
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

PkT-SIN: A Secure Communication Protocol for
Space Information Networks with Periodic k-Time

Anonymous Authentication
Yang Yang, Wenyi Xue, Jianfei Sun*, Guomin Yang, Yingjiu Li, HweeHua Pang, Robert H. Deng, IEEE Fellow

Abstract— Space Information Network (SIN) enables universal
Internet connectivity for any object, even in remote and extreme
environments where deploying a cellular network is difficult.
Access authentication is crucial for ensuring user access control
in SIN and preventing unauthorized entities from gaining access
to network services. However, due to the complex communication
environment in SIN, including exposed links and higher signal
delay, designing a secure and efficient authentication scheme
presents a significant challenge. In this paper, we propose a secure
communication protocol for SIN with periodic k-time anonymous
authentication (named PkT-SIN) that allows satellite users to
anonymously authenticate to ground stations at most k times
in each single time period. An efficient handover mechanism is
designed to ensure seamless communication for satellite users to
communicate with different satellites and ground stations, taking
into account the dynamic topology of SIN. As a core component
of PkT-SIN, we propose a novel primitive, periodic k-time keyed-
verification anonymous credential (PkT-KVAC), that enables
users to derive k tokens from a credential for anonymous and
unlinkable authentication. On the other hand, a verifier can al-
ways recognize a reused token from a dishonest user. PkT-KVAC
is of independent contribution to anonymous authentication in
pay-per-use business scenarios. Formal security proofs confirm
that PkT-SIN and PkT-KVAC have desired security features. The
supremacy of their computing features is demonstrated through
comprehensive comparison and rigorous performance analysis.

Index Terms—space information networks, periodic k-time
authentication, keyed-verification anonymous credential

I. INTRODUCTION

SPACE information network (SIN) refers to a network
architecture that amalgamates terrestrial communications

with satellite systems [1]. In this architecture, a Low Earth
Orbit satellite (LEO) takes on the task of relaying and en-
hancing ground signals, facilitating the connection of users to
distant ground stations. The global market size for satellite
communication reached a valuation of USD 71.6 billion in
2021, as reported in [2]. SIN systems offer several advantages,
including an extensive coverage, a minimal fading margin,

Y. Yang is with the College of Computer Science and Big Data, Fuzhou
University, Fuzhou, China, 350116; and School of Computing and Informa-
tion Systems, Singapore Management University, Singapore 188065. (email:
yang.yang.research@gmail.com), W. Xue is with the College of Computer
Science and Big Data, Fuzhou University, Fuzhou, China, 350116. (email:
wenyixue.research@gmail.com), J. Sun is with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore;
(email: sjf215.uestc@gmail.com). G. Yang, H. Pang and R. H. Deng are
with the School of Computing and Information Systems, Singapore Man-
agement University, Singapore 188065. (email: {gmyang, hhpang, robert-
deng}@smu.edu.sg) Y. Li is with the Department of Computer Science,
University of Oregon. (email: yingjiul@uoregon.edu)

*Corresponding author: Jianfei Sun.

and the ability to surmount geographic constraints, enabling
services in diverse environments such as oceans, airspace,
forests, and deserts. SIN finds widespread deployment in
fields like ship and aircraft navigation, long-distance telephone
transmission, and real-time weather forecasting.

To prevent unauthorized service access, dependable au-
thentication is crucial for SIN. Because sensitive personal
information and service data are transmitted over satellite-
ground links, anonymous authentication is desired in SIN to
address the concern about potential misuse of personal data.
The concept of anonymous authentication in SIN is explored
in-depth in [3–7].

The foremost challenge to address in anonymous authen-
tication in SIN is the propagation delay of authentication.
Low Earth Orbit (LEO) satellites orbit the Earth at altitudes
ranging from 500 to 2000 km, resulting in propagation delays
of approximately 10 to 40 ms, as reported in [3]. To mitigate
authentication time delays, several existing schemes, as out-
lined in [3, 5–7], empower LEO satellites with independent
authentication capabilities. This enables user authentication
without the need for ground entity involvement. However,
many of these solutions, detailed in [3, 5–7], necessitate LEO
satellites to perform intricate computations, such as resource-
intensive pairing operations. Given the challenges associated
with satellite launch and maintenance in space, LEO satellites
are significantly constrained in terms of computing resources
and are unsuitable for heavy computational tasks.

The approach of Keyed-Verification Anonymous Creden-
tial (KVAC) can be leveraged to mitigate the authentication
propagation delay within SIN. KVAC was initially proposed
by Chase et al. [8, 9], with the primary aim of enhancing
the efficiency of authentication schemes. In KVAC, the issuer
of anonymous credentials and the verifier of anonymous
credentials share the same secret key. This shared secret key
allows for a more efficient design of anonymous credentials,
alleviating the need for resource-intensive bilinear pairing
computations. Consequently, the computation efficiency of
KVAC surpasses that of traditional anonymous credentials, as
exemplified in [10–12].

Given the considerable distance of LEO satellites (LEOs for
short) from earth and sufficient protection of SIN infrastruc-
ture, it is reasonable to entrust LEOs with the issuer’s secret
key for performing KVAC verification without significant
concern on LEOs’ compromise. We aim to significantly reduce
not only authentication propagation delay in SIN but also
the computation overhead on LEOs for achieving anonymous

2024 DOI: 10.1109/TIFS.2024.3409070

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

authentication in this setting.
We face several significant challenges in achieving our

goal. First, since each LEO satellite travels at a speed of
approximately 7.5 km/s, it can only provide services to each
user with an effective service duration ranging from 5 to 15
minutes [13]. To ensure seamless real-time service continuity,
anonymous authentication may be performed with different
LEOs over time in each service session. Our challenge is to
make the handover of authentication between multiple LEOs
highly efficient and privacy-preserving.

Second, in scenarios where the number of authentication
attempts is not limited, dishonest users may freely distribute
their anonymous credentials to many unauthorized users. This
would not only damage the profitability of SIN services but
also open a door to more potential attacks. Our challenge
for mitigating this problem is to restrict the number of times
each satellite user can authenticate to LEOs within any defined
period. Third, malicious users may launch Distributed Denial
of Service (DDoS) attacks. A notable example is the large-
scale DDoS attack targeted at a prominent American satel-
lite broadband services provider, Viasat, in February 2022.
This attack resulted in a disruption of satellite broadband
service with tens of thousands of users affected in Europe
[14]. Users performing anonymous authentication in SIN may
leverage their anonymity in performing such DDoS attacks.
Our challenge for mitigating this threat is to enable LEOs
to identify suspicious users if their authentication attempts
exceed a specified limit within any defined period.

A. Contributions
Addressing these identified challenges, we develop a novel

secure communication protocol for SINs. The cornerstone of
our protocol is a novel anonymous credential primitive, termed
Periodic k-Time Keyed-Verification Anonymous Credential
(PkT-KVAC). PkT-KVAC is a new type of KVAC that em-
powers users to generate a maximum of k valid authentication
tokens within any defined time period. Users who exceed this
authentication limit within any time period can be promptly
identified. The number of authentication times in PkT-KVAC
is automatically reset to k in each time period, eliminating
the need for users to interact with their credential issuer. In
line with the efficiency advantage of KVAC, our PkT-KVAC
exhibits low computation costs.

Subsequently, we propose PkT-SIN, a secure communica-
tion protocol for SIN featuring periodic k-time keyed ver-
ification authentication. PkT-SIN empowers LEO to play a
pivotal role in authentication token verification and utilizes
PkT-KVAC for anonymous authentication. The former design
feature effectively reduces interactions and communication
delays, and the later considerably alleviates the computation
costs on LEOs. With the property of periodic k-time authen-
tication, PkT-KVAC can effectively deter users from sharing
their anonymous credentials and launching DDoS attacks in
SINs. In addition, PkT-SIN incorporates a secure session estab-
lishment protocol and achieves an array of security properties.

Our contributions are summarized as follows:
• Novel Anonymous Credential Primitive. We introduce

PkT-KVAC, a novel keyed-verification anonymous credential

primitive that enables periodic k-time authentication. While
preserving the efficiency of KVAC, PkT-KVAC restricts the
number of authentication instances within each time period.
We formally define the syntax and security model of PkT-
KVAC and provide an efficient construction without the need
for pairing operations.
• Anonymous Authentication and Secure Session Es-

tablishment. By incorporating PkT-KVAC as a cornerstone,
We propose PkT-SIN, a new secure communication proto-
col for SINs. While enabling anonymous and unlinkable
user authentication, PkT-SIN maintains the benefit of low
computation costs inherited from PkT-KVAC, rendering it
well-suited for implementation in LEOs. In response to the
frequent handover of SINs, we have developed distinct secure
session establishment protocols for three scenarios, ensuring
forward and backward secrecy. PkT-SIN achieves an array
of desired security properties, including mutual authentica-
tion, anonymity, unlinkability, accountability, and resistance
to replay/impersonation/man-in-the-middle/DDoS attacks.
• Periodic k-Time Anonymous Authentication. PkT-SIN

supports periodic k-time anonymous authentication, granting
valid users to be authenticated anonymously at most k times
within each designated time period. This function serves to
defer unauthorized credential sharing and resist DDoS attacks.
The number of authentication times is automatically reset to k
in each time period, which avoids redundant interactions and
delays caused by users reapplying access permissions. Without
involving any trusted third party, PkT-SIN facilitates rapid
detection and identification of users who perform anonymous
authentication more than k times.
• Seamless Handover. Accommodating the movements

of satellites and mobile users, PkT-SIN incorporates secure
handover protocols including: (1) LEO handover for mobile
users at low speeds, (2) ground station handover for mo-
bile users at high speeds, and (3) handover of both LEOs
and ground stations for mobile users at high speeds. We
streamlined handover interactions based on the movements of
entities to eliminate redundant communication delays without
compromising security. The performances of the proposed
handover protocols are rigorously evaluated in comparative
studies.

B. Related Works

Secure Satellite Communication. A list of protocols had
been proposed for secure satellite communications [15–27].
In particular, Cruickshank et al. [15] introduced a secure
commercial satellites communication system based on public
key cryptography and digital signatures. However, this scheme
had high computational costs and limited efficiency. Hwang
et al. [16] proposed a hash-based authentication protocol for
LEOs, which improves communication delay and data capac-
ity. Many recent works [17–20] enhanced Hwang’s research to
be secure against various attacks. In another work, Dharminder
et al. [21] proposed a post-quantum secure key exchange and
authentication protocol for satellite communication, aiming
to withstand quantum computing-based attacks. Several other
works [22–25] focused on optimizing power allocation for

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

multi-beam satellite communication while ensuring physical
layer security. In addition, software-defined networks [23, 26]
were introduced to improve flexibility in resource and service
utilization for secure satellite communication. A moving tar-
get defense strategy was introduced to mitigate Distributed
Denial of Service (DDoS) attacks to satellite communications
[27]. However, no protocol mentioned above [15–27] supports
anonymity or unlinkability, leaving sensitive personal infor-
mation vulnerable to potential exposure to LEO satellites and
ground stations.

In the context of secure satellite communication, Xue et
al. [4] presented an efficient handover protocol for anony-
mous batch verification, but it failed to achieve handover
unlinkability. Yang et al. [3] proposed an anonymous au-
thentication protocol for SIN using group signatures, achiev-
ing unlinkable LEO handovers but with increased satellite
computation costs. Liu et al. [5] utilized blockchain tech-
nology for decentralized authentication and fair billing in
cross-company satellite services. Their subsequent work [6, 7]
introduced distributed systems, collaborative credential issuing
algorithms, and incentive mechanisms. Wazid et al. [38] and
Wang et al. [39] leveraged Hash and MAC operations to
enable lightweight and secure authentication in the context of
Internet of Space Things (IoST) and space-ground integrated
railway networks, respectively. By reducing the computational
burden on resource-constrained LEO devices, these schemes
demonstrated practicality in the targeted application domains.
However, authentication schemes [4, 38, 39] require veri-
fiers to be aware of users’ identities, thus failing to provide
anonymity and unlinkability for NCC and LEO. Ma et al. [40]
proposed a lattice-based authentication scheme for SIN and de-
signed an aggregated signature mechanism for large-scale IoT
device authentication. Another post-quantum authentication
protocol proposed by Guo et al. [41] was constructed based
on the ring learning with errors (RLWE) problem, exhibiting
more compact ciphertexts and lower computation overheads.
Despite these advancements, similar challenges of unautho-
rized credential sharing, DDoS attacks and heavy computation
overheads remain unaddressed in the related works.

k-Time Anonymous Authentication. k-Time Anonymous
Authentication (k-TAA) permits users to be authenticated at
most k times while maintaining anonymity. Teranishi et al.
[28] introduced the first k-TAA scheme, allowing identifica-
tion of users exceeding the authentication limit. Nguyen et
al. [29] extended this concept to dynamic k-TAA, enabling
each authenticator to independently grant or revoke access
permissions. Chaterjee et al. [30] proposed a k-TAA scheme
based on physically unclonable functions, suitable for trusted
platform modules (TPM). In addition, Huang et al. [31]
devised an efficient k-TAA system tailored for pay-as-you-go
pricing, facilitating multiple service accesses and associated
payments within each single authentication period. However,
all these schemes [28–31], require users to reapply for access
permissions when their authentication tokens are depleted.
Therefore, they are not ideal for scenarios in which frequent
communication connections and authentications are required
as in SIN.

Many existing k-TAA schemes [28–31] lack the capability

of offering periodic anonymous authentication. Although the
concept of periodic k-TAA has been realized in [32, 33], they
fall short in supporting selective disclosure of credential at-
tributes for achieving fine-grained authentication. Furthermore,
they entail a substantial number of pairing operations, resulting
in significant verification latency. In comparison, our solution
supports periodic fine-grained anonymous authentication while
alleviating the need for cumbersome pairing operations.

II. PRELIMINARIES

A. Group Description and Hardness Assumptions

A group generator GGen(1λ) → (G, p) inputs a security
parameter 1λ and outputs a cyclic group G of prime or-
der p. We assume that the collision-resistant hash functions
H1 : {0, 1}∗ → Z∗

p and H2 : {0, 1}∗ → G can be efficiently
computed in G. For security purposes, our scheme requires
the following assumptions to hold in a group G.

Definition II.1. (Discrete Logarithm (DL) Assumption). Let
g be a generator of G. Given a tuple (g, ga) ∈ G2, output
a ∈ Z∗

p. DL assumption holds if for all PPT adversary A,
the advantage function AdvDDH

A (λ) := Pr[A(g, ga) = a] is
negligible.

Definition II.2. (Decisional Diffie-Hellman (DDH) Assump-
tion). Let g be a generator of G. The input is a tuple
T = (g, ga, gb) ∈ G3, where a, b

$←− Z∗
p. DDH assumption

holds if for all PPT adversaryA, the advantage AdvDDH
A (λ) :=

|Pr[A(T , gab) = 1]− Pr[A(T , gc) = 1]| is negligible, where
c

$←− Z∗
p.

Definition II.3. (LRSW Assumption). Let g be a generator
of G. For Ã = ga and B̃ = gb with random scalar
a, b

$←− Z∗
p, a LRSW oracle O(m) is defined as follows: take

m ∈ Z∗
p as input, O(m) chooses a random h ∈ G and

outputs a tuple T = (h, hb, ha+mab). LRSW assumption holds
if for all PPT adversary A, the advantage AdvLRSW

A (λ) :=
Pr[A(Ã, B̃,O(·)) = (h̃, h̃b, h̃a+m̃ab)] is negligible, where
h̃

$←− G and m̃ is not asked to O(·).

