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A FLEXIBLE PAYMENT SCHEME IN HOTEL BUSINESS

Abstract

by Ciwei DONG

This paper introduces a flexible payment scheme in the hotel business. When a

customer makes a reservation for a hotel room, the hotel offers an optional payment

scheme (Scheme O). If the customer chooses the Scheme O, he/she makes a non-

refundable down payment immediately. Meanwhile, the hotel offers a discount if the

customer actually checks in to the hotel. Thus, the payment at check-out time is

much lower than the original rental rate. Alternatively, if the customer rejects the

Scheme O, the reservation is made under a traditional Scheme (Scheme T), where no

down payment is required. However, the customer choosing Scheme T must make a

full payment without any discount when he checks out from the hotel. The value of

Scheme O depends on customers’ cancelation or no-show due to the competition from

nearby hotels. We consider two scenarios: 1). the hotel knows the expected value

of competitor’s rental rate (deterministic case); 2). the hotel knows the stochastic

distribution of competitor’s rental rate (stochastic case). We have obtained optimal

solutions for Scheme O for both deterministic and stochastic cases. Moreover, we

also study the interaction between designing a flexible payment scheme and pricing

on the rental rate of hotel room.

Key words: pricing; payment scheme; revenue management; hotels
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Chapter 1

Introduction

Nowadays, reservations are widely used in hospitality industries. Customers can

make reservations for hotel rooms through Internet or phone calls before his/her

check-in date. For example, if a customer wants to make a reservation through

Internet, he can go to his favorite hotel’s web-site and make a reservation. Customers

can also make reservations through some agencies’ web-site (such as www.zuji.com,

www.booking.com, etc.).

Reservations are often accepted freely by hotels who normally make some can-

celation policies. According to some hotel’s cancelation policies, customers may be

charged with a certain amount of money known as penalty if they cancel their reser-

vations or they fail to show up on their check-in date. However, Some hotels don’t

charge customers (zero penalty) for their cancelation or no shows. Thus, reservations

provide a form of insurance that customers can ‘lock in’ hotel rooms for their future

check-in. Some price-sensitive customers would cancel their reservations or just never

show up if they find out other hotel rooms with a lower price (Quan 2002). Mean-

while, some hotels would ask customers to make a non-refundable full down payment

at the time of making a reservation for a promotion service, e.g. discount rate.

1
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Our motivation for this paper comes from some questions that are based on the

situation we mention above: 1) how should hotels handle the risk of cancelations or

no shows? 2) should hotels always charge customers a full down payment for their

promotion service, i.e. offering a discount rate? 3) how many discounts should hotels

offer to customers for their promotion service? So far, we notice that few literatures

discuss such kind of problems.

We explore a scenario where a hotel introduces a flexible payment scheme (we

call it Scheme O). According to the price the hotel announces, customers make reser-

vations through Internet or phone calls for their single-night stay. If the customer

chooses the Scheme O, he/she should make a down payment when he makes the

reservation. This down payment will not be returned to the customer if he cancels

his reservation or he does not show up eventually. However, if the customer checks

in to the hotel, he/she can enjoy some discounts and pays for his room at a lower

rental rate when he/she checks out. If the customer does not choose Scheme O, the

reservation is made under a traditional scheme (we call it Scheme T) where no down

payment is required. However, the customer needs to make full payment without any

discounts when he checks out from the hotel.

Meanwhile, the hotel faces competitions from other nearby hotels with a similar

grade. Customers may cancel their reservations or not show up eventually if they

find a lower rental rate from other hotels. This is possible even if customers have

already made down payments under scheme O, as long as the rate offered by the

hotel’s competitors is lower enough (for example lower than the remaining amount

due). Our goal is to find an optimal payment scheme for the hotel to maximize its

revenue.

We first study the case where a hotel knows the expected value of its competitor’s
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rental rate. We call this case the deterministic case. Our results show that two-

payment scheme policy is optimal for the hotel. In other words, the hotel should offer

both optional payment scheme (Scheme O) and traditional payment scheme (Scheme

T) to customers. In addition, full down payment is optimal for Scheme O when there

is no competition for the hotel from other nearby hotels. However, if the hotel faces

competitions from other hotels, full down payment scheme may not be optimal for

the hotel.

In the other case, we assume that the hotel knows the distribution of his com-

petitor’s rental rate (we call this case stochastic case). Our results show that two-

payment scheme is still optimal for the hotel even if his competitor’s rental rate is

also stochastic. However, full down payment may not be optimal for the hotel under

this stochastic case.

The remainder of this paper is organized as follows. Chapter 2 provides a brief

review of literatures. Payment scheme based on known expected value of the com-

petitor’s rental rate and stochastic distribution of competitor’s rental rate are studied

in Chapter 3 and Chapter 4, respectively. Chapter 5 presents the interaction between

designing a flexible payment scheme and pricing on the rental rate of hotel room.

And Chapter 6 concludes this paper and discusses some possible directions for fur-

ther research.



Chapter 2

Literature Review

There are three main streams of literatures related to our paper: literatures related

the hotel industry, customer choice behavior and reservations.

For literatures related to the hotel industry, Liberman and Yechiali(1978) con-

sider a hotel problem of finding an optimal over-booking strategy to maximize the

hotel’s expected total net profit as well as its expected discounted net profit. They

obtained an optimal strategy of allocating rooms with over-booking problem based

on the inventory level and new requests. Bitran and Mondshein (1995) study opti-

mal policies for renting hotel rooms that are given a fixed capacity to various classes

of customers arriving in a stochastic and dynamic way from different market seg-

ments within a finite horizon. They consider how to maximize the hotel’s revenue

by intelligently matching capacity with demand in a general order way from different

market segments, multiple types of rooms with the possibility of downgrading, and

multiple-night stays. Bitran and Gilbert (1996) present a realistic model of the hotel

reservation problem with the assumption of all customers arriving simultaneously on

the targeted booking date. And they formalize the relationship between the reserva-

tion control problem at the tactical level and the capacity allocation problem at the

4
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operational level with customer’s single-night stay in single-room. Optimal solution

policies have been derived which are consistent with the intuitive approaches that are

used in practices. Ding et al.(2009) study the optimal pricing policy for hotels with a

single type of rooms when customers requiring multiple-day stays. Their results show

that hotels should substantially raise the rental rate for the high demand days while

lowering the rental rate for their neighboring days with lower demand.

Schwartz and Cohen (2003) extend the basic model proposed by Bodily and

Weatherford (1995) to the hotel revenue management problem with group discount

room rates, and address questions like how many discounts a hotel can offer to a group

of people while still maintaining the hotel’s contribution margin. In recent group dis-

count research, Choi (2006) develops a model to evaluate the group profitability for

hotels with its objective to decide when to accept group customers and how much

the minimum group rate should be. Hanks et al. (1992) and Boger et al.(1999)

use empirical research methods to study the problem of discounting business rates

among lodging companies. Koide and Ishii (2005) consider a problem for hotel rooms

allocation with early discount, cancelations and overbooking, where customers can

book rooms at a discounted price if they make reservations before a certain deadline.

They model the expected total sales function and prove that their objective func-

tion is unimodal with respect to the number of rooms allocated for early discount as

well as to the number of overbooking, under a condition. They also obtain a range

where optimal solutions exist. Their work is an capacity allocation problem while

our work focuses on the pricing strategy and our objective is to determine optimal

payment scheme. Besides, Rothstein (1974), Ladany(1976), Varda Liberman and

UriYechiali(1978) also address the the hotel reservation problem.

In recent years, more and more researchers study the problem related customer
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behavior. Shen and Su (2007) conducted a recent survey on customer behavior mod-

eling in revenue management. There is another set of papers that focus on how a

company sets the optimal pricing strategy in the presence of strategic customers.

Elmaghraby (2008) designs a structure of the optimal markdown mechanism in the

presence of strategic customers with multi-unit demands. These people compare the

difference of seller’s profit under the optimal markdown prices and the optimal single

price. Aviv and Pazgal (2008) study the optimal pricing policy with a finite inventory

facing strategic customers and myopic customers. They consider the problem where

seller offers two classes of pricing strategies: contingent and announced fixed-discount.

They find contingent pricing policies perform essentially the same as announced fixed-

discount pricing policies for myopic consumers. However, under strategic consumer

behavior, announced pricing policies can be more profitable to the seller than con-

tingent pricing policies. Liu and van Ryzin (2008) study the problem whether it is

optimal for a company to create rationing risk by deliberately under-stocking prod-

ucts. They consider a two-period model where customers have heterogeneous valu-

ations for the firm’s products and face declining prices over periods, and customers

behave strategically to decide immediate purchase or delay their purchases. Su and

Zhang (2008) address the impact of strategic customer behavior on supply chain per-

formance. The seller initially charges a regular price, but after demand is realized,

they may salvage the leftover at a lower salvage price. Customers anticipate future

sales and decide to purchase at a regular price or purchase at a salvage price to max-

imize their expected surplus. Lai et al. (2009) examine the impact of posterior price

matching on profit with strategic consumers. The seller promises to reimburse the

price difference to consumers who buy a item before the seller marks it down. Cachon

and Swinney (2009) also study the problem where retailer sells a product with uncer-

tain demand over a finite selling season in the presence of strategic consumers. They
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discuss the value of quick response and demonstrate that which is more profitable

to the retailer in the presence of strategic consumers. Su and Zhang (2009) analyze

the role of product availability effect on the customer purchase behavior. The seller

sets an observable price and an unobservable stocking quantity, consumers determine

whether to visit the seller and incur sunk costs if they do. The authors analyze two

strategies: commitment and availability guarantees. Their results show that the seller

can improve profits by using a combination of commitment and availability guaran-

tees. Yin et al. (2009) also focuses on the aspect of inventory-related information in

the presence of strategic consumers. Seller uses one of two inventory display formats:

display all and display one at a time. Two classes of customers (one with a higher

valuation and the other with a lower valuation) decide the time of purchase strategi-

cally. Su (2010) proposes the optimal pricing policies with speculators and strategic

consumers, customers may strategically determine when to purchase, and they may

also decide whether to purchase from the firm or from speculators.

One of the early papers considering granting the buyers reservation right is dis-

cussed by Png (1989). The price strategy is set as a form of reservation that induces

high valuation customer to exercise their purchase option while those with lower val-

uation do not exercise. Biyalogorsky and Gerstner (2004) address the idea of using

‘contingent pricing’ to reduce price risks, where a buyer has an option to reserve the

item at a lower price that will obligate him to buy it if the seller has not sold the

item in a specific period. They argue that ‘contingent pricing’ is beneficial to both

the seller and the buyer. Gallego and Kou (2008) address the concept of ‘callable

product’, which is a unit of item sold to the self-selected low-fare customers who

willingly grant the seller the option to ‘call’ the item at a pre specified recall price.

The idea is similar to the reservation option, where the seller has the right to ‘call’
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back a item from the ‘callable’ agreement customer and sell it to the high price cus-

tomers. Alexandrov and Lariviere (2008) study the problem whether a restaurant

should offer a reservation right to customers. They show that a restaurant will never

offer reservations when the market size is known. For mark-size uncertainty case,

they develop conditions under which reservations are recommended. Recently, El-

maghraby et al. (2009) analyze two operating regimes: “no reservation regime” and

“reservation regime”. The reservation regime offers customers an extra option than

no reservation regime. Under the reservation regime, customers have an option to

reserve an item at a clean price, while who should obligate to purchase the item if

it remains unsold at the end of the selling season. They show that more purchasing

options do not necessarily benefit customers.

The most related paper to ours is Quan (2002). He show that for price-sensitive

customers, reservations can provide a price insurance that customers can use to ‘lock

in’ a lower price for the future delivery of the room. While those customers may cancel

their reservation if they find other hotels offering a lower price. He suggests that in

order to redeem the lost of cancelation, hotels may offer two reservation choices to

customers. One is standard reservation, whereby the price is quoted for a specific

check-in date, and that price includes the price of the reservation option; another

choice requires the guest to make the non-refundable price for the room at the time

the reservation is made. And this non-refundable price does not include the price

of the reservation option (which is similar to that the hotel offers a discount rate to

customers). Our paper differs from the model developed by this paper in the following

ways. First this paper suggests to use Black-Scholes option-pricing model to calculate

the reservation price as a form of discount, while our paper models the discount as

a decision variable base on the customer choice behavior model. Secondly, Quan’s

paper suggests that for the second reservation choice, hotel should let customers
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pay full down payment when making reservations, while our paper models the down

payment as a decision variable. And we obtain optimal solutions for these two decision

variables.



