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Abstract—As an advanced one-to-many public key encryption
system, attribute-based encryption (ABE) is widely believed
to be a promising technology for achieving flexible and fine-
grained access control of encrypted data on untrusted storage
servers (e.g., public cloud servers). However, user revocation
in ABE is a critical but challenging problem, and designing
efficient revocable ABE has been an active research topic in
the past decade. Almost all the existing revocable ABE schemes
incorporate a timestamp in the encryption algorithm such that
revoked users cannot decrypt ciphertexts generated in future
time intervals. To prevent revoked users from decrypting past
ciphertexts, the storage server needs to perform a process
called ciphertext delegation (Sahai et al., CRYPTO’12) that
periodically updates the timestamp for all ciphertexts. As the
number of ciphertexts could be huge in a storage system,
ciphertext delegation could pose a huge computation overhead
to the server.

Motivated by the popularity of commodity Trusted Exe-
cution Environment (TEE) technologies, this paper initiates
the study on hardware-based revocable ABE (HR-ABE) to
eliminate the (unscalable) ciphertext delegation and prevent
collusion attacks between an untrusted storage server and
revoked users. We formalize this new notion and present an
efficient HR-ABE construction that also supports outsourced
decryption for resource-constrained data users. Furthermore,
HR-ABE is also designed to address the potential secret leakage
problem suffered by TEE (e.g., due to side-channel attacks) so
that the leakage of secrets possessed by TEE does not lead to
leakage of user data. We prove HR-ABE’s security formally
and benchmark its performance experimentally.

Index Terms—Attribute-based Encryption, Trusted Execution
Environment, Data Sharing, Revocation

1. Introduction

Attribute-based encryption (ABE) [14] is a one-to-many
public key encryption system that enables flexible and fine-
grained access control of encrypted data on an untrusted
storage server. There are two types of ABE, ciphertext-
policy ABE (CP-ABE) and key-policy ABE (KP-ABE) [35].
In CP-ABE, a key generation center (KGC) issues a private

key to every data user (DU) based on their user attributes.
Each data owner (DO) binds an access policy with a cipher-
text such that a DU can decrypt a ciphertext only if the set
of attributes associated with the DU’s private key satisfy the
access policy in the ciphertext. KP-ABE operates in a dual
manner where the positions of the policy and the attributes
are swapped. Without loss of generality, we focus on CP-
ABE, but our results can also be extended to KP-ABE.

Despite many elegant ABE constructions being proposed
in the literature [1], [9], [14], [29], [30], efficient user
revocation remains as a critical but challenging problem.
There exist two revocation mechanisms: direct [24], [34]
and indirect [3] revocation. In direct revocation, a DO
encrypts a file by explicitly specifying the revocation list (as
a separate policy) such that revoked users cannot decrypt
the ciphertext. Direct revocation does not affect the non-
revoked DUs; however, it requires all DOs to maintain the
latest revocation list, which grows over time and affects the
ciphertext size. The indirect revocation mechanism, first pro-
posed for identity-based encryption (IBE) [7], has been more
popular and extensively studied in the past decade (e.g.,
[12], [23], [30]). The general idea of indirect revocation is
to embed a timestamp in the ciphertext and the KGC updates
the private keys of non-revoked DUs periodically such that
revoked DUs will not be able to obtain valid key updates to
decrypt ciphertexts generated in any future time intervals.
Some attractive features of the existing indirect revocation
schemes include public broadcasting and logarithmic size
(with respect to the number of DUs) key update for each
time interval.

Although the indirect revocation approach addresses the
user revocation for future ciphertexts, the revoked DUs can
still have the power to decrypt past ciphertexts they were
originally allowed to. To mitigate this problem, Sahai et
al. introduced the concept of ciphertext delegation [30],
which allows the storage server to periodically update the
timestamps in all ciphertexts. However, as the number of
ciphertexts in a storage server is huge and all ciphertexts
need to be updated at each time interval, the process could
pose a huge workload to the server.

In summary, the existing indirect revocation mechanisms
for ABE have the following limitations:
1) all non-revoked users periodically update their keys;
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TABLE 1: Performance comparison among existing revocable attribute-based encryption schemes

Scheme Rev. type Cipher delegation Revocation cost Key update size Key size Ciphertext size

[3] Direct Not supported Not required Not required Op4|A|q ¨ |G| OpRplog N
R ` 1q ` |A|q ¨ |G|

[30] Indirect Op|A| log |Ω| ¨ |D|q OppN ´ Rq ¨ log N
R q ¨ |A| ¨ CE OppN ´ Rq ¨ log N

R q ¨ |G| OplogN |A|q ¨ |G| Oplog T p|A| ` 1qq ¨ |G|

[12] Indirect Op|Ω|q ¨ |D| OppN ´ Rq ¨ log N
R q ¨ CE OppN ´ Rq ¨ log N

R q ¨ |G| Oplog N
R |A|q ¨ |G| Op3|A| ` 3q ¨ |G|

HR-ABE TEE Not required OpR logNq ¨ CH Not required Op2|A|q ¨ |G| Op2|A| ` 4q ¨ |G|

N : the number of all users; R: the number of revoked DUs; |Ω|: the universe of attribute; |A|: the size of attribute set; T : the maximum
number of time periods; |D|: the number of all previous ciphertexts; |G|: the length of element in group G; CE : the cost of exponentiation
operation; CH: the cost of hash operation.

2) the storage server needs to periodically perform (unscal-
able) ciphertext delegation to prevent revoked users from
decrypting past ciphertexts.

Our question. The Trusted Execution Environment (TEE)
(e.g., Intel SGX [11], AMD TrustZone [16]) has become a
popular and promising technology to provide confidentiality
and integrity guarantee for secure protocol design. This
motivates us to investigate the possibility of eliminating
drawbacks of the above-mentioned revocation mechanisms
using hardware technology. Since the host where a TEE is
deployed could be malicious, we elaborate on two common
knowledgeable TEE trust models.
‚ Completely trusted TEE model [33]. In this model, users

believe that the code inside an enclave is robust enough to
prevent side channel attacks, so that the TEE guarantees
both confidentiality and integrity of the internal state (code
and data) of the enclave.

‚ Transparent TEE model [19]. This model makes a very
minimal trust assumption, namely the adversary who con-
trols the TEE host is able to observe the entire state of
an enclave except for the attestation signature key, such
that the TEE only guarantees integrity of the internal state
(code and data) of the enclave.

Based on the two TEE trust models, this work aims to
provide answers to the following two research questions:

(1) Can we use commodity TEE technologies to build
secure and practical revocable ABE systems that eliminate
the drawbacks of the existing revocation mechanisms?

(2) If the answer to the previous question is yes, what
level of security can the hardware-based system achieve
under different TEE trust models?

1.1. Our Contributions

We initial the study and provide affirmative answers to
the above questions by formalizing the notion of hardware-
based revocable ABE (HR-ABE) and proposing a concrete
scheme that eliminates ciphertext delegation and key update.
Specifically, our main results include two folds.
‚ Under the completely trusted TEE model, we formulate

a security model (sIND-ColA) for HR-ABE, which cap-
tures the collusion attacks. We show HR-ABE is provable
security, even if collusion attacks happened between the
cloud server and revoked DUs.

‚ Under the transparent TEE model, we also formulate a
security model (sIND-CTA) for HR-ABE that captures

the Corrupted TEE Attacks (CTAs), in which malicious
server can learn TEE’s internal state, including the user
data, due to side-channel attacks [13], [27], [32]. We
show that HR-ABE preserves semantic security against
the malicious server, even if CTAs happened.

We demonstrate that HR-ABE outperforms the existing
pure crypto-based revocation solutions and benchmark HR-
ABE’s performance. Table 1 presents a comparison between
our HR-ABE and the existing revocable ABE schemes. As
shown in the table, we stress that HR-ABE does not require
ciphertext delegation or key update.

1.2. Technical Overview

The use of TEE motivated us to first consider solutions
for revocable attribute-based encryption based on a less pow-
erful cryptographic primitive – proxy re-encryption (PRE
[6]), in which a re-encryption key is involved to transform a
ciphertext encrypted under a public key into a new ciphertext
under a different key. In our case, we let TEE hold the re-
encryption key and then only transform ciphertexts for non-
revoked DUs. Unfortunately, the above straightforward idea
does not work: if we let TEE manage the access policy, then
we lose the ability to let data owner (DO) directly specify the
access policy during encryption; if we allow DO to specify
the access policy, CSP can arbitrarily tamper with the policy
set by DO who is not supposed to apply any secret key in
the encryption process.

We observe that the outsourced ABE (OABE) [15] can
be adapted for the purpose of user revocation. OABE was
introduced to let a server (e.g., a cloud service provider,
or CSP) perform most of the decryption workloads (also
known as outsourced description) for end DUs. On one
hand, OABE involves a key pair pTK,SKq, in which the CSP
employs TK (transformation key) to cancel the attribute-
based access control layer in an ABE ciphertext and the
DU keeps an SK (secret key) to recover the message. On
the other hand, OABE is carefully designed to achieve re-
playable chosen-ciphertext attacks (RCCA) security [15] in
the outsourced partial decryption setting, which ensures the
CSP can only produce a legitimate transformed ciphertext
containing the original message to the DU for decryption.

To perform user revocation, a naive solution is to let
CSP maintain a DU list and its corresponding transformation
keys; CSP then removes a DU and his/her transformation
key from the list when the DU is revoked. While this
approach does not require ciphertext delegation, Collusion



Attacks between CSP and revoked DUs could easily fail
the revocation mechanism.

1.2.1. Hardware-based Revocation Mechanism. A natural
remedy to address the collusion attack is to perform the
ciphertext transformation within a TEE deployed on the
untrusted server. It is desirable to retain the main merit of
OABE, i.e., reducing the workload for resource-constrained
DUs. However, the ciphertext transformation (i.e., partial
decryption for canceling the attribute-based access control
layer) is the most expensive operation in ABE decryption.
Given that the TEE needs to perform the transformation for a
large number of ciphertexts from multiple DUs, the solution
becomes unscalable because of TEE’s resource limits, e.g.,
the available memory size in SGX is only about 90MB.

Based on such an observation, our basic idea is to
split the original ABE decryption key into three parts: a
transformation key (TK), a revocation key (RK), and a
decryption key (DK). We let TEE hold the RK and now
the transformation process consists of two stages. (1) CSP
employs TK to transform a ciphertext into a partially trans-
formed ciphertext (PTC); (2) TEE checks that DU is not
revoked (i.e., in the DU list) and utilizes RK to transform
the PTC into a transformed ciphertext (TC). Finally, TC
is sent to the DU for final decryption using DK. We call
such a cryptographic building block ABE with two-stage
outsourced decryption (ABE-2OD). In ABE-2OD, the most
resource-intensive operations are offloaded from the TEE
to CSP. Consequently, the TEE only needs to perform
lightweight operations.

1.2.2. ABE-2OD Construction. The syntax of ABE-2OD
is similar to that of OABE [15], except that it now involves
two transformation algorithms, i.e., Transform1 executed
by the TK holder (CSP) and Transform2 run by the RK
holder (TEE). Nonetheless, we cannot easily extend OABE
to construct a secure ABE-2OD, as shown below.

