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Abstract

Fuzz drivers are essential for library API fuzzing. However, auto-

matically generating fuzz drivers is a complex task, as it demands

the creation of high-quality, correct, and robust API usage code. An

LLM-based (Large Language Model) approach for generating fuzz

drivers is a promising area of research. Unlike traditional program

analysis-based generators, this text-based approach is more gener-

alized and capable of harnessing a variety of API usage information,

resulting in code that is friendly for human readers. However, there

is still a lack of understanding regarding the fundamental issues on

this direction, such as its e�ectiveness and potential challenges.

To bridge this gap, we conducted the �rst in-depth study target-

ing the important issues of using LLMs to generate e�ective fuzz

drivers. Our study features a curated dataset with 86 fuzz driver

generation questions from 30widely-used C projects. Six prompting

strategies are designed and tested across �ve state-of-the-art LLMs

with �ve di�erent temperature settings. In total, our study evaluated

736,430 generated fuzz drivers, with 0.85 billion token costs ($8,000+

charged tokens). Additionally, we compared the LLM-generated

drivers against those utilized in industry, conducting extensive

fuzzing experiments (3.75 CPU-year). Our study uncovered that: 1)

While LLM-based fuzz driver generation is a promising direction, it

still encounters several obstacles towards practical applications; 2)

LLMs face di�culties in generating e�ective fuzz drivers for APIs

with intricate speci�cs. Three featured design choices of prompt

strategies can be bene�cial: issuing repeat queries, querying with

examples, and employing an iterative querying process; 3) While

LLM-generated drivers can yield fuzzing outcomes that are on par

with those used in the industry, there are substantial opportuni-

ties for enhancement, such as extending contained API usage, or
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integrating semantic oracles to facilitate logical bug detection. Our

insights have been implemented to improve the OSS-Fuzz-Gen

project, facilitating practical fuzz driver generation in industry.
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1 Introduction

Fuzz testing, aka fuzzing, has become the standard approach for

discovering zero-day vulnerabilities. Fuzz drivers are necessary

components for fuzzing library APIs since fuzzing requires a di-

rectly executable target program. Essentially, a fuzz driver is a piece

of code responsible for accepting mutated input from fuzzers and

executing the APIs accordingly. An e�ective driver must contain a

correct and robust API usage since incorrect or unsound usage can

result in extensive false positive or negative fuzzing results, incur-

ring extra manual validation e�orts or testing resources waste. Due

to the high standard required, fuzz drivers are typically written by

human experts, which is a labor-intensive and time-consuming pro-

cess. For instance, OSS-Fuzz [18], the largest fuzzing framework for

open-source projects, maintains thousands of fuzz drivers written

by hundreds of contributors over the past seven years.

Generative LLMs (Large Language Models) have gained signi�-

cant attention for their ability in code generation tasks [30, 32, 34,

39]. They are language models trained on vast quantities of text and

code, providing a conversational work�ow where natural language

based queries are posed and answered. LLM-based fuzz driver gen-

eration is an attractive direction. On one hand, LLMs inherently

support fuzz driver generation as API usage inference is a basic

scenario in LLM-based code generation. On the other hand, LLMs

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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are lightweight and general code generation platforms. Existing

works [1, 21, 23, 25, 62–64], which generate drivers by learning

API usage from examples, requires program analysis on examples,

while LLM-based generation can mostly work on texts. This o�ers

enhanced generality which facilitates not only the application on

massive quantity of real-world projects but also the utilization of

learning inputs in di�erent forms. Various sources of API usage

knowledge such as documentation, error information, and code

snippets can be seamlessly integrated in text form, bene�ting the

generation. Moreover, LLMs can generate human-friendly code.

While some research e�orts have been devoted to LLM-based code

generation tasks [14, 22, 24, 28, 31, 37, 41, 48], none of them can

provide a fundamental understanding on this direction.

To address this gap, we conducted an empirical study for un-

derstanding the e�ectiveness of zero-shot fuzz driver generation

using LLMs. Note that our primary goal is to understand the basics

towards generating "more" e�ective fuzz drivers, rather than gener-

ating "more e�ective" fuzz drivers. This is because creating e�ective

drivers for more targets is a more fundamental issue than improving

existing ones. Overall, four research questions are studied:

• RQ1 To what extent can current LLMs generate e�ective

fuzz drivers for software testing?

• RQ2 What are the primary challenges associated with

generating e�ective fuzz drivers using LLMs?

• RQ3 What are the e�ectiveness and characteristics for

di�erent prompting strategies?

• RQ4 How do LLM-generated drivers perform comparing

to those practically used in the industry?

To answer these RQs, we assembled a dataset of 86 fuzz driver

generation questions collected from 30 widely-used C projects from

OSS-Fuzz projects. Each question represents a library API for which

a corresponding fuzz driver is needed to conduct e�ective fuzz test-

ing. We devised six prompt strategies, taking into account three

key factors: the content of the prompts, the nature of interactions

between the strategies and models, and the repetition of the entire

query process. Our evaluation encompassed �ve state-of-the-art

LLMs with �ve di�erent temperature settings. The assessed LLMs

included closed-source LLMs such as gpt-4-0613 [36], gpt-3.5-turbo-

0613 [35], and text-bison-001 [19], as well as open-source LLMs op-

timized for code generation, namely, codellama-34b-instruct [3] and

wizardcoder-15b-v1.0 [57]. For a rigorous assessment, we developed

an evaluation framework automatically validating the generated dri-

vers based on the results of compilation and short-term fuzzing, and

manually crafted checkers on API usage semantic correctness. In

total, 736,430 fuzz drivers, at the cost of 0.85 billion tokens ($8,000+

charged tokens, 0.17/0.21 billion for gpt-4-0613/gpt-3.5-turbo-0613),

were evaluated. Besides, comparison with manually written drivers

in industry on code and fuzzing metrics, e.g., 24-hour fuzzing exper-

iments (3.75 CPU-year), are conducted to seek practical insights.