Chapter 3

Deterministic Case

In this chapter, we study the payment scheme problem based on the situation where

the hotel knows the expected value of its competitor’s rental rate for the same period.

3.1 Problem Formulation

At first, we summarize the notations used in this chapter in Table 3.1.

Where in Table 3.1, i ∈ {T, O}, represents the traditional scheme and optional

scheme, respectively.

We consider a single-period problem. Let p ≥ 0 denotes the full rental rate for

a room for the entire period. Let x ≥ 0 and y ≥ 0 denote the down payment and

discount, respectively, for scheme O. We assume that x + y ≤ p. A customer who

chooses scheme O pays p− x− y upon checking out from the hotel. A customer who

chooses scheme T pays p upon checking out from the hotel. Table 3.2 illustrates the

payment schemes.

Suppose that the expected value of a rental rate for a similar room offered by the

hotel’s competitors in the same period is pc ≥ 0. Let dT and dO denote the customer’s

10
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Table 3.1: Notations for deterministic case (in Order of Appearance)

p full rental rate for a room
x down payment for scheme O
y discount for scheme O
pc lowest rental rate for a similar room offered by competitors
di customer’s payoff if he selects the hotel under scheme i instead

of the competitor
λ demand of the hotel
a base demand of the hotel
b coefficient of price sensitivity
U additional utility from choosing scheme O instead of scheme T
θ customer’s preference for down payment
α coefficient of customer’s preference for down payment
z the probability that a customer choose scheme O
λo

i original demand of scheme i
e coefficient of cancellation probabilities due to competition
γ probability of no shows due to some other reasons i
λi actual demand of scheme i
f revenue of the hotel
V maximum revenue of the hotel

Table 3.2: Payment schemes of a hotel for deterministic case

Down payment Final payment
Scheme T 0 p
Scheme O x p− x− y

payoff for selecting the hotel, under schemes T and O respectively, instead of the other

competitors. These payoffs can be determined as follows.

dO = [(p− x− y)− pc]
+;

dT = [p− pc]
+.

We assume deterministic demand for the hotel. Let λ denote the demand of the
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hotel and it is modeled as follows.

λ = a− bp

Where a > 0 represents the base demand and b > 0 represents the sensitivity of

the demand to the hotel’s price. In order to ensure that λ > 0, we assume 0 < p < a
b
.

We can derive the customer’s additional utility U = y−θαx from choosing scheme

O instead of scheme T, where θ ∼ Unif [0, 1] and α ∈ [0, 1] are down-payment-

sensitivities coefficient. If U > 0, then the customer chooses scheme O, otherwise, he

chooses scheme T. Let z denotes the probability that a customer chooses scheme O

and it is can be determined as follows.

z = Pr{U > 0} = Pr{y − θαx > 0}

= Pr{θ <
y

αx
} = min{ y

αx
, 1}

If the discount is sufficient large or down payment is sufficient small (ie. y > αx),

all of the customers will choose scheme O. However, for the two payment scheme

problem, we assume z = y
αx
≤ 1. This customer utility model is similar to Cattani et

al. (2006).

Let λo
O and λo

T denote the number of customers who choose schemes T and O

respectively and they can be determined as follows.

λo
O = λ

y

αx

λo
T = λ(1− y

αx
).

We assume that the probability for a customer to cancel his reservation due to
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the hotel’s competition is proportional to his payoff. Under this assumption, the

probability of a cancelation due to the hotel’s competition under schemes T and O

are edT and edO respectively, where e is coefficient. Let γ denotes the probability of

no-shows due to some other reasons. We assume 0 ≤ edT ≤ 1, 0 ≤ edO ≤ 1, and

0 ≤ γ ≤ 1.

By taking into account of cancelations and no-shows, the actual demand λT ≥ 0

and λO ≥ 0 of schemes T and O, respectively, can be expressed as follows.

λT = λo
T [1− edT ]+(1− γ);

λO = λo
O[1− edO]+(1− γ).

Notice that z = y
αx

, where x is in the denominator. Thus, for the technical

convenience, we use z to replace y
αx

as well as use zαx to replace y in the following

discussions.

The revenue of the hotel can then be expressed as

f(x, z) = λT p + λO(p− zαx) + (λo
O − λO)x.

Our objective is to determine the maximum revenue V for the hotel by optimally

setting x, and z. This can be achieved through solving the following optimization

problem:

V = max
x,z
{f(x, z)} (3.1)
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subject to

x + zαx ≤ p;

z ≤ 1;

x, z ≥ 0.;

3.2 Solution and Analysis

Given pc, the customer’s payoffs dT and dO have different values as the hotel’s price

changes. So we divide the analysis of the Problem (3.1) into three different cases. In

section 3.2.1, we analyze the case of p ≤ pc, where dT = dO = 0, which means that

there is no competition between the hotel and other nearby hotels with a similar grade.

Whereas, when p > pc, the hotel faces competition from other hotels and dT = p−pc,

which means there is competition between scheme T and other hotels with a similar

grade. However, dO still has different values: it equals to 0 or p−x− zαx−pc, where

dO = 0 and dO = p − x − zαx − pc mean that there is no competition, and there is

competition, respectively, between scheme O and other hotels with a similar grade).

We analyze such problems in section 3.2.2 and 3.2.2 separately. Table 3.3 illustrates

these three different cases.

Table 3.3: Customer’s payoff for selecting the hotel under different cases

3.2.1 p ≤ pc 3.2.2 p > pc and p− x− zαx ≤ pc 3.2.2 p− x− zαx > pc

dT 0 p− pc p− pc

dO 0 0 p− x− zαx− pc

In every case, we use a sequential decision procedure to solve Problem (3.1): We

first assume z is fixed and find an optimal response for x. We denote this optimal
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value as x∗(z). We then plug x∗(z) into the objective function and reduces the number

of variables to one, e.g. z. After that, we obtain an optimal value z∗ for z.

3.2.1 The Hotel Faces No Competitions

In this case, we assume p ≤ pc, dT = dO = 0, and there is no competition between

the hotel and other nearby hotels with a similar grade. Then,

f(x, z) = λT p + λO(p− zαx) + (λo
O − λO)x;

= λ
{

(1− z)(1− γ)p + z(1− γ)(p− zαx) + zγx
}

= λ
{

(1− γ)p + z[γ − (1− γ)zα]x
}

(3.2)

Step 1: Obtain optimal value x∗(z) for down payment x

Lemma 3.1. Given z, the optimal down payment value x∗(z) can be obtained through

maximizing f(x, z) over x in Equation (3.2).

x∗(z) =





p
1+zα

if γ > (1− γ)zα.

0 Otherwise;

Proof. See Appendix.

Lemma 3.1 indicates that for any given z, if the hazard rate is large enough (e.g.

γ > (1 − γ)zα), then the hotel should set a positive down payment. Otherwise, it

should just set the down payment equal to zero. The reason is that when the hazard

rate is large enough to make the sequestration of the down payment from customers

(γx) exceeds the lost of the discount ((1−γ)zαx)given to customers (γx > (1−γ)zαz),

a large down payment is optimal. Additionally, given z means that the percentage of
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customers who choose Scheme O is fixed. Then the hotel just needs to set the down

payment as large as possible for there is no competition from other hotels. Otherwise,

the lowest down payment is optimal for the hotel.

Since x = 0 means that hotel only offer Scheme T for the customer, then we just

consider the case when x∗(z) = p
1+zα

in the following Step.

Step 2: Obtain optimal value z∗ for ratio z

Plugging x∗(z) in lemma 3.1 into f(x, z) in Equation (3.2), the optimization problem

(3.1) becomes a maximization problem over a single variable z.

max
z
{f(x∗(z), z)} (3.3)

subject to

(1− γ)zα < γ;

0 ≤ z ≤ 1.

Solving the problem (3.3), we can obtain optimal value z∗ as follows.

Lemma 3.2. Maximizing the problem (3.3) over z, the optimal ratio z∗ can be ob-

tained as follows

z∗ =





1
α
√

1−γ
− 1

α
if γ < 1− 1

(1+α)2
.

1 Otherwise;

Proof. See Appendix.



CHAPTER 3. DETERMINISTIC CASE 17

Lemma 3.2 suggests an optimal ratio for the hotel regarding the Scheme O. We

can observe that the ratio z∗ increases in γ. If γ ≥ 1 − 1
(1+α)2

, then z = 1, which

means that the hotel should set a high discount in order to attract all customers to

choose Scheme O under a high hazard rate situation (eg.γ ≥ 1− 1
(1+α)2

). Additionally,

Lemma 3.2 indicates that z∗ > 0 as long as γ < 1. And z = 0 means that the hotel

only offers Scheme T or sets an extremely high down payment to keep all customers

staying at Scheme T. However, the later case is meaningless for the hotel. Thus, we

can have the following strategy for the hotel.

Corollary 3.1. It is optimal for the hotel to offer flexible payment scheme to cus-

tomers when there is no competition from other hotels.

We formally summarize the results obtained from the above analysis in the fol-

lowing theorem.

Theorem 3.1. If there is no competition for the hotel,

(1) Lemma 3.1 and 3.2 solve the problem (3.1);

(2) It is optimal for the hotel to offer a flexible scheme with full down payment to

customers using z∗ and x∗(z∗).
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Figure 3.1: The feasible region of (x, z) for the competition case. Region R1:
p−pc ≤ x+zαx ≤ p; 0 ≤ z ≤ 1; x ≥ 0, Region R2: x+zαx ≤ p−pc; 0 ≤ z ≤ 1; x ≥ 0.

3.2.2 When the Hotel Faces Competition from Other Hotels

All analysis in section 3.2.1 is based on the condition of p ≤ pc. However, if p is larger

than the expected value of the hotel’s competitor’s rental rate pc, then the results in

the section 3.2.1 are no longer optimal. In section 3.2.2 we solve the problem when

p > pc.

If p > pc, then dT = p− pc, but dO may be equal to 0 or p− x− zαx− pc. So we

separate the analysis into Case 1 and Case 2. In Case 1, we consider p−x−zαx ≤ pc,

when there is competition between Scheme T and other nearby hotels and there is no

competition between Scheme O and other nearby hotels. In Case 2, we consider the

case p − x − zαx > pc, when there is competition from other hotels in both Scheme

T and O.

Figure 3.1 shows the feasible region of (x, z) for the competition case. Region R1

(p− pc ≤ x + zαx ≤ p; 0 ≤ z ≤ 1; x ≥ 0) corresponds to the case where competition

is only in Scheme T, and the region where competition exists both in Scheme T and

O is represented by R2 (x + zαx ≤ p− pc; 0 ≤ z ≤ 1; x ≥ 0).
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Case 1: Competition exists only in Scheme T

In this section, we consider the case where p − x − zαx ≤ pc. Then we can have

dT = p − pc, dO = 0, where competition only exists in Scheme T and the hotel faces

competition from other hotels with a similar grade. But there is no competition from

other hotels in Scheme O. Then we can have

f(x, z) = λT p + λO(p− zαx) + (λo
O − λO)x;

= λ
{

(1− z)[1− e(p− pc)](1− γ)p + z(1− γ)(p− zαx) + zγx
}

= λ
{

(1− γ)p− (1− z)e(p− pc)(1− γ)p + z[γ − (1− γ)zα]x
}

(3.4)

Then optimization problem (3.1) can be modeled as below:

max
x,z|(x,z)∈R1

{f(x, z)} (3.5)

Step 1: Obtain optimal value x∗(z) for down payment x

Lemma 3.3. Given z, the optimal value x∗(z) of down payment x is as follows, which

maximizes f(x, z) in Equation (3.4).

x∗(z) =





p
1+zα

if γ > (1− γ)zα.

p−pc

1+zα
Otherwise;

Proof. See Appendix.

Lemma 3.3 indicates that for any given z, if the hazard rate is large enough (eg.

γ > (1−γ)zα), then the hotel should set a full down payment; otherwise it should just
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set the down payment equal to its lower bound. The reason is that when the hazard

rate is large enough to make the sequestration of the down payment from customer

(γx) exceeds the lost of the discount ((1−γ)zαx)given to customer (γx > (1−γ)zαz),

upper bound of down payment (x = p− zαx) is optimal; otherwise, the lower bound

of down payment (x = p− zαx− pc) is optimal for the hotel.

Notice that x is always positive in this case, so we can have the following corollary.

Corollary 3.2. When x + zαx + pc ≥ p > pc, it is optimal for the hotel to offer the

flexible payment scheme to its customers.

