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Abstract—There is substantial attention to federated learning
with its ability to train a powerful global model collaboratively
while protecting data privacy. Despite its many advantages, feder-
ated learning is vulnerable to backdoor attacks, where an adversary
injects malicious weights into the global model, making the global
model’s targeted predictions incorrect. Existing defenses based on
identifying and eliminating malicious weights ignore the similarity
variation of the local weights during iterations in the malicious
model detection and the presence of benign weights in the malicious
model during the malicious local weight elimination, resulting in a
poor defense and a degradation of global model accuracy. In this
paper, we defend against backdoor attacks from the perspective
of local models. First, a malicious model detection method based
on interpretability techniques is proposed. The method appends
a sampling check after clustering to identify malicious models
accurately. We further design a malicious local weight elimination
method based on local weight contributions. This method preserves
the benign weights in the malicious model to maintain their con-
tributions to the global model. Finally, we analyze the security
of the proposed method in terms of model closeness and then verify
the effectiveness of the proposed method through experiments. In
comparison with existing defenses, the results show that BADFL
improves the global model accuracy by 23.14% while reducing the
attack success rate to 0.04% in the best case.

Index Terms—Federated learning, backdoor attack, clustering,
interpretability.

I. INTRODUCTION

F EDERATED learning (FL) [1], [2], an emerging distributed
machine learning framework, consists of local training and
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server aggregating in each iteration. Each client trains a local
model and then submits local weights to the aggregation server,
aggregating them to obtain a global model. Then, the aggregation
server propagates the global model back to each client for
the next iteration. FL allows multiple clients to train machine
learning models collaboratively without uploading training data
to the aggregation server and has become an infrastructure for
building machine learning models in areas such as transporta-
tion, healthcare, and the Internet of Things [3], [4]. However,
existing studies [5], [6], [7], [8] show that FL is vulnerable to
backdoor attacks. An adversary manipulates the local models of
a subset of clients joining FL, consequently injecting malicious
local weights into the global model. In such an attack, the
attacker aims to manipulate the global model so that the inputs
with backdoors are predicted to the attacker’s specified target.

Many defenses have been proposed [9], [10], [11], [12], [13]
with the general idea of malicious model detection followed
by further eliminating the impact of malicious local weights
on the global model. During malicious model detection, exist-
ing defenses [2], [10], [12], [13], [14], [15], [16] attempt to
identify malicious models by the low similarity between local
weights, i.e., models incompatible with most local weights are
considered as malicious. Therefore, the aggregation server first
calculates the similarities between each local weight and other
local weights. Then, it identifies local models whose weights
are not similar to most local weights as malicious and removes
them. The above detection methods cannot guarantee that none
of the malicious local weights participates in the aggregation.
Once the global model is contaminated, the embedded backdoor
can work even if the subsequent iterations are not attacked [17].
Therefore, the existing defenses [15], [16], [18] add a mali-
cious local weights elimination after detection. In malicious
local weight elimination, the existing defenses modify the local
weights associated with the backdoor task through perturbation
and clipping techniques to reduce the probability of the backdoor
being activated.

However, the existing defenses have two problems. First, the
existing defenses consider local weights with low similarity as
malicious in the malicious model detection process, ignoring
the similarity variation of local weights during iterations. We
find that the similarity between local weights decreases with the
increase of iterations. As a result, the existing defenses cannot ef-
fectively filter malicious models and even identify clean models
as malicious ones in iterations, resulting in a poor defense. Fig. 1
shows that existing defenses can erroneously remove many clean
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Fig. 1. Existing defenses use different clustering methods on a vector of a
set of local weights. (a) It is an attack scenario involving two adversaries: one
adversary manipulates one client, and the other can manipulate three clients.
(b) It is the K-means method (as used in Auror [17]) which fails to separate benign
and malicious models. (c) It shows the clustering of FLAME [15], which requires
that N/2+1 of the clients are highly similar to the benign model. However, the
similarity variations make this requirement impossible to guarantee. Hence,
FLAME also unsuccessfully separates the benign from the malicious.

models, which reduces the global model’s accuracy. Second, the
existing defenses apply uniform clipping to local weights after
detection to eliminate the impact of malicious weights, ignoring
the presence of benign weights in the malicious model. The
malicious model is not entirely trained with backdoor samples.
Its training set also contains a high portion of clean samples [7].
The existing defenses using uniform clipping for malicious
models cause the benign local weights in the malicious models to
be clipped, leading to a degradation of the global model accuracy.

To overcome the limitations of existing defenses, we propose
BADFL: Backdoor Attack Defense in Federated Learning from
local model perspective. Instead of relying on the similarity
between local weights, we perform neuron inspection on an
individual model to identify malicious models in the model
detection process. In the malicious local weights elimination
process, we maintain the benign weights in malicious models
and clip the malicious weights. Our contributions are as follows.
� We present a malicious model detection method based on

interpretability. We design the local model clustering algo-
rithm and model neuron inspection algorithm, respectively,
to cluster the local weights after outlier detection and to
check the sampling of each cluster using interpretability.
Our proposed method adds sampling checks after outlier
detection and cluster, which can accurately identify mali-
cious models.

� We further propose a malicious local weight elimination
method based on local weight contributions. We design a
local weight contribution function and a malicious local
weight clipping algorithm that adaptively clips malicious
local weights based on local weight contributions. The
method preserves the clean local weights in malicious
models so that they can continue to contribute to the global
model and improve the global model accuracy.

� We analyze the security of the proposed method in terms
of model closeness and then verify the effectiveness of the
proposed method through experiments. In comparison with
existing defenses, the results show that BADFL improves
the global model accuracy by 23.14% while reducing the
attack success rate to 0.04% in the best case. Meanwhile,
BADFL is robust to parameters such as poisoning rate and
the number of attackers.

