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Outsourcing data to the cloud has become prevalent, so Searchable Symmetric Encryption (SSE), one of the
methods for protecting outsourced data, has arisen widespread interest. Moreover, many novel technologies
and theories have emerged, especially for the attacks on SSE and privacy-preserving. But most surveys related
to SSE concentrate on one aspect (e.g., single keyword search, fuzzy keyword search) or lack in-depth analysis.
Therefore, we revisit the existing work and conduct a comprehensive analysis and summary. We provide an
overview of state-of-the-art in SSE and focus on the privacy it can protect. Generally, (1) we study the work of
the past few decades and classify SSE based on query expressiveness. Meanwhile, we summarize the existing
schemes and analyze their performance on efficiency, storage space, index structures, and so on.; (2) we
complement the gap in the privacy of SSE and introduce in detail the attacks and the related defenses; (3) we
discuss the open issues and challenges in existing schemes and future research directions. We desire that
our work will help novices to grasp and understand SSE comprehensively. We expect it can inspire the SSE
community to discover more crucial leakages and design more efficient and secure constructions.
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1 INTRODUCTION

The pay-as-you-demand and powerful capabilities of cloud computing prompt individuals and
organizations to outsource data storage and computing tasks to the cloud server [52, 92, 182]. This
has been widely accepted and applied due to the drawbacks of local storage (such as geographical
restrictions, expensive labor costs, machine maintenance costs, etc.) and the advantages of cloud
computing (such as flexibility, unlimited resources, affordability, etc.). However, storing data in
the cloud results in a loss of user control over the data, making the privacy of outsourced data
a vital concern. While it is possible to encrypt data before being outsourced using traditional
encryption algorithms, this makes the usability of the data impossible or complicated. The trivial
idea is to authorize the secret key to the cloud server to decrypt all the data before executing the
search, which exposes the privacy of the data. Alternatively, the cloud server returns all data. The
user decrypts the data prior to searching for documents of interest, which suffers from expensive
communication and computation overheads. As a consequence, an approach that can perform a
search on encrypted data with privacy-preserving is desired.

Searchable Encryption (SE) is a mechanism that allows users to search over encrypted
data while preserving data privacy. It mainly consists of Asymmetric Searchable Encryption

(ASE) [8] and Searchable Symmetric Encryption (SSE) [129]. This article focuses on discussing
SSE, and the system model (static and dynamic) is shown in Figure 1. The data owner has a
collection of documents and encrypts documents using a symmetric encryption algorithm before
outsourcing them to the cloud server. Meanwhile, the data owner generates secure indexes based
on the predefined keyword set, then outsources them with encrypted documents to the cloud
server. To perform a search on encrypted data, the data owner needs to share secret keys with
the data user over a secure channel. The data user then generates a query trapdoor that should
not reveal the queried information and sends it to the cloud server. Using the trapdoor, the cloud
server performs the search with secure indexes and returns matching documents to the data
user.

Since the seminal article was proposed by [129], SSE has attracted extensive attention
and research. Several search functionalities (such as multi-keyword search [5, 55, 152], Boolean
search [1, 19, 110, 154], ranked search [16, 139, 144], etc.) have been proposed to enrich the SSE, and
the security of the SSE (such as forward privacy [12, 13, 22, 155], backward privacy [13, 123, 135],
access pattern [27, 34, 80], etc.) has been studied. While there has been a lot of work [11, 124]
surveying SSE as comprehensively as possible, these efforts have failed to cover the progress
SSE has made in recent years, especially regarding privacy-preserving and leakage-abuse attacks.
Bösch et al. [11] overviewed techniques of SSE and ASE for the nonspecialist, but the survey failed
to provide in-depth analysis in terms of efficiency, functionality, security, and so on. Furthermore,
since the survey was published very early, it does not include the latest attacks and defenses such
as access patterns and search patterns. Poh et al. [124] studied SSE from an in-depth perspective
from the aspects of existing schemes’ underlying designs and structures and identified open issues
and future directions. However, the survey leaves out some important search functionalities (such
as substring search, semantic search, etc.) and rarely analyzes the current threats SSE faces and
corresponding defenses. Motivated by this, we attempt to complement the gap by providing an
in-depth and comprehensive survey of SSE. Specifically, we systematically review current work
on search functionalities and privacy-preserving. The specific contributions of this article are
as follows:

— We study the work of the past few decades and classify SSE based on query expressiveness.
At the same time, we summarize the methods used in the literature and analyze the perfor-
mance on efficiency, storage space, index structures, and so on.

 
. 
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Fig. 1. System model.

— We complement the gap in the privacy of SSE, which has received great concerns in recent
years, and introduce in detail the attacks and the related defenses.

— We discuss the open issues and challenges in existing SSE and future research directions.

The organization of this article is as follows: In Section 2, we present a general model to
describe the operations of SSE and provide partial commonly used techniques. Then the search
functionalities are described in detail by taxonomy in Section 3. Before discussing attacks and
defenses, we introduce the formal definitions of the leakages that we study in Section 4, and then
we present the attacks that exploit these leakages and the corresponding defenses. We discuss
the open issues and future research directions in Section 5. Finally, we conclude the article in
Section 6.

2 GENERAL FRAMEWORK AND PRELIMINARIES

2.1 Searchable Symmetric Encryption

We abstract a generic model to describe the operations of SSE over secure outsourced database
systems and capture the potential leakage information. While the model ignores the concrete
functionalities (e.g., multi-keyword query, range query, verification), it is general enough to help
us grasp SSE.

Without loss of generality, we assume DB = {(indi ,wi )d
i=1} is the database that the user wants

to outsource, where indi is the identifier of the ith document and wi is the set of keywords
contained in the corresponding document. A generic model of SSE consists of three protocols
Π = (Setup, Search,Update) between a userU (the data owner can also be considered as a user)
and a server S. Figure 1 shows the models of two types of systems, static SSE and dynamic SSE,
where the static SSE does not include the Update protocol, i.e., it does not support the operation
of updating data.

— Setup(1λ ,DB) → (K ,σ ;I, EDB). U takes a security parameter λ and a database DB as
input, and S has no input. The protocol outputs (K ,σ ;I, EDB), where K and σ are the
secret key and the client’s state, stored in theU , and I and EDB are the secure indexes and
the encrypted database, stored in the S.

— Search(K ,q,σ ;I, EDB) → R.U takes (K ,q,σ ) as input, and S takes I and EDB generated
in Setup protocol as input. The protocol searches over secure indexes I and picks up the
satisfied results R from EDB. Note that the query q : X → {0, 1} is a predicate, so the results
can be denoted by R = {indi |q(wi ) = 1}.

— Update(K ,σ , in, op;I, EDB) → (I′, EDB′). U takes (K ,σ , in, op) as input, where in is an
updated document and op (i.e., add or delete) is the corresponding operation, and S takes
the secure indexes I and the encrypted database EDB as input. The output for S is the
updated secure indexes I′ and the updated encrypted database EDB′; U has no formal
output.



2.2 Security Definition

Intuitively, secure searchable symmetric encryption should not reveal any information about both
the queried keywords and document content. However, achieving this level of security is difficult,
and most existing schemes [23, 53] reveal the search and access patterns unless oblivious RAMs [61,
99, 160] techniques are used. Therefore, a more relaxed definition of SSE security is necessary.
Curtmola et al. [31] first formally defined the security of SSE that reveals nothing other than
the search and access patterns. They also characterized two adversary models, non-adaptive and
adaptive, with the former indicating that the generated queries do not depend on previous search
results, while the latter is the opposite.

Following Curtmola et al.’s work, Kamara et al. [69] extended the SSE security definition to a
dynamic setting with a set of leakage functions. In the following, we refer to Kamara et al.’s work
to provide a formal definition of security for dynamic SSE (DSSE). The primary difference from
static SSE is that there is no Update protocol.

We present the following probabilistic experiments with a set of leakage functions L =

{LSetup,LSearch,LUpdate}, where A is a stateful adversary and S is a stateful simulator.

— RealΠ
A (λ): A outputs DB and receives (I, EDB) such that Setup(1λ ,DB) → (K ,σ ;I, EDB)

from the challenger. Then the adversary adaptively generates a series of queries (qi , ini , opi ).
The challenger performs Search(K ,qi ,σ ;I, EDB) → R if qi is a search query or performs
Update(K ,σ , in, op;I, EDB) → (I′, EDB′) if qi is an update query. Finally, A outputs a bit
b ∈ {0, 1}.

— IdealΠ
A,S (λ):A outputs DB. Given LSetup (DB), the simulator S runs Setup(LSetup (DB)) →

(K ,σ ;I, EDB) and sends (I, EDB) to A. Then the adversary adaptively generates a
series of queries (qi , ini , opi ). The simulator performs Search(LSearch (qi )) if qi is a search
query or performs Update(LUpdate (qi )) if qi is an update query. Finally, A outputs a bit
b ∈ {0, 1}.

We say that Π is (LSetup,LSearch,LUpdate)-secure against adaptive dynamic chosen-keyword at-
tacks if for all probabilistic polynomial-time (PPT) adversariesA, there exists a PPT simulator
S such that

|Pr[RealΠ
A (λ) = 1] − Pr[IdealΠ

A,S (λ) = 1]| � negl(λ), (1)

where negl(λ) is negligible in security parameter λ.

2.3 Preliminaries

In this subsection, we overview some commonly used techniques.

2.3.1 Pseudorandom Function. Let F : K ×Y → Z be a function that mappedY withK toZ.
If it can be computed in polynomial time and for all PPT adversaries A satisfy the equation

|Pr[AF (K, ·) (1λ ) = 1] − Pr[Af ( ·) (1λ ) = 1]| � negl(λ), (2)

where negl(λ) is negligible in security parameter λ, K
$←− K and f is a random function fromY to

Z, then it is called Pseudorandom Function (PRF).

