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Abstract—Deep Learning Systems (DLSs) have been widely
applied in safety-critical tasks such as autopilot. However, when
a perturbed input is fed into a DLS for inference, the DLS often
has incorrect outputs (i.e., faults). DLS testing techniques (e.g.,
DeepXplore) detect such faults by generating perturbed inputs
to explore data flows that induce faults. Since a DLS often has
infinitely many data flows, existing techniques require developers
to manually specify a set of activation values in a DLS’s neurons
for exploring fault-inducing data flows. Unfortunately, recent
studies show that such manual effort is tedious and can detect
only a tiny proportion of fault-inducing data flows.

In this paper, we present Themis, the first automatic DLS
testing system, which attains strong fault detection capability by
ensuring a full coverage of fault-inducing data flows at a high
probability. Themis carries a new workflow for automatically
and systematically revealing data flows whose internal neurons’
outputs vary substantially when the inputs are slightly perturbed,
as these data flows are likely fault-inducing. We evaluated Themis
on ten different DLSs and found that on average the number of
faults detected by Themis was 3.78X more than four notable
DLS testing techniques. By retraining all evaluated DLSs with
the detected faults, Themis also increased (regained) these DLSs’
accuracies on average 14.7X higher than all baselines.

I. INTRODUCTION

Deep Learning Systems (DLSs) have been widely applied
in safety-critical tasks such as autopilot and smart cities [7],
[11], [25], [35], [42]. However, when a DLS (e.g., an autopilot
system) is deployed in a real-world environment (e.g., a
crowded city), the DLS’s input (e.g., a road condition image
of the crowded city) is often perturbed by environmental noise
such as raindrops and fog effects, causing incorrect values and
disaster [11], [25], [35], [42]. The incorrect output value of
a DLS caused by perturbation on the DLS’s input is defined
as the DLS’s fault [17].

Since a DLS’s faults greatly undermine the DLS’s reliability,
a DLS must be systematically tested in order to detect as
many faults as possible [11], [25], [35], [42]. These faults
are essential for further developing a DLS (i.e., improving the
DLS’s accuracy by retraining the DLS with perturbed inputs
which lead to faults). The rationale of existing DLS testing
is inspired by conventional software testing. In conventional
software testing [29], [38], [50], a testing technique generates
a set of inputs (known as the test set) to explore diverse data
flows of a software (e.g., statements or branches), especially
the data flows which likely lead to the software’s faults such

as exceptions or crashes (these data flows are called “fault-
inducing data flows”). When all data flows of the software
have been explored (i.e., the test coverage metric adopted by
the testing technique, such as code coverage, reaches 100%),
the testing process is considered completed, and the testing
technique stops.

Similarly, existing DLS testing techniques (e.g., DeepX-
plore [42], DeepGauge [35], DeepImportance [11], and Sur-
prise Adequacy for Deep Learning System [25]) generate a test
set (a set of perturbed inputs) to explore a DLS’s data flows,
where the DLS’s data flow is defined as a set of numerical
values: each of the numerical value is one of the DLS’s
neurons’ output value (a DLS’s neuron is a “function”, and
the output value of a neuron is called “activation value” [35],
[42]) corresponding to a DLS’s input. A DLS testing instance
generates noise test set by perturbing test set with the same
type of environmental noise (e.g., raindrop effect) of various
levels of noise strength (e.g., various raindrop densities).

However, since the activation values of a DLS’s neurons
are discrete numbers from negative infinity to positive infinity,
generating a test set to make a DLS’s neurons output all
possible sets of activation values is prohibitively inefficient.
To mitigate such inefficiency in DLS testing, for each type
of environmental effects (noise), existing techniques (Deep-
Xplore [42], DeepGauge [35], DeepImportance [11], and
Surprise Adequacy for Deep Learning System [25]) require
a DLS’s developer to manually specify likely sets of fault-
inducing activation values in all neurons.

For example, DeepXplore [42] requires developers to man-
ually partition a neuron’s outputs into two segments (i.e.,
outputs larger than a threshold and outputs smaller than a
threshold, where the threshold has to be manually specified by
the developers). Then, DeepXplore [42] generates test inputs
to cover each of the two segments for all neurons. Neverthe-
less, recent work [17] showed that manually specifying the
threshold is error-prone, and such manual effort is often overly
coarse-grained, identifying a DLS’s all activation values that
may induce faults for each type of environmental effects is
fundamentally difficult, and not all values will induce faults on
all neurons. Worse, existing DLS testing techniques [11], [42]
often can’t attain strong fault detection capability (strong fault
detection capability means the correlation between the error
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Fig. 1: Increase in a DLS’s accuracy by retraining the DLS
with faults detected by Themis and the baselines. The increases
in DLS’s accuracy brought by Themis were on average 14.7X
more than the increases in DLS’s accuracy brought by base-
lines.

rate of a DLS and the number of the DLS’s faults detected is
larger than 0.7).

We believe that the root cause behind the limitations of
the existing techniques is that the triggering condition and
the total number of a DLS’s fault-inducing data flows are
unknown [11], [17], [25], [30], [35], [42], [54]. Hence, existing
techniques inevitably require manual expert effort in inferring
a set of fault-inducing data flows, in order to guide the
exploration of a DLS’s data flows and the computation of test
coverage (i.e., the proportion of the fault-inducing data flows
being explored from the DLS during testing). Unfortunately,
despite these advancements [11], [17], [25], [30], [35], [42],
[54], in principle, manual effort is far away from guaranteeing
that these techniques can explore a full coverage of fault-
inducing data flows from a DLS, while the full coverage is
an essential and sufficient condition for a testing technique to
attain strong fault-detection capability [17], [30], [54]. Overall,
an automated DLS testing technique that can theoretically
explore a full coverage of fault-inducing data flows is highly
desirable but vacant.

The main observation of the paper is that, a fault-inducing
data flow in a DLS is often sensitive to perturbation on a DLS’s
input. We denote the data flow with respect to a DLS M and
an input I as DF (M, I). For a DLS (M ), a clean input (I) and
its perturbed input (I ′), we consider a data flow DF (M, I ′)
sensitive to perturbation if the difference of DF (M, I ′) and
DF (M, I) (denoted as DF (M, I ′) − DF (M, I)) is large,
given that I ′ and I just have slight difference (e.g., I ′ and
I differ by light raindrops). Intuitively, sensitive DF (M, I ′)
inevitably causes M(I ′) and M(I) to be different, confirmed
in our evaluation (Figure 4b).