TABLE I
SUMMARY OF EXISTING BACKDOOR ATTACK DEFENSE METHODS IN FL

The rest of this paper is organized as follows. In Section II,
we discuss the related work. In Section III, we introduce some
preliminaries. We state the problem in Section IV. In Section V,
BADFL is presented in detail. Then, we analyze the security
of BADFL in Section VI. The experiment analysis is given in
Section VII. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Many defenses against FL backdoor attacks have been pro-
posed [9], [10], [11], [12], [13] with the general idea of malicious
model detection followed by further eliminating the impact
of malicious local weights on the global model. During ma-
licious model detection, PEFL [12] applies the Pearson Coef-
ficient to measure the similarity. FLAME [15] applies cosine
similarity to measure the similarity and then uses HDBSCAN’s
idea to identify malicious models. All the above defenses are
designed with different detection schemes based on the crite-
rion of low similarity of malicious models with other models.
However, they ignore that the similarity between local weights
varies from iteration to iteration. Therefore, it is not reasonable
to rely solely on the low similarity criterion to identify malicious
models.

Based on the existing defenses, we add random sampling
after clustering and further employ neuron checking to identify
malicious models. Existing defenses [2], [18], [19], [20], [21]
focus on reducing the impacts of malicious local weights that
escape during the malicious model detection on the global model
by using clipping and perturbation. CRFL [18] and FLAME [15]
are uniformly clipped to reduce the impacts of malicious weights
on the global model. However, they ignore that the local local
weights have different contributions to the global model. Thus
the strategy of uniform clipping affects the contribution of
benign weights to the global model. Based on the existing work,
we design the local weight contribution function to dynamically
adjust the weight of different local weights to the global model
and further reduce the impacts of malicious weights on the global
model.

Finally, we summarize the existing backdoor attack defense
schemes in terms of different scenarios and requirements, as
shown in the following Table I.



III. PRELIMINARIES

A. Local Outliers Factor Anomaly Detection

The local outliers factor (LOF) is an unsupervised anomaly
detection algorithm that achieves anomaly detection by calculat-
ing the local density deviation of a given data point concerning
its neighborhood. The LOF algorithm determines whether each
data point p is an anomaly by comparing the density of that point
with that of its neighbors. A low-density point p is more likely
to be considered an anomaly. The distance between points can
be used to estimate the local density. In general, the farther the
distance between points, the lower the local density, as there
are fewer points nearby. Conversely, when points are close to
each other, the local density is higher because there are more
data points in their vicinity. Therefore, the point density in the
LOF algorithm is calculated by the k-neighborhood of points,
not by comparing all points. It provides anomaly calculation for
sets with drastically different density dispersions. We regard the
similarity between models as a property of the models. However,
the similarity between models can vary due to the training of
local models on different datasets. Therefore, we use the LOF
algorithm to divide the local models into clusters based on the
reachable density distribution of the local models.

B. Interpretability Technique

The interpretability technique is critical to understanding how
Deep Neural Networks (DNN) make decisions and interpreting
the output of a DNN based on its inputs. In the domain of
computer vision, interpretability describes the visualization of a
DNN’s representation. Deconvolution of DNN feature represen-
tations can provide a solution for the interpretation of the DNN
output. A gradient-based saliency map is an interpretability
technique that can calculate the gradient of the output prediction
labels compared to the DNN input for evaluating the significance
of features. With a given image x and an output class y, the
output prediction for the class can be expressed as fy = (w;x).
The output can be estimated as a linear function and denoted as:

fy = (w;x) ≈ wy ∗ x+ by. (1)

Consequently, we can calculate the gradient of the output
category relativized to the input image as:

g =
∂fy(w;x)

∂x

∣∣∣∣
x

. (2)

This formula describes the gradient g of a function f at input x
with respect to parameterw. Here,fy(w;x) represents the output
of the function f , where y typically denotes the category. ∂

∂x
denotes the partial derivative with respect to x, and |x indicates
the value at x. This gradient reveals it is how the single pixel
of the input image has an impact on the output prediction of a
single class.

TABLE II
SYMBOLS AND NOTATIONS USED IN THE SCHEME

Fig. 2. System model.

IV. PROBLEM FORMULATION

A. Notation

To facilitate the description, we first define some symbols and
give the corresponding description in Table II.

B. System Model

As depicted in Fig. 2, there are two basic entities in our system:
� Data owners (DOs): All data owners, also known as

clients, collaboratively train a global model under the
coordination of an aggregation server. For privacy reasons,
each client trains a local model (see 1©) on a local dataset
and then uploads the local weights to the aggregation server
(see 2©). In addition, we believe that the distributions of
data held by DOs can be different.

� Aggregation Server (AS): AS is responsible for receiving
all the local weights and aggregating them to obtain an
optimized global model (see 3©). Then, the AS sends a
global model to DOs (see 4©). It also needs to detect
backdoor attacks launched by potential malicious DOs.

We adopt FedAvg [25], which is the typical FL aggregation
method. Formally, assuming the model weights w ∈ Rd, the



clients attempt to minimize the mean of their loss functions.

min
w∈Rd

F (w) =

N∑
k=1

p(k)F (k)(w), (3)

where F (k) and p(k) are the loss function and aggregation
weights of the i-th client, respectively. The N is the number of
clients. Assuming that the i-th client has nk training data in the
local dataset S(k) =

{
z
(k)
1 , z

(k)
2 , . . . , z

(k)
nk

}
, let the local model

F (k)(·) be defined as a typical loss function under empirical risk
minimization, such as cross-entropy.