2.3.2 Constrained Pseudorandom Function. A constrained pseudorandom function [9, 73] is a
pseudorandom function that works in a specific range, whose constrained key evaluates the ele-

ments out of the range is impossible. A PRF F : K × Y → Z uses the master key K
$←− K to

generate a constrained key Kc acting on a subset C ⊆ Y , which allows evaluation of F for each
x ∈ C. The constrained pseudorandom function consists of two algorithms as follows:
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— F.Constrain (K ,C) takes the master key K of F and a subset C as input, then outputs a
constrained key Kc acting on the C.

— F.Eval (Kc ,x ) takes the constrained key Kc and x ∈ C as input, and outputs z ∈ Z. Other-
wise, outputs ⊥, if x � C, where ⊥� Z. This algorithm can be formulated as

F .Eval(Kc ,x ) =
⎧⎪⎨
⎪
⎩

F (K ,x ), if x ∈ C;

⊥, otherwise.
(3)

2.3.3 Puncturable Pseudorandom Function. The puncturable pseudorandom function [62] pre-
vents the punctured element from being evaluated. A PRF F : K × Y → Z is a puncturable PRF
if the secret key K ∈ K is allowed to be punctured on an element x ∈ Y , and then the element x
cannot be evaluated using the punctured key. The algorithms are defined as follows

— F.Punc (K ,x ) takes the secret key K ∈ K and an element x ∈ Y as input and outputs a
punctured key Kx on x .

— F.Eval (Kx ,x
′) takes the punctured key Kx and an element x ′ ∈ Y as input and outputs

the evaluation z ∈ Z if x � x ′. Otherwise, outputs ⊥, where ⊥� Z. This algorithm can be
formulated as

F .Eval(kx ,x
′) =

⎧⎪⎨
⎪
⎩

F (k,x ′), if x � x ′;

⊥, otherwise.
(4)

3 TAXONOMY OF SSE FUNCTIONALITIES

Search functionality is the essential ingredient of SSE, which meets the various retrieval require-
ments and promotes the deployment of SSE. In this section, we classify the search functionalities of
SSE and introduce them, including index structures, search protocols, efficiency, and so on. Further-
more, we summarize and analyze the complexity (such as storage complexity, search complexity,
computational complexity, etc.) of partial schemes, as shown in Tables 1 and 2. Security is another
essential ingredient of SSE, which we will cover in detail in the next section. Figure 2 shows the
timeline of partial articles on search functionalities.

3.1 Single Keyword Search

To enable the searching of encrypted data (Figure 3 shows the example of a single keyword search),
the seminal article proposed by Song et al. [129] is a single keyword search scheme without an in-
dex, which achieves optimal storage but increases the burden of the search. In general, a document
is divided into a sequence of words, each of which is encrypted independently by using a deter-
ministic encryption algorithm. The encrypted word is then divided into two parts, Li and Ri , and
XOR with pseudorandom strings Si and Fki

(Si ), respectively, where ki = fk ′ (Li ). When searching
for documents containing the keyword ω, the user sends the encrypted keyword ω and kq to the
server, and then the server traverses each word in documents to check whether the XOR result sat-
isfies the form (Si , Fkq

(Si )). Nevertheless, such a sequential scan scheme suffers from low efficiency
and leaks more information. Therefore, there are many works to optimize efficiency and improve
security [104, 117, 167]. Goh et al. [53] formally defined a Semantic Security Against Adaptive
Chosen Keyword Attack (IND-CKA) secure index scheme and formulated a security index model,
and then they proposed an efficient IND-CKA secure scheme that allows a user to test whether
a document contains a specified keyword in O (1) time while revealing no information about its
content. The main idea of their scheme is to store keywords of each document in a bloom filter
and to use pseudorandom functions to construct the IND-CKA secure indexes. Chang et al. [23]
created a string of the same size as the universal keyword set to represent a document, set the
corresponding position of the string to 1 if the document contains the keyword, 0 otherwise, and
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Fig. 2. Timeline of SSE Search Function
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Fig. 3. Example of Single Keyword Search

then masked the string with pseudorandom bits. Curtmola et al. [31] further improved the security
definition and defined two adversarial models, non-adaptive and adaptive, respectively. Then they
proposed an efficient construction against adaptive adversaries. This construction uses inverted
lists as index structures, and then randomly stores the list nodes into an array. Meanwhile, a look-
up table needs to be maintained to store the first element of each keyword list.

In recent years, very large datasets have attracted more attention [18, 20, 36, 37], and the
previous in-memory schemes are not fit in such scenarios. Storing extensive indexes in memory
may frequently cause random access, which is an impractical and expensive solution. Therefore,
optimizing the locality of the schemes has become a new direction of research, in which the
goal is to reduce the number of non-continuous reads as much as possible. Asharov et al. [4]
investigated and proposed a scheme with optimal locality, which creates l = logn + 1 arrays
of size n for storing all keyword lists, where n denotes the total number of keyword-document
pairs. Each array Ai is divided into n/2i chunks and stores all keyword lists of size 2i (assuming
that both n and keyword list sizes are powers of two). However, this scheme requires O (n logn)
storage space, so Demertzis et al. [36] improved it while maintaining optimal locality. They choose
s arrays out of l arrays to store all keyword lists, each separated by a distance p = �l/s	 (i.e., {
Al ,Al−p , . . . ,Al−(s−1) ·p }), where s is a small constant. Moreover, the size of the chunk in each

10  
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Fig. 4. Example of Multiple Keyword Search

array is doubled and increased by one more chunk, namely, the size of each array Ai is expanded
to 2n+2i+1. For each keyword list DB(ω), 2j < |DB(ω) | ≤ 2i , where i, j ∈ {l , l −p, . . . , l − (s−1) ·p}
and j < i , it will be stored in array Ai . Thus, the storage space is reduced to O (s · n). In addition,
Demertzis et al. also proposed an extended scheme with tunable locality, which increases the
locality slightly to gain read efficiency. Furthermore, Demertzis et al. [37] compressed the
plaintext indexes before generating the encrypted indexes to further improve search efficiency.

As an underlying search function, single keyword search has been widely studied not only in
search efficiency and storage space but also in security [12, 22, 128]. More details about security
will be introduced in Section 4.

3.2 Multi-Keyword Search

Multi-keyword search (Figure 4) allows users to retrieve interested documents containing several
keywords, which is a practical and desirable search function to return more exact results and save
communication costs. A naive approach to the problem of multi-keyword search is based on a
single keyword search. Given several interested keywords, the server performs a single keyword
search for each keyword and then returns the intersection of these document sets. Obviously, such
an approach is inefficient and allows the server to know extra information other than the results
matching queries. Golle et al. [55] first considered the multi-keyword search over encrypted data
and proposed schemes for performing such searches securely. They used vectors to represent doc-
uments and assumed each document had m fields. Each vector consists of three parts, namely,
m modular exponentiations that are computed from keywords and random values Ri , m modu-
lar exponentiations that are computed from random values Ri and an intermediate value. When
performing a search, the user sends the product of all interested keywords along with their corre-
sponding field positions to the server. Then the server traverses all vectors to find matching results
relying on the bilinear pairings according to the received field positions. Ballard et al. [5] proposed
two schemes for multi-keyword search using Shamir Secret Sharing and bilinear pairings, respec-
tively. Byun et al. [15] and Ryu et al. [127] focused on improving the security of the schemes under
different assumptions.

However, all of the above schemes require the users to send the field positions of the inter-
ested keywords in the indexes, which is impractical for many scenarios. Out of this consideration,
Wang et al. [153] proposed a keyword field-free multi-keyword search scheme by constructing an
l-degree polynomial as the index of a document, where l is the number of keywords contained in
the document and all keywords are the roots of the equation. It calculates the polynomial value
of all interested keywords to determine whether a document satisfies the query, thus getting rid
of the dependence on the keyword position. Another approach proposed by Wang et al. [152] is
constructing a bit string as the index of a document, which is computed from the bitwise product
of all keywords contained in the document, and the trapdoor is generated in the same way. For
searching matching documents, the server checks whether the positions of 0 in the trapdoor are 0
in the index.



Fig. 5. Example of Boolean search.

Therearemanyschemes[19,30,46]thatsupportmulti-keywordsearchwithlesscomputa-tionalandstorageoverheads.Weintroducethesenovelconstructionsinthefollowingsubsec-tions,becausetheysupportnotonlymulti-keywordsearchbutalsootherdesirablefunctionssuchasrankedsearch,Booleansearch,andfuzzysearch.

3.3 Boolean Search

Boolean search (Figure 5) is an extension of multi-keyword search, which supports regular Boolean operations such as “AND”, “OR” and “NOT”, enriching the expressiveness and further improving the accuracy of the retrieval. Furthermore, it can be implemented on a single keyword search basis at expensive costs. Moataz et al. [110] and Cash et al. [19] proposed schemes that support Boolean search based on different techniques, respectively. Moataz et al. treated keywords as vectors and padded them so that they could utilize the Gram-Schmidt process to transform the keyword set into an orthonormal basis, and then associated each keyword with an orthonormal vector. Each document is labeled by the addition of all vectors corresponding to all the keywords it

contains. Trapdoors are generated in a similar way as document labels, but each vector is multiplied by a random integer, where the vector for an affirmative keyword is multiplied by a positive integer and the vector for a negative keyword by a negative integer. Finally, the resulting vector is divided by the sum of all positive integers. In addition, they assumed that each document contained a virtual keyword. When performing a search, the server inner-products the trapdoor with the label of each document and then returns the documents that satisfy the query. A disjunctive expression can be thought of as multiple conjunctive expressions. Cash et al. [19] achieved Boolean search by relying on TSet and XSet data structures, where TSet consists of inverted lists and

XSetisasetfortestingmembership.Eachinvertedliststoresalldocumentsthatcontainthekeywordωinencryptedform.AndtheXSetstoresallexistingkeyword-documentpairsinasecureform.Whenexecutingasearch,theserverfindsouttheinvertedlistoftheleastkeyword(calleds-term) from theTSetandthendetermineswhetherthedocumentsinthelistcontainordonotcontaintheremainingkeywordsinthequery(calledx-term)basedontheXSet.Fromaperformancepointofview,theschemeof[19]outperforms[110]becausethesearchcostsarerelatedtothesizeoftheresults.