Step 2: Obtain optimal value z∗ for z

Let x∗u(z) = p
1+zα

, x∗l (z) = p−pc

1+zα
, Zu ≡ {z : (1 − γ)zα < γ, 0 ≤ z ≤ 1}, and

Zl ≡ {z : (1 − γ)zα ≥ γ, 0 ≤ z ≤ 1}, then we consider these two cases of x∗(z)

separately as follows.

Subcase 1: x∗ = x∗u(z)

Plugging x∗u(z) back into f(x, z) in Equation (3.4), the optimization problem (3.5)

becomes a maximization problem over the single variable z:

max
z|z∈Zu

{f(x∗u(z), z)} (3.6)

solving the problem (3.6), we have,

Lemma 3.4. The optimal ratio z∗ is as follows, which is the solution of problem

(3.6).
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If γ
α(1−γ)

> 1, then

z∗ =





ẑu if ẑu < 1;

1 Otherwise.

Otherwise,

z∗ =





ẑu if ẑu < γ
α(1−γ)

;

arg max
z|z∈Zl

{f(x∗l (z), z)} Otherwise.

where ẑu = 1
α
( 1√

(1−γ)[1−e(p−pc)]
− 1).

Proof. See Appendix.

Lemma 3.4 suggests an optimal ratio for problem (3.6). If γ
α(1−γ)

> 1, then the

condition of x∗(z) = x∗u(z) is always satisfied, so z∗ is either equal to ẑu which satisfies

df(x∗u(z),z)
dz

= 0 or equal to its upper bound. Otherwise, we need to consider whether

ẑu < γ
α(1−γ)

is satisfied. If it is satisfied, then ẑu is the optimal value of z∗; otherwise

we have to solve the case where x∗(z) = x∗l (z). Moreover, ẑu has the following

implications: If hazard rate (γ) is high or the competition (e(p − pc)) in Scheme T

and other nearby hotels is fierce, then the hotel should set a smaller down payment

and a larger discount (since x∗(z) and zαx∗(z) are decreasing and increasing in z,

respectively.) to attract customer to choose Scheme O.

Subcase 2: x∗ = x∗l (z)

Plugging x∗l (z) back into f(x, z) in Equation (3.4), the optimization problem (3.5)
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becomes a maximization problem over the single variable z:

max
z|z∈Zl

{f(x∗l (z), z)} (3.7)

Solving problem (3.7), we have,

Lemma 3.5. The optimal ratio z∗ is as follows, which is the solution of problem

(3.7).

If γ
α(1−γ)

> 1, then z∗ = arg max
z
{f(x∗u(z), z)};

Otherwise,

If 1− ep ≤ 0, then z∗ = 1;

Otherwise,

z∗ =





arg max
z|z∈Zu

{f(x∗u(z), z)} if ẑl < γ
α(1−γ)

;

ẑl if γ
α(1−γ)

≤ ẑl < 1;

1 Otherwise.

where ẑl = 1
α
( 1√

(1−γ)(1−ep)
− 1).

Proof. See Appendix.

Lemma 3.5 suggests an optimal ratio for the problem (3.7). If γ
α(1−γ)

> 1, then

the condition of x∗(z) = x∗l (z) always been violated, so we need to go to solve the

case where x∗(z) = x∗u(z). Otherwise, we need to consider the value of 1 − ep: if

1− ep ≤ 0, then z∗ = 1, which implies that we should set a very small down payment

and very large discount to attract all of the customer to choose Scheme O for a larger

value of p (p ≥ 1
e
), since the rental rate of the hotel is very high, then the competition
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is comparatively fierce. If 1 − ep > 0, then we need to consider whether condition

ẑl ≥ γ
α(1−γ)

is satisfied, if it is satisfied, then the optimal value of z∗ is either equal

to ẑl or equal to upper bound of z (z∗ = 1); otherwise we have to go to solve the

case where x∗(z) = x∗u(z). Moreover, ẑl has the following implications: if hazard rate

(γ) is high or competition (ep) in Scheme T and other nearby hotels is comparatively

fierce, then the hotel should set a smaller down payment and a larger discount to

attract customers to choose Scheme T.

By integrating Case 1 (x∗(z) = x∗u(z)) and Case 2 (x∗(z) = x∗l (z)), we can have

the following results.

Proposition 3.1. The optimal payment scheme (x∗(z), z) is as follows, which is the

solution of problem (3.5).

If γ > α
1+α

, then (x∗(z), z∗) = (x∗u(z), z∗u)

Otherwise,

(x∗(z), z∗) =





(x∗l (z), z∗l ) if γ < e(p− pc);

arg max
x(z),z

{f(x∗u(z), z∗u), f(x∗l (z), z∗l )} if e(p− pc) ≤ γ < ep;

(x∗u(z), z∗u) Otherwise.

where

z∗u =





ẑu if 1√
(1−γ)(1−e(p−pc))

< 1 + α;

1 Otherwise.

z∗l =





ẑl if 1− ep > 0 and 1√
(1−γ)(1−ep)

< 1 + α;

1 Otherwise.
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Proof. See Appendix.

Proposition 3.1 shows the optimal payment scheme for the case of competition

only in Scheme T, which is determined by hazard rate (γ) and competition factor

(e(p− pc)). If γ > α
1+α

, the hotel should offer a full down payment x∗u(z) to customer

since the high hazard rate. And z∗ is determined by comparing the value of ẑu with

the upper bound of z. Otherwise, we need to compare the hazard rate (γ) and

competition factor (e(p− pc)): if the hard rate is too low (ie., γ < e(p− pc)), a small

down payment (ie., x∗l (z)) is optimal for the hotel, and optimal ratio is determined

by the value of ep, ẑl and upper bound of z. On the other hand, if the hard rate is

too high (ie., γ ≥ ep), a high down payment (ie., x∗u(z)) is preferred by the hotel.

If hazard rate is medial (ie., e(p − pc) ≤ γ < ep), the optimal payment scheme is

determined by comparing f(x∗u(z), z∗u) with f(x∗l (z), z∗l ).

Case 2: Competition exists in both scheme T and scheme O

In this section, we consider the case where p − x − zαx > pc. Then we have dO =

p−x−zαx−pc and dT = p−pc, and there is competition existing in both on Scheme

T and Scheme O. Then the problem becomes

f(x, z) = λT p + λO(p− zαx) + (λo
O − λO)x;

= λ
{

(1− z)[1− e(p− pc)](1− γ)p

+ z[1− e(p− x− zαx− pc)](1− γ)(p− zαx)

+ z[1− (1− e(p− x− zαx− pc))(1− γ)]x
}

(3.8)
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Then optimization problem (3.1) can be solved by solving the following optimization

problem:

max
x,z|(x,z)∈R2

{f(x, z)} (3.9)

Step 1: obtain optimal value x∗(z) for down payment x

Given z, we can obtain the optimal down payment value x∗(z) as follows,

Lemma 3.6. Given z, optimal down payment x∗(z) can be obtained as follows, which

maximizes f(x, z) in Equation (3.8).

If (1− γ)zα < γ or p− x̂(z)− zαx̂(z) ≤ p, then

x∗(z) = arg max
x|(x,z)∈R1

{f(x, z)}

Otherwise,

x∗(z) =





x̂(z) if x̂(z) > 0.

0 Otherwise;

where

x̂(z) =
p

1 + zα
− 1

2(1 + zα)
[

(1− γ)zα− γ

e(1− γ)(1 + zα)
+ pc]

Proof. See Appendix.

Lemma 3.6 shows that for any given z, if the hazard rate is high enough (eg.

γ > (1 − γ)zα), then we should go back to solve the case p − x − zαx ≤ p, which

implies that higher down payment is preferred by the hotel. p − x̂(z) − zαx̂(z) ≤ p
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means that there is no interior solutions exists for this case and higher down payment

is preferred by the hotel as well. If x̂(z) < 0, there is also no interior solutions

exist and lower bounder of x is optimal due to the concavity of Equation (3.8) in x.

Otherwise, x̂(z) is optimal for the hotel that satisfies ∂f(x,z)
∂x

= 0.

Proposition 3.2. If x∗(z) = x̂(z), then dx∗(z)
dz

≤ 0, and d(x∗(z)+zαx∗(z))
dz

≤ 0.

Proof. See Appendix

Proposition 3.2 indicates two intuitive properties for the local optimal response

of down payment x∗(z). First property is that the local optimal response of down

payment decreases in z, which is intuitive because in order to attract customers to

choose Scheme O, the hotel have to set a lower down payment rather than a higher

down payment. Another intuitive property is that the sum of local optimal response of

down payment and discount is also decreasing in z, which indicates that the amount

due of customers who choose Scheme O (p − x∗(z) − zαx∗(z)) is increasing in z,

and consequently the probability of the customers who choose Scheme O and have

no-shows due to the competition (e(p − x∗(z) − zαx∗(z) − pc)) is increasing in z.

This result implies that the probability of customers who choose Scheme O and have

no-shows due to the competition is increasing in the down payment.

Step 2: obtain optimal value z∗ for z

Subcase 1: x∗(z) = arg max
x|(x,z)∈R1

{f(x, z)}
In this case, we need to go back to solve the problem max

x|(x,z)∈R1

{f(x, z)} to get optimal

value of x.
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Subcase 2: x∗(z) = 0

If x∗(z) = 0, then zαx∗(z) = 0, the optimal policy for the hotel is only to offer Scheme

T.

Subcase 3: x∗(z) = x̂(z)

Plugging x∗(z) back into f(x, z) in Equation (3.8), the optimization problem (3.9)

becomes a maximization over the single variable z:

max
z
{f(x∗(z), z)} (3.10)

subject to

(1− γ)zα > γ;

p− x∗(z)− zαx∗(z) > pc;

x∗(z) > 0;

z ≤ 1;

z ≥ 0.

Solving f(x∗(z), z) in problem (3.10), we have,

Lemma 3.7. The local optimal ratio ẑ is as follows, which maximizing f(x∗(z), z) in

problem (3.10).

ẑ =





−1−2t+
√

1+8t
2tα

if t > 0;

−1−2t−√1+8t
2tα

if −1
8

< t ≤ 0;

1 Otherwise.
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where

t = (1− e(2p− pc))(1− γ).

Proof. See Appendix.

Lemma 3.7 shows the local optimal ratio of problem (3.10), which is determined

by the hazard rate (γ) and competition factor (e(2p− pc)).

Notice that x∗(z) > 0 is always satisfied when z = ẑ (refer to proof of Proposition

3.3), then the following result holds.

Corollary 3.3. When p−x−zαx > pc, it is optimal for the hotel to offer the flexible

payment scheme to customers.

By combining Lemma 3.7 with boundary conditions in problem (3.10), we have,

Proposition 3.3. The optimal payment scheme (x∗(z), z) is as follows, which is the

solution of problem (3.9).

If (1− γ)ẑα < γ or 1− epc ≤ 0 or {1− epc > 0 and ẑα ≤ γ+epc(1−γ)
(1−epc)(1−γ)

}, then

(x∗(z), z∗) = arg max
x,z|(x,z)∈R1

{f(x, z)}

Otherwise

(x∗(z), z∗) =





(x̂(z), ẑ) if ẑ < 1;

(x̂(z), 1) Otherwise.



CHAPTER 3. DETERMINISTIC CASE 29

Proof. See Appendix.

Proposition 3.3 suggests the optimal payment scheme for the problem (3.9). If

local optimal ratio ẑ is the value makes (1 − γ)ẑα < γ or p − x∗(z) − zαx∗(z) ≤ pc,

then the optimal payment scheme can be obtained by Proposition 3.1. Otherwise,

the down payment x̂(z) is optimal for the hotel, and optimal ratio is determined by

comparing the value of ẑ and upper bound of z.

We formally summarize the results obtained in above analysis in the following

Theorem.

Theorem 3.2. In competition case,

(1) Proposition 3.1 and Proposition 3.3 solve the problem (3.1);

(2) It is optimal for the hotel to offer a flexible payment scheme to customers using

z∗ and x∗(z∗).

Reminding that full down payment is always optimal for the no competition case.

However, in the competition case, full down payment may not always be optimal, all

three values of the down payment: x̂u(z), x̂l(z) and x̂(z) are indicated in Proposition

3.1 and Proposition 3.3 could be a optimal down payment.



Chapter 4

Stochastic Case

In this chapter, we study the payment scheme problem based on the situation where

the hotel knows the stochastic distribution of competitor’s rental rate for the same

period.

4.1 Problem Formulation

At first, we summarize the notations used in this paper in Table 4.1.