The overall implications for the e�ectiveness of using LLM to

generate fuzz drivers are two-fold. On one hand, LLMs have demon-

strated outstanding performance in evaluated con�gurations1, sug-

gesting a strong potential for this approach. For instance, the op-

timal con�guration can address 91% questions (78/86) and all top

20 con�gurations can address at least half of the questions. On the

1A con�guration stands for a combination of <Model, Prompt Strategy, Temperature>.

other hand, resolving a question means successful generation of at

least one e�ective fuzz driver for the assessed API, which does not

necessarily imply full practicality. For high automation and usabil-

ity, three challenges have been identi�ed: ❶ Improving the success

rate to reduce generation costs. Although most questions can be

resolved by LLMs, the cost can be exceptionally high. Typically, 71%

of questions are resolved by repeating the entire query process at

least �ve times and 45% require repeating the process ten times. By

enhancing their accuracy, signi�cant �nancial costs for automation

can be saved. ❷ Ensuring semantic correctness in API usage. Occa-

sionally, validating the e�ectiveness of a generated driver requires

the understanding of API usage semantics. Failed to do so can result

in ine�ective fuzzing with false positive or negative results. In our

evaluation, this requirement was observed in 34% of the assessed

APIs (29/86), impeding practical application. ❸ Addressing complex

API dependencies. 6% of questions (5/86) cannot be resolved by any

evaluated con�gurations since their drivers’ generation requires

nontrivial preparation of the API execution contexts, which cannot

be appropriately hinted by any collected usage information. For

example, some drivers require a standby network server or client

to be created for interacting with the target API. These are typical

cases representing complex real-world testing requirements which

deserves exploration of advanced solutions.

Prompt strategy, temperature, and model are key factors consid-

erably a�ect the overall performance. Our evaluation suggests that

the dominant strategy is the one incorporating three key designs:

repeatedly query, query with extended information, and iterative

query. Comparing with naive strategy, its question resolve rate

soars from 10% to 91%. Evaluation with lower temperature settings,

especially below the threshold of 1.0, have higher performance.

This is intuitive since lower temperatures lead to more consistent

and predictable outputs, which �ts the goal of generating an ef-

fective fuzz driver. Besides, the optimal temperature setting in our

evaluation is 0.5. As for models, gpt-4-0613, wizardcoder-15b-v1.0

are the best closed-source, open-source models, respectively.

Fundamentally, LLMs struggle to generate fuzz drivers which

require complex API usage speci�cs. We identi�ed three bene�-

cial designs that have distinct characteristics: ❶ repeatedly queries.

When the con�gurations are stronger, the bene�ts of repetition

become higher. Besides, the bene�ts signi�cantly drop after the

�rst few rounds. A suggested repetition value is 6. ❷ query with

extended information. Adding API documentation is less helpful

while adding example snippets can help signi�cantly. Speci�cally,

test/example �les of the target project or its variants are high-

quality example sources; ❸ iterative queries. It adds a cyclic driver

�x progress after the initial query, which improves LLM’s perfor-

mance through its step-by-step problem-solving approach and a

more thorough utilization of existing usage. Besides, all the above

designs will signi�cantly increase the token cost. In comparison

to OSS-Fuzz drivers, LLM-generated drivers demonstrated com-

parable fuzzing outcomes. However, since LLMs tend to generate

fuzz drivers with minimal API usages, signi�cant room is still left

for improving generated drivers, such as expanding API usage and

incorporating semantic oracles.

To further translate our research insights into practical values,

part of our prompting strategies, including checking, categorizing,

and �xing driver with runtime errors, have been implemented into
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1 int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

2 // Input_Arrangement(Data, Size, ...);

3 Init_Context_And_Arguments(Data, Size, ...);

4 Call_Target_API(...);

5 // Extended_API_Usage(...);

6 // Semantic_Oracle_Checks(...);

7 Resource_Cleaning(...);

8 return 0;

9 }

Figure 1: Key Components of A Fuzz Driver.

OSS-Fuzz-Gen [48], the largest LLM-based fuzz driver generation

framework operated by Google OSS-Fuzz team, facilitating the

continuous fuzzing of real-world projects.

In summary, our contributions are:

• we conducted the �rst in-depth study on the e�ectiveness

of LLM-based fuzz driver generation, which showcases the

potentials and challenges of this direction;

• we designed and implemented six driver generation strate-

gies. They are evaluated in large scale, with a systematic

analysis on the e�ectiveness, the pros and the cons;

• we compared generated drivers with industrial used ones,

and summarized the implications on future improvements.

• we ported our strategies to improve the largest industrial

fuzz driver generation framework, facilitating the continuous

fuzzing of hundreds open-source projects.

2 Preliminaries

Fuzz Driver Basics. The key components of a fuzz driver are

illustrated in Figure 1. A typical fuzz driver has three necessary

parts: prerequisites initialization (line 3), execution (line 4), and

post-cleaning (line 7). Besides, there are three optional parts com-

metned in lines 2, 5, and 6 that can improve a driver’s e�ectiveness.

Line 2 part improves a driver by proper input arrangement such

as rejecting too short or too long inputs, interpreting input data as

multiple testing arguments, etc. Line 5 part enables a driver to call

more APIs which triggers more program behaviors during fuzzing.

Finally, line 6 part adds semantic oracles for detecting logical bugs.

These oracles are similar to assert statements in unit tests, abort-

ing execution when certain program properties are unsatis�ed.

Since a driver will be repeatedly executed with randomly mutated

input, there is a high requirement on its correctness and robust-

ness. Incorrect or unrobust usage can lead to both false positives

and negatives. For instance, if a driver failed to feed the mutated

data into the API, its fuzzing can never �nd any bug. Or if an API

argument is incorrectly initialized, false crashes may be raised.

Minimal Requirements of E�ective Fuzz Drivers. The min-

imal requirements covers the line 3,4, and 7 of Figure 1, which

mainly include correctly initializing the arguments and satisfying

necessary control �ow dependencies. Argument initialization can

be one of the following cases (in the order of simplicity): ❶ C1:

If the argument value can be any value or should be naive values

like 0 or NULL, a variable is declared or a literal constant is used

directly; ❷ C2: If the argument is supposed to be a macro or a global

variable that is already de�ned in common libraries or the target

API’s project, it is located and used; ❸ C3: If creating the argument

requires the use of common library APIs, such as creating a �le

and writing speci�c content, common practices are followed; ❹

C4: If initializing the argument requires the output of other APIs

within the project, those APIs are initialized �rst following the

above initialization cases.

3 Methodology

3.1 Design of Prompt Strategies

Figure 2 illustrates our designed prompt strategies. From left to

right, the �gure �rst provides a tabular overview for all proposed

strategies, then details two types of prompt templates involved, and

lastly maps the templates to concrete query examples. Note that the

listed examples are simpli�ed for demonstration purposes, while un-

modi�ed real-world examples for each strategy can be found at [61].

