under the null

H01 : βi = β for all i = 1, ..., N (3.5)

provided 1
T
G′MFG > 0 where G ≡ (G1, G2, ..., GT )′, i.e., there is no multi-

collinearity between G and F ≡ (F1, F2, ..., FT )′. Let Gt,k denote the kth ele-

ment of Gt, k = 1, ..., K. If there exists a r×1 vector αk such that Gt,k = α′kFt
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for all t, we can say that Gt,k is an exact factor. If the kth column of G lies in

the space spanned by the column vectors of F, which is the case when Gt,k is

an exact factor, then we cannot estimate the restricted model under H01. This

motivates us to consider the following null instead

H02 : βi = 0K×1 for all i = 1, ..., N. (3.6)

Intuitively speaking, H02 says that given the r latent factors in Ft, the K

observable risk factors in Gt are redundant in explaining the asset returns in

(3.4). In the case when we reject H02, it means that the r latent factors in

Ft cannot span the space of the K observable factors. Various reasons can

cause the latter to occur. One reason is that the K observable factors are

all relevant but r < K. If this is the case, we should observe the change from

rejectingH02 to failing to reject H02 as we increase r. Another reason is that the

observable factors in Gt are bad proxies for the latent factors. This suggests

the importance of testing H02 against its alternative

H12 : βi 6= 0K×1 for some i = 1, ..., N.

Note that we allow heterogenous factor loadings for the observable factors

under H12.

Our J̄NT test can be used to test H02 against H12 with minor modifications.

Under H02, we have a pure factor model so that both the latent factors Ft

and the factor loadings λi can be estimated, say, by F̂t and λ̂i, respectively,

via the PCA method. Let ε̂it = Rit − λ̂
′
iF̂t. Then we can base our J̄NT test

on the averaging of the cross sectional R2’s by running the time series least

squares linear regression of ε̂it on (1, Gt). It is easy to see that the asymptotic

distribution theory in the above analysis continues to hold in this case.
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3.5.2 Test of the linear functional form in (2.1)

We can also test the correct specification of the functional form in (2.1) by

considering a nonparametric heterogeneous panel data model with interactive

fixed effects

Yit = mi (Xit) + λ
′

iFt + εit, i = 1, ..., N, t = 1, . . . , T, (3.7)

where mi (·) , i = 1, ..., N, are unknown but smooth functions. The null hy-

pothesis is

H(1)
0 : mi (x) = β′ix for all i = 1, ..., N.

Under H(1)
0 and certain rank conditions, we can estimate the heterogeneous

linear panel in (2.1) by Pesaran’s (2006) CCE method, obtain the residuals and

run the time series regression of these residuals on Xit nonparametrically to

construct a test statistic similar to ours based on the nonparametric goodness-

of-fit measure.

Alternatively, we can consider Bai’s canonical model

Yit = β′Xit + λ
′

iFt + εit, i = 1, ..., N, t = 1, . . . , T, (3.8)

and test whether the above linear model is correctly specified. The model

under the alternative is obtained by replacing β′Xit in the above model by

m(Xit), where m (·) is an unknown but smooth function. In this case, we can

obtain the residuals ε̂it from the model (3.8) and run the panel nonparametric

regression of ε̂it on Xit to obtain the nonparametric measure of goodness-of-fit

and propose a test based on such a measure. We leave the details for the future

research.
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4 Monte Carlo Simulations and Applications

In this section, we first conduct a small set of Monte Carlo simulations to

evaluate the finite sample performance of our test and then apply the test to

the OECD real GDP growth data and asset returns data.

4.1 Simulations

4.1.1 Data generating processes (DGP)

Following Bai (2009a), we use the following two DGPs for level study.

DGP 1:

Yit = Xit,1β1 +Xit,2β2 + λ′iFt + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,

where (β1, β2) = (1, 3), λi = (λi1, λi2)′, F = (Ft1, Ft2)′, and the regressors are

generated according to

Xit,1 = µ1 + c1λ
′
iFt + ι′λi + ι′Ft + ηit,1,

Xit,2 = µ2 + c2λ
′
iFt + ι′λi + ι′Ft + ηit,2,

with ι′ = (1, 1). Clearly, the regressors are correlated with λi and Ft. The

variables λij, Ftj, and ηit,j are all i.i.d. N(0, 1), and mutually independent of

each other, and the regression errors εit are i.i.d. N(0, 1) and independent of

λij, Ftj, and ηit,j. We set µ1 = µ2 = c1 = c2 = 1.

DGP 2:

Yit = ρYi,t−1 +Xit,1β1 +Xit,2β2 + λ′iFt + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,

where (ρ, β1, β2) = (0.75, 1, 3), Yi,0 ∼ N(0, 1), Xit,1, Xit,2, λi, Ft and εit are

generated as in DGP 1.

To evaluate the power performance of our test, we consider the following
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two DGPs.

DGP 3:

Yit = Xit,1βi,1 +Xit,2βi,2 + λ′iFt + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,

where βi,1 are i.i.d. N(1, 0.2), βi,2 are i.i.d. N(3, 0.2) and independent of βi,1.

The generation of other variables in this DGP is the same as in DGP 1.

DGP 4:

Yit = ρiYi,t−1 +Xit,1βi,1 +Xit,2βi,2 + λ′iFt + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,

where βi,1, βi,2, Xit,1, Xit,2, λi, Ft, and εit are generated as in DGP 3, and ρi

are i.i.d. U(0.70, 0.75) and independent of all other parameters or variables on

the right hand side of the above the equation.

4.1.2 Test results

We consider two tests of slope homogeneity. The first one is our J̄NT test. The

second one is the test of PY (2008).

PY propose a test of slope homogeneity for large panel data models with

fixed effects. Specifically, they consider testing the null that βi = β for all i in

the following conventional fixed effects panel data model:

Yit = αi + β′iXit + εit, i = 1, ..., N, t = 1, . . . , T. (4.1)

To construct their test statistic, one needs to run both restricted and unre-

stricted regressions. Let

β̂i ≡ (X ′iM0Xi)
−1
X ′iM0Yi,

β̂FE ≡
(∑N

i=1
X ′iM0Xi

)−1∑N

i=1
X ′iM0Yi,

β̃WFE ≡
(∑N

i=1
σ̃−2
i X ′iM0Xi

)−1∑N

i=1
σ̃−2
i X ′iM0Yi,
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where σ̃2
i = (T − 1)−1 (Yi −X ′iβ̂FE)′M0(Yi −X ′iβ̂FE). PY’s test statistic is

∆̃adj =

√
N(T + 1)

T −K − 1

(
N−1S̃ −K√

2K

)
, (4.2)

where

S̃ =
N∑
i=1

(
β̂i − β̃WFE

)′ X ′iM0Xi

σ̃2
i

(
β̂i − β̃WFE

)
. (4.3)

PY (2008) proved that ∆̃adj
d→ N(0, 1) under certain regularity conditions.

We are interested in seeing how this test statistic behaves in the panel data

models with interactive fixed effects. For comparison purpose, we also consider

Blomquist’s (2010) bootstrap version of ∆̃adj, which is claimed to be robust

to general forms of both cross-sectional dependence and serial correlation. His

bootstrap procedure works as follows:

1. Estimate model (4.1) by OLS applied to each i and obtain the residu-

als ε̂it. For each i, calculate the Bartlett-kernel-based estimator of the

autocorrelation-consistent variance, say,

ω̂2
i =

1

T

T∑
t=1

ε̂2
it +

2

T

ki−1∑
j=1

(
1− j

ki

) T∑
t=j+1

ε̂itε̂it−j,

where ki is the bandwidth.

2. Compute the ∆̃ω
adj test statistic as in (4.2) by replacing σ̃

2
i with ω̂

2
i . At

the same time, obtain the residuals in the fixed effects regression for the

restricted model of (4.1) under βi = β. That is, ε̃it = Yit − β̂
′
FEXit − α̂i,

where α̂i = T−1
∑T

t=1(Yit − β̂
′
FEXit). Format ε̃it in a T ×N matrix ε̃.

3. In order to obtain a pseudo panel of errors ε∗, we apply the stationary

bootstrap to ε̃. For t = 1, 2, . . . , T, let ε̃·t ≡ (ε̃1t, ε̃2t, . . . , ε̃Nt)
′, and let

Btl = (ε̃·t, ε̃·t+1, · · · , ε̃·t+l−1)′ be the block of l consecutive estimated er-

rors starting at date t. Sample a sequence of block lengths (say, l1, l2, . . .)

randomly from a geometric distribution with mean l̄ and a sequence of
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i.i.d. random integers (say, I1, I2, . . .) from a discrete uniform distribu-

tion on {1, 2, . . . , T} . Thus the first l1 rows of ε∗ are generated as BI1l1

and the next l2 rows of ε∗ is given by BI1l1 . The procedure goes on until

T rows of ε∗ have been obtained. 6

4. Generate the bootstrap analog of Yit by holding Xit as fixed: Y ∗it =

β̂
′
FEXit + α̂i + ε∗it for i = 1, 2, . . . , N and t = 1, 2, . . . , T, where ε∗it is the

(t,i)th element in the matrix ε∗.

5. Given the bootstrap resample {Y ∗it , Xit}, compute the bootstrap analogue

∆̃ω∗
adj of ∆̃ω

adj as in step 2.

6. Repeat steps 3-5 forB times and index the bootstrap statistics as {∆̃ω∗
adj,l}Bl=1.

Calculate The bootstrap p-value as p∗ ≡ B−1
∑B

l=1 1{∆̃ω∗
adj,l > ∆̃ω

adj}.

We consider N, T = 25, 50, 100. For each combination of N and T, we

consider 1000 simulations for the non-bootstrap version of the test. For the

bootstrap version of the test, we use 500 replications for each scenario and

B = 400 bootstrap resamples for each replication.

Table 1 reports the finite sample rejection frequency of our test and PY’s

test when the nominal levels are 5% and 10%. We first focus on the non-

bootstrap version of the two tests. Table 1 indicates that the levels of both

tests are highly distorted, and the distortion tends to increase as N increases

for fixed T . For the PY test, the distortion also increases as T increases. For

our test, nevertheless, when T is large, the size distortion becomes mild. Now

we investigate the bootstrap version of the two tests. It is clear from Table 1

that the use of Blomquist’s (2010) bootstrap does not help improve the level

behavior of the PY’s test at all, and we should not apply the PY test in the

presence of interactive fixed effects. In contrast, the proposed bootstrap can

annihilate the oversize issue of the non-bootstrap version of our test.

6We choose ki = bc1T 1/3c and l̄ = bc2T 1/3c in the simulations for different choices of c1
and c2, where bAc denotes the integer part of A. We find that the results are qualitatively
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Table 1: Finite sample rejection frequency under the null

Non-bootstrap Bootstrap
Our test PY’s test Our test PY’s test

DGP T N 5% 10% 5% 10% 5% 10% 5% 10%
1 25 25 16.5 24.5 68.7 77.9 5.0 10.2 49.8 69.0

50 18.5 28.9 91.9 95.4 5.0 9.0 65.4 79.8
100 30.3 41.9 99.3 99.6 7.4 10.8 83.4 93.2

50 25 8.9 14.5 98.1 99.2 4.6 9.4 91.8 95.2
50 10.6 16.8 100 100 6.4 11.4 98.6 99.4
100 11.5 18.8 100 100 4.0 7.2 100 100

100 25 7.8 13.4 100 100 5.6 10.6 100 100
50 7.4 13.6 100 100 3.8 10.6 100 100
100 7.0 14.3 100 100 4.0 9.0 100 100

2 25 25 19.1 30.0 52.9 64.9 3.8 10.8 31.0 48.8
50 26.9 41.3 78.7 87.9 6.2 10.0 38.8 59.4
100 45.5 58.2 95.8 98.1 6.6 13.8 51.8 76.0

50 25 11.3 17.7 94.4 96.5 6.0 12.0 79.6 89.4
50 13.9 21.1 99.5 99.9 8.0 12.0 94.2 97.8
100 16.6 26.1 100 100 5.2 10.6 99.8 100

100 25 8.4 13.6 99.9 100 7.4 13.0 99.8 100
50 6.7 12.6 100 100 3.6 8.4 100 100
100 8.9 15.9 100 100 6.0 10.4 100 100

Note: PY refers to Pesaran and Yamagata. The bootstrap version of PY’s test
was studied in Blomquist’s (2010).
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Table 2 reports the finite sample power performance of our test. We sum-

marize some important findings from Table 2. First, the non-bootstrap version

of our test tends to have higher finite sample rejection frequency than the boot-

strap version. This is due to the over-sized issue of the former test. Second,

for large T, the bootstrap version of our test tends to catch up with the non-

bootstrap version of our test in terms of rejection frequency. Third, the finite

sample power behavior of the bootstrap version of our test is quite satisfactory

in both DGPs 3 and 4. As either N or T increases, the power of our test

increases quickly, and it increases faster as T doubles for fixed N than as N

doubles for fixed T.

Table 2: Finite sample rejection frequency under the alternative

Non-bootstrap Bootstrap
DGP 3 DGP 4 DGP 3 DGP 4

T N 5% 10% 5% 10% 5% 10% 5% 10%
25 25 40.7 53.4 54.1 66.6 21.8 32.8 31.0 42.0

50 64.3 76.3 80.4 88.0 33.6 46.6 53.2 66.2
100 87.5 92.3 97.7 98.5 54.2 67.6 78.0 87.0

50 25 60.0 69.2 78.6 85.8 49.2 63.0 69.8 80.6
50 86.0 91.4 96.8 98.6 76.4 86.4 92.8 96.8
100 98.5 99.7 100 100 95.2 98.2 99.0 99.6

100 25 89.4 93.5 98.6 99.0 86.0 92.8 97.6 98.6
50 99.1 99.5 99.9 99.9 98.6 99.0 100 100
100 100 100 100 100 100 100 100 100

4.2 Two applications

4.2.1 An application to the OECD economic growth data

In this subsection we apply our test to the OECD economic growth data which

were analyzed in Su and Zhang (2011) for different modelling strategy. The

data set consists of four economic variables for N = 16 OECD countries, which

similar for c1, c2 = 1, 1.5, and 2. To conserve space, we only report the results for (c1, c2) =
(1, 1) in Table 2 below.
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are Gross domestic product (GDP), Capital stock (K), Labor input (L), and

Human capital (H). The first three are seasonally adjusted quarterly data

from 1975Q4 to 2010Q3 (T = 140), while we use linear interpolation to obtain

the quarterly observations for Human capital as there are only 5-year census

data available.