Where in Table 4.1, i ∈ {T, O}, represent the traditional scheme (Scheme T) and

optional scheme (Scheme O), respectively.

We consider a single-period problem. Let p ≥ 0 denote the full rental rate for

a room for the entire period. Let x ≥ 0 and y ≥ 0 denote the down payment and

discount, respectively, for Scheme O. We assume x + y ≤ p. A customer who chooses

scheme O pays p− x− y upon checking out from the hotel. A customer who chooses

scheme T pays p upon checking out. Table 4.2 illustrates the payment schemes.

We assume that the rental rate for a similar room offered by competitors of the

hotel for the same period is pc and consider pc is stochastic with its range from A to

30
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Table 4.1: Notation for stochastic case (in Order of Appearance)

p full rental rate for a room
x down payment for scheme O
y discount for scheme O
pc lowest rental rate for a similar room offered by competitors
A lower bound of pc

B upper bound of pc

di customer’s payoff if he selects the hotel under schemes i instead
of the competitor

λ demand of the hotel
a base demand of the hotel
b coefficient of price sensitivity
U additional utility from choosing scheme O instead of scheme T
θ customer’s preference for down payment
α coefficient of customer’s preference for down payment
z the probability that a customer choose scheme O
λ0

i original demand of scheme i
e coefficient of cancellation probabilities due to competition
γ probability of no shows due to some other reasons i
λi actual demand of scheme i
E expected revenue of the hotel
V maximum expected revenue of the hotel
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Table 4.2: Payment schemes of a hotel for stochastic case

Down payment Final payment
Scheme T 0 p
Scheme O x p− x− y

B, i.e. pc ∈ [A,B], where A and B are lower bound and upper bound of pc. φ(.) and

Φ(.) are pdf and cdf of pc respectively.

Let dT and dO denote the customer’s payoff if he chooses the hotel, under schemes

T and O respectively. These payoffs are modeled as follows.

dO = [(p− x− y)− pc]
+;

dT = [p− pc]
+.

We assume that the demand for the hotel is deterministic. Let λ denote the

demand of the hotel and it is modeled as follows.

λ = a− bp

Where a > 0 represents the base demand and b > 0 represents the sensitivity of

the demand to the hotel’s price. To ensure that λ > 0, we assume 0 < p < a
b
.

The customer derives additional utility U = y − θαx from choosing scheme O

instead of scheme T, where θ ∼ Unif [0, 1] and α > 0 are down-payment-sensitivities

coefficient. If U > 0, then the customer chooses scheme O; otherwise, he chooses

scheme T. Let z denote the probability that a customer chooses scheme O and it is
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determined as follows.

z = Pr{U > 0} = Pr{y − θαx > 0}

= Pr{θ <
y

αx
} = min{ y

αx
, 1}

If the discount is sufficient large or down payment is sufficient small (ie. y > αx),

all of the customers will choose scheme O. However, for the two payment scheme

problem, we assume z = y
αx
≤ 1. This customer utility model is similar to Cattani et

al. (2006).

Let λo
O and λo

T denote the number of customers who choose schemes T and O

respectively and they are determined as follows.

λo
O = λz;

λo
T = λ(1− z).

Assume the probability for a customer to cancel his reservation due to competition

is proportional to his payoff. Under this assumption, the probability of a cancelation

due to competition under schemes T and O are edT and edO respectively, where e is

coefficient. Let γ denote the probability of no-shows due to some other reasons. We

assume 0 ≤ edT ≤ 1, 0 ≤ edO ≤ 1, and 0 ≤ γ ≤ 1.

By taking into account of cancelations and no-shows, the actual demand λT ≥ 0

and λO ≥ 0 of schemes T and O, respectively, can be expressed as follows.

λT = λo
T [1− edT ]+(1− γ);

λO = λo
O[1− edO]+(1− γ).
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Notice that z = y
αx

, where x is in the denominator. Thus, for the technical

convenience, we use zαx replace y as follows.

The expected revenue of the hotel can be expressed as follows due to the stochastic

property of pc,

E(x, z) = E[λT p + λO(p− y) + (λo
O − λO)x].

= λ

{ ∫ p−x−zαx

A

f3(x, z)φ(pc)dpc +

∫ p

p−x−zαx

f2(x, z)φ(pc)dpc

+

∫ B

p

f1(x, z)φ(pc)dpc

}
(4.1)

where

f1(x, z) = (1− z)(1− γ)p + z(1− γ)(p− zαx) + zγx

f2(x, z) = (1− z)[1− e(p− pc)](1− γ)p + z(1− γ)(p− zαx) + zγx

f3(x, z) = (1− z)[1− e(p− pc)](1− γ)p + z[1− e(p− x− zαx− pc)](1− γ)(p− zαx)

+z[1− (1− e(p− x− zαx− pc))(1− γ)]x

Then our objective is to determine the maximum expected revenue V of the hotel

by optimally setting x and z. This can be achieved by solving the following optimiza-

tion problem:

V = max
x,z
{E(x, z)} (4.2)
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subject to

x + zαx ≤ p;

0 ≤ z ≤ 1;

x ≥ 0.

4.2 Solution and Analysis

In this section, we use the following approach to analyze the Problem (4.1): we first

assume z is fixed and find an optimal value for x. Denote this optimal value as

x∗(z). We then substitute x∗(z) into the objective function and reduces the number

of variables to one. After that, we can find an optimal value of z.

By rearranging equation (4.1), we have

E(x, z) = ET (x, z) + EO(x, z) (4.3)

where

ET (x, z) = λ

{
(1− z)[1−

∫ p

A

e(p− pc)φ(pc)dpc](1− γ)p

}

EO(x, z) = λ

{
z[1−

∫ p−x−zαx

A

e(p− x− zαx− pc)φ(pc)dpc](1− γ)(p− zαx)

+z[γ + (1− γ)

∫ p−x−zαx

A

e(p− x− zαx− pc)φ(pc)dpc]x

}

ET (x, z) is the expected revenue the hotel can have from Scheme T, where
∫ p

A
e(p−

pc)φ(pc)dpc is the percentage of customers who cancel their reservations due to the

competition. Alternatively, EO(x, z) is the expected revenue the hotel can get from
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the Scheme O, where
∫ p−x−zαx

A
e(p − x − zαx − pc)φ(pc)dpc is the percentage of

customers who cancel their reservations due to the competition as well. So z[1 −
∫ p−x−zαx

A
e(p − x − zαx − pc)φ(pc)dpc](1 − γ) corresponds to the percentage of cus-

tomers who chose Scheme O and check in finally, contrarily, the percentage of cus-

tomers who chose Scheme O but have no shows eventually is represented by z[γ +

(1− γ)
∫ p−x−zαx

A
e(p− x− zαx− pc)φ(pc)dpc].

4.2.1 Obtain optimal value x∗(z) for down payment x

Consider the first and second partial derivatives of E(x, z) with respect to x:

∂E(x, z)

∂x
= λ

{
− z(1− γ)zα + zγ

+ z(1 + zα)e(1− γ)

∫ p−x−zαx

A

[2(p− x− zαx)− pc]φ(pc)dpc

} (4.4)

∂2E(x, z)

∂x2
= −λz(1 + zα)2e(1− γ)M(x, z) ≤ 0

where M(x, z) = 2Φ(p− x− zαx) + (p− x− zαx)φ(p− x− zαx). (In the following

part, the item 2Φ(p− x− zαx) + (p− x− zαx)φ(p− x− zαx) is always represented

by M(x, z)).

Thus, we can obtain the following result:

Proposition 4.1. Given z, E(x, z) is concave in x. The optimal value of down

payment x is determined uniquely by first-order-condition of E(x, z) over x: ∂E(x,z)
∂x

=

0.

Remark 4.1. Notice from Equation (4.4) that:

(1) if γ ≥ (1− γ)zα, then ∂E(x,z)
∂x

is non-negative, which implies that upper bound of



CHAPTER 4. STOCHASTIC CASE 37

x is optimal for E(x, z), i.e. x∗(z) = p−A
1+zα

. The reason is that when the hazard rate

is large enough to make the sequestration of the down payment from customers (γx)

exceeds the lost of the discount given to customers ((1−γ)zαx), a large down payment

is optimal. Additionally, at this point, no customer of Scheme O will cancel his

reservation due to the competition, since the remaining amount due of these customer

is non-larger than the lowest rental rate offered by the competitor.

(2)given x∗(z) = p−A
1+zα

, dE(x∗(z),z)
dz

= −[1− ∫ p

A
e(p− pc)φ(pc)dpc](1− γ)p + (1− γ)A +

p−A
(1+zα)2

, which is decreasing in z, implying that z∗ can be determined uniquely by

dE(x∗(z),z)
dz

= 0.

(3) given x∗(z) = p−A
1+zα

, dx∗(z)
dz

≤ 0, dzαx∗(z)
dz

≥ 0, and d(x∗(z)+zαx∗(z))
dz

≤ 0.

In the following discussion, we consider the case when x∗(z) is determined by

∂E(x,z)
∂x

= 0. And x = 0 means the hotel only offers Scheme T, so we have the

following result:

Corollary 4.1. If x∗(z) > 0, then the two payment schemes policy is optimal for the

hotel; otherwise, the hotel should only offer a traditional scheme.

Note from Equation (4.3) that if p ≤ A, then E(x, z) = λ{(1− z)(1− γ)p + z(1−
γ)(p − zαx) + zγx} = λ{(1 − γ)p + z(γ − (1 − γ)zα)x}. It implies that there is no

competition between the hotel and the other nearby hotels with a similar grade, We

can get the following result.

Corollary 4.2. It is optimal for the hotel to offer a full down payment optional

scheme to customers if there is no competition between the hotel and the other nearby

hotels with a similar grade.

Proof. See Appendix.
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Quan (2002) suggests the hotel charges a full down payment at the time the

reservation is made, while Corollary 4.2 and Proposition 4.1 indicate that full down

payment can be optimal for the hotel when there is no competition among the nearby

hotels but may not optimal when competition exists.

By taking the first and second partial derivative of E(x, z) in Equation (4.3) with

respect to z, we can obtain the following result.

Proposition 4.2. E(x, z) is concave in z at x = x∗(z).

Proof. See Appendix.

Proposition 4.2 indicates that for given x, the expected revenue function is concave

in z only when x is at its optimal value x∗(z), i.e. x = x∗(z)

Proposition 4.3. dx∗(z)
dz

≤ 0.

Proof. See Appendix.

Proposition 4.3 shows that optimal down payment is decreasing in z. This result

is intuitive. Because in order to attract customers to choose Scheme O, the hotel has

to set a lower down payment rather than a higher down payment.

Proposition 4.4. d(x∗(z)+zαx∗(z))
dz

≤ 0.

Proof. See Appendix.

Proposition 4.4 shows that the sum of down payment and discount is deceasing

in z, it indicates the amount due (p− x− zαx) to customers who choose Scheme O

is increasing in z, which implies that the percentage of customers who cancel their

reservations due to the competition (
∫ p−x−zαx

A
e(p−x−zαx−pc)φ(pc)dpc) is increasing

in z as well. This result implies that the probability of customers who choose Scheme

O and have no-shows due to the competition is increasing in the down payment.
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Remark 4.2. For zαx∗(z), we have,

d2(zαx∗(z))

dz2
| d(zαx∗(z))

dz
=0

=
α2

(1 + zα)4e(1− γ)M(x∗(z), z)2
f(n)

where n = p − x∗(z) − zαx∗(z), which is increasing in z; f(n) = −4Φ(n) + (3p −
5n)φ(n)+n(p−n)φ′(n), which is a polynomial function of n. Thus, zαx∗(z) is quasi-

concave for some values of z, and quasi-convex for some other values of z, which

implies that monotone property is broken for zαx∗(z).

Proof. See Appendix for technical detail of Remark 4.2.