Key Designs. As shown in the top-left side of Figure 2, there

are three key designs for prompt strategies, including query with

di�erent types of API information, query repeatedly, and query

iteratively. Design I aims for understanding the generation e�ec-

tiveness given di�erent API information as query contexts. The

information is divided as two types: the basic API information and

the extended. The former includes fundamental information such as

header �le name and API declaration, which are precisely speci�ed

and generally accessible in library API fuzzing scenario, while the

latter requires additional resources like API-speci�c documentation

or usage example code snippets, whose quality and availability vary

for di�erent targets. To account for the inherent randomness in LLM

output generation, design II, repeatedly query, is introduced. Given

repetition time as value K, the entire query process of a strategy

will be repeated K times ( ≥ 1), generating K independent drivers.

The maximum value of K is set as 40 in our study. This is an em-

pirically value we believe is comprehensive enough to understand

the e�ectiveness of repetition. Design III is used to understand the

e�ectiveness of di�erent query work�ows. The driver generation

in non-iterative strategies follows a one-and-done manner where

the �nal driver is synthesized via a single query without further

re�nement. Iterative strategies have a generate-and-�x work�ow.

If the driver generated in �rst query fails to pass the automatic

validation, subsequent �x prompts are composed based on the error

feedback and queried. The �x continues until the driver passes val-

idation or a pre-de�ned maximum number of iterations is reached.

The iteration is limit as �ve in our evaluation.

Acronym. Strategies are named by concatenating the abbrevi-

ations of the three key designs. For all strategies, there is a su�x

"K" indicating that the repetition times of their query process. If a

strategy name contains "ITER", it is an iterative prompt strategy.

Otherwise, it is non-iterative. Besides, di�erent combinations of

API information used in generation prompt have di�erent abbre-

viations. As shown in the bottom-left side of the Figure 2, there

are four di�erent combinations: the NAIVE query context (abbr

as NAIVE, ①), the BAsic query ConTeXt (abbr as BACTX, ① + ②),

extending API DOCumentation to basic ConTeXt (abbr as DOCTX,

① + ② + ④), and extending example UsaGe code snippets to the

basic ConTeXt (abbr as UGCTX, ① + ② + ③). Lastly, the pre�x

ALL in ALL-ITER-K indicates that its prompts can be the prompt

designed in any other strategies.

NAIVE-K & BACTX-K. Both two strategies only use basic API

information in query and non-iterative work�ow. Their only di�er-

ence is the richness of the prompt context information. Speci�cally,

NAIVE-K directly asks LLMs to implement the fuzz driver solely
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Fix Prompt Template

[Content] Target API specific content in prompt template

Fix Prompt Example

Prompt Strategy Design

```
... obj = bpf_open_mem(Data, Size, NULL); ...

```
The above C code can be built successfully but will crash imme-

diately during execution(ASAN-assertion failure)

Error line: `obj = bpf_open_mem(Data, Size, NULL);`

Crash stack and nearby code:
#3 0x5f7744 in bpf_open_mem /src/bpf/libbpf.c:256:28
 

 256 assert(buf != NULL && sz != 0);

Based on the above information, fix the code.

NAIVE-K ①

①  + ②

①+②+④

①+②+③

BACTX-K

DOCTX-K

UGCTX-K

①  + ② ⓐ

①+②+③
ⓐ  + ⓑ

BA-ITER-K

ALL-ITER-K

Legend: Basic API info only Contain extended API info

①  + ②

①+②+④

ⓐ

Generation Prompt Template

ⓑ

ⓐ

```
[Code of error fuzz driver]
```
[One sentence error summary]

[Error line code]
[Error details]
[Other supplemental info]

Task description

ⓐ

①

②

①

④

③

②

Task description

[API documentation]

[API declaration]

[Example code snippets
which shows API usage]

[Header file inclusion]

Task description

Acronym Prompts (Generation + Fix) ITEX

or

or
or

✓
✗
✗

✓

✓ ✓

✓✗
✗
✗
✗
✗

EX→use extended API info; IT→iterative query & fix

Generation Prompt Example

// The following is a fuzz driver written in C language, complete

the implementation. Output the continued code in reply only.

#include "bpf/libbpf.h"

// @ examples of API usage from bpf-loader.c 

// void test_bpf(const char *bpf_file) {
//   ... 
//   obj = bpf_open_mem(_buffer, _size, NULL);

//   ... }

/* @brief it creates a bpf_object by reading the BPF objects ...

 * @param buf pointer to the buffer containing BPF ... */
extern bpf* bpf_open_mem(char *buf, int sz, struct opts *opts);

// the following function fuzzes bpf_open_mem
int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

Design II -『Query Repeatedly』
- Repeat whole query process K
times for K independent results
- Suffix "-K" in name

...
1 K2

Design I -『Query With Different Types of API Info』

Design III -『Query Iteratively』

- Basic Info: Precisely specified & generally accessible,
e.g., header file and API declaration
- Extended Info: Not guaranteed in quality and avail-
ability, e.g., API documentation and usage snippets

- Non-Iterative: one generation
query
- Iterative: one generation query
with up to X fix queries1 2 X+1...

1

Figure 2: Prompt Strategies Overview. K is 1 or 40 in our evaluation and X is 5. The examples are simpli�ed for demonstration purpose. In the �x
prompt example, the driver error is caused by missing check of Size > 0 before calling the API, and the nearby code of #3 stack frame hints the error.

based on a speci�ed function name, while BACTX-K provides a basic

description of the API. In prompts of BACTX-K, it �rst indicates the

task scope using #include statement, then provides the function

declaration, and �nally requests implementation. The declaration

is extracted from the Abstract Syntax Tree (AST) of the header �le,

including both the signature and argument variable names.

DOCTX-K & UGCTX-K. These two strategies are extended

from BACTX-K by adding extended usage information in query.

Their e�ectiveness represents the e�ects of two types of extended

information: API documentation and example code snippets. Note

that, for DOCTX-K, not all APIs have associated documentation

(49/86 questions in our study). The documentation of 20 questions

was automatically extracted from the header �les, while the remain-

ing 29 were manually collected from sources like project websites,

repositories, and developer manuals. For UGCTX-K, example code

snippets of an API are collected as follows: ❶ retrieving the �les

containing usage code via SourceGraph cli [43]. This is a keyword

search among all public code repositories including Github, Gitlab,

etc. The crawling command is src search -json "file:.*\.c

lang:c count:all {API}" where API should be replaced by the

target API name. ❷ identifying and excluding fuzz drivers by re-

moving the �les containing function LLVMFuzzerTestOneInput.

❸ extracting all functions directly calling the target API as example

code snippets via ANTLR based source code analysis. ❹ deduplicat-

ing the snippets by if the Jaccard Similarity [20] of any two snippets

≥95%. UGCTX-K will randomly use one snippet in the prompt. For

snippet that was too long to be included into prompt, it is truncated

line by line until satisfying the token length limitation.