With this observation, we present Themis, a DLS test-
ing technique that systematically explores fault-inducing data
flows guided by data flows’ sensitivity: the difference between

DF (M, I ′) and DF (M, I) with respect to the difference
between I ′ and I . Themis leverages math optimization tech-
niques (e.g., Gradient Descent) to adjust the intensity of
the perturbation (e.g., raindrops’ densities) on I , in order to
generate a new test set of I ′, which maximizes DF (M, I ′)−
DF (M, I). Hence, Themis maximizes the likelihood that
DF (M, I ′) will lead to a fault. With this new workflow,
Themis explores faults from a DLS without the necessity of
either manual effort or exploring all data flows of a DLS. One
major challenge for Themis to achieve strong fault detection
capability is how Themis infers the coverage of fault-inducing
data flows being explored by Themis’s generated test set
during testing (i.e., how Themis computes the test coverage
metric). This is because the actual number of a DLS’s fault-
inducing data flows on all inputs is unknown.

To tackle this challenge, we summarize existing AI theo-
ries [7], [31], [45], [57] to show that, a DLS’s DF (M, I ′)−
DF (M, I) on all inputs often follows normal distribution: for
all clean inputs, most noise added to these inputs will lead to
similar influence on M ’s final outputs, and only a tiny portion
of noise will lead to outlying influence. Hence, once Themis’s
workflow infers that DF (M, I ′) − DF (M, I) converges to
a normal distribution driven by Themis’s generated test set,
according to these theories, Themis has explored a statistically
full coverage of fault-inducing data flows (i.e., only a tiny por-
tion of fault-inducing noise and their data flows were missed
by Themis), and Themis’s testing instance can complete. Our
paper derives a proof (§IV-B) to show that Themis’s workflow
can achieve statistically full coverage (i.e., achieving the “fault
detection capability with high probability” in this paper).

We implemented Themis on Mindspore [41] and compared
Themis against four recent and notable DLS testing techniques
(Deepexplore [42], DeepGauge [35], DeepImportance [11] and
Surprise Adequacy for Deep Learning System [25]), which
have been deployed in the Mindspore security framework and
have been evaluated by several AI developers. We evaluated
Themis and these baselines on ten popular Deep Learning
models (e.g., LeNet [28], VGG [48], ResNet [19]) trained on
six public datasets (Cifar10 [2], ImageNet [9], Driving [52],
Contagio/VirusTotal [8], Drebin [4] and MNIST [27]), which
cover a complete set of datasets evaluated by the base-
lines [11], [25], [35], [42]. Evaluation shows that:
• Themis consistently achieved strong fault detection capabil-

ity. Themis achieved a high correlation [17] (0.70 to 0.95)
for all the DL models, while the baselines’ correlation varied
from -0.89 to 0.59 (Table II).

• Themis detected 3.78X more faults than the baselines, when
Themis’s and the baselines’ test coverage reach 100% .

• By retraining the DL models with faults detected in testing,
Themis increased (regained) the DL models’ accuracy by
0.21% to 8.77%, while baselines increased the DL models’
accuracy by 0.01% to 3.48%. Overall, Themis increased
the DL models’ accuracy on average 14.7X higher than the
baselines (Figure 1).

• Themis has been integrated into the Mindspore security
framework, enhancing the testing of hundreds to thousands



of DNNs in real-world scenarios.
Our main contribution is Themis, the first automatic DLS

testing technique which can empirically attain strong fault
detection capability for perturbed inputs. The key novelty is
Themis’s new workflow for systematically exploring a DLS’s
fault-inducing data flows and computing its test coverage met-
ric without manual effort, by leveraging our observation that
most fault-inducing data flows are sensitive. Our theoretical
analysis (§IV-B) shows that Themis can explore a full coverage
of fault-inducing data flows at high probability (95%), so
Themis empirically attained strong fault detection capability
for all the evaluated DLSs (Table II).

II. BACKGROUND AND RELATED WORK

A. Deep Learning Testing

DeepXplore [42] proposes the first white-box coverage cri-
teria, i.e., Neuron Coverage, which calculates the percentage of
activated neurons. A differential testing approach is proposed
to detect the errors by increasing NC. DeepGauge [33] then
extends NC and proposes a set of more fine-grained coverage
criteria by considering the distribution of neuron outputs from
training data. Inspired by the coverage criteria in traditional
software testing, some coverage metrics [12], [21], [32], [34],
[49], [51], [56] are proposed. DeepCover [49] proposes the
MC/DC coverage of DNNs based on the dependence between
neurons in adjacent layers. DeepCT [32] adopts the com-
binatorial testing idea and proposes a coverage metric that
considers the combination of different neurons at each layer.
DeepMutation [34] adopts the mutation testing into DL testing
and proposes a set of operators to generate mutants of the
DNN. Furthermore, Sekhon et al. [47] analyzed the limitation
of existing coverage criteria and proposed a more fine-grained
coverage metric that considers both the relationships between
two adjacent layers and the combinations of values of neurons
at each layer. Based on the neuron coverage, DeepPath [53]
initially proposes the path-driven coverage criteria, which
considers the sequentially linked connections of the DNN.
IDC [12] adopts the interpretation technique to select the
important neurons in one layer. Based on the training data, it
then groups the activation values of important neurons into a
set of clusters and uses the clusters to measure the coverage.
Kim et al. [24] proposed the coverage criteria that measure
the surprise of the inputs. The assumption is that surprising
inputs introduce more diverse data such that more behaviors
could be tested. Surprise metric measures the surprise score
by considering all neuron outputs of one or several layers. It is
still unclear how the surprise coverage (calculated from some
layers) is related to the decision logic. Xie et al. [55] propose
Neuron Path Coverage, a novel, and interpretable coverage
criterion aimed at characterizing the decision logic of models.

B. Existing DLS testing are unautomated

DLS testing techniques (e.g., Deepexplore [42], DeepGauge
[35], DeepImportance [11], and Surprise Adequacy for Deep
Learning System [25]) are proposed to detect a DLS’s faults. A
testing instance includes a pretrained DLS M (e.g., an autopi-

lot system), an arbitrary input I fed to M for inference (e.g.,
a road condition image), and the same type of environmental
noise with arbitrary noise strength E(θ) (e.g., raindrop effect
E, with arbitrary raindrop size θ, where θ is within a given
range such as the real-world raindrop’s sizes) which may be
present on I . For any M(I + E(θ)) which is different from
M(I), the M(I + E(θ)) is considered a DSL’s fault.

