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Abstract

Although it is widely accepted that research from data mining, knowledge discovery, and data warehousing should be

synthesized, little research addresses the integration of existing data management and analysis software. We develop an

intelligent middleware that facilitates linear correlation discovery, the discovery of associations between attributes and attribute

groups. This middleware integrates data management and data analysis tools to improve traditional data analysis in three

perspectives: (1) identify appropriate linear correlation functions to perform based on the semantics of a data set; (2) execute

appropriate functions contained in the data analysis packages; and (3) derive useful knowledge from data analysis. D 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

Much recent research has focused on database

integration [21], data warehousing [13], and data

mining and knowledge discovery [6]. All of these

research areas have attempted to address an emerging

business need: the exploitation of large amounts of

data to derive useful information (i.e. obtain business

intelligence).

Many businesses own separate software for data

definition, data manipulation, and data analysis. For

example, while business data may be stored in a

Microsoft Access database, necessary data analysis

functions are contained in heterogeneous data analysis

packages such as SPSS/Base [10] or SAS [14]. These

businesses face three major problems in leveraging on

their existing software for knowledge discovery:
. Scarce data analysis expertise. Few users have

formal training with advanced data analysis methods

such as data mining and on-line analytical processing

(OLAP) [4], and data management tools such as data

warehouses. Experienced analysts continue to be in

short supply, especially since the growth in data to be

analyzed continues to outpace the number of new

trained data analysts entering the market [9].
. Affordability of integrated tools. While inte-

grated prototype and commercial database/data anal-

ysis systems do exist (e.g. Refs. [2,8,13,25]), many

companies are either unable or unwilling to adapt
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these products due to technique feasibility, economic

feasibility, operational feasibility, and many other

reasons.
. Lack of a well accepted data analysis commu-

nication standard. To transfer data from a database to

a data analysis package, it is necessary to create an

export file in a format the data analysis package under-

stands, and manually import it to the data analysis

package. Results obtained from a data analysis package

must also be manually keyed into the database. Fur-

thermore, standard interfaces for data analysis tools do

not exist. For example, statistical packages adopt

different languages (e.g. SAS and SPSS both employ

different commands to perform a linear regression),

and generate output in different formats. Data analyst

often do not have the time, knowledge or ability to

integrate their databases with their disparate data anal-

ysis packages.

The transfer of information between database and

data analysis packages is not only a tedious and task

intensive process, but also an error prone one. Data

analysis is fundamentally iterative. Knowledge ob-

tained from one analysis is used to guide a second,

and then a third analysis. Each time an analyst must

export data to an analysis package, or enter results into

a database manually, there is a chance that the analyst

commits a mistake. As the analyst performs the same

tasks repeatedly, the likelihood that the analyst com-

mits an error increases. To reduce the amount of

inaccuracy, we propose to simplify or automate the

integration between databases and data analysis sys-

tems.

Therefore, there is an emerging and urgent need to

develop an intelligent system to seamlessly integrate

existing data management and data analysis tools to

allow the business to maximize the use of information.

In our research, we aim to develop an intelligent

middleware between databases and data analysis pack-

ages. Because data analysis is a very broad topic, we

restrict the scope of our research to linear correlation

discovery. Linear correlation discovery refers to the

discovery of associations between attributes and attrib-

ute groups (sets of attributes). For example, a store

manager wants to know whether alcohol sales are

directly related to temperature and consumer profile

(e.g. gender, age). While our work concentrates on

linear correlation discovery, it can be generalized to

other forms of data analysis such as market basket

analysis [1], comparisons of groups, or prediction. Our

research does not attempt to discover non-linear asso-

ciations, or associations between data with a time-

dependent component. Such analyses often require

techniques more sophisticated than that incorporated

in this research.

1.1. Research objectives

The middleware is developed to accomplish the

following objectives:
. Automatic identification of appropriate func-

tions. In data analysis, the appropriate function to

apply is determined based on knowledge about the

kind of analysis to perform, and the characteristics of

the data to analyze. For example, when one measures

associations between nominal (i.e. unordered) attrib-

utes, it is best to use a contingency table. However,

associations between ordinal (i.e. ranked) attributes are

measured using Spearman’s Rho, or Kendall’s Tau.

