
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Double Issuer-Hiding Attribute-Based Credentials
From Tag-Based Aggregatable Mercurial Signatures

Rui Shi , Yang Yang , Yingjiu Li , Huamin Feng , Guozhen Shi , Hwee Hwa Pang ,
and Robert H. Deng , Fellow, IEEE

Abstract—Attribute-based anonymous credentials offer users
fine-grained access control in a privacy-preserving manner. How-
ever, in such schemes obtaining a user’s credentials requires knowl-
edge of the issuer’s public key, which obviously reveals the issuer’s
identity that must be hidden from users in certain scenarios. More-
over, verifying a user’s credentials also requires the knowledge of
issuer’s public key, which may infer the user’s private information
from their choice of issuer. In this article, we introduce the notion
of double issuer-hiding attribute-based credentials (DIHAC) to
tackle these two problems. In our model, a central authority can
issue public-key credentials for a group of issuers, and users can
obtain attribute-based credentials from one of the issuers without
knowing which one it is. Then, a user can prove that their credential
was issued by one of the authenticated issuers without revealing
which one to a verifier. We provide a generic construction, as
well as a concrete instantiation for DIHAC based on structure-
preserving signatures on equivalence classes (JOC’s 19) and a novel
primitive which we call tag-based aggregatable mercurial
signatures. Our construction is efficient without relying on zero-
knowledge proofs. We provide rigorous evaluations on personal
laptop and smartphone platforms, respectively, to demonstrate its
practicability.

Index Terms—Anonymous credentials, mercurial signatures,
privacy-preserving, issuer-hiding.

Manuscript received 16 August 2022; revised 7 July 2023; accepted 5 Septem-
ber 2023. Date of publication 11 September 2023; date of current version 11 July
2024. The work of Yang Yang and Robert Deng was supported in part by the
National Natural Science Foundation of China under Grant 62372110, in part by
the Fujian Provincial Natural Science of Foundation under Grant 2023J02008,
and in part by Lee Kong Chian Chair Professor Fund and AXA Research Fund.
The work of Yingjiu Li was supported by Ripple University Blockchain Research
Initiative. The work of Huamin Feng was supported by the National Defense
Basic Research Program of China under Grant JCKY2019102C001. The work
of Hwee Hwa Pang was supported by Lee Kong Chian Chair Professor Fund.
(Corresponding author: Yang Yang.)

Rui Shi is with the School of Cyber Science and Technology, Shan-
dong University, Qingdao, Shandong 266237, China, and also with Beijing
Electronic Science and Technology Institute, Beijing 100070, China (e-mail:
ruishi_mail@126.com).

Yang Yang is with the School of Computing and Information Systems,
Singapore Management University, Singapore 188065 (e-mail: yang.yang.
research@gmail.com).

Yingjiu Li is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403 USA (e-mail: yingjiul@uoregon.edu).

Huamin Feng and Guozhen Shi are with the Institute of Information Security,
Beijing Electronic Science and Technology Institute, Beijing 100070, China
(e-mail: fenghm@besti.edu.cn; sgz1974@163.com).

Hwee Hwa Pang and Robert H. Deng are with the School of Computing and
Information Systems, Singapore Management University, Singapore 188065
(e-mail: hhpang@smu.edu.sg; robertdeng@smu.edu.sg).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TDSC.2023.3314019, provided by the authors.

Digital Object Identifier 10.1109/TDSC.2023.3314019

I. INTRODUCTION

A TTRIBUTE-BASED anonymous credentials (ABCs) is
a primary cryptography tool for the secure use of

digital services, preserving the privacy of users while providing
fine-grained authentication services. A typical ABCs scheme
involves three types of entities: issuer, user, and verifier. A user
obtains credentials from an issuer on a set of attributes that
describe the user’s personal information. The user then presents
the credentials to a verifier anonymously by disclosing a selected
subset of the user’s attributes. Multiple presentations of the same
user can only be linked through the disclosed attributes. ABCs
protect user privacy and support fine-grained access control
due to selective disclosure of users’ attributes for credential
verification. After ABCs were introduced [1], a series of ABCs
schemes were proposed to achieve various functionalities and
optimizations, including selective disclosure credentials [32],
[34], [35], [36], [37], [38], [39], [41], [42], [45], [46], [47], del-
egatable credentials [23], [24], [25], [26], [27], [29], [31], [33],
keyed-verification credentials [3], [4], [7], updatable creden-
tials [5], [6], and decentralized credentials [2], [37]. Now, ABCs
have been widely applied to various anonymous authentication
systems, such as electronic tickets systems [8], single sign-on
systems [9], permissioned blockchain systems [10], [29], direct
anonymous attestation [11], enhanced privacy ID [12], and
self-sovereign identity systems [13], which require minimal col-
lection of users’ personal information due to privacy regulations,
such as General Data Protection Regulations (GDPR) [14] and
California Consumer Privacy Act (CCPA) [15].

Issuer-Hiding From Users: All the anonymous credential
schemes aforementioned have a common feature: users know
the issuer’s public key when obtaining their credentials. While
this seems to be a natural premise, there are scenarios where
the issuer’s identity must be hidden from users to protect the
issuer’s privacy. For example, consider deploying anonymous
credentials in a blockchain system to enable the automatic
issuance of users’ credentials through smart contracts, where
credential issuers are integrated into the blockchain nodes. Due
to the complexity of distributed networks, there is no guarantee
that each node (issuer) can always provide services online in real
time. A solution to solve this issue is to deploy multiple nodes
(issuers) with the same functionality to provide the issuance
service, and this should be transparent to users; each user only
needs to confirm that their issuer is legitimate without knowing
the number and identities of issuers in the system. Another

https://orcid.org/0000-0002-3489-2110
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0000-0001-8256-6988
https://orcid.org/0009-0008-3469-8802
https://orcid.org/0000-0003-4044-6210
https://orcid.org/0000-0001-7266-5712
https://orcid.org/0000-0003-3491-8146
mailto:ruishi_mail@126.com
mailto:yang.yang.research@gmail.com
mailto:yang.yang.research@gmail.com
mailto:yingjiul@uoregon.edu
mailto:fenghm@besti.edu.cn
mailto:sgz1974@163.com
mailto:hhpang@smu.edu.sg
mailto:robertdeng@smu.edu.sg
https://doi.org/10.1109/TDSC.2023.3314019

instance is that multiple issuers should be deployed in a large-
scale electronic identity system in order to improve the stability
of the system and avoid a single point of failure. In this case,
hiding the information of issuers from users and potential ad-
versaries helps reduce the probability of targeted attacks. An
fashionable instance is car sharing, where each car owner plays
the role of the issuer, and each car sharer plays the role of a user.
To transfer access to a car from its owner to a car sharer, the car
owner may issue credentials without revealing their identity for
privacy protection.

Issuer-Hiding From Verifiers: Another concern that has not
been commonly addressed in existing research on ABCs is that
each user is required to reveal an issuer’s public key to a verifier
when presenting their credentials, and this enables the verifier to
infer the user’s private information based on their choice of issuer
in certain scenarios. In an electronic identity system, for exam-
ple, a single issuer is set up for issuing credentials to all users
in each administrative area. Fine-grained administrative areas
may be arranged to increase the efficiency and manageability of
the whole system. However, in such case, a user revealing their
issuer’s public key to a verifier when presenting their credentials
enables the verifier to infer the administrative area of the user.
Another instance is that a vehicular ad-hoc networks (VANET)
system allows each vehicle’s manufacturer to issue credentials
to the vehicle. When a vehicle reveals its manufacturer’s public
key to a verifier for anonymous authentication in VANET, it
reveals its brand unnecessarily.

Drawbacks of Existing Schemes: The main drawback of ex-
isting ABCs schemes is that none was designed to achieve both
issuer-hiding from users and issuer-hiding from verifiers. Re-
cently, though, Bobolz et al. [16], Conolly et al. [20], and Bosk et
al. [30] independently proposed definitions of issuer-hiding (or
signer-hiding) from verifiers and developed concrete anonymous
credential schemes based on their definitions. Unfortunately,
their schemes do not support issuer-hiding from users. Another
trivial solution is to deploy multiple issuers who share the same
issuing key, but this approach has two significant drawbacks.
First, if any of the multiple issuers is corrupted, the issuing
keys of all issuers are compromised. Second, sharing issuer
keys is not feasible in many application scenarios. For instance,
independent issuers should be deployed in a large-scale elec-
tronic identity system based on their administrative divisions.
Likewise, in the case of vehicular ad-hoc networks (VANET),
each manufacturer should manage an independent credential
issuer.

A. Our Contributions

In this paper, we advance the state-of-the-art by present-
ing a double issuer-hiding attribute-based credential scheme
(DIHAC), which supports issuer-hiding from both users and ver-
ifiers while retaining other desired features of anonymous cre-
dentials, including anonymity, unforgeability, attribute-based,
and selective disclosure. Specifically, our contributions include:
� We introduce a new tag-based aggregatable mercurial sig-

nature (TAM− Sign) as a fundamental building block for
DIHAC, which is also of independent interest for other

applications. Within our TAM− Sign scheme, multiple at-
tribute signatures {σi} on the same tag �T can be aggregated
into a compact signature σ. Furthermore, the TAM− Sign
allows a signature σ for the attributes on a tag �T under
a public key pk to be transformed into a new unlinkable
signature σ′ for the same attributes on an equivalent but
unlinkable tag �T ′ under an equivalent but unlinkable public
key pk′.

� We introduce DIHAC, a new attribute-based anonymous
credentials scheme that achieves issuer-hiding from both
users and verifiers. We formalize the system model and
the security model of DIHAC, including unforgeabil-
ity, anonymity, and unlinkability. Moreover, we provide
a generic construction and an efficient instantiation of
DIHAC using our TAM− Sign scheme in combination
with SPS− EQ scheme [46], and zero-knowledge sig-
nature of knowledge (ZKSoK) [23], and prove that the
proposed scheme achieves all the security requirements
in the formalized security model.

� We implement our DIHAC instantiation at AES-100 b se-
curity level, and our source code is available publicly [55].
We evaluate DIHAC on a personal laptop and smartphone,
respectively. When the number of user’s attributes is set to
10, a user presenting a credential to a verifier takes 41 ms to
execute on a laptop and 541 ms to execute on a smartphone.
In addition, we highlight its application in an electronic
ticket system [8] and a permissioned token system [29] in
Supplementary Material A, available online.

II. PRELIMINARY

A. Bilinear Pairing

Let G1, G2 and GT be cyclic groups of prime order p.
Let g and g̃ be generators of G1 and G2, respectively. The
mapping e : G1 ×G2 → GT is a bilinear map if it has three
properties: (1) bilinearity: ∀g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, we
have e(ga, g̃b) = e(g, g̃)ab. (2) non-degeneracy: e(g, g̃) �= 1GT

.
(3) computability: e can be efficiently computed. We denote
a bilinear group BL = (G1,G2,GT , e, p, g, g̃). Our scheme is
based on the Type-III pairing [44], which means that there is no
efficiently computable homomorphism between G1 and G2.

B. Pseudorandom Function

A pseudorandom function (PRF) is a deterministic function of
a key and an input and consists of the following polynomial-time
(PPT) algorithms:
• PRF.KeyGen(1λ)→ rk: On input security parameter 1λ,

outputs a secret key rk.
• PRF.Eval(rk, str)→ γ: On input a secret key rk and a

string str ∈ {0, 1}∗, outputs a random element γ ∈ G, where
G is a finite set.

A PRF scheme is secure if any PPT adversary cannot distin-
guish PRF’s outputs from a truly random function. In this paper,
we use PRF to generate deterministic random scalars.

C. Class-Hiding

Let Gi be a prime order group of a bilinear map. [�M]R ⊂
(G∗i)

l is a message equivalence class defined based on the
equivalence relation: R �M = {(�M, �M ′) ∈ (G∗)l × (G∗)l|∃s ∈
Z∗p : �M ′ = �Ms}. (G∗i)l is a class-hiding space if for any PPT
adversary A there is a negligible function ε(λ) such that:

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
b∗ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b
R←− {0, 1};

�M
R←− (G∗i)

l;

�M0 R←− (G∗i)
l;

�M1 R←− [�M]R;

b∗ ← A(Gi, �M, �M b).

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
� ε(λ)

And, (G∗i)
l is a class-hiding space if and only if the DDH

assumption holds in Gi [46].

D. Structure-Preserving Signatures on Equivalence Classes

A structure-preserving signatures scheme on equivalence
classes (SPS− EQ) [45], [46] over a message equivalence rela-
tionR �M consists of the following PPT algorithms:
• SPS-EQ.Setup(1λ)→ BL: On input a security parameter

1λ, outputs a bilinear group BL.
� SPS-EQ.KeyGen(BL, l)→ (sk, pk): On input the bi-

linear group BL and a message length l, outputs a signing
key sk and a public key pk.