Note that an incorrect M(I+E(θ)) is considered as a fault
instead of a failure because existing DLS testing techniques
aim to test deep learning models of a DLS rather than the entire
DLS (i.e., both deep learning models and the software code of
a DLS). Since in existing DLSs (e.g., industrial autonomous
systems such as Autoware [23] and Apollo [1]), deep learning
models are intermediate components, the incorrect output of
these deep learning models are regarded as the “fault” of a
DLS [17].

These techniques generate perturbed inputs to make a DLS’s
neurons output diverse activation values, in order to explore
the DLS’s data flows (§I). Specifically, denote Ni, i = 1, .., n
as the ith neuron of a DLS, and Ni(I + E(θ)) ∈ R as the
activation values of the ith neuron corresponding to input I+
E(θ). A DLS’s data flow is defined as a set of numerical
values, where each numerical value is each neuron’s activation
of the DLS (i.e., a data flow is defined as {Ni(I + E(θ))}).
Existing work generates diverse I + E(θ), in order to trigger
diverse data flows.

Since activation values are discrete numbers from negative
infinity to positive infinity, existing techniques proposed vari-
ous heuristic rules for a DLS’s developers to manually specify
fault-inducing data flows. For instance, DeepXplore [42] re-
quires a DLS’s developer to divide the activation values of
neurons into two segments (e.g., values larger than zero and
values smaller than zero), such that DeepXplore only needs
to generate at minimal two perturbed inputs (we denote these
inputs as I1+E1(θ1) and I2+E2(θ2)), to cover the segments
(e.g., Ni(I1 + E1(θ1)) ≥ 0 ∀i and Ni(I2 + E2(θ2)) >
0 ∀i). Other DLS testing techniques also proposed similar
heuristic rules for developers to specify fault-inducing data
flows. DeepGauge [35] requires the user to divide activa-
tion values into several segments, where the segments that
contain activation values towards zero have smaller intervals
(because most inputs of a DLS make the neurons’ output
activation values close to zero). DeepImportance [11] requires
a DLS developer to specify fault-inducing activation values
for “important” neurons only (the “important” neurons are
identified via a popular technique in DL called “Layer-wise
Relevance Propagation” [40]). Surprise Adequacy for Deep
Learning System [25] requires a DLS’s developer to specify
fault-inducing activation values for neurons in softmax layers
only.

C. Fault-inducing data flows have to be automatically identi-
fied

Overall, these techniques allow a DLS to be tested within a
reasonable time (e.g., several minutes). However, substantial
studies [17], [30], [54] showed that manual effort in specifying



fault-inducing data flows often causes DLS testing to have
unsatisfactory fault detection capability because fault-inducing
data flows are often unknown (see §I). To automatically
identify fault-inducing data flows, our observation is that for
any I and E(θ), the Ni(I+E(θ)), 1 ≤ i ≤ n which induces a
fault usually has a large difference with Ni(I), 1 ≤ i ≤ n (i.e.,
the value of sumn

i=1|Ni(I +E(θ))−Ni(I)| is large, we call
this value as the sensitivity of a DLS’s data flow on perturbed
inputs). It is because large sensitivity often results in a large
difference between M(I+E(θ)) and M(I) (i.e., M(I+E(θ))
is likely to be a fault). This observation is also confirmed in
our evaluation (§VI-B). Based on this observation, we propose
an input generation technique guided by sensitivity (Sensitivity
Maximizing Fuzzer in §III).

D. Computing test coverage automatically

Test coverage metric measures the proportion of fault-
inducing data flows explored. Ideally, when test coverage
metric reaches 100%, all fault-inducing data flows of a DLS
are explored [17], [30], [54]. However, since the actual number
of fault-inducing data flows in a DLS is unknown, proposing
an accurate test coverage metric is an open challenge [17],
[30], [54]. Existing testing techniques [7], [11], [25], [35], [42]
mitigate this challenge by requiring developers to specify a set
of fault-inducing data flows. However, recent studies show that
such manual effort is tedious and error-prone (§II-B).

To solve this challenge, Themis leverages the sensitivity of
a DLS’s data flow to infer the test coverage. We summarize the
existing theories to show that for any DLS, Ni(I + E(θ)) −
Ni(I) follows a normal distribution. First, existing theories
show that DNN is an ordinary differential equation [7], [31],
and DNN’s neurons are differential operators of an ordinary
differential equation. Second, when random noise is present on
an ordinary differential equation’s input, the variation on the
output values of the ordinary differential equation’s differential
operators often follows a normal distribution [45], [57]. By
combining the first and the second theories, we can derive that
when random noise is present on a DLS’s input, the variation
of the DLS’s activation values (i.e., Ni(I + E(θ)) − Ni(I)
defined in §II-B) often follows a normal distribution (we
denote NDi as the normal distribution, and we call ˆNDi as
“sensitivity distribution” in Figure 2). We also confirmed these
observations in our evaluation (Figure 3b).

Since ˆNDi consists of the frequency of all Ni(I+E(θ))−
Ni(I) values including the fault-inducing data flows {Ni(I +
E(θ))}, the condition that ˆNDi being identified as NDi

implies all fault-inducing data flows are also identified (we
carry a more detailed analysis in §IV-B). Based on this
observation, we proposed a test coverage metric based on
the distribution of NDi (Sensitivity Convergence Coverage
in §III).

III. OVERVIEW

This section presents the architecture and workflow of
Themis. Figure 2 shows Themis’s major components (namely
Sensitivity Calculator, Sensitivity Convergence Coverage and

Sensitivity Maximizing Fuzzer) and these components’ work-
flow. To ease discussion, this section uses the notations defined
in §II-B: given a DLS (M ), a set of inputs (I) for the DLS to
perform inference and environmental noise to be applied on I
(E(θ)), Themis aims to detect the M(I +E(θ)) which is not
equal to M(I) (such an M(I + E(θ)) is a fault).

To do so, Themis first perturbs each input of I with
environmental noise E(θ) (for each input in I , θ is a randomly
chosen value within a given range). Then, Themis feeds both I
and I+E(θ) to Sensitivity Calculator (Phase 1), to compute
the difference between the outputs of each M ’s neurons with
respect to these inputs (i.e., Ni(I +E(θ))−Ni(I) defined in
§II-B, which are the ith neuron’s outputs with respect to I and
I + E(θ) respectively). Sensitivity Calculator also computes
M(I) and M(I+E(θ)), and reports faults to DLS developers
(i.e., M(I + E(θ)) which is not equal to M(I)).