Most existing data analysis package require that the

users determine the data set and the function for the

analysis. This adds a cognitive burden to the user,

because the user must (in a single step) identify not

only the kind of analysis to perform, but also the

function that best performs the task. Novice users are

often unable to perform this task correctly. Our mid-

dleware identifies the appropriate correlation function

to apply based on the characteristics of data to be

analysed, thereby relieving the user from this task.
. Standardized access to data analysis pack-

ages. No standard language currently exists among

data analysis packages. For example, both SPSS and

SAS use different commands to execute a linear

regression. As migration to more sophisticated data

analysis packages requires expensive retraining, users

are often locked into one particular package.

Our middleware is developed to translate users’

data analysis requests into the commands of the target

data analysis package. Thus, users do not have to learn

the appropriate command syntax to express their data

analysis requirements. Furthermore, users are not con-

strained by any one package and can apply different

packages for their analysis task.
. Automatic extraction and interpretation of

data analysis results. The functions of most data

analysis packages produce voluminous amounts of

information, most of it irrelevant to the specific data
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analysis task performed. Furthermore, different data

analysis packages report the same information in

different ways. This results in additional learning and

human information processing costs, as the user must

learn how to extract and interpret results from different

packages. Our middleware scans the data analysis

output, and extracts only the relevant information.

1.2. Definitions

Special terms used in this paper are defined as

follows:
. Function: A function refers to a theoretic

construct used to perform data analysis. For example,

linear regression and classification trees are functions.
. Algorithm: An algorithm is a specific imple-

mentation of the function. For example, the CART

[3], and QUEST [16] algorithms are two implemen-

tations of classification trees. Similarly, a linear

regression can be implemented using stochastic

approximation, or through a matrix minimization

approach.
. Package: A package is a software that is widely

available and adaptable to many situations. Microsoft

Access and SPSS are packages. Customized systems

specific to a business are not packages.

2. Intelligent middleware development

The intelligent middleware performs the following

tasks to achieve the research objective:
. Store expert knowledge concerning data anal-

ysis. The middleware stores knowledge concerning

statistical function selection, data analysis package

execution, and data analysis output interpretation as

production rules. This enables users to perform effec-

tive data analysis with only minimal training. These

rules can be easily adapted and revised to suit an

organization’s specific data analysis requirements.
. Derive schema and instance characteristics

from the data. The middleware employs schema

information, such as the data type, and instance infor-

mation, such as the variation in instance length, to

determine the kind of data analysis functions that is

appropriate for the data set. This enables the user to

focus on what to analyze (e.g. measure the association

between Race and Occupation) instead of how to

analyze it (e.g. Goodman and Kruskal’s Lambda is

an appropriate function for this analysis).
. Analyze data and report results. The middle-

ware automatically exports data from the database

system to the data analysis package and executes the

relevant function in the data analysis package. It then

reads output from the data analysis package and

extracts relevant information from it. Thus the user

does not have to become familiar with the output from

the data analysis package.

Thus, all interactions and tasks between the data-

base and data analysis packages are transparent to the

user. The user need not know the implementation

details of the target packages, nor the name of the

function being used. The user simply specifies the

analysis requirements of the target data (attributes).

The middleware was developed primarily to sup-

port novice users in low-budget knowledge discovery.

As a result, it does not incorporate sophisticated data-

base management, or data analysis algorithms, which

are assumed to be available through other softwares

(e.g. databases and data analysis software). The current

implementation uses the Visual Basic programming

language. It currently couples a Microsoft Access

database with the SPSS statistical package [10], the

Nevprop3 neural network package1, and the Quest

classification tree package [16].

The middleware implements the discovery process

presented in Fig. 1.

2.1. System architecture

Fig. 2 presents the four components of the middle-

ware, which are:
. Central Control Unit: The Central Control Unit

(CCU) integrates the other components, and serves as

the primary interface between the user and the inte-

grated software packages. It also evaluates results

produced by the data analysis package and determines

which results are valid and interesting.

The Central Control Unit calls the appropriate

component of the middleware to perform specified

tasks. For example, the Central Control Unit repeat-

1 NevProp, developed by Phil H. Goodman, is freely distributed

under the GNU public license and can be downloaded from http://

www.scs.unr.edu/nevprop/.
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edly polls the data analysis package to determine when

output has been generated. Upon generation, the

Central Control Unit calls the function coupler to read

the output data and extract appropriate results.