� SPS-EQ.Sign(sk, �M)→ σ: On input the signing key sk

and a message �M , outputs a signature σ on the message
�M .

� SPS-EQ.ChgRep(�M, σ, μ, pk)→ (�M ′, σ′): On input a
representative �M of an equivalence class [�M]R, a signature
σ on the message �M , a message converter μ ∈ Z∗p, and the
public key pk, outputs an updated message-signature pair
(�M ′, σ′), where �M ′ ∈ [�M]R.

� SPS-EQ.Verify(�M, σ, pk)→ 0/1: On input a represen-
tative �M of an equivalence class [�M]R, a signature σ on
the message �M , and the public key pk, outputs 1 if σ is
valid on �M under pk and 0 otherwise.

� SPS-EQ.VKey(sk, pk)→ 0/1: On input the signing key
sk and the public key pk, outputs 1 if it is a valid key pair
and 0 otherwise.

An SPS− EQ [46] scheme is secure if it is existentially
unforgeable under chosen message attacks (EUF-CMA) and
has perfect adaptation of signatures. We introduce the secu-
rity definition of SPS− EQ and a concrete instantiation of it
in Supplemental Material D.1, available online. In this paper,
we use this signature scheme to hide issuers’ public keys and
credentials.

E. Aggregatable Attribute-Based on Equivalence Classes

An aggregatable attribute-based equivalence class (AAEQ)
signature scheme over a message equivalence relation R �M
consists of the following PPT algorithms:

� AAEQ.Setup(1λ, t, n)→ pp: On input a security param-
eter 1λ, a message length t, and a total number of user’s
attributes n, outputs public parameters pp.

� AAEQ.KeyGen(pp)→ (sk, pk): On input the public pa-
rameters pp, outputs a signing key sk and a public key
pk.

� AAEQ.Sign(sk, aj , �M)→ σj: On input the signing key
sk, an attribute value aj , and a message �M , outputs a
signature σ of the attribute aj on the message �M .

� AAEQ.Aggr(pk, {aj , σj}D)→ σ: On input the pub-
lic key pk and a set of valid attribute-signature pairs
{aj , σj}j∈D on the message �M , (D ⊂ [1, n]), outputs an
aggregated signature σ for the set of attributes {aj}j∈D.
• AAEQ.ChgRep(�M, σ, ρ, pk)→ (�M ′, σ′): On input a
message �M , a signatureσ and a message converter ρ ∈ Z∗p,

outputs an updated message-signature pair (�M ′, σ′), where
�M ′ ∈ [�M]R.
• AAEQ.Verify(pk, {aj}D, σ, �M)→ 0/1: On input a
public key pk, a set of attributes {aj}j∈D, and a message-
signature pair (�M, σ), outputs 1 if σ is valid for {aj}j∈D
and �M , and 0 otherwise.
• AAEQ.VKey(sk, pk)→ 0/1: On input the signing key
sk and the public key pk, outputs 1 if it is a valid key pair
and 0 otherwise.

An AAEQ [47] scheme is secure if it is EUF-CMA secure
and has perfect adaptation of signatures. We introduce the se-
curity definition of AAEQ and a concrete instantiation of it in
Supplemental Material D.2, available online. In this paper, we
use this signature scheme as a building block to construct our
TAM− Sign scheme.

F. Updatable Public Keys

An updatable public key system (UPK) over a public-key
equivalence relation Rpk consists of the following PPT algo-
rithms:
� UPK.Setup(1λ)→ pp: On input a security parameter 1λ,

outputs the parameters pp.
� UPK.KeyGen(pp)→ (sk, pk): On input the public pa-

rameters pp, outputs a secret key sk and a public key pk.
� UPK.Update(pk)→ pk′: On input a public key pk, out-

puts a updated public key pk′, where pk′ ∈ [pk]R..
� UPK.VfyKey(sk, pk)→ 0/1: On input a secret key sk and

the public key pk, outputs 1 if it is a valid key pair and 0
otherwise.

A UPK [48] scheme is secure if it satisfies unforgeability and
indistinguishability. We introduce the security definition ofUPK
and a concrete instantiation of it in Supplemental Material D.3,
available online. In this paper, we use this UPK scheme as a
building block to construct our TAM− Sign scheme.

G. Zero-Knowledge Signature of Knowledge

Zero-knowledge signature of knowledge (ZKSoK) [23] for
a NP-relation R with the language LR = {y : ∃x, (x, y) ∈ R}
consists of the following algorithms.

� Gen(1λ)→ pp: On input a security parameter λ, outputs
a public parameter pp.

� Sign(x, y,m)→ Π: On input a message m and a relation
(x, y) ∈ R, outputs a ZKSoK: Π = ZKSoK{x|(x, y) ∈
R}(m).

� Verify(y,Π,m)→ 0/1: On input a message m, a ZKSoK
Π and a statement y. IfΠ is valid, return 1; otherwise return
0.

A ZKSoK is SimExt-secure [23] if it satisfies correctness,
simulatability, and extractability. We introduce the security defi-
nition of ZKSoK and an instantiation approach in Supplemental
Material D.4, available online.

III. TAG-BASED AGGREGATABLE MERCURIAL SIGNATURES

In this section, we introduce a new primitive called tag-
based aggregatable mercurial signatures (TAM− Sign). In this
scheme, there are two equivalence classes: tag equivalence class
[�T]R and public-key equivalence class [pk]R, which are defined
based on equivalence relationsR�T andRpk, respectively.

R�T = {(�T , �T ′) ∈ (G∗i)
t × (G∗i)

t|∃s ∈ Z∗p : �T ′ = �T s},
Rpk = {(pk, pk′) ∈ (G∗i′)

l × (G∗i′)
l|∃s ∈ Z∗p : pk′ = pks}.

In TAM− Sign scheme, each user generates a tag �T and
corresponding witness; there is a signing key that can issue a
signature for per attribute on a tag under a public key. This
scheme is required to be aggregatable so that signatures for
multiple attributes on the same representative �T from a tag
equivalence class can be aggregated into a compact signature.
Moreover, the scheme allows a signature for the attributes on
a tag under a public key to be randomized and converted to an
unlinkable signature for the same attribute on an equivalent but
unlinkable tag under an equivalent but unlinkable public key.

A. Formal Definitions

A TAM− Sign scheme over equivalence relations R�T and
Rpk consists of the following PPT algorithms:
� TAM-Sign.Setup(1λ, t, n)→ pp: On input a security pa-

rameter 1λ, a tag length t and a total number of user’s
attributes n, this probabilistic algorithm outputs the public
parameters pp.

� TAM-Sign.KeyGen(pp)→ (sk, pk): On input the public
parameters pp, this probabilistic algorithm outputs a sign-
ing key sk and a public key pk.

� TAM-Sign.GenTag(pp)→ (tw, �T): On input the public
parameters pp, this probabilistic algorithm outputs a tag
�T ∈ (G∗i)

t and corresponding secret witness tw.
� TAM-Sign.Sign(sk, �T , aj)→ σj: On input the signing

key sk, a tag �T and an attribute value aj (j ∈ [1, n]),
this probabilistic algorithm outputs a signature σj of the
attribute aj for the tag �T .

� TAM-Sign.Aggr(pk, {aj , σj}j∈D, �T)→ σ/⊥: On input
the public key pk and a set of valid attribute-signature
pairs {aj , σj}j∈D on the same tag �T (D ⊂ [1, n]), this
deterministic algorithm outputs an aggregated signature σ
of the set of attributes {aj}j∈D if it executes successfully,
and ⊥ otherwise.

� TAM-Sign.ConvertSK(sk, μ)→ sk′: On input the sign-
ing key sk and a key converter μ ∈ Z∗p, this deterministic
algorithm outputs an updated signing key sk′.

� TAM-Sign.ConvertPK(pk, μ)→ pk′: On input the public
key pk and a key converter μ ∈ Z∗p, this deterministic
algorithm outputs an updated public key pk′ that satisfies
pk′ ∈ [pk]R.

� TAM-Sign.ConvertSign(σ, μ)→ σ′: On input the public
key pk and a key converter μ ∈ Z∗p, this probabilistic
algorithm outputs an updated signature σ′.

� TAM-Sign.ChgRep(σ, �T , ρ)→ (�T ′, σ′): On input a sig-
nature σ, a tag �T and a tag converter ρ ∈ Z∗p, this prob-
abilistic algorithm outputs an updated tag-signature pair
(�T ′, σ′), where �T ′ ∈ [�T]R.

� TAM-Sign.Verify(pk, �T , σ, {aj}j∈D)→ 0/1: On input a
public key pk, a tag-signature pair (�T , σ) and a set of
attributes {aj}j∈D, this deterministic algorithm outputs 1
if σ is valid for {aj}j∈D and �T under pk, and 0 otherwise.

� TAM-Sign.VfyKey(pk, sk)→ 0/1: On input a public key
pk and a signing key sk, this deterministic algorithm
checks the consistency of key pair and outputs 1 if suc-
cessful, and 0 otherwise.

� TAM-Sign.VfyTag(tw, �T)→ 0/1: On input a tag �T and a
witness tw, this deterministic algorithm checks the consis-
tency of witness-tag pair and outputs 1 if successful, and 0
otherwise.

Given a set of attribute-signatures {aj , σj}j∈D on the same tag
�T under the public key pk, we can generate an aggregated signa-
ture σ on the set of attributes {aj}j∈D and converter it to a new
signatureσ′ under a new equivalent public keypk′without know-
ing the corresponding signing key. TAM− Sign.ConvertSK,
TAM− Sign.ConvertPK and TAM− Sign.ConvertSign can be
seen as a matching randomization of the signing key pair and
signature using a random key converter μ without invalidating
the signature under the new public key. Moreover, the tag-
signature pair (�T , σ) under the public key pk can be randomized
to a new signature σ′ with a new equivalent tag �T ′ without
knowing the signing key. TAM− Sign.ChgRep can be seen as a
matching randomization of a tag and signature using a random
tag converter ρ without invalidating the signature with the new
tag.

Correctness: A TAM− Sign scheme is correct if it satisfies:
(1) the verification of aggregated signatures is correct; (2) the
conversion of keys and signatures is correct; (3) the change of
tag representative is correct. Correct verification of aggregated
signatures means that honestly generated keys, honestly gener-
ated tags, and honestly generated and aggregated signatures are
always verified. Correct conversion of keys and signatures means
that when a same key converter is applied to a signing key pair
and a signature with a tag, it produces a valid updated signing
key pair, where the updated and original public keys belong
to the same equivalence class, and a valid updated signature
with the tag under the new public key. Correctly changing the
tag representative means that if a tag converter is applied to a
tag-signature pair, then it obtains a valid updated tag-signature
pair, where the updated and original tags belong to the same

Fig. 1. EUF-CMA of TAM-sign.

equivalence class. The formal correctness definition is shown in
Supplemental Material B.1, available online.

B. Security Definitions

The security definition of EUF-CMA requires the following
global variable and oracle.

– Q: A set of signed attribute-tag pairs (aj , �T).
– OSign(sk, �T , aj): It is an oracle that can be used to issue

a signature for an attribute aj on a tag �T . It runs σ ←
TAM-Sign.Sign(sk, �T , aj), adds (aj , �T) toQ (Q := Q ∪
(aj , �T)), and returns σj .

Definition III.1: The EUF-CMA is defined by experiment
ExpufTAM-Sign in Fig. 1. A TAM-Sign scheme is EUF-CMA secure
if for t ∈ Z+, n ∈ Z+ and any PPT adversary A having access
to the oracle OSign(sk, ·), there is a negligible function ε(λ)
such that:

AdvufTAM-Sign =
∣∣Pr [ExpufTAM-Sign(A, 1λ, t, n)

]
= 1

∣∣
� ε(λ)

Compared with the definition of standard signature’s EUF-
CMA, the unforgeability of TAM-Sign is different in the follow-
ing two aspects, except that the signature output by the adversary
requires correct verification.

(1) The adversary’s forgery is invalid if there is attribute-tag
pair {a∗j , �T ∗} belonging to the attributes and tag equivalence

classes of the previous query, i.e. ∀j ∈ D, (a∗j , [�T ∗]R) /∈ Q.
(2) The adversary is allowed to forge a public key pk∗ as long

as it belongs to the same equivalence class as the original public
key pk, i.e. pk∗ ∈ [pk]R.