BA-ITER-K &ALL-ITER-K. Iterative strategies have two types

of prompt templates for initial generation query and subsequent �x

query. The initial generation prompt can be either of BACTX-K’s,

DOCTX-K’s, and UGCTX-K’s. As for �x queries, we have designed

seven �x templates to address seven prevalent types of errors in

the generated drivers. They follow one general �x template shown

in Figure 2 but are �lled with error type speci�c details. Due to

the page limit, we discuss the key concepts of these �x prompts,

leaving the detailed designs and examples in [61]. These errors

are of compilation errors (1/7), linkage errors (1/7), and fuzzing

runtime errors (5/7). The error information (abbr of [One sentence

error summary], [Error line code], and [Error details]) for

the �rst two error types can be programmatically retrieved from

the compiler. According to di�erent abnormal behaviors observed

in fuzzing, fuzzing runtime errors have �ve subtypes, including

memory leakage, out-of-memory, timeout, crash, and non-e�ective

fuzzing (no coverage increase in one-minute short-term fuzzing).

The error information of runtime errors are retrieved by extracting

the crash stacks and sanitizer summary from libfuzzer logs. Lastly,

for the errors that can locate its error line, we further infer its root

cause API and �ll API information like declaration, documentation,

or usage snippets into [Other supplemental information] in

�x prompt. For simplicity, root cause API is identi�ed by naively

�nding the last executed API based on the error line located.

Note that iterative strategies exclusively utilize automated check-

ers, ensuring that the manually crafted semantic checkers described

in Section 3.2 are only used for thorough evaluation of the e�ec-

tiveness of strategies. The principal distinction between the two

iterative strategies, BA-ITER-K and ALL-ITER-K, lies in the scope

of information utilized within the queries. BA-ITER-K con�nes

its use to only basic API details and error information, whereas

ALL-ITER-K encompasses all available information. As shown in

Figure 2, this leads to multiple options for the included extended

information. The ALL-ITER-K strategy selects options randomly.

3.2 Evaluation Framework

Evaluation Question Collection. One question used in evalua-

tion is simply designed as generating fuzz drivers for one given API.
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Figure 3: Fuzz Driver E�ectiveness Validation Process.

However, not all APIs are suitable to be set as questions. Naively

collecting all APIs from projects will lead to the creation of mean-

ingless or confusing questions which in�uences the evaluation

result. Speci�cally, some APIs, such as void libxxx_init(void),

are meaningless fuzz targets since the code executed behind the

APIs can not be a�ected by any input data. Some APIs can only be

supplemental APIs rather than the main fuzzing target due to the

nature of their functionalities. For example, given two APIs object

*parse_from_str(char *input) and void free_object(object

*obj), feeding the mutated data into input is apparently a better

choice than feeding a meaningless pointer to the obj argument.

However, calling the latter API when fuzzing the former is mean-

ingful since ❶ it may uncover the hidden bug when the former

does not correctly initialize the object * by freeing the members

of object; ❷ it releases the resources allocated in this iteration of

fuzzing, which prevents the falsely reported memory leak issue.

To guarantee the collected APIs are quali�ed and representative,

we collected the core APIs of existing fuzz drivers from OSS-Fuzz

projects. A driver’s core APIs are identi�ed using the following crite-

ria:❶ they are the target APIs explicitly pointed out by the author in

its driver �le name or the code comments, e.g., dns_name_fromwire

is the core API of driver dns_name_fromwire.c; ❷ otherwise, we

pick the basic APIs as the core rather than the supplemental ones.

For example, we picked the former between parse and use/free APIs.

For the fuzz drivers which are composite drivers fuzzing multiple

APIs simultaneously, we identi�ed multiple core APIs from them.

Speci�cally, we randomly selected 30 projects from OSS-Fuzz (com-

mit 135b000926) C projects, manually extracted 86 core APIs from

51 fuzz drivers. Full list of questions are post at [61].

E�ectiveness Validation Criteria. Assessing the e�ectiveness

of a generated fuzz driver is complex since identifying both false

positives (bugs caused by the driver code) and negatives (can never

�nd bugs given its incorrect usage) rely on the understanding of API

usage semantics. Figure 3 is a streamlined four-step semi-automatic

validation process:❶Use a compiler to check for grammatical errors

in the driver code. ❷ Observe the driver in a one-minute fuzzing

session starting with no initial seed. It is ine�ective if it either fails

to show coverage progress or reports any bugs. The assumption

behind is that, given a poor fuzzing setup, neither the zero coverage

progress nor the quick identi�cation of bugs for a well-tested API

are normal behaviours. Considering that this criteria can still lead to

incorrect validation, two additional steps are introduced for result

re�nements. ❸ If the driver reports bugs in ❷, we �lter the true

bugs contained inside. This is done by �rst collecting target true

bugs via ten cpu-day fuzzing using existing OSS-Fuzz drivers, then

manually building �lters based on the root causes of these bugs. ❹

For drivers reporting no bugs after ❸, we check whether they are

substantially testing the target API or not. To this end, we write

API-speci�c semantic tests to detect common ine�ective patterns

observed in LLM-generated fuzz drivers. The tests include verifying

the target API is called for all 86 questions, checking the correct

usage of fuzzing data to key arguments for 8 questions (such as

Table 1: Overall Evaluation Result. K represents 40, "-" means failed
to retrieve full query results or not applicable for the given model.

Temperature

Strategy, Model 0.0 0.5 1.0 1.5 2.0

gpt-4-0613 9/86 9/86 9/86 0/86 --
gpt-3.5-turbo-0613 0/86 1/86 0/86 0/86 0/86
wizardcoder-15b-v1.0 3/86 1/86 1/86 0/86 0/86
text-bison-001 2/86 2/86 1/86 -- --N

A
IV
E
-1

codellama-34b-instruct 0/86 0/86 0/86 0/86 0/86

gpt-4-0613 12/86 30/86 30/86 5/86 --
gpt-3.5-turbo-0613 0/86 6/86 8/86 8/86 0/86
wizardcoder-15b-v1.0 3/86 8/86 11/86 1/86 0/86
text-bison-001 2/86 5/86 5/86 -- --

N
A
IV
E
-K

codellama-34b-instruct 0/86 1/86 3/86 0/86 0/86

gpt-4-0613 29/86 41/86 41/86 21/86 --
gpt-3.5-turbo-0613 12/86 29/86 30/86 24/86 1/86
wizardcoder-15b-v1.0 7/86 23/86 25/86 17/86 0/86
text-bison-001 7/86 13/86 15/86 -- --