4.2.2 Obtain optimal value z∗ for ratio z

Plugging x = x∗(z) into problem (4.2), the optimization problem becomes a maxi-

mization problem over the single variable z:

V = max
z
{E(x∗(z), z)} (4.5)

subject to

x∗(z) + zαx∗(z) ≤ p;

0 ≤ z ≤ 1.
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Consider the first derivative of E(x∗(z), z) over z (For simplicity, we use x∗ rep-

resents x∗(z) in the following discussions.):

dE(x∗, z)

dz
=

∂E(x∗, z)

∂z
+

∂E(x∗, z)

∂x

dx∗

dz
=

∂E(x∗, z)

∂z

= λ

{
− [1−

∫ p

A

e(p− pc)φ(p)dpc](1− γ)p

+(1− γ)[1−
∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc](p− 2zαx∗)

+[γ + (1− γ)

∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc]x
∗

+e(1− γ)zαx∗(p− x∗ − zαx∗)Φ(p− x∗ − zαx∗)
}

= λ

{
− [1−

∫ p

A

e(p− pc)φ(p)dpc](1− γ)p

+(1− γ)(p− 2zαx∗) + γx∗

−(1− γ)[

∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc](p− x∗ − zαx∗)

+(1− γ)zαx∗
∫ p−x∗−zαx∗

A

e[2(p− x∗ − zαx∗)− pc]φ(pc)dpc

}

where the second equality is by x∗(z) satisfies the first-order-condition: ∂E(x∗(z),z)
∂x

= 0.

Reminding that from ∂E(x,z)
∂x

= 0, we have
∫ p−x∗−zαx∗

A
e[2(p−x∗−zαx∗)−pc]φ(pc)dpc =
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(1−γ)zα−γ
(1+zα)(1−γ)

, then,

dE(x∗, z)

dz
= λ

{
− [1−

∫ p

A

e(p− pc)φ(p)dpc](1− γ)p +
x∗

1 + zα

+[1−
∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc](1− γ)(p− x∗ − zαx∗)
}

= λ

{
− [1−

∫ p

A

e(p− pc)φ(p)dpc](1− γ)p

+[1−
∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc](1− γ)(p− zαx∗)

+[γ + (1− γ)

∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc]x
∗

− zα

1 + zα
x∗

}

The above equation represents the marginal revenue of z. First item of right hand

side of the second equality corresponds to the revenue lost from the Scheme T as

z increases one unit; second and third item correspond to the revenue earned from

Scheme O as z increases one unit; while, x∗ is decreasing in z, so changing z will

affects the marginal revenue of Scheme O, which is represented by the last item.

As Theorem 4.1 demonstrates, E(x∗, z) might have multiple points that satisfy

the first-order optimality condition, depending on the parameters of the problem.

Theorem 4.1. The optimal down payment x∗(z) is specified by Proposition 4.1, and

the optimal ratio z∗ is determined by a polynomial function f(n):

(1)If f(n) > 0 or df(n)
dn
|f(n)=0 < 0, then z∗ is the unique z that makes a change of sign

for dE(x∗,z)
dz

from positive to negative value and that satisfies dE(x∗,z)
dz

= 0.

(2) Otherwise, there are at most b i
2
c + 1 points of z that achieve local maximum of

E(x∗, z) that satisfies dE(x∗,z)
dz

= 0, where i is the rank of f(n).

And f(n) = (6p− 9n)φ(n) + 2n(p− n)φ′(n)− 6Φ(n), n = p− x∗ − zαx∗.

Proof. See Appendix.
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Part (1) of Theorem 4.1 indicates that there is an unique local maximum under

two conditions. Condition f(n) > 0 guarantees that dE(x∗,z)
dz

is quasi-concave in z,

implying that dE(x∗,z)
dz

= 0 at most has two roots. The larger of the two makes a

change of sign for dE(x∗,z)
dz

from positive to negative value that corresponds to a local

maximum of E(x∗, z). The second condition in (1) indicates that f(n) changes its

sign from positive to negative at most one time, implying that dE(x∗,z)
dz

= 0 at most

has three roots. The second of the three makes a change of sign for dE(x∗,z)
dz

from

positive to negative value that corresponds to a local maximum of E(x∗, z). Part (2)

shows that E(x∗, z) might have multiple points that satisfy dE(x∗,z)
dz

= 0, depending

on a polynomial function f(n).

We consider three general distributions of competitor’s rental rate: Uniform, Ex-

ponential, and Normal in the Corollary 4.3, 4.4, and 4.5 respectively.

Corollary 4.3. For Uniform distribution of competitor’s rental rate, z∗ is the unique

z makes a change of sign for dE(x∗,z)
dz

from positive to negative value that satisfies

dE(x∗,z)
dz

= 0.

Proof. See Appendix.

Corollary 4.4. For Exponential distribution of competitor’s rental rate, z∗ is the

unique z makes a change of sign for dE(x∗,z)
dz

from positive to negative value that

satisfies dE(x∗,z)
dz

= 0.

Proof. See Appendix.

Corollary 4.5. For Normal distribution of competitor’s rental rate, there are at most

3 points of z correspond to the local maximum of E(x∗, z) that satisfies dE(x∗,z)
dz

= 0.

Proof. See Appendix.



Chapter 5

Interaction of Payment Scheme

and Rental Rate

After solving the problem of payment scheme in Chapter 3 and 4, we next study

the pricing of the hotel’s rental rate based on the optimal payment schemes in this

chapter.

We consider the deterministic demand, where λ = a − bp. Then, the expected

revenue E(x, z, p) is as follows.

E(x, z, p) = (a− bp)

{
(1− z)[1−

∫ p

A

e(p− pc)φ(pc)dpc](1− γ)p

+z[1−
∫ p−x−zαx

A

e(p− x− zαx− pc)φ(pc)dpc](1− γ)(p− zαx)

+z[γ + (1− γ)

∫ p−x−zαx

A

e(p− x− zαx− pc)φ(pc)dpc]x

}

Let EOT (p) denote the hotel’s expected revenue if the hotel only offers a traditional

43
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scheme to customers. Then, it can be determined as follows.

EOT (p) = (a− bp)

{
[1−

∫ p

A

e(p− pc)φ(pc)dpc](1− γ)p

}

We use the following algorithm to find the optimal rental rate for the hotel:

Algorithm 5.1. (1) Step 1: Find the initial optimal price p from EOT (p);

(2) Step 2: Plug p into E(x, z, p), and obtain x∗ and z∗;

(3) Step 3: Plug x∗ and z∗ back into E(x, z, p), and obtain optimal p;

(4) Step 4: If p is convergent or hits its upper bound, then end; otherwise, go to Step

2.

We use Uniform distribution of pc to do the iteration. The parameters are as

follows. Case 1: A = 50, B = 400, a = 250, b = 0.5, e = 0.004, γ = 0.15, α =

0.5. From Case 2 to 15, We change one parameter at a time. Where Case 2, 3 :

A = {0, 100}; Case 4, 5: B = {500, 300}; Case 6, 7: a = {280, 220}; Case 8, 9:

b = {0.45, 0.55}; Case 10, 11: e = {0.005, 0.003}; Case 12, 13: γ = {0.3, 0}; Case 14,

15: α = {0.6, 0.4}. The results are summarized in Table 5.1, 5.2 and 5.3.

Where the column ‘OS’ indicates the optimal solution after iterations. The column

‘0’ shows the initial solution at the beginning of iterations, which is the solution when

the hotel only offers Scheme T. The column ‘1’, ‘3’, and ‘5’ represent the gap at its

iteration time and the optimal solution. From Table 5.1, we can see that price p

converges in an optimal point very fast. 5 cases have reached its optimal points

after 5 iterations. The expected revenue E(x, z, p), and down payment x, ratio z are

determined as p reaches its optimal points. The results are presented in Table 5.2 and

5.3, respectively. Comparing with the case where the hotel only offers a traditional

scheme, the increasing revenue of offering two payment schemes are presented in

column ‘RI’ in Table 5.2, which can be as high as 15.88%.
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Table 5.1: The results of iterations for p

p
Case OS 0 1 3 5

1 220.95 194.37 4.41% 0.86% 0.19%
2 239.01 184.98 12.77% 5.31% 0.00%
3 219.35 204.56 1.56% 0.11% 0.01%
4 220.81 203.86 1.88% 0.13% 0.01%
5 237.25 180.39 14.82% 5.21% 0.00%
6 264.83 205.16 13.56% 5.69% 0.00%
7 194.48 181.06 1.46% 0.09% 0.01%
8 262.6 204.44 13.30% 5.92% 0.00%
9 200.41 184.54 2.02% 0.15% 0.01%

10 235.88 185.22 12.94% 6.28% 2.01%
11 221.08 205.15 1.62% 0.10% 0.00%
12 228.9 194.37 4.48% 0.53% 0.07%
13 209.13 194.37 2.05% 0.22% 0.02%
14 213.64 194.37 2.52% 0.26% 0.03%
15 240.48 194.37 10.30% 4.13% 1.30%
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Table 5.2: The results of iterations for E(x, z, p)

E(x, z, p)
Case OS 0 1 3 5 RI

1 23543.65 22240.28 1.00% 0.02% 0.00% 5.86%
2 22705.61 20528.64 2.74% 0.41% 0.00% 10.60%
3 24569.18 23812.91 0.39% 0.00% 0.00% 3.18%
4 24020.98 22958.2 0.45% 0.00% 0.00% 4.63%
5 23012.8 21170.41 2.67% 0.03% 0.00% 8.70%
6 29042.58 26683.23 2.76% 0.57% 0.00% 8.84%
7 18732.6 17969.81 0.38% 0.00% 0.00% 4.24%
8 25746.24 23714.42 2.59% 0.52% 0.00% 8.57%
9 21841.31 20884.63 0.48% 0.00% 0.00% 4.58%

10 23253.31 21542.79 2.30% 0.44% 0.13% 7.94%
11 24090.67 23055.51 0.40% 0.00% 0.00% 4.49%
12 21223.8 18315.52 2.38% 0.07% 0.01% 15.88%
13 26740.2 26165.03 0.39% 0.00% 0.00% 2.20%
14 23276.67 22240.28 0.63% 0.00% 0.00% 4.66%
15 24054.32 22240.28 1.99% 0.22% 0.05% 8.16%
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Table 5.3: The results of iterations for z and x

z x
OS 1 3 5 OS 1 3 5

1 0.6276 34.32% 6.18% 1.34% 82.03 20.94% 2.32% 0.49%
2 1 49.47% 16.77% 0.00% 79.4 21.95% 0.58% 0.00%
3 0.433 20.83% 1.52% 0.12% 82.36 8.38% 0.63% 0.04%
4 0.4446 23.89% 1.60% 0.11% 107.9 21.96% 0.93% 0.06%
5 1 49.14% 4.63% 0.00% 78.33 4.77% 24.49% 0.00%
6 1 50.71% 14.20% 0.00% 78.73 14.35% 6.99% 0.00%
7 0.4131 19.32% 1.33% 0.07% 99.07 13.39% 0.96% 0.06%
8 1 51.26% 16.76% 0.00% 77.25 17.13% 4.09% 0.00%
9 0.4571 25.22% 1.77% 0.13% 93.31 23.15% 0.94% 0.06%

10 1 52.30% 20.62% 1.84% 67.23 21.02% 0.12% 7.90%
11 0.4241 21.15% 1.39% 0.07% 113.13 17.50% 0.95% 0.05%
12 0.7313 16.76% 1.94% 0.25% 131 15.51% 1.43% 0.18%
13 0.4689 22.01% 2.30% 0.26% 56.08 2.57% 0.16% 0.02%
14 0.468 26.60% 2.59% 0.30% 85.41 16.16% 1.00% 0.12%
15 1 48.47% 16.50% 3.39% 78.01 27.18% 2.86% 2.37%



Chapter 6

Conclusion

In this paper, we introduce a flexible payment scheme in the hotel business. The

hotel offers an optional payment scheme to customers when they make reservations.

If a customer chooses this optional scheme, then he/she makes a down payment

immediately, and enjoys a discount from the hotel when the customer actually checks

in to the hotel. If the customer does not choose the optional scheme, then the payment

is under the traditional scheme where the customer does not need to pay any down

payment at the time the reservation is made, and he makes full payment without any

discounts upon his checking out from the hotel. The hotel also faces competitions from

other nearby hotels with a similar grade. As customers may cancel their reservations

or may not show up eventually if they find a lower rental rate from other hotels (Quan

(2002)) or due to other reasons, the hotel can redeem the loss from the customer’s

cancelation or no-shows by introducing Scheme O.

We first study the case where the hotel knows the expected value of his competi-

tor’s price (deterministic case), and obtain optimal solutions for the two payment

schemes. We find that, when there is no competition between the hotel and other

nearby hotels, the optimal solution is the upper bound of down payment, which
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implies that full down payment policy is optimal for the hotel. And the optimal dis-

count can be obtained uniquely. However, if there is competition from other hotels,

full down payment policy may not be optimal. The optimal down payment is either

an uniquely interior solution or an unique solution that hits its boundary. It is de-

termined by the parameters of the problem. There is an unique optimal solution for

discount, the value of which is also determined by the parameters of the problem.