Note that Themis needs to compute both Ni(I) and Ni(I+
E(θ)), while existing DLS testing techniques only compute
Ni(I+E(θ)), even though all these techniques aim to trigger
fault-inducing Ni(I). It is because Themis leverages the
theoretical implication behind Ni(I +E(θ))−Ni(I) to guide
the detection of fault-inducing Ni(I + E(θ)), in order to
automatically identify fault-inducing data flows (see §II-C).
On the other hand, existing techniques require fault-inducing
Ni(I + E(θ)) to be specified by DLS developers, which has
been proven tedious and error-prone (§II-D).

Sensitivity Calculator then passes Ni(I + E(θ)) − Ni(I)
values to Sensitivity Convergence Coverage (Phase 2),
which infers a distribution from the values (i.e., ˆNDi defined
in §II-D) for each neuron (i.e., each i ∈ n). Sensitivity Con-
vergence Coverage then determines whether ˆNDi converges
to a normal distribution and returns a test coverage value
accordingly. Specifically, for each neuron in a DLS, Sensi-
tivity Convergence Coverage feeds the Ni(I +E(θ))−Ni(I)
values to Monte Carlo Markov Chain [13] (MCMC, a popular
statistical technique for inferring probability distributions from
a set of numerical values).

MCMC then outputs both ˆNDi (the distribution inferred by
MCMC) and the Monte Carlo Standard Error (MCSE, a metric
to measure the potential error between the inferred distribution
and the ground-truth normal distribution) value corresponding
to ˆNDi. Sensitivity Convergence Coverage thus determines
whether ˆNDi converges to a normal distribution based on
the MCSE value: If MCSE equals zero within a confidence
interval α (Themis’s default value of α is 95%, a standard
value of setting a confidence interval [3], [20]), then Sensitivity
Convergence Coverage considers ˆNDi converges to a normal
distribution at a high probability (i.e., 95%). Otherwise, ˆNDi

is considered not converged.
Sensitivity Convergence Coverage then computes the test

coverage metric as the proportion of neurons whose ˆNDi con-
verges. For instance, in Figure 2, after Sensitivity Convergence
Coverage computes ˆNDi for the twelve neurons, six neurons
among the twelve neurons (i.e.,N2, N4, N7, N8, N9 and N10
which are colored in green) have MCSE as 0.0 (i.e., their ˆNDi

are converged), while the rest of the six neurons of the DLS
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if their MCSE value (as shown in the “Sensitivity distribution statistics”) equals 0.0 (i.e., sensitivity distribution of the neurons
converged).

have MCSE large than 0.0 (i.e., their ˆNDi are not converged).
Hence, Sensitivity Convergence Coverage computes the test
coverage as 50%.

Sensitivity Convergence Coverage addresses an open chal-
lenge of DLS testing: accurately inferring the proportion of
faults undetected from a DLS (i.e., computing a test coverage
metric), even the total number of the DLS’s faults is unknown.
Specifically, Sensitivity Convergence Coverage does so by
inspecting ˆNDi’s convergence condition, which is correlated
with the proportion of the DLS’s faults being detected (§II-D).
Our theoretical analysis showed that when Sensitivity Conver-
gence Coverage reaches 100%, all fault-inducing data flows
are identified (i.e., explored) at high probability (95%). In
contrast, existing works mitigate this challenge by requiring
DLS developers to specify a set of fault inducing data flows,
such that the test coverage metric is computed as the specified
fault inducing data flows being explored. d

After that, Sensitivity Convergence Coverage passes the
neurons whose ˆNDi is converged to Themis’s Sensitiv-
ity Maximizing Fuzzer (Phase 3). Sensitivity Maximizing
Fuzzer then leverages math optimization techniques (e.g.,
Gradient Ascent) to generate a new test set, to explore unex-
plored fault-inducing Ni(I + E(θ)). Specifically, Sensitivity
Maximizing Fuzzer iteratively adjusts θ of E (we denote
the adjusted θ as θ′), such that I + E(θ′) maximizes the
sum of Ni(I + E(θ)) − Ni(I)) for all neurons whose ˆNDi

are not converged (i.e., N2, N4, N7, N8, N9 and N10 in
Figure 2). Sensitivity Maximizing Fuzzer does so to ensure
that the generated test set can explore new fault-inducing
data flows (i.e., Ni(I + E(θ)) which has a large difference
with Ni(I))). Sensitivity Maximizing Fuzzer then feeds the
generated I + E(θ′) to Sensitivity Calculator for computing

Ni(I + E(θ′)) − Ni(I)), and thus Themis enters another
iteration of the testing.

IV. THEMIS’S RUNTIME

A. The challenge in designing Themis’s workflow

One major novelty of Themis is a new workflow to compute
test coverage metric, by computing ˆNDi for all of a DLS’s
neurons (§II-B and §III). However, realising such a workflow
is challenging, because ˆNDi for all of a DLS’s neurons may
cause Themis unscalable to a DLS’s size.

Computing ˆNDi for just one neuron of a DLS is already
computationally expensive, because it requires Themis’s Sen-
sitivity Convergence Coverage to run MCMC on thousands
of sensitivity samples (§III). Hence, for DLSs of large sizes
(e.g., ResNet56 which consists of more than five hundred
thousand neurons, see Table I), the strawman approach of
brutal force computing would require more than hours to
conduct the testing, inefficient compared to the existing tech-
niques [11], [25], [35], [42], which only takes several minutes
to complete testing. On the other hand, computing ˆNDi for
only a subset of a DLS’s neurons may cause Themis to miss
substantial faults. Because ˆNDi of different neurons have
different convergence rate ( ˆNDi’s convergence rate of a DLS
neuron is essential for Themis to compute test coverage, see
§III), computing ˆNDi for a subset of a DLS’s neurons may
cause Themis to compute test coverage incorrectly (e.g., stop
testing too soon or too late).

To tackle this challenge, we present Sensitivity Sampler, a
sampling technique used by Themis’s Sensitivity Convergence
Coverage to compute ˆNDi for a subset of a DLS’s neurons,
in order to precisely approximate the ˆNDi’s convergence rate
of all the DLS’s neurons. Our observation behind Sensitivity



Dataset (I) Description DNN (M) Number of
neurons

MNIST Hand-written digit
classification

LeNet-1 [10], [28] 7206
LeNet-4 [10], [28] 69362
LeNet-5 [10], [28] 107786

Contagio Malware classification
in PDF Files <200,200> [42] 35410

Drebin Malware classification
in Android apps <200,10> [15], [42] 15230

ImageNet General Image
classification

VGG-19 [48] 14888
ResNet-50 [19] 16168

Udacity Road condition
classification DAVE-2 [58] 1560

Cifar10 General Image
classification

ResNet56 [19] 532490
DenseNet121 [22] 563210

TABLE I: Datasets and DNNs for evaluating Themis, which covers the complete set of datasets evaluated by baselines.