Our first attempt is to split the OABE DU secret key SK
= z into two parts pSK1 “ γ,SK2 “ βq, where z “ β ¨γ, and
then set RK = SK1 and DK = SK2. However, the malicious
CSP may submit arbitrary transformation queries to TEE.
We observe that answering arbitrary transformation queries
without checking PTC’s legitimacy may lead to leakage of
the revocation key RK. Unlike the OABE scheme, in which
DU can recover the message and check the ciphertext’s
legitimacy (i.e., via OABE’s RCCA security), TEE in such
a design holding RK = SK1 can only produce a TC, which
needs to be sent to the DU (hence observable by the attacker)
for the final decryption. In other words, TEE cannot recover
the message and thus has no way to check whether a given
PTC is a legitimate one while being invoked by the CSP to
perform Transform2.

To check a PTC’s legitimacy, our second attempt is
to employ the “decrypt-then-reencypt” paradigm in TEE,
which is built on OABE and a public key encryption (PKE)
scheme. Let (TK, SK) be an OABE key pair and pek, dkq be
a PKE key pair. Then the revocation key RK = (SK, ek) held
by the TEE binds the attribute-based key TK with a DU’s

TK!/# SK = &

TK!/$%!
TK!/$%"

DK = (HK = *&
*'

Hidden Relation

PrivK! ABE key

OABE keys

ABE-2OD 
keys

Figure 1: Keys in ABE, OABE, and ABE-2OD. α is the
master key. HK is a helper key that corresponds to RK held
by the TEE.

final decryption key dk. Given an OABE ciphertext, after
the first stage transformation done by CSP (with TK), TEE
(with RK) recovers the original message using SK, and then
re-encrypts the message using ek if the DU is not revoked.
Although the above “decrypt-then-reencypt” design allows
TEE to perform a sanity check on a PTC, it only works if we
have full trust on TEE since the TEE essentially becomes a
“super DU” who can decrypt and see all the messages.

However, there could be concerns raised by data own-
ers/users when TEE can see all the messages, as CTA
(described before) could happen in reality when TEE is
deployed on a malicious host. As a result, CSP may learn
TEE’s internal state, including the user data. The “decrypt-
then-reencrypt” approach loses all security protection under
CTA, which is undesirable. Therefore, our goal is to design
a secure ABE-2OD that TEE only serves the duty of revo-
cation but does not see the user data (or weaken the security
of OABE). Our final design of ABE-2OD circumvents the
above-mentioned flaws. Figure 1 shows the high-level idea
of our design. In Green’s OABE, an ABE private key PrivKα

containing the master key α is split into TKα{z and z. In
our ABE-2OD, for checking the legitimacy of PTC, we set
DK = β, RK = pγ1, γ2q and then hide the information of
RK into TK = (TK1, TK2), which is related to RK (i.e.,
TKα{pβγ1q, TKα{pβγ2q). With such a method, a valid PTC
calculated by CSP includes two components CP1 and CP2

such that Cγ1

P1 “ Cγ2

P2. If the hidden relation holds, TEE
cancels out the term 1{γ1 in CP1, which is then forwarded
to DU for decryption using β.

We give an intuitive analysis for the mechanics underly-
ing the design that can achieve our objectives. (1) Each DU
has a unique pair pγ1, γ2q, which prevents PTCs calculated
from inconsistent TKs from bypassing the legitimacy check-
ing mechanism. (2) Only TEE holds the RK and is capable
of verifying the relation. By checking the PTC’s legitimacy,
RK is protected from being leaked when generating the
corresponding TC. (3) The design handles corrupted TEE
attacks because TEE only helps DU cancel out the blinding
factor γ1, without ever accessing the sensitive message M .

1.2.3. HR-ABE Construction. Our HR-ABE utilizes the
above ABE-2OD as its main building block. Collusion
attacks are prevented since ABE-2OD ensures that for any
DU, without its RK (i.e., the help of TEE), no adversary
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can learn any information about the underlying message of
a target ciphertext, even if both TK and DK are corrupted.

While ABE-2OD looks intuitive to enable user revoca-
tion in an ABE system by allowing the TEE to hold RKs, the
malicious CSP could launch rollback attacks by supplying a
staled DU list to the TEE. Therefore, ensuring the integrity,
especially the freshness, of the DU list is crucial for securing
user revocation. We resist rollback attacks through two
aspects: a signature from the KGC (signed on the latest DU
list and a timestamp) and trusted replay-protection services
provided by TEE (e.g., Intel SGX’s RPS module).

To summarize, our HR-ABE system, built on top of
an ABE-2OD, a signature scheme and TEE, answers the
research question affirmatively. HR-ABE achieves DU re-
vocation efficiently (i.e., no ciphertext delegation, no key
update, lightweight transformation within TEE) and securely
(i.e., resisting collusion attacks and corrupted TEE attacks).
sMHT as the state. In our HR-ABE system, the DU list
is utilized as the TEE state. Since the list contains all the
unrevoked DUs, the cost of loading the entire DU list to
TEE will become unaffordable in practice. By leveraging
an signed Merkle hash tree (sMHT) as the state, we are
able to reduce the size of a membership proof, i.e., checking
whether a DU is in the latest DU list, to logarithmic size.

1.3. Roadmap

The remainder of this paper is organized as follows. In
Section 2, we present the related preliminaries. The detailed
ABE-2OD and HR-ABE (including framework, definitions,
construction, and security analysis) are presented in Section
3 and Section 4, respectively. After that, we describe how
to use sMHT as the state in Section D and benchmark the
performance in Section 5. Finally, we conclude the paper in
Section 6. Besides, well-formed appendices are presented.

2. Preliminaries

2.1. Signature Scheme

Definition 1. (Signature Scheme [17].) A signature scheme
consists of three probabilistic algorithms ΠSig = (KeyGen,
Sign, Ver) between a signer and a verifier. Specifically,
pvk, skq Ð KeyGenp1λq: The probabilistic key generation
algorithm takes as input a security parameter 1λ. It gener-
ates a signing key sk and a verification key vk.
σ Ð Signpsk,Mq: The probabilistic signature calculation
algorithm takes as inputs the signing key sk and a message
M . It calculates a signature σ.
t0, 1u Ð Verpvk,M, σq: The deterministic signature verifi-
cation algorithm takes as inputs vk, M , and σ. It outputs 1
if the signature is generated by Sign; otherwise, outputs 0.

The existential unforgeability against chosen message
attacks (EUF-CMA, [17]) is the standard security definition
for digital signature schemes. In a nutshell, a signature
scheme is said to be EUF-CMA secure if it is computation-
ally infeasible for an attacker to produce a valid signature

on a message that the attacker has not seen before, even if
the attacker has access to a signature oracle that can produce
signatures on arbitrary messages of the attacker’s choice.

2.2. RCCA-secure OABE Scheme

LSSS access policy. Most of the attribute-based encryption
schemes are based on the LSSS-style access policy, which
is proved equivalent to the tree-style access policy [4].
For more details, please refer to Appendix A. Briefly, we
represent an access policy as pM, ρq and an attribute set as
A. We denote by A $ pM, ρq that an attribute set A satisfies
an access policy pM, ρq.

Definition 2. (ABE with Outsourced Decryption (OABE)
[15].) An OABE scheme is executed among a KGC, a proxy
server, multiple DOs, and multiple DUs. It consists of five
algorithms. Specifically,
(PK, MSK) Ð Setupp1λ,Ωq: The probabilistic setup algo-
rithm takes as input a security parameter 1λ and an attribute
universe Ω, KGC generates a public key PK and a master
key MSK.
C Ð Enc pPK,M, pM, ρqq: The probabilistic encryption al-
gorithm takes as input a public key PK, a message M , and
an LSSS-style policy pM, ρq, DO outputs a ciphertext C.
(TK, SK) Ð KeyGen pMSK, Aq: The probabilistic key gen-
eration algorithm takes as input a master key MSK, and an
attribute set A Ă Ω, KGC outputs a transformation key TK
and a secret key SK.
tTC,Ku Ð Transform pTK,Cq: The deterministic transfor-
mation algorithm takes as input a transformation key TK and
a ciphertext C, proxy server outputs a transformed ciphertext
TC if A $ pM, ρq and the error symbol K otherwise.
tM,Ku Ð Dec pSK,TCq: The deterministic decryption al-
gorithm takes as input a secret key SK and a transformed
ciphertext TC, DU outputs a message M if A $ pM, ρq;
otherwise, it outputs an error symbol K.

The replayable chosen-ciphertext attacks (RCCA) secu-
rity is a weak variant of the classical CCA security [8].
RCCA has shown its importance in outsourced decryption
because it captures the following security: given a ciphertext,
the proxy server cannot change the underlying message in
a meaningful way. In fact, RCCA provides confidentiality
and integrity guarantees for the underlying message during
transformation, which ensures the security of outsourced
ciphertexts. Please refer to Section 2.2 in [15] for OABE’s
RCCA security model.

2.3. Trusted Execution Environment (TEE)

TEE performs confidential computing based on user-
defined programs in an isolated secure enclave. In a nutshell,
TEE offers several essential features.
‚ Attestation: A client can build a secure channel with TEE

by remote attestation. Without loss of generality, let KTEE
be the symmetric key shared between the client and TEE.
Furthermore, let ΠAE “ pEnd,Decq be an authenticated



encryption scheme, then the communication between TEE
and KGC is encrypted by EncpKTEE, ¨q and decrypted by
DecpKTEE, ¨q. The client installs a program prog 1 via

G.installpprogq.

‚ Isolated execution: TEE executes the program

poutp,Γq Ð G.resumep“prog”, inpq

in the secure enclave. The execution within TEE is
impervious to tampering by either software or physical
attackers. After completing the execution, TEE sends the
output, denoted as outp, along with a proof Γ, to the
client. The proof Γ indicates that outp is indeed produced
by the TEE.

‚ Seal and unseal: Seal, accomplished via
ΠAE .EncpKTEE, ¨q, denotes TEE encrypting a secret
and storing it in non-volatile external storage. Unseal,
achieved through ΠAE .DecpKTEE, ¨q, denotes TEE
retrieving the secret from external storage.

TEE provides trusted time service against rollback at-
tacks. Any commodity TEE that provides this service can
be utilized to deploy our HR-ABE system. For instance,
Intel SGX uses converged security and management engine
(CSME, e.g., protected real-time-clock), which is a dedi-
cated firmware in the Platform Control Hub (PCH) [10].
By calling sgx get trusted time, a trusted timestamp can be
obtained. Additionally, CSME also has a replay-protected
storage (RPS). Using sgx create monotonic counter, we
can store a counter value in RPS and retrieve the value from
RPS by calling sgx read monotonic counter.
Remark. While TEE ensures confidentiality protection on
both input and output, it has been shown that commodity
TEEs leak internal data (e.g., messages, states, intermediate
results) due to side-channel attacks [13], [27], [32].

3. ABE-2OD: ABE with Two-Stage Out-
sourced Decryption

3.1. Syntax of ABE-2OD

Let P denote the policy space and pM, ρq P P represent
an LSSS-style policy. Let Ω denote the attribute universe
and A Ă Ω be a set of attributes. Let M be the message
space and M P M be a message to be encrypted.

Definition 3. (ABE-2OD). An ABE-2OD scheme Π is de-
fined by the following six algorithms over the policy space
P , the attribute universe Ω, and the message space M.
‚ pPK,MSKq Ð Setupp1λ,Ωq: The probabilistic setup

algorithm takes as input a security parameter 1λ and an
attribute universe Ω. It outputs a public key PK and a
master secret key MSK.