B
A
C
T
X
-K

codellama-34b-instruct 0/86 1/86 11/86 0/86 0/86

gpt-4-0613 29/86 40/86 41/86 22/86 --
gpt-3.5-turbo-0613 11/86 22/86 29/86 24/86 1/86
wizardcoder-15b-v1.0 7/86 24/86 25/86 12/86 0/86
text-bison-001 9/86 14/86 14/86 -- --

D
O
C
T
X
-K

codellama-34b-instruct 0/86 9/86 13/86 1/86 0/86

gpt-4-0613 55/86 63/86 62/86 26/86 --
gpt-3.5-turbo-0613 30/86 47/86 43/86 31/86 0/86
wizardcoder-15b-v1.0 39/86 50/86 48/86 13/86 0/86
text-bison-001 21/86 27/86 38/86 -- --

U
G
C
T
X
-K

codellama-34b-instruct 0/86 8/86 21/86 0/86 0/86

gpt-4-0613 56/86 57/86 62/86 23/86 --
gpt-3.5-turbo-0613 32/86 47/86 43/86 28/86 2/86
wizardcoder-15b-v1.0 8/86 24/86 37/86 13/86 0/86
text-bison-001 9/86 15/86 20/86 -- --

B
A
-I
T
E
R
-K

codellama-34b-instruct 6/86 28/86 22/86 0/86 0/86

gpt-4-0613 77/86 78/86 76/86 25/86 --
gpt-3.5-turbo-0613 65/86 68/86 65/86 37/86 0/86
wizardcoder-15b-v1.0 41/86 48/86 53/86 11/86 0/86
text-bison-001 21/86 37/86 42/86 -- --

A
L
L
-I
T
E
R
-K

codellama-34b-instruct 13/86 18/86 26/86 1/86 0/86

fuzzing �le contents instead of �le names), ensuring critical depen-

dent APIs are invoked in 16 questions, and con�rming necessary

execution contexts are prepared for 5 questions (for instance, hav-

ing a standby server process available for testing client APIs). We

implement these tests by injecting hooking code into the driver.

For more details on these tests, please refer to our website [61].

Evaluation Con�guration. In this paper, a con�guration rep-

resents a speci�c combination of the three factors: the LLM used,

the prompt strategy employed, and the selected temperature set-

ting, abbr as <model, prompt strategy, temperature>. As shown in

Table 1, we evaluated six prompt strategies on �ve LLMs with �ve

di�erent temperatures. A con�guration’s top_p is set as its model’s

default value. And the system role [33] is set as "You are a security

auditor who writes fuzz drivers for library APIs.".

4 Overall E�ectiveness (RQ1)

Table 1 presents the results of all evaluated con�gurations. The

principal data displayed in the table are the question solve rates,
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formatted as X/Y, where X denotes the number of questions a lan-

guage model successfully solves, and Y represents the total number

of questions presented. A con�guration is considered to have solved

a question if at least one e�ective fuzz driver has been generated.

For gpt-4-0613, temperature 2.0 results were incomplete due to the

services’ slow response time in extreme temperature settings [61].

For the text-bison-001, Google’s query API limits the requests with a

temperature setting above 1.0. Nevertheless, given the poor or even

zero performance of all othermodels with a temperatures setting 2.0,

the data absence does not substantially a�ect our evaluation. This

table only lists the number of solved questions while [61] posts full

evaluation details of each model such as success rate per question.

Overall, the results o�er promising evidence of the practi-

cality of utilizing language model-based fuzz driver genera-

tion.The optimal con�gurations, namely <gpt-4-0613, ALL-ITER-K,

0.5>, achieved impressive success rates, e�ectively generating fuzz

drivers that solved about 91% (78/86) questions. Moreover, three out

of �ve LLMs assessed – including an open-source option – and half

of the strategies explored can resolve over half of the questions.

The substantial variation in success rates across di�erent

con�gurations underscores the signi�cant in�uence of the

three factors. By analyzing the data, we observe that results can

greatly �uctuate when varying a single factor – such as changing

the temperature in a row, or switching models or prompting strate-

gies in a column. For example, <gpt-3.5-turbo-0613, NAIVE-1, 0.0>

failed to solve any questions, whereas <gpt-3.5-turbo-0613, ALL-

ITER-K, 0.0> managed to correctly address 76% (65/86) of them.

This indicates that achieving a high solve rate relies heavily on

avoiding suboptimal combinations of factors. Given that the table

is sorted to re�ect performance trends, the better outcomes tend

to cluster in ’green areas’, highlighting con�gurations where all

contributing factors are well-adjusted.

4.1 Analysis of E�ectiveness Factors

Prompt Strategies. The observed impacts of di�erent prompt-

ing strategies exceeded our initial expectations during their design

phase. A comparison between NAIVE-1 and ALL-ITER-K show-

cases a dramatic improvement in optimal question solve rates, soar-

ing from 10% to 90%, emphasizing the critical role of prompt de-

sign on tool e�ectiveness. To better understand the performance

trends, Table 1 presents the prompting strategies ranked by their

overall e�ectiveness. The trends in the results are intuitive: in gen-

eral, strategies that more comprehensively leverage available

information tend to yield superior results. For example, the

strategy UGCTX-K markedly outperforms BACTX-K. This can be

attributed to UGCTX-K’s inclusion of example code snippets that

illustrate certain usage of the target API. A notable performance

discrepancy is also seen when comparing BA-ITER-K with BACTX-

K. Despite starting with the same initial information, BA-ITER-K

signi�cantly surpasses BACTX-K. The reason for this performance

di�erence lies in BA-ITER-K’s iterative method – collecting debug-

ging information to guide the model to �x the previous fuzz driver if

it is ine�ective. Among all the strategies, ALL-ITER-K stands out as

the most e�ective across di�erent combinations of temperature set-

tings and models. This makes sense considering that ALL-ITER-K

not only incorporates all extended API information but also adopts

[1, 10)
55%

[10, +∞)
45%

[1, 2)  10%

[2, 5)  26% 

[5, 10) 19%

[10, 20) 14%

[20, 40) 13%

[40,+∞) 18%

Figure 4: Question Cost Distribution For All Con�gurations
on Resolved Questions. �>BC > 5 � &D4BC8>= =

# >5 &D4A84B
# >5 (>;DC8>=B .

a recursive problem-solving methodology. Conclusively, its design

leads to the superior performance in our evaluation. The detailed

analysis of these strategies are discussed in Section 7.

Temperatures. Table 1 clearly demonstrates that con�gura-

tions with a temperature setting of 0.5 tend to achieve the

highest success rates. In contrast, models under a temperature

setting above 1.0 experience a noticeable drop in performance.