We consider the following two economic growth models:

Model 1:

∆ lnGDPit = βi,1∆ lnKit + βi,2∆ lnLit + βi,3∆ lnHit + λ′iFt + εit,

Model 2:

∆ lnGDPit = ρi∆ lnGDPit−1+βi,1∆ lnKit+βi,2∆ lnLit+βi,3∆ lnHit+λ
′
iFt+εit,

where Ft is a r×1 vector that represents common shocks such as technological

shocks and financial crises, λi represents the heterogeneous impact of common

shocks on country i, and ∆ lnZit = lnZit − lnZit−1 for Z = GDP, K, L and

H. βi,1, βi,2 and βi,3 are coeffi cients of growth rate of K, L, and H respectively.

In Model 2, ρi represents the impact of previous quarter GDP growth rate on

the current one in country i. We are interested in testing for homogeneous

coeffi cients for the 16 OECD countries.

We consider r = 1, 2, . . . , 8 to capture the interactive fixed effects in the

growth model.7 Table 3 reports the test statistics and the bootstrap p-values

for our test of slope homogeneity. From the table, we see that the bootstrap

p-values for all numbers of factors under investigation are uniformly much

smaller than 0.01. So we can reject the null hypothesis of homogeneous slopes

at the 1% level for both models. The results imply that the slope homogeneity

7Alternatively, one can use the information criteria proposed by Bai and Ng (2002) to
determine the number r of factors. But it is well known that their criteria tend to fail when
the cross sectional unit N is small, which is the case here.
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assumption may not be plausible at all despite the fact it is commonly assumed

in the literature.

Table 3: Test statistics and bootstrap p-values for the application to the OECD
real GDP growth rate data

Model \ r 1 2 3 4 5 6 7 8
Model 1 25.01

(0.0000)
9.22

(0.0000)
7.42

(0.0000)
8.16

(0.0000)
7.74

(0.0000)
6.21

(0.0002)
5.62

(0.0000)
5.05

(0.0005)

Model 2 34.55
(0.0000)

21.32
(0.0000)

17.33
(0.0000)

15.54
(0.0000)

14.33
(0.0000)

12.38
(0.0000)

12.59
(0.0000)

10.57
(0.0000)

Note: The numbers in braces are bootstrap p-values where the bootstrap number
B is 10000.

4.2.2 An application to asset returns

In this application, we test the ability of the FF factors in explaining the excess

asset returns in the financial market. FF (1993) proposed three observable risk

factors to reflect the excess returns of asset, which are Rmt − Rft (the excess

return of market portfolio), SMBt (small market capitalization minus big)

and HMLt (high book-to-market ratio minus low). Various empirical stud-

ies suggest that these three factors are good proxies for the latent factors in

accounting for the excess asset returns. Bai and Ng (2006) developed several

tests that can serve as guides as to which observable variables are close to

the latent factors in asset returns and concluded that the FF factors can ap-

proximate the factors in portfolios and individual stock returns much better

than any single macroeconomic variable even though no decisive conclusion is

reached.

Here we aim to test the effect of the FF factors on the excess returns of

asset when the unobserved factors are added in the model. We consider the
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following model

Rit −Rft = βi,1(Rmt −Rft) + βi,2SMBt + βi,3HMLt + λ′iFt + εit,

i = 1, 2, . . . , N, t = 1, 2, . . . , T, (4.4)

where Rit is the return of asset i at time t, Rft is the risk-free return rate at

time t, Ft is a r× 1 vector of unobservable factor returns and λi represents the

factor loadings. As explained in Section 3.5.1, we are interested in testing the

null hypothesis

H0 : (βi,1, βi,2, βi,3) = (0, 0, 0). (4.5)

If the FF factors are the dominant factors in explaining the excess returns, we

expect to reject the null as long as r ≤ 2 because the FF factors cannot be

spanned by the column vectors of F = (F1, ..., FT )′ in this case. As r increases,

however, we should observe the change from rejecting H0 to failing to reject

H0. On the other hand, if we continuously reject H0 for suffi ciently large r, it

means that the FF factors do not lie on the space spanned by the (estimated)

large number of latent factors, and they cannot be the dominant factors despite

the fact that they have certain power in explaining the excess returns.

We collect monthly data on the excess returns for 100 portfolios and the

three FF factors for the period from 1973m1 to 2008m12 from Professor Ken-

neth French’s web site. A total of 97 portfolios are available for two subsam-

ples. To remove the outliers of the return data, we truncate the data using

95% percentile of original data as upper bound and 5% as lower bound. Like

Bai and Ng (2006), we standardize the data on the observable factors before

the implementation of the test. To minimize the risk of structural change, we

consider testing (4.5) for the model (4.4) for four subsamples listed in Table

4, the first three of which are studied in Bai and Ng (2006). We consider the

number of unobserved factors r = 1, 2, . . . , 10 in the model and construct the

test statistic as detailed at the end of Section 3.5.1. Table 4 reports the test
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statistics and the corresponding bootstrap p-values. Two features are note-

worthy. First, for both the 1988-1996 and 1997-2008 subsamples, our tests

suggest that we always reject the null in (4.5) at the 1% nominal level. This

questions the use of the three FF factors to approximate the latent factors for

these two subsamples. Secondly, for the 1973-1987 subsample we do observe

the phenomenon of change of rejection conclusions: for small values of r (≤ 4),

we reject the null at the 1% nominal level, which means the three FF factors

do not lie in the space spanned by the first four estimated latent factors; but

as long as r > 5, we fail to reject the null at the 10% nominal level so that the

three FF factors do lie in the space spanned by the first six or more estimated

factors. In sum, we conclude that the FF factors surely have certain explana-

tory power in explaining the excess returns, and they do so very well for some

subsamples, but may not do so well for other subsamples.

Table 4: Test statistics and bootstrap p-values for the application to asset
return data

Subsample \ r 1 2 3 4 5 6 7 8 9 10
1983− 1996
(T=168, N=100)

195.80
(0.000)

124.01
(0.000)

40.98
(0.000)

15.47
(0.000)

11.98
(0.000)

10.12
(0.000)

5.28
(0.000)

4.57
(0.000)

3.20
(0.040)

2.76
(0.085)

1973− 1987
(T=180, N=97)

167.29
(0.000)

110.69
(0.000)

8.22
(0.000)

8.22
(0.000)

2.41
(0.049)

2.17
(0.110)

1.64
(0.174)

1.78
(0.170)

1.79
(0.194)

0.43
(0.605)

1988− 1996
(T=108, N=100)

132.99
(0.000)

82.63
(0.000)

38.74
(0.003)

16.93
(0.000)

14.60
(0.000)

14.34
(0.000)

8.66
(0.000)

8.44
(0.000)

6.90
(0.000)

7.00
(0.000)

1997− 2008
(T=144, N=97)

207.72
(0.000)

120.50
(0.000)

37.53
(0.000)

16.04
(0.000)

15.10
(0.000)

14.73
(0.000)

7.71
(0.000)

5.57
(0.001)

6.05
(0.000)

4.66
(0.003)

Note: The numbers in braces are bootstrap p-values where the bootstrap number
B is 1000.

5 Concluding Remarks

In this paper we propose a R2-based test for slope heterogeneity in large di-

mensional panel data models with interactive fixed effects. We first estimate
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the restricted model to obtain the residuals and run the linear regression of the

residuals on a constant and the observable regressors for each cross sectional

unit to obtain N measures of R2. We construct our test statistic by averaging

these individual R2’s, and demonstrate that after being appropriately normal-

ized, it is asymptotically normally distributed under the null hypothesis of

homogeneous slopes. We show that our test has power to detect Pitman local

alternatives at the rate of T−1/2N−1/4 and propose a bootstrap procedure to

obtain the bootstrap p-values. Simulations demonstrate that the bootstrap

version of our test behaves reasonably well in finite samples. The application

to the OECD economic growth data indicates that the commonly imposed

slope homogeneity assumption is rather fragile. The application to the FF

three factor model suggests some other potential applications of our test.

When the null hypothesis of homogeneous slopes is rejected, we may con-

sider applying Pesaran’s (2006) CCE method to obtain consistent estimates

of both individual slopes and their cross-sectional average under certain rank

conditions. If some prior information is available, one can divide the cross sec-

tional units into several groups, test the slope homogeneity within each group,

and estimate the homogenous slopes with each individual group in the case of

failure of rejection. Alternatively, a panel structure model in the spirit of Sun

(2005) may be considered.
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APPENDIX

In this appendix we first prove some technical lemmas and then prove the main results

in Section 3.

A Some Technical Lemmas

Let P̄Zi ≡ PZi − L, δNT ≡ min[
√
N,
√
T ], and γNT ≡ N−1/4T−1/2. By Assumptions A1(i)-

(iii) and the Chebyshev inequality, ||Xi|| = OP (T 1/2) for all i, (NT )−1
∑N
i=1 ||Xi||2 = OP (1),

and ||F || = OP (T 1/2). Note that ||F̂ || = T 1/2
√
r. Let D ≡{X1, ..., XN , F,Λ} . We use ED

and VarD to denote the expectation and variance conditional on D. In addition, we will

frequently use the following decomposition:

MF −MF̂ = PF̂ − PF

= T−1(F̂ − FH)H ′F ′ + T−1(F̂ − FH)(F̂ − FH)′

+T−1FH(F̂ − FH)′ + T−1F [HH ′ −
(
T−1F ′F

)−1
]F ′

≡ a1 + a2 + a3 + a4, say. (A.1)

Lemma A.1 Suppose Assumptions A1-A3 and A4(i) hold. Then under H1,NT we have

(i) T−1/2||F̂ − FH|| = OP (||β̂ − β||) +OP (δ−1
NT ) +OP (γNT ),

(ii) T−1ε′i(F̂ − FH) = T−1/2OP (||β̂ − β||) +OP (δ−2
NT ) +OP (T−1/2γNT ) for all i,

(iii) T−1F ′(F̂ − FH) = OP (||β̂ − β||) +OP (δ−2
NT ) +OP (γNT ),

(iv) T−1Z ′iMF̂ (F−F̂H−1
) = OP (||β̂−β||)+OP (δ−2

NT )−Z ′iMF̂
γNT

NT

∑N
k=1Xkδkλk (Λ′Λ/N)

−1

for all i,

(v) T−1i′TMF̂ (F−F̂H−1
) = OP (||β̂−β||)+OP (δ−2

NT )−i′TMF̂
γNT

NT

∑N
k=1Xkδkλk (Λ′Λ/N)

−1
,

(vi) HH ′ − (T−1F ′F )−1 = OP (||β̂ − β||) +OP (δ−2
NT ) +OP (γNT ),

(vii)
∥∥PF − PF̂∥∥2

= OP (||β̂ − β||) +OP (δ−2
NT ) +OP (γ2

NT ),

(viii) N−1
∑N
i=1

∥∥∥T−1ε′i(F̂ − FH)
∥∥∥2

= T−1OP (||β̂ − β||2) +OP (δ−4
NT ) +OP (T−1γ2

NT ),

(ix) N−1
∑N
i=1 T

−1Z ′iMF̂ (F − F̂H−1
) = OP (||β̂ − β||) +OP (δ−2

NT ) +OP (γNT ) ,

where H ≡ (Λ′Λ/N)(F ′F̂ /T )V −1
NT and VNT is defined after (2.7).
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Proof. (i) Substituting Yi −Xiβ̂ = Xi(β − β̂) + Fλi + εi + γNTXiδi into (2.6) yields

F̂ VNT − F (Λ′Λ/N) (F ′F̂ /T )

=
1

NT

N∑
i=1

Xi(β − β̂)(β − β̂)′X ′iF̂ +
1

NT

N∑
i=1

Xi(β − β̂)λ′iF
′F̂ +

1

NT

N∑
i=1

Xi(β − β̂)ε′iF̂

+
1

NT

N∑
i=1

Fλi(β − β̂)′X ′iF̂ +
1

NT

N∑
i=1

εi(β − β̂)′X ′iF̂ +
1

NT

N∑
i=1

Fλiε
′
iF̂

+
1

NT

N∑
i=1

εiλ
′
iF
′F̂ +

1

NT

N∑
i=1

εiε
′
iF̂+

γNT
NT

N∑
i=1

Xi(β − β̂)δ′iX
′
iF̂

+
γNT
NT

N∑
i=1

Xiδi(β − β̂)′X ′iF̂+
γNT
NT

N∑
i=1

Fλiδ
′
iX
′
iF̂ +

γNT
NT

N∑
i=1

Xiδiλ
′
iF
′F̂

+
γNT
NT

N∑
i=1

εiδ
′
iX
′
iF̂ +

γNT
NT

N∑
i=1

Xiδiε
′
iF̂ +

γ2
NT

NT

N∑
i=1

Xiδiδ
′
iX
′
iF̂

≡ B1 +B2 + · · ·+B15, say. (A.2)

The first eight terms also appear under H0 and can be analyzed as in the proof of Proposition

A.1 in Bai (2009a). In particular, T−1/2 ‖Bl‖ = OP (||β − β̂||) for l = 1, 2, . . . , 5, and

T−1/2 ‖Bl‖ = OP (δ−1
NT ) for l = 6, 7 and 8. For B9, using ||F̂ || =

√
Tr we have

T−1/2 ‖B9‖ ≤
γNT
NT

N∑
i=1

||Xi||2||β − β̂||
√
r ‖δi‖ = OP (γNT ||β − β̂||) = oP (||β − β̂||).