Fromthenon,Booleansearchhasbeenextensivelystudied[42,120].Abdelraheemetal.[1]pointedoutthat[19]sufferedfromcomputations,communications,andstoragelimitationsandthenproposedamoreefficientschemeusingabitmaptoreplaceTSetandXSetasitsmainindexdatastructure.Zuoetal.[179]pointedoutthat[19]wasinefficientinhandlingqueriessuchas

“Male∧
(Australian∨

Chinese)”sincemanydocumentscontain“Male”,thustheyproposedanal-
ternativeofsendingmultiples-terms(i.e.,AustralianandChinese)totheservertoimprovetheeffi-

ciency.Kamaraetal.[66]consideredtheworst-casequeriessuchasΔ1∨· · ·∨
Δn ,whichrequireslin-

earsearchcomplexityusing[19],whereΔicanbeakeywordωiorconjunctionΔi=ωi,1∧· · ·∧
ωi,q .

Toefficientlysupportsuchqueries,Karmaetal.firstdesignedanovelconstructionbasedonset-theoretic,calledIEX,tosupportdisjunctivequeriesinsub-lineartime.ThentheyextendedIEXto
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Fig. 6. Example of fuzzy search.

support arbitrary Boolean queries with optimal communication and worst-case sub-linear search
complexity, and used matryoshka filters to reduce storage overhead. However, these construc-
tions [66] reveal the result size of each keyword. Patel et al. [121] noticed the information leakage
and proposed constructions with significantly less leakage than previous works while maintaining
efficient search time and optimal communication overheads. The core idea behind their construc-
tions is the filtering algorithm, which performs set intersections with less leakage. Specifically,
they designed a construction ConjFilter to support conjunctive queries based on the filtering al-
gorithm, then used it as a building block to propose a construction CNFFilter to support arbitrary
Boolean queries.

3.4 Fuzzy Keyword Search

Fuzzy keyword search (Figure 6) enhances system usability by tolerating keywords with minor
typos sent from users, which is able to handle typos and return exact or the closest matching
results. A naive way to deal with the challenge is to add a validation mechanism that determines
the validity of the input before searching. However, it requires an extra interaction to verify the
validity of the input, and it may fail to catch typos, such as typing “cat” into “hat”.

Li et al. [88] first considered the fuzzy keyword search over encrypted data and then proposed
a straightforward construction based on edit distance. In their construction, each keyword is en-
coded to a wildcard-based fuzzy keyword set with edit distance d , and then the fuzzy keyword
set indexes all documents that contain the exact keyword. To search a keyword with pre-specified
edit distance k , where k ≤ d , the user generates trapdoors of the fuzzy keyword set with edit
distance k , then the server returns all possible documents that are indexed by the fuzzy keywords.
Wang et al. [146, 151, 178] also used a wildcard-based fuzzy keyword set to achieve a fuzzy key-
word search. Expanding keywords to cover as many typos of keywords as possible is a common
idea of implementing fuzzy keyword search, which enables the system to handle keywords with
typos. Liu et al. [95] and Bijral et al. [6] presented a dictionary-based fuzzy set construction whose
expanded fuzzy set is composed of the keywords in the dictionary. Zhou et al. [176] presented a
k-gram based fuzzy set construction, which composes a fuzzy set of keywords containing the same
k-gram. Boldyreva et al. [7] improved the security and efficiency of construction [88] by exploiting
efficient searchable encryption [3], a closeness-preserving tagging function, and a batch-encoding
family. Besides, Ahsan et al. [2] implemented a fuzzy keyword search by transforming the key-
word into a monogram set, which is based on the assumption that a word will not have multiple
errors.

Unfortunately, these constructions are not scalable as the storage increases with the increase
of typos. To deal with an arbitrary number of typographical errors in words without increasing
the storage complexity, Kuzu et al. [79] proposed an efficient scheme for fuzzy keyword search by
utilizing locality sensitive hashing and bloom filters. In their scheme, each keyword is represented
as k-grams and encoded into a bloom filter, and then the bloom filter is hashed to multiple buckets
by a locality sensitive function family. When a search for related documents, the same way is
performed on the queried keyword and the resulting buckets are returned. Wang et al. [147]



implemented fuzzy keyword search by transforming keywords into fingerprint vectors, which
extracted the features of words to evaluate the similarity between different words.

To complement the limitation of single keyword fuzzy search, Chuah et al. [30] first considered
multi-keyword fuzzy search based on the bedtree and the gram counting order [173], but it could
only handle pre-defined phrases, such as “information retrieval” as a single keyword. Subsequently,
Wang et al. [142] studied and proposed a general construction that supports multi-keyword fuzzy
search. It is based on the techniques of locality sensitive hashing and bloom filters as [79], but there
are differences in both the index construction and the search process. The construction represents
a document as a bloom filter and maps all keywords contained in the document into the bloom filter
using a locality sensitive function family, where each keyword is encoded as a bigram vector of size
262-bit. The search process can then be done by an inner product between the document vector
and the query vector as the relevance score of the document and query, where the query vector is
generated as the document vector, mapping all searched keywords into a bloom filter. Motivated
by Wang et al.’s scheme, Fu et al. [47] presented a more accurate and efficient multi-keyword fuzzy
search scheme. Instead of using the bigram vector to represent the keyword, this scheme uses the
uni-gram. It is a major change compared with [142], enabling the scheme to tolerate more typos
and return more accurate results.

However, the search complexities for these schemes are linear with the size of the database. In
order to improve the search efficiency, Chen et al. [28] designed a novel two-stage index struc-
ture to speed up the search efficiency, which consists of inverted indexes and forward indexes.
Then the server first uses the inverted indexes to find all documents containing a certain keyword,
and then determines whether these documents satisfy the query based on the forward indexes.
Zhong et al. [175] introduced a balanced binary tree as an index structure, in which each leaf node
corresponds to a bloom filter of a document, and the parent node is generated based on the child
nodes. Tong et al. [140] also designed a balanced binary tree using the graph-based keyword parti-
tion algorithm, but each document is represented by a twin bloom filter. These schemes implement
the feature of multi-keyword fuzzy search are mainly based on the k-gram vector representation
and the locality sensitive hashing. Beyond these, there are many works [97, 98, 114] based on dif-
ferent techniques to achieve multi-keyword fuzzy search for accuracy, security, dynamic, and so
on. Nayak et al. [114] used the quotient filter, the trigram set, and the modified quotient function to
construct a dynamic fuzzy multi-keyword search scheme. Liu et al. [97] encoded each keyword as
a vector, where each element of the vector is filled with a prime or the reciprocal of a prime. Thus
each document (or query) is represented by a matrix consisting of multiple vectors corresponding
to the keywords it contains and the search operation is based on the inner product between the
indexes and the trapdoor. Further, Liu et al. [98] improved the search efficiency by constructing a
balanced binary tree and enhanced the security by adding random noises to the query matrix.

3.5 Ranked Search

Although Boolean search enriches the query expressiveness and improves the accuracy of results,
it fails to return the most relevant documents and incurs unnecessary bandwidth as it returns
undifferentiated documents that satisfy the query. Ranked keyword search (Figure 7) may be a
desirable approach for the problem by returning matching documents in ranked order with regard
to relevance criteria (e.g., frequency or weight of keyword).

Assigning relevance scores to documents based on the frequency of keyword occurrences is
a common method used to implement ranking [139, 144, 145]. The first attempt [139] to secure
ranked keyword search over encrypted data was implemented by integrating scores and crypto-
graphic primitives. Following that, Wang et al. [144, 145] formulated the secure ranked keyword
search over encrypted data, and then proposed constructions that assisted in the relevance scores.
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Fig. 7. Example of ranked search.

They adopted the existing SSE scheme [31] as the framework and attached a relevance score to
each entry for ranking, where the score is calculated according to the TF-IDF1 rule. OPSE2 is
then used to encrypt the scores so that the server can return the results without knowing the
scores.

For a single keyword ranked search, the relevance score reflects the relevance between a
keyword and a document so that all documents containing a certain keyword can be easily ranked
by attached scores. However, multi-keyword ranking needs to consider the impact of multiple
keywords on documents comprehensively, so that assigning a relevance score to each document
is impractical. Cao et al. [16] quantified the relevance of a document to a query by counting
the number of searched keywords contained in the document for supporting the multi-keyword
ranked search. Further, they calculated the relevance scores between queries and documents
by replacing the binary value 1 on the document vector and query vector with the TF and IDF,
respectively, and using the secure inner product. Örencik et al. [118] adopted the scheme [152]
as the base for multi-keyword search, then added additional structure to rank the documents.
Specifically, they introduced relevance levels based on the keyword frequency. Each level stores
an index for the document’s frequent keywords in a descending cumulative fashion for each
document. Therefore, the higher the level of the matching document is located, the more relevant
the document is. In addition to relying on relevance scores, Li et al. [87] introduced the preference
factors of keywords (i.e., weights of keywords) to both improve the search accuracy and support
Boolean search. Yu et al. [169] proposed a top-k retrieval construction requiring two roundtrips
and homomorphic encryption for a security guarantee.

With regard to efficiency, Li et al. [86] used inverted indexes to improve search efficiency. They
represented documents and queries as vectors, in which each dimension is set to TF or IDF value.
For performing a search, the user chooses the least frequent keyword in the query, then the server
finds the corresponding inverted list and ranks the documents in the list using the secure inner
product technique. Jiang et al. [65] modified the scheme [19] by attaching a relevance score be-
tween a keyword and a document to each entry, and then summed the scores of each matching
document for ranking. Fu et al. [46] constructed a balanced binary tree whose leaf nodes are index
vectors of documents as the index structure and used a secure inner product technique to evalu-
ate the relevance scores for ranking. Furthermore, Sun et al. [138] utilized a multi-dimensional
algorithm to find the best top-k matching results with multidimensional b-tree-based indexes.
Chen et al. [25] proposed a hierarchical clustering method to cluster the documents based on
the relevance score. Therefore, the server only needs to look for the top-k documents in a few
categories instead of traversing the entire database. Miao et al. [106] proposed another clustering

1Term Frequency - Inverse Document Frequency (TF-IDF), which is used to quantify words in a set of document. TF denotes

the frequency of a word appearing in a document, and IDF describes the importance of a word in the whole document

collection, which is obtained by dividing the total number of documents by the number of documents containing the word.
2Order Preserving Symmetric Encryption (OPSE) is an encryption algorithm that allows comparison of actual encrypted

form without decryption.