Definition III.2. Signature Adaptation: An TAM− Sign
scheme perfectly adapts signatures if for all tuples (sk, pk,

tw, �T , {aj}, σ, μ, ρ), the following conditions are met:
1) TAM-Sign.VfyKey(pk, sk) = 1.
2) TAM-Sign.VfyTag(tw, �T) = 1.
3) TAM-Sign.Verify(pk, �T , σ, {aj}) = 1.
4) (μ, ρ) ∈ Z∗p, �T ∈ (G∗i)

t, pk ∈ (G∗i′)
l, where l =

f(t, n) ∈ Z+.
(pkμ, �T ρ,TAM-Sign.Aggr(pkμ, {aj ,TAM-Sign.Sign(sk ·

μ, �T ρ, aj)})) and (TAM-Sign.ConvertPK(pk, μ),TAM-Sign.
ChgRep (TAM-Sign.ConvertSign(σ, μ), �T , ρ)) are
identically distributed.

Fig. 2. Unforgeability of tag.

We follow the idea of Fuchsbauer [46] and Hanzlik [47]
in defining signature adaptation. Signature adaptation is a for-
malization of two notions. First, the TAM− Sign signature
(pk, �T , σ) parameterized by equivalence relationsR�T andRpk

is class-hiding. Second, any change in the representation of a
valid signature is distributed as a new signature. This ensures
user protection against the signer, especially when randomizing
tag-signature pairs received from the signer.

Definition III.3. Unforgeability of Tags: The unforgeability of
tags is defined by experiment ExpufTag in Fig. 2. A TAM-Sign
scheme satisfies unforgeability of tags if for any PPT adversary
A, there is a negligible function ε(λ) such that:

AdvufTag =
∣∣Pr [ExpufTag(A, 1λ, t, n)

]
= 1

∣∣ � ε(λ)

Unforgeability of tags ensures that an adversary should not
be able to learn the secret witness of an updated tag unless it
already knew the witness for the original tag.

C. Concrete Instantiation

Our TAM− Sign scheme is inspired by the aggregatable
attribute-based equivalence class signature (AAEQ) [47], updat-
able public keys scheme [48], and mercurial signatures [33]. The
construction of the TAM− Sign scheme follows a three-step
process. (1) Employ updatable public key as user tag, which
allows users to control the presentation of their signatures for
verification. (2) We replace the messages in AAEQ scheme
with user-generated and updatable tag. Multiple signatures on
the same tag can be aggregated into a compact signature. (3)
Following the paradigm of mercurial signatures, we allow the
signature on a tag under a public key to be randomized and
converted to a new unlinkable signature on an equivalent but
unlinkable tag under an equivalent but unlinkable public key.

In this section, we present a concrete instantiation of
TAM− Sign, which combines the AAEQ [47] scheme of Han-
zlik et al. the updatable public key (UPK) [48] scheme of Fauzi
et al. and the mercurial signatures [33] of Crites et al.
−TAM-Sign.Setup(1λ, t = 2, n)→ pp:
� Generate a Type-III bilinear group BL = (G1, G2,GT ,
e, p, g, g̃).

� Choose a pseudorandom function PRF and a collision
resistant hash function HASH: {0, 1}∗ → G∗1.

� Set the equivalence classes [�T]R ⊂ (G∗1)
2 and [pk]R ⊂

(G∗2)
2·n.

� Set pp = (t=2, n,BL,PRF,HASH, [�T]R, [pk]R).
−TAM-Sign.KeyGen(pp)→ (sk, pk):
� Compute rk ← PRF.KeyGen(1λ).

� For all j ∈ [1, n], choose (xj,1, xj,2)
R←− Z∗p and set skj =

(xj,1, xj,2).
� Compute pkj = (X̃j,1, X̃j,2)← (g̃xj,1 , g̃xj,2).
� Set sk = (rk, sk1, . . . , skn) and pk = (pk1, . . . , pkn).
−TAM-Sign.GenTag(pp)→ (tw, �T).
� Choose (tw, r)

R←− Z∗p and compute �T = (T1, T2)←
(gr, gr·tw).

−TAM-Sign.Sign(sk, �T , aj)→ σj .
� Check aj ∈ {0, 1}∗ and �T ∈ (G∗1)

2.
� Generate a random γ = PRF.Eval(rk, �T) and γ ∈ Z∗p.
� Compute σj = (Zj , Yj , Ỹj , Vj)← ((

∏2
i=1 T

xj,i

i)γ ,
g1/γ , g̃1/γ ,HASH(aj)

1/γ).
−TAM-Sign.Aggr(pk, {aj , σj}j∈D, �T)→ σ/⊥.
� If D � [1, n], output ⊥.
� Compute σ = (Z, Y, Ỹ , V)← (

∏
j∈D Zj , Yj∗ , Ỹj∗ ,∏

j∈D Vj), where j∗ ∈ D.
−TAM-Sign.ConvertSK(sk, μ)→ sk′.
� Compute sk′ = (rk, sk1 · μ, . . . , skn · μ), where skj ·
μ = (xj,1 · μ, xj,2 · μ).

−TAM-Sign.ConvertPK(pk, μ)→ pk′.
� Compute pk′ = pkμ = (pkμ1 , . . . , pk

μ
n), where pkμj =

(X̃μ
j,1, X̃

μ
j,2).

−TAM-Sign.ConvertSign(σ, μ)→ σ′.
� Choose φ1

R←− Z∗p and compute σ′ = (Z ′, Y ′, Ỹ ′, V ′)←
(Zφ1·μ, Y 1/φ1 , Ỹ 1/φ1 , V 1/φ1).

−TAM-Sign.ChgRep(σ, �T , ρ)→ (�T ′, σ′).
� Compute �T ′ = �T ρ ← (T ρ

1 , T
ρ
2).

� Choose φ2
R←− Z∗p and compute σ′ = (Z ′, Y ′, Ỹ ′, V ′)←

(Zφ2·ρ, Y 1/φ2 , Ỹ 1/φ2 , V 1/φ2).
−TAM-Sign.Verify(pk, �T , σ, {aj}j∈D)→ 0/1.
� If D � [1, n], output 0.
� Check whether

∏2
i=1 e(Ti,

∏
j∈D X̃j,i) = e(Z, Ỹ).

� Check whether e(Y, g̃) = e(g, Ỹ).
� Check whether e(

∏
j∈D HASH(aj), Ỹ) = e(V, g̃).

� Output 1 if the above checks hold and 0 otherwise.
−TAM-Sign.VfyKey(pk, sk)→ 0/1.
� For all i ∈ [1, 2] and j ∈ [1, n], check whether X̃j,i =
g̃xj,i .

� Output 1 if the above checks hold and 0 otherwise.
−TAM-Sign.VfyTag(tw, �T)→ 0/1.
� If T2 = T tw

1 , output 1, otherwise output 0.

D. Security Analysis

In this section, we prove the security of TAM− Sign scheme.
Theorem III.1: Our TAM− Sign scheme is correct. If the

AAEQ scheme and the UPK scheme satisfy correctness, then
our TAM− Sign scheme is correct.

Theorem III.2: Our TAM− Sign scheme is unforgeable in
the generic group model if the underlying AAEQ scheme is
unforgeable.

Proof: To prove the EUF-CMA ofTAM− Sign, we construct
a simulator S to attack the EUF-CMA of the AAEQ scheme.
Suppose a PPT adversary A produces a successful forgery

Fig. 3. Double issuer-hiding anonymous credentials.

(pk∗, �T ∗, σ∗, {a∗j}j∈D∗) for the TAM− Sign scheme with non-
negligible probability ε(λ). Then, by definition, there exists a
μ∗ ∈ Z∗p such thatpk∗ = pkμ

∗
, wherepk is the challenged public

key for EUF-CMA of the AAEQ scheme. We show thatS is able
to recover the key converter μ∗ and generate a successful forgery
((�T ∗)μ, σ∗, {a∗j}j∈D∗) for the AAEQ scheme under the public
key pk, contradicting its proven security in the generic group
model. The detailed proof is given in Supplemental Material
B.2.1, available online.

Theorem III.3: Our TAM− Sign scheme provides perfect
adaption of signatures.

We provide this proof in Supplemental Material B.2.2, avail-
able online.

Theorem III.4: Our TAM− Sign scheme satisfies unforge-
ability of tags.

Proof: This straightforwardly follows from the unforgeabil-
ity of the underlying UPK scheme.

IV. DOUBLE ISSUER-HIDING ANONYMOUS CREDENTIALS

A. System Architecture

As shown in Fig. 3, the architecture ofDIHAC scheme consists
of four types of parties: a central authority (CA), issuers (I), users
(U), and verifiers (V). The specific role of each party is described
as follows.
� CA is a trusted global party responsible for setting up the

system (step 1©) and providing certification service for a
group of issuers (step 3©).

� I is an independent issuer and should register to CA (step
2© and 4©). There are multiple issuers in the DIHAC

scheme whose task is to anonymously issue attribute-based
credentials to users (step 6©). In our system architecture,
each issuer independently obtains its credential from CA.
Consequently, even if one of the issuers is corrupted, the
adverse impact on the system is limited.

� U with a set of attributes should apply for credentials from
one of the authenticated issuers (step 5© and 7©), but he can
not determine the issuer’s identity. Then, U anonymously
presents a credential to V (step 8©) while disclosing a
subset of his attributes.

� V provides credential verification services for all users (step
9©). V can obtain some of the attribute values that the user

voluntarily discloses and verify that the user’s credential
was issued by an authenticated issuer, but it can neither
determine the user’s hidden attribute values nor issuer’s
identity.

B. Formal Definitions

A DIHAC scheme consists of the following PPT algorithms:
� DIHAC.Setup(1λ)→ (pp,msk,mpk). This algorithm is

operated by the CA that inputs a security parameter 1λ,
then outputs the system parameters pp and a master pri-
vate/public key pair (msk,mpk).

� DIHAC.IKeyGen(pp)→ (isk, ipk,Π1). This algorithm
is operated by an issuer that inputs the system parameters
pp, then outputs a secret key isk, a public key ipk, as well
as a signature of knowledge Π1 to demonstrate the issuer
knows the secret key isk.

� DIHAC.IssueI(msk,mpk, ipk,Π1)→ icred/⊥. This
algorithm is operated by the CA that takes the master
private/public key pair (msk,mpk), an issuer’s public
key ipk and corresponding signature of knowledge Π1 as
inputs. The algorithm outputs either a credential icred for
the issuer if it succeeds or ⊥ if it fails.

� DIHAC.VfCredI(mpk, isk, ipk, icred)→ 0/1. This al-
gorithm is operated by an issuer that takes the master
public key mpk, the issuer’s own key pair (isk, spk), and
a credential icred as inputs. The algorithm outputs 1 if the
credential is validated, 0 otherwise.

� DIHAC.UKeyGen(pp)→ (usk, upk,Π2). This
algorithm is operated by a user that inputs the system
parameters pp, then outputs a secret key usk, a public
key upk, as well as a signature of knowledge Π2 to
demonstrate the user knows the secret key usk.

� DIHAC.IssueU (isk, ipk, icred, upk, {aj}j∈[1,n],Π2)→
(ipk′, icred′, ucred)/⊥. This algorithm is operated by an
issuer that takes the issuer’s key pair (isk, ipk), the issuer’s
credential icred, a set of user’s attributes {aj}j∈[1,n], a
user’s public key upk and corresponding signature of
knowledge Π2 as inputs. If it succeeds, the algorithm
outputs a credential ucred for the set of attributes of the
user and the corresponding unlinkable public key ipk′ and
credential icred′ of an issuer, or ⊥ if it fails.

� DIHAC.VfCredU (mpk, ipk′, icred′, usk, upk, {aj}j∈[1,n],
ucred)→ 0/1. This algorithm is operated by a user that
takes the master public key mpk, an issuer’s public
key ipk′ and corresponding credential icred′, the user’s
own key pair (usk, upk), and a user credential ucred as
inputs. The algorithm outputs 1 if the issuer and the user
credentials are all validated, and 0 otherwise.

� DIHAC.Show(mpk, ipk′, icred′, usk, upk, ucred,
{aj}j∈D,CTX)→ tk. This algorithm is operated by
a user that takes the master public key mpk, an issuer’s
public key ipk′ and corresponding credential icred′,
the user’s own key pair (usk, upk) and corresponding
credential ucred, a set of selective disclosure attributes
{aj}j∈D (D ⊂ [1, n]), and a context CTX as inputs,
then outputs a presentation token tk. Note that {aj}j∈D
should satisfy an attribute disclosure policy enforced by a
verifier in order to pass the verifier’s verification, and CTX
includes a random message to prevent replay attacks.

� DIHAC.Verify(mpk, {aj}j∈D, tk,CTX)→ 0/1. This al-
gorithm is operated by a verifier that takes the master public

key mpk, a set of user’s attributes {aj}j∈D, a presentation
token tk and a context CTX as inputs. The algorithm out-
puts 1 if the user’s attributes satisfies an attribute disclosure
policy enforced by the verifier and the token is validated,
and 0 otherwise.