F (k)(w) =
1

nk

nk∑
j=1

L
(
z
(k)
j ;w

)
, (4)

where L(·; ·) is defined as the loss function.
Specifically, the FedAvg protocol is implemented as follows:

in round t, the AS sends the current global model wt−1 to
the clients; then, each client initializes the local model w(k)

t =
wt−1 with wt−1 and trains for t iterations; we use stochastic
gradient descent (SGD) to optimize the model, so w

(k)
s ←

w
(k)
s−1 − ηkgk

(
ξ
(k)
s−1;w

(k)
s−1

)
, s = {1, 2, . . . , τk}, where ηk is the

learning rate, ξ(k)s−1 ⊂ S(k) is a random small batch sample with

size bnk, and gk(ξk;w) =
1

bnk

∑
z
(k)
j
∇L(z(k)j ;w

)
denotes the

stochastic gradient. After that, the clients compute the local
weights w

(k)
t − wt−1 and send it back to the AS. Eventually,

the AS aggregates the local weights and aggregates a global
model wt ← wt−1 +

∑N
k=1 pk

(
w

(k)
t − wt−1

)
.

The process iterates until the number of communication
rounds reaches the specified value T or until the performance
requirements are met

C. Attacker Model

The common ways of backdoor attacks include data poi-
soning and model poisoning. In data poisoning, adversary A
can modify some local data by flipping data labels or adding
triggers simultaneously. In model poisoning, it is required that
A has complete control over the client. A not only poisons the
training dataset but also manipulates the local training process by
modifying and scaling the local weights. Scaling up the weights
of the malicious model increases the impact of the attack (e.g.,
model replacement attack [26] or projected gradient descent
(PGD) attack using model replacement [27]. To escape anomaly
detection, A limits the scaling (e.g., training and scaling [26]),
or reduces the deviation of the malicious model from the benign
model.

Attacker Capabilities: Just like in the real world, we have no
prior knowledge about A. We only make some basic require-
ments that the number of compromised clients is less than half
the number of clients in the FL system. In addition, A cannot
control any process executing on the AS, nor can it manipulate
honest clients. Therefore, DO is either honest or malicious in
our system, while AS is honest. Then, we give some formal
definitions related to attackers.

Fig. 3. Our system structure.

Definition 1 (Backdoor Sample): If a malicious DO modifies
the local training sample x to x′ and its corresponding label y to
y′, we call the modified sample a backdoor sample, denoted as:

x′ = Tr (x,mL, p) = x ∗ (1−mL) + p ∗mL, (5)

where mL denotes the shape and position of the trigger, p
indicates the color of the trigger, and x is the matrix of the input
samples.

Definition 2 (Malicious Client): A malicious DO employing
a backdoor sample to train a local model is defined as a malicious
client, also known as a compromised client.

Definition 3 (Adversary): The adversary is the leader who
directs compromised clients to launch backdoor attacks. An
adversary can control multiple compromised clients. In addition,
multiple adversaries can exist in the system. The set of adver-
saries A∗ = {A∗1,A∗2, . . .}. The size of the set A∗ is unknown
to us, but its range is an integer belonging to [0, N/2− 1].

Definition 4 (Malicious Model): A local model trained by a
malicious client using backdoor samples is called a malicious
model, and its weights are denoted as w′.

Noting that the complete set of local clean datasets as D =
{S(1), S(2), . . . , S(N)}, the data samples in Si are expressed as
z
(i)
j = {x(i)

j , y
(i)
j } and the backdoor samples as z′(i)j = {x(i)

j +

δix, y
(i)
j + δiy}. In case,A∗i makes S ′i backdoor samples of size

qi on a local dataset, the set with backdoor datasets is D′ =
{S ′(1), . . . , S ′(R), S(R+1), . . . , S(N)}. We assume that the poi-
soning ratio of the dataset is qi

bni
.

V. OUR PROPOSED SCHEME: BADFL

Overview: BADFL comprises three primary components:
malicious model detection, malicious weight elimination, and a
smoothing classifier, as depicted in Fig. 3. Specifically, the first
two components are involved in the iterative training aggregation
process, while the smoothing classifier is applied during the
inference phase. The primary role of the first component is to
accurately identify malicious models within the system, which
then serves as input for the second component responsible for
eliminating malicious parameters. This process involves local
model clustering and model neuron inspection. The second
component facilitates the contribution of benign parameters
from malicious models to the global model, which includes
evaluating local weight contributions and clipping malicious
model weights. Finally, the last component ensures more robust
classification results through majority voting prediction, acting
as a final defense against potential misclassifications from the



first two components. The overview of BADFL can be summa-
rized as follows:
� Initially, for the exact identification of malicious models

and to minimize processing time, we cluster the local
models and then conduct individual inspections by ran-
domly selecting models from each cluster. The local model
clustering process categorizes the models into multiple
classes based on the density of local model similarity,
instead of just two clusters. During model neuron inspec-
tion, malicious models are identified based on differences
in neuron performance between clean samples with and
without backdoors.

� Subsequently, we ensure that clean weights in malicious
models continue to contribute to the global model by
implementing the malicious weight elimination process.
In the local weight contribution evaluation process, we
evaluate the contribution of malicious model parameters
based on the median of clean model weights, rather than
considering all model weights.

� Finally, to ensure robust classification results during in-
ference, we employ a smoothing classifier that utilizes
majority voting.

Design Challenges: However, we face several challenges in
achieving malicious model detection and malicious parameter
elimination:
� Our first challenge arises from clustering local model based

on model parameter similarity. We observe a progressive
decrease in the similarity of model parameters in IID
scenarios during the training process. Furthermore, the
similarity between local models is even lower in non-IID
settings. Consequently, our primary challenge lies in clus-
tering the local models based on the similarity of model
parameters.

� After completing clustering, we proceed to randomly sam-
ple a subset of local models from each cluster for neuron
inspection to identify anomaly classes. Neurons within
a model respond to the activation state of each pixel
point, showing differences between clean and backdoor
samples. Thus, theoretically, identifying malicious local
models through neuron examination is feasible. However,
as defenders, we lack direct insight into attackers’ strate-
gies. Therefore, the challenge lies in identifying malicious
models by neurons using clean data and local models.

� The malicious parameter elimination process presents an-
other challenge due to the curse of dimensionality problem
with model parameters. Existing methods typically employ
a uniform clipping strategy on individual models, inadver-
tently affecting the benign parameters of malicious models.
Consequently, identifying the malicious parameters within
malicious models and subsequently neutralizing their ef-
fects pose our third challenge.