In addition, the Central Control Unit uses informa-

tion generated by the other components to determine

whether a result is interesting and valid. For example,

when the user executes a linear regression, the Central

Control Unit compares the resultant R2 and p-values

against user-specified thresholds to determine whether

the regression was both statistically significant and

practically important. The process sequence of the

middleware (which captures the essence of the Central

Control Unit) is shown in Fig. 1.
. Selection assistant: The selection assistant is

responsible for selecting the appropriate data analysis

functions. To achieve this goal, the selection assistant

performs three principal tasks. First, it uses the data-

base schema and instance information to classify

attributes and attribute groups. Second, it determines

the classification of attribute groups (i.e. sets of attrib-

utes) from the classification of the individual attrib-

utes. Third, it uses the classifications to identify

functions in the data analysis packages that are appro-

priate for analyzing the attributes groups. These tasks

are described more fully in Section 3.
. Data analysis interface: The data analysis inter-

face determines the appropriate commands and data

format for invoking the data analysis package and

interprets results produced by the package. It is

described in detail in Section 4.
. Database interface: The database interface ena-

bles the import of data from a database for data

analysis. Data is imported in one of two ways: (1)

through ODBC, or (2) through a well-accepted inter-

mediate database format (e.g. DBase IV). Since inter-

faces between databases such as SQL, RDA, ODBC,

and JDBC are well known and accepted, we do not

discuss the database interface in this paper.

Fig. 1. The linear correlation discovery process.

Fig. 2. Middleware system architecture.
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3. Attribute classification

The selection assistant adopts a three-stage selection

process. In the first stage, the attributes are classified

according to the analysis functions that can be appro-

priately applied. Schema and instance information are

used to obtain these classes. In many cases, functions

on attributes are not applicable to their attribute groups

(i.e. sets of attributes). For example, while a Pearson’s

coefficient of determination can be applied to deter-

mine the association between Salary and Years_of_

Service, it cannot be applied to the association between

{Salary, No_of_Awards} and {Years_of_ Service,

Performance}. A canonical correlation would be more

appropriate in this case. Thus, in the second stage, the

attributes are combined into attribute groups. Each

group is then classified based on the combined classes

of all its component attributes. In the third stage, the

appropriate analysis function for the attributes is auto-

matically selected, based not only on the analysis pur-

pose, and attribute semantics but also on the availability

of the function in the data analysis package. For exam-

ple, while the Box–Cox function is preferred for dis-

covering relationships of the form Ri=1
n bixi

gi+C+
�= y, it is not available in the base SPSS statistical

package. When coupled with SPSS, the middleware

substitutes the SPSS curve-fit function in its stead.

In this section, we describe how attribute classifi-

cation is implemented in the middleware. We first

discuss the possible classification schemes. We then

discuss the mechanisms by which the middleware

obtains schema, domain, and instance information.

Third, we describe how heuristic rules can be embed-

ded in the middleware to perform attribute classifica-

tion. Finally we describe how attribute groups (i.e. sets

of attributes) are classified.

3.1. Attribute classification schemes

The selection assistant performs classification of

attributes using its heuristic rules. The heuristic rules

are adapted from the classification schemes proposed

in [5,12,20]. We briefly describe the adopted schemes

below. Attributes were categorized into two groups,

STRING, or NUMBER in Ref. [12]. STRING attributes were

those which could not be analyzed using algebraic

functions such as addition, subtraction, multiplication

and division.

Attributes were categorized based on their measure-

ment scales (i.e. NOMINAL, ORDINAL, INTERVAL) in Ref.

[20]. NOMINAL attributes have distinct values. For

example in Religion, a ‘Muslim’ is distinctly different

from a ‘Christian’. ORDINAL attributes have ranked

values. For example, Military_Rank is ORDINAL data,

since ‘Lieutenant’ < ‘Captain’ < ‘Mayor’. The values

of INTERVAL attributes have a distance. For example,

Height is INTERVAL, since the difference between 3.5

and 4.0 in. is the same as the difference between 4.0

and 4.5 in.