Correctness: A DIHAC scheme is correct if it satisfies: (1) the
verification of issuer credentials is correct; (2) the verification of
user credentials is correct, and (3) the verification of presentation
tokens is correct. The formal definition of correctness is shown
in Supplemental Material C.1, available online.

C. Overflow of DIHAC

As shown in Fig. 3, the working flow of DIHAC scheme is de-
scribed as follows. CA initializes the system and outputs system
parameter pp and a master private/public key pair (msk,mpk)
(DIHAC.Setup,step 1©). To qualify to issue credentials for users,
each issuer I generates a key pair (isk, ipk) and the correspond-
ing signature of knowledgeΠ1 (DIHAC.IKeyGen, step 2©); then,
I authenticates itself to the CA (DIHAC.IssueI , step 3©) and
obtains its public key credential icred (DIHAC.VfCredI , step
4©). When joining the system, each user U generates a key pair
(usk, upk) and the corresponding signature of knowledge Π2

(DIHAC.UKeyGen, step 5©); then U authenticates himself to
one of the authenticated issuers (DIHAC.IssueU , step 6©) and
obtains his attribute-based credential ucred and the correspond-
ing unlinkable public key ipk′ and unlinkable credential icred′

of the issuer (DIHAC.VfCredU , step 7©). When showing a user
credential to any verifier V, the user U anonymously proves
the validity of the credential to V using a presentation token
and reveals the set of disclosed attributes (DIHAC.Show, step
8©), and V verifies the correctness of the presentation token

(DIHAC.Verify, step 9©).

D. Threat Model

We assume the central authority CA is a fully trusted party in
the system. Issuers I are assumed to be malicious. Unregistered
malicious issuers may use fake credentials to issue attribute-
based credentials for users, thereby stealing the identities of
honest users or tricking them into failing authentication by the
verifiers. UsersU are assumed to be malicious because they may
forge presentation tokens of credentials and attempt to obtain
the identity information of issuers. Verifiers V are assumed to
be honest but curious in the sense that it is honest in verifying
the presentation tokens for users but is curious to obtain users’
undisclosed attributes and the identity information of the issuers
who issued users’ credentials.

E. Security Definitions

In this section, we define the security properties, including
unforgeability, anonymity, and unlinkability of DIHAC. All se-
curity definitions use the following global variables and oracles.
A challenger C is responsible for setting system parameters
and generating keys for CA, all issuers, and all honest users.
In addition, C is responsible for initializing and controlling all
oracles and global variables. A PPT adversary A interacts with

C, which simulates the behavior of honest participants (CA, all
uncorrupted issuers, and all honest users) through the oracles.

Global Variables.
QHU: A set storing (u, i, usku, upku, ucredu, ipk

′
i, icred

′
i,

{aj}j∈[1,n]) each time an issuer i issues credential for an honest
user u.
QCU: A set containing the index u of corrupt users.
QHI: A set storing (i, isk, ipk) each time a credential is issued

for an issuer i.
QCI: A set containing the index i of corrupt issuers.
QShw: A set storing ({aj}j∈D,CTX) each time a credential

is shown to a verifier.
QRI: A set containing the revealed user-issuer index pair (u, i).
Oracles.
− OIssI (i): It is an oracle that can be used to is-

sue a public key credential for the issuer i. It gener-
ates a key pair (iski, ipki) by running (iski, ipki,Π1,i)←
DIHAC.IKeyGen(pp), and then issues a credential to issuer
i by running icredi ← DIHAC.IssueI(msk,mpk, ipki,Π1,i).
Finally, it adds (i, iski, ipki) toQHI and returns (i, ipki, icredi).
− OCorI (i): It is an oracle that can be used to corrupt an

issuer i. If i ∈ QCI, then it returns ⊥. Otherwise, it deletes
(i, iski, ipki) from QHI and adds i to QCI. Finally, it returns
(i, iski).
− OObtIssU (u, {aj}j∈[1,n]): It is an oracle that can be

used to play an uncorrupted issuer issuing an attribute-
based credential to an honest user u. If u ∈ QCU, it re-
turns ⊥. Otherwise, it randomly selects an issuer i from
QHI and generates a key pair (usku, upku) by running
(usku, upku,Π2,u)← DIHAC.UKeyGen(pp); then it issues
a credential to user u by running (ipk′i, icred

′
i, ucredu)←

DIHAC.IssueU (iski, ipki, upku, {aj}j∈[1,n],Π2,u). Finally, it
adds (u, i, usku, upku, ucredu, ipk

′
i, icred

′
i, {aj}j∈[1,n]) to

QHU and returns (upku, ucredu, ipk′i, icred
′
i).

− OObtU (u, {aj}j∈[1,n]): It is an oracle that can be used to
play a corrupted issuer issuing an attribute-based credential
to an honest user u. If u ∈ QCU, it returns ⊥. Otherwise, it
randomly selects an issuer i from QCI and generates a key
pair (usku, upku) for user u by running (usku, upku,Π2,u)←
DIHAC.UKeyGen(pp), and then request a credential for
user u by querying adversary: (ipk′i, icred

′
i, ucredu)←

A(iski, ipki, icredi, upku, {aj}j∈[1,n],Π2,u). Finally, it adds
(u, i, usku, upku, ucredu, ipk

′
i, icred

′
i, {aj}j∈[1,n]) to QHU

and returns 0.
− OCorU (u): It is an oracle that can be used to corrupt an

honest user u. If u ∈ QCU, then it returns ⊥. If u ∈ QHU, then
it removes (u, i, usku, upku, ucredu, ipk′i, icred

′
i, {aj}j∈[1,n])

from QHU and adds u to QCU. Finally, it returns (i, usku).
− OIssU (u, upku,Π2,u, {aj}j∈[1,n]): It is an oracle that can

be used to play an uncorrupted issuer issuing an attribute-based
credential to a corrupt user u with a public key upku and a
set of attributes {aj}j∈[1,n]. If u ∈ QHU ∪ QCU, it returns ⊥.
Otherwise, it randomly selects an issuer i from QHI and issues
a credential to user u by running (ipk′i, icred

′
i, ucredu)←

DIHAC.IssueU (iski, ipki, upku, {aj}j∈[1,n],Π2,u). Finally, it
adds u to QCU and returns (ipk′i, icred

′
i, ucredu).

Fig. 4. Unforgeability of DIHAC.

−OShw(u,D,CTX): It is an oracle that can be used to play an
honest useruwith a set of selective attributes{aj}j∈D presenting
a token of the credential to an honest but curious verifier. If
u /∈ QHU, it returns⊥. Otherwise, it generates a token by running
tk ← DIHAC.Show(mpk, ipk′i, icred

′
i, usku, upku, ucredu,

{aj}j∈D,CTX). Finally, it adds ({aj}j∈D,CTX) to QShw and
returns tk.
− OReIss(u): It is an oracle that can be used to reveal the

issuer’s index of the user u’s credential. It searches the issuer’s
index i corresponding to user’s index u from QHU, adds (u, i)
to QRI and returns i.
−OAnChb

(u, upku,Π2,u, i0, i1, {aj}j∈[1,n]): It is a challenge
oracle in the anonymity experiment where the adversary playing
as a user is challenged to distinguish credentials issued by two
different issuers. It takes a user u with a public key upku
and a set of user’s attributes {aj}j∈[1,n], and two indexes of
issuers (i0, i1) as inputs. It runs: (ipk′ib , icred

′
ib
, ucredu)←

DIHAC.IssueU (iskib , ipkib , icredib , upku, {aj}j∈[1,n],Π2,u),
and returns (upku, ucredu, ipk′ib , icred

′
ib
), where b = {0, 1}.

− OUnChb
({u0, i0}, {u1, i1},D,CTX): It is a challenge ora-

cle in the unlinkability experiment where the adversary playing
as a verifier is challenged to distinguish tokens of two credentials
issued by two different issuers. It takes the indexes of two
user-issuer {u0, i0}, {u1, i1}, a selective disclosure policy D,
and a context CTX as inputs. It runs: tkb ← DIHAC.Show
(mpk, ipk′ib , icred

′
ib
, uskub

, upkub
, ucredub

,{aub
j }j∈D,CTX),

and returns tkb, where b = {0, 1}.
Unforgeability: Unforgeability protects honest verifiers from

malicious users. In the unforgeability experiment, suppose an
adversary playing as a malicious user has not previously received
a credential on a set of disclosed attributes {aj}j∈D from one
of the authenticated issuers. In that case, it is infeasible for the
adversary to generate a valid token that satisfies the selective
disclosure policy D.

In the following definition, we note that while all the issuers’
keys are generated by the challenger, the adversary can control
the total number of issuers in the security games by querying the
oracleOIssI , and may request any user’s credentials by querying
the oracles OObtIssU and OIssU .

Definition IV.1. Unforgeability: The unforgeability
is defined by experiment ExpufDIHAC in Fig. 4. Users’

Fig. 5. Anonymity of DIHAC.

credentials are unforgeable, if for any PPT adversary
A having access to the oracles in O = {OIssI (i),
OObtIssU (u, {aj}j∈[1,n]),OCorU (u),OIssU (u, upku,Π2,u,
{aj}j∈[1,n]),OShw(u,D,CTX)}, there is a negligible function
ε(λ) such that:

AdvufDIHAC =
∣∣Pr [ExpufDIHAC(A, λ)

]
= 1

∣∣ � ε(λ)

Anonymity: Anonymity protects issuers from malicious users.
In the anonymity experiment, the adversary can request creden-
tials for all corrupted users by querying the oracle OIssU and
corrupt any honest users by querying the oracle OCorU . In the
first stage of the experiment, the adversary outputs two issuer’s
indexes and one user’s information. In the challenge stage, the
adversary receives a credential from one of the two issuers for
the user; as long as the attribute-based credential is valid, the
adversary cannot determine with a non-negligible advantage
which issuer issued the credential.

Definition IV.2. Anonymity: The anonymity is defined
by experiment ExpanoDIHAC

b in Fig. 5. Issuer’ public
keys and credentials are anonymous, if for any PPT
adversary A having access to the oracles in O =
{OIssI (i),OObtIssU (u, {aj}j∈[1,n]),OCorU (u),OIssU (u, upku,
Π2,u, {aj}j∈[1,n]),OReIss(u)} and OAnChb

(u, upku,Π2,u, i0,
i1, {aj}j∈[1,n]), there is a negligible function ε(λ) such that:

AdvanoDIHAC =

∣∣∣∣Pr [ExpanoDIHAC
1 (A, λ) = 1]− 1

2

∣∣∣∣ � ε(λ)

Unlinkability: Unlinkability protects honest users from
honest-but-curious verifiers. In the unlinkability experiment, the
adversary can control all verifiers, corrupt issuers by query-
ing the oracle OCorI , issue credentials for all honest users by
querying the oracle OObtU , and obtain the issuer’s identity of
any user’s credentials by querying the oracleOReIss. In the first
stage of the experiment, the adversary outputs two user-issuer
index pairs, and a selective disclosure policy. In the challenge
stage, the adversary receives a presentation token from one of
the two users; as long as the token is valid and consistent with
the disclosure policy, the adversary cannot determine with a
non-negligible advantage which user’s credential is being used.

Fig. 6. Unlinkability of DIHAC.

Note that the disclosed attributes of the two challenged users
must be the same, otherwise the success of the adversary’s
challenge is trivial, since the adversary can directly determine
the index of the user according to the disclosed attribute values.

Definition IV.3. Unlinkability: The unlinkability is
defined by experiment ExpunlDIHAC

b in Fig. 6. Users’
credentials are unlinkable, if for any PPT adversary A
having access to the oracles in O = {OIssI (i),OCorI (i),
OObtU (u, {aj}j∈[1,n]),OCorU (u),OShw(u,D,CTX)},OReIss(u)
and OUnChb

({u0, i0}, {u1, i1},D,CTX), there is a negligible
function ε(λ) such that:

AdvunlDIHAC =

∣∣∣∣Pr
[
ExpunlDIHAC

1 (A, λ) = 1
]
− 1

2

∣∣∣∣ � ε(λ)

F. Generic Construction

In this section, we present a generic construction of DIHAC
using our TAM− Sign scheme in combination with SPS− EQ
scheme [46], and zero-knowledge signature of knowledge
(ZKSoK) [23]. Our key ideas include: (1) The central authority
of DIHAC computes an SPS− EQ signature on each issuer’s
public key and treats it as the issuer’s credential. Since each
issuer receiving an SPS− EQ signature can randomize their
message (i.e., the issuer’s public key) and corresponding signa-
ture (i.e., the issuer’s credential), the issuer may issue credentials
to users using the private key corresponding to the randomized
public key, thereby hiding their identities from users. (2) Each
user uses a user-generated witness as their private key, and
a user-generated tag as their public key. To prevent replay
attacks to credential verification, each user computes a fresh
ZKSoK for their private key, and presents it to verifiers. (3)
Upon receiving a user’s tag and attributes, an issuer computes
a TAM− Sign signature for each of the user’s attributes on the
user’s tag under a randomized public key of the issuer and treats
all TAM− Sign signatures as the user’s credentials. For user
credential verification, each user achieves user anonymity and
issuer-hiding from any verifier by randomizing 1© their issuer’s
credential/SPS− EQ signature and public key and 2© their tag
and TAM− Sign signatures (i.e., user credentials) correspond-
ing to their disclosed attributes.