Interestingly, it appears that in general, lower temperatures,

especially below the threshold of 1.0, show substantial per-

formance advantage compared to models operating at higher

temperatures. A surprising outcome is that models with 0.0 tem-

perature perform remarkably well. For instance, both <gpt-4-0613,

ALL-ITER-K, 0.0> and <gpt-3.5-turbo-0613, BA-ITER-K, 0.0> stand

out as second-best con�guration when compared across the various

temperature settings. These results are reasonable considering the

nature of fuzz driver generation task. With a lower temperature

setting, models tend to generate more consistent and predictable

outputs, which bene�ts the synthesis of high-quality code. High

temperatures, while fostering creativity and randomness, may not

provide any notable advantages in this context. Speci�cally, these

features are either substituted by the randomness contained in

prompt strategies or deemed irrelevant by the assessment criteria.

For example, a prompting strategy like ALL-ITER-K inherently

contains a built-in search process that brings the randomness from

model input. And the evaluation strictly assesses the quantity of

e�ective drivers without considering the API usage diversity. This

criteria �ts our evaluation goal, but discounts the creative diversity

that could be introduced by higher temperatures.

Open-Source LLMs vs Closed-Source LLMs. As commonly

understood in the industry, closed-source LLMs tend to outperform

their open-source counterparts. Among these, gpt-4-0613 is consid-

ered the front-runner in terms of generation capabilities. Following

closely behind is gpt-3.5-turbo-0613, which o�ers a cost-e�ective

alternative due to its signi�cantly lower token pricing. However,

it’s worth noting that in the open-source domain, wizardcoder-

15b-v1.0 has made remarkable strides, even surpassing Google’s

closed-source model, text-bison-001. While wizardcoder-15b-v1.0

is nearly on par with gpt-3.5-turbo-0613, certain performance gaps

can still be observed, but it stands as a commendable achievement

for an open-source model.

4.2 How Far Are We to Total Practicality?

The above evaluation indicates that with the optimal con�guration

<gpt-4-0613, ALL-ITER-K, 0.5>, the LLM can solve 91% prede�ned

questions. In other words, it can produce at least one e�ective

fuzz driver for 78 out of 86 APIs examined. However, this does not

necessarily mean that LLMs are ready to be used in production.

Upon further examination of our APIs, we identi�ed three primary

challenges and detailed them as follows.
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C1: High Token Cost in Fuzz Driver Generation. Though

many con�gurations have shown a high rate of successful problem

resolution, our analysis indicates the results come with substantial

costs. The data in Figure 4 details the percentage of high cost ques-

tions for all evaluated con�gurations. Remarkably, it reveals that

on average, resolving 45% questions entail costs exceeding 10. This

suggests that for 50% of the resolved questions, a prompt-based

strategy may yield just one e�ective fuzz driver after repeating

the entire query process 10 times or more. When considering only

the questions with costs surpassing 20 or even 40, the percentages

remain notable at 31% and 18%, respectively. These �ndings under-

score a strong incentive for further research into cost reduction

techniques. Reducing costs is not only a practical concern with

direct �nancial consequences but also essential for improving the

e�ciency of LLM-based fuzz driver generation.

C2: Ensuring Semantic Correctness of API Usage. In our

evaluation, we found that there is a discrepancy for approximately

34% (29/86) of the APIs – assuming LLMs can successfully create

at least one e�ective fuzz driver for each in the evaluation setting,

this success cannot be translated into the full automation of fuzz

driver generation for them. The issue at hand lies in the potential

misuse of APIs within the generated drivers, which requires val-

idation to ensure semantic correctness. For example, LLMs may

incorrectly initializing the argument of an API, such as passing

a mutated �lename to the API instead of passing a created �le

�rst and then mutating its content for fuzzing, or missing some

condition checks before calling API. In our evaluation process, we

manually implemented semantic checkers to identify such API mis-

uses for accurate assessment (details on our semantic checkers are

provided in Section 3.2). However, fully automating the validation

of semantic correctness remains a signi�cant hurdle. Consequently,

even though it is feasible to generate e�ective fuzz drivers with

the help of these LLMs, distinguishing them from the ine�ective

ones can be problematic due to the absence of automated methods

for validating semantic correctness. This challenge underscores

the need for developing robust techniques to automatically ensure

the semantic accuracy of generated fuzz drivers before they can be

reliably deployed in production.

C3: Satisfying Complex API Usage Dependencies. Over-

all, there are �ve questions cannot be resolved by any assessed

con�gurations. These questions are challengeable since their driver

generation requires the deep understanding of speci�c contexts. For

instance, generating the driver for tmux [10] requires the construc-

tion of various concepts, such as session, window, pane, etc, and

their relationships. Similarly, for network-related questions [4, 8],

a standby network server or client is required to be created before

calling the target API. The e�ective drivers can only be generated

by respecting these speci�c contextual requirements.

While LLM-based generation has shown promising potential,

it still faces certain challenges towards high practicality.

5 Fundamental Challenge (RQ2)

5.1 Links Between Question and Performance

To investigate the core di�culties in generating fuzz drivers with

LLMs, we scrutinized the outcomes of the BACTX-K strategy. This
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text-bison-001

Figure 5: Average Query Success Rate Per Question Complex-
ity Score Bucket. Data: All BACTX-K (K = 40) con�gurations.

strategy is a proper starting point for understanding the fundamen-

tal challenges since it merely uses generally accessible information

and has simple query work�ow. In Figure 5, there is a clear in-

verse proportion relationship between the query success rate

and the complexity of a question, irrespective of the used

models and temperatures. The complexity of a question is mea-

sured by �rst constructing the minimal fuzz driver of each question

and then quantifying the API speci�c usage contained in the min-

imized code. A minimal e�ective driver for a question is created

based on the OSS-Fuzz driver by removing the unnecessary part

of the code and replacing the argument initialization into a simpler

solution according to the cases enumerated in Section 2. Then the

complexity is quanti�ed as the sum of the count of the following

elements inside code: ❶ unique project APIs; ❷ unique common

API usage patterns; ❸ unique identi�ers including non-zero literals

and project global variables excluding the common API usage code;

❹ branches and loops excluding the common API usage code. Note

that all branches of one condition will be counted as one. Overall,

❶, ❸ measure API speci�c vocabularies while ❹ for API speci�c

control �ow dependencies’. We put detailed calculation examples

at [61].