For the stochastic case where the hotel knows the stochastic distribution of his

competitor’s price, we can find optimal solutions for down payment and discount

as well. In this case, the full down payment policy is still optimal for the hotel if

there is no competition between the hotel and other nearby hotels. When there is

competition from other hotels, full down payment policy is not optimal anymore for

the hotel. We also obtain some intuitive properties for the optimal response of down

payment (x∗(z)). For example, we find that optimal down payment is decreasing in

ratio (z), which is intuitive because in order to attract customers to choose Scheme

O, the hotel should lower down its down payment. Another interesting property is

that the sum of down payment and discount (x∗(z) + zαx∗(z)) is also decreasing

in ratio (z), which indicates that the amount due of customers who choose Scheme

O (p − x∗(z) − zαx∗(z)) is increasing in ratio (z), and consequently the probability

of the customers who choose Scheme O and have no-shows due to the competition

(
∫ p−x∗(z)−zαx∗(z)

A
e(p − x∗(z) − zαx∗(z) − pc)φ(pc)dpc) is increasing in the ratio (z).

This result implies that the probability of customers who choose Scheme O and have

no-shows due to the competition is increasing in the down payment, which is intu-

itive. After obtaining the optimal response of down payment, we plug it back into

the hotel’s revenue function, and find that the concavity of the expected revenue

with respect to the discount is broken. There could be multiple points for discount

that satisfy the first-order optimality condition, depending on the parameters of the
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problem. The optimal discount is determined by a polynomial function, and in some

conditions, this polynomial function guarantees the first derivative of expected rev-

enue is quasi-concave in the down payment. It implies that there is an unique optimal

solution for discount that corresponds to the local maximum of the expected revenue

that satisfies the first-order optimality condition. In addition, we also prove that

the optimal discount which corresponds to the local maximum of the expected rev-

enue and satisfies the first-order optimality condition is unique for the Uniform and

Exponential distribution of competitor’s price. However, there can be up to three

optimal points for discount that correspond to the local maximum of the expected

revenue, which satisfy the first-order optimality condition for the Normal distribution

of competitor’s price.

This paper also studies the interaction between payment scheme and rental rate.

We design an algorithm to get the optimal rental rate numerically. We find that the

rental rate converges to its optimal solution very fast. In our numerical example, 1
3

cases reaches its optimal point after 5 times of iterations.

The tradeoff between the down payment and discount can not only be applied in

the hotel business, but also be applied in other businesses. For example, supper mar-

kets (or food courts, barber shops, etc.) may ask customers to apply for membership

cards and save money in the card advanced. Those shops then offer some discounts to

members when they come for their services. Such kind of the problem is very similar

to our problem.

Future research could be extended to problems that consider customers requesting

for multi-day stay or consider the hotel having multi-type of rooms. Under such cases,

the hotel may charge and offer different down payments and/or discounts, for different

number of days stay or different types of rooms.
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Appendix A

Proof of Deterministic Case

Proof of Lemma 3.1

Proof. Since f(x, z) in Equation (3.2) is a linear function of x, then x∗(z) is either

equal to its upper bound (x∗(z) = p−zαx) or equal to its lower bound (x∗(z) = 0),

which depends on the sign of γ − (1− γ)zα.

Proof of Lemma 3.2

Proof. Considering the first derivative of f(x∗(z), z) with respect to z, we have,

df(x∗(z), z)

dz
= λp{ 1

(1 + zα)2
− (1− γ)}

Notice that df(x∗(z),z)
dz

is decreasing in z, so f(x∗, z) is concave in z. We can then

obtain an unique optimal z which maximizes f(x∗(z), z) by solving the df(x∗(z),z)
dz

=

55
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0.

ẑ =
1

α
√

1− γ
− 1

α

We find that ẑ always satisfies the first condition in problem (3.3); for the second

condition , we find that if γ < 1− 1
(1+zα)2

, then ẑ < 1, otherwise ẑ > 1.

Then this Lemma is proved.

Proof of Lemma 3.3

Proof. Since f(x, z) in Equation (3.4) is a linear function of x, then x∗(z) is either

equal to its upper bound (x∗(z) = p − zαx) or equal to its lower bound (x∗(z) =

p− zαx− pc), which depends on the sign of γ − (1− γ)zα.

Proof of Lemma 3.4

Proof. By considering the first derivative of f(x∗u(z), z) with respect to z, we have,

df(x∗u(z), z)

dz
= λp

{ 1

(1 + zα)2
− (1− γ)[1− e(p− pc)]

}

Notice that df(x∗u(z),z)
dz

is decreasing in z, so f(x∗u(z), z) is concave in z, we can obtain

an unique local optimal z by solving the df(x∗u(z),z)
dz

= 0.

ẑu =
1

α
(

1√
(1− γ)[1− e(p− pc)]

− 1)
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By combining ẑu with the boundary condition in problem (3.6), this lemma is

proved.

Proof of Lemma 3.5

Proof. Notice that if γ
α(1−γ)

> 1, then γ
α(1−γ)

> z would always hold, so x∗(z) =

x∗u(z). We should go back to solve problem (3.6); otherwise, considering the first

derivative of f(x∗l (z), z) with respect to z, we have,

df(x∗l (z), z)

dz
= λ(p− pc)

{ 1

(1 + zα)2
− (1− γ)(1− ep)

}

Notice that when 1−ep ≤ 0,
df(x∗l (z),z)

dz
> 0, then f(x∗l (z), z) is increasing in z, upper

bound of z is the solution of problem (3.7)(z∗ = 1); when 1 − ep > 0,
df(x∗l (z),z)

dz
is

decreasing in z, so f(x∗l (z), z) is concave in z, we can get a unique local optimal z

by solving the
df(x∗l (z),z)

dz
= 0.

ẑl =
1

α
(

1√
(1− γ)(1− ep)

− 1)

By combining ẑl with the boundary condition in problem (3.7), this lemma is

proved.

Proof of Proposition 3.1

Proof. From ẑu < 1, we can get the inequality 1√
(1−γ)[1−e(p−pc)]

< 1 + α, then the

results for γ
α(1−γ)

> 1 can be obtained easily by combining Lemma 3.4 and Lemma
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Figure A.1: The value of x∗(z) for different scenarios. Region A: z∗l > γ
α(1−γ)

and ẑu > γ
α(1−γ)

; Region B: z∗l ≥ γ
α(1−γ)

and ẑu ≤ γ
α(1−γ)

; Region C: z∗l < γ
α(1−γ)

and

ẑu < γ
α(1−γ)

.

3.5. For the case γ
α(1−γ)

≤ 1, we need to consider it in two cases 1 − ep ≤ 0 and

1− ep > 0 respectively.

(1)If 1 − ep ≤ 0, then by solving inequality ẑu < γ
α(1−γ)

, we get γ > e(p − pc),

and by combining Lemma 3.4 and Lemma 3.5, we can obtain that (x∗l (z), 1) is

optimal for γ ≤ e(p − pc) easily; for γ > e(p − pc), both condition ẑu < γ
α(1−γ)

and z∗ = 1 > γ
α(1−γ)

are satisfied, then we can get optimal payment scheme by

comparing f(x∗u(z), ẑu) and f(x∗l (z), 1);

(2) If 1 − ep > 0, then by solving inequality ẑu < γ
α(1−γ)

and ẑl > γ
α(1−γ)

, we can

get γ > e(p − pc) and γ < ep, respectively. Then as Figure A.1 shows: in region

A, x∗(z) = x∗u(z); in region C, x∗(z) = x∗l (z); and in region B, x∗(z) = x∗u(z) or

x∗(z) = x∗l (z) which is determined by max
x(z),z

{f(x∗u(z), ẑu), f(x∗l (z), z∗l )}. Besides, by

solving ẑl < 1, we can get 1√
(1−γ)(1−ep)

< 1 + α.

Summarizing the above analysis, we have,

If γ
α(1−γ)

> 1, then

(x∗(z), z∗) =





(x∗u(z), ẑu) if 1√
(1−γ)[1−e(p−pc)]

< 1 + α;

(x∗u(z), 1) Otherwise.

Otherwise,
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If 1− ep ≤ 0, then

(x∗(z), z∗) =





arg max
x(z),z

{f(x∗u(z), ẑu), f(x∗l (z), 1)} if γ > e(p− pc);

(x∗l (z), 1) Otherwise.

Otherwise,

(x∗(z), z∗) =





(x∗l (z), z∗l ) if γ < e(p− pc);

arg max
x(z),z

{f(x∗u(z), ẑu), f(x∗l (z), z∗l )} if e(p− pc) ≤ γ < ep;

(x∗u(z), ẑu) Otherwise.

where

z∗l =





ẑl if 1√
(1−γ)(1−ep)

< 1 + α;

1 Otherwise.

Thus, by rearranging the above primary results, this proposition is proved.

Proof of Lemma 3.6

Proof. By consider the first and seconde partial derivative of f(x, z) in Equation

(3.8) with respect to x, we have,

∂f(x, z)

∂x
= λz

{
− (1− γ)zα + γ + (1 + zα)e(1− γ)[2(p− x− zαx)− pc]

}
(A.1)

∂2f(x, z)

∂x2
= −λz(1 + zα)2e(1− γ)2 ≤ 0
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So, for given z, f(x, z) is concave in x, by solving ∂f(x,z)
∂x

= 0, we have,

p− x̂− zαx̂ =
1

2
[

(1− γ)zα− γ

e(1− γ)(1 + zα)
+ pc]

x̂ =
p

1 + zα
− 1

2(1 + zα)
[

(1− γ)zα− γ

e(1− γ)(1 + zα)
+ pc]

Notice from Equation (A.1) that if (1 − γ)zα < γ, then ∂f(x,z)
∂x

> 0, upper bound

of x is optimal for maximizing f(x, z), since (x = p − zαx − pc, z) ∈ R1, then we

can get the optimal response of x by solving the problem max
x|(x,z)∈R1

{f(x, z)}; And

if p − x̂ − zαx̂ ≤ pc, we also need to solve problem max
x|(x,z)∈R1

{f(x, z)} to get the

optimal response of x; Otherwise we can get the optimal response of x by checking

the other boundary condition x̂(z) > 0.

Proof of Proposition 3.2

Proof. By considering the derivative of x∗ respect to z, we have,

dx∗

dz
= − α

1 + zα

{
(p− 1

2
pc)

1

1 + zα
+

1

2e(1− γ)

γ − (1− γ)zα

(1 + zα)2
+

1

2e(1− γ)(1 + zα)2

}

= − α

1 + zα

{
x∗ +

1

2e(1− γ)(1 + zα)2

}

≤ 0

d(x∗ + zαx∗)
dz

=
d(p− 1

2
pc + γ−(1−γ)zα

2e(1−γ)(1+zα)
)

dz

= − α

2e(1− γ)(1 + zα)2

≤ 0
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dzαx∗

dz
= α

{
x∗ + z

dx∗

dz

}

=
α

1 + zα

{
x∗ − zα

2e(1− γ)(1 + zα)2

}

=
α

1 + zα

{
1

1 + zα
(p− 1

2
pc)− (1− γ)zα− γ

2e(1− γ)(1 + zα)2
− zα

2e(1− γ)(1 + zα)2

}

Thus, x∗ and x∗ + zαx∗ are decreasing in x, but the sign of dzαx∗
dz

is depend on z

and other parameters.