Sampler is that ˆNDi’s convergence rate is inversely propor-
tional to ˆNDi’s variance (the larger the variance, the slower
the convergence rate, as pointed out by a classic statistic theory
called Chebyshev’s inequality [39]). Hence, for a DLS of
any size, Themis samples a constant number (by default one
thousand, see §IV-B) of neurons for computing ˆNDi based on
the variance of Ni(I+E(θ))−Ni(I)) values of each neuron.

B. Themis’s algorithm

Algorithm 1 shows the algorithm of Themis, includ-
ing Themis’s three components (§III): Sensitivity Calculator
(Phase 1), Sensitivity Convergence Coverage (Phase 2) and
Sensitivity Maximizing Fuzzer (Phase 3), as well as Sensitivity
Sampler (§IV-A). When M , {I}, and E(θ) are fed into
Themis, Themis starts testing process. Specifically, for I in
{I}, Themis’s Sensitivity Calculator (line 2-12) first computes
Ni(I) and Ni(I+E(θ)) (line 5-6), which are defined in §II-C.
Sensitivity Calculator then computes the difference (denoted
as Di) between Ni(I) and Ni(I +E(θ)) (line 8- 10). Di are
sensitivity samples (§III). Meanwhile, Sensitivity Calculator
reports faults to the developer for any M(I) and M(I+E(θ))
with different DLS’s outputs.

Then, Themis’s Sensitivity Convergence Coverage infers
ˆNDi of the DLS’s neurons based on Di (line 2- 15). Specifi-

cally, Sensitivity Sampler computes the variance of each item
in Di, and sort these items according to their variance. Then
Sensitivity Sampler selects k (by default one thousand) items
from all the items in an evenly-spaced manner (i.e., select
the item for every |Di|

k ) items). The default value of k (i.e.,
one thousand) is selected based on Mann-Witney statistic [5],
which points out that one thousand samples from a sorted list
is sufficient to accurately approximate all the remaining values
in the sorted list.

After Sensitivity Sampler computes ˆNDi for each sampled
neurons (line 14), Sensitivity Sampler computes sensitivity
convergence (the test coverage of Themis) as the number of
converged ˆNDi over k (line 15). Specifically, the convergence
criterion is whether Monte Carlo Standard Error (MCSE)
equals 0.0, a standard criterion which indicates the probability
of convergence identified by MCMC [13], [44]. By having

MCSE equal 0.0, each batch of samples drawn by MCMC have
almost identical probability distributions. We also evaluated
the choice of MCSE value and our evaluation result (Fig-
ure 5b) shows that MCSE equal 0.0 allowed Sensitivity Sam-
pler to precisely infer ˆNDi’s convergence rate of all neurons.
After Sensitivity Sampler computed sensitivity convergence,
Themis’s Sensitivity Maximizing Fuzzer (line 18- line 19)
performs fuzzing in order to explore the unconverged ˆNDi

(i.e., coverage-guided fuzzing).
Analysis of Themis’s fault detection capability. Themis

has strong fault detection capability because Themis theoret-
ically can explore all fault-inducing data flows at high prob-
ability (95%). We first explain how we derive this theoretical
property of Themis. As discussed in §II-D, we summarize two
existing theories [7], [31], [45], [57] and conclude that when
random noise is present on a DLS’s input, the variation of a
DLS’s activation values (i.e., Ni(I + E) − Ni(I) defined in
§II-B) often follows a normal distribution (i.e., NDi defined
in §II-B). Hence, Themis examines whether the generated
test set explores a full coverage of the fault-inducing data
flows (i.e., Ni(I +E) which has large difference with Ni(I))
by examining whether a normal distribution can be inferred
from the Ni(I + E) − Ni(I) values associated to the test
set (i.e., whether the test set explores a full coverage of
Ni(I + E)−Ni(I) values).

Note that even when distribution inferred from the Ni(I +
E)−Ni(I) values (i.e., ˆNDi(I +E)) converges to a normal
distribution, Themis is not 100% guaranteed to identify all
fault-inducing data flows. It is because the Ni(I+E)−Ni(I)
values can coincidentally form a normal distribution different
from NDi. Hence, Themis probabilistically (rather than deter-
ministically 100%) identifies a full coverage of fault-inducing
data flows, and the corresponding probability depends on the
confidence interval (by default 95%) adopted by Themis when
inferring NDi (§III).

After we justify the reason why Themis theoretically can
explore all fault-inducing data flows at high probability (95%),
we show that this theoretical property of Themis allows
Themis to have strong fault detection capability. As discussed
in §IV-B, for any DLS having more number of faults (i.e., has



Algorithm 1: Themis’s entire workflow
Input: {I}: raw inputs, M : DNN to be tested, n: the

number of neurons of M , E(θ): User-specified
perturbation, t: threshold value for MCMC to
determine convergence, k: sample size for Sensitivity
Sampler, c: desired sensitivity coverage

1 Function Themis ({I},E(θ),M ,n):
2 Initialise List sensitivitySample; Initialise List

Faults
3 while True do

/* Sensitivity Calculator (Phase 1)
begins */

4 for each I ∈ {I} do
5 {Ni(I)}ni=1 ←M({I})’s activtion values
6 {Ni(I + E(θ))}ni=1 ←M(I +E(θ))’s activtion

values
7 Initialise Array {Diffi}ni=1

8 for each j ∈ [1,...,n] do
9 Diffj = |Nj(I + E(θ))−Nj(I)|

10 sensitivitySample.insert(Diff )
11 if M(I) ̸= M(I + E(θ)) then
12 Faults.insert(I ,E(θ))

/* Sensitivity Convergence Coverage
(Phase 2) begins */

13 {Diffi}ki=1 ←
sensitivitySampler(sensitivitySample,k)

14 { ˆNDi}ki=1 ← MCMC({Diffi}ki=1)
15 sensitivityCoverage ← proportion of { ˆNDi} that

has MCSE == 0.0
/* Sensitivity Maximizing Fuzzer

(Phase 3) begins */
16 if sensitivityCoverage < c then
17 UncovNeuron← unconverged neuron
18 obj = maximizer(UncovNeuron)
19 I + E(θ′)← gradientAscent(obj,I + E(θ))
20 else
21 break
22 return
23 Function sensitivitySampler(sensitivitySample,k):
24 Initialise Array {variancei}ni=1

25 for each j ∈ [1,...,n]) do
26 V ariancej =

compute variance(sensitivitySample[j])
27 Dsort = sort {V ariancei}ni=1 based on variance
28 for each j ∈ [1,...,k]) do
29 selectedj = variance

j∗ |Di|
k

30 return {selectedi}ki=1

lower accuracy), the DLS’s ˆNDi often has greater variance.
This implies that these DLSs require Themis to generate more
I+E(θ) to identify the DLS’s ˆNDi (any statistical distribution
with greater variance requires more samples to identify the
distribution, according to Chebyshev’s inequality [39]). Since
with more I+E(θ), Themis can detect more faults (the number
of I + E(θ) generated by Themis is the upper limit of the
number of faults can be detected by Themis). Hence, Themis
detects more faults from a DLS which has lower accuracy (i.e.,
Themis has strong fault detection capability).