B. Keyed-Verification Anonymous Credentials (KVAC)

The formal definition of KVAC [8] is formalized as follows.
• Setup(1λ)→ pp. Take the security parameter 1λ as input,

this algorithm outputs the system public parameters pp, which
is an implicit input of the following algorithms.
• IKeyGen(pp)→ (isk, ipar). Take pp as input, this algo-

rithm outputs the issuer’s secret key isk and public parameters
ipar.
• Issue(I(isk, S) ↔ U(ipar,ATTR)) → cred is an

interactive protocol where a user U can obtain a credential
cred on attributes ATTR from an issuer I.
• Show(ipar, cred,ATTR, ϕ) ↔ Verify(isk, ϕ) is an inter-

active protocol between a user and a verifier. Show is executed
by a user to generate a proof of possession π of a credential
cred certifying some set of ATTR satisfying statement ϕ under
the key corresponding to ipar, and Verify is executed by the
verifier in possession of isk to verify the proof π claiming
knowledge of a credential satisfying the statement ϕ.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

C. Signature of Knowledge (SoK)

Signature of Knowledge (SoK) [34] is a special signature
technique that enables the signer to sign messages in a zero-
knowledge way. To be specific, SoK convinces the verifier
that the signer knows the knowledge of a specific witness
without revealing other irrelevant information. Compared with
traditional digital signatures, the verification of a SoK does not
require the signer’s public key, and is suitable for anonymous
scenarios. Let notation SoK{a : h = ga}(m) denotes a
signature on message m, where the signer knows the secret a
of witness h = ga. An instantiation of the above SoK can be
computed as follows: (1) the signer selects ã $←− Z∗

p, computes
h̃ = gã, c = H(h||h̃||m), a = ã−c·a and returns π = (h̃, a, c),
where H : {0, 1}∗ → Z∗

p is a hash function. (2) The verifier

examines c
?
= H(h||h̃||m) and h̃

?
= hcga and returns 1 if the

above equations hold.

III. SYSTEM AND THREAT MODEL OF PKT-SIN

A. System Architecture

Fig. 1: System Architecture

The system architecture of PkT-SIN is presented in Fig. 1,
which consists of a network control center (NCC), low earth
orbit satellites (LEOs), ground stations (GSs) and satellite
users (SUs). The functions and duties of each entity are
illustrated below. The notations used in our system are listed
in Table I.

Network control center (NCC) is responsible for setting up
the SIN system, generating secret/public key pairs for LEOs
and GSs, and providing registration service for SUs.

Low earth orbit satellites (LEOs) distributed in space are
the access point for SUs. LEOs are tasked to authenticate
SUs to prevent unauthorized service access, establish secure
sessions between SU and GS, and forward messages for them.
LEOs also provide seamless session handover service to ensure
stable network connection for SUs.

Ground station (GS) distributed on Earth provides terres-
trial network access for LEOs and SUs. It connects to NCC
and provides a ground interface for LEOs.

Satellite user (SU) can be a mobile user, ship, vehicle and
aircraft. To join the network, SUs first register with NCC to
subscribe to network access services and then authenticate to
LEOs to obtain network service.

TABLE I: Summary of Notations

Notation Description
SIN space information network
NCC network control center
LEO low earth orbit satellite
GS ground station
SU satellite user
Luser user information list
Ltok authentication token list
TP time period
TIN unique token identifier number
Ju a counter for remaining authentication times
EKL,U symmetric key shared between LEO and SU
EKL,G symmetric key shared between LEO and GS
credTP,k anonymous credential with k-time authentication in TP
tok authentication token

x
$←− Z∗

p randomly choose an element x from Z∗
p

[1, k] integer set {1, 2, · · · , k}

B. Security Model

The system depends on the following security assumptions.
NCC is an honest entity and trusted by the entities in the

system, which cannot be compromised by any adversary. There
exists secure channels between NCC and LEO, NCC and GS,
NCC and SU, as well as LEO and GS. The secure channels
can be established via TLS or SSL protocols.

LEOs and GSs are deemed semi-honest entities. With-
out loss of generality, they honestly provide network access
service for the authorized SUs, but also attempt to collect
users’ real identities from the communications and explore
the linkability of different sessions, which may breach users’
privacy.

SUs may behave maliciously in the sense that they aim to
access SIN services without valid credentials. They could forge
credentials in order to pass the authentication. Authorized SUs
may also forge extra tokens after k-time authentications have
expired. SUs attempt to evade tracing in case of misbehavior.

We also assume polynomial-time adversaries, who can
eavesdrop, tamper or interrupt the interactions among NCC,
SUs, GSs and LEOs. They motivate to break the security of
the proposed anonymous authentication scheme when the SUs
access the network.

C. Security Requirements for PkT-SIN

The following security requirements should be satisfied in
a PkT-SIN system.
• Secure Key Establishment. A secret session key should be

established between GS and SU to protect the communications
between them.
• Mutual Authentication. A GS should authenticate an SU

to check their legitimacy, while an SU is able to authenticate
a GS to prevent spoofing network services.
• Key Forward/Backward Secrecy. Since PkT-SIN provides

handover mechanisms for three scenarios, key forward secrecy
(KFS) and key backward secrecy (KBS) should be provided.
KFS ensures that the knowledge of previous session keys is
not helpful for the attacker to derive the future keys, which
guarantees the privacy of future communications after the han-
dover. KFS indicates that the compromise of a secure channel
does not threaten the privacy of previous communications.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

• Anonymity. User anonymity protects the real identity of
SU from being leaked to GS or attackers.
• Accountability. The real identity of SU can be disclosed

when SU is discovered to be a dishonest user that exceeds the
time limit.
• Unlinkability. Unlinkability ensures that multiple network

access service requests sent by the same SU cannot be linked,
which protects the privacy of SU’s position and trajectory.
• Resistance to Replay Attacks. Protect communications

from malicious replaying of transmitted messages.
• Resistance to Impersonation Attacks. Prevent attackers

from masquerading as legitimate users or entities within a
PkT-SIN system.
• Resistance to Man-in-the-Middle (MitM) Attacks. Prevent

an attacker from secretly intercepting and altering the com-
munication between two parties who believe they are directly
communicating with each other.
• Resistance to Distributed Denial of Service (DDoS)

Attacks. Enable a system to withstand malicious attempts
to overwhelm it with a flood of traffic, ensuring service
availability.

IV. PERIODIC k-TIME KVAC (PKT-KVAC)

A. Syntax definition

Periodic k-Time Keyed-Verification Anonymous Creden-
tial (PkT-KVAC) follows the definition of keyed-verification
anonymous credentials (KVAC), where the credential issuer
I is responsible to setup the system (algorithm Setup), issue
anonymous credentials (algorithm Issue), validate authentica-
tion requests (algorithm Verify) and reveal dishonest users’
identities (algorithm Reveal). The Issue algorithm outputs a
credential cred to U , which allows him to derive unlinkable
tokens tok (algorithm Show) for anonymous authentication.
Each token tok is bound to a unique token identifier number
TIN, and the Show algorithm restricts U to have at most
k TINs in each time period TP . If two tokens are found
corresponding to the same TIN in a bounded period, the
identity of token owner can be quickly revealed through
algorithm Reveal.
• Setup(1λ, 1n)→ pp. Take the security parameter 1λ and

maximum number n of attributes in a credential as input, this
algorithm outputs the system public parameters pp, which is
an implicit input of the following algorithms.
• IKeyGen(pp) → (ipk, isk). Take pp as input, this

algorithm outputs the issuer’s public key ipk and secret key
isk.
• UKeygen(pp, ID) → (upk,usk). Take pp and user’s

identity ID as input, this algorithm outputs the user’s public
key upk and secret key usk.
• Issue(U(upk,usk,ATTR) ↔ I(isk, TP, k)) →

(credTP,k,D). U interacts with I to obtain an anonymous
credential for k-time authentication in time period TP . U
takes the user’s secret/public key usk/upk and attributes
ATTR = {attri}i∈[n] as input; I takes the issuer secret key
isk, time period TP and authentication time k as input. This
algorithm outputs a credential credTP,k and a dispenser D to
manage the authentication times.

• Show(upk,usk, credTP,k,ATTRD,D,M) → (tok,TIN,
D′). U takes the user public key upk, secret key usk, the
anonymous credential credTP,k, disclosed attribute subset
ATTRD ⊆ ATTR, a dispenser D and a message M as
input. This algorithm outputs an authentication token tok
corresponding to token identifier number TIN and an updated
dispenser D′.
• Verify(isk, tok,TIN,ATTRD,M) → 0/1. I takes the

issuer secret key isk, a token tok, a token series number TIN,
the disclosed attributes ATTRD and a message M as input.
This algorithm outputs 1 to denote that (TIN, tok,M) is valid,
and 0 otherwise.
• Reveal(TIN, tok, tok′)→ (upk, ID). If tok and tok′ are

found to be bound to the same TIN, I runs this algorithm
to outputs a public key upk to reveal the identity ID of the
dishonest user.

B. Security Requirements for PkT-KVAC

Here we present the security requirements for PkT-KVAC.
• Correctness. It requires that every anonymous credential

generated by Issue for attribute set can be used to generate
an authentication token for any statement satisfied by that
attribute set.
• Unforgeability. An adversary should not be able to present

an anonymous credential without having received one from the
issuer first.
• Anonymity. The real identity of a user cannot be deduced

from the authentication interactions if the user is honest and
does not reuse authentication tokens with the same identifier
number.
• k-Detectability. An adversary cannot generate more than

k authentication tokens in one time period TP without being
detected.
• Exculpability. An adversary cannot incriminate an honest

user U for reusing an authentication token with token identifier
number TINi.
• Dishonest User Revealing. The identity of dishonest

user can be efficiently revealed when a reusing behavior (of
authentication tokens) is discovered.

C. Construction

The construction of PkT-KVAC is described below. The
SoKs in this scheme are instantiated in Supplemental Material
B. The correctness proof of PkT-KVAC is shown in Supple-
mental Material C.1.
• Setup(1λ, 1n) → pp. I generates a cyclic group G of

prime order p, chooses a generator g of group G, selects
{gi}i∈[1,3], {hi}i∈[1,3], {ui, ũi}i∈[0,n]

$←− G, and chooses hash
function H1 : {0, 1}∗ → Z∗

p. Set g0 = g. Let lk and ltp
be the bit length of k and TP such that k ∈ [1, 2lk − 1],
TP ∈ [1, 2ltp − 1] and 2lk+ltp+1 < p. Function f : {0, 1} ×
{0, 1}ltp × {0, 1}lk → {0, 1}lk+ltp+1 is defined as (see Fig.
2) : f(a, b, c) = (a · 2ltp + b) · 2lk + c. It outputs pp =
(G, p, {gi}i∈[0,3], {hi}i∈[1,3], {ui, ũi}i∈[0,n], H1, f), which is
an implicit input in the algorithms below.
• IKeyGen(pp)→ (ipk, isk). I selects x1, x2, x3, y1, y2, y3

, z0, · · · , zn
$←− Z∗

p, computes X = gx1
1 hy3

3 , Y1 = hy1

1 , Y2 =

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Fig. 2: Coding Format of TP and k in function f

hy2

2 , Z = g0
/
(gx2

2 gx3
3 · (h1h2)

y1y2y3 ·
∏n

i=0 u
zi
i), and outputs

ipk = (X,Y1, Y2, Z) and isk = ({xi, yi}i∈[1,3], {zi}i∈[0,n]).

• UKeyGen(pp, ID) → (upk,usk). U selects xu
$←− Z∗

p,
computes Yu = gxu

0 , outputs upk = Yu and usk = xu. U
registers (ID, upk) to system manager, where ID is user’s
identity.
• Issue(U(upk,usk,ATTR) ↔ I(isk, TP, k)) →

(credTP,k,D). The interaction of this algorithm consists of
three steps.

(1) U selects random s′
$←− Z∗

p to compute a commitment
Cm = Y xu

1 Y s′

2 and a signature of knowledge (SoK) Π1
U =

SoK{(xu, s
′) : Yu = gxu

0 ∧Cm = Y xu
1 Y s′

2 }(ATTR). U sends
(Yu,Cm,ATTR,Π1

U) to I.
(2) If Π1

U is verified valid, I selects s′′, t
$←− Z∗

p, U $←− G,
computes

V = gx1
1 Ux2+x3t(Cm · Y s′′

2)y3 · ũH1(TP,k)z0
0

n∏
i=1

ũ
H1(attri)zi
i ,

ΠI = SoK{({xi, yi}i∈[1,3], {zi}i∈[0,n]) : X = gx1
1 hy3

3

∧ Z = g0
/
(gx2

2 gx3
3 (h1h2)

y1y2y3

n∏
i=0

uzi
i)

∧ V = gx1
1 Ux2(U t)x3(Cm · Y s′′

2)y3 · ũH1(TP,k)z0
0

·
n∏

i=1

ũ
H1(attri)zi
i }(s′′, t, U, V, TP, k).

Then, the tuple (s′′, t, U, V, TP, k,ΠI) is returned to U .
(3) If ΠI is verified valid, U computes s = s′+s′′ and stores

the anonymous credential credTP,k = (s, t, U, V, TP, k). U
initialize a dispenser D = {1, 2, · · · , k}.
• Show(upk,usk, credTP,k,ATTRD,D,M) → (tok,TIN,

D′). As shown in Algorithm 1, U checks whether the dispenser
D is empty to ensure that there are remaining authentication
times. This algorithm aborts when D = ∅ (Line 1-2). Other-
wise, U randomly selects an element Ju from D (Line 4) to
compute α0 = f(0, TP, Ju), α1 = f(1, TP, Ju) (Line 5). As
shown in Fig. 2, the elements α0, α1 consist of a flag bit, a
ltp-bits segment (carrying the information of TP) and a lk-bits
segment (carrying the information of Ju).

Next, SU randomizes the anonymous credential credTP,k

to produce unlinkable elements Cu = {C1, C2, C3, C4},
Du = {D1, D2}, Eu = {E0, E1, · · · , En} (line 6-14). Note
that if an attribute attri does not need to be revealed, SU
randomizes it by computing Ei = ur

i ũ
H1(attri)
i (line 13-14);

otherwise, it generates an independent element Ei = ur
i

(line 11-12). To bind α0, α1 with an authentication token,

SU computes Tu = g
1
/
(s+α0)

0 and Fu = Yu · g
w
/
(s+α1)

0 ,
where Tu is set as the token identifier TIN, and Fu is

utilized for tracing malicious users (line 15-16). Finally, SU
computes a signature of knowledge Π2

U (line 18-21), and
outputs tok = (Ju, Cu, Du, Eu, Fu,Π

2
U , TP, k),TIN = Tu,

D′ = D − Ju (line 22).

Algorithm 1: Show
Input: upk, usk, credTP,k,ATTRD,D,M .
Output: tok,TIN, D′.

1 if D = ∅ then
2 Abort;

3 else
4 Select Ju from dispenser D;
5 Set α0 = f(0, TP, Ju), α1 = f(1, TP, Ju);
6 Parse credTP,k = (s, t, U, V, TP, k);

7 Select r $←− Z∗
p, compute:

8 C1 = gr0V , C2 = gr2U , C3 = gr3U
t, C4 = Zr;

9 D1 = Y r
2 · hxu

1 , D2 = Y r
1 · hs

2, E0 = ur
0;

10 for attri ∈ ATTR do
11 if attri ∈ ATTRD then
12 Compute Ei = ur

i ;

13 else
14 Compute Ei = ur

i ũ
H1(attri)
i ;

15 Set w = H1(Cu||Du||Eu);

16 Compute Tu = g
1
/
(s+α0)

0 , Fu = Yu · g
w
/
(s+α1)

0 ;
17 Set β = 1

/
(s+ α1), δ = −r · β;

18 Produce a signature of knowledge Π2
U :

19 Π2
U = SoK{(xu, s, t, r, w, β, δ) :g0 = T

(s+α0)
u ∧

20 g0 = (gs0h
r
1g

α1
0)βhδ

1 ∧D1D2C4 = (ZY1Y2)
r ·hxu

1 hs
2

21 ∧Fu = gxu
0 · (gw0)β}(ATTRD, TP, Ju,M);

22 Return tok = (Ju, Cu, Du, Eu, Fu,Π
2
U , TP, k),TIN =

Tu, D′ = D − Ju.

• Verify(isk, tok,TIN,ATTRD,M) → 0/1. Parse tok =
(Ju, Cu, Du, Eu, Fu,Π

2
U), I first checks whether (a) TP is

the identifier of current time period, (b) 1 ≤ Ju ≤ k, (c)
the signature of knowledge Π2

U is valid. Then, I calculates
Γ = (E0 · ũH1(TP,k)

0)z0 ·
∏

attri∈ATTRD
(Ei · ũH1(attri)

i)zi ·∏
attri /∈ATTRD

Ezi
i and verifies whether the equation holds:

C1
?
= gx1

1 Cx2
2 Cx3

3 C4 · (Dy1y3

1 Dy2y3

2) · Γ.