Similarly, T−1/2 ‖B10‖ = oP (||β − β̂||). For B11, we have

T−1/2 ‖B11‖ ≤
γNT
N

N∑
i=1

‖F‖√
T
‖λi‖ ‖δi‖

‖Xi‖√
T

√
r = OP (γNT ).

Similarly, T−1/2 ‖B12‖ = OP (γNT ). For B13, we have

T−1/2 ‖B13‖ ≤ γNT

∥∥∥∥∥ 1

NT

N∑
i=1

εiδ
′
iX
′
i

∥∥∥∥∥√r = OP (N−1/2γNT )

because

E

∥∥∥∥∥ 1

NT

N∑
i=1

εiδ
′
iX
′
i

∥∥∥∥∥
2

=
1

N2T 2
tr

 N∑
i=1

N∑
j=1

E
(
δ′iX

′
iXjδj

)
E
(
ε′jεi

)
=

1

N2

N∑
i=1

E ‖Xiδi‖2

T
σ2
i = O

(
N−1

)
. (A.3)
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Similarly, T−1/2 ‖B14‖ = OP (N−1/2γNT ). For B15, we have

T−1/2 ‖B15‖ ≤
γ2
NT

N

N∑
i=1

‖Xi‖2

T
‖δi‖2

√
r = OP (γ2

NT ).

Following the same arguments as used in the proof of Proposition A.1 in Bai (2009a), we

obtain

T−1/2||F̂ − FH|| = OP (||β − β̂||) + T−1/2 (B6 +B7 +B8)V −1
NT +OP (γNT )

= OP (||β − β̂||) +OP (δ−1
NT ) +OP (γNT ).

(ii) By (A.2), we have the following decomposition:

T−1ε′k(F̂ − FH) = T−1ε′k (B1 +B2 + · · ·+B15)V −1
NT . (A.4)

The first eight terms can be analyzed as in the proof of Lemma A.4(i) in Bai (2009b) to

obtain

T−1ε′k (B1 +B2 + · · ·+B8)V −1
NT = T−1/2OP (||β̂ − β||) +OP (δ−2

NT ).

For the other terms in (A.4), by the proof of (i) we only need to prove that the dominant

terms T−1ε′kB11V
−1
NT and T

−1ε′kB12V
−1
NT are OP (T−1/2γNT ). For T−1ε′kB11V

−1
NT , we have

∥∥T−1ε′kB11V
−1
NT

∥∥ ≤ γNT√
T

‖ε′kF‖√
T

∥∥∥∥∥ 1

NT

N∑
i=1

λiδ
′
iX
′
iF̂

∥∥∥∥∥∥∥V −1
NT

∥∥ = OP (T−1/2γNT )

as one can readily show that 1√
T
‖ε′kF‖ = OP (1) and 1

NT

∑N
i=1 λiδ

′
iX
′
iF̂ = OP (1) . Similarly,

||T−1ε′k ×B12V
−1
NT || = OP (T−1/2γNT ). Thus the result in (ii) follows.

(iii) By (A.2), we have the decomposition

T−1F ′(F̂ − FH) = T−1F ′ (B1 +B2 + · · ·+B15)V −1
NT . (A.5)

The first eight terms can be analyzed as in the proof of Lemma A.3(i) in Bai (2009b) to

obtain

T−1F ′ (B1 +B2 + · · ·+B8)V −1
NT = OP (||β̂ − β||) +OP (δ−2

NT ).

By the proof of the corresponding terms in (i), we can readily show that T−1F ′B9V
−1
NT and

T−1F ′B10V
−1
NT are oP (||β − β̂||), and that T−1F ′B11V

−1
NT and T

−1F ′B12V
−1
NT are OP (γNT ).

41



For T−1F ′B13V
−1
NT , by (A.3) we have

∥∥T−1F ′B13V
−1
NT

∥∥ ≤ γNT ‖F‖√
T

∥∥∥∥∥ 1

NT

N∑
i=1

εiδ
′
iX
′
i

∥∥∥∥∥√r ∥∥V −1
NT

∥∥ = OP (N−1/2γNT ).

Similarly, T−1F ′B13V
−1
NT = OP (N−1/2γNT ). Finally,

∥∥T−1F ′B15V
−1
NT

∥∥ = T−1/2 ‖F‖ T−1/2 ‖B15‖
∥∥V −1

NT

∥∥
= OP (γ2

NT ). Thus the result in (iii) follows.

(iv) The proof of (iv) is similar to that of (iii) by using the decomposition in (A.2) to

write

T−1Z ′iMF̂ (F − F̂H−1) = −T−1Z ′iMF̂ (B1 +B2 + · · ·+B15)G, (A.6)

where G ≡ (F ′F̂ /T )−1(Λ′Λ/N)−1. We can readily show that T−1Z ′iMF̂ (B1 + B2 + · · · +

B8)G = OP (||β̂ − β||) + OP (δ−2
NT ). For the other terms in (A.6), we only study the two

dominant terms that are associated with B11 and B12. By the repeated use of the fact that

|tr (AB)| ≤ λmax (A) tr (B) (A.7)

for any conformable symmetric matrix A and p.s.d. matrix B and the fact that λmax

(
MF̂

)
=

1 (see, e.g., Bernstein, 2005, p. 309), we can show that ||T−1Z ′iMF̂ (F − F̂H−1)|| ≤

T−1||Z ′i(F − F̂H−1)|| ≤ T−1||Zi|| ||F − F̂H−1||. Using this and (i) we can show that

T−1Z ′iMF̂B11G = γNT

[
T−1Z ′iMF̂

(
F − F̂H−1

)][ 1

NT

N∑
k=1

λkδ
′
kX
′
kF̂

]
G = OP (T−1/2γNT ).

In addition, T−1Z ′iMF̂B12G = Z ′iMF̂
γNT

NT

∑N
k=1Xkδkλ

′
k(Λ′Λ/N)−1 = OP (γNT ).

The proof of (v) follows from the proof of (iv) by replacing Zi with iT . (vi) and (vii) can

be proved by following the proof of Lemmas A.7(i)-(ii) in Bai (2009b). The proofs of (viii)

and (ix) follow closely from those of (ii) and (iv), respectively.

Lemma A.2 Suppose Assumptions A1-A3 and A4(i) hold. Then under H1,NT we have

β̂ − β = D(F )−1 γNT

NT

∑N
i=1 Π′iXiδi + oP (γNT ), where Πi = MFXi − 1

N

∑N
k=1 aikMFXk.

Proof. By (2.5) and using Yi = Xiβ + Fλi + εi + γNTXiδi under H1,NT , we have

(
1

NT

N∑
i=1

X ′iMF̂Xi

)
(β̂−β) =

1

NT

N∑
i=1

X ′iMF̂Fλi+
1

NT

N∑
i=1

X ′iMF̂εi+
γNT
NT

N∑
i=1

X ′iMF̂Xiδi.

(A.8)

42



First, by (A.2) the first term on the right hand side of (A.8) can be decomposed as

follows:

1

NT

N∑
i=1

X ′iMF̂Fλi =
1

NT

N∑
i=1

X ′iMF̂ (F − F̂H−1)λi

= − 1

NT

N∑
i=1

X ′iMF̂ (B1 +B2 + · · ·+B15)Gλi

≡ C1 + C2 + · · ·+ C15, say,

where recall G ≡ (F ′F̂ /T )−1(Λ′Λ/N)−1. The first eight terms can be analyzed as in the

proof of Proposition A.2 of Bai (2009a). In particular, Cl = oP (||β̂ − β||) for l = 1, 3, 4, 5,

C2 =
1

T

[
1

N

1

N

N∑
i=1

N∑
k=1

X ′iMF̂Xkaik

]
(β̂ − β),

C6 = oP (||β̂ − β||) + oP (1/
√
NT ) +OP (N−1δ−2

NT ) +N−1/2OP (δ−4
NT ),

C7 = − 1

N2T

N∑
i=1

N∑
k=1

aikX
′
iMF̂ εk, and

C8 = ANT + oP (1/
√
NT ) + oP (β̂ − β) +N−1/2OP (δ−2

NT ),

whereANT ≡ − 1
N2T 2

∑N
i=1

∑N
k=1 σ

2
kX
′
iMF̂ F̂ (F ′F̂ /T )−1(Λ′Λ/N)−1λi. C9 and C10 are bounded

in the Euclidean norm by oP (1)||β̂−β||. For C11, as in the proof of Lemma A.1(iv) we have

C11 = − γNT
N2T 2

N∑
i=1

X ′iMF̂

(
F − F̂H−1

) N∑
j=1

λjδ
′
jX
′
jF̂Gλi = OP (T−1/2γNT ).

For C12, we have

C12 = − γNT
N2T

N∑
i=1

N∑
j=1

X ′iMF̂Xjδjλ
′
j

(
Λ′Λ

N

)−1

λi = − γNT
N2T

N∑
i=1

N∑
k=1

X ′iMF̂Xkδkaik = OP (γNT ).

Moreover, we can show that C13 and C14 are OP (N−1/2γNT ) and C15 is OP (γ2
NT ). Thus,

we obtain

1

NT

N∑
i=1

X ′iMF̂Fλi = C2 + C7 +ANT + oP (||β̂ − β||) + C12 +OP (δ−1
NT γNT ). (A.9)
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The last term in (A.8) is OP (γNT ). Thus, combining (A.8) and (A.9) yields

(
1

NT

N∑
i=1

X ′iMF̂Xi + oP (1)

)
(β̂ − β)− C2 =

1

NT

N∑
i=1

X ′iMF̂εi + C7 +ANT

+oP (||β̂ − β||) + C12 +OP (δ−1
NT γNT )

+
γNT
NT

N∑
i=1

X ′iMF̂Xiδi.

Observing that γ−1
NTANT = oP (1) and γ−1

NT (N−1T−1
∑N
i=1X

′
iMF̂εi + C7) = oP (1), multi-

plying both sides of the above equation by γ−1
NT yields

[D(F̂ ) + oP (1)]γ−1
NT (β̂ − β) =

1

NT

N∑
i=1

[
X ′iMF̂ −

1

N

N∑
k=1

aikX
′
kMF̂

]
Xiδi + oP (1).

It can be shown that D(F̂ ) = D(F ) + oP (1) and

1

NT

N∑
i=1

[
X ′iMF̂ −

1

N

N∑
k=1

aikX
′
kMF̂

]
Xiδi =

1

NT

N∑
i=1

[
X ′iMF −

1

N

N∑
k=1

aikX
′
kMF

]
Xiδi+oP (1).

Thus we have

γ−1
NT (β̂ − β) = D(F )−1 1

NT

N∑
i=1

[
X ′iMF −

1

N

N∑
k=1

aikX
′
kMF

]
Xiδi + oP (1).

That is, β̂−β = D(F )−1 γNT

NT

∑N
i=1 Π′iXiδi+oP (γNT ), whereΠi = MFXi− 1

N

∑N
k=1 aikMFXk

and D(F ) = 1
NT

∑N
i=1 Π′iΠi.

Lemma A.3 Suppose Assumptions A1-A3 and A4(i) hold. Then under H1,NT we have

(i) Γ1NT ≡ N−1/2
∑N
i=1 σ

−2
i ε′i(MF̂ −MF )P̄Zi(MF̂ −MF )εi = oP (1),

(ii) Γ2NT ≡
∥∥∥N−1/2

∑N
i=1 σ

−2
i λiε

′
iMF P̄Zi

∥∥∥ = OP (1),

(iii) Γ3NT ≡
∥∥∥N−1/2

∑N
i=1 σ

−2
i εiε

′
iMF P̄Zi

∥∥∥ = OP (
√
N + T ),

(iv) Γ4NT ≡
∥∥∥N−1/2

∑N
i=1 σ

−2
i F ′εiε

′
iMF P̄Zi

∥∥∥ = OP (
√
N + T ),

(v) Γ5NT ≡ N−1/2
∑N
i=1 σ

−2
i ε′iMF P̄ZiMF (F − F̂H−1)λi = oP (1),

(vi) Γ6NT ≡ N−1/2
∑N
j=1 σ

−2
i ε′iMF P̄ZiT

−1FH(F̂ − FH)′εi = oP (1).

Proof. (i) Noting that Γ1NT ≤ c−1
σ Γ̄1NT where Γ̄1NT = N−1/2

∑N
i=1 ε

′
i(MF̂−MF )P̄Zi(MF̂−

MF )εi, we prove (i) by showing that Γ̄1NT = oP (1). Using (A.1), we can decompose Γ̄1NT

as follows

Γ̄1NT =
1√
N

N∑
i=1

ε′i(a1 + a2 + a3 + a4)′P̄Zi(a1 + a2 + a3 + a4)εi

= Γ̄1NT,1 + Γ̄1NT,2 + · · ·+ Γ̄1NT,10,
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where

Γ̄1NT,1 ≡ 1√
N

N∑
i=1

ε′ia
′
1P̄Zia1εi, Γ̄1NT,6 ≡ 2√

N

N∑
i=1

ε′ia
′
1P̄Zia3εi,

Γ̄1NT,2 ≡ 1√
N

N∑
i=1

ε′ia
′
2P̄Zia2εi, Γ̄1NT,7 ≡ 2√

N

N∑
i=1

ε′ia
′
1P̄Zia4εi,

Γ̄1NT,3 ≡ 1√
N

N∑
i=1

ε′ia
′
3P̄Zia3εi, Γ̄1NT,8 ≡ 2√

N

N∑
i=1

ε′ia
′
2P̄Zia3εi,

Γ̄1NT,4 ≡ 1√
N

N∑
i=1

ε′ia
′
4P̄Zia4εi, Γ̄1NT,9 ≡ 2√

N

N∑
i=1

ε′ia
′
2P̄Zia4εi,

Γ̄1NT,5 ≡ 2√
N

N∑
i=1

ε′ia
′
1P̄Zia2εi, Γ̄1NT,10 ≡ 2√

N

N∑
i=1

ε′ia
′
3P̄Zia4εi.