‚ C Ð Enc pPK,M, pM, ρqq: The probabilistic encryption
algorithm takes as input a public key PK, a message M P

1. Here, we use the G abstraction that allows parties to recognize a
genuine hardware deployed in the malicious host. Readers are referred to
[28] for details.

M, and an LSSS-style policy pM, ρq P P . It outputs a
ciphertext C.

‚ (TK, HK, DK) Ð KeyGen pMSK, Aq: The probabilistic
key generation algorithm takes as input a master secret
key MSK, and an attribute set A Ă Ω. It outputs a key
triple (TK, HK, DK), where TK is the transformation key,
HK is the helper key, and DK is the decryption key.

‚ tPTC,Ku Ð Transform1 pTK,Cq: The first transfor-
mation algorithm takes as input a transformation key TK
and a ciphertext C. It outputs a partially transformed
ciphertext PTC if A $ pM, ρq and the error symbol K

otherwise.
‚ tTC,Ku Ð Transform2 pHK,PTCq: The second trans-

formation algorithm takes as input a helper key HK and
a partially transformed ciphertext PTC. It outputs a
transformed ciphertext TC or an error symbol K.

‚ tM,Ku Ð Dec pDK,TCq: The decryption algorithm
takes as input a decryption key DK and a transformed
ciphertext TC. It outputs M or an error symbol K.

Decryption correctness. ABE-2OD requires that for any
λ, Ω, @A P Ω, @M P M, @pM, ρq P P , (PK, MSK) Ð

Setupp1λ,Ωq, C Ð Enc pPK,M, pM, ρqq, (TK, HK, DK)
Ð KeyGen pMSK, Aq, PTC Ð Transform1 pTK,Cq, and
TC Ð Transform2 pHK,PTCq, we have
‚ If A $ pM, ρq,

PrrDec pDK,TCq “ M s ě 1 ´ neglpλq;

‚ Otherwise A & pM, ρq,

PrrDec pDK,TCq “ M s ď neglpλq;

where neglpλq is a negligible function.
Transformation correctness. We remark that decryption
correctness implies transformation correctness. The trans-
formation correctness means that if (TK, HK, DK) are
generated properly, then we have that

PrrTransform2 pHK,PTCq “ Ks ď neglpλq;

3.2. Security Models of ABE-2OD

Intuition. In the OABE system presented by Green et al.
[15] in Section 2.2, message confidentiality is ensured even
if attackers have access to the corresponding TK. This means
that attackers without the DK cannot gain any information
about the message M . In ABE-2OD, the original ABE
private key is split into three parts: TK, HK, and DK. If an
attacker corrupts only one of the two keys (HK or DK), they
will not be able to decrypt a ciphertext, even if A $ pM, ρq.
More precisely, while DK provides decryption security, HK
guarantees transformation security.
‚ HK for transformation security. We define a formal secu-

rity model, called sIND-CDA (selective indistinguishabil-
ity against corrupted DK attack), which means attackers
without HK learn nothing of M , even if both TK and
DK are corrupted. To model the adversary’s capabilities,
we permit it to query an OCorruptDK oracle (which allows
the adversary to corrupt DKs) and an OTransform2 oracle



(which allows the adversary to query a PTC, and then
responds to the adversary a transformed result).

‚ DK for decryption security. We define another formal se-
curity model, called sIND-CHA (selective indistinguisha-
bility against corrupted HK attack), which ensures that
attackers without DK learn nothing of M , even if both TK
and HK are corrupted. In order to model the adversary’s
capabilities, we permit it to query an OCorruptHK oracle
(which allows the adversary to corrupt HKs) and an ODec
oracle (which allows the adversary to query a TC, and
then responds to the adversary a decrypted result).

Please refer to Appendix B.1 for detailed security models.
Remark. Note that (TK, HK, DK) is said to be a consistent
key tuple if it is generated from one invocation of algorithm
KeyGen. Since PTC is generated from a ciphertext C and
a transformation key TK, a real adversary may generate
the PTC from a modified ciphertext C’ or an inconsistent
TK1. We stress that sIND-CDA implies the consistency of
TK whereas sIND-CHA implies the non-modifiable of C.
Specifically, (1) if PTC is generated from an inconsistent
TK1, Transform2 outputs K with an overwhelming proba-
bility; (2) if PTC is generated from a modified ciphertext
C’, the probability that Dec outputs K is also close to 1.

3.3. Design of ABE-2OD

Before presenting our design, we first briefly describe
how Green’s OABE [15] works. As shown in Figure 1,
OABE involves a key pair pTKα{z,SK “ zq. For decrypting
a ciphertext, a transformation algorithm uses TKα{z to can-
cel the attribute-based access control layer in the ciphertext
and outputs a transformed ciphertext, which is an El Gamal
ciphertext in the group GT and can be viewed as a ciphertext
for the user who holds z as the private key. Finally, the
decryption algorithm leverages z to recover the message.

3.3.1. Naive Design. To achieve sIND-CDA, one naive
solution, based on OABE, is to split the OABE’s SK = z
into two parts pγ, βq, where z “ β ¨ γ, and then set HK = γ
and DK = β. Then Transform1 uses TK to cancel out the
access policy layer and generates a PTC = pC0, CP q. After
that, the algorithm Transform2 uses γ to produce a TC =
pC0, C

γ
P q, which then is decrypted by β.

Arbitrary transformation queries. However, the naive solu-
tion cannot guarantee sIND-CDA security because the ad-
versary may submit arbitrary queries to OTransform2. For ex-
ample, adversary can query a modified PTC1

“ pC 1
0, C

1
P “

hq, where h can be randomly or specifically chosen by the
adversary and OTransform2 always outputs pC 1

P qγ “ hγ to the
adversary. In such a way, adversary can obtain many pairs
of ph, hγq, which may lead to the leakage of γ. The absence
of a legitimacy checking mechanism for PTC fundamentally
causes the naive design to fail in achieving sIND-CDA.

3.3.2. Concrete Construction. To avoid the leakage of HK,
the algorithm Transform2 must check whether a given PTC
is legitimate without performing a full decryption. Based
on Green’s OABE [15], we present a concrete construction

of ABE-2OD in Figure 2. Our approach to check a PTC’s
legitimacy is by setting HK = pγ1, γ2q, which are chosen
randomly in each invocation of KeyGen. The information
of pγ1, γ2q is bound into a pair of OABE transformation
keys TK = (TK1, TK2). With such an approach, a PTC
consists of two components pCP1, CP2q and the relation
Cγ1

P1 “ Cγ2

P2 holds only if PTC is calculated from the TK,
that is consistent with HK.

The ciphertext of our ABE-2OD is the same as Green’s
RCCA OABE scheme. In detail, the access control layer
tDi, EiuiPrℓs hides a secret (i.e., encryption randomness) s.
Such a ciphertext is decrypted via three steps.
‚ The first stage transformation. During Transform1, if
A $ pM, ρq, its corresponding TK “ pTK1,TK2q, com-
bined with the access policy layer tDi, EiuiPrℓs and the
term C2 “ gs, can recover CP1 and CP2 correctly, which
equal epg, gqαs{pβγ1q and epg, gqαs{pβγ2q, respectively. In
the end, it produces a PTC = pC,C 1, CP1, CP2q, where
C and C 1 remain unchanged.

‚ The second stage transformation. Note that CP1 and
CP2 contain γ1 and γ2 in their exponents. Since HK =
pγ1, γ2q, Transform2 can verify whether Cγ1

P1 “ Cγ2

P2.
If the relation holds, it means that PTC is a legitimate
one. After that, it is able to cancel out the γ1 in the
exponent of CP1 and calculates a TC that consists of
pC,C 1, Cγ1

P1 “ epg, gqαs{βq.
‚ The final decryption. Obviously, TC is an El Gamal

ciphertext in the group GT , but also with RCCA security.
Since DK “ β, algorithm Dec recovers and verifies the
message M .

3.4. Security Analysis

3.4.1. sIND-CDA. sIND-CDA reflects that given (TK, DK),
attackers without corresponding HK learn nothing of M .

From the construction, we can observe that only the
party who holds HK can calculate the correct TC. Specif-
ically, CP1 “ epg, gqαs{pβγ1q can also be treated as an
El Gamal ciphertext under private key 1{γ1. Hence, if no
information of γ1 is leaked, CP1 appears like a random
element of GT .

On the other hand, our ABE-2OD does not leak γ1 to
the adversary. First, Transform2 verifies the legitimacy of
the PTC via checking Cγ1

P1 “ Cγ2

P2. It ensures γ1 will not be
leaked when performing Transform2 under the Knowledge
of Exponent (KEA) assumption (refer to Appendix B for
details). Secondly, the randomness t1 and t2 are leveraged
to blind the pγ1, γ2q in pTK1,TK2q, which ensures the ad-
versary cannot obtain the information of pγ1, γ2q from TKs.
Lastly, the output TC = epg, gqαs{β contains no information
of γ1. Therefore, the adversary cannot recover M from
CP1, even DK is leaked. Hence, our ABE-2OD achieves
sIND-CDA, which is formally described in THEOREM 1.
The detailed proof is deferred to Appendix B.2.

Theorem 1. ABE-2OD presented in Figure 2 is sIND-CDA
if Green’s OABE scheme (i.e., ΠOABE) is sIND-CPA secure.
Specifically, let Π be the ABE-2OD scheme and A be an



ABE-2OD: OABE with two-stage transformation

1. pPK,MSKq Ð Setupp1λ,Ωq: // Setup
Let pp, g,G,GT q represents a bilinear map e : GˆG ÞÑ GT , where p is the order of group G and g be a generator of
G. The setup algorithm first chooses two random exponents α, a P Zp and three hash functions H : t0, 1u˚ ÞÑ t0, 1uk,
H1 : t0, 1u˚ ÞÑ G, H2 : t0, 1u˚ ÞÑ Zp. Then it outputs the public key PK and the master secret key MSK as follows.

PK “ pg, e pg, gq
α
, ga, H,H1, H2q ,MSK “ gα

2. C Ð Enc
`

PK,M P t0, 1uk, pM, ρq
˘

: // Encrypt
The encryption algorithm chooses a random element R P GT and a random vectors v “ ps, y2, ¨ ¨ ¨ , ynq P Zn

p where
s “ H2pR,Mq. For each i P rℓs, it calculates λi “ pM ¨ vqi. In addition, the algorithm also chooses ℓ random
numbers r1, r2, ¨ ¨ ¨ , rℓ P Zp and outputs the ciphertext C, which consists of three layers.

El Gamal layer : C “ R ¨ epg, gqαs, C 1 “ HpRq ‘ M,C2 “ gs;

access policy layer :
`

D1 “ gr1 , E1 “ gaλ1H1pρp1qq´r1
˘

, ¨ ¨ ¨ ,
`

Dℓ “ grℓ , Eℓ “ gaλℓH1pρpℓqq´rℓ
˘

.