If the equation holds, it outputs 1, otherwise it outputs 0.
• Reveal(TIN, tok, tok′)→ (upk, ID). Note that the token

series number TIN = g
1
/
(s+α0)

0 = g
1
/
(s+f(0,TP,Ju))

0 is
determined by the secret s, time period identifier TP and
Ju ∈ [1, k]. A legitimate user cannot produce more than k
valid TINs (passing SoK verification) within time period TP .
If two tokens tok = (Ju, Cu, Du, Eu, Fu,Π

2
U) and tok′ =

(J ′
u, C

′
u, D

′
u, E

′
u, F

′
u, (Π

2
U)

′) are bound to the same TIN (in-
dicating that they are associated with the same (TP, Ju)), I
computes w = H1(Cu||Du||Eu), w′ = H1(C

′
u||D′

u||E′
u),

F = (Fu/F
′
u)

1
/
(w−w′) = g

1
/
(s+α1)

0 , and sends upk =
T2

/
(Fw) = Yu to system manager, who reveals user’s identity

ID according to the registration information.

D. Security Analysis
Theorem IV.1. The PkT-KVAC scheme is unforgeable if the
LRSW assumption holds.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

Sketch of the Proof. In the formal security proof of Theorem
IV.1, we build a challenger C to interact with a PPT adversary
A. If A breaks the unforgeability of PkT-KVAC with non-
negligible advantage, C outputs a tuple to break the LRSW
assumption. Given a tuple T = (g, Ã = ga, B̃ = gb)
and a LRSW oracle OLRSW (·), C simulates PkT-KVAC as
follows. C selects α, β, γ

$←− Z∗
p, and generates pp by setting

g0 = g, g2 = gα0 , g3 = gβ0 , h1 = gγ0 . In IKeyGen,
C sets Z = g0

/
(Ãα(ÃB̃)β · (h1h2)

y1y2y3 ·
∏n

i=0 u
zi
i) =

g0
/
(ga2g

ab
3 · (h1h2)

y1y2y3 ·
∏n

i=0 u
zi
i), which implies that C

learns noting about the issuer secret key x2 = a, x3 = ab. In
UKeyGen, C selects t $←− Z∗

p, queries OLRSW (t)→ (U,U1 =
U b, U2 = Ua+tab), and sets upk = U1, implying that upk =

gxu
0 = U b. To simulate Issue, C selects s $←− Z∗

p, and computes
V = gx1

1 ·U2 · ((U1)
γy1 ·Y s

2)
y3 · ũH1(TP,k)z0

0

∏n
i=1 ũ

H1(attri)zi
i .

To simulate Show, C sets D1 = Y r
2 · U

γ
1 = Y r

2 · h
xu
1

and runs the simulator S to produce Π2
U . It can be seen

that C perfectly simulates credTP,k and tok without hold-
ing x2, x3, xu. If A outputs a forgery with a well-formed
token tok∗ = (J∗

u, C
∗
u, D

∗
u, E

∗
u, F

∗
u , (Π

2
U)

∗), C can run the
extractor E to extract r∗, t∗, s∗, x∗

u, computes U∗ = C∗
2

/
gr

∗

2 ,
U∗
1 = g

x∗
u

0 = (U∗)b, U∗
2 = C∗

1

/
(gr

∗

0 gx1
1 (Y

x∗
u

1 Y s∗

2)y3 ·
ũ
H1(TP,k)z0
0

∏n
i=1 ũ

H1(attr∗i)zi
i) = (U∗)a+t∗ab, and outputs

(U∗, U∗
1 , U

∗
2) to break the LRSW assumption.

Theorem IV.2. The PkT-KVAC scheme is anonymous and
unlinkable if the DDH assumption holds.

Sketch of the Proof. In the formal security proof of Theorem
IV.2, we build a challenger C to interact with a PPT adversary
A. If A breaks the unforgeability of PkT-KVAC with non-
negligible advantage ϵ, C breaks the DDH assumption with
non-negligible advantage ϵ

2 . Given a tuple T = (g, Ã =

ga, B̃ = gb, C̃ = gc), C simulates PkT-KVAC as follows. In
Setup, C samples {αi}i∈[0,3], β1, β2β3, {γk, γ̃k}k∈[0,n]

$←− Z∗
p,

computes gi = gαi for i ∈ [1, 3], uk = gγk , ũk = gγ̃k for
k ∈ [0, n], h1 = gβ1 , h3 = gβ3 , and sets g0 = Ãα0 , h2 = Ãβ2 .
Then, C performs IKeyGen, UKeyGen and Show as usual. To
generate a challenge token for A, C computes C∗

1 = C̃α0Vb =
gc
0Vb, C∗

2 = B̃α2Ub = gb
2Ub, C∗

3 = B̃α3U tb
b = gb

3U
tb
b , D∗

1 =

C̃β2y2 · hxub
1 = (gc)β2y2 · hxub

1 , D∗
2 = B̃β1y1 · hsb

2 = Y b
1 · h

sb
2 ,

C∗
4 = C̃α0

/
B̃α2x2+α3x3 ·(B̃β1)y1y2y3 ·B̃

∏n
i=0 γiziC̃y1y2y3 . For

i = 0 ∨ attri ∈ ATTRD, C computes E∗
i = B̃γi = ub

i ;
otherwise, it computes E∗

i = B̃γi ũ
H1(attri)
i = ub

i ũ
H1(attri)
i .

If the DDH challenge (g, Ã, B̃, C̃) is a random quadruple,
the token components C∗

1 , C
∗
4 , D

∗
1 are random elements and

therefore tok∗ is independent to the user public key gxu
0 .

Thus, if A outputs a b∗ = b with non-negligible advantage,
C outputs 1 to denote that the tuple T = (g, Ã, B̃, C̃) is a
DDH quadruple; otherwise, it outputs 0 to denote that T is a
random quadruple.

Theorem IV.3. The PkT-KVAC scheme is k-detectable if the
LRSW assumption holds.

Theorem IV.4. The PkT-KVAC scheme is exculpable if the DL
assumption holds.

The formal security proofs of Theorem IV.1-IV.4 are pro-
vided in Supplemental Material C.2-C.5.

V. PROPOSED PKT-SIN

A. Initialization Phase

System Setup. (NCC → (pp, H2, H3,SE,DSS,Luser,
Ltok)). The network control center NCC sets the security
parameter λ and the maximum number n of attributes in a
credential. NCC runs PkT-KVAC.Setup(1λ, 1n)→ pp to gen-
erate the public parameters. NCC specifies the the duration of
each time period TP , and defines the maximal authentication
time k in each time period according to the duration of TP
and the service time of each LEO. Define the key space K
for secret session key, nK as the bit length of secret session
key, ℓsid as the length of session identifier, hash functions
H2 : {0, 1}∗ → {0, 1}nK and H3 : {0, 1}∗ → {0, 1}ℓsid ,
a symmetric encryption scheme SE = (KeyGen,SEnc,SDec)
and a digital signature scheme DSS = (KeyGen,Sign,Verify).
NCC initializes two empty lists Luser and Ltok for saving user
registration information and authentication tokens respectively.

Low Earth Orbit Satellite Setup. (NCC → LEO :
(skleo, pkleo)). NCC runs PkT-KVAC.IKeyGen(pp) →
(isk, ipk) to generate issuer key pair (isk, ipk). Select xleo

$←−
Z∗
p and compute Yleo = gxleo

0 . NCC sets the secret key
of LEOs as skleo = (xleo, isk) and public key pkleo =
(Yleo, ipk).

Ground Station Setup.
Step 1. (NCC → GS : (skgs, pkgs)). NCC selects

xgs
$←− Z∗

p, computes Ygs = g
xgs

0 and runs DSS.KeyGen →
(Dskgs, Dvkgs) to generate a sign-verify key pair. NCC
sets GS’s secret key as skgs = (xgs, Dskgs) and public
pkgs = (Ygs, Dpkgs). GS sets the long-term secret key
skgs = (xgs, Dskgs), the public key pkgs = (Ygs, Dvkgs).

Step 2. (GS → LEO : (IDgs, Rgs, Siggs)). GS generates
an ephemeral Diffie-Hellman (DH) share (rgs, Rgs = g

rgs
0)

in each time period TP , and signs (IDgs, Rgs, TP) by
running Siggs = DSS.SignDskgs

(IDgs||Rgs||TP). The tuple
(IDgs, Rgs, Siggs) is sent to each connected LEO when the
system is set up.

Satellite User Setup. (SU → (usk,upk, ID)). SU runs
PkT-KVAC.UKeygen(pp, ID) → (usk,upk) to generate the
user secret-public key pair (usk,upk), and registers (ID, upk)
to NCC, whhich is inserted to Luser.

B. Credential Issue Phase

((SU ↔ NCC) → (cred, k, Ju)). When a satellite user
SU subscribes to the SIN service, it pays for the service
according to the periodic authentication time k. Then, SU
interacts with NCC to issue the credential by executing the
interactive protocol PkT-KVAC.Issue(U(usk,upk,ATTR) ↔
I(isk, TP, k)) → (credTP,k,D) with NCC, which returns
SU an anonymous credential credTP,k supporting periodic k-
time authentication in time period TP . NCC packages the
service purchase protocol as SVC (e.g., the service plan,
validity period, periodic authentication time k) and inserts
(upk, credTP,k,SVC) to Luser. Note that NCC shares the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

issuer secret key isk with the LEOs for credential verification
in initialization phase.

C. Session Establishment Phase

The session establishment process (shown in Fig. 3) consists
of three steps. Firstly, SU generates an authentication token
tok and a Diffie-Hellman (DH) share (ru, Ru) for session key
generation. Next, LEO verifies the identity of SU, generates
DH key CTL,U for LEO-SU and CTL,G for LEO-GS, and then
utilizes these keys to generate ciphertexts. Lastly, SU and GS
respectively derive a session identifier sid and a secure session
key ssk to complete the secure session establishment.

Step 1: SU selects ru
$←− Z∗

p to compute Ru = gru0 . SU
runs PkT-KVAC.Show(usk, credTP,k,ATTRD,D,M =
Ru) to compute (tok,TIN,D′). SU sends
(tok,TIN, IDgs, Ru,ATTRD) to LEO. Note that Ru is
included in SoK of PkT-KVAC.Show to avoid middle-in-the-
man attacks (tampering Ru).

Step 2: Receiving the message from SU, LEO runs PkT-
KVAC.Verify(isk, tok,TIN,ATTRD,M) to verify the legiti-
macy of SU. If the verification passes, LEO computes a
symmetric key EKL,U = H2(R

xleo
u) shared between LEO

and SU. Then, LEO chooses the nearest ground station
GS for SU to communicate with and calculates EKL,G =
H2(R

xleo
gs) as a shared key between LEO and GS. LEO sends

CTL,U ← SE.SEncEKL,U
(IDgs, pkgs, Rgs, Siggs) to SU,

and CTL,G ← SE.SEncEKL,G
(Ru, TP, Ju) to GS. Then,

LEO sends the tuple (tok,TIN) to NCC via a secure channel,
which is inserted to the list Ltok.

Step 3: Receiving the message from LEO, SU computes
EKL,U = H2(Y

ru
leo) to recover (IDgs, pkgs, Rgs, Siggs). If

DSS.VerDvkgs
(IDgs||Rgs||TP, Siggs) returns 1, SU calcu-

lates the secret session key between SU and GS as ssk =
H2(Y

ru
gs , R

ru
gs). Similarly, GS computes EKL,G = H2(Y

rgs
leo)

to recover (Ru, TP, Ju), and derives ssk = H2(R
xgs
u , R

rgs
u).

SU and GS respectively computes the session identifier sid =
H3(ssk, TP, Ju). Therefore, the secure session between GS
and SU is established with session identifier and secret session
key pair (sid, ssk).

D. Handover Phase

The LEOs are constantly moving in their fixed orbits above
the Earth’s surface, which causes a dynamic topology of
the SIN system. This dynamic feature brings a challenge to
maintain a continuous and private session. Thus, it is necessary
to design a seamless handover mechanism to ensure the real-
time secure communication and quality of service in SIN.
Meanwhile, the handover speed caused by the movement
of LEO can be calculated from the altitude of the orbiting
satellite, which is periodic and predictable. On the other hand,
the movement of user is another factor causing the session
handover, especially the mobile uses (such as vehicles) moving
at a high speed, which requires the handover between LEOs
as well as ground stations to provide continuous service.
These handover and session update scenarios are described
as follows.

Fig. 3: Workflow of Session Establishment

Fig. 4: LEO Handover for Mobile Users in Low Speed

1) S1: LEO Handover for Mobile Users in Low Speed: SU
in low speed is relatively stationary compared with the con-
stantly moving LEOs. In scenario 1 (S1), LEO handover is the
dominant factor due to the transferring of satellite coverage.
As shown in Fig. 4, the handover authentication occurs when
the current LEO (C-LEO) is leaving SU’s coverage area and
cannot continue to provide SIN service, where the satellite user
SU anonymously switches his connection to a new LEO (N-
LEO). Assume that there are secure communication channels
between NCC and LEO. The process of LEO handover (shown
in Fig. 5) consists of two steps. Firstly, SU generates an
unlinkable authentication token tok′ to authenticate itself to
the new satellite N-LEO. If the authentication is successful, N-
LEO transmits the ciphertext CT′

L,G that includes the session
identifier sid to GS, enabling SU and GS to resume their
previous communication session.

Step 1: According to the service purchase protocol (in
§V-B), SU is allowed to perform at most k anonymous
handover authentication in TP . If the dispenser D is not
empty, SU selects r′u

$←− Z∗
p to compute R′

u = g
r′u
0 , and runs

PkT-KVAC.Show(usk, cred,ATTRD,D,M = (sid,R′
u)) →

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

(tok,TIN,D′) to generate an authentication token. SU sends
the ciphertext of CT′

L,U = SE.SEncEKL,U
(tok,TIN,M)

along with (IDgs, R
′
u,ATTRD) to N-LEO as the handover

authentication request.
Step 2: Recovering the message, N-LEO runs PkT-

KVAC.Verify(isk, tok,TIN,ATTRD,M) to verify tok. If the
verification passes, SU continues the secure session with GS
through N-LEO using the current session identifier and secret
session key pair (sid, ssk).

Fig. 5: Workflow of Handover Scenario 1

2) S2: GS Handover for Mobile Users in High Speed:
When the satellite user moves at a high speed (e.g., various
types of vehicles), the nearest ground stations to mobile users
are kept on changing in this scenario (S2). As shown in Fig. 6,
SU is under the coverage of the same LEO, but switches from
the current ground station (GS) to a new GS (GS′) due to
the the fast movement. The LEO needs to help the satellite
user to establish a new secure session with GS′ using an
updated session identifier and secret session key (sid′, ssk′).
The process of GS handover (shown in Fig. 7) consists of two
steps. When detecting the most recent GS change, LEO sends
encrypted handover notifications to SU and GS, which include
the GS identifier IDgs′ , the DH share Rgs′ , the existing
session ID sid, and other information. Similar to § V-C, SU
and GS asynchronously generate a new session identifier sid′

a session key ssk′.

Fig. 6: GS Handover for Users in High Speed

Step 1:

(1) When LEO detects that the nearest ground station to
satellite user has changed to GS′, LEO sends the ciphertext of
SE.SEncEKL,U

(IDgs′ , pkgs′ , Rgs′ , Siggs′) and a GS switch-
ing notification to SU.

(2) LEO calculates EKL,G′ = H2(R
xleo

gs′) as a shared
key between LEO and GS′, sends the ciphertexts of
CTL,G′ = SE.SEncEKL,G′ (sid,Ru, TP, Ju) to GS′, and
sends CTL,U ← SE.SEncEKL,U

(IDgs′ , pkgs′ , Rgs′ , Siggs′)
to SU.

Step 2:
(1) Receiving the notification and ciphertext from LEO,

SU recovers (IDgs′ , pkgs′ , Rgs′ , Siggs′) using EKL,U . If
DSS.VerDvkgs′ (IDgs′ ||Rgs′ , Siggs′) returns 1, SU updates
the secret session key (between SU and N-GS) as ssk′ =
H2(Y

ru
gs′ , R

ru
gs′), and the new session identifier as sid′ =

H3(sid, ssk
′, TP, Ju).