Remark A.1. We can also get the monotone property of x∗ by tacking the cross

derivative of f(x, z) respect to x and z,

∂2f(x, z)

∂x∂z
= λ

{
− 2zα(1− γ) + γ − zαx(1 + zα)e(1− γ)2

+ (1 + 2zα)e(1− γ)[2(p− x− zαx)− pc]

} (A.2)

From ∂f(x,z)
∂x

= 0, we can get

e[2(p− x− zαx)− pc] =
(1− γ)zα− γ

(1 + zα)(1− γ)
(A.3)

Plug it back into Equation (A.2), we have

∂2f(x, z)

∂x∂z
|x=x∗(z) = λ

{
− 2zα(1− γ) + γ − zαx(1 + zα)e(1− γ)2

+
(1− γ)zα− γ

1 + zα
(1 + 2zα)

}

= −λ

{
zα

1 + zα
+ zαx(1 + zα)e(1− γ)2

}

≤ 0
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Proof of Lemma 3.7

Proof. By considering the first derivative of f(x∗(z), z) with respect to z, we have

(For simplicity, we use x∗ represents x∗(z) in this proof.),

df(x∗, z)

dz
=

∂f(x∗, z)

∂z
+

∂f(x∗, z)

∂x

dx∗

dz

=
∂f(x∗, z)

∂z

= λ

{
− [1− e(p− pc)](1− γ)p

+(1− γ)[1− e(p− x∗ − zαx∗ − pc)](p− 2zαx∗)

+[γ + (1− γ)e(p− x∗ − zαx∗ − pc)]x
∗ + e(1− γ)zαx∗(p− x∗ − zαx∗)

}

= λ

{
− [1− e(p− pc)](1− γ)p + (1− γ)(p− 2zαx∗) + γx∗

−(1− γ)[e(p− x∗ − zαx∗ − pc)](p− x∗ − zαx∗)

+(1− γ)zαx∗e[2(p− x∗ − zαx∗)− pc]

}

where the second equality is by x∗(z) satisfies the first-order-condition: ∂f(x∗(z),z)
∂x

=

0.
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From ∂f(x,z)
∂x

= 0, we have e[2(p− x∗ − zαx∗)− pc] = (1−γ)zα−γ
(1+zα)(1−γ)

. Thus,

df(x∗, z)

dz
= λ

{
− [1− e(p− pc)](1− γ)p

+(1− γ)(p− 2zαx∗) + γx∗ + zαx∗
(1− γ)zα− γ

1 + zα

−(1− γ)[e(p− x∗ − zαx∗ − pc)](p− x∗ − zαx∗)
}

= λ

{
− [1− e(p− pc)](1− γ)p

+[1− e(p− x∗ − zαx∗ − pc)](1− γ)(p− x∗ − zαx∗) +
x∗

1 + zα

}

= λ

{
− [1− e(p− pc)](1− γ)(x∗ + zαx∗)

+e(1− γ)(p− x∗ − zαx∗)(x∗ + zαx∗) +
x∗

1 + zα

}

= λ(x∗ + zαx∗)
{
− [1− e(p− pc)](1− γ) + e(1− γ)(p− x∗ − zαx∗)

+
1

(1 + zα)2

}

= λ(x∗ + zαx∗)
{
− [1− e(p− pc)](1− γ)

+e(1− γ)
1

2
[

(1− γ)zα− γ

e(1− γ)(1 + zα)
+ pc] +

1

(1 + zα)2

}

= λ
x∗

2(1 + zα)
fd(z)

where

fd(z) = −[1− e(2p− pc)](1− γ)(zα)2

−(2[1− e(2p− pc)](1− γ) + 1)zα + 1− [1− e(2p− pc)](1− γ)

Since λ x∗
2(1+zα)

is nonnegative for all values of z, then analyzing the quadratic func-

tion fd(z) is sufficient for determining the shape of f(x∗, z).
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Let t = (1− e(2p− pc))(1− γ), then fd(z) can be represented as follows.

fd(z) = −t(zα)2 − (2t + 1)zα + 1− t

which is a quadratic function, then we let ∆ = (1 + 2t)2 + 4t(1− t) = 1 + 8t.

(1) If t > 0, then ∆ > 0, −1+2t
2t

< 0.

And since 1 − t = γ + e(2p − pc)(1 − γ) > 0, then fd(z) = 0 has two roots: one

is negative −1−2t−√1+8t
2tα

, and the other one is positive −1−2t+
√

1+8t
2tα

which is a local

optimal value of z.

Then we get that ẑ = −1−2t+
√

1+8t
2tα

when t > 0.

(2) If t ≤ 0.

(2.1) If t ≤ −1
8
, then ∆ ≤ 0. So we have fd(z) ≥ 0, which indicate that df(x∗,z)

dz
≥ 0

for all z. Thus z = 1 is a local optimal value of z.

(2.2) If t > −1
8
, then ∆ > 0 and −1+2t

2t
> 3 > 0, so fd(z) = 0 has two positive roots,

one is −1−2t−√1+8t
2tα

, and the other one is −1−2t+
√

1+8t
2tα

. Since t ≤ 0, then −1−2t−√1+8t
2tα

is a local optimal value of z.

Then we get

ẑ =





−1−2t−√1+8t
2tα

if −1
8

< t ≤ 0;

1 t ≤ −1
8
.
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Proof of Proposition 3.3

Proof. We consider the boundary conditions in Problem (3.10) as follows.

(1) p− x∗(z)− zαx∗(z) > pc

Inequality p − x∗(z) − zαx∗(z) > pc can be simplified to (1 − epc)(1 − γ)zα >

γ + epc(1− γ). So,

(1.1) If 1− epc ≤ 0, then (1− epc)(1− γ)zα ≤ γ + epc(1− γ), which correspond to

p− x∗(z)− zαx∗(z) ≤ pc.

(1.2) If 1− epc > 0, then by solving inequality (1− epc)(1− γ)zα > γ + epc(1− γ)

we can get that if zα > γ+epc(1−γ)
(1−γ)(1−epc)

, then p − x∗(z) − zαx∗(z) > pc; otherwise,

p− x∗(z)− zαx∗(z) ≤ pc.

(2) x∗(z) > 0

Inequality x∗(z) > 0 can be simplified to tzα < 1−t, where t = (1−e(2p−pc))(1−γ).

So,

(2.1) If t ≤ 0, then tzα < 1− t, which correspond to x∗(z) > 0.

(2.2) If t > 0, then by solving inequality tzα < 1 − t we can get that if zα < 1−t
t

,

then x∗(z) > 0; otherwise, x∗(z) ≤ 0.

Reminder that ẑ = −1−2t+
√

1+8t
2tα

when t > 0, and notice that inequality zα < 1−t
t

is

always satisfied when t > 0 and z = ẑ = −1−2t+
√

1+8t
2tα

.

Thus, we get that x∗(z) > 0 is always satisfied by z = ẑ, which implies that subcase

2 (x∗(z) = 0) will never happened.

At last, by combining ẑ with other two boundary conditions (1 − γ)zα > γ and

z ≤ 1, this proposition is proved completely.
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Proof of Stochastic Case

Proof of Corollary 4.2

Proof. Since E(x, z) is a linear function of x when p ≤ A, then x∗(z) is either equal

to its upper bound (x∗(z) = p − zαx) or equal to its lower bound (x∗(z) = 0),

which depends on the sign of γ − (1− γ)zα.

x∗(z) =





p
1+zα

if γ > zα
1+zα

.

0 Otherwise;

First we consider the case x∗(z) = p
1+zα

.

Substituting x∗(z) back into the equation E(x, z) = λ{(1−γ)p+z(γ−(1−γ)zα)x}.
And considering the first derivative of E(x∗(z), z) with respect to z, we have,

dE(x∗(z), z)

dz
= λp{ 1

(1 + zα)2
− (1− γ)}

66
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Notice that dE(x∗(z),z)
dz

is decreasing in z, so E(x∗, z) is concave in z, we can obtain an

unique local optimal z which maximizes E(x∗(z), z) by solving the dE(x∗(z),z)
dz

= 0.

ẑ =
1

α
√

1− γ
− 1

α

And if γ < 1− 1
(1+zα)2

, then ẑ < 1, otherwise ẑ > 1. Thus, we can get that

z∗ =





ẑ if γ < 1− 1
(1+α)2

.

1 Otherwise;

We find that the condition of γ > (1− γ)zα is always satisfied when z = ẑ. And if

z = 1, then 1− 1
(1+α)2

> zα
1+zα

= α
1+α

, so the condition of γ > zα
1+zα

will be satisfied

as long as γ ≥ 1− 1
(1+α)2

.

Additionally, notice that z∗ > 0.

Thus, x = 0 will never be optimal and x∗(z) = p
1+zα

is always optimal for the hotel,

it is equivalent to that it is optimal for the hotel to offer a full down payment

optional scheme to customer under z∗ and x∗(z) when p ≤ A.
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Proof of Proposition 4.2

Proof. Considering the first and second partial derivatives of E(x, z) with respect

to z:

∂E(x, z)

∂z
= λ

{
− [1−

∫ p

A

e(p− pc)φ(p)dpc](1− γ)p

+ (1− γ)[1−
∫ p−x−zαx

A

e(p− x− zαx− pc)φ(pc)dpc](p− 2zαx)

+ [γ + (1− γ)

∫ p−x−zαx

A

e(p− x− zαx− pc)φ(pc)dpc]x

+ e(1− γ)zαx(p− x− zαx)Φ(p− x− zαx)

}

(B.1)

∂2E(x, z)

∂z2
= −λ(1− γ)αx

{
2
{

1−
∫ p−x−zαx

A

e[2(p− x− zαx)− pc]φ(pc)dpc

}

+ ezαxM(x, z)

} (B.2)

From ∂E(x,z)
∂x

= 0, we can obtain

∫ p−x−zαx

A

e[2(p− x− zαx)− pc]φ(pc)dpc =
(1− γ)zα− γ

(1 + zα)(1− γ)
(B.3)

Combining Equation (B.3) and (B.2), we have,

∂2E(x, z)

∂z2
|x=x∗(z) = −λ

{
2αx∗(z)

1 + zα
+ e(1− γ)αx∗(z)zαx∗(z)M(x∗(z), z)

}

≤ 0
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Proof of Proposition 4.3

Proof. Taking cross partial derivative of E(x, z) with respect to x and z, we have,

∂2E(x, z)

∂x∂z
= λ

{
− 2zα(1− γ) + γ − zαx(1 + zα)e(1− γ)M(x, z)

+ (1 + 2zα)e(1− γ)

∫ p−x−zαx

A

[2(p− x− zαx)− pc]φ(pc)dpc

} (B.4)

By combining Equation (B.3) and (B.4), we have,

∂2E(x, z)

∂x∂z
|x=x∗(z) = λ

{
− 2zα(1− γ) + γ − zαx∗(z)(1 + zα)e(1− γ)M(x∗(z), z)

+
(1− γ)zα− γ

1 + zα
(1 + 2zα)

}

= −λ

{
zα

1 + zα
+ zαx∗(z)(1 + zα)e(1− γ)M(x∗(z), z)

}

≤ 0

Then by Topkis’s (1998) theorem , we can get that x∗(z) is non-increasing in z.

Proof of Proposition 4.4

Proof. Taking the first order condition, we know that at the optimum, ∂E(x∗(z),z)
∂x

=

0, differentiating the first order condition, with respect to z and using the implicit

function theorem, we find that

∂2E(x∗(z), z)

∂x2

dx∗(z)

dz
+

∂2E(x∗(z), z)

∂x∂z
= 0 (B.5)
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From Equation (B.5), we can get

dx∗(z)

dz
= −

∂2E(x∗(z),z)
∂x∂z

∂2E(x∗(z),z)
∂x2

= −
zα

1+zα
+ zαx∗(z)(1 + zα)(1− γ)eM(x∗(z), z)

z(1 + zα)2(1− γ)eM(x∗(z), z)

(B.6)

Then, we have,

d

dz
(x∗(z) + zαx∗(z)) =

d

dz
((1 + zα)x∗(z))

=
d(1 + zα)

dz
x∗(z) + (1 + zα)

dx∗(z)

dz

By plugging dx∗(z)
dz

in the above equation, we have

d

dz
(x∗(z) + zαx∗(z)) = − zα

z(1 + zα)2(1− γ)eM(x∗(z), z)

≤ 0

(B.7)

which is non-positive.