The measurement scales in Ref. [20] were further

subdivided into DICHOTOMOUS, CATEGORICAL, ORDINAL,

DATE, and NUMBER in Ref. [5]. NOMINAL attributes were

segregated into DICHOTOMOUS and CATEGORICAL attrib-

utes, since DICHOTOMOUS attributes (e.g. Gender) are

always bi-valued. Some functions can exploit bi-val-

ued NOMINAL attributes. For example, while it is

possible to determine the mean and standard deviation

on Yes/No opinion polls (DICHOTOMOUS attribute), it is

not possible to determine the mean and standard

deviation of Race. INTERVAL attributes were subdivided

into DATE and NUMBER, as some operations on NUMBER

(e.g. multiplication) were not valid on DATEs. This is

the default classification scheme used in the selection

assistant.

3.2. Derivation of schema information

Three kinds of data are used by the selection

assistant to classify the attributes, schema information,

domain knowledge, and the attribute instances. Schema

information is obtained through the database data dic-

tionary. A set of functions to obtain schema information

(e.g. data type, maximum attribute length, record count,

etc.) have been defined in the selection assistant. Most

relational databases have data dictionaries structured in

a relational format. Thus, all meta-schema information

can be retrieved by some standard relational queries.

Furthermore, domain information can be obtained

from the user. For example, a user may be asked to

identify foreign keys if those are not stored as part of

the data dictionary.

3.3. Derivation of instance information

Instance information is obtained through interface

subroutines. The interface subroutines serve as a

C.E.H. Chua et al. / Decision Support Systems 32 (2002) 313–326 317



bridge between the selection assistant and the database

manipulation language. While the names of the inter-

face subroutines are standardized, their implementa-

tion on database platforms will differ depending on the

native procedural data manipulation language (e.g.

Visual Basic, XBase, Java). Some examples of inter-

face subroutines include CountDistinct, which counts

the number of distinct instances in an attribute,

LengthVary, which measures the variance (i.e. spread)

in the length of the instance, and InDict, which

calculates the percentage of distinct instances found

in a dictionary. An extended version of the WinEdt

English spellcheck dicitonary2 is used as the reference

dictionary for InDict.

All interface subroutines accept three kinds of

arguments (data types).
. A constant. Constants are identified to the inter-

face functions either as values (e.g. ‘26’), or as the

name of an attribute in the data dictionary (e.g. (‘CON-

STANTS’, ‘MAX_DISTINCT_ORDINAL’)). The

first kind of constant is always passed to the interface

function as a single value. The second is passed as a

table name/attribute name pair. Thus, the interface

subroutine has no difficulty differentiating them.
. The name of an attribute: This is useful for

accessing schema information that the interface sub-

routine may require. For example, the InDict subrou-

tine performs an SQL query to match instances in the

attribute with dictionary words, and requires the attrib-

ute name to perform the query.
. The instances of the attribute: Instances are

passed to the subroutine in one of three different forms.

In the first form, called distinct instance passing, only

the distinct instances are passed to the interface sub-

routine. This form is used if the interface subroutine

does not require knowledge of the variation in instan-

ces, and reduces processing time. For example, if the

attribute Gender has 20 instances of ‘Male’, and 24

instances of ‘Female’, only one instance of ‘Male’ and

one instance of ‘Female’ is passed to the interface

subroutine using distinct instance passing. In the sec-

ond form, count instance passing, instances are passed

with a count of their occurrence frequency. For exam-

ple, under count instance passing, the pair (‘Male’, 20),

(‘Female’, 24) would be passed to the interface func-

tion. This is useful for interface subroutines where the

frequency of the occurrences is important, but not their

ordering. For example, an interface subroutine that

calculates the variance in length between the instances

would be passed instance information in this form.

Finally, in full instance passing, the instances are

passed to the interface subroutine in their original state.

For example, all 20 instances of ‘Male’, and all 24

instances of ‘Female’ are passed to the subroutine. This

kind of instance passing is only used for subroutines

that must identify patterns based on instance order. An

example of such an interface subroutine is one that

analyzes the database update logs.

3.4. Rule embedding

We developed a user customizable rule base to

classify the attributes based on schema and instance

information. These statements (i.e. rules) are represen-

ted as a set of negative statements as if–then is not.

The antecedent (i.e. if component) evaluates the sche-

ma, domain and instance information. The consequent

(then is not component) identifies classes which are

inappropriate for that attribute. Our representational

choice (i.e. negative instead of positive statements) [18]

is based on performance (i.e. speed) considerations

[11].