(2) Receiving the ciphertext from LEO, GS′ calculates
EKL,G′ = H2(Y

rgs′

leo) to recovering (sid,Ru, TP, Ju). GS′

computes ssk′ = H2(R
xgs′
u , R

rgs′
u). Then, GS′ computes the

new session identifier sid′ = H3(sid, ssk
′, TP, Ju).

Therefore, SU and GS′ shares the updated secure session
information (sid′, ssk′).

Fig. 7: Workflow of Handover Scenario 2

3) S3: LEO and GS Handover for Users in High Speed:
For the satellite users with high speed, such as aircrafts
and vehicles, the handover may include the satellite coverage
transfer and also the grand station switching (shown in Fig. 8).
In this scenario (S3), the secure session not only switches from
current LEO to a new LEO, but also from GS to GS′. SU is
requested to authenticate to the new satellite and then update
the secure session information with the new ground station. In
this scenario, SU executes the session establishment protocol
in §V-C (shown in Fig. 3) with N-LEO and GS′ to derive the
new session identifier and secret session key pair (sid′, ssk′).

E. Dishonest User Revealing Phase

The network control center NCC monitors the authen-
tication record (TIN, tok) sent from satellites and inserts
it to Ltok. If two tokens tok and tok′ are found to be
bound to the same token series number TIN, NCC runs PkT-
KVAC.Reveal(TIN, tok, tok′) → upk to disclose the user

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Fig. 8: LEO and GS Handover for Users in High Speed

public key upk. Then, it searches the user list Luser using
upk and outputs (ID, upk).

Discussion 1. PkT-SIN provides periodic k-time anonymous
authentication. In pay-as-you-go model, the value of k maybe
determined by the subscription fee paid by SU. Higher sub-
scription fees enable SU to obtain a larger value of k for each
time period. The specific value of k for each SU should be
determined by the SIN operators.

Discussion 2. Hash-based lightweight protocols [4, 38, 39]
provide no unlinkability for SU against malicious NCC and
LEOs. For instance, the schemes in [4, 38, 39] relying on
hash-based lightweight protocols only offer anonymity against
external eavesdroppers, but fail to achieve unlinkability for
users against malicious NCC and LEOs due to the exposure
of user’s public key or even shared secret key.

Protocols in [3, 5, 7] and PkT-SIN tackle this problem
through randomization and zero-knowledge proofs (ZKP)
techniques. For instance, in PkT-KVAC.Show, the authentica-
tion token tok is essentially a randomization of the anonymous
credential credTP,k based on a random nonce r, ensuring that
it cannot be linked to credTP,k. Besides, the Show algorithm
utilizes ZKP to prove that U possesses the knowledge xu in
tok without revealing user’s secret key usk = xu. Leveraging
these techniques, PkT-SIN achieves anonymity and unlinka-
bility against third-party attackers as well as malicious NCC
and LEO.

VI. SECURITY ANALYSIS

Theorem VI.1. PkT-SIN realizes authenticated key exchange
(AKE) if the DDH assumption holds, PkT-KVAC and DSS are
unforgeable, SE satisfies confidentiality, and hash functions
are random oracles.

Proof. When an adversary outputs a session in the
Test-Session query (defined in the security model in Sup-
plemental Material D), there must be a partner instance,
otherwise, we can make use of the adversary to break the
unforgeability of PkT-KVAC and DSS or the confidentiality
of SE. We detail the proof in Supplemental Material E.

Theorem VI.2. PkT-SIN satisfies anonymity for satellite users
if PkT-KVAC satisfies anonymity and the token series numbers
are not reused.

Proof. The anonymity of PkT-SIN mainly relies on that of
PkT-KVAC. We detail the proof in Supplemental Material E.

The other security requirements of PkT-SIN are discussed
below.

• Mutual Authentication. In PkT-SIN, mutual authentication
between the GS and SU is achieved. In the session establish-
ment phase, GS is able to authenticate the legitimacy of SU
by invoking PkT-KVAC.Verify algorithm to verify whether the
authentication token tok and identifier TIN are valid or not.
Due to the unforgeability of PkT-KVAC, adversaries cannot
pass the verification by forging a valid tuple (tok,TIN). On the
other hand, SU authenticates GS using the signature Siggs =
DSS.SignDskgs

(IDgs||Rgs||TP), which is guaranteed by the
unforgeability of DSS. Therefore, PkT-SIN provides a secure
mutual authentication mechanism between GS and SU.
• Key Forward/Backward Secrecy. PkT-SIN leverages the

decisional Diffie-Hellman (DDH) mechanism to achieve key
forward secrecy (KFS) and key backward secrecy (KBS)
between GS and SU. In the session establishment phase, the
secret session key is computed as ssk = H2(Y

ru
gs , R

ru
gs) =

H2(R
xgs
u , R

rgs
u) = H2(g

ru·xgs

0 , g
ru·rgs
0), where ru, rgs ∈R Z∗

p

are randomly selected. If an attacker attempts to obtain ssk,
he has to derive ru and rgs from Ru and Rgs, respectively,
which is equivalent to solving the DL hardness problem. It is
evident that the calculation of current ssk is independent of the
previous secret session key. Hence, the attacker cannot deduce
the previous session key from the current one. Similarly, the
compromise of the current session key does result in the
disclosure of the future key. Therefore, PkT-SIN achieves
KFS/KBS to protect the secret session keys.
• User Anonymity and Unlinkability. The anonymity and

unlinkability of PkT-KVAC are formally proved in Theorem
IV.2. PkT-SIN inherits these security properties from PkT-
KVAC since the satellite users authenticate to the ground
stations by showing their authentication tokens (generated
using PkT-KVAC.Show algorithm).
• Accountability. Once the satellite user produces more than

k valid TINs within the same period TP , this misbehavior will
be discovered by detecting repeating token series numbers.
In our system, TIN is associated with TP , Ju ∈ [1, k] and
an encoding function f . The real identity of a malicious
satellite user can be disclosed using the two tokens (tok, tok′)
associated with the same TIN, where accountability is applied.
• Unlinkability. PkT-SIN inherits the unlinkability from

PkT-KVAC. The authentication token generation algorithm
TokGen of PkT-KVAC derives a token tok from anonymous
credential credTP,k with re-randomization operations in order
to achieve unlinkability. The formal security proof of PkT-
KVAC’s unlinkability is shown in Supplemental Material B.
It ensures that the multiple authentications of SU cannot be
linked together.
• Resistance to Replay Attacks. PkT-SIN is designed for

periodic k-time authentication in a designated time period.
If an attacker replays an authentication token of a legitimate
SU, it can be discovered by detecting repeating token series
numbers. If the repeated tuple (tok,TIN) is discovered, the
network access request will be rejected to resist a replay attack.
In this case, the identity of legitimate SU will not be revealed
since the attacker submits the same tuple (tok,TIN) to GS.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

TABLE II: Comparison of Secure Space Information Systems

No. Security requirements/Properties [7] [6] [5] [4] [3] [33] PkT-SIN
C1 k-time anonymous authentication × × × × ×

√ √

C2 Handover × ×
√ √

× ×
√

C3 Accountability
√

×
√ √ √ √ √

C4 Reveal violator’s identity without TTP × N.A. × × ×
√ √

C5 Mutual authentication
√

× ×
√ √

×
√

C6 Anonymity
√ √ √ √ √ √ √

C7 Unlinkability
√

×
√ √ √ √ √

C8 Selective attribute disclosure
√ √

× × × ×
√

C9 Key forward/backward secrecy × N.A.
√ √ √

N.A.
√

C10 Resistance to replay attacks
√ √ √ √ √ √ √

C11 Resistance to impersonation attacks
√

× ×
√ √

×
√

C12 Resistance to MitM attacks
√

× ×
√ √

×
√

C13 Resistance to DDoS attacks × × × × ×
√ √

TTP: Trusted Third Party; N.A.: Not Applicable.

The attacker is unable to forge a valid tuple (tok′,TIN) due
to the unforgeability of PkT-KVAC.
• Resistance to Impersonation Attacks. Suppose an attacker

attempts to impersonate a legitimate SU to obtain network
access service. For this purpose, the attacker has to forge an
authentication token that can pass the verification of PkT-
KVAC.Verify algorithm. However, the attacker is not able
to derive a valid token without SU’s private key. On the
other hand, the signature generated by DSS prevents the
impersonation of GS. Hence, the impersonation attack cannot
succeed.
• Resistance to MitM Attacks. A MitM attacker attempts

to secretly intercept and alter the communication between SU
and GS who believe they are directly communicating with each
other. The message Ru sent by SU cannot be forged by the
attacker since it is authenticated in tok. The above analysis of
resistance to impersonation attacks indicates a MitM attacker
will fail to impersonate either party. Therefore, PkT-SIN can
resist MitM attack.
• Resistance to DDoS Attacks. PkT-SIN effectively resists

DDoS attacks due to it limits the number of authentication
attempts a user can make in a defined time period, thus
preventing unauthorized users from overwhelming the system
with excessive requests and ensuring continuous service avail-
ability. Additionally, the system has mechanisms for quickly
detecting and identifying users who exceed the limits, further
enhancing its resilience against DDoS attacks. The ability of
PkT-SIN to resist DDoS attacks does not decrease or even
fail if legitimate users require a large amount of access. This
is because a legitimate user needs to pay a large amount of
subscription fee to the SIN operator in order to to get a larger
k value in pay-as-you-go model, which is discussed in § V.
• Resistance to Eavesdropping Attacks. PkT-SIN uti-

lizes a symmetric encryption scheme to prevent session
eavesdropping. Specifically, the messages exchanged be-
tween LEO and GS are encrypted using the symmetric
key EKL,G, while the messages between LEO and SU are
encrypted with the symmetric key EKL,U . The messages
(tok,TIN, IDgs, Ru,ATTRD) sent in plaintext are signed with
the signature of knowledge algorithm, preventing the attacker
to launch MitM attacks or impersonation attacks. Once the

secure session is established, the messages exchanged between
SU and GS are encrypted using the secret session key ssk.
• Resistance to Device Physical Capture Attacks. LEO

operates at an altitude between approximately 500 to 2,000
km, orbiting the planet at a speed of 7,000 to 8,000 km/h. It
is highly impractical to mount device physical capture attacks
against LEOs. GS serves as a critical ground infrastructure
that is typically well-secured and closely monitored to protect
it from unauthorized access and physical capture. On the
other hand, SU devices may subject to device physical capture
attacks. In the pay-as-you-go business model, attackers cannot
access additional SIN services without making further pay-
ments once their existing paid services are depleted. Therefore,
this model does not result in additional financial losses for the
SIN system.

VII. PERFORMANCE ANALYSIS

A. Comparison

We compare PkT-SIN with several existing anonymous
authentication protocols for SINs [3–7, 33] in terms of security
properties. As shown in Table II, our comparison focuses on k-
time anonymous authentication (C1), handover (C2), account-
ability (C3), revealing violator’s identity without TTP (C4),
mutual authentication (C5), anonymity (C6), unlinkability
(C7), selective attribute disclosure (C8), key forward/backward
secrecy (C9), resistance to replay attacks (C10), resistance to
impersonation attacks (C11), resistance to MitM attacks (C12),
and resistance to DDoS attacks (C13).

A key feature of PkT-SIN and the work in [33] is the
concept of periodic k-time anonymous authentication (C1).
This feature empowers each user to anonymously present
their credentials a maximum of k times during any single
time period. This attribute is of paramount importance in
enabling pay-as-you-use. Periodic k-time authentication is
crucial to resist DDoS attacks (C13) by limiting the number of
authentication attempts each user can make within any defined
time period, preventing malicious users from overwhelming
LEOs with excessive requests and enabling quick detection
of unauthorized access. Except [33], the other protocols [3–7]
in our comparison do not offer this feature, rendering them
susceptible to DDoS attacks.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

TABLE III: Computation and Communication Cost of PkT-KVAC and PkT-SIN

PkT-KVAC

Algorithms Parameter Phase Computation cost Communication cost
Setup pp – – (2n+ 9)|G|

IKeyGen (isk,ipk) – (n+ 8)te (n+ 7)|Zp|+ 4|G|
UKeyGen (usk,upk) – te |Zp|

Issue

Cm – 2te |G|

Π1
U

Proof 3te + th1
2|Zp|+ 2|G|

Verify 5te –

ΠI
Proof (2n+ 11)te + (n+ 1)th1

(n+ 7))|Zp|+ 3|G|
Verify (2n+ 14)te + (n+ 1)th1

–
credTP,k – (n+ 5)te + (n+ 1)th1

2|Zp|+ 2|G|
TokGen tok – (n+ 22)te + th1

8|Zp|+ (n+ 14)|G|
Verify – – (n+ 23) · te –

Reveal – – 2te + 2th1
–

PkT-SIN

Phases Operations Computation cost Communication cost

Initialization

System Setup – (2n+ 9)|G|
Low Earth Orbit Satellite Setup te |G|
Ground Station Setup tDSS.KeyGen + tDSS.Sig + 2te |Sig|+ 2|G|
Satellite User Setup te |G|

Issue Credential Issue (n+ 5)te + (n+ 1)th1
2|Zp|+ 2|G|

Session Est.
Step 1-3 tDSS.Ver + 2tSE.SEnc + 2tSE.SDec 2|CTEnc|

+(2n+ 51)te + 2th1
+ 3th2

+ th3
+16|Zp|+ (2n+ 32)|G|

Handover

LEO Handover for Users in Low Speed (2n+ 48)te + 2th1
8|Zp|+ (n+ 16)|G|

GS Handover for Users in High Speed tDSS.Ver + 2tSE.SEnc + 2tSE.SDec 2|CTEnc|
+6te + 4th2

+ 2th3

LEO and GS Handover for tDSS.Ver + 2tSE.SEnc + 2tSE.SDec 2|CTEnc|
Users in High Speed +(2n+ 51)te + 2te + 3th2

+ th3
+16|Zp|+ (2n+ 32)|G|

te: time for exponent in group G; th1
: time for hash H1 calculation; th2

: time for hash H2 calculation; th3
: time for hash H3 calculation;

|Zp|: size of element in ZP ; |G|: size of element in G; n: attribute number;
tDSS.KeyGen, tDSS.Sig, tDSS.Ver: execution time for KeyGen, Sig, Ver algorithms in DSS scheme, resp.; |Sig|: size of signature in DSS scheme;
tSE.SEnc, tSE.SDec: execution time for SEnc, SDec algorithms in SE scheme, resp.; |CTEnc|: size of ciphertext in SE scheme;

TABLE IV: Computation/Storage/Propagation Overheads Comparison

Schemes Computation Costs (Session Establishment) Storage Overheads Total Authentication Delay
LEO SU LEO SU

[3] 13te + 5tp 13te + 2tp |Zp|+ 5|G| |Zp|+ 6|G| 26te + 7tp + 2 · TL,U

[5] 11te + 2tp 15te |Zp|+ 5|G|| |Zp|+ 8|G| 26te + 2tp + 2 · TL,U

[7] 2te + 4tp 8te + 2tp |Zp|+ 5|G|| |Zp|+ 7|G| 11te + 6tp + 2 · TL,U

PkT-SIN 26te 27te 7|Zp|+ 12|G|| 3|Zp|+ 14|G| 53te + 2 · TL,U

te/tp: time for exponential/pairing computation; |Zp|/|G|: size of element in Zp/G;
TL,U : the time cost of signal propagation between LEO and SU

Most of other protocols in our comparison support account-
ability (C3), anonymity (C6), unlinkability (C7), and resistance
to replay attacks (C10). However, the functionalities related
to handover (C2), revealing any violator’s identity with TTP
involvement (C4), mutual authentication (C5), and selective
attribute disclosure (C8) are not comprehensively supported.
While certain protocols [3–5, 7] do provide accountability
(C3), they necessitate the involvement of a TTP to disclose
the identity of a violator. Consequently, they fall short of
satisfying C4. Finally, the protocols proposed in [5, 6, 33]
do not support mutual authentication (C5), rendering them
incapable of resisting impersonation attacks (C11) and MitM
attacks (C12).

After conducting a comprehensive comparison, it becomes
evident that PkT-SIN stands out as the only secure com-
munication protocol that successfully meets all the security
requirements and desirable properties for SIN.