A. Malicious Model Detection

Current mainstream defenses identify local models as mali-
cious based on low similarity during malicious model detection.

Fig. 4. The detection flow of BADFL. (a) Initially, the LOF algorithm is
employed for anomaly detection, followed by neuron inspection of the local
models with detected anomalies. (b) Subsequently, the non-anomalous models
identified in step (a) are clustered using similarity density. (c) Based on the
clustering results from step (b), a subset of local models from each cluster is
sampled for neuron inspection.

Algorithm 1: Local Model Clustering Algorithm (LMCA).

However, as training progresses, we’ve found that model sim-
ilarity naturally decreases, complicating the differentiation be-
tween models. To tackle this issue, we’ve introduced a two-step
strategy comprising a local model clustering algorithm and a
model neuron inspection algorithm. Diverging from traditional
methods, our approach utilizes clustering not directly to pinpoint
malicious models but to efficiently sample and inspect models
within each cluster, as illustrated in Fig. 4.

1) Local Model Clustering Algorithm: In the Section In-
troduction, we analyzed that there are significant differences
between benign local weights. Hence it is not sufficient to filter
malicious models based on their similarity. Existing clustering-
based defenses identify the suspicious model by clustering
local weights into two clusters, where the small cluster is al-
ways considered malicious and removed. The state-of-the-art
FLAME believes that fixing the number of clusters increases
the risk of malicious models entering within benign model
clusters. Therefore, they use a dynamic clustering algorithm
that sets the minimum cluster size to N

2 + 1 and obtains only
one cluster at the end. However, the similarity variations make
this requirement impossible to guarantee. Hence, FLAME also
unsuccessfully separates the benign from the malicious. BADFL
first finds k1 local local weights with significant differences by
LOF and then clusters the reachable density of local models.
Here we use K-means for clustering and set the number of k
to N−k1

2 + 1. Then one from each cluster is randomly selected.
Finally, N+k1

2 + 1 local models will be checked for neurons.
BADFL guarantees that most benign models are not deleted by
mistake. The specific algorithm is shown in Algorithm 1.

The AS first selects the local weights that are not similar to
others using the LOF algorithm (line 1). Then, the local weights



Fig. 5. Interpretable heatmaps of different images for different models.

are divided into multiple classes according to the local reach-
able density (line 2). Finally, some local weights are randomly
selected from each cluster for neuron inspection (lines 3 to 5).
After completing the local model clustering, we determine which
local models require examination in the subsequent step.

2) Model Neuron Inspection Algorithm: RLR [9] identifies
malicious parameters by recognizing differences in optimization
goal directions between attackers and honest clients on specific
dimensions. However, when dealing with non-IID data distri-
butions across clients, their optimization goal directions may
also differ, rendering the method less effective in accurately
identifying malicious models. Interpretability techniques play
a crucial role in understanding how models make decisions.
By gaining insights into the decision-making process of a local
model, we can detect if the model is under attack. If the model
emphasizes irrelevant features of input images for classification,
it is likely to be compromised by a backdoor attack. To achieve
this, we generate interpretable heatmaps for all categories using a
set of clean images and then identify outliers in these interpreted
maps.

Without any backdoor samples, it is difficult to generate an
interpretable heatmap with only clean data. Therefore, during
the generation of the interpretable heatmap, we need to modify
the generation algorithm for our task [28]. First, given a deep
neural network, we use guided back-propagation (GBP) instead
of traditional back-propagation (BP). The difference between the
two methods is that GBP can back-propagate only the positive
values of the CNN derivatives through ReLU. Therefore, the
noise component is smaller than that of normal BP. Then, we re-
place the softmax layer with a linear layer, which can maximize
output by minimizing the other outputs. However, the particular
output in the softmax layer depends on the other output. To find
the trigger locations hidden in the weights of a neural network
of clean images, we should pay more attention to the regions
that contribute more positively to the output.

We observe from each label’s saliency mapping that the attack
target’s heatmap has a low internal correlation and is most
stable over different images as shown in Fig. 5. In Fig. 5, we
analyze two clean samples and generate heat maps highlighting
the attacker-specified targets on both the clean model and the
backdoor model. Notably, the heat map of the backdoor model
indicates a strong focus on the upper-left region of the input
image, precisely where we embed the trigger. Additionally, the
backdoor model allocates considerably less attention to other
regions of the input image compared to the clean model. There-
fore, we design features from the interpretation of the heatmap.

The interpretable heatmap for the normal model highlights
all pixels in the input image relevant to the output prediction
of the DNN. In contrast, the interpretatable heatmap highlights

Algorithm 2: Model Neuron Inspection Algorithm (MNIA).

more the location of the triggers, which indicates that the mali-
cious model has less correlation with the interpretable heatmap.
Therefore, we design the correlation function as follows:

fcorrelation(M) =
h∑

i=1

w∑
j=1

|Mi,j |, (6)

where |Mi,j | is the output of saliency map.
For a backdoor model, we observe it is stable on different

images for the output heatmap corresponding to the attack target
label. Thus, we put forward the following property to measure
the stability of the output explanation.

fstability (M1,M2, . . . ,Mk) = ‖H (M1)⊕ · · · ⊕H (Mk)‖1,
(7)

where ⊕ refers to the XOR computation of two Boolean ma-
trices, H indicates a hash function that encodes a continuous
matrix into a binary. In this paper, we adopt the difference
hashing algorithm. The input sampleM1,M2, . . . ,Mk are clean
samples.

The two features described above can successfully detect the
attack target in the majority of cases, respectively. However,
there is occasional misreporting. We associate these two features
with weighting coefficients as a balance between the different
components to solve this problem.

f = λcofcorrelation + λstfstability. (8)

With the features extracted from the interpretable heatmap,
we can identify specific mappings that show small correlations
and high stability outliers. Thus, we treat each local model’s
correlation, stability, and combined features as characteristics
and perform a secondary clustering to identify the malicious
model. The specific algorithm is described in Algorithm 2.