Each rule contributes through a divide-and-conquer

strategy as illustrated in Fig. 3a and b. Each condition

refers to a query on the domain, database schema, or

attribute instances. In the example, Condition 1 parti-

tions the solution space into {Class A, Class B} and

{Class C, Class D}, Condition 2 partitions the remain-

ing solution space into {Class A} and {Class B}, etc.

Note that Fig. 3b is a dichotomy because an if–then–

else rule is by its nature dichotomous.

It was not feasible to include both positive and

negative statements in the rule base, because of the

different ways these two kinds of statements are

interpreted. Each positive statement that evaluates to

true would add to the set of possible classes. Negative

statements subtract from it. If both positive and neg-

ative statements were included in the rule base, it

would be difficult to clearly and unambiguously

determine the appropriate class for an attribute group,

as a class removed by one rule could possibly be rein-

serted by a following rule.

2 WinEdt, created by Alexander Simonic, is a shareware text

editor for It is available from http://www.winedt.com.
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As queries performed on instances are computa-

tionally expensive, a rule representation based on

negative statements (e.g. Fig. 3d) was selected as it

requires less time to process than one based on positive

statements [11] (e.g. Fig. 3c). For example, in Fig. 3c,

under the worst case, Condition 1 is called five times.

In Fig. 3d, it is evaluated at most twice. Later in this

paper, we show how to further reduce the number of

statement evaluations using a converse flag. A con-

verse flag is similar to the ‘else’ statement in traditional

if–then clauses as it identifies inappropriate classes

when the antecedent is false.

Problems with negative statements: When ante-

cedents are expressed using only negative statements,

the inference engine is only able to reduce the classi-

fication search space. It may not be able to conclu-

sively classify an attribute. For example, assume that

Conditions 1 and 2 are true. When all the rules in Fig.

3d are evaluated, the system can only determine that

classes B, C, and D are inappropriate. It cannot con-

clude that class A is appropriate.

To resolve this problem, anordering is established on

the rules [24]. Some rules are assigned a termination

clause. The rulewith the least priority is also assumed to

Fig. 3. Divide and conquer through rules.
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have a termination clause (regardless of whether it was

given one), as the inference engine must classify the

attribute after all rules have been exhausted. The termi-

nation clause is only tested for when the antecedent

evaluates to true, and the inference engine reduces the

number of possible classes in the consequent. If there is

only one remaining possible class, that class is consid-

ered as appropriate for that attribute. Thus, the inference

engine evaluates each rule in sequence, reducing the

number of potential classes for the attribute every time a

rule’s antecedent evaluates to true. Whenever the infer-

ence engine encounters a rulewith a true antecedent and

a termination clause, the attribute is classified (if it has

only one remaining potential class).

Other considerations: Different DBMSes contain

different kinds of database meta-schemas. For exam-

ple, some databases such as Microsoft Access explic-

itly identify the primary key, while others such as

DBase do not. Thus, schema information required by

a rule may not be available in the implementation

DBMS. The kind of meta-schema information required

for rule evaluation is stored along with the rule. Before

a rule is invoked, the inference engine tests if the

DBMS schema contains the necessary information. A

failed test means that the rule is not invoked.

The performance of the inference engine is further

improved by combining rules that are converses (i.e.

exact opposites). Such rules (e.g. Rules I and II of Fig.

3d) are combined using a converse flag. For example,

in a classification scheme with five classes {NUMBER,

ORDINAL, CATEGORICAL, DATE, andDICHOTOMOUS}, rules such

as ‘If an attribute has two or less distinct instances, then

it cannot be classified as NUMBER, ORDINAL, CATEGORICAL,

DATE’ and ‘If an attribute has three or more distinct

instances, then it cannot be classified as DICHOTOMOUS’

are combined and evaluated as a single rule.

Example rules: Some of the rules in the selection

assistant’s rule base are presented below as examples

of how the rule-base is structured. Sample output from

the attribute classifier is presented in Fig. 4.