B. Theoretical Analysis

We give out the theoretical analysis of PkT-KVAC and PkT-
SIN to analyze the computation/communication costs (shown
in Table III). In PkT-KVAC scheme, the UKeyGen algorithm
is highly efficient, requiring only one exponentiation computa-
tion. On the other hand, the Setup and IKeyGen algorithms
exhibit linear growth with attribute number n. In the Issue
algorithm, U initiates the process by generating a commitment
Cm (for the secret key upk = xu) and a SoK Π1

U , which
consumes minimal and constant time. Subsequently, I verifies
Π1

U using 5 exponentiation computations computations, and
generates SoK ΠI (comprising n + 7 elements from Zp and
3 elements from G). U verifies ΠI , and obtains the credential
credTP,k with a constant size of 2|Zp|+2|G|. The computation
and communication costs of TokGen and Verify algorithms
linearly increase with n.

In PkT-SIN, the setup algorithms for low Earth orbit satel-

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

lites, ground stations, and satellite users during the initializa-
tion phase are highly efficient. The overheads for protocol
setup and credential issuance are identical to those in PkT-
KVAC. The session establishment phase comprises the al-
gorithms DSS.Ver, SE.SEnc, SE.SDec, PkT-KVAC.Show,
and PkT-KVAC.Verify, with the overheads increasing lin-
early with n. PkT-SIN encompasses three handover scenarios.
Among these scenarios, the 2nd scenario is notably the most
efficient. Comparing the computational costs of the other two
handover scenarios is challenging due to the varying parameter
n. The communication overhead for the 1st scenario is lower
than that of the 3rd one.

Table IV presents a comparative analysis of the computation
costs (during session establishment), storage overheads, and
total authentication delay for schemes [3, 5, 7] and PkT-SIN.
Since the schemes [3, 5, 7] do not support attribute-based
authentication, the comparison sets n = 1 for them indicating
that there is only one attribute (i.e., identity) for SU. In com-
parison to schemes [3, 5, 7], PkT-SIN inherits the efficiency
advantage of the KVAC primitive to avoid expensive pairing
computations for LEO and SU, which effectively reduces the
computation overheads for authentication token generation and
verification. We also performed an experimental comparison
for LEO under curves MNT159 and BN256, which is depicted
in Fig. 10. The comparison shows that the storage overheads
of PkT-SIN are slightly higher than the other schemes [3, 5, 7],
with measurement values shown in Fig. 11. The total authenti-
cation delay includes the computation overheads of LEO, SU,
and the signal propagation delay 2·TL,U . By eliminating time-
consuming bilinear pairing operations, the total authentication
delay of PkT-SIN is among the lowest in comparison to other
schemes, as evidenced by the experimental results shown in
Fig. 12.

Algo. n

Computation and Communication Costs
MNT159 BN256

(80-bit Security) (100-bit Security)
Comp. (ms) Comm. (KB) Comp. (ms) Comm. (KB)

Setup 10 6.05 0.850 6.494 3.625
IKeyGen 10 14.426 0.615 18.205 1.164
UKeyGen – 0.713 0.059 1.865 0.164

Reveal – 2.37 – 3.947 –

Issue

10 113.442 0.850 116.238 1.906
20 179.34 1.143 191.173 2.297
30 238.613 1.436 262.401 2.688
40 288.827 1.729 337.054 3.078
50 342.06 2.021 417.347 3.469

TokGen

10 28.784 0.938 35.44 3.398
20 35.575 1.230 58.573 4.648
30 46.242 1.523 64.589 5.898
40 55.06 1.816 70.424 7.148
50 71.917 2.109 79.685 8.398

Verify

10 42.859 – 52.955 –
20 59.127 – 75.033 –
30 72.036 – 112.181 –
40 95.082 – 108.188 –
50 109.874 – 122.702 –

TABLE V: Performance of PkT-KVAC

Algo. n

Computation and Communication Costs
MNT159 BN256

(80-bit Security) (100-bit Security)
Comp. (ms) Comm. (KB) Comp. (ms) Comm. (KB)

System Setup 10 19.728 1.464 22.4 4.789
LEO Setup 10 0.726 0.674 1.065 1.328
GS Setup – 3.789 0.264 4.189 0.695

User Setup – 0.692 0.117 0.878 0.328

Handover S1 10 71.631 1.143 79.494 4.188
Handover S2 10 9.631 0.264 11.716 0.781
Handover S3 10 80.796 1.318 81.022 4.680

TABLE VI: Performance of PkT-SIN

(a) Comp. Cost of Issue (b) Comm. Cost of Issue

(c) Comp. Cost of Session Est. (d) Comm. Cost of Session Est.

Fig. 9: Evaluation of Issue and Session Establishment

C. Experimental Evaluation

We evaluate the performance of PkT-KVAC and PkT-SIN on
two elliptic curves selected from the MIRACL library [35] for
evaluation, including MNT159 (80-bit security) and BN256
(100-bit security). We use AES-CTR with 128-bit keys to
instantiate the symmetric encryption scheme SE in PkT-SIN,
and use Schnorr signature [36] as the digital signature scheme
DSS. The source code of our experiments is written in C/C++.
We conduct experiments on a laptop with Intel® Core™ i7-
6700HQ CPU and 4GB RAM running 64-bit Ubuntu 16.04.05
LTS. For each test case, we report an average of over 100
executions.

We present the performance of PkT-KVAC in Table V,
which contains the computation/communication (abbreviated
as Comp./Comm.) overheads of diverse algorithms. As de-
picted in Table III-V, the execution times for UKeyGen and
Reveal remain constant, with computational costs of 1.865
ms and 3.947 ms on BN256, respectively. For the evaluations
of Issue, TokGen and Verify, we set the attribute number
n varying from 10 to 50. When n = 30, Issue takes
238.613 ms/1.436 KB, 262.401 ms/2.688 KB to achieve 80-
bit, 100-bit security, respectively. It is evident that TokGen
and Verify are more efficient than Issue. When n = 30,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

20 40 60 80 100
0

1

2

3

4

5

6

C

om
pu

ta
tio

n
Ti

m
e

(s
)

Number of Authentications

 [3]
 [5]
 [7]
 PkT-SIN

(a) Comp. Cost under MNT159

20 40 60 80 100
0

2

4

6

8

10

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Number of Authentications

 [3]
 [5]
 [7]
 PkT-SIN

(b) Comp. Cost under BN256

Fig. 10: LEO Computation Cost Comparison

0.
17

6

0.
17

6

0.
17

6

0.
55

7

0.
66

4

0.
66

4

0.
66

4

1.
77

3

[3] [5] [7] PkT-SIN
0.0

0.5

1.0

1.5

2.0

2.5

St
or

ag
e

O
ve

rh
ea

d
(K

B
)

 MNT159
 BN256

(a) Storage Cost of LEO

0.
20

5

0.
26

4

0.
23

4 0.
49

8

0.
49

8

1.
03

9

0.
91

4

1.
86

7

[3] [5] [7] PkT-SIN
0.0

0.5

1.0

1.5

2.0

2.5

St
or

ag
e

O
ve

rh
ea

d
(K

B
)

 MNT159
 BN256

(b) Storage Cost of SU

Fig. 11: Storage Overhead Comparison

the computation/communication costs of TokGen are 46.242
ms/1.523 KB and 64.589 ms/5.898 KB for MNT159 and
BN256, respectively. The calculation time for Verify is less
than 123 ms.

Table VI and Figure 9 presents the performance of PkT-
SIN in initialization, credential issue, session establishment
and handover phases. During the initialization phase, the
system setup, LEO setup, GS setup, and user setup algorithms
collectively take less than 29 ms in computation time and entail
communication costs below 8 KB. The computation during
the credential issue phase is primarily dominated by the Issue
algorithm of the PkT-KVAC scheme, which completes in under
406 ms with a communication cost of 3.47 KB.

The session establishment phase comprises three steps. In
Step 1, the satellite user presents an authentication token to the
LEO satellite by invoking PkT-KVAC.Show. In Step 2, LEO
verifies the token using PkT-KVAC.Verify, computes symmet-
ric keys using Diffie-Hellman shares, encrypts the messages,
and transmits the ciphertexts to the SU and GS, respectively. In
Step 3, SU and GS decrypt the ciphertexts to derive the secret
session key individually. For n = 50, the session establishment
phase incurs computation and communication overheads of
209.984 ms and 2.490 KB for MNT159, and 268.208 ms and
9.680 KB for BN256.

The handover phase encompasses three scenarios based
on the speed of the satellite user and the handover entities.
Table VI demonstrates that scenario 2 exhibits the highest
efficiency during handover, requiring less than 11.72 ms. The
performance of scenarios 1 and 3 is comparable, with resource
usage not exceeding 81.03 ms and 4.68 KB.

In Fig. 10, 11, and 12, we present a comparison of compu-
tation costs, storage overheads and total authentication delay

20 40 60 80 100
0

2

4

6

8

10

12

A
ut

he
nt

ic
at

io
n

Ti
m

e
D

el
ay

 (s
)

Number of Authentications

 [3]
 [5]
 [7]
 PkT-SIN

(a) Delay under MNT159

20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

A
ut

he
nt

ic
at

io
n

Ti
m

e
D

el
ay

 (s
)

Number of Authentications

 [3]
 [5]
 [7]
 PkT-SIN

(b) Delay under BN256

Fig. 12: Total Authentication Delay Comparison

among PkT-SIN and schemes [3, 5, 7], under the curves MNT-
159 and BN256. Fig. 10 compares the computation costs of
LEO during session establishment. Owing to the avoidance of
time-consuming pairing operations, PkT-SIN exhibits the best
performance at both security levels, amounting to 1.859 s and
2.599 s for 100 authentications under MNT159 and BN256,
respectively. Therefore, PkT-SIN offers an better solution for
LEO devices with limited computational resources. Fig. 11
presents a comparison of storage overheads. In comparison to
schemes [3, 5, 7], PkT-SIN has a higher storage cost, where
the storage costs for LEO and SU are 1.773 KB and 1.867
KB respectively under the BN256 curve. Fig. 12 presents a
comparison of the total authentication delay during session
establishment, in which the signature propagation delay TL,U

is set to 10 ms to align with the setting in scheme [3]. PkT-SIN
requires a total delay of 5.818 s and 7.194 s to complete 100
session establishments under MNT159 and BN256, respec-
tively. Along with scheme [5], PkT-SIN exhibits the lowest
total authentication delay among the compared schemes.

In summary, comprehensive performance evaluations under-
score the high efficiency of both PkT-KVAC and PkT-SIN.

VIII. CONCLUSION

In this paper, we proposed PkT-KVAC, a novel keyed-
verification anonymous credential primitive. Leveraging PkT-
KVAC, we developed PkT-SIN, a secure communication pro-
tocol for SIN. Compared to other secure communication
protocols for SIN, PkT-SIN not only exhibits low computation
costs but also eliminates redundant interactions and delays
caused by reapplying access permissions. In terms of security,
PkT-SIN is outstanding as it achieves a range of security prop-
erties, including secure key establishment, mutual authenti-
cation, anonymity, unlinkability, selective attribute disclosure,
key forward/backward secrecy, accountability, and resistance
to replay/impersonation/man-in-the-middle/DDoS attacks. A
limitation of PkT-SIN is that it cannot resist post-quantum
attacks. We leave it as future work to develop a post-quantum
secure periodic k-times authentication scheme using lattice-
based cryptography, code-based cryptography or multivariate
cryptography.

ACKNOWLEDGMENT

Yang Yang and Robert Deng are supported by National Nat-
ural Science Foundation of China under Grant No. 62372110,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

Fujian Provincial Natural Science of Foundation under Grant
2023J02008, Lee Kong Chian Chair Professor Fund and
AXA Research Fund. Yingjiu Li is supported by the Ripple
University Blockchain Research Initiative. Guomin Yang is
supported by the Singapore Ministry of Education (MOE)
Academic Research Fund (AcRF) Tier 1 grant and the Lee
Kong Chian Fellowship awarded by Singapore Management
University. HweeHwa Pang is supported by Lee Kong Chian
Chair Professor Fund.

REFERENCES

[1] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A survey on
space-air-ground-sea integrated network security in 6g,”
IEEE CST, vol. 24, no. 1, pp. 53–87, 2021.

[2] “Satellite Communication Market Size, Share & Trends
Analysis Report By Component (Equipment, Services),
By Application (Broadcasting, Airtime), By Vertical, By
Region, And Segment Forecasts, 2022 - 2030,” 2020,
[Online]. Available: https://www.grandviewresearch.com/
industry-analysis/satellite-communication-market.

[3] Q. Yang, K. Xue, J. Xu, J. Wang, F. Li, and N. Yu,
“Anfra: Anonymous and fast roaming authentication for
space information network,” IEEE TIFS, vol. 14, no. 2,
pp. 486–497, 2018.

[4] K. Xue, W. Meng, S. Li, D. S. Wei, H. Zhou, and N. Yu,
“A secure and efficient access and handover authentica-
tion protocol for internet of things in space information
networks,” IEEE IoTJ, vol. 6, no. 3, pp. 5485–5499, 2019.

[5] X. Liu, A. Yang, C. Huang, Y. Li, T. Li, and M. Li,
“Decentralized anonymous authentication with fair billing
for space-ground integrated networks,” IEEE TVT, vol. 70,
no. 8, pp. 7764–7777, 2021.

[6] D. Liu, H. Wu, C. Huang, J. Ni, and X. Shen, “Blockchain-
based credential management for anonymous authentica-
tion in sagvn,” IEEE JSAC, 2022.

[7] D. Liu, H. Wu, J. Ni, and X. Shen, “Efficient and anony-
mous authentication with succinct multi-subscription cre-
dential in sagvn,” IEEE TITS, vol. 23, no. 3, pp. 2863–
2873, 2022.

[8] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic
macs and keyed-verification anonymous credentials,” in
CCS 2014, 2014, pp. 1205–1216.

[9] M. Chase, T. Perrin, and G. Zaverucha, “The signal pri-
vate group system and anonymous credentials supporting
efficient verifiable encryption,” in CCS 2020, 2020, pp.
1445–1459.

[10] D. Boneh, X. Boyen, and H. Shacham, “Short group
signatures,” in CRYPTO 2004. Springer, 2004, pp. 41–55.

[11] D. Pointcheval and O. Sanders, “Short randomizable
signatures,” in CT-RSA 2016. Springer, 2016, pp. 111–
126.

[12] G. Fuchsbauer, C. Hanser, and D. Slamanig, “Structure-
preserving signatures on equivalence classes and constant-
size anonymous credentials,” JoC, vol. 32, no. 2, pp. 498–
546, 2019.

[13] S. Cakaj, “The parameters comparison of the “starlink”
leo satellites constellation for different orbital shells,”
FCN, vol. 2, p. 643095, 2021.

[14] “KA-SAT Network cyber attack overview,” 2022, [On-
line]. Available: https://news.viasat.com/blog/corporate/
ka-sat-network-cyber-attack-overview.

[15] H. Cruickshank, “A security system for satellite net-
works,” in Fifth International Conference on Satellite Sys-
tems for Mobile Communications and Navigation, 1996.
IET, 1996, pp. 187–190.

[16] M.-S. Hwang, C.-C. Yang, and C.-Y. Shiu, “An authen-
tication scheme for mobile satellite communication sys-
tems,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 4, pp. 42–47, 2003.

[17] Y.-F. Chang and C.-C. Chang, “An efficient authentica-
tion protocol for mobile satellite communication systems,”
ACM SIGOPS Operating Systems Review, vol. 39, no. 1,
pp. 70–84, 2005.

[18] M. Qi, J. Chen, and Y. Chen, “A secure authentication
with key agreement scheme using ecc for satellite com-
munication systems,” IJSCN, vol. 37, no. 3, pp. 234–244,
2019.

[19] I. Altaf, M. A. Saleem, K. Mahmood, S. Ku-
mari, P. Chaudhary, and C.-M. Chen, “A lightweight
key agreement and authentication scheme for satellite-
communication systems,” IEEE Access, vol. 8, pp. 46 278–
46 287, 2020.

[20] C. Poomagal and G. Sathish Kumar, “Ecc based
lightweight secure message conveyance protocol for satel-
lite communication in internet of vehicles (iov),” WPC,
vol. 113, no. 2, pp. 1359–1377, 2020.