We first consider Γ̄1NT,1. Noting that P̄Zi = PZi − L is a projection matrix, λmax(P̄Zi) = 1

and

Γ̄1NT,1 =
1√
N

N∑
i=1

(
T−1(F̂ − FH)H ′F ′εi

)′
P̄ZiT

−1(F̂ − FH)H ′F ′εi

≤ 1√
N

N∑
i=1

λmax(P̄Zi)||T−1(F̂ − FH)H ′F ′εi||2

≤ ||F̂ − FH||2||H||2 1

T 2
√
N

N∑
i=1

||F ′εi||2

= OP (max[T/N, 1])OP (N1/2T−1) = oP (1),

by Lemma A.1 (i), Assumption A4(i), and the fact that
∑N
i=1E||F ′εi||2 = O (NT ) under

Assumptions A1(ii) and A2. For Γ̄1NT,2, using Lemmas A.1(i) and (viii), Lemma A.2 and

Assumption A4(i) we have

Γ̄1NT,2 =
1√
N

N∑
i=1

[
T−1(F̂ − FH)(F̂ − FH)′εi

]′
P̄ZiT

−1(F̂ − FH)(F̂ − FH)′εi

≤ 1√
N

N∑
i=1

λmax(P̄Zi)||T−1(F̂ − FH)(F̂ − FH)′εi||2

≤
√
N ||F̂ − FH||2

[
1

N

N∑
i=1

||T−1(F̂ − FH)′εi||2
]

=
√
NOP (max[T/N, 1])OP (max[N−2, T−2]) = oP (1).

Similarly,

Γ̄1NT,3 =
1√
N

N∑
i=1

[
T−1FH(F̂ − FH)′εi

]′
P̄ZiT

−1FH(F̂ − FH)′εi

≤ 1√
N

N∑
i=1

λmax(P̄Zi)||T−1FH(F̂ − FH)′εi||2

≤
√
N ||FH||2

[
1

N

N∑
i=1

||T−1(F̂ − FH)′εi||2
]

=
√
NOP (T )OP (max[N−2, T−2]) = oP (1).
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For Γ̄1NT,4, using Lemma A.1 (vi) and A.2 and Assumption A4(i) we have

Γ̄1NT,4 =
1√
N

N∑
i=1

{
T−1F

[
HH ′ −

(
T−1F ′F

)−1
]
F ′εi

}′
P̄Zi

{
T−1F

[
HH ′ −

(
T−1F ′F

)−1
]
F ′εi

}
≤ 1√

N

N∑
i=1

λmax(P̄Zi)
∥∥∥T−1F

[
HH ′ −

(
T−1F ′F

)−1
]
F ′εi

∥∥∥2

≤ N1/2

(
1

T
||F ||2

)[∥∥∥HH ′ − (T−1F ′F
)−1
∥∥∥2
](

1

NT

N∑
i=1

||F ′εi||2
)

= N1/2OP (1)OP (N−1/2T−1)OP (1) = oP (1).

By the above results and the Cauchy-Schwarz inequality, Γ̄1NT,l = oP (1) for l = 5, 6, ..., 10.

It follows that Γ̄1NT = oP (1).

(ii) Observe that ED(N−1/2
∑N
i=1 σ

−2
i λiε

′
iMF P̄Zi) = 0, where recall that ED denotes

expectation conditional on D ≡{X1, ..., XN , F,Λ} . By the repeated use of the fact in (A.7)

and the fact that λmax (MF ) = 1, we have

ED
(
Γ2

2NT

)
=

1

N
tr

 N∑
i=1

N∑
j=1

σ−2
i σ−2

j λ′iλjMF P̄Zj P̄ZiMFE
(
εiε
′
j

)
=

1

N
tr

(
N∑
i=1

σ−2
i λ′iλiMF P̄ZiMF

)
≤ (K + 1)c−1

σ

1

N

N∑
i=1

‖λi‖2 = OP (1) .

Therefore Γ2NT = OP (1) by the conditional Chebyshev inequality.

(iii) Noting that E(εiε
′
iεjε

′
j) = $ijIT where $ij = (T − 1)ω2

ij + E(ε2
itε

2
jt) and ωij =

E (εitεjt) = σ2
i 1 {i = j} , we have by arguments analogous to those used in the study of

Γ2NT ,

ED
(
Γ2

3NT

)
= tr

 1

N

N∑
j=1

N∑
i=1

σ−2
i σ−2

j MF P̄Zj P̄ZiMFE
(
εiε
′
iεjε

′
j

)
= tr

MF
1

N

N∑
j=1

N∑
i=1

σ−2
i σ−2

j $ijP̄Zj P̄Zi

 ≤ 1

N
c−2
σ

N∑
j=1

N∑
i=1

$ijtr
(
P̄Zj P̄Zi

)
≤ (K + 1)c−2

σ

1

N

N∑
j=1

N∑
i=1

$ij = O (N + T ) .

Thus Γ3NT = OP (
√
N + T ).

(iv) Analogously to the proof of (iii), we can show that Γ4NT = OP (
√
N + T ).
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(v) By the proof of Lemma A.1(i), we have

F − F̂H−1 = − [B1 +B2 + · · ·+B15]G (A.10)

= T 1/2OP (β − β̂) + T 1/2OP (γNT )− [B6 +B7 +B8]G

≡ G1 +G2 −G3, say,

where recall G ≡ (F ′F̂ /T )−1(Λ′Λ/N)−1. Thus we have Γ5NT = Γ5NT,1 + Γ5NT,2 − Γ5NT,3,

where Γ5NT,l = N−1/2
∑N
i=1 σ

−2
i ε′iMF P̄ZiMFGlλi, l = 1, 2, 3. For Γ5NT,1, by (ii) we have

Γ5NT,1 = tr

(
1√
N

N∑
i=1

σ−2
i λiε

′
iMF P̄ZiMFG1

)

≤
∥∥∥∥∥ 1√

N

N∑
i=1

σ−2
i λiε

′
iMF P̄ZiMF

∥∥∥∥∥T 1/2OP (||β − β̂||)

= OP (1)OP (T 1/2||β − β̂||) = oP (1).

By the same token, Γ5NT,2 = OP (T 1/2γnT ) = oP (1). Now we decompose Γ5NT,3 as follows

Γ5NT,3 =
1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMF [B6 +B7 +B8]Gλi

≡ Γ5NT,31 + Γ5NT,32 + Γ5NT,33, say.

Obviously, Γ5NT,31 = 0 as MFF = 0. For Γ5NT,32, we have

Γ5NT,32 =
1

N3/2

N∑
i=1

N∑
j=1

σ−2
i ε′iMF P̄ZiMFεjaij .

=
1

N3/2

N∑
i=1

σ−2
i ε′iMF P̄ZiMFεiaii +

1

N3/2

∑
1≤i 6=j≤N

σ−2
i ε′iMF P̄ZiMFεjaij

≡ Γ5NT,321 + Γ5NT,322, say.

By the repeated use of (A.7),

ED |Γ5NT,321| =
1

N3/2

N∑
i=1

σ−2
i tr

[
ED (εiε

′
i)MF P̄ZiMF

]
aii

≤ K + 1

N3/2

N∑
i=1

λ′i(Λ
′Λ/N)−1λi =

K + 1

N3/2
tr
(
Λ(Λ′Λ/N)−1Λ′

)
= r (K + 1)N−1/2,
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it follows that Γ5NT,321 = OP (N−1/2) by the conditional Markov inequality. Noting that

ED (Γ5NT,322) = 0 and

ED
(
Γ2

5NT,322

)
=

1

N3

∑
1≤i6=j≤N

∑
1≤k 6=l≤N

σ−2
i σ−2

k ED
(
ε′iMF P̄ZiMFεjε

′
kMF P̄ZkMFεkaijakl

)
=

1

N3

∑
1≤i6=j≤N

a2
ijσ
−4
i tr

[
MF P̄ZiMFED

(
εjε
′
j

)
MF P̄ZiMFED (εiε

′
i)
]

+
1

N3

∑
1≤i 6=j≤N

a2
ijσ
−2
i σ−2

j tr
[
MF P̄ZiMFED

(
εjε
′
j

)
MF P̄ZjMFED (εiε

′
i)
]

=
1

N3

∑
1≤i6=j≤N

a2
ijσ
−2
i σ2

j tr
(
MF P̄ZiMF P̄Zi

)
+

1

N3

∑
1≤i 6=j≤N

a2
ijtr

(
MF P̄ZiMF P̄Zj

)
≤ cσc

−1
σ (K + 1)

N3

∑
1≤i 6=j≤N

a2
ij +

K + 1

N3

∑
1≤i 6=j≤N

a2
ij

≤
(
cσc
−1
σ + 1

)
(K + 1)

N3

∥∥Λ(Λ′Λ/N)−1Λ′
∥∥2

= OP (N−1),

it follows that Γ5NT,322 = OP (N−1/2) by the conditional Chebyshev inequality. Hence

Γ5NT,32 = OP (N−1/2) = oP (1). For Γ5NT,33, it can be shown that Γ5NT,33 = Γ̄5NT,33 +

oP (1), where

Γ̄5NT,33 ≡
1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMF

1

NT

N∑
j=1

εjε
′
jFGλi.

Noting that

ED

∥∥∥∥∥∥ 1

NT

N∑
j=1

εjε
′
jF

∥∥∥∥∥∥
2

= tr

 1

N2T 2

N∑
i=1

N∑
j=1

FF ′ED
(
εiε
′
iεjε

′
j

)
=

1

N2T

N∑
i=1

N∑
j=1

$ij ‖F ′F/T‖ = OP (N−1),

by (ii) we have

Γ̄5NT,33 = tr

 1√
N

N∑
i=1

σ−2
i λiε

′
iMF P̄ZiMF

1

NT

N∑
j=1

εjε
′
jFG


≤

∥∥∥∥∥ 1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMF

∥∥∥∥∥
∥∥∥∥∥∥ 1

NT

N∑
j=1

εjε
′
jF

∥∥∥∥∥∥ ‖G‖
= OP (1)OP (N−1/2)OP (1) = oP (1).

It follows that Γ5NT,33 = oP (1). Hence Γ5NT,3 = oP (1) and Γ5NT = oP (1).

(vi) By the same arguments as used in (v), it suffi ces to show that

Γ6NT,1 ≡
1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiT

−1FH
(
V −1
NT

)′
(B6 +B7 +B8)′εi = oP (1).
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Let Γ6NT,1l ≡ 1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiT

−1FH
(
V −1
NT

)′
B′5+lεi for l = 1, 2, 3. For Γ6NT,11, by

(iv) we have

Γ6NT,11 =
1

N3/2T 2

N∑
i=1

σ−2
i tr

ε′iMF P̄ZiFH
(
V −1
NT

)′ N∑
j=1

F̂ ′εjλ
′
jF
′εi


= tr

 1

N3/2T 2

N∑
i=1

σ−2
i F ′εiε

′
iMF P̄ZiFH

(
V −1
NT

)′ N∑
j=1

F̂ ′εjλ
′
j


≤

∥∥∥∥∥ 1√
N

N∑
i=1

σ−2
i F ′εiε

′
iMF P̄Zi

∥∥∥∥∥ 1√
T
‖F‖ ‖H‖

∥∥V −1
NT

∥∥∥∥∥∥∥∥ 1

NT 3/2

N∑
j=1

F̂ ′εjλ
′
j

∥∥∥∥∥∥
= OP (

√
N + T )OP (1)OP (N−1/2T−1/2) = oP (1).

By the same token, Γ6NT,12 and Γ6NT,13 are oP (1). Therefore Γ6NT,1 = oP (1) and Γ6NT =

oP (1).

Lemma A.4 Suppose Assumptions A1-A3 and A4(i) hold. Then

(i) max1≤t≤T N
−1
∑N
i=1 ‖Zit‖

2
= OP (

√
T/N + 1),

(ii) max1≤i≤N T
−1
∑T
t=1 ‖Zit‖

2
= OP (

√
N/T + 1),

(iii) N−1
∑N
i=1

∑T
s=1 h

2
i,ts = OP

(
T−1

)
for each t,

(iv) N−1
∑N
i=1

∑T
s=1 h

2
i,ts ≤ (α1NT + α2NT ) ‖Ft‖2 + oP (T−1/2) uniformly in t,

(v) N−2
∑N
i=1

∑N
j=1

∑T
t=2

∑t−1
s=1

∑t−1
r=1 h

2
i,tsh

2
j,tr = oP (1),

where α1NT = c2F cZN
−1T−3 ‖F‖2

∑N
i=1

∑T
s=1 ‖Zis‖

2
, α2NT = c4F c

2
ZN
−1T−6 ‖F‖6

∑N
i=1

(
∑T
r=1 ||Zir||2)2, cZ ≡ {min1≤i≤N

[
λmin

(
T−1Z ′iZi

)]
}−1 and cF ≡

[
λmin

(
T−1F ′F

)]−1
.

Proof. (i) Let ςit ≡ ‖Zit‖2 − E ‖Zit‖2 . Write N−1
∑N
i=1 ‖Zit‖

2
= N−1

∑N
i=1 ςit +

N−1
∑N
i=1E ‖Zit‖

2
. The second term isOP (1) by Assumption A1(i). By Assumption A1(v),

for any ε > 0 we have

P

(
max

1≤t≤T
N−1

N∑
i=1

ςit ≥ ε
√
T/N

)
≤

T∑
t=1

P

(
N∑
i=1

ςit ≥ ε
√
NT

)
≤ ε−2 (NT )

−1
T∑
t=1

E

(
N∑
i=1

ςit

)2

= O(1).

It follows that max1≤t≤T |N−1
∑N
i=1 ςit| = OP (

√
T/N) and max1≤t≤T N

−1
∑N
i=1 ‖Zit‖

2
=

OP (
√
T/N) +OP (1) = OP (

√
T/N + 1).

(ii) The proof is analogous to that of (i) and thus omitted.