The first line of Algorithm 2 calls Algorithm 1 to get the local
weights that need to be checked, and the second line gets the local
model based on the local weights. Then, the algorithm’s line 3 to
10 performs a neuron inspection on the local model. In lines 4 to
6, the AS calculates the features extracted from interpretable



heatmap correlation. Finally, line 7 performs a clustering to
identify malicious models.

B. Malicious Local Weight Elimination

Existing defenses typically handle malicious models by either
directly removing them upon detection or applying uniformly
reduced aggregation weights to the entire model. However, we
believe that benign parameters within malicious models can
actually enhance global model performance. As a result, we
focus on reducing the influence of malicious model parameters
rather than entirely eliminating them. Our approach involves
designing a model parameter contribution function that uses
benign model parameters as a criterion. We then use this func-
tion value to clip the malicious model parameters, specifically
targeting high-impact parameters within the malicious model
while preserving the beneficial benign parameters.

1) Malicious Local Weight Clipping Algorithm: Malicious
model also contains information trained on clean data because
the attacker needs to ensure that the main task can be achieved.
We design the local weight contribution function to evaluate
the importance of local weight. The local weight contribution is
defined as:

Contri(w
(i)
t,j ) =

{
median(wt,j)

w
(i)
t,j

, if w
(i)
t,j ≥ median(wt,j)

1 , else
,

(9)
where median(w(t,j)) denotes the median of the j-th weight
of the other benign models in round t. We compare the weight
in the malicious model with the median of the local weights in
the benign models. The local weight that exceeds the median
impacts the global model significantly. Therefore, the AS clips
such weights according to their contributions, Clipρt(w

(i)
t )←

w
(i)
t ·min(1, ρt), where ρt = Contri(w

(i)
t ). Sow(i)

t is bounded
by ρt, and added Gaussian noise for perturbation, eventually
aggregating with other local weights. The clipping function can
be defined as follows:

Clipρt

(
w

(i)
t

)
=

{
w

(i)
t ·min(1, ρt), if w

(i)
t is malicious

w
(i)
t , else

.

(10)
The malicious local weight clipping algorithm is shown in

Algorithm 3.
In line 2 of Algorithm 3, the AS sends the global model to

DOs. EachDO trains local models locally in lines 3 to 6. In line
7, the AS detects the malicious local weight. And the adaptive
dynamic local weights clipping step is shown in line 8. The AS
aggregates the local weights in line 9. Finally, noise is applied
to the global model in lines 10 to 13.

C. Smoothing Classifier

We discuss the multi-classification model and describe a
classifierh : (X;W )→ Y ,Y = {y1, y2, . . . , yC}, whereC de-
notes the number of classes. We apply the stochastic smoothing
method [29] to parameter smoothing as a means of constructing
a new smoothed classifier hs on an optional base classifier h.

Algorithm 3: Malicious Local Weight Clipping Algorithm.

The smoothing classifier can be verified for robustness. Con-
sidering the model h parameters w, on querying a test sample
xtest. We first perform a majority vote for the prediction in the
probability distribution over the random model parameters with
the base classifier h. Then, the smoothing classifier comes back
with the most probable labels (majority voting winners) in all
categories [30]. Formally,

hs(xtest;w) = argmax
y∈Y

Hy
s (xtest;w),

Hy
s (xtest;w) = Pw∼μ(w)[h(xtest;w) = y]. (11)

To be consistent with the Gaussian noise (perturbation) within
the training phase, we continue applying the Gaussian smooth-
ing metric μ(w) = N(w, σ2

t I) during the test time. For the
neural networks, it is difficult to get the exact value of the
probability py = Pw∼μ(w)[h(xtest;w) = y] of the label y in
practice. Therefore, we employ Monte Carlo estimation [21],
[29] to obtain a close approximation p̂y . In round t = T , we
acquire M sets of noise model parameters by adding M times
Gaussian noise to the given global modelwT . We classify the test
sample with a set of model parbameters {w̃(1)

T , w̃
(2)
T , . . . , w̃

(M)
T }

which returns a class count vector. As a result, we select the
most likely class ŷA and the second most likely class ŷB for
the corresponding probability p̂A and p̂B . Considering the error
tolerance α, we perform the lower bound pA of HyA

s (xtest;w)
and the upper bound pB of HyB

s (xtest;w) according to pA =

P̂A −
√

log(1/α)
2 N , pB = P̂B +

√
log(1/α)

2 N , using the Hoeffding
inequality [31]. If pA > pB , then the certified radius CR is



obtained according to pA and pB . The calculation of CR is
presented later in the security analysis of BADFL together.

VI. THEORETICAL ANALYSIS OF BADFL

In this section, drawing inspiration from [32] and [33], we
begin by analyzing the security aspects during the training phase,
followed by an examination of security concerns during the
inference phase. Finally, we assess the convergence properties
of BADFL. To present our analysis, we outline these common
assumptions in Appendix, available online.