[21] D. Dharminder, P. K. Dadsena, P. Gupta, and
S. Sankaran, “A post quantum secure construction of
an authentication protocol for satellite communication,”
IJSCN, 2022.

[22] J. Lei, Z. Han, M. Á. Vázquez-Castro, and
A. Hjorungnes, “Secure satellite communication systems
design with individual secrecy rate constraints,” IEEE
TIFS, vol. 6, no. 3, pp. 661–671, 2011.

[23] M. Lin, Z. Lin, W.-P. Zhu, and J.-B. Wang, “Joint beam-
forming for secure communication in cognitive satellite
terrestrial networks,” IEEE JSAC, vol. 36, no. 5, pp. 1017–
1029, 2018.

[24] Z. Lin, M. Lin, J. Ouyang, W.-P. Zhu, A. D. Panagopou-
los, and M.-S. Alouini, “Robust secure beamforming for
multibeam satellite communication systems,” IEEE TVT,
vol. 68, no. 6, pp. 6202–6206, 2019.

[25] G. Cui, Q. Zhu, L. Xu, and W. Wang, “Secure beam-
forming and jamming for multibeam satellite systems with
correlated wiretap channels,” IEEE TVT, vol. 69, no. 10,
pp. 12 348–12 353, 2020.

[26] C. Guo, C. Gong, H. Xu, L. Zhang, and Z. Han, “A
dynamic handover software-defined transmission control
scheme in space-air-ground integrated networks,” IEEE
TWC, 2022.

[27] Y. Fan, G. Wu, K.-C. Li, and A. Castiglione, “Robust
end hopping for secure satellite communication in moving
target defense,” IEEE IoTJ, 2022.

[28] I. Teranishi, J. Furukawa, and K. Sako, “K-times anony-
mous authentication,” in CRYPTO 2004. Springer, 2004,
pp. 308–322.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 16

[29] L. Nguyen and R. Safavi-Naini, “Dynamic k-times
anonymous authentication,” in ACNS 2005. Springer,
2005, pp. 318–333.

[30] U. Chaterjee, D. Mukhopadhyay, and R. S. Chakraborty,
“3paa: A private puf protocol for anonymous authentica-
tion,” IEEE TIFS, vol. 16, pp. 756–769, 2020.

[31] J. Huang, W. Susilo, F. Guo, G. Wu, Z. Zhao, and
Q. Huang, “An anonymous authentication system for pay-
as-you-go cloud computing,” IEEE TDSC, vol. 19, no. 2,
pp. 1280–1291, 2020.

[32] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyan-
skaya, and M. Meyerovich, “How to win the clonewars:
efficient periodic n-times anonymous authentication,” in
CCS 2006, 2006, pp. 201–210.

[33] B. Lian, G. Chen, M. Ma, and J. Li, “Periodic k-
times anonymous authentication with efficient revocation
of violator’s credential,” IEEE TIFS, vol. 10, no. 3, pp.
543–557, 2014.

[34] M. Chase and A. Lysyanskaya, “On signatures of knowl-
edge,” in CRYPTO 2006. Springer, 2006, pp. 78–96.

[35] “Miracl: Multiprecision integer and rational arithmetic
c/c++ library,” https://github.com/miracl/MIRACL, [Ac-
cessed: 01-Jun-2021].

[36] C. P. Schnorr, “Efficient signature generation by smart
cards,” JoC, vol. 4, pp. 161–174, 1991.

[37] G. Couteau and M. Reichle, “Non-interactive keyed-
verification anonymous credentials,” in PKC 2019.
Springer, 2019, pp. 66–96.

[38] M. Wazid, A. K. Das, and S. Shetty, “An authentication
and key management framework for secure and intelligent
transportation of internet of space things,” IEEE Transac-
tions on Intelligent Transportation Systems, 2023.

[39] Y. Wang, W. Zhang, X. Wang, M. K. Khan, and P. Fan,
“Security enhanced authentication protocol for space-
ground integrated railway networks,” IEEE Transactions
on Intelligent Transportation Systems, 2023.

[40] R. Ma, J. Cao, D. Feng, and H. Li, “Laa: lattice-based
access authentication scheme for iot in space information
networks,” IEEE Internet of Things Journal, vol. 7, no. 4,
pp. 2791–2805, 2019.

[41] J. Guo, Y. Du, X. Wu, and M. Li, “An anti-quantum au-
thentication protocol for space information networks based
on ring learning with errors,” Journal of Communications
and Information Networks, vol. 6, no. 3, pp. 301–311,
2021.

Yang Yang received the B.Sc. degree from Xidian
University, Xi’an, China, in 2006 and Ph.D. degrees
from Xidian University, China, in 2011. She is a
full professor with College of Computer Science
and Big Data, Fuzhou University. She is also a
senior research scientist with School of Computing
and Information System, Singapore Management
University. Her research interests are in the area of
information security and privacy protection. She has
published more than 60 papers in TIFS, TDSC, TSC,
TCC, TII, etc. She is Senior Member of IEEE.

Wenyi Xue received the B.Sc. degree from Fujian
University, Fuzhou, China, in 2020. Now, he is
pursing Ph.D degree under supervision of Prof. Yang
Yang in College of Computer Science and Big Data,
Fuzhou University, Fuzhou, China. His research in-
terests are in the area of privacy protection and zero-
knowledge proof.

Jianfei Sun received his Ph.D. degree from the
University of Electronic Science and Technology of
China (UESTC). He is currently a research fellow
at the School of Computer Science and Engineer-
ing, Nanyang Technological University. His research
interests include network security and IoT security.
He has published many papers on IEEE TDSC, IEEE
TIFS, IEEE TII, IEEE TCC, IEEE TVT, IEEE IoTJ,
Inf. Sci, IEEE Systems, etc.

Guomin Yang is an Associate Professor at the
School of Computing and Information Systems,
Singapore Management University. He completed
PhD in Computer Science from City University of
Hong Kong in 2009. He has been an Associate Pro-
fessor at the University of Wollongong, Australia.
His research interests are applied cryptography and
privacy-enhancing technologies. He was a program
co-chair of ACISP 2018 and ACISP 2022.

Yingjiu Li obtained his PhD degree from George
Mason University in 2003. He had been a faculty
member at Singapore Management University from
2003 to 2019. Now, He is Ripple Professor with
Department of Computer and Information Science,
University of Oregon. His research interests include
IoT security and privacy, mobile security, and data
security and privacy. He has published more than
130 papers in Cybersecurity, and co-authored two
academic books.

Hwee Hwa Pang received the BSc (first class hon-
ors) and MS degrees from the National University
of Singapore, in 1989 and 1991, respectively, and
the PhD degree from the University of Wisconsin-
Madison, in 1994, all in computer science. He is
a professor with School of Computing and Infor-
mation Systems, Singapore Management Univer-
sity. His current research interests include database
management systems, data security, and information
retrieval.

Robert H. Deng is AXA Chair Professor of Cy-
bersecurity in the School of Computing and Infor-
mation Systems, Singapore Management University.
His research interests include data security, network
and system security. He has served/is serving on the
editorial boards of many international journals in
security, such as IEEE Transactions on Information
Forensics and Security, IEEE Transactions on De-
pendable and Secure Computing, etc. He is Fellow
of IEEE.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 17

SUPPLEMENTAL MATERIAL

A. PKT-KVAC: SECURITY MODELS

Following the definitions in [8, 32, 37], we define correct-
ness, unforgeability, anonymity, unlinkability, k-detectability
and exculpability for PkT-KVAC. The lists in the security
models are given in Table VII.

Definition A.1 (Correctness). Let D be the universe of user
identity, and Ω be the universe of attribute sets. Then a PkT-
KVAC scheme is correct for D,Ω if all ID ∈ D, all ATTR ⊆
Ω, for all security parameter λ,

Pr

pp $←− Setup(1λ, 1n), (ipk, isk) $←− IKeyGen(pp)

(upk,usk) $←− UKeyGen(pp, ID)

(credTP,k,D)
$←−

Issue(U(upk,usk,ATTR)↔ I(isk, TP, k))

(tok,TIN,D′)
$←−

Show(upk,usk, credTP,k,ATTRD,D,M)

(tok′,TIN,D′)
$←−

Show(upk,usk, credTP,k,ATTRD,D,M)

Verify(isk, tok,TIN,ATTRD,M)→ 1

Verify(isk, tok′,TIN,ATTRD,M)→ 1 :

Reveal(TIN, tok, tok′)→ ⊥

≤ ν(λ), where ν is a negligible function.

Definition A.2 (Unforgeability). A PkT-KVAC scheme
satisfies unforgeability if for any PPT adversary A, there exists
a negligible function ν such that Advunforge

PkT-KVAC(λ)
def
=

Pr

b = 1

pp← Setup(1λ, 1n),
(ipk,isk)← IKeyGen(pp)
(ID∗, tok∗,TIN∗,ATTR∗

D,M∗)← AO(·)(pp, ipk)
b← Verify(isk, tok∗,TIN∗,ATTR∗

D,M∗)

return b if (tok∗,TIN∗,ATTR∗
D,M∗) /∈ Lshow

∧ID∗ /∈ Lcorrupt

else abort

≤ ν(λ), where the oracle set O = {UKeyGen, Issue, Show,
Verify, Reveal, Corrupt} is implemented by UKeyGen(pp),
Issue(isk,ATTR, TP, k, ·), Show(usk, cred,ATTRD, ·),
Verify(isk, ·), Reveal(·) and Corrupt(·).

In the following, we define a security model for “unlinka-
bility" of PkT-KVAC, with the understanding that the model
inherently encompasses the notion of “anonymity" within it.

Definition A.3 (Unlinkability). A PkT-KVAC scheme sat-
isfies unlinkability if for any PPT adversary A, there exists a

negligible function ν such that Advunlink
PkT-KVAC(λ)

def
=

Pr

b′ = b

pp← Setup(1λ, 1n),
(ipk,isk)← IKeyGen(pp)
((ID∗

0 ,ATTR∗
0), (ID

∗
1 ,ATTR∗

1),ATTR∗
D, TP ∗,

k∗,D∗,M∗)← AO(·)(pp, ipk, isk)
abort if ATTR∗

D ⊈ ATTR∗
0/1

b
$←− {0, 1}

(tok∗,TIN∗,D′∗)←
Show(upk∗b ,usk∗b , cred∗

b ,ATTR∗
D,D∗,M∗)

b′ ← AO(·)(pp, tok∗,TIN∗)

return b′ if
(cred∗

0/1,ATTR∗
0/1, TP

∗, k∗,D∗) ∈ Lissue

∧{ID∗
0 , ID

∗
1} /∈ Lcorrupt

else abort

≤ ν(λ), where the oracle set O = {UKeyGen, Issue, Show,
Verify, Reveal, Corrupt} is implemented by UKeyGen(pp),
Issue(isk,ATTR, TP, k, ·), Show(usk, cred,ATTRD, ·),
Verify(isk, ·), Reveal(·) and Corrupt(·).

In the following security model of “k-Detectability", an
adversary is allowed to collude with n users. If the adversary
succeeds in being accepted by some verifier in more than kn
authentications, the adversary wins. Here, k is the number of
times the verifier allows access for each user, n is the number
of users who collude with the adversary, and the kn token
series numbers are sent to Lk-show before output phase.

Definition A.4 (k-Detectability). A PkT-KVAC scheme
satisfies k-detectability if for any PPT adversaryA, there exists
a negligible function ν such that Advk-detect

PkT-KVAC(λ)
def
=

Pr

b = 1

pp← Setup(1λ, 1n),
(ipk,isk)← IKeyGen(pp)
(tok∗,TIN∗,ATTR∗

D,M∗)← AO(·)(pp, ipk)
b← Verify(isk, tok∗,TIN∗,ATTR∗

D,M∗)

return b if TIN∗ /∈ Lk-show

else abort

≤ ν(λ), where the oracle set O = {UKeyGen, Issue,
Show, Verify, Reveal} is implemented by UKeyGen(pp),
Issue(isk,ATTR, TP, k, ·), Show(usk, cred,ATTRD, TP, ·),
Verify(isk, ·) and Reveal(·).

Definition A.5 (Exculpability). A PkT-KVAC scheme sat-
isfies exculpability if for any PPT adversary A, there exists a
negligible function ν such that Advexculpate

PkT-KVAC(λ)
def
=

Pr

b = 1

pp← Setup(1λ, 1n),
(ipk,isk)← IKeyGen(pp)
(ATTR∗

D,M∗,TIN∗, tok∗, t̃ok
∗
)← AO(·)(pp, ipk, isk)

(upk∗, ID∗)← Reveal(TIN∗, tok∗, t̃ok
∗
)

return 1 if ID∗ /∈ Lcorrupt

∧Verify(isk, tok∗,TIN∗,ATTR∗
D,M∗)→ 1

∧Verify(isk, t̃ok
∗
,TIN∗,ATTR∗

D,M∗)→ 1

else abort

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 18

≤ ν(λ), where the oracle set O = {UKeyGen, Issue, Show,
Verify, Reveal, Corrupt} is implemented by UKeyGen(pp),
Issue(isk,ATTR, TP, k, ·), Show(usk, cred,ATTRD, ·),
Verify(isk, ·), Reveal(·) and Corrupt(·).

List Description
Lissue credentials that have been issued
Lshow tokens that have been shown
Lk-show each issued credentials are shown

k times
Lhonest users that are honest
Lcorrupt users that are corrupted

TABLE VII: Lists in Security Experiments of PkT-KVAC

B. PKT-KVAC: INSTANTIATION OF SOK

The signature of knowledges (SoKs) Π1
U , Π2

U , ΠI are be
instantiated as follows.
•Π1

U : (1) U selects x̂u, ŝ
′ $←− Z∗

p, computes Ŷu =

gx̂u
0 , Ĉm = Y x̂u

1 Y ŝ′

2 , c = H1(Yu||Ŷu||Cm||Ĉm||ATTR), xu =

x̂u − c · xu, s
′ = ŝ′ − c · s′, sends (Ŷu, Ĉm, xu, s

′) to I.
(2) I recovers c = H1(Yu||Ŷu||Cm||Ĉm||ATTR) and checks
Ŷu

?
= Y c

u g
xu
0 , Ĉm ?

= (Cm)cY xu
1 Y s′

2 .
•Π2

U : (1) U selects x̂u, ŝ, t̂, r̂, ŵ, β̂, δ̂
$←− Z∗

p, computes
Λ0 = gs0h

r
1, Λ1 = (ZY1Y2)

r̂ · hx̂u
1 · hŝ

2, Λ2 = T ŝ
u ,

Λ3 = (Λ0·gα1
0)β̂hδ̂

1, Λ4 = gw0 , Λ̂4 = gŵ0 , Λ5 = gx̂u
0 ·(Λ4)

β̂ , c =
H1(Ju||Cu||Du||Eu||Fu||Λ0||Λ1||Λ2||Λ3||Λ4||Λ̂4||Λ5||ATTRD||
TP ||Ju), xu = x̂u − c · xu, s = ŝ − c · s, t = t̂ − c · t,
r = r̂− c · r, w = ŵ− c ·w, β = β̂− c ·β, δ = δ̂− c · δ, sends
(Λ0,Λ1,Λ2,Λ3,Λ4, Λ̂4,Λ5, xu, s, t, r, w, β, δ) to I. (2) I
recovers c and checks Λ1

?
= (D1D2C4)

c(ZY1Y2)
r · hxu

1 · hs
2,

Λ2
?
= (g0/T

α0
u)cT s

u , Λ3
?
= gc0(F

′
ug

α1
0)βhδ

1, Λ̂4 = Λc
4g

w
0 ,

Λ5 = F c
ug

xu
0 · (Λ4)

β .
•ΠI : (1) I selects {x̂i}i∈[1,3], ŷ, ŷ3, {ẑi}i∈[0,n]

$←− Z∗
p,

computes X̂ = gx̂1
1 hŷ3

3 , Λ6 = gx̂2
2 gx̂3

3 (h1h2)
ŷ
∏n

i=1 u
ẑi
i ,

V̂ = gx̂1
1 U x̂2(U t)x̂3(Cm·Y s′′

2)ŷ3 ·(ũH1(TP,k)
0)ẑ0 ·

n∏
i=1

(ũ
H1(attri)
i)ẑi ,

c = H1(X||Z||V ||X̂||Λ6||V̂ ||s′′||t||U), xi = x̂i − c · xi,
y = ŷ − c · y, y3 = ŷ3 − c · y3, zi = ẑi − c · zi,
sends (X̂,Λ6, V̂ , {xi}i∈[1,3], y, y3, {zi}i∈[0,n]) to U .