(iii) Note that Hi = MF (PZi − L)MF . Let mF,ts and pZi,ts denote the (t, s)th element

of MF and PZi respectively, i.e., mF,ts = 1ts − pF,ts and pZi,ts = Z ′it (Z ′iZi)
−1
Zis, where

1ts ≡ 1 {t = s} , Zit denotes the tth column of Z ′i, and pF,ts ≡ F ′t (F ′F )
−1
Fs. Then hi,ts =
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∑T
r=1

∑T
q=1mF,tr

(
pZi,rq − T−1

)
mF,qs. Observe that

1

N

N∑
i=1

T∑
s=1

h2
i,ts ≤ 2

N

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

mF,trpZi,rqmF,qs

]2

+
2

NT 2

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

mF,trmF,qs

]2

≡ 2Jt1 + 2Jt2, say,

and

Jt1 ≤ 4

N

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

1trpZi,rq1qs

]2

+
4

N

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

1trpZi,rqpF,qs

]2

+
4

N

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

pF,trpZi,rq1qs

]2

+
4

N

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

pF,trpZi,rqpF,qs

]2

≡ 4Jt11 + 4Jt12 + 4Jt13 + 4Jt14, say.

Noting that |F ′t
(
T−1F ′F

)−1
Fs| ≤ {F ′t

(
T−1F ′F

)−1
Ft}1/2{F ′s

(
T−1F ′F

)−1
Fs}1/2 ≤

cF ‖Ft‖ ‖Fs‖ , by (A.7) and the Cauchy-Schwarz inequality we have

Jt11 =
1

N

N∑
i=1

T∑
s=1

(pZi,ts)
2

=
1

NT

N∑
i=1

tr
((
T−1Z ′iZi

)−1
ZitZ

′
it

)
≤ cZ
NT

N∑
i=1

‖Zit‖2 ,

Jt12 =
1

NT

N∑
i=1

T∑
s=1

T∑
r=1

pZi,tspZi,trF
′
r

(
T−1F ′F

)−1
Fs ≤ cF

1

NT

N∑
i=1

{
T∑
s=1

|pZi,ts| ‖Fs‖
}2

≤ cF c
2
Z

NT

N∑
i=1

‖Zit‖2
{

1

T

T∑
s=1

‖Zis‖ ‖Fs‖
}2

≤ cF c
2
Z ‖F‖

2

NT 3

N∑
i=1

‖Zit‖2
T∑
s=1

‖Zis‖2 ,

Jt13 =
1

N

N∑
i=1

T∑
s=1

T∑
r=1

T∑
q=1

F ′t (F ′F )
−1
Fr F

′
t (F ′F )

−1
Fq Z

′
ir (Z ′iZi)

−1
Zis Z

′
is (Z ′iZi)

−1
Ziq

≤ c2F ‖Ft‖
2

NT 2

N∑
i=1

T∑
r=1

T∑
q=1

‖Fr‖ ‖Fq‖ |Z ′ir (Z ′iZi)
−1
Ziq|

≤ c2F cZ ‖Ft‖
2

NT 3

N∑
i=1

T∑
r=1

T∑
q=1

‖Fr‖ ‖Fq‖ ‖Z ′ir‖ ‖Ziq‖

=
c2F cZ ‖Ft‖

2

NT

N∑
i=1

{
1

T

T∑
r=1

‖Fr‖ ‖Zir‖
}2

≤ c2F cZ ‖Ft‖
2 ‖F‖2

NT 3

N∑
i=1

T∑
s=1

‖Zis‖2 ,
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and similarly,

Jt14 =
1

N

N∑
i=1

T∑
s=1

[
T∑
r=1

T∑
q=1

F ′t (F ′F )
−1
FrZ

′
ir (Z ′iZi)

−1
ZiqF

′
q (F ′F )

−1
Fs

]2

≤ c4F c
2
Z ‖Ft‖

2

NT 2

N∑
i=1

T∑
s=1

‖Fs‖2
(

1

T

T∑
r=1

‖Fr‖ ‖Zir‖
)4

≤ c4F c
2
Z ‖Ft‖

2 ‖F‖2

NT 2

N∑
i=1

(
1

T

T∑
r=1

‖Fr‖ ‖Zir‖
)4

≤ c4F c
2
Z ‖Ft‖

2 ‖F‖6

NT 6

N∑
i=1

(
T∑
r=1

‖Zir‖2
)2

.

We can readily show by the Markov inequality that Jt1l = OP
(
T−1

)
for l = 1, 2, 3, 4, imply-

ing that Jt1 = OP
(
T−1

)
. By the same token, Jt2 = OP

(
T−1

)
. Thus 1

N

∑N
i=1

∑T
s=1 h

2
i,ts =

OP
(
T−1

)
.

(iv) By (i)-(ii) and the proof of (iii), we have

max
1≤t≤T

Jt11 = T−1OP

(√
T/N + 1

)
= OP

(
(NT )−1/2 + T−1

)
= oP

(
T−1/2

)
,

max
1≤t≤T

Jt12 ≤ cF c
2
Z ‖F‖

2

T 2
max

1≤i≤N

(
1

T

T∑
s=1

‖Zis‖2
)

max
1≤t≤T

(
1

N

N∑
i=1

‖Zit‖2
)

= OP
(
T−1

)
OP (

√
N/T + 1)OP (

√
T/N + 1) = oP (T−1/2),

Jt13 ≤ α1NT ‖Ft‖2 , and Jt14 ≤ α2NT ‖Ft‖2 .

Thus (iv) follows.

(v) By Markov inequality, we can show that α1NT = OP
(
T−1

)
, and α2NT = OP (T−1).

It follows that

1

N2

N∑
i=1

N∑
j=1

T∑
t=2

t−1∑
s=1

t−1∑
r=1

h2
i,tsh

2
j,tr =

T∑
t=2

(
1

N

N∑
i=1

t−1∑
s=1

h2
i,ts

)2

≤
T∑
t=2

[
(α1NT + α2NT ) ‖Ft‖2 + oP (T−1/2)

]2
= (α1NT + α2NT )

2
T∑
t=2

‖Ft‖4 + oP (1) = OP (T−1) + oP (1) = oP (1).

Lemma A.5 Let σ̂2
i ≡ TSSi/T and υNT ≡ N1/ϑT−1/2. Suppose Assumptions A1-A3 hold.

Then under H1,NT , max1≤i≤N |σ̂2
i − σ2

i | = OP (υNT +N1/2T−1 + γ
1/2
NT + δ−1

NTN
1/(2ϑ)).

Proof. Noting that ε̂i = MF̂εi +MF̂Xi(β − β̂) +MF̂Fλi +MF̂Xi(βi − β), we have

σ̂2
i = ε̂′iM0ε̂i/T =

10∑
l=1

TSSil/T, (A.11)
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where

TSSi1 ≡ ε′iMF̂M0MF̂εi, TSSi6 ≡ 2ε′iMF̂M0MF̂Fλi,

TSSi2 ≡ (β − β̂)′X ′iMF̂M0MF̂Xi(β − β̂), TSSi7 ≡ 2ε′iMF̂M0MF̂Xi(βi − β),

TSSi3 ≡ λ′iF ′MF̂M0MF̂Fλi, TSSi8 ≡ 2(β − β̂)′X ′iMF̂M0MF̂Fλi,

TSSi4 ≡ (βi − β)′X ′iMF̂M0MF̂Xi(βi − β), TSSi9 ≡ 2(β − β̂)′X ′iMF̂M0MF̂Xi(βi − β),

TSSi5 ≡ 2ε′iMF̂M0MF̂Xi(β − β̂), TSSi10 ≡ 2λ′iF
′MF̂M0MF̂Xi(βi − β).

We prove the lemma by showing that

max
1≤i≤N

∣∣T−1TSSi1 − σ2
i

∣∣ = OP (υNT +N1/2T−1 + δ−1
NT + γNT ), (A.12)

and
10∑
l=2

max
1≤i≤N

∣∣T−1TSSil
∣∣ = OP (υNT + δ−1

NTN
1/(2ϑ)). (A.13)

First, we prove (A.12). Observe that

T−1TSSi1 − σ2
i =

(
T−1ε′iM0εi − σ2

i

)
+ T−1ε′iPF̂M0PF̂εi − 2T−1ε′iM0PF̂εi. (A.14)

For the first term in (A.14), write T−1ε′iM0εi−σ2
i = T−1

∑T
t=1(εit−ε̄i)2−σ2

i = T−1
∑T
t=1 ξit−

ε̄2
i , where ξit ≡ ε2

it − σ2
i . Then by Assumption A3(iii), for any ε > 0 we have

P

(
max

1≤i≤N

1

T

T∑
t=1

ξit ≥ ευNT

)
≤

N∑
i=1

P

(
1

T

T∑
t=1

ξit ≥ ευNT

)
≤ ε−ϑυ−ϑNT

N∑
i=1

E

∣∣∣∣∣ 1

T

T∑
t=1

ξit

∣∣∣∣∣
ϑ

=
ε−ϑυ−ϑNT
Tϑ

N∑
i=1

∑
1≤t1,...,tϑ≤T

E
(
ξit1ξit2 ...ξitϑ

)
= O(NT−ϑ/2υ−ϑNT ) = O(1). (A.15)

It follows thatmax1≤i≤N |T−1
∑T
t=1 ε

2
it−σ2

i | = OP (υNT ). Similarly,max1≤i≤N |ε̄i| = OP (υ2
NT ) =

oP (υNT ). It follows that

max
1≤i≤N

∣∣T−1ε′iM0εi − σ2
i

∣∣ = OP (υNT ). (A.16)

For the second term in (A.14), observe that T−1ε′iPF̂M0PF̂εi ≤ T−1ε′iPF̂εi as λmax (M0) =

1. Further, T−1ε′iPF̂εi = T−1ε′iPFεi + T−1ε′i
(
PF̂ − PF

)
εi. First, max1≤i≤N T

−1ε′iPFεi ≤

cF max1≤i≤N T
−2ε′iFF

′εi, where cF ≡
[
λmin

(
T−1F ′F

)]−1
. Writing T−2ε′iFF

′εi = T−2

[ε′iFF
′εi −E (ε′iFF

′εi)] + T−2E (ε′iFF
′εi) , as in (A.15) we can show that the first term

is OP
(
N1/2T−1

)
and the second term is O

(
T−1

)
, both uniformly in i. It follows that
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max1≤i≤N T
−2ε′iFF

′εi = OP
(
N1/2T−1

)
, implying thatmax1≤i≤N T

−1ε′iPFεi = OP
(
N1/2T−1

)
.

Now, by Lemmas A.1(vii) and A.2,max1≤i≤N
∣∣T−1ε′i

(
PF̂ − PF

)
εi
∣∣ ≤ ||PF̂−PF || ×max1≤i≤N (T−1 ‖εi‖2) =

OP (δ−1
NT + γNT ). Consequently,

max
1≤i≤N

T−1ε′iPF̂M0PF̂εi = OP (N1/2T−1 + δ−1
NT + γNT ). (A.17)

For the third term in (A.14), write T−1ε′iM0PF̂εi = T−1ε′iPF̂εi−T−1ε′iLPF̂εi. The uniform

bound for the first term was obtained above, and we can show that the second term is also

bounded by OP (N1/2T−1 + δ−1
NT + γNT ). Hence we have

max
1≤i≤N

T−1
∣∣ε′iM0PF̂εi

∣∣ = OP (N1/2T−1 + δ−1
NT + γNT ). (A.18)

Combining (A.16)-(A.18) delivers (A.12).

Now, we prove (A.13). For TSSi2, by Lemmas A.2 and A.4(i) we have

max
1≤i≤N

T−1TSSi2 ≤ ||β̂ − β||2 max
1≤i≤N

(T−1 ‖Xi‖2) = OP (γ2
NT )OP (

√
N/T + 1).

For TSSi3, by the repeated use of (A.7), Lemmas A.1(i) and A.2, and Assumption A1(vi),

we have

max
1≤i≤N

{T−1TSSi3} = max
1≤i≤N

T−1λ′i

(
F − F̂H

)′
MF̂M0MF̂

(
F − F̂H

)
λi

≤ max
1≤i≤N

T−1λ′i

(
F − F̂H

)′ (
F − F̂H

)
λi ≤ T−1

∥∥∥F − F̂H∥∥∥2

max
1≤i≤N

‖λi‖2

= OP (δ−2
NT + γ2

NT )OP (N1/ϑ) = OP

(
δ−2
NTN

1/ϑ
)
,

where we used the fact that max1≤i≤N ‖λi‖2 = OP (N1/ϑ) by Assumption A1(vi) and the

Markov inequality.

For TSSi4, by (3.2) we can obtain

max
1≤i≤N

{
T−1TSSi4

}
≤M2γ2

NT max
1≤i≤N

T−1 ‖Xi‖2 = OP (γ2
NT )OP (

√
N/T + 1).

By the Cauchy-Schwarz inequality, we have

max
1≤i≤N

T−1 |TSSi5| = OP (γNT ((N/T )1/4 + 1)), max
1≤i≤N

T−1 |TSSi6| = OP (δ−1
NTN

1/(2ϑ)),

max
1≤i≤N

T−1 |TSSi7| = OP (γNT ((N/T )1/4 + 1)), max
1≤i≤N

T−1 |TSSi8| = OP (γNT ((N/T )1/4 + 1)δ−1
NTN

1/(2ϑ)),

max
1≤i≤N

T−1 |TSSi9| = OP (γ2
NT ((N/T )1/2 + 1)), max

1≤i≤N
T−1 |TSSi10| = OP (γNT ((N/T )1/4 + 1)δ−1

NTN
1/(2ϑ)).
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Noting that γNT ((N/T )1/4 + 1) = o
(
δ−1
NT

)
, (A.13) follows.

B Proof of the Results in Section 3

Proof of Theorem 3.1.

The proof is a special case of that of Theorem 3.2 and thus omitted. �

Proof of Corollary 3.2.

By Theorem 3.1 and the Slutsky lemma, it suffi ces to prove the first two parts of the

corollary. In fact, we prove a slightly stronger result, i.e., under H1,NT in (3.2), B̂NT =

BNT + oP (1) and V̂NT = VNT + oP (1). This stronger result will be needed in the proof of

Theorem 3.3 below.