A. Training Phase Security

Theorem 1: When ηi ≤ 1
β and Assumptions 1 and 2 satisfied,

assume yA ∈ Y, pA, pB ∈ [0, 1] satisfies HyA

S (xtest;A(D
′)) ≥

pA ≥ pB ≥ maxy �=yA
Hy

S(xtest;A(D
′)), if

ε

Π
≥

∏
t∈Tadv

2RtΣ

σ2
t

. (12)

where Π =
∏

t∈T \Tadv
2Φ( ρt

σt
)− 1, Σ =

∑Rt

i=1(αipiηi
qi
bni
‖δi‖

τi)
2

As well, we can restate Theorem 1 as the following corollary.
Corollary 1: When ηi ≤ 1

β and Assumptions 1 and 2 sat-
isfied, assume yA ∈ Y , pA, pB ∈ [0, 1] satisfies HyA

S (xtest;
A(D′)) ≥ pA ≥ pB ≥ maxy �=yA

Hy
S(xtest;A(D

′)) ‖δ‖=‖δi‖
and hs(xtest;A(D

′)) = hs(xtest;A(D)) = yA, if ‖δ‖ < CR,

CR =
2|Tadv |

√√√√√√− log

(
1−

(√
pA −

√
pB

)2
)

∏
t∈Tadv

2RtΣ
σ2
t

Π
. (13)

Theorem 2: When ηi ≤ 1
β , u(w) = N(w, σ2

T I) and Assump-
tions 1 and 2 satisfied, there is a bounded KL divergence
between u(A(D)) and u(A(D′))

DKL (u(A(D)) ‖u(A(D′)) ) ≤
∏

t∈Tadv

2RtΣ

σ2
t

Π. (14)

The detailed proof is given in the Appendix A, available
online.

B. Inference Phase Security

By Theorem 2, we associate the model closeness with the
prediction’s consistency. The smoothing classifier h is guaran-
teed to be bounded at u(w′) concerning the KL divergence,
DKL(u(w), u(w

′)) ≤ ε.
Theorem 3: Assume yA ∈ Y , pA, pB ∈ [0, 1] satisfy

HyA

S (xtest;u(w
′)) ≥ pA ≥ pB ≥ maxy �=yA

Hy
S(xtest;u(w

′))
‖δ‖ = ‖δi‖ and hs(xtest;u(w

′)) = hs(xtest;u(w)) = yA for
all w such that

DKL (u(w), u(w′)) ≤ ε, (15)

where ε = − log(1− (
√
pA −

√
pB)

2
).

The proofs are given in the Appendix B, available online.
Finally, combining Theorems 2 and 3 yields 1.

C. Convergence Analysis

In this section, we demonstrate that BADFL converges under
the same assumptions as other methods [25], [34] when there
are no malicious client attacks in the FL system.

In our defense strategy, we initially perform clustering and
neuron checking on the model. Subsequently, we apply clip-
ping and perturbation to the updates based on the parameters’
contributions. When there are no malicious client attacks on the
system, the convergence bound of BADFL remains consistent
with vanilla FedAvg, provided the detection process does not
misclassify the benign model as malicious. However, if there is a
misclassification during detection, we resort to clipping the local
model and adding perturbations, which alters the convergence
bounds. This clipping process can be seen as a modification of
the aggregation weights of the local update. Let’s consider a
scenario where all clients participate in FL. We assume that the
detection algorithm suffers from misclassification, and based
on Assumptions 3–6, we can derive the following convergence
guarantees for our defense on FedAvg.

Theorem 4 (Convergence Guarantee): Assuming A.3 to A.6
hold and �, μ, ζk, G be defined therein. Choose ι = �

μ , ς =

max{8ι, τ}Then we obtain the following bound on BADFL:

E [L(wT )]− L∗ ≤ 2ι

ς + T

(
B

μ
+ 2�‖w0 −w∗‖2

)
(16)

where

B =
N∑

k=1

p2kρ
2
kζ

2
k + 6�Γ + 8(τ − 1)2 G2. (17)

VII. EXPERIMENT ANALYSIS

A. Experiment Setup

The general setup of our experiments is as follows: In the
absence of special instructions, we simulate a 100-rounds FL
process including 100 clients. Before sending local weights,
the clients perform local training on E rounds with the local
dataset’s size ni. To highlight the advantages of BADFL, ex-
cept for four recent robust schemes, i.e., CRFL [18], RLR [9]
and FLAME [15], FLTrust [16], we establish a control group,
unmodified FedAvg, as a Baseline which takes average as the
aggregation rule. Then, we evaluate BADFL against the state-
of-the-art backdoor attacks called constrain-and-scale [26],
DBA [7], and Edge-Case [27].

Dataset: Our experiments are performed on 3 prominent
image classification datasets, namely MNIST, EMNIST, and
CIFAR-10. In practical applications, our data often deviate from
the assumption of being independent and identically distributed
(i.i.d.). To address this, we adopt a methodology consistent with
Baghdashayan et al. which models the non-i.i.d. distribution by
employing the Dirichlet distribution withα as a parameter of 0.5.
The poison ratio signifies the percentage of poison data added
to every training batch, and by default, it is set at 50%, meaning
that half of each batch consists of poison data when no other
value is specified.



Model Architectures: We find that different model structures
in the experiment affect the clustering results. However, mali-
cious models are identified by neuron inspection, so different
models do not affect the detection results. Then, for MNIST and
EMNIST, we employed an image classification task utilizing a
federated setup. The task consists of a 5-layer Convolutional
Neural Network (CNN) with the following structure: two con-
volutional layers, one max-pooling layer, and two fully con-
nected layers. On the other hand, for CIFAR-10, we employed
the ResNet18 model as the federated task. ResNet, short for
Residual Network, is a deep neural network architecture known
for its ability to handle complex tasks, particularly in image clas-
sification. This setup allows us to perform image classification
tasks effectively on MNIST, EMNIST, and CIFAR-10 datasets
using different models, depending on the dataset, to achieve the
best results.

Performance Metrics: We employ four evaluation indicators
to demonstrate the effectiveness of the proposed scheme from
various perspectives. These indicators include global model
accuracy (ACC), attack success rate (ASR), true positive rate
(TPR), and true negative rate (TNR), and they are defined as
follows:
� Accuracy (ACC): To evaluate the impact of defenses on the

performance of the global model, we use the accuracy of
the global model on the benign test set. We set a control
group of Baseline, an unmodified FedAvg. Thus, as the
ACC of the defense scheme gets closer to Baseline, it
indicates that the defense has less impact on the global
model performance.

� Attack Success Rate (ASR): To evaluate the defensive
performance, we also measure the accuracy of the global
model on the test data using backdoor triggers, i.e., attack
success rate (ASR). The lower the ASR, the better the
defense performance of the global model.