Below, we present a generic construction of DIHAC.
−DIHAC.Setup(1λ)→ (pp,msk,mpk):

� Set the tag length t ∈ Z+ and the total number of user’s
attributes n ∈ Z+.

� Compute ppTAM-Sign ← TAM-Sign.Setup(1λ, t, n).
� Using ppTAM-Sign as parameters, compute ppSPS-EQ ←

SPS-EQ.Setup(1λ) to generate the remaining parameters
of the SPS− EQ scheme.

Remark IV.1: This step implies a condition that the public
key equivalence relation of TAM− Sign scheme [pk]R is the
same as that of the message equivalence relation of SPS− EQ
scheme [�M]R, i.e. [pk]R = [�M]R.
� Using ppTAM-Sign, ppSPS-EQ as parameters, compute
ppZKSoK ← ZKSoK.Gen(1λ) to generate the remaining
parameters of the ZKSoK scheme.

� Set pp = (ppTAM-Sign, ppSPS-EQ, ppZKSoK).
� Compute (msk,mpk)← SPS-EQ.KeyGen(pp, t · n).
−DIHAC.IKeyGen(pp)→ (isk, ipk,Π1):
� Compute (isk, ipk)← TAM-Sign.KeyGen(pp).
� Compute Π1 ← ZKSoK.Sign(isk, ipk).
−DIHAC.IssueI(msk,mpk, ipk,Π1)→ icred/⊥:
� If ZKSoK.Verify(ipk,Π1) = 0, then output ⊥.
� Compute icred← SPS-EQ.Sign(ipk,msk).
−DIHAC.VfCredI(mpk, isk, ipk, icred)→ 0/1:
� If SPS-EQ.Verify(ipk, icred,mpk) = 1, then output 1,

otherwise output 0.
−DIHAC.UKeyGen(pp)→ (usk, upk,Π2):
� Compute (usk, upk)← TAM.GenTag(pp).
� Compute Π2 ← ZKSoK.Sign(usk, upk).
−DIHAC.IssueU (isk, ipk, icred, upk, {aj}j∈[1,n],Π2)→

(ipk′, icred′, ucred)/ ⊥:
� If ZKSoK.Verify(upk,Π2) = 0, then output ⊥.
� Choose a key converter μ1 ∈ Z∗p, and compute
(ipk′, icred′)← SPS-EQ.ChgRep(ipk, icred, μ1,
mpk).

Remark IV.2: This step implies a conversion ipk′ algorithm,
i.e ipk′ ← TAM-Sign.ConvertPK(ipk, μ1).
� Compute isk′ ← TAM-Sign.ConvertSK(isk, μ1).
� For all j ∈ [1, n], compute σj ← TAM-Sign.Sign(isk′,
upk, aj).

� Set ucred = {σj}j∈[1,n].
−DIHAC.VfCredU (mpk, ipk′, icred′, usk, upk, {aj}j∈[1,n],

ucred)→ 0/1:
� Check whether SPS-EQ.Verify(ipk′, icred′,mpk) = 1.
� For all j ∈ [1, n], check whether TAM-Sign.Verify(
ipk′, upk, σj , aj) = 1.

� Output 1 if the above checks hold and 0 otherwise.
−DIHAC.Show(mpk, ipk′, icred′, usk, upk, ucred,
{aj}j∈D,CTX)→ tk:
� Aggregate the signatures of disclosed attributes: σ ←

TAM-Sign.Aggr(ipk′, {aj , σj}j∈D, upk).
� Choose a key converter μ2 ∈ Z∗p and a tag converter ρ ∈

Z∗p.
� Update the issuer’s public key and credential:
(ipk′′, icred′′)← SPS-EQ.ChgRep(ipk′, icred′, μ2,
mpk).

Remark IV.3: This step implies a conversion ipk′′ algorithm,
i.e ipk′′ ← TAM-Sign.ConvertPK(ipk′, μ2).

� Convert the signature: σ′ ← TAM-Sign.ConvertSign
(σ, μ2).

� Change the tag representative: (upk′, σ′′)← TAM-Sign.
ChgRep(σ′, upk, ρ).

� Compute a signature of knowledge: Π3 = ZKSoK.Sign
(usk, upk′,CTX).

� Set tk = (ipk′′, icred′′, upk′, σ′′,Π3).
−DIHAC.Verify(mpk, {aj}j∈D, tk,CTX)→ 0/1:
� Verify the presentation policy: If {aj}j∈D cannot satisfy

the policy, then output 0.
� Verify Π3: If ZKSoK.Verify(upk′,Π3,CTX) = 0, then

output 0.
� Verify (ipk′′, icred′′): If SPS-EQ.Verify(ipk′′, icred′′,
mpk) = 0, then output 0.

� Verify (upk′, σ′′): If TAM-Sign.Verify(ipk′′, upk′, σ′′,
{aj}j∈D) = 1, then output 1, otherwise output 0.

Remark IV.4: For any givenTAM− Sign scheme, SPS− EQ
scheme, and ZKSoK scheme, our generic construction cannot
be formed naturally unless the following two conditions are
satisfied:

(1) As noted in Remark 4.1, the message equivalence relation
for SPS− EQ must be the same as the public key equivalence
relation forTAM− Sign. This is because the CA usesSPS− EQ
to compute the signature of an issuer’s public key (i.e., issuer’s
credential), where the issuer’s public key is input as the message
in SPS− EQ scheme. Then, the issuer uses TAM− Sign to
compute the signature of a user’s attribute-tag pair (i.e., user’s
credential), where the issuer’s public key is input as the public
key in TAM− Sign scheme. Since the public key of an issuer is
both the message input of SPS− EQ and the public key input of
TAM− Sign, the message equivalence relation of SPS− EQ
must be identical to the public key equivalence relation of
TAM− Sign.

(2) As noted in Remarks 4.2 and 4.3, the SPS− EQ.ChgRep
algorithm must imply the TAM− Sign.ConvertPK algorithm.
First, updating the issuer’s public key and updating the is-
suer’s credential must occur using the same key converter;
otherwise, the verification of SPS− EQ.Verify fails. Second,
updating the issuer’s public key and updating the user’s cre-
dential must occur using the same key converter; otherwise,
the verification of TAM− Sign.Verify fails. This means ap-
plying the same key converter to the issuer’s public key, the
issuer’s credential, and the user’s credential. Therefore, the exe-
cution of SPS− EQ.ChgRep algorithm includes the execution
of TAM− Sign.ConvertPK algorithm.

G. Security Analysis

In this section, we prove the security of our generic construc-
tion of DIHAC.

Theorem IV.1: Our DIHAC scheme is correct.
Naturally, if the TAM− Sign scheme, the SPS− EQ scheme

and the ZKSoK scheme satisfy correctness, then our DIHAC
scheme is correct.

Theorem IV.2: Our DIHAC scheme is unforgeable if the un-
derlying TAM− Sign scheme is EUF-CMA secure and satisfies

unforgeability of tags, the SPS− EQ scheme is EUF-CMA
secure, and the ZKSoK scheme is SimExt-secure.

Proof: There are three potential ways for an PPT adversary to
win the unforgability game defined in Fig. 4: (1) it independently
generates an issuer’s key (isk∗, ipk∗) and forgers a credential
icred∗ issued by the CA for this issuer; or, (2) it independently
generates a user’s key (usk∗, upk∗) and forges a credential
ucred∗ issued by an authenticated issuer i∗ for this user; or,
(3) it forges a tag (public key) upk∗ of an honest user u∗. The
detailed proof is given in Supplemental Material C.2.1, available
online.

Theorem IV.3: Our DIHAC scheme is anonymous if the un-
derlying SPS− EQ scheme provides perfect adaption.

Proof: This straightforwardly follows from the signature
adaptation of the SPS− EQ scheme.

Theorem IV.4: Our DIHAC scheme is unlinkable if the un-
derlying TAM− Sign scheme and SPS− EQ scheme provide
perfect adaption, the ZKSoK scheme is SimExt-secure, the
SPS− EQ scheme has a class-hiding message spaceM (i.e., the
public key space of TAM− Sign), and the TAM− Sign scheme
has a class-hiding tag space T .

Proof: Any PPT adversary cannot win the class-hiding ex-
periments (Section II-C) of M and T with non-negligible
probability. If the used TAM− Sign scheme and SPS− EQ
scheme provide perfect adaption, and the ZKSoK scheme is
SimExt-secure, the adversary who breaks the unlinkability
of DIHAC scheme can be converted into a simulator against the
class-hiding experiment ofM andT . The detailed proof is given
in Supplemental Material C.2.2, available online.

H. Concrete Instantiation and Extension

A possible instantiation of the DIHAC scheme can be ob-
tained based on the TAM− Sign scheme in section III-C, the
SPS− EQ scheme of Fuchsbauer et al. [46], and the Schnoor
proof [19]. Our choices of TAM− Sign and SPS− EQ satisfy
the conditions of Remark 4.4.

We can achieve traceability by letting the user with an identity
id generate a tracing key utk = g̃usk for the issuer, who later
can open the user’s identity idby checking whether e(T ′1, utk) =
e(T ′2, g̃).

With these choices, theDIHAC scheme is specified as follows.
−DIHAC.Setup(1λ)→ (pp,msk,mpk):
� Set the tag length t = 2 and the total number of user’s

attributes n ∈ Z+.
� Compute pp′ ← TAM-Sign.Setup(1λ, 2, n):

1) Generate a bilinear group BL = (G1,G2,GT ,
e, p, g, g̃).

2) Choose a pseudorandom function PRF and a collision
resistant hash function HASH{0, 1}∗ → G∗1.

3) Set the equivalence classes [�T]R ⊂ (G∗1)
2 and [pk]R ⊂

(G∗2)
2·n.

4) Set pp′ = (t=2, n,BL,PRF,HASH, [�T]R, [pk]R).
� Choose a collision resistant hash function HASH′ :
{0, 1}∗ → Z∗p, set pp = {pp′,HASH′}.

� Compute (msk,mpk)← SPS-EQ.KeyGen(pp, 2 · n):

1) Choose (y1,1, y1,2, . . . , yn,1, yn,2)
R←− Z∗p, for all i ∈

[1, 2], j ∈ [1, n] compute Yj,i = gyj,i .
2) Set msk = (y1,1, y1,2, . . . , yn,1, yn,2), mpk =

(Y1,1, Y1,2, . . . , Yn,1, Yn,2).
−DIHAC.IKeyGen(pp)→ (isk, ipk,Π1):
� Compute (isk, ipk)← TAM-Sign.KeyGen(pp):

1) Compute rk ← PRF.KeyGen(1λ).

2) For all j ∈ [1, n], choose (xj,1, xj,2)
R←− Z∗p and set

skj = (xj,1, xj,2).
3) Compute pkj = (X̃j,1, X̃j,2)← (g̃xj,1 , g̃xj,2).
4) Set isk = (rk, sk1, . . . , skn) and ipk = (pk1, . . . ,

pkn).
� Compute a Schnorr proofΠ1= ZKSoK{(x1,1, x1,2,

· · · , xn,1, xn,2) | ∀i ∈ [1, 2], j ∈ [1, n] : X̃j,i = g̃xj,i}:
1) Choose (k1,1, k1,2, . . . , kn,1, kn,2)

R←− Z∗p, ∀i ∈ [1, 2],

j ∈ [1, n], and compute R̃j,i = g̃kj,i .
2) Compute c = HASH′(X̃1,1, X̃1,2, . . . , X̃n,1, X̃n,2,

R̃1,1, R̃1,2, . . . , R̃n,1, R̃n,2).
3) ∀i ∈ [1, 2], j ∈ [1, n], compute sj,i = kj,i − c · xj,i.
4) Set Π1 = {c, s1,1, s1,2, . . . , sn,1, sn,2}.