Rule 1: ID_Date

Required Information: Data Type

IF The data type of the attribute is of type ‘Date’

THEN the attribute is not classified as NUMBER,

DICHOTOMOUS, ORDINAL or CATEGORICAL

Termination Clause: Terminate

Converse Flag: No converse flag

Rule 2: ID_OrdCat

Required Information: Attribute Length, Number

of Instances

IF The maximum length of the attribute is less than

or equal to the user-defined constant ‘LENGTH’

and the maximum number of distinct instances is

less than or equal to the user-defined constant

‘INSTANCE’

THEN the attribute is not classified as NUMBER or

DATE

Termination Clause: Do not terminate

Converse Flag: Has a converse flag

Rule 3: ID_StringNotNumber

Required Information: Data Type, Instance

IF The date type of the attribute is of type ‘String

and at least one instance of the attribute contains

Fig. 4. Sample output from the attribute classifier.
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the letters ‘A’. . .‘Z’ or ‘a’. . .‘z’ and at least one

instance has a length different from the length of all

other instances

THEN the attribute is not classified as NUMBER or

DATE

Termination Clause: Do not terminate

Converse Flag: No converse flag

Rule 4: ID_Key

Required Information: Candidate Key

IF The attribute is a candidate key

THEN the attribute cannot have the classes

{NUMBER, DATE, ORDINAL, CATEGORICAL, DICHOTOMOUS},

i.e. it cannot have a class.

Termination Clause: Terminate

Converse Flag: No converse flag

3.5. Attribute group classification

For multivariate data analysis (i.e. data analyses

involving more than two attributes), attribute classes

are not sufficient for determining analysis functions, as

attribute semantics are not generalizable to attribute

groups. For example, while the point biserial correla-

tion coefficient [15] is appropriate for measuring the

correlation between Salary and Gender, it cannot be

used to measure the correlation between Salary and

{Gender, Religion}, since Gender’s distance property

is not applicable when it is combined with a CATEGO-

RICAL attribute.

While many multivariate data analysis functions

consider the order of attribute groups for analysis (e.g.

it is possible to regress {Salary, Age} on Job Perform-

ance, but not possible to regress Job Performance on

{Salary, Age}), most do not consider the order of the

attributes within the attribute groups. For example, the

linear regression of (Salary, Age) to Job Performance

produces the same result as the linear regression of

(Age, Salary) to Job Performance. Thus, attribute

group classification is generally both commutative

and associative, i.e. the class of the group (A, B) must

be the same as the class of the group (B, A). Similarly,

the class of the group {A, B, C} is the same irrespec-

tive of the order of the attributes.

For classification purposes, these properties reduce

the attribute group classification matrix to one where it

is possible to derive all attribute group classes by clas-

sifying attributes one pair at a time. Attribute groups

with more than two attributes are considered as a

special pair, where each member of the pair captures

the ‘class’ of multiple attributes. For example, the at-

tribute group {Salary, Age, Occupation} can be treated

as the group {Group 1, Occupation}, where Group 1 is

an attribute with the class of {Salary, Age}. As classi-

fication is associative, the class of {Group 1, Occupa-

tion} is the same as that of {Salary, Group 2}, where

Group 2 has the same class as {Age, Occupation}.

Since all classes can be treated in this way, we im-

plement attribute group classification as a three-col-

umn mapping table. The first two columns identify the

classes of the attributes in the group. The third column

identifies the class of the attribute group. The classes

of attribute groups that are composed of more than two

attributes are discovered by recursively querying the

table. A sample of the mapping table (using the

classification scheme proposed in Ref. [5]) is pre-

sented as Table 1.

4. Function coupler

Once the appropriate functions to apply to the data

are known, the middleware must call the data analysis

package to execute the functions, and read and inter-

pret the package’s output results. The function coupler

provides facilities to perform these tasks.

Most of the data analysis packages (e.g. SPSS,

SAS, Minitab) allow batched requests to be submitted

following the process illustrated in Fig. 5. In this

process, a sequence of data analysis commands, and

a data file to be analyzed are inputted into the data

analysis package. The package generates an output file

with the results obtained through the commands.

Thus, in order to effectively interface with the data

analysis package, the function coupler performs the

following tasks.

Table 1

Sample mapping table

Group 1 Group 2 Resultant group

Number Number Number

Number Date Date

Date Date Date

Number Ordinal Number

Ordinal Ordinal Categorical

] ] ]
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. Generate a command file. The command file

(typically presented as ASCII text) contains instruc-

tions that the data analysis package understands.
. Prepare a data file. The data file must be in a

format that is readable by the data analysis package.