3. pTK,HK,DKq Ð KeyGen pMSK, Aq: // KeyGen
The key generation algorithm first chooses random numbers t1, t2, β, γ1, γ2, P Zp, and sets the decryption key
DK “ β, the helper key HK “ pγ1, γ2q, the transformation key TK = pTK1,TK2q, where

TKi “

´

Ki “ pgαq
1

βγi pgaq
ti

βγi , Li “ g
ti

βγi , tKy,i “ H1pyq
ti

βγi uyPA

¯

; i P t1, 2u

4. tPTC,Ku Ð Transform1 pTK,Cq: // Transform1
If A does not satisfy the access structure pM, ρq, it outputs K. Otherwise, let I “ ti|ρpiq P Au and it employs the
method in Appendix. A to calculate tλiuiPI and twiuiPI such that

ř

iPI wiλi “ s. Finally, it calculates a partially
transformed ciphertext PTC = pC,C 1, CP1, CP2q, where

CP1 “
epC2,K1q

ś

iPI

`

epEi, L1qepDi,Kρpiq,1q
˘wi

, CP2 “
epC2,K2q

ś

iPI

`

epEi, L2qepDi,Kρpiq,2q
˘wi

;

5. tTC,Ku Ð Transform2 pHK,PTCq: // Transform2
This algorithm is the second stage transformation, which is run within TEE. It first verifies whether Cγ1

P1 “ Cγ2

P2
holds. If not, it outputs K. Otherwise, TEE outputs a TC as follows.

TC “
`

T “ C, T 1 “ C 1, T 2 “ Cγ1

P1

˘

;

6. tM,Ku Ð Decrypt pDK,TCq: // Decrypt
The decryption algorithm calculates R “ T {pT 2qβ , M “ HpRq ‘ T 1 and s “ H2pR,Mq. If T “ R ¨ epg, gqαs and
pT 2qβ “ epg, gqαs, it outputs M ; otherwise it outputs K.

Figure 2: Detailed construction of ABE-2OD.

adversary for attacking Π, there exists a simulator B such
that A’s advantage in breaking ABE-2OD’s sIND-CDA is
bounded by Eq. (1).

AdvsIND-CDA
Π,A ď AdvsIND-CPA

ΠOABE,B ` qT ¨ AdvKEAA,E . (1)

where AdvsIND-CPA
ΠOABE,B is the advantages of B breaking ΠOABE’s

CPA security, AdvKEAA,E is the advantage of breaking the
KEA assumption, and qT is the number of queries to the
GTransform2p¨,¨q oracle.

3.4.2. sIND-CHA. sIND-CHA reflects that given (TK, HK),
attackers without a valid DK learn nothing of M .

DK is considered valid if the triple (TK, HK, DK) is
generated via ABE-2OD’s KeyGen from A such that A $

pM, ρq, where pM, ρq is the access policy associated with the
target ciphertext. Note that DK in our ABE-2OD essentially
plays the same role as the user decryption key in the OABE
scheme. Hence, the sIND-CHA of ABE-2OD is reduced to
the RCCA security of Green’s OABE scheme. Specifically,
from the attacker’s viewpoint, TC appears as an El Gamal
ciphertext. Therefore, our ABE-2OD achieves sIND-CHA,
which is formally described in THEOREM 2. The detailed
proof is deferred to Appendix B.3.

Theorem 2. ABE-2OD presented in Figure 2 is sIND-CHA
if Green’s OABE scheme is RCCA secure. Specifically, let
ΠOABE be Green’s OABE scheme, there exists a simulator
B such that A’s advantage in breaking the sIND-CHA is



upper-bound by Eq. (2).

AdvsIND-CHA
Π,A ď AdvRCCA

ΠOABE,B. (2)

where AdvRCCA
ΠOABE,B is advantage of B breaking ΠOABE’s RCCA

security.

4. Hardware-based Revocable ABE

With the functionality and security features of ABE-2OD
in mind, this section presents the Hardware-based Revocable
ABE (HR-ABE) system. We give the system architecture of
HR-ABE in Section 4.1, followed by its threat model and
design goals in Section 4.2 and 4.3, respectively. Then, we
describe the concrete construction in Section 4.4 and further
discuss the features of our HR-ABE in Section 4.5.

4.1. System Architecture

As shown in Figure 3, there are four types of entities
involved in the HR-ABE framework.
‚ A key generation center (KGC). The KGC is mainly

responsible for system setup (e.g., generating and broad-
casting public parameters/keys to others 1 , initializing
all system modules 2 ) and user management (e.g., gen-
erating cryptographic keys for newly registered users or
revoking users). Each user is associated with an attribute
set A and three cryptographic keys: transformation key
(TK), revocation key (RK), and decryption key (DK). A
user list (UL) is maintained by KGC, which is updated
whenever a user is registered or revoked. In detail, UL is
defined as

UL “ tID,AID,TKID,EncpKTEE,RKIDquIDPU ,

where U denotes the set of legitimate DUs, AID is the
attribute set associated with ID, TKID (resp., RKID,
DKID) denotes the corresponding transformation key
(resp., revocation key, decryption key) for user ID, and
KKEE is a shared symmetric authenticated encryption key
established through the remote attestation between KGC
and the TEE module.
KGC operates over time intervals of length T each (e.g.,
hours, days). At the beginning of each time interval, KGC
deletes the revoked DUs and adds newly joined DUs. The
new DU list is denoted as ULi and KGC generates a
signed state sti from ULi.

sti “ pσ,ULi, iq ,

where σ is KGC’s signature on the time interval index i
and ULi. KGC stores sti in the state module 3 .

‚ Data owners (DOs). DOs encrypt messages and upload
the ciphertexts to the storage module and each ciphertext
is associated with an access policy 4 .

‚ A cloud service provider (CSP). The CSP is abundant
in computing and storage resources and consists of four
modules.

3. Signed state

1. Public parameters

7. State sti

2. Setup the TEE & Clock synchronization

4. Ciphertext C

5. Request  

8. (ID
, PTC)

6. ID, Ciphertext C

10. TC

Data user

Data owner Storage

KGC

Cloud service provider

9. State sti

Proxy

TEE State

Figure 3: Framework of HR-ABE

– Storage module is in charge of storing ciphertexts.
Upon receiving a request for data access 5 , storage
module retrieves the requested ciphertext and then for-
wards both the ciphertext and the DU’s identity (i.e.,
ID) to the proxy module 6 .

– State module maintains sti, where i is the index of the
current time interval.

– Proxy module undertakes partial decryption operations.
Upon receiving a request containing a user ID and a
ciphertext, it retrieves sti from the state module 7
and transforms the ciphertext to a partially transformed
ciphertext PTC using ID’s TKID (the first stage trans-
formation, 8 ) if ID is in the latest DU list; otherwise,
it rejects the request.

– TEE module, holding KTEE, provides trusted transfor-
mation services for unrevoked DUs. Note that KTEE can
be used to recover RKID. Upon receiving pID,PTCq,
TEE retrieves sti from the state module 9 and verifies
sti’s integrity and freshness. After that, TEE checks
whether ID is indeed in the latest DU list. If yes, TEE
calculates a transformed ciphertext TC using RKID

and forwards it to DU 10 ; otherwise, TEE rejects the
request.

‚ Data users (DUs). Each DU holds the DKID for execut-
ing the final decryption.

4.2. Threat Model

The KGC and DOs are fully trusted. CSP in HR-ABE
is considered malicious and can launch active attacks, such
as rollback attacks, collusion (with malicious DUs) attacks
and corrupted TEE attacks. We categorize DUs into three
types: (1) revoked DUs, (2) unrevoked and unauthorized
DUs whose attribute sets fail to satisfy an access policy, and
(3) unrevoked and authorized DUs whose attribute sets meet
the access policy. The first two types of DU are considered
malicious and can collude with CSP.

4.2.1. Rollback Attacks. Rollback attacks target breaking
TEE state integrity or freshness. Specifically, CSP may
attempt to modify the state of a time interval or provide
a staled state to the TEE. Such attacks may reset the system
to a previous state such that revoked DUs could decrypt



ciphertexts illegally. Indeed, existing commodity TEEs pro-
vide mechanisms to resist rollback attacks, such as Intel
SGX’s trusted time services [10], AMD SEV-SNP [2].

4.2.2. Collusion Attacks. CSP may collude with both re-
voked and unauthorized DUs and aim to break the confi-
dentiality of HR-ABE. The collusion attacks between CSP
and DUs could be in different forms. For example, given a
target ciphertext, the CSP can transform it to a valid PTC
and ask the TEE to perform the second stage transformation
using the ID of an unrevoked but unauthorized DU, and
subsequently attempts to decrypt the transformed ciphertext
produced by the TEE using the decryption key of ID and
that of an authorized but revoked DU. We define a formal
security model, called selective indistinguishability against
collusion attack (sIND-ColA), to capture the above intu-
itions under the completely trusted TEE model. Specifically,
we introduce a corruption oracle in sIND-ColA that never
reveal RKs to the adversary, which reflects the assumption
that TEE provides internal state confidentiality. Appendix
C.1 presents this detailed security model.

4.2.3. Corrupted TEE Attacks. In addition to the above
attacks, as the host of the TEE, a malicious CSP may also
perform side-channel attacks [13], [27], [32] to observe
some information inside the TEE, which is leaked during
the TEE computation. Without loss of generality, the attacks
that could lead to TEE internal information leakage are
called corrupted TEE attacks (CTA). We define a formal
security model, called selective indistinguishability against
corrupted TEE attacks (sIND-CTA), to capture the security
of HR-ABE under the transparent TEE model. Specifically,
we let the corruption oracle in sIND-CTA reveal RKs to
the adversary, which reflects the threat model that TEE does
not provide internal state confidentiality as described before.
Appendix C.2 presents the detailed security model.

4.3. Design Goals

According to the system architecture and threat model,
HR-ABE should achieve the following goals.
‚ G1: Efficient revocation. An HR-ABE is said to be effi-

cient if the following sub-goals are achieved.
– G1-1: No ciphertext delegations and no key updates.

CSP does not need to perform ciphertext delegation to
prevent revoked DUs from decrypting past ciphertexts.
Non-revoked DUs do not need to update their
decryption keys periodically.

– G1-2: Outsourced decryption. Instead of computing
extensive bilinear map operations as in traditional ABE,
DUs just decrypt an EL Gamal-like ciphertext.

– G1-3: Lightweight transformation within TEE.
The transformation within TEE only takes few
cryptographic operations that are independent of the
size of the access policy.

‚ G2: Secure revocation against collusion attacks. CSP
colluding with both revoked and unauthorized DUs cannot

extract any useful information from target ciphertexts.
HR-ABE should also resist rollback attacks to ensure that
TEE only provides the second transformation services for
non-revoked DUs.

‚ G3: Semantic security against corrupted TEE attacks.
Revocation key leakage does not lead to the loss of mes-
sage confidentiality. In other words, HR-ABE achieves
the same security level as the OABE system, when TEE
is corrupted.

Remark. HR-ABE is designed to resist either collusion
attacks or corrupted TEE attacks, but not both. It is easy
to see if an adversary gains access to the entire key tuple
(TKID, RKID, DKID), which is the case when considering
both attacks simultaneously, it is impossible to create an
HR-ABE scheme that can preserve security.

4.4. Construction

We now present our HR-ABE scheme from an ABE-2OD
scheme and a signature scheme. In a nutshell, we use ABE-
2OD to handle the key generation, encryption, two stages
for transformation, and decryption operations of HR-ABE,
and the signature scheme combined with TEE’s replay-
protection service to ensure the integrity and freshness of
the user list. Specifically, an HR-ABE system consists of
four phases: system setup, encryption, state update, and
decryption, as shown in Figure 5.

4.4.1. System Setup Phase. The system setup phase gen-
erates public/private keys and initializes the modules of the
whole system. Let Π1 be an ABE-2OD scheme and ΠSig be
a signature scheme. KGC generates the system secret key
MSK, which includes three components: Π1’s master key
MSK1, ΠSig’s singing key, and an authenticated encryption
key KTEE between KGC and TEE. Two programs prog1 and
prog2 are installed into TEE via

G.installpprog1q and G.installpprog2q.