(2) U recovers c and checks X̂
?
= Xcgx1

1 h
y3
3 ,

Λ6
?
= (g0/Z)cgx2

2 gx3
3 (h1h2)

y
∏n

i=1 u
zi
i , V̂

?
=

V cgx1
1 Ux2(U t)x3(Cm · Y s′′

2)y3 · (ũ
H1(TP,k)
0)z0 ·∏n

i=1(ũ
H1(attri)
i)zi .

C. PKT-KVAC: SECURITY PROOF

C.1. Correctness Proof

The correctness proof of PkT-KVAC consists of the follow-
ing aspects: 1) the Verify algorithm holds if the authentication
token is valid; 2) the Reveal algorithm is able to disclose the
identity of a dishonest user who reuses tokens with the same
token identifier number.

1) The Verify algorithm is correct as the following equation
holds:

Γ =(E0 · ũH1(TP,k)
0)z0

∏
attri∈ATTRD

(Ei · ũH1(attri)
i)zi

∏
attri /∈ATTRD

Ezi
i

=ur·z0
0 · ũH1(TP,k)z0

0 ·
n∏

i=1

ur·zi
i ũ

H1(attri)zi
i .

Then, we have

gx1
1 Cx2

2 Cx3
3 C4 · (Dy1y3

1 Dy2y3

2) · Γ
=gx1

1 (gr2U)x2(gr3U
t)x3Zr · ((Y r

2 · h
xu
1)y1y3(Y r

1 · hs
2)

y2y3) · Γ

=Zr · (gx2
2)r(gx3

3)r(Y y1y3

2 Y y2y3

1)r(

n∏
i=0

uzi
i)r

· gx1
1 Ux2(U t)x3(Y xu

1 Y s
2)

y3 · ũH1(TP,k)z0
0 ·

n∏
i=1

ũ
H1(attri)zi
i

=gr0 · g
x1
1 Ux2(U t)x3(Y xu

1 Y s
2)

y3 · ũH1(TP,k)z0
0 ·

n∏
i=1

ũ
H1(attri)zi
i

=gr0V = C1.

2) The Reveal algorithm is correct as the following equa-
tion holds:

Fu

/
(Fw) = Yu · g

w
/
(s+α1)

0 /(Fw) = Yu.

The computation of Π2
U is correct as the following equations

hold.

(ZY1Y2)
r · hxu

1 · hs
2 = (Y r

2 · h
xu
1) · (Y r

1 · hs
2) · Zr

=D1D2C4,

T (s+α0)
u = (g

1
/
(s+α0)

0)(s+α0) = g,

(F ′
ug

α1
0)βhδ

1 = (gs0h
r
1g

α1
0)βhδ

1

= g · h
r
/
(s+α1)

1 hδ
1 = g,

gxu
0 · (gw0)β = Yu · g

w
/
(s+α1)

0 = Fu.

C.2. Unforgeability Proof

Theorem 4.1. The PkT-KVAC scheme is unforgeable if the
LRSW assumption holds.

Proof. Given a tuple T = (g, Ã = ga, B̃ = gb)
and a LRSW oracle OLRSW (·) which inputs m ∈ Z∗

p

and outputs (h, hb, ha+mab). The challenger C samples
g1, {hi}i∈[2,3], {ui, ũi}i∈[0,n]

$←− G and α, β, γ
$←− Z∗

p, sets
g0 = g, g2 = gα0 , g3 = gβ0 , h1 = gγ0 . The tuple
(G, p, {gi}i∈[0,3], {hi}i∈[1,3], {ui, ũi}i∈[0,n], H1, f) is output
as the public parameter pp. Besides, C initailizes empty lists
Lissue, Lshow, Lhonest, Lcorrupt, and constructs an extractor E
and a simulator S for the zero-knowledge proof system.

Issuer key generation phase: C selects x1, y1, y2, y3, z0,

· · · , zn
$←− Z∗

p, and computes X = gx1
1 hy3

3 , Y1 = hy1

1 ,
Y2 = hy2

2 . C simulates the element Z by computing Z =

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 19

g0
/
(Ãα(ÃB̃)β · (h1h2)

y1y2y3 ·
∏n

i=0 u
zi
i) = g0

/
(ga2g

ab
3 ·

(h1h2)
y1y2y3 ·

∏n
i=0 u

zi
i) and outputs ipk = (X,Y1, Y2, Z).

Note that the equation implies that C learns noting about the
issuer secret key x2 = a, x3 = ab.

Oracle query phase: C answers the oracle queries O =
{UKeyGen, Issue,Show,Verify,Reveal} as follows.
•UKeyGen: C selects t

$←− Z∗
p and queries OLRSW (t) →

(U,U1 = U b, U2 = Ua+tab). C sets upk = U1, which indi-
cates that upk = gxu

0 = U b. Then, C inserts (ID, t, U, U1, U2)
to Lhonest.
•Issue: If ID has not been queried beforehand and

the entry identified by ID exists in Lhonest, C se-
lects s

$←− Z∗
p, computes V = gx1

1 · U2 · ((U1)
γy1 ·

Y s
2)

y3 · ũH1(TP,k)z0
0

∏n
i=1 ũ

H1(attri)zi
i = gx1

1 · Ua+tab ·
((hy1·xu

1) ·Y s
2)

y3 · ũH1(TP,k)z0
0

∏n
i=1 ũ

H1(attri)zi
i , where hxu

1 =
gγ·xu

0 = (gxu
0)γ = Uγ

1 . C initialize a dispenser D =
{1, 2, · · · , k}, sets credTP,k = (s, t, U, V, TP, k). The tuple
(ID, usk, credTP,k,ATTR, TP, k,D) is inserted to Lissue and
(credTP,k,D) is returned to A.
•Show: C retrieves (ID, usk,

credTP,k,ATTR, TP, k,D) from Lissue and aborts if such
tuple does not exist. If D is not empty, C selects Ju from the
dispenser D and runs algorithm Show to compute (Cu, Du,
Eu, Tu, Fu), where D1 = Y r

2 · U
γ
1 = Y r

2 · h
xu
1 . Then,

C runs the simulator S to produce Π2
U , returns (TIN =

Tu, tok = (Ju, Cu, Du, Eu, Fu,Π
2
U , TP, k)) and inserts

(ATTRD,M, tok,TIN) to Lshow. Besides, C updates Lissue
with the updated dispenser D′ = D\{Ju}.
•Verify: The oracle query aborts if the entry identified

by TIN does not exist in Lshow. C return 1 if the tuple
(tok,TIN,ATTRD,M) ∈ Lshow and returns 0 otherwise.
•Corrupt: C removes the tuple (ID, t, U, U1, U2) from

Lhonest. Then, C randomly picks δ
$←− Z∗

p, inserts (ID, upk =
U1, δ) to Lcorrupt and returns usk = δ to answer the query.
•Reveal: C performs the oracle query by calling the Reveal

algorithm directly.
Forge phase: A outputs a forged tuple (ATTR∗

D,M∗,
tok∗,TIN∗), where tok∗ = (J∗

u, C
∗
u, D

∗
u, E

∗
u, F

∗
u , (Π

2
U)

∗). C
aborts if (ATTR∗

D,M∗, tok∗,TIN∗) ∈ Lshow ∨ (Π2
U)

∗ is
invalid. If tok∗ is a well-formed token, we have

C∗
2 =gr

∗

2 U∗,

C∗
1 =gr

∗

0 V ∗ = gr
∗

0 gx1
1 (U∗)a+t∗ab(Y

x∗
u

1 Y s∗

2)y3 ·

ũ
H1(TP,k)z0
0 ·

n∏
i=1

ũ
H1(attr∗i)zi
i ,

where Y
x∗
u

1 = g
γy1·x∗

u
0 = (U∗)bγy1 = (U∗

1)
γy1 . Here, we

implicitly set U∗
1 = (U∗)b. Then, C runs the extractor E to

extract r∗, t∗, s∗, x∗
u, computes U∗ = C∗

2

/
gr

∗

2 , U∗
1 = g

x∗
u

0 ,

U∗
2 =C∗

1

/
(gr

∗

0 gx1
1 (Y

x∗
u

1 Y s∗

2)y3 · ũH1(TP,k)z0
0

n∏
i=1

ũ
H1(attr∗i)zi
i)

=(U∗)a+t∗ab.

If t∗ is not queried to OLRSW (·). C outputs the tuple
(U∗, U∗

1 , U
∗
2) to break the LRSW assumption. Otherwise, C

computes Γ1 = Ãx∗
u = (g

x∗
u

0)a = ((U∗)b)a = (U∗)ab,

Γ2 = U2

/
Γt∗

1 = (U∗)a+t∗ab
/
(U∗)t

∗ab = (U∗)a, outputs
(U∗, U1,Γ2 ∗ (Γ1)

t̃∗ = (U∗)a+t̃∗ab) with a random t̃∗ that
has not been queried.

Probability Analysis: Let ELRSW be the event that the out-
put is a well-constructed solution for the LRSW assumption,
EA be the event that A wins the game. ϵ′ = Pr[ELRSW] =
Pr[ELRSW |EA] · Pr[EA] + Pr[ELRSW |EA] · Pr[EA] = 0 +
Pr[ELRSW |EA] · Pr[EA] = 0 + ϵ = ϵ.

C.3. Anonymity and Unlinkability Proof

Theorem 4.2. The PkT-KVAC scheme is anonymous and
unlinkable if the DDH assumption holds.

Proof. Given a DDH challenge T = (g, Ã = ga, B̃ = gb, C̃ =

gc), C samples {αi}i∈[0,3], β1, β2β3, {γk, γ̃k}k∈[0,n]
$←− Z∗

p,
computes gi = gαi for i ∈ [1, 3], uk = gγk , ũk = gγ̃k for
k ∈ [0, n], h1 = gβ1 , h3 = gβ3 , and sets g0 = Ãα0 , h2 = Ãβ2 .
The tuple (G, p, {gi}i∈[0,3], {hi}i∈[1,3], {ui, ũi}i∈[0,n], H1, f)
is output as the public parameter pp. Besides, C initailizes
empty lists Lissue, Lshow, Lhonest, Lcorrupt and constructs an
extractor E and a simulator S for the zero-knowledge proof
system.

Issuer key generation phase: C runs the algorithm
(ipk, isk) ← IKeyGen(pp) as usual. The issuer key pair
(ipk, isk) is sent to the adversary A.

Oracle query phase: C answers the oracle queries O =
{UKeyGen, Issue,Show,Verify,Reveal} as follows.
•UKeyGen: C runs UKeyGen(pp, ID) → (upk,usk),

inserts (ID, upk,usk) to Lhonest and returns upk to A.
•Issue: If ID has not been queried beforehand

and the entry identified by ID exists in Lhonest, C
runs Issue with isk to produce (credTP,k,D), inserts
(ID, usk, credTP,k,ATTR, TP, k,D) to Lissue, and returns
(credTP,k,D) to A.
•Show: C retrieves (ID, usk, credTP,k,ATTR, TP, k,D)

from Lissue and aborts if such tuple does not exist. If D is
not empty, C generates (tok,TIN,D′) by executing the Show
algorithm, inserts (tok,TIN,ATTRD,M) to Lshow, updates
Lissue with D′ and returns (tok,TIN,D′) to A.
•Corrupt: C transfers the tuple (ID, upk,usk) from Lhonest

to Lcorrupt and returns usk to answer the query.
•Verify, Reveal: C performs the oracle query by calling the

corresponding algorithms directly.
Challenge phase:A outputs two challenges (ID∗

0 ,ATTR∗
0),

(ID∗
1 ,ATTR∗

1) and parameters ATTR∗
D, TP ∗, k∗,D∗,M∗),

with the restriction that (ID∗
0 , cred∗

0,ATTR∗
0, TP

∗, k∗,D∗) ∈
Lissue, (ID∗

1 , cred∗
1,ATTR∗

1, TP
∗, k∗,D∗) ∈ Lissue, and

{ID∗
0 , ID

∗
1} /∈ Lcorrupt. To answer the challenge, C selects

b ∈ {0, 1}, parses credb = (sb, tb, Ub, Vb, TP
∗, k∗), generates

(tok∗,TIN∗) by computing:

C∗
1 =C̃α0Vb = gc

0Vb,

C∗
2 =B̃α2Ub = gb

2Ub,

C∗
3 =B̃α3U tb

b = gb
3U

tb
b ,

D∗
1 =C̃β2y2 · hxub

1 = (gc)β2y2 · hxub
1 ,

D∗
2 =B̃β1y1 · hsb

2 = Y b
1 · h

sb
2 ,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 20

C∗
4 =

C̃α0

B̃α2x2+α3x3 · (B̃β1)y1y2y3 · B̃
∏n

i=0 γiziC̃y1y2y3

=
gc
0

(gx2
2 gx3

3 · h
y1y2y3

1 ·
∏n

i=0 u
zi
i)b · gc·β2y1y2y3

,

E∗
i =B̃γi = ub

i , i = 0 ∨ attri ∈ ATTRD,

E∗
i =B̃γi ũ

H1(attri)
i = ub

i ũ
H1(attri)
i , attri /∈ ATTRD.

Then, C selects an element J∗
u from D∗, computes α∗

0 =

f(0, TP ∗, J∗
u), α∗

1 = f(1, TP ∗, J∗
u), T ∗

u = g
1
/
(sb+α∗

0)

0 ,

F ∗
u = Yub

· g
w∗

/
(sb+α∗

1)

0 , where w∗ = H1(C
∗
u||D∗

u||E∗
u). C

runs the simulator S to simulate the proof (Π2
U)

∗ and returns
tok∗ = (J∗

u, C
∗
u, D

∗
u, E

∗
u, F

∗
u , (Π

2
U)

∗, TP ∗, k∗), TIN∗ = T ∗
u .

It is obvious that (C∗
u, D

∗
u, E

∗
u) perfectly simulates the token

components (Cu, Du, Eu) and satisfies the relation that

C∗
1 =gx1

1 (C∗
2)

x2(C∗
3)

x3(C∗
4) · ((D∗

1)
y1y3(D∗

2)
y2y3)·

(E∗
0 · ũ

H1(TP∗,k∗)
0)z0 ·

∏
attr∗i ∈ATTRD

(E∗
i · ũ

H1(attr∗i)
i)zi ·

∏
attr∗i /∈ATTRD

(E∗
i)

zi .

If the DDH challenge (g, Ã, B̃, C̃) is a random quadruple,
the token components C∗

1 , C
∗
4 , D

∗
1 are random elements and

therefore tok∗ is independent to the user public key gxu
0 .

Oracle query phase 2: C answers the oracle
queries O = {UKeyGen, Issue,Show,Verify,Reveal}
as usual and aborts if A queries these oracles with
{(upk∗i ,usk∗i , cred∗

i)}i∈{0,1}.
Output phase: A outputs a bit b∗. If b∗ = b, C outputs 1 to

denote that the tuple T = (g, Ã, B̃, C̃) is a DDH quadruple;
otherwise, it outputs 0 to denote that T is a random quadruple.

Probability Analysis: Let EA be the event that A wins
the game, ED be the case that T = (g, Ã, B̃, C̃) is a DDH
quadruple, ER be the case that T is a random quadruple. ϵ′ =
|Pr[ED∧EA]+Pr[ER∧EA]− 1

2 | = |Pr[ED|EA] ·Pr[EA]+
Pr[ER|EA] ·Pr[EA]− 1

2 | = |1 · ϵ+(12 · (1− ϵ))− 1
2 | =

ϵ
2 .

C.4. k-Detectability Proof

Theorem 4.3. The PkT-KVAC scheme is k-detectable if the
LRSW assumption holds.