The preparation of the data file not only involves

exporting the data in a compatible file format (a trivial

problem, since many well accepted interchangeable

file formats exist), but also ensuring that data is in a

format conducive to data analysis. For example, most

data analysis packages are unable to perform analysis

on String data, even if all instances are numeric.
. Call the data analysis package. Based on the

appropriate files to execute, and the locations of these

files in the file directory the function coupler calls the

data analysis package.
. Extract relevant results from the data analysis

output file. The data analysis output file is typically

semi-structured. The function coupler must have

enough knowledge about the statistics package to

extract pertinent results from the output data.

The information required for performing each task

differs between data analysis packages. For example,

the command file for invoking a linear regression in

SPSS would differ substantially from that of SAS.

However, the required information to perform these

tasks are common across the data analysis packages.

By identifying this required information, we are able

to categorize and organize them to facilitate integra-

tion of data analysis packages with database manage-

ment systems for knowledge discovery. For example,

since SPSS and SAS provide linear regression analy-

sis functions, it is critical to obtain and synthesize the

syntax of the command for linear regression from the

data analysis packages. Currently, we manually enter

this information. However, it is our vision that future

versions of data analysis packages will be packaged

with an electronic manual for reference by other

software.

We propose six kinds of information that must be

stored in this electronic manual. These kinds of

information are: (1) function identification, (2) func-

tion package command, (3) function input, (4) func-

tion package format, (5) result package output, and (6)

package layout information. We explain each kind of

these kinds of information below.

Function identification: Function identification

includes a unique code identifying each data analysis

function, the common name of that function, and the

function’s purpose. For example, a ‘‘Linear Regres-

sion’’ might have unique ID ‘001’, and is used for

‘Correlation’, and ‘Function estimation’ (i.e. deter-

mining the functional relationship between data).

Function package command: Function package

command information describes the syntax of the

function in a particular data analysis package. Each

function package command has four parts:

� Pre-command information: This describes

preliminary instructions to prepare the data

analysis package to receive the command. For

example, before performing a linear regression,

it may be useful to measure the skew of the

data, or to randomly sample the data.
� Static command: This is the part of the

command which remains constant. For exam-

ple, in SPSS, a linear regression always begins

with the command ‘Regression’.
� Variable markers: These mark locations in the

data analysis command which should be

substituted for the names of the attributes being

analyzed.

Fig. 5. Batch job processing in statistics packages.
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� User preferences: The implementations of

some functions in the data analysis package

give users some optional control over how the

function is executed. The function coupler

assigns defaults to these preferences, but allows

users to modify them.

Fig. 6 illustrates the information associated with a

command. This command produces a linear regres-

sion between {Job Performance, Age} and Salary for

SPSS.

Function input: Function input describes the map-

ping from the attribute group classes to the data

analysis functions. For example, given the scheme in

Ref. [20], the appropriate function for measuring the

association between an attribute group with an INTERVAL

class and a single attribute with an INTERVAL class is a

linear regression. Likewise, given the scheme in Ref.

[12], both attribute groups must have the NUMBER class

before a linear regression is performed. Function input

information is used by the selection assistant in deter-

mining appropriate data analysis functions.

Function package format: Function package

format identifies whether attribute groups need to

be recorded for the data analysis package. For

example, most data analysis packages cannot per-

form a linear regression on an attribute with a String

data type, even if all the instances have a numeric

representation. Function package format allows the

function coupler to identify such limitations in the

data analysis package and appropriately recode the

attribute groups to avoid problems during data ana-

lysis.

Result package output: Result package output

identifies the location of key results (e.g. p, degrees

of freedom, etc.) in the output generated by a data

analysis package. To facilitate this task, the function

coupler includes a primitive scripting language. The

scripting language searches ASCII text files for key

words, and then extracts other words based on their

position relative to those words. For example, one

statement in the Result Package Output information

on ANOVA for the SPSS package is ‘Degrees of

Freedom is the second word after Between Groups’.

The scripting language also includes a selection

statement (if then else). This enables the user to

specify that a result could appear in multiple locations.

For example, a line of statistical text obtained from

SPSS might look like:

The function coupler scans the previous output

and determines where the degrees of freedom

value is. It performs this task by noting if the

word ‘(Estimated)’ follows the words ‘Between

Groups’.

Fig. 6. Information required of a linear regression in SPSS.