V. IMPLEMENTATION

We implemented Themis using PyTorch 1.8.1 [41].
Themis’s implementation consists of around 9,791 lines of
Python code. We adopted PYMC3 [46], a popular Python
package which realises MCMC, to perform MCMC in
Themis. Specifically, Themis’s Sensitivity Calculator (§III)
calls PYMC3.DATA to load the samples of sensitivity, and
constructs the prior distributions by calling PYMC3.NORMAL.
Then, Themis’s Sensitivity Convergence Coverage calls
PYMC3.SAMPLE to perform MCMC. Sensitivity Convergence
Coverage examines the convergence rate (i.e., MCSE, §IV) by
ARVIZ.SUMMARY [26], a popular Python package for analysis
of Bayesian models. Finally, Themis’s Sensitivity Maximizing
Fuzzer is realised with textscAutograd [36] library, which
efficiently performs gradient ascent on ˆNDi(§IV).

VI. EVALUATION

A. Experiment Setup

Our evaluation was done on a a computer equipped with
twenty CPU cores and four Nvidia RTX2080TI graphic cards.
Inspired by [18] that analyze the correlation of increases in
neuron coverage and ASR, we compared Themis with the
state-of-the-art DLS testing techniques: DeepeXplore [42],
DeepGauge [35], DeepImportance [11], and Surprise Ade-
quacy [25]. During the testing process, we will mutate test
cases with perturbations in III and require the NC (Deep-
Xplore), KMNC (DeepGauge), IDC (DeepImportance), and
LSA (Surprise Adequacy) to select test cases to increases the
coverage rate. For NC, we set the threshold as 0.5, For KMNC,
we follow the configuration [35] and set k as 1,000. For LSA,
we set the upper bound as 2,000. For IDC, we set the m as
12.

Table I shows our evaluated datasets and models, which cov-
ers a complete set of six datasets evaluated by four baselines.
To be fair and comprehensive, our evaluated models covered
all models evaluated by four notable DL testing works [11],
[25], [35], [42] that have been deployed in Mindspore security
framework. The models we evaluated include VGG [48],
ResNet [19], DenseNet [22], etc. We believe the architecture
of these models covers all basic building blocks (such as
convolution layers and residual connections) of most modern
real-world deployed AI applications. These DNN models all
achieve high precision. Hence, finding faults (i.e., a DNN’s
incorrect outputs) from these well-studied and well-tested
DNN will be valuable.

We choose the correlation metric [17], [30] as the main
evaluation metric to compare the fault detection capability
between Themis and the baselines. The value of the correlation
metric is between -1.0 and 1.0 and the latest study [17] points
out that a high correlation (e.g., 0.7) implies strong fault
detection capability. We also evaluated the increased accuracy
of DLS after retraining the DLS with the detected faults,
to evaluate the quality of faults detected by a DLS testing
technique. Finally, we evaluated the test time cost for Themis



Dataset(DNN)
CW FGSM

Themis
Deep- Deep- Deep- Surprise

Themis
Deep- Deep- Deep- Surprise

Xplore Gauge Import. Adequacy Xplore Gauge Import. Adequacy
MNIST (LeNet-1) 0.79 -0.58 0.25 0.08 -0.21 0.77 0.21 0.35 -0.35 0.33
MNIST (LeNet-4) 0.72 -0.88 0.01 -0.62 -0.5 0.74 0.26 0.34 0.24 -0.18
MNIST (LeNet-5) 0.71 0.35 -0.41 -0.17 0.74 0.83 -0.02 -0.02 0.18 -0.05
Contagio (¡200,200¿) 0.71 0.33 -0.07 0.25 -0.87 0.77 0.71 -0.04 0.1 0.38
Drebin (¡200, 10¿) 0.70 0.11 0.18 0.78 -0.37 0.81 -0.06 0.08 -0.19 0.2
ImageNet (VGG-19) 0.79 -0.77 -0.07 0.12 -0.29 0.86 0.3 -0.62 -0.01 0.74
ImageNet (ResNet-50) 0.71 0.4 0.33 -0.06 -0.09 0.74 0.3 0.1 -0.05 0.1
Udacity (DAVE-2) 0.72 -0.16 0.31 0.76 0.21 0.84 0.77 0.4 0 -0.08
Cifar10 (ResNet56) 0.86 0.35 -0.36 0.4 0.21 0.85 0.37 0.01 -0.63 0.08
Cifar10 (DenseNet121) 0.88 0.25 -0.7 0.05 -0.01 0.78 -0.51 0.72 0.33 0.39

Dataset(DNN)
PGD GAUSSIAN

Themis
Deep- Deep- Deep- Surprise

Themis
Deep- Deep- Deep- Surprise

Xplore Gauge Import. Adequacy Xplore Gauge Import. Adequacy
MNIST (LeNet-1) 0.72 -0.89 0.01 0.39 0.23 0.7 0.2 -0.21 -0.06 0.71
MNIST (LeNet-4) 0.77 -0.03 -0.54 0.37 0.19 0.72 0.18 -0.07 -0.6 -0.68
MNIST (LeNet-5) 0.71 0.01 -0.04 -0.23 0.76 0.89 -0.17 -0.09 0.75 0
Contagio (¡200,200¿) 0.78 -0.13 0.3 0.23 -0.09 0.77 -0.63 0.18 0.37 0.28
Drebin (¡200, 10¿) 0.71 0.4 -0.02 -0.1 -0.57 0.82 0.26 -0.32 0.36 0.11
ImageNet (VGG-19) 0.75 0.09 0.1 -0.13 -0.19 0.84 0.79 0.28 0.1 -0.03
ImageNet (ResNet-50) 0.78 -0.09 -0.56 0.02 -0.05 0.86 -0.16 -0.17 -0.09 -0.17
Udacity (DAVE-2) 0.71 0.31 0.07 -0.71 -0.74 0.8 0.4 0.34 -0.54 0.08
Cifar10 (ResNet56) 0.8 -0.1 0.09 -0.08 0.36 0.95 -0.57 0.11 0.06 0.35
Cifar10 (DenseNet121) 0.86 -0.04 0.25 -0.56 -0.73 0.91 0.22 -0.14 0.31 0.4

TABLE II: Correlation between the number of faults identified by DLS testing and the error rate of a DLS. Correlation larger
than 0.7 (colored in green) is considered strong [17]. Correlation less than 0.0 is colored in red.