We present details of the two programs in Figure 4.
‚ prog1 synchronizes the starting time t0 between TEE and

KGC. Note that t0 and the duration of a time interval T
are stored in the replay-protected storage (RPS), which
is a core module in TEE (e.g., Intel SGX) that provides
trusted replay protection services.

‚ prog2 provides transformation services for non-revoked
DUs, which works in a “validate-then-transform” manner.
Only a non-revoked DU can pass the validations (i.e., state
freshness and integrity validation, and DU is non-revoked)
and obtain a TC.

4.4.2. Encryption Phase. DO specifies an LSSS-style pol-
icy, encrypts the message, and uploads the ciphertext to the
storage module. Note that the ciphertexts in HR-ABE are
identical to those in ABE-2OD. For practical deployment,
HR-ABE could utilize hybrid encryption [20], i.e., HR-ABE
only encrypts a symmetric key which encrypts the real data.



Enclave operations

{ ˚ ˚ prog1: synchronizes the time interval ˚ ˚ {

G.resumep“Synchronize”, T q

TEE leverages sgx get trusted time() to extract a
trusted timestamp t0 and then stores t0 and T into
RPS via sgx create monotonic counter(). Finally,
TEE returns t0 to KGC.

{ ˚ ˚ prog2: provides transformation services ˚ ˚ {

tTC,Ku Ð G.resumep“Transform2”,KTEE, sti, ID,PTCq

Validation :

(1) TEE calculates a trusted time inter-
val index i˚ “ tptcur ´ t0q{T u, where
tcur Ð sgx get trusted time(). If i˚ ‰ i, TEE
aborts.
(2) TEE parses sti “ pσ,ULi, iq and calculates

b1 Ð ΠSig.Verpvk, xULi, iy, σq; b2 Ð pID P ULiq.

If b1 “ 0 or b2 “ 0, it aborts.

Transform2 :

TEE fetches EncpKTEE,RKIDq from ULi and decrypts
it to RKID using KTEE. Finally, TEE outputs

TC Ð Π1.Transform2pRKID,PTCq.

Figure 4: Enclave operations in HR-ABE

4.4.3. State Update Phase. KGC manages the DU list.
Newly joining DU’s keys are produced by ABE-2OD’s key
generation algorithm. At the beginning of a time interval
(say i-th time interval), KGC signs DU list on time interval i
and generates a new state sti “ (σ, ULi, i). KGC updates the
state module with (σ, ULi, i), which makes user registration
and revocation effect.

4.4.4. Decryption Phase. The decryption phase includes
three sub-phases. Both CSP and TEE need to validate
whether the DU is legitimate before executing the respective
transformation algorithm.
‚ The 1st transformation by proxy module. The proxy re-

trieves sti from the state module and validates whether
the DU is legitimate. If yes, the proxy generates a PTC
via ABE-2OD’s Transform1 and forwards it to TEE.

‚ The 2nd transformation by TEE module. TEE runs prog2
and produces a TC via ABE-2OD’s Transform2.

‚ The final decryption by DU. The non-revoked DU recov-
ers the message from TC via ABE-2OD’s Dec algorithm.

4.5. Discussions

In this section, we discuss how HR-ABE thwarts attacks
outlined in Section 4.2 and fulfills the design goals.

4.5.1. HR-ABE Achieves G1. Since HR-ABE does not
contain any timestamp in ciphertexts or decryption keys, it
doesn’t require periodically updating all previous ciphertexts
or DUs’ decryption keys. Instead of relying solely on cryp-
tographic design, HR-ABE shifts the management of DUs
to in-enclave design for achieving efficient DU revocation
(i.e., G1-1).

As for G1-2, in HR-ABE, TKID held by CSP is for
validating the access control, and DKID maintained by
DU is for decrypting a simple El Gamal ciphertext. Thus,
HR-ABE validates the access control on CSP side and
largely eliminates ABE decryption overhead for resource-
constrained DUs. HR-ABE achieves G1-3 because the com-
putation within TEE only includes three exponentiations.

4.5.2. Collusion Attack Resistance (G2). In the system
setup phase, the KGC instructs TEE to store a trusted
timestamp t0 and the duration of a time interval T in Intel
SGX’s RPS [10]. Since RPS is replay-protected storage
provided by TEE, no adversary can tamper with t0 or T .
TEE also retrieves the current time via its protected real-
time clock, hence the correctness of the time interval index
i can be guaranteed. On the other hand, the KGC utilizes
ΠSig to sign both the latest DU list and the current time
interval i. The unforgeability property of ΠSig ensures that
the TEE always uses the latest state to verify whether a
DU is revoked or not. Therefore, our HR-ABE scheme is
resistant to rollback attacks.

Given that no rollback attack would happen, HR-ABE
achieves collusion attack resistance based on two facts: (1)
TEE only performs the second stage transformation for non-
revoked DUs, and (2) the adversary, who corrupts the CSP
and revoked DUs simultaneously, cannot obtain the revoca-
tion key RK. Therefore, HR-ABE is resistant to collusion
attacks. Furthermore, in case CSP asks the TEE to perform
a transformation using the ID of an unrevoked DU and then
attempts to decrypt the transformed ciphertext using the DK
of an authorized but revoked DU. This type of collusion
attack is infeasible because of our PTC legitimacy checking
mechanism. Formally, we have the following result. The
proof is detailed in Appendix C.3.

Theorem 3. The HR-ABE scheme in Figure 5 is sIND-ColA
secure if Π1 is sIND-CDA, ΠSig is EUF-CMA, and ΠAE is
CCA secure. Specifically, there exist simulators B, B1 and
F , such that A’s advantage in breaking HR-ABE’s sIND-
ColA security is upper-bounded by Eq. (3).

AdvsIND-ColA
ΠG ,A ď AdvEUF-CMA

ΠSig,F ` AdvCCA
ΠAE ,B1

` AdvsIND-CDA
Π1,B ,

(3)
where AdvEUF-CMA

ΠSig,F is the advantage of F breaks ΠSig’s un-
forgeability and AdvCCA

ΠAE ,B1
is the advantage of B1 breaking

the authenticated encryption scheme.

4.5.3. Corrupted TEE Attack Resistance (G3). Our HR-
ABE presented in Figure 5 achieves corrupted TEE attack
resistance through ABE-2OD’s sIND-CHA security, which
ensures that an adversary, whose attribute set does not satisfy
the access policy associated with a specific ciphertext, learns



HR-ABE Construction

System setup phase : Let Π1 = (Setup, Enc, KeyGen, Transform1, Transform2, Dec) be an ABE-2OD scheme
and ΠSig = (KeyGen, Sign, Ver) be a signature scheme. This phase consists of one algorithm, denoted as
pMPK,MSK, st0,ULq Ð SetupG

p1λ,Ω, T q, that works as follows.
‚ KGC initializes TEE and shares a symmetric key KTEE via remote attestation. Then it loads programs prog1

and prog2 by G.installpprogiq, i P t1, 2u; Then KGC invokes the prog1 by G.resumep“Synchronize”, T q;
‚ KGC sets MSK “ pMSK1, sk,KTEEq and MPK “ pPK1, vkq, where

pPK1,MSK1q Ð Π1.Setupp1λ,Ωq and pvk, skq Ð ΠSig.KeyGenp1λq.

‚ KGC runs st0 Ð Update pMSK,UL, 0q and outputs pMPK,MSK, st0,ULq.

Encryption phase : During the encryption phase, DOs encrypt messages, denoted as C Ð Enc pMPK,M, pM, ρqq

and upload the ciphertexts to CSP’s storage module. It produces the ciphertext by straightforwardly invoking

C Ð Π1.Enc pPK1,M, pM, ρqq .

State update phase : This phase includes three algorithms: Join (i.e., new DUs registration and their key generation),

Rev (i.e., DU revocation), and Update (i.e., making registrations or revocations effectiveness). Specifically, the three
algorithms work as follows.

‚ pUL, pTKID,RKID,DKIDqq Ð Join pMSK,UL, ID,Aq: KGC generates keys for ID and updates UL through

pTKID,HKID,DKIDq Ð Π1.KeyGen pMSK1, Aq ,UL “ ULYtID,A,TKID,EncpKTEE,RKIDqu, RKID “ HKID.

‚ UL Ð Rev pUL, IDq: KGC deletes the record associated with ID from UL and outputs an updated DU list UL.
‚ sti Ð Update pMSK,UL, iq: KGC generates a new state sti “ pσ,ULi, iq of i-th time interval, where

σ Ð ΠSig.Signpsk, xULi, iyq.

Decryption phase : The decryption phase includes three algorithms, as in the ABE-2OD.
‚ PTC Ð Transform1 (TKID, sti, ID, C): The proxy parses sti “ pσ,ULi, iq and calculates b1 Ð

ΠSig.Verpvk, xULi, iy, σq and b2 Ð pID P ULiq. If b1 “ 0 or b2 “ 0, it aborts; otherwise, it fetches TKID from
ULi and outputs a PTC via

PTC Ð Π1.Transform1 pTKID,Cq .

‚ TEE produces a TC by calling the prog2 that was installed into TEE during the system setup phase.

TC Ð G.resumep“Transform2”,KTEE, sti, ID,PTCq.

‚ M Ð Dec pDKID,TCq: The DU decrypts TC to M by running

M Ð Π1.Dec pDKID,TCq .

Figure 5: HR-ABE construction from ABE-2OD.

nothing of the underlying message, even if the adversary
obtains both TK and RK. Formally, we have the following
Theorem.

Theorem 4. The HR-ABE scheme in Figure 5 is sIND-
CTA secure if Π1 is sIND-CHA. Specifically, there exists a
simulator B such that A’s advantage in breaking HR-ABE’s
sIND-CTA security is upper-bound by Eq. (4).

AdvsIND-CTA
ΠG ,A ď AdvsIND-CHA

Π1,B . (4)

The proof is straightforward and we omit this proof due
to the page limit.

4.6. sMHT as The State

The HR-ABE construction in Section 4.4 loads the entire
DU list into TEE for state validation because the KGC’s
signature is generated for the whole up-to-date DU list.
Suppose we use a 32-bit number to present an identity ID
and each attribute. Let N be the number of DUs, then the
size of the DU list is

p32 ` 32 ¨ |A| ` p|A| ` 2q ¨ |G| ` |Zp|q ¨ N,

where |A| is the number of attributes in set A, |G| and
|Zp| are the length of each item in G and Zp, respectively.
Obviously, with the growth of the DU number in the system,



the cost of loading the entire DU list to TEE will become
unaffordable. We observe that the state module in HR-ABE
is “plug-and-play”, and one can replace the implementation
of the state module with any authenticated data structure
(ADS [18]) for verifying ID P ULi. In other words, the
primitives (such as Merkle hash tree [26], Verkle tree [21])
for membership proof can be plugged into HR-ABE. For
example, MHT is a binary hash tree that allows provers to
generate a short membership proof.

sMHT, also called signed tree head (SHT), is a popular
technology in Google’s certificate transparency [22]. sMHT
has the following complexity: let N be the size of UL,
then the storage size of sMHT is OpNq, the proof size is
OplogNq. Besides, the time complexities of Build, Gen-
Proof, and VerProof are OpNq, OplogNq, and OplogNq,
respectively. By integrating sMHT into our HR-ABE, the
data loaded into TEE for membership proof include only
one element in UL and the corresponding proof Γ, which
has a logarithmic size. Assuming N “ 106, the input size
of TEE for one decryption request is about 12Kb. Even for
SGX with about 90MB usable memory, it can handle tens of
thousands of requests. The detailed approach for integrating
sMHT into HR-ABE is deferred to Appendix D.