 



Fig. 8. Example of range search.

method using a k-means algorithm, and then constructed indexes on a balanced binary tree for
each cluster, which achieves an efficient and accurate search.

Ranked search has attracted concerns extensively and is studied in many aspects for more ex-
cellent performance [38, 161]. In addition to ranking returned results on an exact search, there
are also some works [90, 170] that focus on fuzzy searches. The main idea is to replace the values
in the bloom filter with the weights (or frequency of keywords) of the corresponding keywords.
Inspired by this, other retrieval schemes can also attach relevance scores to documents to achieve
ranked search by modifying indexes and search algorithms.

3.6 Range Search

Range search (Figure 8) allows users to send an interval [a,b] as a query and returns all documents
within that interval, where a and b are the lower and upper bounds, respectively. Typically, the
range search is appropriate for numeric datasets or documents with numeric attributes.3

Reducing range search to existing retrieval protocol is a common way to realize range search
while inheriting extra properties. Faber et al. [40] extended the scheme of [19] to support range
search while preserving the security guarantee and scalability. They constructed a full binary tree
with l+1 levels and mapped attribute values of documents into leaves, where leaves are represented
as binary strings between 0 and 2l − 1 in ascending order. Each query range [a,b] is transformed
into a set of nodes that cover the required range and then reduced to a disjunctive search on nodes.
The search process follows the OXT protocol. Pappas et al. [120] constructed a bloom filter-based
balanced b-ary tree as an index structure supporting the Boolean search. And the range search is
reduced to a disjunctive search building on the technique of [126]. Demertzis et al. [35] proposed
several schemes to support range search by reducing it to keyword-based search. The basic scheme
enumerates all possible query ranges in the domain and assigns a unique keyword to each sub-
range. Then each document is associated with a set of keywords whose corresponding sub-ranges
cover the attribute value of the document. Therefore, the resulting document-keyword dataset
can be used to implement a range search based on existing SSE schemes. Other enhanced schemes
use range covering techniques and tree-based structures to reduce range search to keyword-based
search, especially for building a binary tree over the domain and assigning each node a unique key-
word. Each document is then associated with a set of keywords that correspond to all nodes on the
path from the root to the leaf. The query range is represented as a set of nodes that cover the range
using range covering techniques. In addition, a line of schemes is derived based on the scheme
that aims at optimizing security, storage, efficiency, and false positive. Li et al. [89] used the prefix
encoding scheme [94] to convert values into prefix families and constructed a bloom filter-based
complete binary tree as the index structure. The query range [a,b] is then converted to a minimum
set of prefixes. Therefore, the range search is reduced to testing whether two sets have elements in
common.

3Without loss of generality, an arbitrary domain can be converted to a numeric domain.
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Fig. 9. Example of semantic search.

Utilizing cryptographic primitives [72, 102] is another powerful approach to implementing
range search. Order Preserving Encryption (OPE) has a property that allows the comparison of
actual order in ciphertext without decryption. As a result, existing efficient schemes can directly
utilize OPE to encrypt data and perform range search as in plaintext. Another line of work is based
on bucketization techniques [59, 63], which map documents with similar attribute values into the
same bucket. In the bucketing scheme, the data owner divides the entire data domain into several
buckets of different sizes and maps documents into corresponding buckets. The query range is
represented as a bucket (or several buckets) that covers the range of the query. For example, the
data owner divides [0, 100] into [0, 10], [11, 43], [44, 76] and [77, 100], and then maps documents
into the appropriate buckets according to the attribute values. If the query range is [40, 50], then
the server returns documents in buckets [11, 43] and [44, 76].

3.7 Semantic Search

Keyword-based search has been extensively studied by the SSE community and has been equipped
with many desirable features as aforementioned (e.g., multi-keyword search, fuzzy search, Boolean
search), but they cannot perfectly satisfy users’ search intentions since the semantic information
between documents and queries is ignored. In other words, the keyword-based search can only
return documents that actually contain the searched keywords but not documents with similar
meanings. Consequently, to further improve the search accuracy and experience, the ability to go
beyond searching exactly on keywords should be taken into account. Semantic search (Figure 9)
is one such design that compensates for the bottleneck by supporting content-aware search and
returns documents with similar meanings to the queries.

Synonym-based expansion [46, 48, 112] is an effective approach to support semantic search,
which expands synonyms for each keyword to capture the similar semantic information of dis-
tinct keywords. [46, 112] used various synonym expansion tools (New American Roget’s College
Thesaurus, Wikipedia Similarity Matching, and so on) to construct the synonym set as the initial
keyword set and build indexes as most existing schemes, but the synonym set incurs heavy stor-
age and complex indexes. Instead of expanding all keywords, [48] expands the central keyword of
a query to balance the semantic search and efficiency. Besides, [45, 111] exploited the stemming
algorithms to extract the same stem (the stem may not make sense) from different keyword forms
to achieve semantic search.

In addition to the synonyms of keywords, the relationships between keywords are also impor-
tant semantic information. Fu et al. [43, 44] took the relationships between keywords extracted
from the documents into account and proposed schemes to support content-aware search. These
schemes are based on the conceptual graph, which is a knowledge representation model. They
first used Text Summarization and Tregex techniques to extract sentences that represented docu-
ments. Then they constructed conceptual graphs from these sentences and converted them into
vectors. With these vectors, the implementation of the constructions is similar to the scheme [16].
Yang et al. [166] transformed semantic matching between queries and documents into random
linear programming problems, and then used existing optimizers to solve the problems. In their



Fig. 10. Example of substring search.

scheme, each pair of query and document is transformed into a word transportation problem,
which is then transformed into a random linear programming problem. The solution of the ran-
dom linear programming problems serves as an evaluation of the similarity between queries and
documents. Fu et al. [49] extended the concept hierarchy to design a novel semantic search scheme.
They introduced attributes for each concept in the concept hierarchy, which can be assigned val-
ues. Then they built two index vectors for each document based on the extended concept hierarchy,
one for matching concepts and the other for matching attributes. The index vectors of the query
are also constructed in this way.

Most existing schemes for implementing semantic search can be classified into two categories,
one based on synonym expansion techniques and the other on relationships between keywords.
Exploring effective representation models for semantic information of documents and queries is
the key to implementing semantic search, and combining it with ranked search can also further
improve the accuracy of retrieval.

3.8 Substring Search

In addition to returning records that contain the substring q, the substring search (Figure 10) re-
turns all positions where q occurs as a substring of s . It is rarely researched but does serve as an
essential search function. For example, a medical researcher wants to find out the positions of all
occurrences of a given gene fragment q from a gene sequence s while preserving the privacy of s
and q.

A straightforward approach is that it considers each substring as a separate keyword and then
performs keyword-based searches, but it incurs high storage costs due to the exponential inflation
of the indexes. To achieve comparable retrieval and storage overheads as in the plaintext setting,
various data structures have been adopted to support substring search. Chase et al. [24] proposed
a substring search scheme based on a suffix tree with an interactive protocol, a data structure
widely used to solve string matching and queries. Moataz et al. [108] proposed two substring
search schemes based on suffix arrays and suffix trees, respectively, and combined them with the
hierarchy ORAM tree structure for oblivious search. Strizhov et al. [134, 168] used a position heap
tree [39] to support the substring search. Yamamoto et al. [164] constructed a substring search
scheme on a directed acyclic word graph (DAWG) and a hierarchical bloom filter (HBF).

Although auxiliary data structures facilitate substring searches, efficiency is not comprehen-
sively considered. Leontiadis et al. [83] revisited current substring search schemes and proposed
a storage-efficient substring search scheme. They pointed out that the scheme [24] that adding
dummy nodes to protect information incurs a surge in storage overhead is unacceptable. To
decrease the size of the index, they used suffix arrays instead of suffix trees, which have a constant
size compared to suffix trees. And proposed a dummy node policy with bucketization techniques to
secure the index. Yamamoto et al. [165] also proposed a storage-efficient substring search scheme
by designing an augmented DAWG (ADAWG), whose all transitions have distinct strings (meta-
symbol). With the properties of ADAWG, the scheme does not require dummy data to hide the
frequency of letters. Considering the communication cost between the user side and the server side,
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Mainardi et al. [100] proposed a substring search scheme with sub-linear search time by combining
the Burrows Wheeler Transform (BWT) [14] technique and private information retrieval

(PIR) [93] protocol. Moreover, they protected the search pattern and access pattern privacy.
Another way to implement substring search is to integrate it into existing systems.

Faber et al. [40] reduced substring searches to conjunctive searches based on the extended OXT
protocol [19]. They represented a substring query as a series of k-grams with relative distances and
divided documents into a set of k-grams. Then each substring query is executed as a conjunctive
search of such k-grams. Hahn et al. [60] transformed substring searches into range searches for
efficiency and security guarantee without significant modifications. They adopted the Frequency-

Hiding Order-Preserving Encryption (FHOPE) [71] as a building block and divided a string
into a set of overlapping k-grams. Each k-gram is associated with a list that contains all positions
where the k-gram occurs. All positions of each k-gram are then iterated to create a consistent
ciphertext range for k-grams. As a consequence, range searches can be applied to implement sub-
string searches while tokenizing a query into a form compatible with the index. Moataz et al. [109]
represented each letter as an orthogonal vector, such that each keyword or substring is defined
as a matrix, where each column associates with a letter of the keyword. Then the search phase
is performed on an inner product between a substring and keywords. In the case that a keyword
contains a query substring, the diagonal elements of the resulting matrix are all different from zero.

3.9 Other Characteristics

In addition to the search above functionalities, a few notable features cannot be ignored, such as
updating encrypted data, verifying results, and so on. These features facilitate the deployment and
practical application of SSE schemes. And we will cover them in the following.