−DIHAC.IssueI(msk,mpk, ipk,Π1)→ icred/⊥:
� If Π1 verification fails, then output ⊥:

1) If c′ = HASH′(X̃1,1, X̃1,2, . . . , X̃n,1, X̃n,2,

g̃s1,1X̃c
1,1, g̃

s1,2X̃c
2,2, . . . , g̃

sn,1X̃c
n,1, g̃

sn,2X̃c
n,2) the

verification succeeds; otherwise, the verification fails.
� Compute icred← SPS-EQ.Sign(ipk,msk):

1) If X̃j,i /∈ G∗2, for some i ∈ [1, 2], j ∈ [1, n], output ⊥.

2) Choose y
R←− Z∗p, compute icred = (Ã, B, B̃)←

((
∏n

j=1

∏2
i=1 X̃

yj,i

j,i)y, g1/y, g̃1/y).
−DIHAC.VfCredI(mpk, isk, ipk, icred)→ 0/1:
� Run 0/1← SPS-EQ.Verify(ipk, icred,mpk):

1) Check whether
∏n

j=1

∏2
i=1 e(Yj,i, X̃j,i) = e(B, Ã).

2) Check whether e(B, g̃) = e(g, B̃).
3) Output 1 if the above checks hold and 0 otherwise.

−DIHAC.UKeyGen(pp, id)→ (usk, upk, utk,Π2):
� The user with identity id, sets T1 = HASH(id) ∈ G∗1.
Remark IV.5: T1 is a natural random element of G∗1 associated

with the user’s identity id.
� Choose usk

R←− Z∗p, compute T2 = Tusk
1 and utk = g̃usk,

set upk = (T1, T2).
Remark IV.6: utk is the user’s tracing key, which is sent to

the issuer when the user requests attribute-based credentials.
� Compute a Schnorr proofΠ2= ZKSoK{usk |T2 =
Tusk
1 , utk = g̃usk}:

1) Choose k
R←− Z∗p, compute R1 = T k

1 , R̃2 = g̃k.

2) Compute c = HASH′(T1, T2, utk,R1, R̃2).
3) Compute s = k − c · usk.
4) Set Π2 = (c, s).

−DIHAC.IssueU (isk, ipk, icred, icred, upk, id, utk,
{aj}j∈[1,n],Π2)→ (ipk′, icred′, ucred)/ ⊥:
� If Π2 verification fails, then output ⊥:

1) If c′ = HASH′(T1, T2, utk, g
sT c

1 , g̃
s(utk)c) the verifi-

cation succeeds; otherwise, the verification fails.

� If T1 �= HASH′(id), then output ⊥.
� Choose μ1

R←− Z∗p, and compute (ipk′, icred′)←
SPS-EQ.ChgRep(ipk, icred, μ1,mpk):
1) Compute ipk′ = ipkμ1 .

Remark IV.7: This step is equivalent to executing the algo-
rithm: ipk′ ← TAM-Sign. ConvertPK(ipk, μ1).

1) Choose φ1
R←− Z∗p, compute icred′ = (Ã′, B′, B̃′)←

(Ãφ1·μ1 , B1/φ1 , B̃1/φ1).
Remark IV.8: The purpose of this step is to hide the identity

of the issuer from the user by randomizing the issuer’s public
key ipk and credentials icred.
� Compute isk′ ← TAM-Sign.ConvertSK(isk, μ1).

1) Compute isk′ = (rk, sk1 · μ1, . . . , skn · μ1), where
skj · μ1 = (xj,1 · μ1, xj,2 · μ1).

� For all j ∈ [1, n], compute σj ← TAM-Sign.Sign(isk′,
upk, aj):
1) Check aj ∈ {0, 1}∗ and �T ∈ (G∗1)

2.
2) Generate a random γ = PRF.Eval(rk, �T) and γ ∈ Z∗p.

3) Compute σj = (Zj , Yj , Ỹj , Vj)← ((
∏2

i=1 T
xj,i·μ1

i)γ ,
g1/γ , g̃1/γ ,HASH(aj)

1/γ).
� Set ucred = {σj}j∈[n].
� Store (id, utk) into the registration list L.
Remark IV.9: L (initially ∅) is a list that stores users’ reg-

istration information and is used by the issuer to trace users’
identities.
−DIHAC.VfCredU (mpk, ipk′, icred′, usk, upk, {aj}j∈[1,n],

ucred)→ 0/1:
� Check whether SPS-EQ.Verify(ipk′, icred′,mpk) = 1:

1) Check whether
∏n

j=1

∏2
i=1 e(Y

′
j,i, X̃

′
j,i) = e(B′, Ã′).

2) Check whether e(B′, g̃) = e(g, B̃′).
� For all j ∈ [1, n], check whether TAM-Sign.Verify
(ipk′, upk, σj , aj) = 1:
1) Check whether

∏2
i=1 e(Ti, X̃

′
j,i) = e(Z, Ỹ).

2) Check whether e(Y, g̃) = e(g, Ỹ).
3) Check whether e(HASH(aj), Ỹ) = e(V, g̃).

� Output 1 if the above checks hold and 0 otherwise.
−DIHAC.Show(mpk, ipk′, icred′, usk, upk, ucred,
{aj}j∈D, CTX)→ tk:
� Compute σ ← TAM-Sign.Agg(ipk′, {aj , σj}j∈D, upk):

1) Compute σ = (Z, Y, Ỹ , V)← (
∏

j∈D Zj , Yj∗ , Ỹj∗ ,∏
j∈D Vj), where j∗ ∈ D.

� Choose (μ2, ρ)
R←− Z∗p, and compute (ipk′′, icred′′) ←

SPS-EQ.ChgRep(ipk′,icred′, μ2,mpk):
1) Compute ipk′′ = ipk′μ2 .

Remark IV.10: This step is equivalent to executing the algo-
rithm: ipk′′ ← TAM-Sign.ConvertPK(ipk′, μ2).

1) Choose φ2
R←− Z∗p, compute icred′′ = (Ã′′, B′′, B̃′′)←

(Ã′φ2·μ2 , B′1/φ2 , B̃′1/φ2).
� Compute σ′ ← TAM-Sign.ConvertSign (σ, μ2):

1) Choose φ3
R←− Z∗p and compute σ′ = (Z ′,

Y ′, Ỹ ′, V ′)← (Zφ3·μ2 , Y 1/φ3 , Ỹ 1/φ3 , V 1/φ3).
� Compute (upk′, σ′′)← TAM-Sign.ChgRep(σ′, upk, ρ):

1) Compute �T ′ = �T ρ = (T ′1, T
′
2)← (T ρ

1 , T
ρ
2).

2) Choose φ4
R←− Z∗p and compute σ′′ =

(Z ′′, Y ′′, Ỹ ′′, V ′′)← (Z ′φ4·ρ, Y ′1/φ2 , Ỹ ′1/φ4 , V ′1/φ4).
� Compute a Schnorr proofΠ3 = ZKSoK{usk |T ′2 =
T ′usk1 }(CTX):

1) Choose k
R←− Z∗p, compute R = T ′k1 .

2) Compute c = HASH′(T ′1, T
′
2, R,CTX).

3) Compute s = k − c · usk.
4) Set Π3 = (c, s).

� Set tk = (ipk′′, icred′′, upk′, σ′′,Π3).
−DIHAC.Verify(mpk, {aj}j∈D, tk,CTX)→ 0/1:
� If Π3 verification fails, then output ⊥:

1) If c′ = HASH′(T ′1, T
′
2, g

s(T ′1)
c,CTX) the verification

succeeds; otherwise, the verification fails.
� If SPS-EQ.Verify(ipk′′, icred′′,mpk) = 0, then output 0:

1) Check whether
∏n

j=1

∏2
i=1 e(Yj,i, X̃

′′
j,i) = e(B′′, Ã′′).

2) Check whether e(B′′, g̃) = e(g, B̃′′).
3) Output 1 if the above checks hold and 0 otherwise.

� If TAM-Sign.Verify(ipk′′, upk′, σ′′, {aj}j∈D) = 1, then
output 1, otherwise output 0:
1) If D � [1, n], output 0.
2) Check whether

∏2
i=1 e(T

′
i ,
∏

j∈D X̃
′′
j,i) = e(Z ′′, Ỹ ′′).

3) Check whether e(Y ′′, g̃) = e(g, Ỹ ′′).
4) Check whether e(

∏
j∈D HASH(aj), Ỹ

′′) = e(V ′′, g̃).
5) Output 1 if the above checks hold and 0 otherwise.

− DIHAC.Trace(L, tk)→ id:
� For each user id ∈ L, this algorithm retrieves utk from
L and tests whether e(T ′1, utk) = e(T ′2, g̃) until it gets a
match, in which case it outputs the corresponding identity
id.

Remark IV.11: This algorithm is operated by an issuer that
takes his registration list L and a token tk as inputs, and outputs
a user’s identity id.

V. FUNCTION AND PERFORMANCE EVALUATION

A. Function Comparison

Table I summarizes a detailed comparison between our
DIHAC scheme and related works, including three classical
attribute-based credential schemes [32], [35], [36], eight delegat-
able anonymous credential schemes [23], [24], [25], [26], [27],
[29], [31], [33], two issuer-hiding attribute-based credential
schemes [16], [20], and an issuer-hiding anonymous credential
scheme [30]. The comparisons are conducted in terms of the
attribute-based, autonomous attribute, ZKP, concrete instantia-
tion, issuer-hiding from users, issuer-hiding from verifiers, and
traceability. Attribute-based means that the scheme is attribute-
based. Autonomous Attribute means that users can obtain creden-
tials of autonomous attributes rather than inheriting an issuer’s
attribute values. ZKP means what type of zero-knowledge proof
is used to construct the scheme. Notably, both GS-Proof [28],
and CH-Proof [22] rely on computationally expensive bilinear
pairing operations, resulting in a higher computational overhead
than Schnorr-Proof [19], which requires no such operations.
”Generic ZKP” means that no specific type of ZKP is indicated
in the literature. Concrete Instantiation means that a scheme

TABLE I
FUNCTION COMPARISON

TABLE II
COMPUTATION AND STORAGE COMPARISON WITH CLASSICAL ATTRIBUTE-BASED CREDENTIAL SCHEMES

is instantiated, which makes it directly applicable without addi-
tional translation. Issuer-Hiding from Users means that a scheme
allows issuers to issue user credentials without revealing the
issuer’s identity. Issuer-Hiding from Verifier means that a verifier
cannot determine the issuer’s identity of a token when validat-
ing tokens. Traceability means that a scheme supports tracing
users’ identities. Table I indicates that among all schemes in our
comparison, only DIHAC (Section IV-H) supports all desirable
features, making it a preferred solution in practice.

B. Performance Evaluation

1) Theoretical Evaluation: Table II shows a theoretical com-
parison of ourDIHAC scheme (Section IV-H) with three classical
attribute-based credential schemes [32], [35], [36] in terms of
computation and storage overhead, where |G1|, |G2|, |GT |, |Zp|
are the sizes of the elements in the group G1, G2, GT , and Zp,
respectively; te1 , te2 , teT , tp are the time costs for the exponential
in the group G1, G2, GT , and pairing computations, respectively.

Table II shows that anonymous credentials based on the CL
signature [35] have linear size and computational complexity.
The schemes proposed in [36] and [32] exploit constant-size
and randomizability of BBS+ and PS signatures, respectively,
resulting in credentials and tokens of constant size. In addition,

since hidden attributes cannot be revealed, these schemes re-
quire user to prove knowledge of O(n) secret scalars involved
in a pairing product equation during the credential showing,
resulting in significant computational overhead. In comparison,
while our DIHAC scheme also uses constant-size TAM− Sign
scheme, it incorporates SPS-EQ to hide both issuer’s public key
and credentials (Table I shows that none of the aforementioned
schemes support this functionality), resulting in linear size and
computational complexity. Furthermore, our scheme leverages
the aggregation feature of TAM− Sign to compute the attribute
disclosure proof, eliminating the need for computationally com-
plex zero-knowledge proofs and enabling more efficient creden-
tial showing compared to other schemes.

In Tables III and IV, we show a theoretical comparison of
our DIHAC scheme (section IV-H) with the optimal delegat-
able credential scheme [29] and the most efficient issuer-hiding
scheme [16] in terms of computation and storage overhead.

As shown in Table III, for Setup algorithm, the computational
complexity of our scheme is the highest, but this algorithm only
needs to be executed once for the system. For IKeyGen, IssueI
and UKeyGen, the computational complexity of our scheme
is higher than that of [29] and [16], but fortunately for a new
issuer or user these algorithms only need to be executed once.
For VfCredI , the computational overhead of our scheme are

TABLE III
COMPUTATION OVERHEAD COMPARISON WITH IHAC SCHEMES

TABLE IV
STORAGE COMPLEXITIES COMPARISON WITH IHAC SCHEMES

higher than that of [16], but lower than that of [29]. For IssueU ,
VfCredU , Show and Verify, our scheme achieves the same linear
progressive complexity O(n) as the schemes in [29] and [16].