5. Performance Evaluation

5.1. Experimental Configuration

Baseline. To report the performance of HR-ABE, we com-
pare HR-ABE with the baseline system in which TEE
maintains the TKs and performs the entire OABE’s transfor-
mation algorithm (i.e., canceling the access control layer),
and DU performs the final decryption.

We implement HR-ABE and the baseline in C++ and
conduct experiments on a server with 64-bit Ubuntu 20.04
LTS operating system, Intel Core i7-8700 CPU with 6
physical cores and two threads per core, totaling 12 threads,
and 32GB of total memory. Type A elliptic curve (rbits:
512, qbits: 1024) in the symmetric setting (PBC library
2) is used in our implementation to evaluate the pairing
operations. We use the Intel SGX in hardware mode 3 to
implement TEE. All experiments are measured 20 times,
and we take their average as the experimental result. In our
experiments, we utilize multiple threads (denoted Nthread,
i.e., 1, 3, 6) to simulate non-TEE resources and one thread
to simulate TEE (i.e., by setting TSCNum = 1 in the file
“Envclave.configure.xml”).
Access policy setup. Both the transformation and encryp-
tion algorithm in the baseline and HR-ABE depend on the
complexity of the access policy. In our experiments, we use
access policies in the form

A1 AND A2 AND ¨ ¨ ¨ AND Aℓ

, where ℓ denotes the complexity of the access policy.

2. https://crypto.stanford.edu/pbc/
3. https://github.com/intel/linux-sgx.git

TABLE 2: Time cost (ms) v.s. the policy size

Policy
size

Baseline HR-ABE

Transform
in TEE

Decryption
by DU

Transform1
by CSP

Transform2
in TEE

Decryption
by DU

10 166.17 7.62 225.23 3.22 7.61
20 324.36 7.61 430.15 3.23 7.61
30 482.97 7.62 637.71 3.22 7.62

Remark. We note that the baseline does not consider the
transformation key security problem due to arbitrary
transformation queries to TEE.

Workload and performance metrics. We call a ciphertext
decryption request a task and use Ntask to denote the number
of tasks. For both HR-ABE and the baseline, we measure
the average latency. Note there are Nthread threads to execute
the non-TEE part and one thread to execute the TEE part.
When Ntask ą Nthread, some of the tasks enter a waiting state
and wait for the resource to become available. The duration
of wait time (denoted Twait) directly affects system respon-
siveness. We define each task’s latency as Twait ` Texecute,
where Texecute is the task’s execution time. Let Ti denote the
i-th task’s latency, then the workload’s average latency is
defined as p

řNtask
i“1 Tiq{Ntask.

5.2. Performance Comparison with Baseline

We first benchmark the time cost of the transformation
and decryption algorithms. Table 2 presents the performance
when the policy size varies from 10 to 30. In the baseline,
the transformation is run in TEE, and the transformation
cost grows from 166 (ms) to 483 (ms). In HR-ABE, only
the transform2 is run in TEE; the time cost for non-TEE
(i.e., CSP) part grows from 225 to 638 (ms), and the time
cost for TEE part is only about 3.2 (ms). Therefore our
HR-ABE achieves a lightweight transformation in TEE. HR-
ABE achieves lightweight decryption for end users, with a
decryption cost of about 7.6 (ms).

Note that the results shown in Table 2 only consider one
thread and one task. In the following experiments, we will
showcase how the performance of HR-ABE is impacted by
the complexity of the policy (ℓ), as well as the number of
tasks (Ntask) and the number of threads (Nthread) involved.
(1) The effect of Ntask. Figure 6 presents the performance
when Ntask “ t50, 100, 150, 200, 250, 300u. In this exper-
iment, we set ℓ “ 10. The average latency is linear to
the task numbers in both the baseline and HR-ABE. When
Nthread “ 1, HR-ABE is slightly slower than the base-
line, since our HR-ABE needs to calculate CP1 and CP2,
which cancels out the access policy layer two times. When
Ntask “ 300, the average latency in HR-ABE is about 1.99-
3.76 times better than the baseline.
(2) The effect of Nthread. Figure 7 presents the perfor-
mance when Nthread “ t1, 3, 6u. In this experiment, we set
ℓ “ t10, 20, 30u and Ntask “ 200. On the one hand, when
Nthread “ t3, 6u, HR-ABE is 3.71 – 4.14 times better. As a
result, it shows that the greater the difference in computing
power between TEE and non-TEE parts, the better the
performance of HR-ABE. On the other hand, as the size
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Figure 6: Comparisons between baseline and HR-ABE when number of tasks varies.
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Figure 7: Comparisons between baseline and HR-ABE for different policy sizes.

TABLE 3: Revocation cost (ms) v.s. the numbers of DUs

Scheme 210 212 214 216 218

SR-ABE KGC 1217.10 1469.87 1822.06 1952.48 2191.37
CSP 1576.09 1898.30 2354.69 2530.42 2840.29

HR-ABE KGC 0.67 0.70 0.73 0.75 0.76
CSP 0.15 0.16 0.19 0.21 0.22

of policy ℓ increases from 10 to 30, the performance gap
between them becomes significantly wider.

In our experiment, the performance bottleneck comes
from the CSP (225ms for policy size=10) instead of the
TEE (3.2ms), since CSP needs to perform heavy computa-
tions, and we only used a PC to simulate the CSP. In a real
cloud setting, the computation power of CSP is software-
only and can be scaled up with increasing resources.

5.3. Revocation Comparison with Prior Work

SR-ABE [12] is the state-of-the-art server-aided revo-
cable ABE. As shown in TABLE 3, HR-ABE is much
more efficient in user revocation than SR-ABE. Note that
user revocation in SR-ABE requires both KGC and CSP to
compute a large number of exponential operations, while
user revocation in HR-ABE only requires KGC and CSP to
perform some hash computations to update the sMHT. As
the number of DUs varies from 210 to 218, the costs for

KGC and CSP in HR-ABE are capped at 0.756 (ms) and
0.22 (ms), respectively.

6. Conclusion

While existing user revocation mechanisms in ABE
present a challenge due to the unscalable key update and
ciphertext delegation, this paper proposed hardware-based
revocable ABE (HR-ABE) that eliminates periodic key up-
dates and ciphertext delegation, and supports outsourced
decryption so that both TEE and data users only perform
lightweight computation. Another attractive feature of HR-
ABE is that the TEE only enforces user revocation but
cannot access the user data. We formalized the security
models for HR-ABE and provided formal security proofs for
the proposed scheme. Experimental benchmarks were also
provided to demonstrate the performance of the proposed
scheme under different settings.
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A. Linear Secret Sharing Scheme (LSSS)

Definition 4. (LSSS [4].) A secret sharing scheme over a
set of parties Ω is called linear if there exists an ℓ ˆ n
matrix M and a label function ρ : rℓs ÞÑ Ω 4 such that
for any random vector v “ ps, y2, ¨ ¨ ¨ , ynq P Zn

p , where s
represents the secret, we have that Mv shares the secret s
to parties, and pMvqi belongs to the party ρpiq. Usually,
the secret scheme is denoted as a pair pM, ρq.

Let pM, ρq be a LSSS scheme, then for any authorized
set A Ă Ω, (1) there exists a set of valid shares λ “ tλi P

ZpuiPI , where I “ ti : ρpiq P Au; and (2) there exists an
efficient algorithm [25] to calculate a set of constants w “

twi P ZpuiPI to recover the secret from the valid shares by
ř

iPI wiλi “ s. Here we only assume the existence of such
constants. Refer to [25] for the detailed algorithm, which
can be optimized in real implementations.

B. ABE-2OD Security Models and Proofs

Assumption 1. (KEA [5]). For any adversary A that takes
g1{x, g1{y and returns pu, vq with vy “ ux, then there
exists an “extractor” E , which given same inputs as A and
returns t such that pg1{xqt “ u, pg1{yqt “ v. Without loss of
generality, we let

AdvKEAA,E p1λq “ PrrEpg1{x, g1{y, pg1{xqt, pg1{yqtq ‰ ts.

Specifically, KEA holds if for every adversary A there exists
an extractor E and a negligible error function ν such that

AdvKEAA,E p1λq ď νpλq.

4. For simplicity of description, we denote rℓs :“ t1, 2, ¨ ¨ ¨ , ℓu.



B.1. Security Models

We first describe the selective indistinguishability secu-
rity experiment EXPsIND-ATK

Π,A p1λq between a challenger and
a PPT adversary A in Figure 8. We define two security

EXPsIND-ATK
Π,A p1λq

pM˚, ρ˚
q Ð Ap1λ,Ωq; // Initialization

TB :“ H; k :“ 0;
(PK, MSK) Ð Π.Setupp1λ,Ωq; // Setup
pM0,M1q Ð AO

pPKq; // Query 1
b Ð t0, 1u, C˚

Ð Π.Enc
`

PK,Mb, pM˚, ρ˚
q
˘

; // Challenge
b1

Ð AO
pPK, C˚

q; // Query 2 and Guess
return 1 if b1

“ b, else return 0.

Figure 8: Experiment for ABE-2OD

models (i.e. ATK P {CDA, CHA}), which are different in
the oracles allowed by A.

O “

#

tOKeyGen,OCorruptDK,OTransform2u ATK = CDA;
tOKeyGen,OCorruptDK,OCorruptHK,ODecu ATK = CHA;

sIND-CDA. To capture the adversary’s ability, the
sIND-CDA model follows the experiment EXPsIND-CDA

Π,A p1λq

and allows A to query the set of oracle defined as above.
Specifically, these oracles are described as follows.
‚ OKeyGenpMSK,¨q is a key generation oracle that allows A

to query an attribute set Ak Ă Ω. For each query, it
runs KeyGen pMSK, Akq to obtain the key triple (TKk,
HKk, DKk) and responds A with TKk. Besides, it records
TBrks :“ pAk,TKk,HKk,DKkq and updates k Ð k` 1.

‚ OCorruptDKp¨q is a corruption oracle that allows A to query
an index i. If TBris is not defined, it outputs K; otherwise
fetches pAi,TKi,HKi,DKiq and forwards DKi to A.

‚ OTransform2p¨,¨q is the second stage transformation ora-
cle that allows A to query an index i and a partially
transformed ciphertext PTC. If TBris is not defined, it
outputs K; otherwise, retrieves Ai and HKi. If the query
is in the second query phase and A $ pM˚, ρ˚q, it
forwards K to A; otherwise, sends the transformed result
of Transform2 pHKi,PTCq to A.

Definition 5. (sIND-CDA for ABE-2OD). An ABE-2OD
scheme is sIND-CDA if for any PPT adversary A, the
following advantage is negligible.

AdvsIND-CDA
Π,A p1λq “

ˇ

ˇ

ˇ

ˇ

Pr
“

EXPsIND-CDA
Π,A p1λq “ 1

‰

´
1

2

ˇ

ˇ

ˇ

ˇ

.

sIND-CHA. To capture the adversary’s ability, the
sIND-CHA model follows the experiment EXPsIND-CHA

Π,A p1λq

and allows A to query the set of oracle defined as above.
Specifically, these oracles are described as follows.
‚ OKeyGenpMSK,¨q is a key generation oracle that is the same

as in sIND-CDA.
‚ OCorruptHKp¨q is a corruption oracle that allows A to query

an index i. If TBris is not defined, it outputs K; otherwise
fetches pAi,TKi,HKi,DKiq and forwards HKi to A.