Dynamic SSE (DSSE) allows users to update (add or delete documents) remote encrypted data
while preserving privacy, which enhances system usability and data freshness. As a system prop-
erty, dynamism is usually related to the underlying index structure. In other words, implementing
a dynamic SSE scheme depends on the underlying index structure, and different index structures
adopt different update methods. Generally, schemes without indexes [3, 129] to add/delete a docu-
ment are straightforward. The corresponding encrypted document can be added to or deleted from
the outsourced data directly since the retrieval is performed on documents. Schemes with forward
indexes [23, 47, 53] are updated similarly to schemes without indexes, which add document-
keyword pairs to indexes or delete document-keyword pairs from indexes. For schemes with
inverted indexes [69, 84, 144], where the indexes consist of keyword-document pairs. Unlike the
previous two approaches, adding or deleting a document requires finding all entries in the inverted
lists that contain that document. Kamara et al. [69] created two extra data structures, deletion array
and deletion table, respectively, to assist with updates. The deletion array stores all addresses of
each document in the inverted lists in the form of a linked list, and the deletion table stores the ad-
dress of the head node of each linked list. Tree-based schemes [35, 68, 106, 161] could be extended
to support updates if the underlying tree data structures adopted provide update operations.

Verifying the integrity of the returned documents is necessary for a setting where the cloud
server is untrusted, which is a practical assumption that the cloud server may return partial doc-
uments or execute a fraction search for economic considerations. Chai et al. [21] first considered
verifying the returned results under SSE and proposed a verification algorithm to detect the results’
correctness and completeness using keyed hash functions. In general, the integrity of the results
involves three aspects:

— Completeness. For a given queryq, if the result setR satisfies that each documentDi ∈ DB(q)
exists in R and |R | = |DB(q) |, we say that R is completeness.



— Correctness. For a given query q, if each document Ri ∈ R is outsourced from the data owner
and has not been tampered with, we say that R is correctness.

— Soundness. For a given query q, if each document Ri ∈ R satisfies the query q, we say that
R is soundness.

In summary, most existing schemes that support verification are constructed on hash functions
or some of their derivatives. [132] used Message Authentication Code (MAC) to verify the
correctness of the results. [105] verified the correctness of the results by appending signatures to
the documents. [91] verified the correctness of the results by constructing a Merkle tree. Multiset
hash functions [74, 174] are used to verify both correctness and completeness. Accumulators are
usually used to verify the completeness of the results, such as the accumulator tree [137], the
bilinear-map accumulator [149], the RSA accumulator [78], and so on. In addition to the common
techniques described above, many extended algorithms [51, 177] are used for integrity verification.
For soundness, users can locally verify it against the received results.

4 ATTACKS AND DEFENSES

Searchable Symmetric Encryption (SSE), as one type of protecting data privacy, enables
searches over encrypted data stored in an untrusted server. However, it is far from enough to
simply focus on data confidentiality. In practical applications, there is still a lot of valuable leakage
information, such as the frequency of queries, the number of returned records for each query, and
so on. Malicious adversaries or servers are able to use these leaks to infer information of interest
to them.

In this section, we discuss the attacks based on the various leakage information against existing
SSE schemes and describe a sequence of leakage profiles. Then we show, due to the emergence of
new attacks, a plethora of schemes that protect information that might be exploited by adversaries.
SSE has now toward fewer “leakage information” implementations motivated by existing threats
and concerns.

4.1 Leakage Profiles

Before we enumerate the attacks SSE is facing, we discuss several widely studied leakages and give
formal definitions of these based on existing literatures [12, 13, 80, 119]. Besides, we also introduce
a new leakage, update pattern, that may compromise sensitive information, and give an informal
definition.

Forward Privacy. Forward privacy [12, 75, 132, 174] is powerful privacy protection, which
has been proved that disclosure of this kind of information will make the privacy of the queries
subject to fatal adaptative attack [172]. Forward privacy aims at hiding what DSSE leaks about the
relationship between newly added documents and the previous search tokens (or trapdoors).4 For
example, an adversary is able to infer that the updated document matches a previous query if DSSE
does not take forward privacy into account. In other words, the adversary learns that the newly
added document contains a particular keyword, even if he/she does not know what the keyword
is. The substantial reason lies in that the search token for the same keyword is the same no matter
how many times it is updated.

The leakage profile can be described as follows:

{i |tok1 (indi ) = 1}, . . . , {i |tokn (indi ) = 1}. (5)

. 20 

4Without loss of generality, the user generates token or trapdoor and sends it to the server as a query request. 
Therefore, we do not make a further distinction between tokens, trapdoors, and queries in this article; they all 
mean the same thing.
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Intuitively, this leakage profile reveals the pattern of the updated documents match a previous
token tok . Therefore, the first set includes all updated documents that match tok1. Then we refer
to [136] for a formal definition.

Definition 1 (Forward Privacy). A L-adaptively-secure DSSE is called forward privacy iff the
update leakage function can be written as

LUpdt (in, op) = L′(op, ind), (6)

where L′(op, ind) captures the operation op and the identifier ind of the updated document, but
fails to have knowledge that the document matches the previous token. And L′ is stateless.

Backward Privacy. Backward privacy was first mentioned by Stefanov et al. [132] and formal-
ized by Bost et al. [13] with three different types of leakage of decreasing strength:
Backward Privacy with Insertion Pattern (Type-I): Type-I reveals the documents currently matching
a search for a keyword ω, the timestamps they were inserted, and the total number of updates on
ω.
Backward Privacy with Update Pattern (Type-II): In addition to leaking Type-I, Type-II also reveals
the timestamps of all updates that occur on ω.
Weak Backward Privacy (Type-III): Besides revealing the Type-II, Type-III also leaks which deletion
update canceled which addition update.
Subsequently, a line of work [22, 123, 135] focusing on the leakage proposed schemes with pro-
tecting backward privacy under various leakage profiles. However, although backward privacy has
been proposed for a long time, it is almost not discussed the impact of such leakage or studied at-
tacks against them. [135] considers that timestamp is crucial information (Type-III will leak when
the deleted documents occur) and can be exploited to compromise security in many fields, such as
timing analysis on network traffic [41] and side-channel attacks against hardware enclaves [26]. In
any case, our goal is to minimize the leakage, even if there is no attack against such information.

Informally, backward privacy aims at preventing adversaries from learning which document has
been deleted after searching onω. In other words, if one adds a pair of document/keyword (ind,ω)
and then deletes it, the adversary does not know the deleted document ind. It is worth noting that
the addition and deletion operations are successive.5 Next, we introduce the formal definition of
backward privacy based on some leakage functions.

TimeDB(ω) captures all documents currently matching ω and the insertion times of those
documents. And Q is a query list that records all operations, both addition and deletion. Thus,
TimeDB(ω) can be written as follows:

TimeDB(ω) = {(u, ind) |(u, add, (ω, ind)) ∈ Q and ∀(u, del, (ω, ind)) � Q }. (7)

UpHist(ω) is an update history that stores all update operations both addition and deletion on
ω. UpHist(ω) is formalized as follows:

UpHist(ω) = {u |(u, add, (ω, ind)) ∈ Q or (u, del, (ω, ind)) ∈ Q }. (8)

DelHist(ω), a deletion history on ω, records a list of timestamps for all deletion operations
and the timestamps when the documents corresponding to these deletion operations are inserted.
DelHist(ω) can be constructed as

DelHist(ω) = {(uadd,udel) |∃ind s.t. (udel, del, (ω, ind)) ∈ Q and (uadd, add, (ω, ind)) ∈ Q }. (9)

With these leakage functions in place, we formally define the three types of backward privacy.

5Inevitably, if a search is performed before a deletion operation and a subsequent search is performed, an adversary can

compare the results of the two searches and infer the deleted document easily.
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Definition 2 (Backward Privacy). A L-adaptively-secure DSSE is called backward privacy with
insertion pattern iff the leakage functions of LUpdt and LSrch can be written as follows, where L′
and L′′ are stateless, and aω is the total number of updates on ω.

LUpdt (op,ω, ind) = L′(op), (10)

LSrch (ω) = L′′(TimeDB(ω),aω ). (11)

A L-adaptively-secure DSSE is called backward privacy with an update pattern iff the leakage
functions of LUpdt and LSrch can be written as follows, where L′ and L′′ are stateless.

LUpdt (op,ω, ind) = L′(op,ω), (12)

LSrch (ω) = L′′(TimeDB(ω),UpHist(ω)). (13)

A L-adaptively-secure DSSE is called weak backward privacy iff the leakage functions of LUpdt

and LSrch can be written as follows, where L′ and L′′ are stateless.

LUpdt (op,ω, ind) = L′(op,ω), (14)

LSrch (ω) = L′′(TimeDB(ω),DelHist(ω)). (15)

Search Pattern. Search pattern [17, 96, 128, 159] is a common leakage that exists in many
constructions [89, 103, 120] and is ignored for efficiency considerations. It reveals which queries
are performed on the same keyword ω. Formally, it can be defined as

sp(ω) = {u |(u,ω) ∈ Q }, (16)

where sp(ω) captures all queries performed on ω with timestamps and thus is able to recognize
which queries are repeated.

Access Pattern. Like the search pattern, access pattern [17, 27, 64, 130] is also a common leakage
that captures all documents currently matching ω, which is defined as

ap(ω) = {DB(ω)}, (17)

where DB(ω) denotes all documents that contain the keywordω. With DB(ω), the adversary learns
not only the documents (not the content of the document) that currently match ω, but also the
number of results.