Technical detail of Remark 4.2

Proof. Considering the derivative of zαx∗(z) with respect to z, we have (For sim-

plicity, we use x∗ represent x∗(z) in the following parts),

d

dz
(zαx∗) = αx∗ + zα

dx∗

dz

= αx∗ + zα
− zα

1+zα
− zαx∗(1 + zα)(1− γ)eM(x∗, z)

z(1 + zα)2(1− γ)eM(x∗, z)

=
α

(1 + zα)2(1− γ)eM(x∗, z)
[e(1− γ)(1 + zα)x∗M(x∗, z)− zα

1 + zα
]
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Let A(z) = (1 + zα)x∗M(x∗, z), then,

dA(z)

dz
=

d(x∗ + zαx∗)
dz

M(x∗, z) + (x∗ + zαx∗)
dM(x∗, z)

dz
(B.8)

where

dM(x∗, z)

dz
=

∂M(x∗, z)

∂z

dx∗

dz
+

∂M(x∗, z)

∂z

= −(1 + zα)T (z)
dx∗

dz
− αx∗T (z)

= −(1 + zα)T (z)(−
zα

1+zα
+ zαx∗(1 + zα)(1− γ)eM(x∗, z)

z(1 + zα)2(1− γ)eM(x∗, z)
)− αx∗T (z)

=
zαT (z)

z(1 + zα)2e(1− γ)M(x∗, z)

where

T (z) = 3φ(p− x∗ − zαx∗) + (p− x∗ − zαx∗)φ′(p− x∗ − zαx∗)

Plugging d
dz

(x∗+zαx∗) which is presented by Equation (B.7) and dM(x∗,z)
dz

back into

the Equation (B.8), we have

dA(z)

dz
=

zαx∗T (z)

z(1 + zα)e(1− γ)M(x∗, z)
− zα

z(1 + zα)2e(1− γ)

Thus,

d2(zαx∗)
dz2

| d(zαx∗)
dz

=0
=

α

(1 + zα)2(1− γ)eM(x∗, z)
[e(1− γ)

dA(z)

dz
− α

(1 + zα)2
]

=
α

(1 + zα)2(1− γ)eM(x∗, z)
[

αx∗T (z)

(1 + zα)M(x∗, z)
− 2α

(1 + zα)2
]

=
α2

(1 + zα)4e(1− γ)M(x∗, z)2
[(1 + zα)x∗T (z)− 2M(x∗, z)]
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Let n = p− x∗ − zαx∗, then

d2(zαx∗)
dz2

| d(zαx∗)
dz

=0
=

α2

(1 + zα)4e(1− γ)M(x∗, z)2
f(n)

where

f(n) = (1 + zα)x∗T (z)− 2M(x∗, z)

= (p− n)[3φ(n) + nφ′(n)]− 2[2Φ(n) + nφ(n)]

= (3p− 5n)φ(n) + n(p− n)φ′(n)− 4Φ(n)

Proof of Theorem 4.1

Proof. Remaind that we have,

dE(x∗, z)

dz
= λ

{
− [1−

∫ p

A

e(p− pc)φ(p)dpc](1− γ)p +
x∗

1 + zα

+ [1−
∫ p−x∗−zαx∗

A

e(p− x∗ − zαx∗ − pc)φ(pc)dpc](1− γ)(p− x∗ − zαx∗)
}
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In order to find the value of z that satisfies this first-order optimality condition,

we let R(x∗, z) = dE(x∗,z)
dz

, then we have,

∂R(x∗, z)

∂x
= λ

{
− (1− γ)(1 + zα) +

1

1 + zα

+(1− γ)(1 + zα)

∫ p−x∗−zαx∗

A

e[2(p− x∗ − zαx∗)− pc]φ(pc)dpc

}

= λ

{
− (1− γ)(1 + zα) +

1

1 + zα
+ (1− γ)(1 + zα)

(1− γ)zα− γ

(1 + zα)(1− γ)

}

= −λ
zα

1 + zα

∂R(x∗, z)

∂z
= λ

{
− (1− γ)αx∗ +

−αx∗

(1 + zα)2

+(1− γ)αx∗
∫ p−x∗−zαx∗

A

e[2(p− x∗ − zαx∗)− pc]φ(pc)dpc

}

= λ

{
− (1− γ)αx∗ +

−αx∗

(1 + zα)2
+ (1− γ)αx∗

(1− γ)zα− γ

(1 + zα)(1− γ)

}

= −λ
αx

1 + zα

{
1

1 + zα
+ 1

}

dR(x∗, z)

dz
=

∂R(x∗, z)

∂x

dx∗

dz
+

∂R(x∗, z)

∂z

= −λ
zα

1 + zα
(−

zα
1+zα

+ zαx∗(1 + zα)(1− γ)eM(x∗, z)

z(1 + zα)2(1− γ)eM(x∗, z)
)

−λ
αx

1 + zα

{
1

1 + zα
+ 1

}

= −λ
zα

z(1 + zα)3e(1− γ)M(x∗, z)

{
2e(1− γ)(1 + zα)x∗M(x∗, z)

− zα

1 + zα

}
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Let A(z) = (1 + zα)x∗M(x∗, z), then,

dA(z)

dz
=

d(x∗ + zαx∗)
dz

M(x∗, z) + (x∗ + zαx∗)
dM(x∗, z)

dz

where

dM(x∗, z)

dz
=

∂M(x∗, z)

∂z

dx∗

dz
+

∂M(x∗, z)

∂z

= −(1 + zα)T (z)
dx∗

dz
− αx∗T (z)

= −(1 + zα)T (z)(−
zα

1+zα
+ zαx∗(1 + zα)(1− γ)eM(x∗, z)

z(1 + zα)2(1− γ)eM(x∗, z)
)− αx∗T (z)

=
zαT (z)

z(1 + zα)2e(1− γ)M(x∗, z)

where

T (z) = 3φ(p− x∗ − zαx∗) + (p− x∗ − zαx∗)φ′(p− x∗ − zαx∗)

Thus, we have,

dA(z)

dz
=

zαx∗T (z)

z(1 + zα)e(1− γ)M(x∗, z)
− zα

z(1 + zα)2e(1− γ)
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⇒ d2R(x∗, z)

dz2
| dR(x∗,z)

dz
=0

= −λ
zα

z(1 + zα)3e(1− γ)M(x∗, z)

{
2e(1− γ)

dA(z)

dz

− α

(1 + zα)2

}

= −λ
α2

(1 + zα)5e(1− γ)M(x∗, z)2

{
2(1 + zα)x∗T (z)

−3M(x∗, z)

}

Let n = p− x∗ − zαx∗, then d2R(x∗,z)
dz2 | dR(x∗,z)

dz
=0

can be represented as follows.

d2R(x∗, z)

dz2
| dR(x∗,z)

dz
=0

= −λ
α2

(1 + zα)5e(1− γ)M(x∗, z)2
f(n)

where

f(n) = 2(1 + zα)x∗T (z)− 3M(x∗, z)

= (2p− n)[3φ(n) + nφ′(n)]− 3[2Φ(n) + nφ(n)]

= (6p− 9n)φ(n) + 2n(p− n)φ′(n)− 6Φ(n)

Notice that x∗+zαx∗ is decreasing in z, so n is increasing in z. Thus, analyzing the

polynomial function f(n) is sufficient for determining the sign of d2R(x∗,z)
dz2 | dR(x∗,z)

dz
=0

.

(1) If f(n) > 0, then d2R(x∗,z)
dz2 | dR(x∗,z)

dz
=0

< 0, R(x∗, z) is quasi-concave in z, which

implies that R(x∗, z) = dE(x∗,z)
dz

has at most two roots, the larger of the two cor-

responds to a local maximum and the smaller of the two corresponds to a local

minimum of E(x∗, z), and the larger one makes a change of sign for dE(x∗,z)
dz

from
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positive to negative. Since f(0) = 6pφ(0) ≥ 0, then we needn’t to consider the case

f(n) ≤ 0 here.

(2) If df(n)
dn
|f(n)=0, then f(n) will be always a negative value as long as f(n) changes

its sign from positive to negative as n increasing. Since f(0) = 6pφ(0) ≥ 0, then

df(n)
dn
|f(n)=0 means that R(x∗, z) will changes it’s shape from quasi-concave to quasi-

convex at one time, which implies that R(x∗, z) = dE(x∗,z)
dz

has at most three roots,

the root which makes a change of sign for dE(x∗,z)
dz

from positive to negative corre-

sponds to a local maximum of E(x∗, z).

(3) Otherwise, the shape of R(x∗, z) is determined by the rank of f(n). Suppose i

is the rank of f(n), then there are at most i roots for f(n) = 0, and the first root

indicates a change of sign for f(n) from positive to negative since f(0) = 6pφ(0) ≥
0, which implies that R(x∗, z) has most i+2 roots and most b i+2

2
c of them indicate

a change of sign for R(x∗, z) from positive to negative.

Proof of Corollary 4.3

Proof. For Uniform distribution of the hotel’s competitor’s rental rate, we have

pc v U [A,B], then φ(n) = 1
B−A

, Φ(n) = n−A
B−A

, φ′(n) = 0, and

f(n) = (6p− 9n)φ(n) + 2n(p− n)φ′(n)− 6Φ(n)

=
3

B − A
[2(p + A)− 5n]

Thus, f(n) changes its sign from positive to negative as n increasing from 0 to p at

most one time. So, there are two cases. In the first case, f(n) is always positive as z

increasing, it is equivalent to that R(x∗, z) is quasi-concave function in z, implying
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that R(x∗, z) = dE(x∗, z)/dz has at most two roots, the second one corresponds to

a local maximum and another correspond to a local minimum of E(x∗, z); In the

second case, f(n) changes its sign from positive to negative as n increasing from 0 to

p at one time, it is equivalent to that R(x∗, z) changes from quasi-concave to quasi-

convex as z increasing, implying that R(x∗, z) = dE(x∗, z)/dz has at most three

roots, the root which makes a change of sign for R(x∗, z) from positive to negative

corresponds to a local maximum and others correspond to a local minimum of

E(x∗, z). And, in each case, there is only one value of z makes a change of sign for

R(x∗, z) from positive to negative, which corresponds to the unique local maximum

point of E(x∗, z).

Proof of Corollary 4.4

Proof. For Exponential distribution of the hotel’s competitor’s rental rate, we have

pc v E(1/θ), then φ(n) = 1
θ
e−

n
θ , Φ(n) = 1− e−

n
θ , φ′(n) = −1

θ
φ(n) = − 1

θ2 e
−n

θ , and

f(n) = (6p− 9n)φ(n) + 2n(p− n)φ′(n)− 6Φ(n)

=
{

2n2 − (2p + 9θ)n + 6θ(θ + p)
} 1

θ2
e−

n
θ − 6

Let ft(n) = 2n2 − (2p + 9θ)n + 6θ(θ + p), then f(n) = ft(n) 1
θ2 e

−n
θ − 6.

As Figure B.1 shows, ft(n) = 0 has two roots: n1 and n2. And n1 = 2p+9θ−√∆
4

,

n2 = 2p+9θ+
√

∆
4

, where ∆ = 33θ2 − 12pθ + 4p2 > 0. If n < n0 (n0 = 2p+9θ
4

), ft(n) is

decreasing in n. Notice that 1
θ2 e

−n
θ is a decreasing function of n and f(0) = 6p

θ
> 0,

f(n0) = −∆
8

e−
n0
θ

θ2 −6 < 0. Thus,f(n) is decreasing from a positive value to a negative

value as n increasing from 0 to n0. Moreover, ft(n) is negative when n0 < n < n2,

implying that f(n) is negative when n0 < n < n2. Integrating with the above
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-

6
ft(n)

n0

6θ(θ + p)

n1 n2n0r r r

Figure B.1: The figure of ft(n). n1 = 2p+9θ−√∆
4

, n0 = 2p+9θ
4

, n2 = 2p+9θ+
√

∆
4

, where
∆ = 33θ2 − 12pθ + 4p2.

analysis, we can obtain that f(n) changes its sign from positive to negative at one

time as n increasing from 0 to n2. And it is very easy to prove that n2 > p.

Then, we propose that f(n) changes its sign from positive to negative at one time as

n increasing from 0 to p, which is equivalent to that R(x∗, z) changes from quasi-

concave to quasi-convex at one time as z increasing, implying that R(x∗, z) =

dE(x∗, z)/dz has at most three roots. The root which makes a change of sign for

R(x∗, z) from positive to negative corresponds to the unique local maximum point

and the other two roots correspond to the local minimum points of E(x∗, z).

Proof of Corollary 4.5

Proof. For Normal distribution of the hotel’s competitor’s rental rate, we have,

φ(n) = 1√
2πσ

e−
(n−µ)2

2σ2 , Φ(n) =
∫ n

A
φ(pc)dpc, φ′(n) = −n−µ

σ2 φ(n) and φ′′(n) = [(n−µ
σ2 )2−
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1
σ2 ]φ(n). Then, we can obtain

f(n) = (6p− 9n)φ(n) + 2n(p− n)φ′(n)− 6Φ(n)

df(n)

dn
=

{
− 15− (8p− 13n)

n− µ

σ2
+ 2n(p− n)[(

n− µ

σ2
)2 − 1

σ2
]
}

φ(n)

Using f1(n) to represent the item in the brace of above equation, since φ(n) > 0,

then analyzing f1(n) is sufficient for determining the shape of df(n)
dn

. Notice that

f1(n) is a polynomial function of n, and its rank is 4, so f1(n) = 0 has at most

4 roots, and f(n) = 0 has at most 5 roots. Thus, R(x∗, z) = 0 at most has 7

roots. Additionally, f(0) = 6pφ(0) ≥ 0, thus, there are at most 3 roots which make

R(x∗, z) = dE(x∗, z)/dz change its sign from positive to negative that correspond

to the local maximum of E(x∗, z).
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