Variables (Perturbations) Magnitude Value
c Confidence (CW [6]) 10 20 30 40 50
ϵ (FGSM [14]) 0.1 0.2 0.3 0.4 0.5
ϵ (PGD [37]) 0.1 0.2 0.3 0.4 0.5
σ (Guassian noise) 0.01 0.02 0.03 0.04 0.05

TABLE III: Perturbations adopted in our evaluation.

and the baselines to achieve 100% test coverage1.
To study Themis and the baselines’ fault detection capa-

bility, we applied four well-studied perturbations (CW [6],
FGSM [14], PGD [37], and Gaussian noise) to each dataset
of the evaluated DNN models in Table I. These perturbations
are evaluated by Themis’s baselines [11], [35] because these
perturbations are common in real world DLS applications.
Hence, faults detected from a DLS under these perturbations
greatly promote the reliability of a DLS.

The values of the magnitude of these perturbations in our
evaluation are listed in Table III. We follow Themis’s baselines
to set these values [11], [25], [35], [42]. The evaluation
questions are as follows:

§VI-B: How is Themis’s fault detection capability com-
pared to the baselines?

1In this paper, we follow the Mindspore fuzzing testing setup for our
experiments, where the testing will be stopped when the coverage reaches
100%.

§VI-C: How is the improvement on a DLS’s accuracy
attained by Themis?

§VI-D: How is Themis’s efficiency compared to baselines?
§VI-E: What are the factors that affect Themis’s fault

detection capability?
§VI-F: What are Themis’s limitations?

B. Themis’s Fault Detection Capability Result

We first investigate the fault detection capability of Themis
and baselines. Specifically, we perturbed raw inputs (e.g., road
condition images) with various noise intensities as shown in
Table III. Then, for each set of inputs perturbed by the same
noise intensity (e.g., PGD with epsilon as 0.1), we fed these
perturbed inputs into a DLS and computed the DLS’s error
rate (i.e., the proportion of the perturbed inputs being wrongly
classified by the DLS) and the number of faults detected by
Themis until Themis ’s coverage metric reached 100%. Finally,
the fault detection capability is computed as the correlation
between all pairs of a DLS’s error rate and the number of faults
detected (e.g., the pairs of DLS’s error rate and the number of
faults detected corresponding to PGD’s epsilon as 0.1,0.2,...0.5
as shown in Table III). Then, the inference accuracy of these
DNNs and the number of faults detected by Themis or the
baselines are used to compute the fault detection capability of
Themis and the baselines.

Table II shows the fault detection capability of Themis and



the baselines on all datasets. Themis’s correlation was larger
than 0.7 for all the evaluated datasets, while baselines rarely
achieved 0.7 correlation or even had negative correlation (i.e.,
detected fewer faults for DNN which has lower accuracy). It
is because the baselines tested a DLS deterministically, while
Themis tested a DLS probabilistically (§II-C). We further
inspect why Themis achieved strong fault detection capability
in Figure 3b. As discussed in §IV-B, the condition for Themis
to achieve strong fault detection capability is that Themis
precisely computes ˆNDi, which guides Themis to attain full
fault coverage. Hence, we inspect whether Themis precisely
computes ˆNDi, by inspecting the consistency of ˆNDi’s means
computed by Themis: Themis is supposed to compute the same
ˆNDi’s mean for the same DLS on different sets of test inputs

because theoretically, there is only one ˆNDi for each DLS’s
neuron for the same set of test inputs (§II-C).

Figure 3b shows that Themis computed ˆNDi’s mean with
less than 10% deviation, so according to conventional stan-
dards in statistics [16], Themis successfully computed ˆNDi.
Themis can do this because theoretically, ˆNDi could be iden-
tified by Bayesian analysis, and Themis’s MCMC component
could identify it. Figure 4b also confirms our observation that
greater sensitivity (Ni(I + E(θ))−Ni(I)) values resulted in
higher number of faults.

C. Increase in accuracy obtained by Themis

One main purpose of DLS testing is to retrain a DLS
with detected faults to increase the DLS’s accuracy. Figure 1
shows the increase in DLS’s accuracy brought by Themis and
the baselines. Overall, Themis increased the DLS’s accuracy
higher than baselines for all datasets. The main reason is that
Themis identified more faults than the baselines (Figure 3a).
Specifically, in our evaluation, we let both Themis and the
baselines keep generating inputs until their coverage metric
reached 100%. By doing so, Themis on average generated
21399 test inputs, DeepXplore [42] generated 3774 test in-
puts, DeepGuage [35] generated 18501 test inputs, Deep-
Importance [11] generated 20052 test inputs, and Surprise
Adequacy [25] generated 26757 test inputs. Overall, the test
inputs generated by Themis consisted of much more faults
than the baselines.

We found that Themis increased the accuracy of Cifar10
(densenet121) under PGD perturbation the most (i.e., 11.56%).
It is because densenet121 is vulnerable to PGD perturba-
tion [43], so it suffered from the greatest accuracy loss under
this perturbation. Since Themis detected more faults from DLS
which had lower accuracy (Table II), Themis detected more
faults for this DNN than other DNNs, which allowed Themis
to increase the DNN’s accuracy more than Themis did on the
other DNNs. This also implies Themis is valuable to real-
world DLSs, which are often trained with limited datasets and
have moderate accuracy (especially on safety-critical tasks, see
§I).
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Fig. 3: Above(a): Number of faults detected by Themis and
the baselines when their test coverage metric reaches 100%.
Bottom(b) The mean of ˆNDi inferred by Themis for each
evaluated DNN. Themis is considered accurate in inferring
the mean if the variation of the mean is below 10% [16] .

D. Themis’s testing time cost

We then study the efficiency of Themis. Figure 4a shows
the test time cost of Themis and the baselines. Themis on
average had 27.1% more testing time cost than baselines. It
is because Themis was probabilistic and hence required more
computation than deterministic approaches (see IV-A). Nev-
ertheless, Themis identified 3.78X more faults than baselines,
so the testing time cost is worthwhile.