Update Pattern. Update pattern is an emerging leakage pattern, which has not received much
attention. [143] introduced the potential threat of such leakage for the first time, and proposed
a new construction to protect such privacy. In a growing database, the update pattern records
the entire update history on the database and it may record the time and the number of updates.
With the leakage pattern, the adversary can infer some valuable information with the assistance
of auxiliary information. Therefore, the update pattern leakage can be defined as

up(DB) = {(ti , μi ), i ∈ N ∗}, (18)

where ti denotes the time when the update occurred and μi denotes the number of records updated.
Besides the leakages mentioned above, we introduce the leakages of the result pattern [82] and

the volume pattern [56, 58, 70] additionally. The result pattern is a broader but rarely discussed
leakage that reveals the results of queries, where the query can be of any type (such as single-
keyword query, conjunctive query, etc.). But the access pattern in most existing literature [32,
57, 116, 125] usually refers to single-keyword query results. And the volume pattern represents
the number of results returned by the query without the knowledge of the returned document
identifiers. Therefore, in order to better characterize the different focuses of existing attacks and
defenses, we have adopted a more detailed classification of these leakages.
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Fig. 11. Timeline of SSE attacks and defenses

In the following subsections, we will discuss the attacks based on these leakages and the de-
fenses to prevent them from leaking. Figure 11 shows the timeline of partial articles on attacks
and defenses. It can be seen that in recent years, the privacy of SSE has received a great deal of
attention.

4.2 Attacks

In this subsection, we will discuss the attacks that exploit the leakages mentioned in Section 4.1.
Table 3 summarizes these attacks. The goals of these attacks are mainly classified as database

recovery and query recovery. Query recovery aims at recovering the keyword of a query, which
facilitates the reconstruction of the database (since the keywords are part of the database), thus
most schemes aim at recovering the query. And database recovery typically occurs on range query

constructions [56, 58, 81].

4.2.1 Forward Privacy Leakage. Schemes without forward privacy disclose whether the newly
added document matches the previous query, a feature that can be exploited by an active adversary
for query recovery. File-injection attack [148, 156, 171, 172] is such an attack that exploits this kind
of leakage to compromise the privacy of queries (Figure 12 shows the example of a file injection
attack). The adversary injects the rigorous documents into the database, and then observes whether
the token sent by the client matches the injected documents. If the returned results contain the
injected documents, it means that the token is included in the keywords of the documents. Then,
the keyword of the query can be inferred from the keywords contained in the injected documents
(since each injected document contains the token, it is enough to calculate the intersection of the
keywords of all injected documents). This kind of attack does not require the adversary to have
much prior knowledge about the documents, and recovers the queries with 100% accuracy.

File-injection attacks are possible and devastating in email systems. Adversaries send rigorous
emails to a client, who then encrypts them and hosts them on the cloud server (known as an email
system with searchable encryption). This kind of attack was first introduced by Cash et al. [17],
named known-document attack. Subsequently, Zhang et al. [172] further investigated the leakage
of SSE, and proposed both adaptive and non-adaptive attacks. The key idea is to inject �log |K |	
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Fig. 12. Example of a file injection.

Fig. 13. Example of a simplified version of access pattern attack.

documents into the database, each containing �|K |/2	 different keywords, where K = w1 ∪ w2 ∪
· · · ∪ wd is the universe keyword set, and it is assumed that the adversary knows. The adver-
sary can successfully recover the query by observing the keywords contained in the documents
matching the query. Based on this, Zhang et al. have proposed a more efficient method by uti-
lizing the frequency of occurrence of the queries and keywords in the client’s documents, which
decreases the number of injected documents. Wang et al. [148] further reduced the number of in-
jected documents by dividing the universe keyword set into several subsets based on the method
of constructing a uniform (k,n)-set of a finite set.

4.2.2 Access Pattern Leakage. For tradeoff security and efficiency, many existing schemes do not
take protecting the access pattern into account. From the perspective of the user, meanwhile, it
seems to be a common leakage since the user sends a query and expects the server to return results
that satisfy the query. However, it is such a seemingly trivial and inevitable leakage that poses a
great risk. Intuitively, an adversary observes a list of encrypted documents that match the trapdoor,
(tok, {d1,d2, . . . ,dl }). Based on the observations, the adversary can generate valuable information
(e.g., trapdoor-identifier matrix, trapdoor-trapdoor matrix) and exploit this information to reveal
the relationship between the trapdoor and the underlying keyword or reconstruct the database,
thus, compromising the scheme privacy (Figure 13 shows a simplified version of such an attack).

Islam et al. [64] were the first to investigate the practical impact of the access pattern leakage
and proposed a formal inference attack model based on the access pattern leakage and some prior
knowledge. Their attack assumes that an adversary knows the underlying keywords for partial
trapdoors and a matrix M that each cell (i, j) represents the probability of both ith and jth key-
words appearing in any document. Under these assumptions, the adversary exploits the access
pattern leakage to generate the trapdoor-trapdoor co-occurrence matrix M1, which records the
probability of any two trapdoors appearing in any document, the same as M . For each cell in M1,
the adversary finds the closest cell in M , then recovers the underlying keyword related to the
trapdoor. Pouliot et al. [125] proposed attacks using combinatorial optimization problems based
on graph matching: weighted graph matching and labeled graph matching. The attacks assume
that an adversary knows a plaintext corpus and a ciphertext corpus, and then generates graphs
G and H , respectively, based on prior knowledge, and finally reveals the underlying keywords for
trapdoors by solving the graph matching problem. Ning et al. [116] proposed attacks under differ-
ent types of assumptions, revealing the relationship between trapdoors and keywords by mapping



Fig. 14. Example of a simplified version of search pattern attack.

trapdoors to known keywords. Extendedly, they proposed a new leakage-abuse attack [115] based
on the L2 leakage and partially known documents, which is able to accurately recover the underly-
ing keywords of trapdoors. Damie et al. [32] designed a novel attack based on a similar document
set instead of a real document set, named refined score attack, which reveals underlying keywords
for trapdoors by scoring trapdoor-keyword pairs, with the highest score being the matching re-
sult. The refined score attack also requires information about some trapdoors and their related
keywords, though less than Islam et al.’s [64] attack.

Besides exploiting the access pattern to infer the underlying keywords for queries, an adversary
also exploits it to reconstruct the range query database [57, 76, 81]. Kellaris et al. [70] designed
attacks to reconstruct a database using an access pattern and demonstrated for the first time that
it was possible to reconstruct a database using only communication volume. Although the attacks
assume that an adversary needs to know the distribution of queries and observe O (N 4) queries,
whereN is the domain size. Grubbs et al. [56] further investigated the practical database reconstruc-
tion from volume leakage on range queries and improved the attacks of Kellaris et al. in multiple
dimensions, including the assumptions and leakage information. Their attacks only assume that
an adversary knows volume leakage but not the distribution of queries, and then introduce the el-

ementary range and the elementary volume to implement reconstruction attacks based on a novel
graph-theoretic approach. Gui et al. [58] continued previous work [56, 70] on volume leakage at-
tacks and further weakened the prior knowledge required for the success of the attacks. Inspired
by the attacks of Grubbs et al., their attack goal is to recover the elementary volumes by expanding
partial solutions iteratively. Kornaropoulos et al. [76] first studied data recovery attacks against
schemes supporting k-nearest-neighbor (k-NN) queries and demonstrated that the attacks could
be extended to multidimensional spatial data by Hilbert curves. They analyzed the feasibility of
exact reconstruction theoretically under certain assumptions and then proposed practical attacks
for approximate reconstruction without unrealistic assumptions.

4.2.3 Search Pattern Leakage. Similar to the access pattern, the search pattern is also a common
and overlooked leakage, and the vast majority of SSE schemes suffer from it. Nevertheless, its
practical implications have not been fully studied so far. Conceptually, the search pattern reveals
which queries are derived from the same keyword, but it is hard to hide if the access pattern is
still accessible. Because even if the probabilistic algorithm is used to generate the queries, the
matching results are the same, so the adversary is able to get the search pattern by observing the
results returned by the previous queries. From the perspective of an adversary, the search pattern
discloses the frequency of distinct queries, which can be exploited by statistical and inference
attacks to deduce sensitive information (Figure 14 shows a simplified version of such an attack).

Liu et al. [96] explored the possibility of disclosing the underlying keywords for queries based
on the search pattern leakage and some auxiliary information. They mapped queries to keywords
based on the similarity in frequency under the knowledge of the user’s search habits. Furthermore,
they presented an extended attack, an adaptive attack, without knowledge of specific background
at the beginning, which adaptively adjusts the background of the keywords after each attack to
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improve the recovery accuracy. Instead of relying on the distribution of queries [57, 70], dense
databases [81], or certain prior knowledge [96], Markatou et al. [101] exploited access and search
pattern leakage to reconstruct the full database for range queries. Their attack first recovered the
order of the database records by value via PQ trees [10], which relies on the access pattern only.
Then, based on the ordered records, the adversary reconstructs the full database by using the
number of distinct range queries that return a specific response to calculate the distances between
consecutive records after observing all possible queries.

Recently, some works [77, 119] have investigated the potential risks of SSE leaking the search
pattern under weaker assumptions. Kornaropoulos et al. [77] proposed the value reconstruction
attacks for both range queries and k-NN queries beyond the distributions of queries. Their attacks
take the same idea as [101], where the distances between consecutive records are inferred by the
number of specific responses returned. However, instead of requiring the entire number of all
possible queries, the attacks approximately reconstruct an encrypted database by estimating the
number of specific responses returned using search pattern leakage. Therefore, the core problem of
the attacks is to estimate the number of unseen range queries from the frequency of the observed
range queries. And their experimental evaluations demonstrate the attacks are useful under dif-
ferent query distributions and various database densities. Unlike aforementioned attacks [77, 101]
that require the assistance of access pattern leakage, Oya et al. [119] developed a kind of attack
against SSE hiding the access pattern while leaking the search pattern, aiming at recovering the
underlying keywords of the queries. Basically, their attack relies on the frequency and volume
of queries by using a MLE approach to find the most likely underlying keyword behind a query.
Furthermore, they modified the attack to target particular privacy-preserving SSE schemes (such
as obfuscated access pattern [27, 34], volume-hiding [122], etc.) based on the knowledge of the
parameters used by these defenses, which works well in query recovery.

4.3 Defenses

In this subsection, we will discuss the existing schemes with leakage suppression, which mainly
protect the leakages mentioned above. Table 4 summarizes the privacy protected by these schemes.