� True Positive Rate (TPR): TPR indicates the ability of the
defense system to identify malicious models, i.e., the rate
of the number of models correctly classified as malicious
(True Positive - TP) to the number of models classified as
malicious: TPR = TP

TP+FP , where FP is a false positive
indicating the number of models misclassified as mali-
cious.

� True Negative Rate (TNR): TNR calculates the rate of the
number of models correctly classified as benign (true nega-
tive - TN) to those classified as benign: TNR = TN

TN+FN ,
where FN is a false negative indicating the number of
models misclassified as benign.

B. Heatmap

To demonstrate the distinctions in explanation heatmaps be-
tween the backdoored model and the clean model on clean
samples, we employ the BadNets attack on ResNet18 with a
10% poisoning rate and a target label of class 0, training it for
50 epochs to obtain a backdoored model. Due to spatial limita-
tions, we randomly selected two clean samples and generated
explanation heatmaps for both the backdoored and clean models,
illustrated in Fig. 6. Upon analyzing the saliency heatmaps of

Fig. 6. Different images on different models with different labels heatmaps.

TABLE III
COMPARISON WITH EXISTING WORKS IN ACC AND ASR

the backdoored model, we observed notable consistency in the
attention regions for the target label across diverse image sets. In
essence, the attention regions for label 0 remain stable across dif-
ferent images. Moreover, the internal feature correlations within
the heatmap for label 0 are relatively weak. Conversely, upon
inspecting the saliency heatmaps of the clean model, we note
significant fluctuations in the attention regions across varying
images, alongside a pronounced feature correlation within indi-
vidual heatmaps. Hence, it is reasonable to detect backdoored
models using explanation heatmaps on clean samples.

C. Compared With Existing Works

Comparison With Existing Works in ACC and ASR: Table III
shows a comparison of the performance of existing defenses
with our scheme on different datasets. FLAME suffers from
the problem of identifying malicious models as benign models,
resulting in the ASRs above 10%. CRFL can achieve a better
defense using a uniform clipping and perturbation strategy, and
its ASR can stay below 7%. However, clipping and perturbation
impose a large impact on the ACC, making the ACC of CRFL
on the EMNIST dataset only 56.44%. Compared with CRFL,
our method outperforms its ACC by 23.14%. RLR identifies
malicious weights by checking each local weight, which is a
simple approach and does not affect the ACC. However, RLR
fails to defend effectively, whose attack success rate is as high
as 43.01% in the worst case. Our proposed scheme provides an
effective defense against backdoor attacks by performing neuron
inspection on individual models to identify malicious models.
In addition, we reserve the benign weights in the malicious
model so that our ACC is very close to the Baseline. Our



Fig. 7. Comparison with existing works in ACC and ASR.

method trades computational costs for better model accuracy
and defense performance. The aggregation server has significant
computational power, so this computational cost is acceptable.

Robustness of BADFL With Different Numbers of Malicious
Clients: To highlight the robustness of BADFL, we investigate
how different numbers of malicious clients affect defense perfor-
mance. As shown in Fig. 7, our method is relatively stable com-
pared to the others with increased malicious clients. Fig. 7(b)
and (d) show that ours do not increase substantially in ASR. The
addition of small perturbations results in the weak defense of
FLAME. When the number of malicious clients does not exceed
the defense threshold of CRFL, the increased malicious client
number does not significantly impact CRFL. However, the ACC
of CRFL is the lowest when the number of malicious clients
exceeds 5 in Fig. 7(a) and (c).

Malicious Local Weight Detection: TPR and TNR evaluate
the performance of malicious model detection. Since FLAME
is also involved in malicious model detection, we only compare
it with FLAME. FLAME is relatively close to ours because we
use clustering in the malicious model detection phase. However,
unlike FLAME, our clustering is not designed to filter malicious
models. Instead, we employ clustering to classify local models
into N−k1

2 + 1 clusters and select a local model from each cluster
for neuron inspection. We add the clustering process because
neuron inspection requires more time than clustering. The com-
parison results are shown in Tables IV and V. FLAME not only
misidentifies malicious models but also identifies benign models
as malicious ones. The TNR of ours is basically above 90%.
The most malicious models are identified for different poisoning
rates and the number of malicious models.

D. Ablation Experiments

Effectiveness of Different Components: Our scheme com-
prises three main components: malicious model detection

TABLE IV
COMPARISON OF DETECTION PERFORMANCE WITH DIFFERENT

POISONING RATES

TABLE V
COMPARISON OF DETECTION PERFORMANCE WITH DIFFERENT

NUMBERS OF ATTACKERS

Fig. 8. The effectiveness of different components.

(MMD), malicious parameter elimination (MWE), and smooth-
ing classifier (SC). Among them, detection is a crucial step, as
subsequent clipping relies on its results. To assess the effective-
ness of other components in the proposed scheme, we compare
the model’s performance after removing MWE and SC. This
procedure is illustrated in Fig. 8. We conducted experiments in
both non-IID and IID scenarios. From Fig. 8, it is evident that
removing MWE leads to a degradation in global model accuracy
while removing SC results in a slight decline in both defense
performance and global model accuracy.

Effectiveness of Malicious Model Detection: Fig. 9 demon-
strates the effectiveness of the malicious model detection com-
ponent in BADFL, using HDBSCAN and K-means as compara-
tive methods for detecting malicious models. To ensure fairness
in the evaluation process, we replace our proposed detection



Fig. 9. The effectiveness of malicious model detection.

Fig. 10. The effectiveness of malicious weight elimination.

method with HDBSCAN and K-means under IID and non-IID
settings for comparison, denoted as HDBSCAN_BADFL and
K-means_BADFL, respectively. As depicted in Fig. 9, there is
a significant increase in ASR, while ACC experiences a slight
decrease after substituting the detection algorithms. This can
be attributed to the subsequent step of eliminating malicious
parameters, which involves computing the clipping bounds of
the malicious model parameters based on those of the benign
model. Hence, our proposed detection method plays a crucial
role in defending against backdoor attacks.