As shown in Table IV, for msk, pp&mpk, isk, ipk and
ucred, the storage complexity of our scheme is higher than that
of [29] and [16]. Fortunately, only one copy of these variables
is required for each issuer or user. For icred and tk, the storage
overhead of our scheme is higher than that of [16], but lower
than that of [29].

2) Evaluation on a PC: We implement the DIHAC instan-
tiation using MIRACL [53], Type-III pairing and the Barreto-
Naehrig curve (BN-256) [54] and test the system’s performance
at AES-100 b security level. The source code of our implementa-
tion is available at [55]. We run our implementation on a personal
laptop (HUAWEI Matebook 14) with an AMD Ryzen-5 4600H
with Radeon Graphics 3.00 GHz CPU, 16 GB RAM, 512 GB
SSD running Ubuntu Kylin 16.04 operating system.

In Fig. 7 we show the computational and storage overheads of
all algorithms at n = 10, where each timing result is computed
as an average over 50 iterations. As shown in Fig. 7(a), in our
DIHAC scheme, the Setup algorithm takes 12.3 ms. For key
generation, IKeyGen and UKeyGen take 59.5 ms and 4.9 ms,
respectively. To issue credentials for issuers, IssueI andVfCredI
take 92.9 ms and 220 ms, respectively. To issue credentials to
users, IssueU and VfCredU take 89 ms and 860 ms, respectively.
For presenting tokens,Show andVerify take 41.2 ms and 288 ms,
respectively. The most time-consuming of these is the VfCredU
algorithm, but it only needs to be executed once for a new user.
In addition, the Show and Verify algorithms, which are executed
most frequently, are efficient.

As shown in Fig. 7(b), in our DIHAC scheme, the storage
of the public parameters pp&mpk takes 2208 bytes. The

Fig. 7. Execution time and storage size of algorithms.

storage overheads of the issuer’s public key ipk and credential
icred are 3840 bytes and 480 bytes, respectively. The storage
overhead of the user’s public key upk and credential ucred
is 192 bytes and 2208 bytes, respectively. The storage of the
presentation token tk takes 5056 bytes. Among them, tk takes

Fig. 8. Execution time of show.

the most storage, which is 5056 bytes, but this is not a significant
burden for communication and storage.

In Fig. 8(a), we compare the computational time of the most
frequently used Show algorithm between our scheme and the
schemes in [29] and [16], where the number of attributes varies
from 5 to 50. Compared with the scheme in [29], our algorithm
is at least 380% faster. We note that when the number of user
attributes is around 30, our scheme is still faster than the scheme
in [16], which uses seven bilinear pair operations, whereas our
algorithm uses none.

3) Evaluation on a Smartphone: Since an anonymous cre-
dential system on the user side is usually deployed on a smart-
phone, we have measured its performance on a smartphone
(HUAWEI Honor 9i) with a Hisilicon Kirin 659 (ARMv8-A)
2.36 GHz and 1.7 GHz CPU, 4 GB RAM running Andriod 9.0
operating system.

In Fig. 8(b), we compare the computational time of the Show
algorithm on a smartphone between our scheme and the schemes
in [29] and [16], where the number of attributes varies from 5 to
50. Compared with the scheme in [29], our algorithm is at least
200% faster. As long as the number of user attributes is less than
30, our scheme is faster than the scheme in [16].

The above analysis and comparison indicate that our scheme
achieves stronger privacy protection than the classical attribute
credential scheme [32], [35], [36]. Our DIHAC scheme has
significantly lower computational overhead compared to the
state-of-the-art delegatable credential scheme [29]; the effi-
ciency of our scheme is also better than that of the state-of-the-art
issuer-hiding scheme [16] as long as the number of attributes is
no more than 30 in our experiments. In particular, our scheme has
all the advantages of the scheme in [16] and additionally supports

issuer-hiding from users; on the other hand, the execution time
of Show in our scheme may grow to be longer than the scheme
in [16] if the number of attributes is exceedingly large.

VI. RELATED WORK

A. Issuer-Hiding Attribute-Based Credentials

Bobolz et al. [16] introduced the notion of issuer-hiding
attribute-based credential (IHAC) to address the problem of
hiding the identity of credential issuer from verifiers. In their
scheme, a user presenting their credentials to a verifier hides
the issuer of their credentials from the verifier by leveraging a
set of access policies which includes multiple issuers’ public
keys signed by the verifier. They proposed a formal framework
for the IHAC scheme, a generic construction and a concrete
instantiation based on the structure-preserving signature scheme
by Groth [17], Pedersen Hash [18], and the Schnorr-style proof
of knowledge [19]. Their scheme achieves issuer-hiding from
verifiers, but not in a strong sense because the anonymity of the
issuer of any user’s credentials in a successful verification by a
verifier may diminish if the verifier creates an access policy set
with a small number of issuers. Furthermore, their scheme does
not support issuer-hiding from users. Conolly et al. [20] intro-
duced the notion of signer-hiding, which is similar to the notion
of Bobolz et al.’s issuer-hiding. They presented a signer-hiding
attribute-based credential (SHAC) scheme from a new mercurial
signature, which improved from the structure-preserving signa-
tures on equivalence classes (SPS-EQ) because it can randomize
not only any signed message and corresponding signature but
also the public key used to verify the signature. Their scheme
can be used to achieve issuer-hiding from verifiers without
relying on the Generic Group Model (GGM) [21]. Their scheme
extended the set-commitment scheme from [46] in combination
with a new malleable NIZK argument from [22] to achieve
selective disclosure proofs, it thus required a large number of
bilinear pairing operations to be computed for presenting users’
credentials. Their construction requires an OR-Proof to prove
that an issuer’s key is among a set of keys accepted by a verifier
when a user’s credentials issued by the issuer is verified by the
verifier. This leads to a high computational cost for credential
verification because it is linear in the number of issuers. In
addition, their scheme does not support issuer-hiding from users.

Bosk et al. [30] proposed a different approach to formal-
ize hidden issuer anonymous credentials (HIAC). Specifically,
the authors introduced a new cryptographic primitive called
aggregator, which can hide the issuer of a credential in a set
of issuers. The proposed solution does not require any trusted
settings. However, it is not attribute-based and lacks the ability
for issuer-hiding from users.

B. Delegatable Anonymous Credentials

Delegatable anonymous credentials (DACs) [23], [24], [25],
[26], [27], [29], [31], [33] offer an alternative to address the
problem of issuer-hiding from both users and verifiers, as some
of them support privacy for issuers and users during credential
delegation and presentation. In fact, such DACs with two entities

in their certification chains, in which non-root issuers obtain their
credentials directly from a root-issuer, and users obtain their
credentials from non-root issuers, can be regarded as double
issuer-hiding anonymous credentials schemes.

Chase and Lysyanskaya [23] proposed the first DAC scheme
based on generic zero-knowledge signature of knowledge, but
their construction incurred a blow-up in that the size of a creden-
tial was exponential in the length of the credential’s certification
chain. Their scheme is not attribute-based, which is necessary
for many practical applications.

Later, Belenkiy et al. [24], Fuchsbauer et al. [25], and Chase et
al. [26], [27] published various constructions of DACs, but none
is highly efficient for practical deployment for three main rea-
sons. First, they used complex Groth-Sahai proofs [28] involving
many expensive pairing operations. Second, their schemes are
not attribute-based, which limits their applications due to not
supporting fine-grained anonymous access control. Finally, they
provided no concrete instantiations.

Camenisch et al. [29] proposed a delegatable attribute-
based anonymous credentials (DAAC) derived from structure-
preserving signature scheme [17], sibling signatures [29], and
the Schnorr-style proof of knowledge [19]. Unlike our scheme,
their scheme achieved efficiency and practicality by giving up
the anonymity for delegators, i.e., providing no issuer-hiding
from users. Later, Blomer et al. [31] published a DAAC scheme.
They deviated from the usual approach of embedding a certifi-
cate chain in each credential and instead used a new primitive
named dynamically malleable signatures, which is instantiated
based on Pointcheval-Sanders signatures [32]. Their scheme al-
lows users to remain anonymous while delegating and receiving
a credential, thus providing issuer-hiding from both users and
verifiers. However, unlike our scheme, their scheme does not
allow users to apply for credentials corresponding to their au-
tonomous attributes; instead, users can only apply for credentials
corresponding to a subset of the delegator’s attributes, which
greatly limits its applications.

More recently, Crites et al. al [33] published a DAC scheme
derived from mercurial signatures that can randomize not only a
signed message and corresponding signature but also the public
key. Their scheme is efficient; however, their scheme is not
attribute-based.

C. Selective Disclosure Credentials

Attribute-based anonymous credentials supporting selective
disclosure have been designed with the following four ap-
proaches according to the properties of the underlying signature
schemes. (1) The knowledge of hidden attributes is proved
using zero-knowledge proofs (CL-signatures [34], [35], BBS-
signatures [36], PS-signatures [32], [37], Groth-signatures [16]).
(2) Users modify any signature on a set of attributes so that
it is still verifiable even after removing a subset of disclosed
attributes (unlinkable redactable signatures [38], [39], structure-
preserving signatures on equivalence classes and set commit-
ments [20], [45], [46]). (3) Users modify some attributes hidden
in a signature to their default values (sanitizable signatures [40]).
(4) Users receive one credential per attribute so that they can

combine their credentials for the attributes to be disclosed (ag-
gregate signatures [41], [42], [47]). Among them, the fourth
approach has the highest computational efficiency because it
does not need to prove the knowledge of hidden attributes or
the validity of any modified signatures. The main computation
cost of this approach is to aggregate credentials of disclosed at-
tributes, which eliminates the need for users to provide complex
zero knowledge proofs or compute bilinear pairing operations.
Its disadvantage is that the size of each user’s credentials is linear
to the number of attributes, which is expensive for users to store
their credentials on resource-constrained devices. We note that
our scheme is an advancement in this approach.

D. Structure-Preserving Signatures on Equivalence Classes
and Mercurial Signatures

Hanser et al. [45] introduced a notation of structure-preserving
signatures on equivalence classes (SPS-EQ), which can random-
ize both signed message and corresponding signature simulta-
neously. Given a prime order group G and a projective space
(G∗)l, they defined projective equivalence classes of messages
[�M]R based on the equivalence relation: R �M = {(�M, �M ′) ∈
(G∗)l × (G∗)l|∃s ∈ Z∗p : �M ′ = �Ms}. They formalized the se-
curity of SPS-EQ, defined as signature adaptation, such that
randomized signatures are distributed like fresh signatures on
any new representative of equivalence classes. Subsequently,
Fuchsbauer et al. [46] proposed a more streamlined SPS-EQ
scheme in the generic group model (GGM) [21] and constructed
a constant-size anonymous credentials based on it. The signature
size of their scheme is only three group elements, and only two
bilinear pairings are required for signature verification, which is
the most efficient SPS-EQ scheme to date.

On the basis of Fuchsbauer et al.’s work, Hanzlik and Sla-
manig [47] introduced an approach of aggregation signature
and proposed an aggregatable attribute-based equivalence class
(AAEQ) signature. The AAEQ signature is aggregatable such
that any signatures on multiple attributes for the same repre-
sentative �M of an equivalence class can be aggregated into a
compact signature. They used AAEQ signature to construct a
core/helper anonymous credentials (CHAC) to achieve a more
efficient selective disclosure proof than the scheme in [46].

Crites and Lysyanskayaet [33], [43] further extended the
idea of SPS-EQ and presented a new type of signature called
mercury signature, which can be used to randomize not only
any signed message and corresponding signature, but also the
public key for verifying the signature. In this work, we use
mercury signature [33] andAAEQ signature [47], in constructing
TAM− Sign signature.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced DIHAC to solve the problem of
issuer-hiding from both users and verifiers in an attribute-based
credential scheme. We gave a generic construction and an effi-
cient instantiation using the TAM− Sign scheme we proposed
and the SPS− EQ scheme [46]. We implemented DIHAC on a
PC and smartphone to demonstrate its practicability.

The computational and storage complexity of DIHAC for
a user presenting a credential is linear in the number of user
attributes, which may limit its applications. We plan to address
this issue in the future.

REFERENCES

[1] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Commun. ACM, vol. 28, no. 10, pp. 1030–1044,
1985.

[2] C. Garman, M. Green, and I. Miers, “Decentralized anonymous creden-
tials,” Cryptol. ePrint Arch., vol. 2013, 2013, Art. no. 622.

[3] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic MACs and keyed-
verification anonymous credentials,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 1205–1216.

[4] G. Couteau and M. Reichle, “Non-interactive keyed-verification anony-
mous credentials,” in Proc. IACR Int. Workshop Public Key Cryptogr.,
Cham, Switzerland: Springer, 2019, pp. 66–96.