Proof. Given a tuple T = (g, Ã = ga, B̃ = gb)
and a LRSW oracle OLRSW (·) which inputs m ∈ Z∗

p

and outputs (h, hb, ha+mab). The challenger C samples
g1, {hi}i∈{1,3}, {ui, ũi}i∈[0,n]

$←− G and α, β, γ
$←− Z∗

p,
sets g0 = g, g2 = gα0 , g3 = gβ0 , h2 = gγ0 . The tuple
(G, p, {gi}i∈[0,3], {hi}i∈[1,3], {ui, ũi}i∈[0,n], H1, f) is output
as the public parameter pp. Besides, C initailizes empty lists
Lissue, Lk-show, Lcorrupt, and constructs an extractor E and a
simulator S for the zero-knowledge proof system.

Issuer key generation phase: C selects x1, y1, y2, y3, z0,

· · · , zn
$←− Z∗

p, and computes X = gx1
1 hy3

3 , Y1 = hy1

1 ,
Y2 = hy2

2 . C simulates the element Z by computing Z =
g0
/
(Ãα(ÃB̃)β · (h1h2)

y1y2y3 ·
∏n

i=0 u
zi
i) = g0

/
(ga2g

ab
3 ·

(h1h2)
y1y2y3 ·

∏n
i=0 u

zi
i) and outputs ipk = (X,Y1, Y2, Z).

Note that the equation implies that C learns noting about the
issuer secret key x2 = a, x3 = ab.

Oracle query phase: C answers the oracle queries O =
{UKeyGen, Issue,Show,Verify,Reveal} as follows.
•UKeyGen: C runs UKeyGen(pp, ID) → (upk,usk),

inserts (ID, upk,usk) to Lcorrupt and returns (upk,usk) to
A.
•Issue: If ID has not been queried beforehand and

the entry identified by ID exists in Lcorrupt, C selects
t

$←− Z∗
p, queries OLRSW (t) → (U,U1 = U b, U2 =

Ua+tab) and computes V = gx1
1 · U2 · (Y xu

1 · (U1)
γy2)y3 ·

ũ
H1(TP,k)z0
0

∏n
i=1 ũ

H1(attri)zi
i . Note that the form of credential

component V implies that Uγy2

1 = Y s
2 , U1 = U b = gs0 with a

random s. Then, C initializes a dispenser D = {1, 2, · · · , k},

selects s̃
$←− Z∗

p and inserts {TINi = g
1
/
(s̃+f(0,TP,i))

0 }i∈D
to Lk-show. C sets credTP,k = (s̃, t, U, V, TP, k), inserts
the tuple (ID, usk, credTP,k,ATTR, TP, k,D) to Lissue and
returns (credTP,k,D) to A.
•Show: C retrieves credTP,k = (s̃, t, U, V, TP, k) from
Lissue and runs Show → (tok,TIN, D′), where the token

component is computed as D2 = Y r
1 · hs̃

2, Tu = g
1
/
(s̃+α0)

0 ,

Fu = Yu · g
w
/
(s̃+α1)

0 . C updates Lissue with D′ and returns
(tok,TIN).
•Verify: If Π2

U is valid, C runs the extractor E to extract
(xu, s̃, t, r, w), computes V = C1

/
gr0 , U = C2

/
gr2 . If

credTP,k = (s̃, t, U, V, TP, k) exists in Lissue and ATTRD ⊆
ATTR, C returns 1. Otherwise, C returns 0.
•Reveal: C performs the oracle query by calling the Reveal

algorithm directly.
Forge phase: A outputs a forged tuple (ATTR∗

D,M∗,
tok∗,TIN∗), where tok∗ = (J∗

u, C
∗
u, D

∗
u, E

∗
u, F

∗
u , (Π

2
U)

∗). C
aborts if TIN∗ ∈ Lk-show ∨ (Π2

U)
∗ is invalid. If tok∗ is a well-

formed token, we have

C∗
2 =gr

∗

2 U∗,

C∗
1 =gr

∗

0 V ∗ = gr
∗

0 gx1
1 (U∗)a+t∗ab(Y

x∗
u

1 Y s∗

2)y3 ·

ũ
H1(TP,k)z0
0 ·

n∏
i=1

ũ
H1(attr∗i)zi
i ,

where Y s∗

2 = gγy2·s∗
0 = (U∗)bγy2 = (U∗

1)
γy2 . Then, C

runs the extractor E to extract r∗, t∗, s∗, x∗
u, computes U∗ =

C∗
2

/
gr

∗

2 , U∗
1 = gs

∗

0 ,

U∗
2 =C∗

1

/
(gr

∗

0 gx1
1 (Y

x∗
u

1 Y s∗

2)y3 · ũH1(TP,k)z0
0

n∏
i=1

ũ
H1(attr∗i)zi
i)

=(U∗)a+t∗ab.

If t∗ is not queried to OLRSW (·). C outputs the tuple
(U∗, U∗

1 , U
∗
2) to break the LRSW assumption. Otherwise, C

computes Γ1 = Ãs∗ = (gs
∗

0)a = ((U∗)b)a = (U∗)ab,
Γ2 = U2

/
Γt∗

1 = (U∗)a+t∗ab
/
(U∗)t

∗ab = (U∗)a, outputs
(U∗, U1,Γ2 ∗ (Γ1)

t̃∗ = (U∗)a+t̃∗ab) with a random t̃∗ that
has not been queried.

Probability Analysis: Let ELRSW be the event that the out-
put is a well constructed solution for the LRSW assumption,
EA be the event that A wins the game. ϵ′ = Pr[ELRSW] =

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 21

Pr[ELRSW |EA] · Pr[EA] + Pr[ELRSW |EA] · Pr[EA] = 0 +
Pr[ELRSW |EA] · Pr[EA] = 0 + ϵ = ϵ.

C.5. Exculpability Proof

Theorem 4.4. The PkT-KVAC scheme is exculpable if the
DL assumption holds.

Proof. Given a DL challenge (g0, Ã = ga0), the challenger C
runs pp ← Setup(1λ, 1n), (ipk, isk) ← IKeyGen(pp) and
returns (pp, ipk, isk) to A. Besides, C initailizes empty lists
LUKey, Lregisterd, Lissue, Lshow, and constructs an extractor E
and a simulator S for the zero-knowledge proof system.

Oracle query phase: C answers the oracle queries O =
{UKeyGen, Issue,Show,Verify,Reveal} as follows.

•UKeyGen: C selects ru
$←− Z∗

p, computes Yu = Ãru =
ga·ru0 and returns upk = Yu to A. The tuple (ID, upk, ru) is
inserted to Lhonest.
•Issue: If ID has not been queried beforehand

and the entry identified by ID exists in Lhonest, C
runs Issue with isk to produce (credTP,k,D), inserts
(upk,usk, credTP,k,ATTR, TP, k,D) to Lissue, and returns
(credTP,k,D) to A.
•Show: C retrieves (ID, usk,

credTP,k,ATTR, TP, k,D) from Lissue and aborts if such
tuple does not exist. If D is not empty, C selects Ju from the
dispenser D and runs algorithm Show to compute (Cu, Du,
Eu, Tu, Fu). Then, C runs the simulator S to produce Π2

U ,
returns (TIN = Tu, tok = (Ju, Cu, Du, Eu, Fu,Π

2
U , TP, k))

and inserts (ATTRD,M, tok,TIN) to Lshow. Besides, C up-
dates Lissue with the updated dispenser D′ = D\{Ju}.
•Corrupt: C removes the tuple (ID, upk, ru) from Lhonest.

Then, C randomly picks δ
$←− Z∗

p, inserts (ID, upk, δ) to
Lcorrupt and returns usk = δ to answer the query.
•Verify: The oracle query aborts if the entry identified

by TIN does not exist in Lshow. C return 1 if the tuple
(tok,TIN,ATTRD,M) ∈ Lshow and returns 0 otherwise.
•Reveal: C performs the oracle query by calling the corre-

sponding algorithm directly.
Forge phase: A outputs a forged tuple (ATTR∗

D,M∗,

T IN∗, tok∗, t̃ok
∗
) to frame a honest token pair

(TIN∗, tok∗) for double-showing. If (upk∗, ID∗) ←
Reveal(TIN∗, tok∗, t̃ok

∗
) exists in Lhonest and

Verify(isk, t̃ok
∗
,TIN∗,ATTR∗

D,M∗) returns 1, we have

upk∗ = Y ∗
u = g

x∗
u

0 = g
a·r∗u
0 .

Parsing t̃ok
∗
= (J∗

u, C
∗
u, D

∗
u, E

∗
u, F

∗
u , (Π

2
U)

∗, TP ∗, k∗), C runs
the extractor E to extract x∗

u from (Π2
U)

∗, outputs a∗ = x∗
u

/
r∗u

to break the DL assumption.
Probability Analysis: Let EDL be the event that a∗ is the

solution for DL problem, EA be the event that A wins the
exculpability game. ϵ′ = Pr[EDL] = Pr[EDL|EA] ·Pr[EA]+
Pr[EDL|EA] ·Pr[EA] = 0+Pr[EDL|EA] ·Pr[EA] = 0+ϵ =
ϵ.

D. PKT-SIN: SECURITY MODELS

We formalize the security model for PkT-SIN, which is
utilized to prove that PkT-SIN can achieve authenticated key
exchange (AKE) in a random oracle model.

Protocol Participants. Let the symbol Uρ denote the ρ-th
instance of participant U in the PkT-SIN, i.e., NCC, LEO, GS
or SU.

Adversary Capability. We capture all of the adversary’s
attack capabilities in real-world to have full control over
the public network communication, including revealing some
secrets in the protocol, intercepting or tampering with the
channel messages, replaying, delaying, injecting or dropping
data packets, interleaving messages from different sessions,
etc.
Protocol Execution. An adversary A is modeled as a PPT
machine with a distinguished query tape to issue a set of
session exposure queries for gaining the ephemeral and long-
term secrets possessed by participants.
• Extract(Uρ): In this security game, an adversary A can

get the public/private key pair corresponding to the participant
Uρ.
• Send(Uρ,M): transmits a message M to Uρ, who exe-

cutes the protocol and returns the operation result to adversary
A. If the message in the query causes the protocol to execute
or abort, it will be made known to A.
• Execute({Ui}ni=1): executes a complete protocol among

the entities (U1, · · · , Un). The adversary captures all messages
transmitted over the public network. Hence, the query to
Execute oracle models passive eavesdropping capability of
the adversary.
• Reveal(Uρ, sid): returns the secret session key (associ-

ated with the participant Uρ and session identifier sid) to the
adversary A.
• Corrupt(Uρ, sid): returns all information (including

ephemeral secrets and private key) held by Uρ.
• TestSession(Uρ, sid): This oracle is used to model key

secrecy. A random bit b ∈ {0, 1} is selected to respond to
this query. If b = 1, the target session key is returned to A.
Otherwise, a random value picked from the secret session key
space is returned.

Session Exposure. A session (Uρ, sid) is said to be exposed
if the adversary makes the following queries.

- The adversary makes a Reveal query on the session.
- The adversary makes a Corrupt query on Uρ before the

session has expired.
Session Freshness. A session (Uρ, sid) is said to be fresh
if itself is not exposed and all its matching sessions are not
exposed.

Definition D.1 Let SuccAKE
PkT-SIN(A) denote the event that

A makes a single Test query with the restriction that the
queried session (Uρ, sid) is fresh, and finally outputs a bit
b′ = b, where b is the random value selected in the Test
query. A PkT-SIN system is secure if for any PPT adversary A,
there exists a negligible function ν such that AdvAKE

PkT-SIN(A)
def
=

2Pr[SuccAKE
PkT-SIN(A)]− 1 ≤ ν(λ).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 22

E. PKT-SIN SECURITY PROOF

Theorem 6.1 PkT-SIN realizes authenticated key exchange
(AKE) if the DDH assumption holds, PkT-KVAC and DSS are
unforgeable, SE satisfies confidentiality, and hash functions
are random oracles.

Proof. We setup the AKE proof in terms of a series of games,
where a challenger interacts with the adversary confronting
it with a counterfeit TestSession challenge in the spirit of
Definition D.1.

In the security proof, assume that 1/P is the maximum
probability that the input and output messages from two
different sessions are the same. We denote qexe as the number
of Execute queries, and qsnd as the number of Send queries.

Let B1 be the adversary against the confidentiality of SE, B2
be the adversary against the unforgeability of PkT-KVAC, B3
be the adversary against the unforgeability of DSS, B4 be the
adversary against the security of the DDH problem and B5 be
the adversary against the security of hash functions (modeled
as random oracles).

− Game0. This first game corresponds to a real attack, in
which all the parameters are chosen as in the actual scheme.
A random bit b ∈ {0, 1} is selected. When b = 1, the real
session key is returned as a response to the TestSession
query. Otherwise, a random key from the key space is returned
as the session key. By definition, Adv0(A) = AdvAKE

PkT-SIN(A).

− Game1. This game is the same as Game0, except that
if two different sessions output exactly the same message and
have the same partner, the protocol halts. Hence, we have

Adv0(A) ≤ Adv1(A) + (qexe + qsnd)
2/P.

− Game2. In this game, the simulation is modified in
the following way: for a query to Execute oracle, it would
return ciphertexts CTL,U and CTL,G, or values CTR1

and
CTR2

chosen uniformly at random in the ciphertext space of
SE .SEnc are returned instead. An adversary A not holding
the corresponding secret keys EKL,U and EKL,G has a negli-
gible advantage in distinguishing between this game and the
previous one, because of the privacy of the SE. Therefore, we
have

Adv1(A) ≤ Adv2(A) + 2 · Advconf
SE (B1).

− Game3. In this game, the simulation is modified in the
following way: for a query to Execute oracle, it would return
authentication token and identifier (tok,TIN) for satellite user,
or values chosen uniformly at random in the token space and
identifier space of PkT-KVACShow are returned instead. An
adversary A not holding the corresponding user secret key
usk has a negligible advantage in distinguishing between this
game and the previous one, because of the unforgeability of
PkT-KVAC. On the other hand, the modification made in the
previous game ensures that A has not obtained any usk by
simulating an execution of PkT-KVAC.UKeyGen. Therefore,
we have

Adv2(A) ≤ Adv3(A) + ·Advunforge
PkT-KVAC(B2).

− Game4. This game is the same as Game3, except that
the calculations of the DSS signatures are replaced by random
values, and we have

Adv3(A) ≤ Adv4(A) + Advunforge
DSS (B3).

− Game5. This game is the same as Game4, except
that (Ru, Ygs) is replace by the DDH tuple (ga0 , g

b1
0), and

(Ru, Rgs) by the DDH tuple (ga0 , g
b2
0) on group G2. Then,

the calculation of R
xgs
u is replaced by T1 ∈ G, and R

rgs
u by

T2 ∈ G. As a result, we have

Adv4(A) ≤ Adv5(A) + 2AdvDDH(B4).

− Game6. This game is the same as Game5, except that
the hash functions (H1, H2, H3, H4) are replaced by random
oracles, and we have Adv5(A) = Adv6(A).

Combining the above results, we have

AdvAKE
PkT-SIN(A) = Adv0(A)

≤ (qexe + qsnd)
2/P + (qexe + 3qsnd)

2/p+ 2q2snd/|R|
+ 2(qexe + qsnd)(Advconf

SE (B1) + Advunforge
PkT-KVAC(B2)

+ Advunforge
DSS (B3))

+ 2(qexe + qsnd)AdvDDH(B4)).

This completes the proof.

Theorem 6.2 PkT-SIN satisfies anonymity for satellite
users if PkT-KVAC satisfies anonymity and the token series
numbers are not reused.

Proof. Suppose that an adversary A is able to obtain messages
(tok,TIN, Ru) in session establishment phase of PkT-SIN,
where the tuple (tok,TIN) is generated by PkT-KVAC.Show
algorithm. User’s real identity is hidden in tok. If A can
obtain the user’s real identity from tok, it indicates that A
can break the anonymity of PkT-KVAC, or the token series
numbers are reused by satellite user. Since the anonymity of
PkT-KVAC is proved in Supplemental Material C, A cannot
derive the user’s real identity from tok. If a satellite user does
not reuse the token series numbers (i.e., behaves well), the
adversary A has no chance to reveal the user’s identity using
PkT-KVAC.Reveal algorithm. Therefore, the proposed PkT-
SIN system satisfies anonymity for satellite users.

The anonymity of satellite users in the handover phase
is also guaranteed, which is omitted due to a similar proof
process.