(i) We prove B̂NT = BNT + oP (1) under H1,NT . Recall σ̂
2
i ≡ T−1TSSi. We can

decompose B̂NT −BNT as follows:

B̂NT −BNT =
1√
N

N∑
i=1

tr
(
Ĥi

)
− 1√

N

N∑
i=1

σ̂−2
i

T∑
t=1

ε2
ithi,tt

=
1√
N

N∑
i=1

tr
(
Ĥi −Hi

)
+

1√
N

N∑
i=1

σ−2
i

T∑
t=1

(
σ2
i − ε2

it

)
hi,tt +

1√
N

N∑
i=1

(
σ−2
i − σ̂

−2
i

) T∑
t=1

hi,ttε
2
it

≡ B̂NT,1 + B̂NT,2 + B̂NT,3, say.

Noting that Ĥi−Hi = (MF̂−MF )P̄Zi(MF̂−MF )+MF P̄Zi(MF̂−MF )+(MF̂−MF )P̄ZiMF ,

we have

B̂NT,1 =
1√
N

N∑
i=1

tr
[
(MF̂ −MF )P̄Zi(MF̂ −MF )

]
+

2√
N

N∑
i=1

tr
[
(MF̂ −MF )P̄ZiMF

]
≡ B̂NT,11 + 2B̂NT,12, say.

By Lemmas A.1(vii) and A.2, (A.7) and Assumption A4(i), we have B̂NT,11 ≤ 1√
N

∑N
i=1

∥∥MF̂ −MF

∥∥2

= OP (N1/2δ−2
NT ) = oP (1). For B̂NT,12, using (A.1) we have

B̂NT,12 = − 1√
N

N∑
i=1

tr
[
(a1 + a2 + a3 + a4)P̄ZiMF

]
≡ −B̂NT,121−B̂NT,122−B̂NT,123−B̂NT,124, say.

For B̂NT,121, we have

B̂NT,121 =
1√
N

N∑
i=1

tr
[
T−1MF (F̂ − FH)H ′F ′PZi

]
− 1√

N

N∑
i=1

tr
[
T−1MF (F̂ − FH)H ′F ′

1

T
iT i
′
T

]
≡ B̂NT,1211 + B̂NT,1212, say.
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We further decompose B̂NT,1211 as follows

B̂NT,1211 =
1√
N

N∑
i=1

tr
[
T−1MF̂ (F̂ − FH)H ′F ′PZi

]
+

1√
N

N∑
i=1

tr
[
T−1

(
MF −MF̂

)
(F̂ − FH)H ′F ′PZi

]
≡ B̂NT,1211a + B̂NT,1211b.

By the repeated use of the matrix version of Cauchy-Schwarz inequality, Assumptions A1(iv)

and A4(i), Lemmas A.1(ix) and A.2,

∣∣∣B̂NT,1211a

∣∣∣ =

∣∣∣∣∣ 1√
N

N∑
i=1

tr
[
T−1Z ′iMF̂ (F̂ − FH)H ′F ′Zi (Z ′iZi)

−1
]∣∣∣∣∣

≤ 1√
N

N∑
i=1

∥∥∥T−1Z ′iMF̂ (F̂ − FH)
∥∥∥∥∥∥H ′F ′Zi (Z ′iZi)

−1
∥∥∥

≤
√

1

TN
‖FH‖

{
min

1≤i≤N
λmin

(
T−1Z ′iZi

)}−1/2 N∑
i=1

∥∥∥T−1Z ′iMF̂ (F̂ − FH)
∥∥∥

=

√
1

TN
OP (
√
T )OP (1)OP

(
Nδ−2

NT +NγNT
)

= OP

(
N1/2(δ−2

NT + γNT )
)

= oP (1) .

By the repeated use of the matrix version of Cauchy-Schwarz inequality, (A.7), Lemmas

A.1(i) and (vii) and Lemma A.2, and Assumption A4(i),

∣∣∣B̂NT,1211b

∣∣∣ =
1√
N

N∑
i=1

tr
[
T−1

(
MF −MF̂

)
(F̂ − FH)H ′F ′PZi

]
≤

∥∥MF −MF̂

∥∥{T−1/2
∥∥∥F̂ − FH∥∥∥} 1√

NT

N∑
i=1

{tr (H ′F ′PZiFH)}1/2

= OP
(
δ−1
NT

)
OP

(
δ−1
NT

)√N

T
‖FH‖ = OP

(
N1/2δ−2

NT

)
= oP (1) .

It follows that B̂NT,1211 = oP (1) . By the same token, B̂NT,1212 = oP (1) . Thus B̂NT,121 =

oP (1) . Analogously, we can show that B̂NT,12l = oP (1) for l = 2, 3, 4. It follows that

B̂NT,12 = oP (1) and B̂NT,1 = oP (1).

For B̂NT,2, noting that ED(B̂NT,2) = 0, and by Assumption A2(v) and Lemma A.4(iii)

ED

(
B̂2
NT,2

)
=

1

N

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

σ−2
i σ−2

j E
[(
σ2
i − ε2

it

) (
σ2
j − ε2

js

)]
hi,tthj,ss

=
1

N

N∑
i=1

T∑
t=1

σ−4
i h2

i,ttE
[(
ε2
it − σ2

i

)2] ≤ c−2
σ M

N

N∑
i=1

T∑
t=1

h2
i,tt = oP (1).

It follows that B̂NT,2 = oP (1).

By a geometric expansion, 1/σ̂2
i −1/σ2

i = −
(
σ̂2
i − σ2

i

)
/σ4

i +(σ̂2
i −σ2

i )
2/(σ4

i σ̂
2
i ). It follows
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that

B̂NT,3 =
1√
N

N∑
i=1

σ̂2
i − σ2

i

σ4
i

T∑
t=1

hi,ttε
2
it −

1√
N

N∑
i=1

(
σ̂2
i − σ2

i

)2
σ4
i σ̂

2
i

T∑
t=1

hi,ttε
2
it

≡ B̂NT,31 − B̂NT,32, say.

By Lemma A.5, we can readily show that B̂NT,32 =
√
NOP

(
υ2
NT +NT−2 + γ2

NT + δ−2
NTN

1/ϑ
)

=

oP (1) . Using the decomposition of σ̂2
i in (A.11) and following the arguments analogous to

those used in the proof of Lemma A.5, we can show B̂NT,31 = oP (1). Thus B̂NT,3 = oP (1) ,

and B̂NT −BNT = oP (1).

(ii) We prove V̂NT = VNT + oP (1) under H1,NT . Note that

V̂NT − VNT =
2

N

N∑
i=1

tr
(
Ĥ2
i −H2

i

)
+

2

N

N∑
i=1

T∑
t=1

h2
i,tt ≡ 2V̂NT,1 + 2V̂NT,2, say.

We further decompose V̂NT,1 as follows:

V̂NT,1 =
1

N

N∑
i=1

tr
[
Ĥi

(
Ĥi −Hi

)]
+

1

N

N∑
i=1

tr
[(
Ĥi −Hi

)
Hi

]
≡ V̂NT,11 + V̂NT,12, say.

Noting that

Ĥi −Hi = MF̂ P̄ZiMF̂ −MF P̄ZiMF

= (MF̂ −MF )P̄Zi(MF̂ −MF ) +MF P̄Zi(MF̂ −MF ) + (MF̂ −MF )P̄ZiMF ,

we have

V̂NT,11 =
1

N

N∑
i=1

tr
(
Ĥi(MF̂ −MF )P̄Zi(MF̂ −MF )

)
+

1

N

N∑
i=1

tr
(
ĤiMF P̄Zi(MF̂ −MF )

)
+

1

N

N∑
i=1

tr
(
Ĥi(MF̂ −MF )P̄ZiMF

)
≡ V̂NT,11a + V̂NT,11b + V̂NT,11c, say.

By the repeated use of (A.7), the fact that λmax (MF ) = λmax

(
P̄Zi
)

= 1, and Lemma

A.1(vii) and A.2, we have

∣∣∣V̂NT,11a

∣∣∣ =
1

N

N∑
i=1

tr
(
P̄ZiMF̂ (MF̂ −MF )P̄Zi(MF̂ −MF )MF̂

)
≤ 1

N

N∑
i=1

tr
(
MF̂ (MF̂ −MF )P̄Zi(MF̂ −MF )

)
≤ 1

N

N∑
i=1

tr
(
P̄Zi(MF̂ −MF )(MF̂ −MF )

)
≤

∥∥MF̂ −MF

∥∥2
= OP

(
δ−2
NT + γ2

NT

)
= oP (1) .
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Similarly, V̂NT,11b = OP (δ−1
NT + γNT ) = oP (1) and V̂NT,11c = OP (δ−1

NT + γNT ) = oP (1) .

It follows that V̂NT,11 = oP (1) . By the same token V̂NT,12 = oP (1) and hence we have

V̂NT,1 = oP (1) . By Lemma A.4(iii), V̂NT,2 = OP
(
T−1

)
= oP (1) . Hence V̂NT − VNT =

oP (1) . �

Proof of Theorem 3.3.

By (2.9) and (2.10), we have

JNT =
1√
N

N∑
i=1

ε̂′iP̄Zi ε̂i
T−1TSSi

− 1√
N

N∑
i=1

T∑
t=1

ε2
ithi,tt

T−1TSSi

=
1√
N

N∑
i=1

σ−2
i

[
ε̂′iP̄Zi ε̂i − ε′iQiεi

]
+

1√
N

N∑
i=1

[
ε̂′iP̄Zi ε̂i − ε′iQiεi

] [
(T−1TSSi)

−1 − σ−2
i

]
≡ JNT,1 + JNT,2, say,

where Qi ≡ diag(hi,11, hi,22, . . . , hi,TT ) .We prove the theorem by showing that: (i) JNT,1
d→

N(Θ0, V0), (ii) JNT,2 = oP (1), (iii) B̂NT = BNT + oP (1), and (iv) V̂NT = VNT + oP (1). (iii)

and (iv) are proved in the proof of Corollary 3.2. So we complete the proof of the theorem

by showing (i) and (ii) respectively in Propositions B.1 and B.2 below.

Proposition B.1 Under the conditions of Theorem 3.3 JNT,1
d→ N(Θ0, V0).

Proof. By (2.8), we have

JNT,1 = R1NT+R2NT+R3NT+R4NT+2R5NT+2R6NT+2R7NT+2R8NT+2R9NT+2R10NT ,

where

R1NT ≡ 1√
N

N∑
i=1

σ−2
i

(
ε′iMF̂ P̄ZiMF̂εi − ε′iQiεi

)
, R6NT ≡ 1√

N

N∑
i=1

σ−2
i ε′iMF̂ P̄ZiMF̂Fλi,

R2NT ≡ 1√
N

N∑
i=1

σ−2
i (β − β̂)′X ′iMF̂ P̄ZiMF̂Xi(β − β̂), R7NT ≡ 1√

N

N∑
i=1

σ−2
i ε′iMF̂ P̄ZiMF̂Xi(βi − β),

R3NT ≡ 1√
N

N∑
i=1

σ−2
i λ′iF

′MF̂ P̄ZiMF̂Fλi, R8NT ≡ 1√
N

N∑
i=1

σ−2(β − β̂)′X ′iMF̂ P̄ZiMF̂Fλi,

R4NT ≡ 1√
N

N∑
i=1

σ−2
i (βi-β)′X ′iMF̂ P̄ZiMF̂Xi(βi-β), R9NT ≡ 1√

N

N∑
i=1

σ−2
i (β-β̂)′X ′iMF̂ P̄ZiMF̂Xi(βi-β),

R5NT ≡ 1√
N

N∑
i=1

σ−2
i ε′iMF̂ P̄ZiMF̂Xi(β − β̂), R10NT ≡ 1√

N

N∑
i=1

σ−2
i λ′iF

′MF̂ P̄ZiMF̂Xi(βi − β).
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We prove the proposition by showing that

R1NT
d→ N(0, V0), (B.1)

R2NT +R3NT +R4NT + 2R8NT + 2R9NT + 2R10NT = Θ0 + oP (1), (B.2)

RsNT = oP (1), s = 5, 6, 7. (B.3)

(i) First, we prove (B.1). We decompose R1NT as follows:

R1NT =
1√
N

N∑
i=1

σ−2
i ε′i

(
MF P̄ZiMF −Qi

)
εi +

1√
N

N∑
i=1

σ−2
i ε′i(MF̂ −MF )P̄Zi(MF̂ −MF )εi.

+
2√
N

N∑
i=1

σ−2
i ε′iMF P̄Zi(MF̂ −MF )εi

≡ R1NT,1 +R1NT,2 + 2R1NT,3.

It suffi ces to show that R1NT,2 and R1NT,3 are oP (1), and R1NT,1
d→ N(0, V0).

By Lemma A.3(i), R1NT,2 = Γ1NT = oP (1). For R1NT,3, using (A.1) we have

R1NT,3 = −N−1/2
N∑
i=1

σ−2
i ε′iMF P̄Zi(a1 + a2 + a3 + a4)εi

≡ −R1NT,31 −R1NT,32 −R1NT,33 −R1NT,34, say,

where, e.g., R1NT,31 = N−1/2
∑N
i=1 σ

−2
i ε′iMF P̄Zia1εi. By Lemmas A.3(iii) and A.1(i) and

A.2, we have

R1NT,31 = N−1/2
N∑
i=1

σ−2
i tr

[
ε′iMF P̄ZiT

−1(F̂ − FH)H ′F ′εi

]
= N−1/2tr

[
N∑
i=1

σ−2
i F ′εiε

′
iMF P̄ZiT

−1(F̂ − FH)H ′

]

≤
∥∥∥∥∥N−1/2

N∑
i=1

σ−2
i F ′εiε

′
iMF P̄Zi

∥∥∥∥∥T−1
∥∥∥F̂ − FH∥∥∥ ‖H‖

= OP (
√
N + T )OP (T−1/2(δ−1

NT + γNT ))OP (1) = oP (1).
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By the Cauchy-Schwarz inequality, Lemmas A.1(i) and A.3(iii), we have

R1NT,32 =
1√
N

N∑
i=1

σ−2
i tr

[
ε′iMF P̄ZiT

−1(F̂ − FH)(F̂ − FH)′εi

]
= tr

[
T−1(F̂ − FH)(F̂ − FH)′N−1/2

N∑
i=1

σ−2
i εiε

′
iMF P̄Zi

]

≤ T−1
∥∥∥F̂ − FH∥∥∥2

∥∥∥∥∥N−1/2
N∑
i=1

σ−2
i εiε

′
iMF P̄Zi

∥∥∥∥∥
= OP

(
δ−2
NT + γ2

NT

)
OP

(√
N + T

)
= oP (1) .