[5] J. Blömer et al., “Updatable anonymous credentials and applications to
incentive systems,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2019, pp. 1671–1685.

[6] J. Bobolz et al., “Privacy-preserving incentive systems with highly efficient
point-collection,” in Proc. 15th ACM Asia Conf. Comput. Commun. Secur.,
2020, pp. 319–333.

[7] M. Chase, T. Perrin, and G. Zaverucha, “The signal private group system
and anonymous credentials supporting efficient verifiable encryption,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020, pp. 1445–1459.

[8] J. Han, L. Chen, S. Schneider, H. Treharne, and S. Wesemeyer, “Privacy-
preserving electronic ticket scheme with attribute-based credentials,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 4, pp. 1836–1849,
Jul./Aug. 2019.

[9] J. Han, L. Chen, S. Schneider, H. Treharne, S. Wesemeyer, and N. Wilson,
“Anonymous single sign-on with proxy re-verification,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 223–236, 2019.

[10] E. Androulaki et al., “Privacy-preserving auditable token payments in a
permissioned blockchain system,” in Proc. 2nd ACM Conf. Adv. Financial
Technol., 2020, pp. 255–267.

[11] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,”
in Proc. 11th ACM Conf. Comput. Commun. Secur., 2004, pp. 132–145.

[12] E. Brickell and J. Li, “Enhanced privacy ID: A direct anonymous attestation
scheme with enhanced revocation capabilities,” in Proc. ACM Workshop
Privacy Electron. Soc., 2007, pp. 21–30.

[13] D. Khovratovich and J. Law, “Sovrin: Digital identities in the blockchain
era,” Github Commit Jasonalaw, vol. 17, pp. 38–99, 2017.

[14] European Union, “General data protection regulation,” Official J. Eur.
Union, vol. 49, 2016, Art. no. L119. [Online]. Available: https://gdpr-
info.eu

[15] California, “California consumer privacy act,” 2018. [Online]. Available:
https://oag.ca.gov/privacy/ccpa

[16] J. Bobolz et al., “Issuer-hiding attribute-based credentials,” in Proc.
Int. Conf. Cryptol. Netw. Secur., Cham, Switzerland: Springer, 2021,
pp. 158–178.

[17] J. Groth, “Efficient fully structure-preserving signatures for large mes-
sages,” in Proc. Int. Conf. Theory Application Cryptol. Inf. Secur., Springer,
Berlin, Heidelberg, 2015, pp. 239–259.

[18] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in Proc. Annu. Int. Cryptol. Conf., Berlin, Germany:
Springer, 1991, pp. 129–140.

[19] C. P. Schnorr, “Efficient signature generation by smart cards,” J. Cryptol.,
vol. 4, no. 3, pp. 161–174, 1991.

[20] A. Connolly, P. Lafourcade, and O. P. Kempner, “Improved construc-
tions of anonymous credentials from structure-preserving signatures on
equivalence classes,” in Proc. IACR Int. Conf. Pract. Theory Public-Key
Cryptogr., 2021, pp. 409–438.

[21] V. Shoup, “Lower bounds for discrete logarithms and related problems,”
in Proc. Int. Conf. Theory Appl. Cryptographic Techn., Berlin, Germany:
Springer, 1997, pp. 256–266.

[22] G. Couteau and D. Hartmann, “Shorter non-interactive zero-knowledge
arguments and ZAPs for algebraic languages,” in Proc. Annu. Int. Cryptol.
Conf., Cham, Switzerland: Springer, 2020, pp. 768–798.

[23] M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in Proc.
Annu. Int. Cryptol. Conf., Berlin, Germany: Springer, 2006, pp. 78–96.

[24] M. Belenkiy et al., “Randomizable proofs and delegatable anonymous
credentials,” in Proc. Annu. Int. Cryptol. Conf., Berlin, Germany: Springer,
2009, pp. 108–125.

[25] G. Fuchsbauer, “Commuting signatures and verifiable encryption,” in
Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., Berlin, Ger-
many: Springer, 2011, pp. 224–245.

[26] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, “Malleable
signatures: Complex unary transformations and delegatable anonymous
credentials,” Cryptol. ePrint Arch., Rep. 2013/179, 2013. Accessed: Sep
15, 2023. [Online]. Available: http://eprint.iacr.org/

[27] M. Chase, M. Kohlweiss, and A. Lysyanskaya, “Malleable signatures: New
definitions and delegatable anonymous credentials,” in Proc. IEEE 27th
Comput. Secur. Foundations Symp., 2014, pp. 199–213.

[28] J. Groth and A. Sahai, “Efficient non-interactive proof systems for bilinear
groups,” in Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn.,
Berlin, Germany: Springer, 2008, pp. 415–432.

[29] J. Camenisch, M. Drijvers, and M. Dubovitskaya, “Practical UC-
secure delegatable credentials with attributes and their application to
blockchain,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017,
pp. 683–699.

[30] D. Bosk et al., “Hidden issuer anonymous credential,” in Proc. Privacy
Enhancing Technol., vol. 4, pp. 571–607, 2022.

[31] J. Blömer and J. Bobolz, “Delegatable attribute-based anonymous cre-
dentials from dynamically malleable signatures,” in Proc. Int. Conf. Appl.
Cryptogr. Netw. Secur., Cham, Switzerland: Springer, 2018, pp. 221–239.

[32] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in Proc.
Cryptographers’ Track RSA Conf., 2016, pp. 111–126.

[33] E. C. Crites and A. Lysyanskaya, “Delegatable anonymous credentials
from mercurial signatures,” in Proc. Cryptographers’ Track RSA Conf.,
Chamm, Switzerland: Springer, 2019, pp. 535–555.

[34] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in Proc. Int. Conf. Secur. Commun. Netw., Berlin, Germany:
Springer, 2002, pp. 268–289.

[35] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous
credentials from bilinear maps,” in Proc. Annu. Int. Cryptol. Conf., Berlin,
Germany: Springer, 2004, pp. 56–72.

[36] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-TAA,” in
Proc. Int. Conf. Secur. Cryptogr. Netw., Berlin, Germany: Springer, 2006,
pp. 111–125.

[37] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and G. Danezis,
“Coconut: Threshold issuance selective disclosure credentials with appli-
cations to distributed ledgers,” in Proc. 26th Ann. Netw. Distrib. Syst. Secur.
Symp., NDSS 2019, San Diego, California, USA: The Internet Society,
Feb. 24-27, 2019.

[38] J. Camenisch et al., “Composable and modular anonymous creden-
tials: Definitions and practical constructions,” in Proc. Int. Conf.
Theory Appl. Cryptol. Inf. Secur., Berlin, Germany: Springer, 2015,
pp. 262–288.

[39] O. Sanders, “Efficient redactable signature and application to anony-
mous credentials,” in Proc. IACR Int. Conf. Public-Key Cryptogr., Cham,
Switzerland: Springer, 2020, pp. 628–656.

[40] S. Canard and R. Lescuyer, “Protecting privacy by sanitizing personal data:
A new approach to anonymous credentials,” in Proc. 8th ACM SIGSAC
Symp. Inf. Comput. Commun. Secur., 2013, pp. 381–392.

[41] S. Canard and R. Lescuyer, “Anonymous credentials from (indexed) ag-
gregate signatures,” in Proc. 7th ACM Workshop Digit. Identity Manage.,
2011, pp. 53–62.

[42] C. Hébant and D. Pointcheval, “Traceable constant-size multi-authority
credentials,” in Proc. Int. Conf. Secur. Cryptography Netw., Cham:
Springer International Publishing, 2022, pp. 411–434.

[43] E. C. Crites and A. Lysyanskaya, “Mercurial signatures for variable-length
messages,” in Proc. Privacy Enhancing Technol., vol. 4, 2021, pp. 441–
463.

[44] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptogra-
phers,” Discrete Appl. Math., 2008, vol. 156, no. 16, pp. 3113–3121.

[45] C. Hanser and D. Slamanig, “Structure-preserving signatures on equiva-
lence classes and their application to anonymous credentials,” in Proc. Int.
Conf. Theory Appl. Cryptol. Inf. Secur., Berlin, Germany: Springer, 2014,
pp. 491–511.

[46] G. Fuchsbauer, C. Hanser, and D. Slamanig, “Structure-preserving signa-
tures on equivalence classes and constant-size anonymous credentials,” J.
Cryptol., vol. 32, no. 2, pp. 498–546, 2019.

[47] L. Hanzlik and D. Slamanig, “With a little help from my friends: Con-
structing practical anonymous credentials,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2021, pp. 2004–2023.

https://gdpr-info.eu
https://gdpr-info.eu
https://oag.ca.gov/privacy/ccpa
http://eprint.iacr.org/

[48] P. Fauzi et al., “Quisquis: A new design for anonymous cryptocurrencies,”
in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., Cham, Switzerland:
Springer, 2019, pp. 649–678.

[49] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proc. Conf. Theory Appl. Cryp-
tographic Techn., Berlin, Germany: Springer, 1986, pp. 186–194.

[50] J. Camenisch and M. Stadler, “Efficient group signature schemes for large
groups,” in Proc. Annu. Int. Cryptol. Conf., Springer, 1997, pp. 410–424.

[51] E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from
bitcoin,” in Proc. IEEE Symp. Secur. Privacy, 2014, pp. 459–474.

[52] S. F. Sun et al., “Ringct 2.0: A compact accumulator-based (linkable
ring signature) protocol for blockchain cryptocurrency monero,” in Proc.
Eur. Symp. Res. Comput. Secur., Cham, Switzerland: Springer, 2017,
pp. 456–474.

[53] MIRACL Ltd., 2019. Accessed: Sep. 15, 2023. [Online]. Available: https:
//github.com/miracl/MIRACL

[54] J. Fan, F. Vercauteren, and I. Verbauwhede, “Faster Fp-Arithmetic for
cryptographic pairings on barreto-naehrig curves,” in Proc. Int. Workshop
Cryptographic Hardware Embedded Syst., Berlin, Germany: Springer,
2009, pp. 240–253.

[55] DIHAC, 2023. Accessed: Sep. 15, 2023. [Online]. Available: https://
github.com/DIHAC/DIHAC

Rui Shi received the MSc degree from Beijing Elec-
tronic Science and Technology Institute, Beijing,
China, in 2015 and the PhD degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, in 2023. He was a research engineer with
Sinoinfosec Beijing Technology Company, Ltd., from
2015 to 2019. He is currently a research engineer with
Beijing Electronic Science and Technology Institute.
His research interests include the area of privacy
protection and cryptography.

Yang Yang received the BSc degree from Xidian
University, Xi’an, China, in 2006, and the PhD degree
from Xidian University, China, in 2011. She is a
senior research scientitst with the School of Comput-
ing and Information System, Singapore Management
University, Singapore. She has been a full professor
with the College of Computer Science and Big Data,
Fuzhou University. Her research interests include in-
formation security and privacy protection. She has
published more than 60 papers in IEEE Transactions
on Information Forensics and Security, IEEE Trans-

actions on Dependable and Secure Computing, IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Computing, IEEE Transactions on
Industrial Informatics, etc.

Yingjiu Li received the PhD degree from George Ma-
son University, in 2003. He had been a faculty mem-
ber with Singapore Management University, from
2003 to 2019. Now, he is ripple professor with the
Department of Computer and Information Science,
University of Oregon, Eugene, OR, USA. His re-
search interests include IoT security and privacy,
mobile security, and data security and privacy. He has
published more than 170 papers in cybersecurity, and
co-authored two academic books.

Huamin Feng is currently a professor with the Bei-
jing Electronic Science and Technology Institute,
Beijing University of Posts and Telecommunications,
Beijing, China. His research interests include infor-
mation security and cyberspace security.

Guozhen Shi is currently a professor with Beijing
Electronic Science and Technology Institute, Beijing,
China. His research interests include information se-
curity and cyberspace security.

Hwee Hwa Pang received the BSc (first class honors)
and the MS degrees in computer science from the
National University of Singapore, in 1989 and 1991,
respectively, and the PhD degree in computer science
from the University of Wisconsin-Madison, in 1994.
He is a professor with the School of Computing
and Information Systems, Singapore Management
University, Singapore. His current research interests
include database management systems, data security,
and information retrieval.

Robert H. Deng (Fellow, IEEE) is an AXA chair pro-
fessor in cybersecurity with the School of Computing
and Information Systems, Singapore Management
University, Singapore. His research interests include
data security, network and system security. He has
served/is serving on the editorial boards of many
international journals in security, such as IEEE Trans-
actions on Information Forensics and Security, IEEE
Transactions on Dependable and Secure Computing,
etc.

https://github.com/miracl/MIRACL
https://github.com/miracl/MIRACL
https://github.com/DIHAC/DIHAC
https://github.com/DIHAC/DIHAC

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