4.3.1 Forward Privacy Protection. The forward privacy aims at preventing newly inserted
files from being matched by previous queries, thus mitigating file-injection attacks. From the
perspective of file-injection attacks, the reason why the query recovery can be successful is that
the previous queries can match the files inserted (injected) later. In other words, if one wants
to retrieve the newly inserted files, he/she does not need to produce a new query. Intuitively, to
thwart file-injection attacks, SSE can require a new search token for retrieval after inserting a
new file. More specifically, it requires that after inserting a new file, only the reproduced query
can find the newly inserted file, and that the previous queries match only files that were already
in the database before the queries were generated, not files that are newly inserted later. This
straightforward method cuts off the connection between the newly inserted files and the previous
queries, realizing forward privacy.

Oblivious RAM (ORAM) is one of the effective ways to protect forward privacy, which is a
compiler that protects the input-output behavior of the algorithm by continuously shuffling and
re-encrypting the accessed data. The concept of ORAM was formulated by Goldreich [54] and has
been improved in algorithms and data structures [50, 133, 157, 158]. But this is not a wise choice
nor a practical method, since it achieves security at the expense of efficiency and storage space.
Subsequently, Bost et al. [12] proposed a forward privacy scheme with optimal search and less
storage, named Σoφoς , which can be transplanted to the existing SSE schemes without forward
privacy with minor changes. Their scheme adopts an inverted index structure and a trapdoor
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permutation function to generate search token ST . Each pair of keyword/document (ind,ω)
will be stored at a location (Update Token, UT ) derived from ST using a keyed hash function.
Specifically, the client will generate the search token STi+1 (ω) from the STi (ω) for the inserted
pair (indi+1,ω) applying the trapdoor permutation function, and then generatesUTi+1 from STi+1

and the keyed hash function. The server stores an inserted element in the location of UTi+1

(without the knowledge of STi+1). When the client retrieves documents containing ω, he/she will
send the latest STi+1 to the server. After receiving STi+1, the server depends on the public key to
recover all STj , (0 � j � i ), and generates the corresponding UTj , (0 � j � i + 1). Finally, the
server returns all the documents on UTj .

The key idea of [12] is that before the client issues the search token STi+1, the server can neither
generate STi+1 from STi nor infer other update tokens (UTj , 0 � j � i ) based onUTi+1. Therefore,
the newly inserted document is unlinkable with previous search tokens. This kind of method
of protecting forward privacy has been widely borrowed and developed, such as improving
the search efficiency [75, 131], providing verifiability of results [85, 174], and supporting range
query [180, 181]. Besides, Bost et al. [13] developed another SSE scheme with forward privacy
based on the constrained pseudorandom function, which allows the server to find all matching
documents, including newly inserted documents after receiving the constrained key allowing the
evaluation of all existing documents. Otherwise, the server can not use the previous constrained
keys to predict the evaluation for the newly inserted document. Chen et al. [29] maintained a
structure Count to store the number of times a keyword was updated after the most recent
search, as well as the total number of times the keyword was searched. With each update,
the client generates a new key based on the update count and determines the corresponding
storage location. The underlying idea of these approaches is the same as before, that newly
inserted documents must be searched using the new search token, and that it is unlinkable
between the location of the inserted document and the location of the previously searched
documents.

4.3.2 Backward Privacy Protection. The backward privacy aims at preventing deleted docu-
ments from being leaked during searches, which has been introduced recently. Bost et al. [13]
formally defined three types of backward privacy of decreasing strength for the first time and
gave instantiations of different types. The first construction, named Moneta, is backward privacy
with insertion pattern which leaks the least information, and it is realized based on ORAM at the
cost of bandwidth, storage, and computation. The second construction, named Fides, is backward
privacy with update pattern, which is a generic two-roundtrip scheme from an arbitrary scheme.
In this construction, the client uploads a ciphertext Ekω

(ind,op) to the server, where kω is an en-
cryption key of keyword ω and op ∈ {add, del}, so the server cannot distinguish whether the
received ciphertext is added or deleted. When the client performs a search, the server will return
all ciphertexts including the op is del. Then the client decrypts all ciphertexts and removes the
deleted documents, and obtains all documents matching the search. In the end, the client returns
all ciphertexts that have not been deleted to the server for storage. Additionally, they proposed
weak backward privacy in a single roundtrip by using puncturable encryption with incremental
punctures, named Janus. The construction initializes two forward-secure SSE instances, one for
storing documents encrypted with incremental puncture encryption, and the other for storing
punctured keys. When the client performs a search, the secret key sk0 and the search token are
sent to the server for searching on both instances. After the server finds all the ciphertexts and the
punctured keys, it decrypts and obtains all the documents that have not been deleted. However, the
server learns which deletion operation canceled which insertion operation during the decryption,
so the construction achieves weak backward privacy.



Since then, a body of literature [33, 150, 181] on how to improve the efficiency and rich func-
tionalities of schemes with backward privacy has been emerging. Instead of using a public-key
cryptosystem, Sun et al. [136] proposed a more efficient backward-secure construction from sym-
metric puncturable encryption, which is based on simple cryptographic tools (such as AES). The
construction preserves the privacy property of weak backward privacy and speeds up the search
latency. Chamani et al. [22] proposed three novel constructions with different levels of backward
privacy that improved previous results in multiple ways. The first scheme takes the same idea as
Fides, uploading the triplet (op,ω, ind) to the server and storing it in a dictionary, which achieves
type-II backward privacy and forward privacy. The second scheme relies on an oblivious map [158]
to achieve type-I backward privacy, which has quasi-optimal search time and non-trivial interac-
tion. The final scheme modifies the second one by reducing the number of roundtrips to improve
the search time at the cost of leaking more information (weak backward privacy). Sun et al. [135]
proposed a generic forward and backward privacy scheme relying on symmetric revocable encryp-
tion, which is non-interactive type-II backward privacy. Xu et al. [163] explored scenarios where
clients may issue duplicate update queries or delete queries to remove entries that do not exist. To
address this issue, they proposed the use of key-updatable PRF cryptographic primitives in order
to achieve a more robust DSSE with both forward and backward privacy. In addition to focusing on
the backward privacy of single keyword search, the SSE community develops the expressiveness of
search. Patranabis et al. [123] proposed a type-II backward privacy and forward privacy scheme for
conjunctive search, called Oblivious Dynamic Cross Tags (ODXT), which is derived from [19].
Zuo et al. [180] proposed a forward and backward privacy scheme supporting range queries by
leveraging the Paillier cryptosystem and binary tree.

4.3.3 Access Pattern Protection. Leaking access pattern incurs severe catastrophe for the confi-
dentiality of the outsourced databases, which has been exploited by many attacks to recover the
queries or reconstruct the databases as aforementioned [64, 70, 81, 125]. Conceptually, the access
pattern discloses the exact results matching the queries, and the adversaries have developed a va-
riety of attacks based on this leakage. Intuitively, the straightforward method to prevent it from
leaking is to return ambiguous results with matched and mismatched records (i.e., false positive
and false negative). In general, the state-of-the-art protections for access pattern are mainly cate-
gorized into access-pattern obfuscation, result padding, and oblivious access.

Differential privacy is a frequently used technique for access-pattern obfuscation, where the
client introduces noise (or dummy records) when generating indexes or queries, and then the
server returns an approximate result set with ε-differentially private. Kuzu et al. [80] first con-
sidered a privacy-aware SSE scheme leaking obfuscated access pattern in a differentially private
way, which keeps some records locally and injects some dummy records into the outsourced data-
base. Subsequently, Chen et al. [27] proposed a novel framework to protect the access pattern by
borrowing the differential privacy. They implemented the obfuscation mechanism in the index con-
struction, so that the keyword list corresponding to each document contains some keywords that
do not belong to it and some keywords that belong to it. Moreover, to guarantee that the client can
obtain all matching documents, the framework uses erasure coding to partition a document into
multiple shards, so the client is able to restore the original document based on the partial shards
received. However, this framework introduces differential privacy in the setup phase so that the
same query will get the same result, and this repetition reveals the queries frequency of the key-
words. Shang et al. [128] considered this drawback and proposed an Obfuscated SSE (OSSE) that
obfuscates the access pattern independently for each query performed. The core idea of their con-
struction is to introduce random false positives and false negatives into the generation of a query,
and generate multiple tokens per query to avoid a single token matching multiple documents.
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Therefore, OSSE achieves a high level of security but at the cost of heavy computation. Similarly,
Patel et al. [122] used differential privacy to hide the volume pattern by introducing noise during
the query, so the number of records returned by each query is distinct, even for the same query.

Result padding is another technique that is often used to protect the access pat-
tern [17, 64, 122, 162]. Specifically, it mainly aims at hiding the volume of any query from
an adversary. A naive method is padding the number of records for each query to M , where M is
the maximum records of any query. Unfortunately, the simplest way burdens the storage cost of
the service provider. Therefore, Patel et al. [122] proposed storage-friendly encrypted multi-maps
based on cuckoo hashing, which achieves the optimal storage overhead of (2+α ) times the original
cost and returns 2M records for any query. Furthermore, Xu et al. [162] theoretically analyzed the
relationship between security strength and padding overhead based on information theory, and
then proposed an extended approach based on the existing works [17, 64] with the main contribu-
tion being that the inserted dummy records are carefully crafted and indistinguishable from the real
records.

In addition to relying on differential privacy or result padding, ORAM techniques have recently
been increasingly used to protect against access pattern leakage [34, 107]. Mishra et al. [107] com-
bined ORAM techniques (such as Path ORAM [133]) and hardware enclaves (such as Intel SGX) to
propose an efficient oblivious search index, Oblix, which preserves the privacy of both the access
pattern and the result size. Specifically, they designed a novel implementation of doubly-oblivious

data structures to obliviously access the external memory at the server and the client’s internal
memory, and returned a fixed number of records to hide the result size. Demertzis et al. [34] pro-
posed a family of SE schemes combining an adjustable ORAM and an adjustable padding algorithm,
named Searchable Encryption with Adjustable Leakage (SEAL), that leaks a few bits of search
or access pattern. On the one hand, the data is partitioned into 2α regions and stored in separate
ORAMs, and the operations in each ORAM are not modified. On the other hand, each keyword list
size is padded to the closet power of x . Therefore, the parameters α and x are the leaked bits of
search pattern and access pattern, respectively, and they can be adjusted adaptively for different
efficiency and security considerations.