By the Lemma A.3(iv), R1NT,33 = Γ6NT = oP (1). Analogously to the case of R1NT,31, using

Lemmas A.1(vi) and A.2 we can show R1NT,34 = oP (1) . It follows that R1NT,3 = oP (1) .

Now we proveR1NT,1
d→ N(0, V0).Noting thatMF P̄ZiMF = Hi andQi ≡ diag(hi,11, hi,22, . . . , hi,TT )

we have

R1NT,1 =
2√
N

N∑
i=1

σ−2
i

∑
1≤s<t≤T

εitεishi,ts ≡
T∑
t=2

ZNT,t,

where ZNT,t ≡ 2N−1/2
∑N
i=1 σ

−2
i

∑t−1
s=1 εitεishi,ts. Let FNT,t denote the σ-field generated

by {X1, X2, ..., XN , F,Λ, ε·t, ..., ε·1} where recall ε·t ≡ (ε1t, ..., εNt)
′. By Assumptions A2(i)

and A3(i), {ZNT,t, FNT,t} is an m.d.s. because

E (ZNT,t|FNT,t−1) ≡ 2N−1/2
N∑
i=1

σ−2
i

t−1∑
s=1

εishi,tsE(εit|FNT,t−1) = 0.

By the martingale CLT [e.g., Pollard (1984, p. 171)], it suffi ces to show that:

Z ≡
T∑
t=2

EFNT,t−1 |ZNT,t|
4

= oP (1) , and
T∑
t=2

Z2
NT,t − VNT = oP (1). (B.4)

where EFNT,t−1 denotes expectation conditional on FNT,t−1. Using Assumptions A2 and

A3(i)-(ii) we have

Z =
16

N2

T∑
t=2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

∑
1≤r,s,q,v≤t−1

σ−2
i σ−2

j σ−2
k σ−2

l hi,tshj,trhk,tqhl,tvεisεjrεkqεlvE (εitεjtεktεlt)

=
48

N2

T∑
t=2

N∑
i=1

N∑
j=1,j 6=i

∑
1≤r,s,q,v≤t−1

σ−2
i σ−2

j hi,tshi,trhj,tqhj,tvεisεirεjqεjv

+
16

N2

T∑
t=2

N∑
i=1

∑
1≤r,s,q,v≤t−1

σ−8
i hi,tshi,trhi,tqhi,tvεisεirεiqεivE

(
ε4
it

)
≡ 48Z1 + 16Z2, say.

Noting that Z ≥ 0, it suffi ces to show Z = oP (1) by showing that ED (Z) = 48ED (Z1) +
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16ED (Z2) = oP (1) by the conditional Markov inequality. By straightforward calculations

and Lemma A.4(v),

ED (Z1) =
1

N2

T∑
t=2

N∑
i=1

N∑
j=1,j 6=i

∑
1≤r,s,q,v≤t−1

σ−2
i σ−2

j hi,tshi,trhj,tqhj,tvE (εisεir)E (εjqεjv)

=
1

N2

T∑
t=2

N∑
i=1

N∑
j=1,j 6=i

t−1∑
s=1

t−1∑
r=1

h2
i,tsh

2
j,tr = oP (1),

and

ED (Z2) = 3
1

N2

T∑
t=2

N∑
i=1

t−1∑
s=1

t−1∑
r=1,r 6=s

σ−4
i h2

i,tsh
2
i,trE

(
ε4
it

)
+

1

N2

T∑
t=2

N∑
i=1

t−1∑
s=1

σ−8
i h4

i,tsE
(
ε4
is

)
E
(
ε4
it

)
≤ 3c−2

σ M1/2

N2

T∑
t=2

N∑
i=1

t−1∑
s=1

t−1∑
r=1,r 6=s

h2
i,tsh

2
i,tr +

c−4
σ M

N2

T∑
t=2

N∑
i=1

t−1∑
s=1

h4
i,ts = oP (1),

where we used the fact that E
(
ε4
it

)
≤ [E

(
ε8
it

)
]1/2 ≤ M1/2. It follows that ED (Z) = oP (1)

and thus Z = oP (1) . Consequently the first part of (B.4) follows.

For the second part of (B.4), we have

T∑
t=2

ED(Z2
NT,t) = 4N−1

T∑
t=2

N∑
i=1

N∑
j=1

t−1∑
s=1

t−1∑
r=1

σ−2
i σ−2

j hi,tshj,trE(εitεisεjtεjr)

= 4N−1
T∑
t=2

N∑
i=1

t−1∑
s=1

σ−4
i h2

i,tsE(ε2
itε

2
is) = 4N−1

T∑
t=2

N∑
i=1

t−1∑
s=1

h2
i,ts = VNT ,

where the second and third equalities follow from Assumptions A2(ii) and A3(i) and Assump-

tion A3(ii), respectively. In addition, we can show by straightforward moment calculations

that ED(
∑T
t=2 Z

2
NT,t)

2 = V 2
NT + oP (1) . Thus VarD(

∑T
t=2 Z

2
NT,t) = oP (1) and the second

part of (B.4) follows.

(ii) Next, we prove (B.2). We first consider R2NT . By Lemma A.2, we have the

following decomposition:

R2NT =
1√
N

N∑
i=1

σ−2
i b′1X

′
iMF̂ P̄ZiMF̂Xib1 +

2√
N

N∑
i=1

σ−2
i b′1X

′
iMF̂ P̄ZiMF̂Xib2

+
1√
N

N∑
i=1

σ−2
i b′2X

′
iMF̂ P̄ZiMF̂Xib2

≡ R2NT,1 +R2NT,2 +R2NT,3, say.

where b1 = oP (γNT ) and b2 = D(F )−1 γNT

NT

∑N
i=1 Π′iXiδi. Noting that λmax(P̄Zi) = 1 and
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λmax

(
MF̂

)
= 1 and using (A.7) repeatedly, we have

R2NT,1 ≤ 1√
N

N∑
i=1

σ−2
i b′1X

′
iXib1 ≤ c−1

σ ||b1||2
(

1√
N

N∑
i=1

‖Xi‖2
)

= oP (T−1N−1/2)OP (N1/2T ) = oP (1).

Using Lemma A.1(vii), we can easily show that

R2NT,3 =
1√
N

N∑
i=1

σ−2
i b′2X

′
iMF P̄ZiMFXib2 + oP (1) = OP (1).

Then R2NT,3 = oP (1) by the Cauchy-Schwarz inequality and we have

R2NT =
1√
N

N∑
i=1

σ−2
i b′2X

′
iMF P̄ZiMFXib2 + oP (1). (B.5)

For R3NT , we have

R3NT =
1√
N

N∑
i=1

σ−2
i λ′i(F − F̂H

−1
)′MF̂ P̄ZiMF̂ (F − F̂H

−1
)λi

=
1

T
√
N

N∑
i=1

σ−2
i λ′i(F − F̂H

−1
)′MF̂Zi

(
T−1Z ′iZi

)−1
Z ′iMF̂ (F − F̂H

−1
)λi

− 1

T
√
N

N∑
i=1

σ−2
i λ′i(F − F̂H

−1
)′MF̂ iT i

′
TMF̂ (F − F̂H

−1
)λi

≡ R3NT,1 −R3NT,2, say.

Using Lemma A.1(iv) yields

R3NT,1 =
T√
N

N∑
i=1

σ−2
i λ′ic

′
1

(
T−1Z ′iZi

)−1
c1λi +

2T√
N

N∑
i=1

σ−2
i λ′ic

′
1

(
T−1Z ′iZi

)−1
ci2λi

+
T√
N

N∑
i=1

σ−2
i λ′ic

′
i2

(
T−1Z ′iZi

)−1
ci2λi

≡ R3NT,11 +R3NT,12 +R3NT,13, say,

where c1 = OP (||β̂−β||)+OP (δ−2
NT ) and ci2 = −Z ′iMF̂

γNT

NT

∑N
k=1Xkδkλk (Λ′Λ/N)

−1
. Using

Lemma A.2, we can readily show that R3NT,11 = OP (TN1/2δ−4
NT ) = oP (1). Using Lemma
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A.1(vii), we can show that

R3NT,13 =
1

NT

N∑
i=1

σ−2
i

(
1

N

N∑
k=1

aikXkδk

)′
MF̂PZiMF̂

(
1

N

N∑
k=1

aikXkδk

)

=
1

NT

N∑
i=1

σ−2
i

(
1

N

N∑
k=1

aikXkδk

)′
MFPZiMF

(
1

N

N∑
k=1

aikXkδk

)
+ oP (1)

= OP (1).

Then R3NT,12 = oP (1) by the Cauchy-Schwarz inequality and

R3NT,1 =
1

NT

N∑
i=1

σ−2
i

(
1

N

N∑
k=1

aikXkδk

)′
MFPZiMF

(
1

N

N∑
k=1

aikXkδk

)
+ oP (1).

By the same token, we can obtain

R3NT,2 =
1

NT

N∑
i=1

σ−2
i

(
1

N

N∑
k=1

aikXkδk

)′
MFLMF

(
1

N

N∑
k=1

aikXkδk

)
+ oP (1).

It follows that

R3NT =
1

NT

N∑
i=1

σ−2
i

(
1

N

N∑
k=1

aikXkδk

)′
MF P̄ZiMF

(
1

N

N∑
k=1

aikXkδk

)
+ oP (1). (B.6)

For R4NT , by Lemma A.1(vii) we have

R4NT =
1

NT

N∑
i=1

σ−2
i δ′iX

′
iMF̂ P̄ZiMF̂Xiδi

=
1

NT

N∑
i=1

σ−2
i δ′iX

′
iMF P̄ZiMFXiδi + oP (1) = OP (1). (B.7)

For R8NT , R9NT and R10NT , by the Cauchy-Schwarz inequality and analogous arguments

as used above we obtain

R8NT =
1

NT

N∑
i=1

σ−2
i

(
D(F )−1 1

NT

N∑
k=1

Π′kXkδk

)′
X ′iMF P̄ZiMF

(
1

N

N∑
k=1

aikXkδk

)
+ oP (1),

(B.8)

R9NT = − 1

NT

N∑
i=1

σ−2
i

(
D(F )−1 1

NT

N∑
k=1

Π′kXkδk

)′
X ′iMF P̄ZiMFXiδi + oP (1), and

(B.9)

R10NT = − 1

NT

N∑
i=1

σ−2
i

(
1

N

N∑
k=1

aikXkδk

)′
X ′iMF P̄ZiMFXiδi + oP (1).

(B.10)

62



Combining (B.5)-(B.10) yields (B.2).

(iii) Now, we prove (B.3). For R5NT , we have

R5NT =
1√
N

N∑
i=1

σ−2
i ε′i(MF̂ −MF )P̄ZiMF̂Xi(β̂ − β) +

1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMF̂Xi(β̂ − β).

The first term in absolute value is bounded by {Γ1NT }1/2 × {R2NT }1/2 = oP (1) by the

Cauchy-Schwarz inequality, Lemma A.3(i), and (B.5). To show that the second term is

oP (1), it suffi ces to demonstrate that R5NT,1 ≡ N−1/2
∑N
i=1 σ

−2
i ε′iMF P̄ZiMF̂Xi is oP

(
γ−1
NT

)
by Lemma A.2. We further decompose R5NT,1 as follows

R5NT,1 =
1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMFXi +

1√
N

N∑
i=1

σ−2
i ε′iMF P̄Zi(MF̂ −MF )Xi

≡ R5NT,11 +R5NT,12, say.

Observe that E(R5NT,11) = 0 and by the repeated use of (A.7),

E ‖R5NT,11‖2 =
1

N

N∑
i=1

N∑
j=1

σ−2
i σ−2

j E
[
tr
(
MF P̄ZjMFXjX

′
iMF P̄ZiMFE

(
εiε
′
j

))]
=

1

N

N∑
i=1

σ−2
i E

[
tr
(
X ′iMF P̄ZiMF P̄ZiMFXi

)]
≤ 1

N

N∑
i=1

σ−2
i E [tr (X ′iXi)] =

c−1
σ

N

N∑
i=1

E ‖Xi‖2 = O (T ) .

It follows that R5NT,11 = OP (
√
T ) = oP

(
γ−1
NT

)
. By the Cauchy-Schwarz inequality and

Lemmas A.1(vii) and A.2,

‖R5NT,12‖ ≤
c−1
σ√
N

∥∥MF̂ −MF

∥∥ N∑
i=1

∥∥ε′iMF P̄Zi
∥∥ ‖Xi‖

≤ c−1
σ

∥∥MF̂ −MF

∥∥( N∑
i=1

∥∥ε′iMF P̄Zi
∥∥2

)1/2(
1

N

N∑
i=1

‖Xi‖2
)1/2

= OP (T−1/2 +N−1/2)OP (N1/2)OP (T 1/2) = oP
(
γ−1
NT

)
.

It follows that R5NT,1 = oP
(
γ−1
NT

)
and R5NT = oP (1) .

For R6NT , we write

R6NT =
1√
N

N∑
i=1

σ−2
i ε′i(MF̂ −MF )P̄ZiMF̂Fλi +

1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMF̂

(
F − F̂H−1

)
λi.