>

However, at other times it might look like:
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The function coupler also performs simple calcu-

lations. This allows the user to derive additional

results from those presented. For example, if R2 is

not presented in the data analysis output, the middle-

ware derives it from output produced by a logit

function using the likelihood ratio test statistic of the

best fit model and the independent best guess model

[17]. Standardized data analysis measures are thus

obtained irrespective of whether the data analysis

package presents those measures in the output.

The function coupler also performs limited deci-

sion making. For example, a conflict resolution func-

tion is included that extracts R2 only if the sample size

of an analysis is below a particular value. The

adjusted R2 value is otherwise extracted.

4.1. Coupling to data mining packages

While the described function coupler is able to

couple the database to traditional statistical packages,

additional issues have to be considered to couple it to

data mining packages. These issues include:
. Multiple data sets: Data mining functions such

as neural networks [19], and classification trees [3]

use hold-out validation to validate their results. In

hold-out validation, the data set is partitioned into a

training set used for data analysis, and a test set used

to validate the patterns discovered in the training set.

The method for partitioning a data set differs between

data analysis packages. While some data analysis

packages provide features to perform this partitioning,

others (e.g. the neural network Nevprop3) do not. A

flag in the Package Layout Information identifies

whether the data analysis package performs its own

partitioning. If partitioning cannot be performed by

the data analysis package, the middleware performs it

according to the following well accepted heuristic

[23]:

1. If the data set contains more than 3000 tuples,

then 1000 tuples are randomly allocated to the

test set. The others are allocated to the training

set.

2. Otherwise, 1/3 of the tuples are randomly

allocated to the test set.

. Function complexity: Many data mining func-

tion have numerous input parameters. These parame-

ters can often be determined by the analyst. A change

in any one of these parameters often dramatically

changes the nature of the analysis. For example, a

fully connected neural network model with three

hidden nodes is different from one with four hidden

nodes. It is currently not possible to determine the

optimal number of nodes or hidden layers for most

problem domains [22].

Furthermore, the implementation of may of these

data mining functions is not yet standardized. The

methods for invoking these data mining functions

differ dramatically between software packages. For

example, to invoke the classification tree package

QUEST [16], 12 different parameters must first be

defined (e.g. node size for constructed tree, alpha

value for splitting). On the other hand, CART [3]

only requires the user to specify the independent and

dependent attribute group, if the setting ‘Minimize

cost tree regardless of size’ is specified.

The function coupler handles this issue by first

generating the data analysis command file with some

defaults. The command file is then presented to the

user for modification prior to executing the data

analysis package.

5. Conclusion and future research

In this paper, we have presented the development

of an intelligent middleware that facilitates knowledge

discovery. It integrates the data manipulation power of

available databases with the data analysis capability of

available data analysis packages. The middleware

benefits the user in the following way:
. The user does not need to learn about dispa-

rate systems: Since the middleware ‘knows’ how to

operate the database and data analysis packages and

read the data analysis output, the user does not need to

learn about the packages.
. Migration costs are lowered: Since the user

does not need to learn the data analysis package, the

user can upgrade to a competing product without con-

sidering migration cost.
. It separates conceptual data analysis from

implementation: The user only needs to consider

the king of data analysis (e.g. correlation) that needs

to be performed. The middleware selects the appro-

priate function (e.g. linear regression, Spearman’s
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rank order, canonical correlation, Goodman and Krus-

kal’s lambda) for the given task.

While the middleware described demonstrates that

it is possible to couple existing databases with data

analysis packages, there are many other avenues for

future research. Such research includes the develop-

ment of more sophisticated schemes for classifying

attributes for data analysis, and implementation of a

standard data analysis language.

While current classification schemes (e.g. Refs.

[5,12,20]) enable automated systems to select data

analysis functions, much can be done to improve the

classification accuracy to these schemes. As one

example, classification schemes should consider the

distribution of the data as this information is often

important for function selection. Thus, measures such

as the Pearson’s coefficient of skew [15] should be

incorporated as they are more useful than the median

and mean separately for describing the average value

of skewed (i.e. non-normally distributed) data. More

sophisticated methods of selecting appropriate func-

tions are necessary to develop sophisticated data

analysis packages.

Also, the research community must establish a

standard language for data analysis akin SQL for data

definition/manipulation. Most current data analysis

research focuses on developing new data analysis

function [7]. These functions see limited use, as they

are implemented in packages with limited function-

ality. Standardized interface design of data analysis

packages will provide many holistic benefits.
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