4.3.4 Search Pattern Protection. To eliminate the potential risks caused by the search pattern
leakage, some literature [17, 96, 119] has proposed heuristic protections to mitigate the risks while
proposing the attacks. Liu et al. [96] suggested dividing the universal keywords into multiple sub-
sets, and each time a query is made, entire keywords in the subset containing the real keyword are
queried. Cash et al. [17] pointed out that the ORAM might work to hide the leakage but, unfortu-
nately, is significantly computational. Oya et al. [119] considered multiple defenses against their
proposed attacks relying on the search pattern. One option to hide the search pattern is to force
the same documents to be returned for different keywords. And another option is to add fresh
randomness to the returned documents.

However, the above countermeasures have limitations because they are all possible effective
for specific attacks, and the search pattern may also be induced through other leakages (such
as the access pattern or the volume pattern). To be more general, Kamara et al. [67] proposed a
suppressing search pattern leakage construction, which results from a basic SSE scheme (the Pig-
gyback Scheme, PBS) with response-hiding and two compilers, Rebuild Compiler (RBC) and
Cache-Based Compiler (CBC), respectively. The construction first applies RBC to PBS to make
it rebuildable and then transforms it into a scheme that leaks no search pattern by using CBC. Fur-
thermore, Song et al. [130] considered protecting both the access pattern and the search pattern
under a dynamic SSE scheme supporting multi-user. They designed an index shuffle protocol and an
index redistribution protocol using a proxy re-encryption cryptosystem between two cloud servers



and then shuffled entire index entries after leaking the maximum allowable information. There-
fore, it is impossible for the non-colluding cloud servers to learn both the access pattern and the
search pattern. [141] and [159] used a polynomial representation of multiset to construct the index
structure and introduced random values each time a trapdoor was generated. Therefore, even for
the same keyword, the trapdoor generated by each query is different. Similarly, Shang et al. [128]
introduced random false positives and false negatives in each trapdoor generation, making it pos-
sible to get different trapdoors even when the same keyword is queried, thus hiding the search
pattern. Moreover, to prevent an adversary from inferring the search pattern from the response
length, [141] and [159] padded the response to the same size, and Shang et al. [128] hid the access
pattern by returning different records.

4.3.5 Update Pattern Protection. Different from the aforementioned forward privacy and back-
ward privacy, the update pattern considers the privacy of when updated dataset, which may breach
the privacy of an outsourced database if leaked. Wang et al. [143] first considered the problem
and posed a simple example to clarify the potential risk of leaking such information, and pointed
out that the leakage is common in any event-driven update. And then, they proposed a frame-
work, DP-Sync, to prevent the update pattern from leaking. Specifically, two differentially private
synchronization strategies, DP-Timer and DP-ANT, are provided for obtaining different 3-way
tradeoffs between privacy, accuracy, and performance. The Timer-based synchronization strategy
(DP-Timer) synchronizes an update everyT moments with a varying number of records. For each
update, the client uploads c records (may contain dummy records) to the server, where c is the
number of all newly received records within T moments with Laplace noise Lap(ϵ). The second
strategy, Above Noisy Threshold (DP-ANT), synchronizes an update after the client receives ap-

proximately θ records. For each update, the client will generate a threshold, θ̃ = θ + Lap(ϵ ′),
which is regenerated in each round. And then if the client receives θ̃ records, he/she will signal
synchronization.

Both of the above two strategies hide the number and the inserted time of records in each
update, and ensure update privacy. To achieve different tradeoffs between privacy, accuracy, and
performance, the parameters, T and θ , of the strategies can be adjusted adaptively. For instance,
to achieve high accuracy, parameterT can be set close to a single time unit, or parameter θ can be
set close to a single record.

4.3.6 Result Pattern Protection. The recently proposed Oblivious Cross-Tags (OXT) proto-
col [19] supports efficiently conjunctive keyword search at the cost of leaking “partial” database
information to the server. Specifically, OXT reveals to the server which documents contain both
keyword pairs (ω1, ωi ) when performing a search, where ω1 is the least frequent keyword and ωi

is the other keywords in the conjunctive query. This leakage is referred to as the Keyword Pair

Result Pattern (KPRP) and has been exploited by attacks [17, 64, 113, 172] to compromise the
database confidentiality. Therefore, there arises a concern about the security-efficiency tradeoffs
for the OXT protocol.

Motivated by the particular leakage of OXT, Lai et al. [82] attempted to eliminate the KPRP
leakage while preserving the performance of OXT. They proposed a new SSE protocol, Hidden

Cross-Tags (HXT), extended on OXT that reveals only the documents matching all query key-
words but removes KPRP. The HXT additionally relies on the Symmetric-key Hidden Vector

Encryption (SHVE) and the Bloom Filters (BF) compared to OXT. It inserts the elements stored
in XSet into BF, and encrypts BF with SHVE. When executing the query, the XSet membership test
for conjunctions in OXT is replaced by an SHVE token generation and query. Thus, HXT hides the
KPRP information about whether the document containing ω1 contains other ωi , but introduces
the extra interactions.

32 



A Survey on Searchable Symmetric Encryption 33 

5 OPEN ISSUES AND FUTURE INSIGHTS

In this section, we discuss the open issues in existing SSE and envision research directions
subsequently.

5.1 Open Issues in Existing SSE

— Functionalities. Most existing schemes adopt inverted lists as the index structure and per-
form the search in memory. However, these in-memory schemes are not suitable for exten-
sive databases and indexes because they cause substantial random accesses and the indexes
need to be stored on disk. Despite a few works on this issue, it is still in the early stages of
research, and there are many problems to be solved (such as update, query expressiveness,
storage efficiency, etc.). How to design an efficient and practical scheme to support very large
databases is of great significance in promoting the application of SSE. Besides, the relation-
ship between storage, efficiency, and security is an open issue that needs to be considered.
The current schemes usually sacrifice the performance of other aspects to optimize one. How
to strike the balance of these three metrics remains an open issue to be addressed.

— Attacks. Analyzing the information leakages in the search and update and designing ef-
fective attacks can help discover deficiencies in the SSE schemes and thus remedy them.
Therefore, it is of great significance to design an efficient, convenient, and accurate attack
to reinforce the robustness of the schemes. However, many existing attacks rely on assump-
tions, such as the knowledge of the query distributions, all possible tokens, or the underlying
keywords for partial trapdoors, and so on, some of which seem unrealistic. Few studies aim
at compromising privacy by inherent leakage without other prior assumptions. It is critical
to design attacks that rely as little as possible on extra assumptions.

— Defenses. Providing whole-process security for data is challenging but vital for users to pro-
tect data privacy. There have been countermeasures for existing known information leakages
that may compromise data confidentiality in recent years. However, these countermeasures
are aimed at a single leakage and cannot effectively prevent data privacy from various at-
tacks. Integrating defenses against multiple attacks can be helpful but may cause unneces-
sary computational costs and utility loss. A practical SSE scheme should satisfy the users’
requirements concerning security, efficiency, and functionality. On the search side, protec-
tion against the search pattern relies on computationally expensive cryptographic tools or
increased communication overhead, so it would be desired to develop efficiency-oriented
protection techniques for search patterns. Meanwhile, it is necessary to protect both the ac-
cess pattern and the search pattern, since the search pattern can be inferred from the access
pattern. On the update side, achieving efficient backward privacy is challenging, especially
considering designing efficient Type-I backward privacy in a single roundtrip. In addition,
most of the existing schemes that support forward and backward private allow limited query
expressiveness, so it is still open to constructing secure SSE schemes and supporting as rich
query expressiveness as possible.

5.2 Research Directions

Bridging the gap between encrypted data searches and plaintext searches is an ongoing research
direction, including efficiency, query expressiveness, multi-cloud collaboration, scalability, and so
on. Combining memory and disk to design cross-hierarchy indexes and retrieval protocols may
be a potential idea for efficiently searching very large databases. Meanwhile, research on multiple
cloud servers to cooperate to perform storage, search, computing, and other operations. Enriching
query expressiveness (such as regular matching) or incorporating multiple query expressiveness
can be considered to improve the accuracy further.



Current schemes focus on a single data type (e.g., textual, images, spatial text), and few schemes
consider the search involves multiple data types. With the diversification of data, supporting vari-
ous types of data search has become a future requirement. For example, someone wants to search
for images containing “school” within a specific time frame, images of landscapes taken at “school”,
and so on. Therefore, considering the cross-data and cross-index schemes is a promising direction
in the future. At the same time, the balance between storage, efficiency, and security should also
be considered.

Concerning attacks, exploring attacks that rely on as few assumptions as possible is the key
to improving realism. On this basis, in terms of search, potential directions are to consider trans-
forming the problem of trapdoor recovery into an optimization problem or design attack by in-
corporating novel data structures and statistical theories. In terms of updates, more exploration
of the impact of information leakage on data privacy is needed, especially the potential risks of
backward privacy. Moreover, existing attacks are designed based on well-studied leakages, and it
is meaningful to explore whether there are other information leaks during the operations of SSE
schemes. Regarding defenses, whole-process security is always a direction worthy of continuous
exploration and improvement. Specifically, designing and optimizing encryption algorithms and
index structures is a compelling research topic.

Another exciting research direction is integration with other technologies. For example,
blockchain can be used to verify the integrity of the results or to record the behaviors of the
users and the cloud servers for traceability of destructive operations. Combine deep learning with
conceptual graphs to improve the accuracy of semantic search.

6 CONCLUSIONS

SSE has been widely studied and has promising application prospects in many fields. However,
due to the rapid development of SSE, the existing SSE surveys have been unable to conform to
the current trend. This survey systematically reviews current work on search functionalities and
privacy-preserving of SSE. First, we survey the work of the past few decades and classify SSE based
on query expressiveness. At the same time, we summarize the methods used in the literature and
illustrate their contributions to efficiency, storage space, index structures, and so on. Then we
complement the gap in the privacy of SSE, which has received significant concerns in recent years,
and introduce in detail the attacks and the related defenses. Finally, we discuss the open issues and
challenges in existing SSE and future research directions.
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