Effectiveness of Malicious Weight Elimination: Fig. 10 il-
lustrates the effectiveness of malicious weight elimination in
BADFL. We compare our approach with the clipping methods
of FLAME and CRFL. CRFL utilizes the L2 norm of the global
model for clipping, denoted as GM, while FLAME selects the
median of the L2 norm of the local model, denoted as LM. In
contrast, BADFL clips based on the median of the L2 norm
of the layer parameter, providing a more fine-grained approach
than FLAME.

During our experiments, we substitute our clipping methods
with GM and LM for a comparison. We conduct experiments
in both non-IID and IID scenarios. As depicted in Fig. 10, in
the non-IID scenario, our approach exhibits advantages over
existing methods. Conversely, in the IID scenario, BADFL and
LM-BADFL yield similar effects. This is because in the IID
scenario, the data between clients are similar, and removing the
benign parameters of the malicious model does not significantly
impact the global model. In contrast, in the non-IID scenario, the
malicious client’s local clean data and the honest client’s data
distribution differ substantially, containing distinct data features.
Completely removing the malicious model would result in the
loss of the clean data features from the malicious client’s local

Fig. 11. The effect of different numbers of malicious clients.

data. Therefore, retaining the contribution of benign parameters
to the global model can enhance the performance of the global
model.

E. The Influence of Hyperparameters in BADFL

Number of Malicious Clients: We analyze the impact of
different numbers of malicious clients on defense performance.
We aggregate 20 clients and use different colors to indicate
the impact of different numbers of attackers. Interestingly, even
though we accurately identify the malicious local weights, the
global model accuracy is slightly affected, as shown in Fig. 11.
We believe it is due to the fact that the increasing number of
attackers makes the clean data decrease, resulting in a slight
decrease in accuracy.

Adding Noise: We design different noise levels to choose ap-
propriate noise parameters. Fig. 12 shows the effects of different
noise levels on two datasets. We use lines of different colors to
represent different noise levels. Under the IID, the noise range is
[0.001, 0.05]. However, we find that using the same noise level
applied to non-IID makes the model divergent. Therefore, under
the non-IID, we set the noise level to [0.00001, 0.01]. Results
confirm that adding noise affects the ASR and dramatically
impacts the global model. From Fig. 12(a) and (b), we can see
that when the noise level is set to 0.05, the ACC is only about
10%, and the ASR is close to 0. However, when the range is in
[0.001, 0.025], the ACC is above 90%, and the ASR is also lower
than 1.5%. Fig. 12(c) and (d) show that the noise increases to
0.01, the ACC is less than 60%, while the ASR is close to 2%.

Number of Clients in the Aggregation: We set the parameter
for the number of clients in the aggregation as {20, 25, 30,
35, 40, 45, 50}. From Fig. 13(a) and (b), we can see that this
parameter has a minimal impact on our method. After 100 rounds
of training, the ACC can reach more than 95%. At the same
time, the ASR is also as low as about 0.5%. Fig. 13(c) and
(d) show the defense effect on the non-IID. The experimental
results on the similar distributions dataset are similar to the



Fig. 12. The effect of adding noise.

Fig. 13. The effect of the number of clients in the aggregation.

different distributions dataset. Therefore, our defense scheme
is not sensitive to the clients’ numbers in the aggregation.

Round of Poisoning: The effect of the rounds of poisoning on
the global model should be different. To visualize this difference,
we do not defend in the poisoning round but defend in the next
round of poisoning. We set up attacks on different rounds. The
number of training rounds under the IID is set to 100, while
the rounds of poisoning are set to {10, 20, 30, 40, 50, 60, 70,
80}. The number of training rounds under the non-IID is set to
150, and the rounds of poisoning are set to {30, 50, 70, 90, 110,
130}. Fig. 14 verifies our conjectures. First, poisoning on the
different rounds has different effects. In Fig. 14(a), we can see

Fig. 14. The effect of the round of poisoning.

Fig. 15. The effect of the poisoning rate.

that a backdoor attack at the initial stage of training has little
impact on ACC. However, it reduces to less than 70% when
the attacker launches a backdoor attack in the 40th round. If
the attack is launched after the 60th round, the ACC is only
close to 10%. However, our defense can improve the ACC to
the same ACC as no backdoor attack after no more than five
rounds. Interestingly, poisoning different distributions dataset
has little effect on ACC. If local data distributions are diverse,
the backdoor training will be discontinuous. Therefore, the effect
of the backdoor is reduced.

Poisoning Rate: In addition, we also verify the effect of
poisoning rates on our defense shown in Fig. 15. The poisoning



rates set for IID are {15%, 20%, 25%, 30%, 35%, 40%, 45%,
50% }, the poisoning rate set for non-IID are {2.5%, 5%, 10%,
20%, 30%, 40%, 50%, 60%}. Fig. 15(a) and (d) show that the
poisoning rate has little effect on two datasets. It only affects
the ACC and ASR in the current poisoning round. After the
defense, the ACC and ASR quickly recover. Thus, our defense
is not sensitive to the poisoning rate.

VIII. CONCLUSION

In this paper, we propose BADFL to defend against backdoor
attacks in FL. First, we propose a malicious model detection
method based on clustering and interpretability, which takes
into account that the similarity of local weights varies with the
training rounds. Then, considering that benign local weights
in the malicious model also have contributions to the global
model, we propose a malicious local weight elimination method
based on weight contributions. Finally, we analyze the security
of the proposed method from the model closeness and then verify
the effectiveness of the proposed method through experiments.
In the future, we will also consider detecting encrypted local
weights to identify malicious ones. A trustworthy FL must con-
sider ensuring that the user’s data privacy remains private while
guaranteeing the robustness of the model against adversarial
operations.
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