To identify the source of Themis’s time cost, we break
down Themis’s time cost, which is comprised of three main
components: Sensitivity Calculator, Sensitivity Convergence
Coverage, and Sensitivity Maximizing Fuzzer (III). Table IV
shows Themis’s time cost in Sensitivity Calculator, Sensitivity
Convergence Coverage and Sensitivity Maximizing Fuzzer
with or without Themis’s Sensitivity Sampler. From the ta-
ble, we can see that Themis’s performance overhead was
mainly from Sensitivity Maximizing Fuzzer, which iteratively
performs MCMC (known to be time-consuming). Without
Themis’s sampler component, Themis’s time on Sensitivity
Maximizing Fuzzer was enormous (more than one hour),
because Themis had to perform MCMC on all DNN’s neurons.
With Themis’s sampler, Themis could accurately compute the
coverage metric based on the results of one thousand DNN
neurons ( §IV-A).



Dataset(DNN)
with Sensitivity Sampler without Sensitivity Sampler

Total Sensitivity Sensitivity Sensitivity Fuzzer Total Sensitivity Calculator Sensitivity Fuzzer
Test Time Calculator Coverage (iterations) Test Time Calculator Estimator (iterations)

MNIST (LeNet-1) 160 27 24 109 (5) 11171 24 2006 9141 (5)
MNIST (LeNet-4) 143 22 11 110 (10) 2434 23 217 2194 (11)
MNIST (LeNet-5) 208 59 34 115 (4) 1704 56 379 1269 (4)
Contagio (¡200,200¿) 201 49 9 143 (15) 14320 50 856 13414 (16)
Drebin (¡200,10¿) 211 27 17 167 (10) 12690 27 1139 11524 (12)
ImageNet (VGG-19) 202 49 23 130 (6) 10273 50 1533 8690 (6)
ImageNet (ResNet-50) 131 57 2 72 (32) 5470 51 162 5257 (32)
Udacity (DAVE-2) 202 33 7 162 (24) 2055 33 80 1942 (25)
Cifar10 (ResNet56) 241 39 24 178 (7) 18036 39 2159 15838 (7)
Cifar10 (DenseNet121) 155 22 23 110 (5) 1613 21 270 1322 (6)

TABLE IV: Themis’s testing time breakdown (all the numbers are in the unit of seconds). Those total testing time costs
comparable to the baselines are colored in green.
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Fig. 4: Above (a): Average time taken by DLS testing to
complete testing (achieve 100% test coverage). Bottom (b):
correlation between sensitivity of neurons and the error rate.

E. Sensitivity studies on Themis’s parameters

We study the sensitivity of Themis’s parameters (i.e., thresh-
old t and Sensitivity Sampler’s sampler size). Figure 5 shows
Themis’s coverage variation on these values. Specifically,
Figure 5a shows that Themis’s coverage was the same as
the ground truth when the sample size equaled one thou-
sand, which was coherent with Mann-Witney Test theory [5]
(§IV-B). We could also observe that when the sample size
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Fig. 5: Above (a): Themis’s coverage values for different sam-
ple sizes. Bottom (b): Themis’s coverage values for different
threshold values.

increased, Themis’s coverage rate was closer to the ground-
truth. It is because statistically, with more samples, we could
approximate the ground-truth distribution better. Nevertheless,
the increase in precision is diminishing when the sample
size grows larger. Hence, setting the sample size as one
thousand is desirable, as justified theoretically (§IV-B) and
empirically (Figure 5a). Figure 5b shows the variation of
Themis’s coverage against a threshold value (t). The figure
shows that setting t as zero (i.e., the default value) allowed



Themis to achieve the ground-truth coverage value.

F. Limitations and Threat to Validity

a) limitations

Themis has two main limitations. First, Themis requires
extra testing time (20%) than the baselines, because Themis
probabilistically tests a DNN (§VI-D). Nevertheless, even
though Themis has the additional testing time, Themis still
completes the testing within several minutes, which is compa-
rable with related work [11], [25], [35], [42]. Besides, Themis
detected 3.78X more faults and enhanced the accuracy of
DNN on average 14.7X times more than baselines. Hence,
Themis’s additional testing time cost is worthwhile. The
second limitation is that although Themis increased a DLS’s
accuracy by retraining the DLS with faults detected by Themis,
Themis does not guarantee these faults would be eliminated
from the DLS after retraining. Due to the randomness nature
of sampling techniques, there is a significant probability that
sensitivity samples converge to a normal distribution while
a tiny portion of fault-inducing data flows is not covered
(§IV-B): the sensitivity samples can coincidentally converge to
a normal distribution different from the ground-truth; hence,
Themis probabilistically (95%, rather than deterministically
100%) covers the fault-inducing data flows in a DLS. Indeed,
how a DLS’s faults can be eliminated with a guarantee is still
an open challenge for all DLS testing techniques [17].

b) Threats to Validity

The accuracy of our experimental measures and the rele-
vance of the theoretical concepts tested are crucial for con-
struct validity. A significant concern is whether the chosen
datasets and deep learning models adequately represent the
complexity of real-world scenarios. To mitigate this, we uti-
lized a variety of well-recognized datasets (MNIST, Contagio,
Drebin, ImageNet, Udacity, and CIFAR10) and deep learning
systems (LeNet, VGG, ResNet, DAVE, DenseNet), each with
different architectures. This diverse range ensures our findings
are not limited to specific models or scenarios, thus enhancing
the robustness of our construct validity.

VII. CONCLUSION

This paper presents Themis, an automated testing technique
that addresses the critical challenge of fault detection in Deep
Learning Systems (DLSs) used in safety-critical applications.
Traditional DLS testing methods, though inspired by software
testing principles, fall short in dealing with the complexi-
ties of deep learning models, particularly their sensitivity to
input perturbations. Themis overcomes these limitations by
automatically exploring fault-inducing data flows, significantly
reducing the reliance on manual testing efforts. This novel
approach is based on the key observation that most fault-
inducing data flows in DLSs are sensitive to slight changes
in input. The effectiveness of Themis is demonstrated through
rigorous evaluation, showcasing its superior performance in
fault detection when compared to existing DLS testing tech-
niques. It not only achieves a higher correlation in detecting

faults but also enhances the overall accuracy of DLS models.
Consequently, Themis contributes significantly to improving
the reliability and efficiency of DLS applications in real-
world scenarios. This advancement highlights the importance
of continued innovation in AI and machine learning, ensuring
these technologies meet the evolving demands of safety-
critical systems in our increasingly digital world.
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