Considering the generation process, it is intuitive that LLMs’

performance degradeswhen the complexity of target API spe-

ci�c usage increases. To generate e�ective drivers, LLMs should

at least generate code satisfying minimal requirements. In other

words, they must accurately predict the API argument usage and

control �ow dependencies. However, this is challenging since LLMs

cannot validate their predictions against documentation or imple-

mentations as humans do. It is reasonable to assume that LLMs

have learned the language basics and common programming prac-

tices due to their training on vast amounts of code. But the API

speci�c usage, such as the semantic constraints on the argument,

cannot be assumed. On one hand, there may only have limited data

about this in training. On the other hand, details can be lost during

preprocessing or the learning stage while the accurate generation is

required. Therefore, the more API usage a LLM needs to predict, the

greater the likelihood of errors, particularly for less common usages

that do not follow the mainstream design patterns or have special

semantic constraints. Such situations are common in C projects,

whose APIs often contain low-level project-speci�c details.

The performance of LLM-based generation declines signi�-

cantly when the complexity of API speci�c usage increases.

5.2 Failure Analysis

To understand how the generation fails on API speci�cs, we con-

ducted failure analysis on BACTX-K. The direct failure reason of the

driver is collected to reveal the generation blockers. In total, 52,824

ine�ective drivers were analyzed. The runtime errors of 11,095
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Figure 6: Failure Taxonomy. Data: BACTX-K (K = 40) con�gurations.

drivers are semi-automatically analyzed while the compilation and

link errors are categorized based on the compiler outputs.

Failure Taxonomies. Figure 6 details the root cause taxonomy.

There are nine root causes fallen into two categories: the grammat-

ical errors reported by compilers in build stage, and the semantic

errors which are abnormal runtime behaviors identi�ed from the

short-term fuzzing results. ❶ G1 - Corrupted Code, the drivers do

not contain a complete function of code due to either the token

limitation or mismatched brackets; ❷ G2 - Language Basics Viola-

tion, the code violates the language basics like variable rede�nition,

parentheses mismatch, incomplete expressions, etc; ❸ G3 - Non-

Existing Identi�er, the code refers to non-existing things such as

header �les, macros, global variables, members of a struct, etc;

❹ G4 - Type Error. One main subcategory here is the code passes

mismatched number of arguments to a function. The rest are ei-

ther unsupported type conversions or operations such as calling

non-callable object, assigning void to a variable, allocating an in-

complete struct, etc; ❺ S1 - Incorrect Input Arrangement, the input

size check either is missed when required or contains an incorrect

condition; ❻ S2 - Misinitialized Function Args, the value or inner

status of initialized argument does not �t the requirements of callee

function. Typical cases are closing a �le handle before passing it,

using wrong enumeration value as option parameter, missing re-

quired APIs for proper initialization, etc; ❼ S3 - Inexact Ctrl-Flow

Deps, the control-�ow dependencies of a function does not properly

implemented. Typical cases are missing condition checks such as

ensuring a pointer is not NULL, missing APIs for setting up execu-

tion context, missing APIs for ignoring project internal abort, using

incorrect conditions, etc. ❽ S4 - Improper Resource Cleaning, the

cleaning API such as xxxfree is either missing when required or is

used without proper condition checks; ❾ S5 - Failure on Common

Practices, the code failed on standard libraries function usage like

messing up memory boundary in memcpy, passing read-only bu�er

to mkstemp, etc. Examples of these categories are shown in [61].

Overall, the failures cover API usages in various dimensions:

from grammatical level detail to semantic level direction, and from

target API control �ow conditions to dependent APIs’ declarations.

Improving this is challengeable since: ❶ the involved usage is too

broad to be fully put into one prompt, which may either exceed

the token limitation or distract the model; ❷ the useful usage for

generating one driver cannot be fully predetermined. On one

hand, models are inherently blackbox and probabilistics, whose

mistakes cannot be fully predicted. On the other hand, there are

usually multiple implementation choices for a given API.
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Figure 7: Statistics on the E�ectiveness of Repeatedly Query.

Most failures are of mistakes in API usage speci�cs. The broad-

ness of the involved usage is the major challenge.

6 Characteristics of Key Design (RQ3)

6.1 Repeatedly Query

Repeated querying is a critical aspect of prompt strategies, greatly

enhancing the success rate in generating fuzz drivers regardless of

employed models, temperatures, and prompt designs. Speci�cally,

for the optimal con�guration <gpt-4-0613, 0.5, ALL-ITER-K>, ap-

proximately 47.44% of the issues were resolved by reinitiating the

query process (37 out of 78 total resolved issues were solved upon

repetition). For the top-20 con�gurations, this contribution remains

signi�cantly high at an average of 67.50%.

Figure 7a displays the count of questions resolved through re-

peated querying across all evaluated con�gurations, ranked by their

overall e�ectiveness as detailed in Table 1. This demonstrates a di-

rect correlation between the bene�t of repeated queries and the

e�cacy of the con�guration—themore e�ective a con�guration,

the greater the gains from repeating the queries.

Additionally, Figure 7b presents the average percentage of ques-

tions resolved in each subsequent round of querying for the top-20

con�gurations. Here, the percentage for round X is determined

by
'B;C (- )−'B;C (-−1)

'B;C (1)
, with 'B;C (- ) indicating the number of ques-

tions resolved by round X. The X-axis starting from round two,

highlighting that the �rst round corresponds to the initial query.

This data shows that the gain of repeated queries drops signif-

icantly after the initial few rounds. From our evaluation, we

recommend limiting repeated queries to nomore than six, where the

sixth round still manages to resolve an additional 20% of questions

compared to the results of the �rst round.

6.2 Query With Extended Information

Querying With API Documentation. By comparing DOCTX-

K and BACTX-K, we found that there is no signi�cant changes

between their results in the metrics of resolved questions.

On one hand, a signi�cant percentage (43%) of APIs in the evalu-

ated questions do not have API documentation (49 out of 86 have).

When there is no documentation for an API, the DOCTX-K queries

are identical to BACTX-K’s. On the other hand, adding API docu-

mentation in the queries may not provide enough details directly

stating the API usage. This is because these API documentations

usually contain a high-level description of the usage, typically a

summary of main functionality with one-sentence explanations

for arguments. However, the blocker-solving usage information

discussed in Section 5.2, such as low level argument initialization
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Figure 8: Average Query/Question Success Rate of Di�erent

Example Sources for All Con�gurations.

speci�cs, control �ow dependencies, or the usages of its dependent

APIs, is usually not included.

API documentation has minor performance bene�ts due to

the limited usage description it contained.

Querying With Example Code Snippets. When comparing

the results of BACTX-K and UGCTX-K presented in Table 1, we can

clearly observe that incorporating example code snippets substan-

tially enhances performance in most con�gurations. In particular,

the addition of example snippets results in an average resolution of

104% more questions across the 22 evaluated con�gurations, which

includes �ve models and �ve di�erent temperature settings.