By the Cauchy-Schwarz inequality, the first term in absolute value is bounded by {Γ1NT }1/2×

{R3NT }1/2 = oP (1) by Lemmas A.3(i) and (B.6). Denoting the second term as R6NT,1, we
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decompose it as follows

R6NT,1 =
1√
N

N∑
i=1

σ−2
i ε′iMF P̄Zi

(
MF̂ −MF

) (
F − F̂H−1

)
λi

− 1√
N

N∑
i=1

σ−2
i ε′iMF P̄ZiMF

(
F − F̂H−1

)
λi

≡ R6NT,11 −R6NT,12, say.

By Lemmas A.1(i) and (vii) and Lemma A.2,

‖R6NT,11‖ = tr

[
1√
N

N∑
i=1

σ−2
i λiε

′
iMF P̄Zi

(
MF̂ −MF

) (
F − F̂H−1

)]

≤
∥∥∥∥∥ 1√

N

N∑
i=1

σ−2
i λiε

′
iMF P̄Zi

∥∥∥∥∥∥∥MF̂ −MF

∥∥∥∥∥F − F̂H−1
∥∥∥

= OP (1)OP (δ−1
NT )OP (T 1/2δ−1

NT ) = oP (1).

By Lemma A.3(v), R6NT,12 = Γ5NT = oP (1). It follows that R6NT,1 = oP (1) and R6NT =

oP (1) . Analogously to the analysis of R5NT , we can show that R7NT = oP (1) . This com-

pletes the proof of (B.3).

Proposition B.2 Under the conditions of Theorem 3.3, JNT,2 = oP (1).

Proof. By a geometric expansion, 1/σ̂2
i − 1/σ2

i = −(σ̂2
i − σ2

i )/σ
4
i + (σ̂2

i − σ2
i )

2/(σ4
i σ̂

2
i ).

It follows that

JNT,2 = − 1√
N

N∑
i=1

(
ε̂′iP̄Zi ε̂i − ε′iQiεi

) σ̂2
i − σ2

i

σ4
i

+
1√
N

N∑
i=1

(
ε̂′iP̄Zi ε̂i − ε′iQiεi

) (σ̂2
i − σ2

i

)2
σ4
i σ̂

2
i

≡ −JNT,21 + JNT,22, say.

Using ε̂i = MF̂εi+MF̂Xi(β− β̂) +MF̂Fλi+MF̂Xi(βi−β), Lemmas A.1(vii) and A.2, and

the conditional Markov inequality, we can show that under (3.2),

N−1
N∑
i=1

(
ε̂′iP̄Zi ε̂i − ε′iQiεi

)2
= N−1

N∑
i=1

(
ε′iMF P̄ZiMFεi − ε′iQiεi

)2
+ oP (1)

= 4N−1
N∑
i=1

 ∑
1≤t<s≤T

εitεishi,ts

2

+ oP (1) = OP (1) .(B.11)
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Then by Lemma A.5, (B.11), Assumption A4, we have

JNT,22 ≤
max1≤i≤N

∣∣σ̂2
i − σ2

i

∣∣2
min1≤i≤N σ4

i σ̂
2
i

1√
N

N∑
i=1

∣∣ε̂′iP̄Zi ε̂i − ε′iQiεi∣∣
≤
√
N max1≤i≤N

∣∣σ̂2
i − σ2

i

∣∣2
min1≤i≤N σ4

i σ̂
2
i

[
1

N

N∑
i=1

(
ε̂′iP̄Zi ε̂i − ε′iQiεi

)2]1/2

=
√
NOP (υ2

NT +NT−2 + γ2
NT + δ−2

NTN
1/ϑ)OP (1) = oP (1).

For JNT,21, we have JNT,21 =
∑10
l=1 JNT,21l, where

JNT,211 =
1√
N

N∑
i=1

σ−4
i (ε̂′iP̄Zi ε̂i − ε′iQiεi)(T−1TSSi1 − σ2

i ), and

JNT,21l =
1√
N

N∑
i=1

σ−4
i (ε̂′iP̄Zi ε̂i − ε′iQiεi)(T−1TSSil) for l = 2, 3, . . . 10,

where TSSil, l = 1, ..., 10, are defined after (A.11). Following the same steps in the proof

of Proposition B.1 and the analysis for TSSil in the proof of Lemma A.5, we can show that

JNT,21l = oP (1) for all l = 1, ..., 10.

Proof of Theorem 3.4.

Let P ∗ denote the probability conditional on the original sampleWNT ≡ {(Yi, Xi) , i = 1, ..., N}

and E∗ and Var∗ denote the expectation and variance with respect to P ∗. Let OP∗ (·) and

oP∗ (·) denote the probability order under P ∗, for example, aNT = oP∗ (1) if for any ε > 0,

P ∗ (|aNT | > ε) = oP (1) . Note that aNT = oP (1) implies that aNT = oP∗ (1) .

Observing that Y ∗it = β̂
′
Xit+λ̂

′
iF̂t+ε

∗
it, the null hypothesis is maintained in the bootstrap

world. GivenWNT , ε
∗
it are independent across i, and are independent of Xjs, λ̂j , and F̂s for

all i, t, j, s, because the latter objects are fixed in the bootstrap world. Let ε∗i ≡ (ε∗i1, ..., ε
∗
iT )′.

Let Ft (ε∗i ) denote the σ-field generated by {ε
∗
it, ..., ε

∗
i1}. For each i, {ε∗it,Ft (ε∗i )} is also an

m.d.s. such that E∗ (ε∗it|Ft−1 (ε∗i )) = E∗ (ε∗it) = T−1
∑T
t=1

(
ε̂it − ε̂i

)
= 0, and E∗[(ε∗it)

2 |Ft−1 (ε∗i )] =

E∗[(ε∗it)
2
] = T−1

∑T
t=1

(
ε̂it − ε̂i

)2
= σ̂2

i . Under either H0 or H1,NT , Lemma A.5 indicates

that σ̂2
i is uniformly bounded and bounded away from 0 with probability approaching 1 as

(N,T )→∞. In addition, letting ξ∗it ≡ ε∗it − σ̂
2
i , we can verify that E

∗ |ξ∗it|
ϑ exists provided

E |ξit|
ϑ exists and 1

NTϑ/2

∑N
i=1

∑
1≤t1,t2,...,tϑ≤T E∗

(
ξ∗it1ξ

∗
it2 ...ξ

∗
itϑ

)
= OP∗ (1) by the serial

independence of {ε∗it, t ≥ 1} and thus {ξ∗it, t ≥ 1} . Thus we have verified that Assumptions

A2(i)-(ii) and A3(i)-(iii) are satisfied in the bootstrap world.

Note that the bootstrap analogue of {Xit, λi, Ft} is {Xit, λ̂i, F̂t} which is known given

WNT . The conditions on {Xit} alone in Assumptions A1(i), (iv) and (v) remain satisfied in
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the bootstrap world. Under either H0 or H1,NT , using Lemmas A.1 and A.2 we can show

that T−1
∑T
t=1 F̂tF̂

′
t = ΣF+oP (1) , N−1Λ̂′Λ̂ = ΣΛ+oP (1) , 1

Nϑ/2

∑
1≤i1,i2,...,iϑ≤N ζ̂i1 ...ζ̂iϑ =

OP (1) , and D(F̂ ) = D (F )+oP (1) . This indicates that the other conditions in Assumption

A1 are also met in the bootstrap world. Note that Assumption A2(ii) is mainly needed to

simplify the calculation of the asymptotic variance of JNT in the proof of Proposition B.1.

By the above discussions, we can verify that Lemmas A.1, A.3, and A.4 remain valid in

the bootstrap world by replacing {F, F̂ ,H,Hi, εi, λi, β, β̂, σ
2
i , δi, γNT }, OP (·) and oP (·)

by {F̂ , F̂ ∗, H∗, H∗i , ε
∗
i , λ̂i, β̂, β̂

∗
, σ̂2

i , 0, 0}, OP∗ (·) and oP∗ (·) , respectively, where F̂ ∗ ≡

(F̂ ∗1 , ..., F̂
∗
T )′, H∗ ≡ (Λ̂′Λ̂/N)(F̂ ′F̂ ∗/T )V

∗−1
NT , V ∗NT satisfies [ 1

NT

∑N
i=1(Y ∗i − Xiβ̂

∗
)(Y ∗i −

Xiβ̂
∗
)′]F̂ ∗ = F̂ ∗V ∗NT , Y

∗
i ≡ (Y ∗i1, ..., Y

∗
iT )′, and H∗i ≡ MF̂ (PZi− L)MF̂ . The results in

Lemmas A.2 and A.5 now become β̂
∗
− β̂ = OP∗

(
N−1/2T−1/2

)
, and max1≤i≤N |σ̂∗2i −σ̂2

i | =

OP∗(vNT + N1/2T−1 + δ−1
NTN

1/(2ϑ)), where σ̂∗2i ≡ T−1TSS∗i ≡ T−1
∑T
t=1(ε̂∗it − ε̂

∗
i )

2, ε̂∗it ≡

Y ∗it − β̂
∗′
Xit − λ̂

∗′
i F̂
∗
t , and ε̂

∗
i ≡ T−1

∑T
t=1 ε̂

∗
it.

Let R̄∗2NT , J
∗
NT , B

∗
NT , V

∗
NT , B̂

∗
NT , and V̂

∗
NT denote the bootstrap analogue of R̄

2
NT , JNT ,

BNT , VNT , B̂NT , and V̂NT , respectively. Then J∗NT ≡ (
√
NTR̄∗2NT − B∗NT )/

√
V ∗NT and

J̄∗NT ≡ (
√
NTR̄∗2NT − B̂∗NT ) /

√
V̂ ∗NT . As in the proof of Theorem 3.3, we have

J∗NT =
1√
N

N∑
i=1

ε̂∗′i P̄Zi ε̂
∗
i

σ̂∗2i
− 1√

N

N∑
i=1

T∑
t=1

ε∗2it h
∗
i,tt

σ̂∗2i

=
1√
N

N∑
i=1

σ̂−2
i (ε̂∗′i P̄Zi ε̂

∗
i − ε∗′i Q∗i ε∗i ) +

1√
N

N∑
i=1

(ε̂∗′i P̄Zi ε̂
∗
i − ε∗′i Q∗i ε∗i )(σ̂∗−2

i − σ̂−2
i )

≡ J∗NT,1 + J∗NT,2, say,

where Q∗i ≡ diag
(
h∗i,11, h

∗
i,22, . . . , h

∗
i,TT

)
, h∗i,ts is the (t, s) element of H∗i . We prove the

theorem by showing that: (i) J∗NT,1
d→ N(0, V0) conditional on WNT , (ii) J∗NT,2 = oP∗(1),

(iii) B̂∗NT = B∗NT + oP∗(1), and (iv) V̂ ∗NT = V ∗NT + oP∗(1).

We only outline the proof of (i) as the proofs of other parts are analogous to those in the

proof of Theorem 3.3. By (2.8), we have

J∗NT,1 = R∗1NT +R∗2NT +R∗3NT + 2R∗5NT + 2R∗6NT + 2R∗8NT ,

whereR∗lNT is the bootstrap analogue ofRlNT for l = 1, 2, 3, 5, 6, 8, e.g., R∗1NT ≡ N−1/2
∑N
i=1 σ̂

−2
i (ε∗′i MF̂∗

P̄ZiMF̂∗ε∗i − ε∗′i Q∗i ε∗i ). Analogously to the proof of Proposition B.1, we can show that

R∗lNT = oP∗ (1) for l = 2, 3, 5, 6, 8, and R∗1NT =
∑T
t=2 Z

∗
NT,t + oP∗ (1) , where Z∗NT,t ≡

2N−1/2
∑N
i=1 σ̂

−2
i

∑t−1
s=1 ε

∗
itε
∗
ish
∗
i,ts. Let F∗NT,t denote the σ-field generated by {WNT , ε

∗
·t,

..., ε∗·1} where recall ε
∗
·t ≡ (ε∗1t, ..., ε

∗
Nt)
′. Then {Z∗NT,t, F∗NT,t} is an m.d.s. because E

(
Z∗NT,t|F∗NT,t−1

)
≡
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2N−1/2
∑N
i=1 σ̂

−2
i

∑t−1
s=1 ε

∗
ish
∗
i,tsE(ε∗it|F∗NT,t−1) = 0. So we can continue to apply the martin-

gale CLT in Pollard (1984, p. 171) by showing that

Z∗ ≡
T∑
t=2

EF∗NT,t−1

∣∣Z∗NT,t∣∣4 = oP∗ (1) , and
T∑
t=2

Z∗2NT,t − V ∗NT = oP∗(1). (B.12)

where EF∗NT,t−1
denotes expectation conditional on F∗NT,t−1. By direct calculations and the

bootstrap version of Lemma A.4,

E∗ (Z∗) =
48

N2

T∑
t=2

N∑
i=1

N∑
j=1,j 6=i

t−1∑
s=1

t−1∑
r=1

h∗2i,tsh
∗2
j,tr +

48

N2

T∑
t=2

N∑
i=1

t−1∑
s=1

t−1∑
r=1,r 6=s

σ̂−4
i h∗2i,tsh

∗2
i,trE

∗ (ε∗4it )
+

16

N2

T∑
t=2

N∑
i=1

t−1∑
s=1

σ̂−8
i h∗4i,tsE

∗ (ε∗4is )E∗ (ε∗4it )
= oP (1)

where we use the fact that E∗
(
ε∗4it
)

= T−1
∑T
t=1

(
ε̂it − ε̂i

)4
= T−1

∑T
t=1 ε

4
it + oP (1) uni-

formly in i and σ̂−2
i ≤ 2σ−2

i with probability arbitrarily close to 1 as (N,T )→∞ by Lemma

A.5. It follows that Z∗ = oP∗ (1) . Now,
∑T
t=1E

∗(Z∗2NT,t) = 4N−1
∑T
t=1

∑N
i=1

∑t−1
s=1 h

∗2
i,ts =

V ∗NT . In addition, we can show by straightforward moment calculations that E
∗(
∑T
t=2 Z

∗2
NT,t)

2 =

V ∗2NT + oP (1) . Thus Var∗(
∑T
t=2 Z

∗2
NT,t) = oP (1) and

∑T
t=2 Z

∗2
NT,t − V ∗NT = oP∗(1). �
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