‚ OCorruptDKp¨q is a corruption oracle that allows A to query
an index i. If TBris is not defined or A $ pM˚, ρ˚q, it
outputs K; otherwise it fetches pAi,TKi,HKi,DKiq from
TBris and forwards DKi to A.

‚ ODecp¨,¨q is a decryption oracle that allows A to query an
index i and a transformed ciphertext TC. If TBris is not
defined, it outputs K; otherwise, retrieves Ai and DKi and
calculates Out Ð Dec pDKi,TCq. If the query is in the
second query phase, it forwards A a special symbol test
if Out P tM0,M1u; otherwise, it sends Out to A.

Definition 6. (sIND-CHA for ABE-2OD). An ABE-2OD
scheme is sIND-CHA if for any PPT adversary A, the
following advantage is negligible.

AdvsIND-CHA
Π,A p1λq “

ˇ

ˇ

ˇ

ˇ

Pr
“

EXPsIND-CHA
Π,A p1λq “ 1

‰

´
1

2

ˇ

ˇ

ˇ

ˇ

.

B.2. Proof of THEOREM 1

Proof. Suppose there exists a PPT adversary A who has
a non-negligible advantage in the game of sIND-CDA, we
build a simulator B that calls A as a subroutine to break
the Green’s OABE scheme (i.e., ΠOABE). The simulation
consists of six phases and the details are as follows.

Init. The simulator B runs a copy of A. A determines
an LSSS-style policy pM˚, ρ˚q, which is then submitted by
B for challenging.

Setup. Receiving a public parameter PK from ΠOABE’s
challenger, B forwards PK to the adversary, where

PK “ pg, e pg, gq
α
, ga, H,H1, H2q .

Note that MSK is unknown to B.
Query Phase 1. B initializes TB :“ H, k :“ 0, and an

H-list. Then B answers the queries from A as follows.
OKeyGenpMSK,¨q: Receiving an attribute set A as input,

B forwards A to ΠOABE’s key generation oracle and then
obtains the transformation key ĎTK in ΠOABE, i.e., there exist
pK 1, L1, tK 1

yuyPAq such that

ĎTK “

´

sK “ pK 1q
1
β , sL “ pL1q

1
β , t sKy “ pK 1

yq
1
β uxPA

¯

where β is also unknown to B. Then B chooses random
numbers t1

1, t
1
2, γ1, γ2 P Zp, and simulates as follows.

‚ If A & pM˚, ρ˚q, B first queries ΠOABE’s key generation
oracle to obtain β. Then B extracts pK 1, L1, tK 1

yuyPAq

from ĎTK. Then B calculates TK = pTK1,TK2q, where
each TKi (i P t1, 2u) is defined

K “

´

K 1 ¨ pgaqt
1
i

¯
1

γiβ

, L “

´

L1 ¨ gt
1
i

¯
1

γiβ

,

tKy “

´

K 1
yH1pyqt

1
i

¯
1

γiβ

uyPA.

Let t̄ be the randomness hidden in ĎTK, the randomness
in TKi (i P t1, 2u) is ti “ t̄ ` t1

i. Therefore it perfectly
simulates the transformation key. Besides B sets HK “

pγ1, γ2q and DK “ β.



‚ Otherwise, A $ pM˚, ρ˚q, B cannot query ΠOABE’s key
generation oracle to obtain β. Instead, B chooses a ran-
dom β˚ as the fake DK. B calculates TK = pTK1,TK2q,
where each TKi (i P t1, 2u) is defined

K “

´

sK ¨ pgaqt
1
i

¯
1

γiβ
˚

, L “

´

sL ¨ gt
1
i

¯
1

γiβ
˚

,

tKy “

´

sK 1
yH1pyqt

1
i

¯
1

γiβ
˚

uyPA.

Note that he randomness in TKi (i P t1, 2u) is ti “ t̄ `

β ¨ t1
i. Besides B sets HK “ pγ1, γ2q and DK “ β˚. The

pair (TK, HK, DK) is not well-formed, but the (TK, DK)
is properly distributed from A’s view.

Finally, B sets TBrks :“ tA,TK,HK,DKu, k Ð k`1, and
forwards TK to A.

OCorruptDKp¨q: Receiving an index i from A, it outputs
error symbol K if TBris is not defined; otherwise it fetches
DK from TBris and forwards DK to A.

GTransform2p¨,¨q: Receiving an index i and a partially trans-
formed ciphertext PTC, B answers A’s query as follows.
‚ If A & pM˚, ρ˚q, B fetches corresponding (TK, HK,

DK) from TB. Since (TK, HK, DK) is a well-formed
key tuple, B runs ABE-2DO’s Transform2 and sends the
transformed result to A.

‚ Otherwise, A $ pM˚, ρ˚q, B does not maintain the
well-formed key tuple in this case. B also fetches cor-
responding (TK, HK = pγ1, γ2q, DK = β˚) from TB. Let
PTC “ pC,C 1, CP1, CP2q. In sIND-CDA, the relation
Cγ1

P1 “ Cγ2

P2 always holds. Without loss of generality, let

CP1 “

´

epg, gq
αs
βγ1

¯t

, CP2 “

´

epg, gq
αs
βγ2

¯t

.

B also generates a random cipher pC via setting the
randomness s “ 1 during encryption and uses the cor-
responding TK to generate a yPTC “ p pC, xC 1, yCP1, yCP2q

such that

yCP1 “ epg, gq
α

βγ1 , yCP2 “ epg, gq
α

βγ2 .

From KEA assumption, given yPTC “

pCP1, CP2, yCP1, yCP2q, there exists an extractor that ex-
tract s ¨ t from the tuple. B calculates ĎC2 “ pepg, gqαq

s¨t
β˚ .

Finally, B returns pT “ C, T 1 “ C 1, T 2 “ ĎC2q.
Challenge. Receiving a message pair pM0,M1q from

A, B forwards M0 and M1 to ΠOABE’s challenger, which
responds by a ciphertext C˚. Finally it passes C˚ to A. Note
that the bit b of ΠOABE’s challenger is unknown to B.

Query Phase 2. B continues to answer queries from A
as in Query Phase 1, except that: in the GTransform2p¨,¨q query,
if A $ pM˚, ρ˚q, it forwards K to A.

Guess. Receiving a bit b1 from A, B eventually outputs
the same bit b1 as its guess.

This ends the simulation. In case A $ pM˚, ρ˚q, A
always generates a proper TC for A. Obliviously, it perfectly
simulates the game. We have

AdvsIND-CDA
Π,A ď AdvsIND-CPA

ΠOABE,B ` qT ¨ AdvKEAA,E ,

where AdvsIND-CPA
ΠOABE,B is advantage of B wins ΠOABE’s CPA

security game and qT is the number of queries to the
GTransform2p¨,¨q oracle. Therefore, the advantage of breaking
the sIND-CDA is negligible, which completes the proof.

B.3. Proof Sketch of THEOREM 2

Proof. ABE-2OD splits OABE’s secret key into two parts:
γ-part (γ1, γ2) and β-part. In case of corrupted HK attacks,
we can view the β as the secret key in OABE, and the
combination of TK and γ-part as the transformation key in
OABE. Therefore, ABE-2OD’s sIND-CHA security directly
follows OABE’s RCCA security.

C. HR-ABE’s Security Models and Its Proofs

C.1. The sIND-ColA model.

EXPsIND-ColA
ΠG ,A p1λq

pM˚, ρ˚
q Ð Ap1λq; //Initialize

TB :“ H;
pMPK, MSK, st0, ULq Ð SetupG

p1λ,Ω, T q; //Setup
pM0,M1, stiq Ð AG,O

pMPK, st0q; //Phase 1
UL “ ULzpTcor X Tsatq; //Revoke
b Ð t0, 1u;
C˚

Ð Enc
`

MPK,Mb, pM˚, ρ˚
q
˘

; //Challenge
Let st “ tst0, st1, ¨ ¨ ¨ , stiu;
b1

Ð AG,O
pMPK, C˚, stq; //Phase 2

return 1 if b1
“ b, else return 0.

Figure 9: Experiment of the sIND-ColA for HR-ABE

Figure 9 presents an experiment between a challenger
and an adversary A for defining selective indistinguishabil-
ity against collusion attacks (sIND-ColA). The experiment
EXPsIND-ColA

ΠG ,A allows the adversary A to query a set of oracle
O = {OJoin, ORev, OUpd, OCorrupt} and G “ tGTransform2u.
Let AID denote the attribute set of DU ID. We define

Tsat :“ tID : ID P U ^ AID $ pM˚, ρ˚qu,

Tcor :“ tID : ID P U ^ ID’s DK was corruptedu.

A can adaptively query join oracle OJoin, revocation oracle
ORev, and update oracle OUpd to determine the set of DUs
that are in the latest UL at each time interval. The corruption
oracle OCorrupt allows A to obtain the decryption key DK of
a DU and GTransform2 is the transformation oracle that inputs
A’s query pID,PTCq and outputs the transformed ciphertext
TC to A. Specifically, these oracles are defined as follows.
‚ OJoinpMSK,UL,¨,¨q is a join oracle that allows A to

query an identity ID and an attribute set A. It runs
pUL, pTK,RK,DKqq Ð Join pMSK,UL, ID,Aq, and sets
TBrIDs :“ pA,TK,RK,DKq and returns TK to A.

‚ ORevpUL,¨q is a revocation oracle that allows A to query
an identity ID. For each query, it runs Rev pUL, IDq to
obtain a new DU list UL.



‚ OUpdpMSK,UL,¨,¨q is a state update oracle that allows A to
query a state sti´1, and a time interval index i. For each
query, it responds A with a new state sti at i-th time
interval, where sti Ð Update pMSK, sti´1,UL, iq.

‚ OCorruptp¨q is a corruption oracle that allows A to query
an identity ID. If TBrIDs is not defined, it outputs
error symbol K; otherwise it fetches pA,TK,RK,DKq Ð

TBrIDs and forwards DK to A. If the query is in the
second query phase and A $ pM˚, ρ˚q, it outputs K.

‚ GTransform2p¨,¨q is the transformation oracle that allows A
to query an ID and a PTC. It invokes Transform2 and
forwards the result to A.

Definition 7. (sIND-ColA for HR-ABE). An HR-ABE
scheme is said to be sIND-ColA secure if for any PPT
adversary A, the following advantage is negligible.

AdvsIND-ColA
ΠG ,A p1λq “

ˇ

ˇ

ˇ

ˇ

Pr
”

EXPsIND-ColA
ΠG ,A p1λq “ 1

ı

´
1

2

ˇ

ˇ

ˇ

ˇ

.

C.2. The sIND-CTA model.

Besides sIND-ColA presented in Section 4.2, HR-ABE
needs a new security model to reflect the following intuition.

Corrupted TEE attacks launched by any attacker have
no help to obtain the actual message as long as unrevoked
DUs’ decryption keys still keep private.

EXPsIND-CTA
ΠG ,A p1λq

pM˚, ρ˚
q Ð Ap1λq; //Initialize

TB :“ H;
pMPK, MSK, st0, ULq Ð SetupG

p1λ,Ω, T q; //Setup
pM0,M1, stiq Ð AO

pMPK, st0q; //Phase 1
b Ð t0, 1u;
C˚

Ð Enc
`

MPK,Mb, pM˚, ρ˚
q
˘

; //Challenge
Let st “ tst0, st1, ¨ ¨ ¨ , stiu;
b1

Ð AO
pMPK, C˚, stq; //Phase 2

return 1 if b1
“ b, else return 0.

Figure 10: Experiment of the sIND-CTA for HR-ABE

Figure 10 presents the experiments EXPsIND-CTA
ΠG ,A p1λq for

HR-ABE for our new security model called selective indis-
tinguishability against corrupted TEE attacks (sIND-CTA),
which is also run between a challenger and an adversary.
Compared to sIND-ColA, the differences include two as-
pects. On one hand, sIND-CTA allows A to corrupt re-
vocation keys via corruption oracle whereas sIND-COlA
allows A to obtain decryption keys; on the other hand,
sIND-CTA allows A to query a decryption oracle while
sIND-ColA allows A to query the transformation oracle.
Specifically, sIND-CTA allows A to query a set of oracle
O “ tOJoin,ORev,OUpd,OCorrupt,ODecu. While OJoin, ORev
and OUpd are same as in sIND-ColA, OCorrupt and ODec in
sIND-CTA are defined as follows.
‚ OCorruptp¨q is a corruption oracle that allows A to query

an identity ID. If TBrIDs is not defined, it outputs K;
otherwise it fetches pA,TK,RK,DKq Ð TBrIDs. If A &

pM˚, ρ˚q, it returns (RK, DK) to A; otherwise, it returns
(RK, K) to A.

‚ ODecp¨,¨q is a decryption oracle that allows A to query
an identity ID, and a transformed ciphertext TC. If
TBrIDs is not defined, it outputs K; otherwise it fetches
pA,TK,RK,DKq Ð TBrIDs, and returns the result of
DecpDK,TCq to A. If the query is in the second query
phase and DecpDK,TCq P tM0,M1u, it outputs a special
symbol test to A.

Definition 8. (sIND-CTA for HR-ABE). An HR-ABE scheme
achieves sIND-CTA if for any PPT adversary A, the follow-
ing advantage is negligible.

AdvsIND-CTA
ΠG ,A p1λq “

ˇ

ˇ

ˇ

ˇ

Pr
”

EXPsIND-CTA
ΠG ,A p1λq “ 1

ı

´
1

2

ˇ

ˇ

ˇ

ˇ

.

C.3. Proof of THEOREM 3

Proof. The proof applies the hybrid argument of games
[31] and below we provide a proof sketch of THEOREM
3. We start the proof by defining three games: Game0,
Game1, and Game2. Let Ei denotes the event that A wins
in Gamei. In detail, the two games are defined as follows.
‚ Game0. This game is the original sIND-COlA game.
‚ Game1. This game is the same as Game0, except that if

the adversary is able to provide a different state st˚i “

pσ˚,UL˚
i , i

˚q from that maintained by the challenger
sti “ pσ,ULi, iq then the challenger outputs a random
bit and aborts the game.

‚ Game2. This game is the same as Game1, except that
the encryption of RKs (e.g., EpKTEE,RKq) is replaced by
random ciphertexts.

Claim 1. If the signature scheme ΠSig is EUF-CMA, the
difference between the adversary’s advantage in Game0

and Game1 is negligible.

Proof sketch. Game0 and Game1 are the same unless a
forgery event (i.e., the adversary produces a forged signature
σ˚ ‰ σ for a modified UL˚

i ‰ ULi, which passes the
verification) occurs, given that the freshness of a valid
ULi is guaranteed by TEE’s replay protection mechanism.
Therefore, there exists a forger F such that

|PrrE0s ´ PrrE1s| ď AdvEUF-CMA
ΠSig,F .

where AdvEUF-CMA
ΠSig,F is the advantage of F breaking ΠSig.

Claim 2. If EncpKTEE, ¨q (say ΠAE) is a secure authen-
ticated encryption scheme [17], the difference between the
adversary’s advantage in Game1 and Game2 is negligible.

Proof sketch. Suppose there exists an adversary that has
a non-negligible advantage for distinguishing Game1 and
Game2, it implies that the adversary can distinguish a real
ciphertext and a random ciphertext, which contradicts the
CCA security of ΠAE . Formally, there exists a simulator
B1 such that

|PrrE1s ´ PrrE2s| “ AdvCCA
ΠAE ,B1

.



where AdvCCA
ΠAE ,B1

is the advantage of B1 breaking ΠAE .

Claim 3. If the ABE-2OD scheme is sIND-CDA, the adver-
sary’s advantage in Game2 is negligible.

Proof. Suppose there exists a PPT adversary A who has
a non-negligible advantage in Game2, we build a simulator
B that calls A as a subroutine to win sIND-CDA of the
ABE-2OD scheme (i.e., Π1). The simulation consists of six
phases and the details are as follows.

Init. The simulator B runs a copy of A. A determines
a policy pM˚, ρ˚q, which is submitted for challenging.

Setup. Receiving a public parameter PK1 from Π1’s
sIND-CDA challenger, B first generates a random symmet-
ric key KTEE, and constructs an initialized DU list UL.
Besides, B also runs a copy of the simulated signature
scheme pvk, skq Ð ΠSig.KeyGenp1λq. Then B maintains
the MSK “ pd, sk,KTEEq privately, where ‘d’ denotes
unknown master secret key in Π1. B also maintains variables
UL “ H, and st0, which is produced in a similar way as in
oracle OUpdpMSK,UL,¨,¨q. Finally, B forwards pMPK, st0q to
the adversary, where MPK “ pPK1, vkq.

Query Phase 1. B initializes TB “ H, Tcor “ H, and
Tsat “ H. Then B answers the queries for A as follows.

OJoinpMSK,UL,¨,¨q: Receiving an identity ID and an at-
tribute set A as input, B first queries Π1’s challenger
with pID,Aq to obtain the transformation key TK1. B
corrupts the DK1 via querying Π1’s OCorruptDK and records
TBrIDs :“ pA,TK,d,DKq. Besides, B forwards TK to
A and sets UL Ð UL Y tID,TK,EncpKTEE, 0qu, where
EncpKTEE, 0q denotes a random ciphertext. Furthermore, B
records Tsat “ Tsat YtIDu if A $ pM˚, ρ˚q. Note that RK
is unknown to B because B cannot corrupt the helper keys
in Π1’s sIND-CDA game.

ORevpUL,¨q: Receiving an identity ID, B deletes the
record associated to ID and sends the updated UL to A.

OUpdpMSK,UL,¨,¨q: Receiving a state sti´1 and a time
interval index i, B sets ULi “ UL and signs a signature
σ on ULi and the time interval index i. Finally it forwards
sti “ pσ,ULi, iq to A.

OCorruptp¨q: Receiving an identity ID from A, it outputs
error symbol K if TBrIDs is not defined; otherwise it
fetches DK from TBrIDs, records Tcor “ Tcor Y tIDu,
and forwards DK to A.

GTransform2p¨,¨q: Receiving an identity ID and a partially
transformed ciphertext PTC, B checks whether ID P UL. If
not, B outputs K to A; otherwise, it submits PTC to Π1’s
OTransform2 oracle and forwards response Out to A. Note
that if Out “ K, it implies the PTC is a non-legitimate one.

Challenge. Receiving a message pair pM0,M1q from A,
B deletes all ID P Tcor X Tsat from UL and forwards the
message pair to its challenger and obtains a ciphertext C˚

under pM˚, ρ˚q. Finally it passes C˚ to A.
Query Phase 2. B continues to answer queries from

A by following the simulation in Query Phase 1, except
that when answering OCorruptp¨q queries, B returns K for any
queried ID with attribute set A $ pM˚, ρ˚q.

h2 h3 h4

h1-2 h3-4

h1-4 Signature !

Time interval i

ID1
A1 TK1

Enc (KTEE, RK1)
ID2

A2 TK2

Enc (KTEE, RK2)
ID3

A3 TK3

Enc (KTEE, RK3)
ID4

A4 TK4

Enc (KTEE, RK4)

h1

DU list

Merkle hash tree
Signed root

Figure 11: Merkle hash tree as a state

Guess. Receiving a bit b1 from A, B eventually outputs
the same bit b1 as its guess.

It completes the simulation perfectly. Therefore we have

PrrE2s “ AdvsIND-CDA
Π1,B `

1

2

where AdvsIND-CDA
Π1,B is the adversary’s advantage in winning

the sIND-CDA game of an ABE-2OD scheme.
Taking all claims together, we have that

PrrE0s ď |PrrE0s ´ PrrE1s| ` |PrrE1s ´ PrrE2s| ` PrrE2s

“ AdvEUF-CMA
ΠSig,F ` AdvCCA

ΠAE ,B1
` AdvsIND-CDA

Π1,B `
1

2
.

Therefore, the advantage of breaking sIND-COlA security
is negligible. It completes the proof of THEOREM 3.

D. sMHT as The State

sMHT, also called signed tree head (SHT), is a popular
technology in Google’s certificate transparency [22]. Figure
11 describes a toy example to exhibit how sMHT works.
Let H : t0, 1u˚ ÞÑ t0, 1uλ be a cryptographic hash function.
Given any DU list UL, MHT is built in a bottom-up manner,
where the leaf nodes are hash values of original elements
in UL, e.g., h1 “ H pID1,A1,TK1,Enc pKTEE,RK1qq, and
the internal nodes are hash values of their children, e.g.,
h1-2 “ Hph1, h2q. Instead of signing the whole DU list,
now only the root node (i.e., h1-4) is signed by the KGC to
ensure integrity of the DU list. Meanwhile, a time interval
index i is also embedded into the signature to ensure the
freshness of the state, i.e., σ Ð ΠSig.Signpsk, xh1-4, iyq for
the given example. With the sMHT, the membership proof
includes the siblings of the nodes located at the path from
the leaf to the root node (e.g., the nodes highlighted by
the gray box in Figure 11). In such a way, TEE only takes
the logarithmic-sized proof from the state module as input
and then completes the integrity checking in a bottom-up
manner by verifying the hash values in the path and the
signature of the root node. For example, TEE calculates
the hash values h2 “ H pID2,A2,TK2,Enc pKTEE,RK2qq,
h1-2 “ Hph1, h2q, h1-4 “ Hph1-2, h3-4q and verifies the
signature by t0, 1u Ð ΠSig.Verpvk, xh1-4, iy, σq.
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E. Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper presents HR-ABE, a technique for revocation
in attribute-based encryption that leverages the trusted exe-
cution environment of a machine to ensure that a revoked
user is not able to access data that pre-dates their revoca-
tion without having to preform many costly re-encryptions.
Instead, revoked users are flagged and known as revoked
to the TEE. Data owner autonomy over data policies is
maintained by splitting the ABE decryption key into a triple,
including a revocation key, given to the TEE, a translation
key, and a decryption key. The triple is used in a 2-stage
outsourced ABE decryption mode to fulfil the revocation
check function. The paper then shows the security and
performance of this approach, and argues that it is a step
forward in performance for ABE revocation.

E.2. Scientific Contributions

‚ Addresses a long-known Issue
‚ Provides a valuable step forward in an established field

E.3. Reasons for Acceptance

1) This paper addresses the problem of revocation in ABE
in a novel way – through use of a TEE to eliminate
ciphertext delegation and key rollover/update.

2) HR-ABE reduces the cost of revocation in cloud-
based systems, and overall represents a more scalable
approach to the adoption of ABE for confidentiality
within such a system.
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