Nonetheless, further analysis reveals that the inclusion of us-

age examples incurs a much higher token cost, with an av-

erage increase of tenfold. The ratio of token costs for these two

approaches varies from 4.20 to 39.71 across all con�gurations, with

an average ratio of 14.65. Notably, the UGCTX-K approach demands

an average of 32,367 tokens to generate a single correct solution.

Figure 8 depicts our investigation into the impact of di�erent

sources of example snippets on the quality of solutions. This �gure

assesses the success rates of queries/questions associated with vari-

ous example sources, which are categorized in two distinct manners

based on their �le paths: �rst, as ❶ External vs. Internal, with Inter-

nal comprising the target project and its variations, and External

consisting of all other sources; second, as ❷ Test & Example vs.

Others, where the �rst group includes �les with paths that contain

"test" or "example" in any capitalization. The underlying data for

these plots stems from questions that were solved by UGCTX-K

but not by BACTX-K across all tested con�gurations. According

to this analysis, it is clear that both Internal and Test & Exam-

ple sources are associated with signi�cantly higher quality

example snippets in comparison to their counterparts.

Case Studies. # 9 wc_Str_conv_with_detect This case is

challenging due to the unintuitiveness of its API usage. The API

declaration is "Str wc_Str_conv_with_detect(Str is,wc_ces *

f_ces,wc_ces hint,wc_ces t_ces)". It is used for converting the

input stream is from one CES (character encoding scheme, f_ces)

to another (t_ces). Most basic strategy drivers made mistakes on

the creations of either is (the confusing type Str) or CESs, where

is has to be created using particular APIs like Strnew_charp_n

and CESs should be speci�c macros or carefully initialized struct.

Example helps here by directly providing the usage to models.

Example code snippets can greatly enhance model per-

formance by providing direct insights on API usage.

"test/example �les", "code �les from the target/variant

projects" are high quality sources.

6.3 Iterative Query

The iterative query strategy is another key design that can lead to

signi�cant improvements in performance. Referring to Table 1, we

�nd that, on average, incorporating an iterative query strategy into

BACTX-K – that is, adopting the BA-ITER-K approach – helps solve

159% more questions. Similarly, ALL-ITER-K resolves 23% more

questions than UGCTX-K. However, this strategy does come at a

cost. The inclusion of iterative design tends to lead to higher

token usage when generating correct solutions. On average,

the iterative strategy increases token costs by 57% for BACTX-K

per successful driver generation and by 17% for UGCTX-K.

The e�ectiveness of the iterative strategy can be attributed to

two key factors. Firstly, it leverages a wider array of informa-

tion, including error data generated from validating previously

generated drivers. Secondly, it tackles the problem incremen-

tally, employing a step-by-step, divide-and-conquer approach that

simpli�es the complexity of the generation task. This methodology

is exempli�ed in the case studies that follow, illustrating how the

iterative strategy typically operates through practical examples.

Case Studies. #73 pj_stun_msg_decode This is another typ-

ical case why iterative strategy works. The initialization of its �rst

argument has multi-level API dependencies. The dependency chain

is: ❶ the API -> ❷ pj_pool_create -> ❸ pj_caching_pool_init,

where -> means depends. All non-iterative strategies failed to pre-

pare a driver with all correct usage detail of these indirect dependen-

cies while iterative strategies solve this by providing error related

feedback to LLMs and solving multiple errors one by one. In one of

the solved iterative query, it �rst corrects the incorrect used API

of ❸, then �gures out the mismatched type error when calling ❷.

Lastly, for the driver’s runtime crash, LLMs use two rounds to �x

according to the assertion code located from crash stacks.

Iterative query helps in utilizing more diverse information

and solving the problem in a step-by-step manner. However,

it has higher token cost and increased complexity.

7 OSS-Fuzz Driver Comparison (RQ4)

Comparison Overview. We compared LLM-generated drivers

with OSS-Fuzz’s to obtain more practical insights. Note that OSS-

Fuzz drivers are practically used in industry for continuous fuzzing

and most of them are manually written and improved for years.

Particularly, LLM-generated drivers under comparison are from

gpt-4-0613 and wizardcoder-15b-v1.0 using iterative strategies with

temperature 0.5. These two con�gurations are the best representa-

tive for closed-source and open-source LLMs. In total, we evaluated

53 questions which are both resolved by all con�gurations. Multiple

drivers of one question are merged as one to ease the comparison.

This is done by adding a wrapper snippet which links the seed

scheduling with the selection of the executed logic from merged

drivers. Speci�cally, a switch structure is added to determine which

driver it will execute based on a part of the input data. During each

fuzzing iteration, only the logic of one merged driver is executed.

Besides, some compound OSS-Fuzz drivers are designed to fuzz
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Figure 9: Metric Comparison of LLM-Generated and OSS-Fuzz Drivers. Y-axis is the metric. For clarity, question id (x-axis) is omitted.

multiple APIs. For clear comparison, we merged all drivers of ques-

tions involved in one compound driver as one. In total, we prepared

38 drivers for each assessed LLM or OSS-Fuzz. The comparisons

cover both code and fuzzing metrics such as the number of used

APIs, oracles, coverage, and crashes.

Fuzzing Setup. Considering the randomness of fuzzing, we

followed the suggestions from [26]: the fuzzing experiments are

conducted with �ve times of repeat for collecting average coverage

information and the fuzzing of each driver lasts for 24 hours. We

used libfuzzer [27] and AFL++ [17] as fuzzers with empty initial

seed and dictionary. "-close_fd_mask=3 -rss_limit_mb=2048

-timeout=30" is used for libfuzzer while AFL++’s is the default

setup of aflpp_driver. For fair comparison, the coverage of fuzz

driver itself is excluded in post-fuzzing data collection stage (the

merged driver can have thousands of lines of code) but kept in

fuzzing stage for obtaining coverage feedback. In total, the experi-

ments took 3.75 CPU year.

Code Metric: API Usage. The API usage is measured by the

number of unique project APIs used in the fuzz driver. Overall,

14% (17/35) gpt-4-0613 drivers have used less project APIs than

OSS-Fuzz’s while 39% for wizardcoder-15b-v1.0. By manually in-

vestigating these drivers, we found that LLMs conservatively use

APIs in driver generation if no explicit guidance in prompts.

For instance, some drivers only contain necessary usages such as

argument initialization. And the API usage is hardly extended such

as adding APIs to use an object after parsing it. This is a reasonable

strategy since aggressively extending APIs increases the risk of gen-

erating invalid drivers. Adding example snippets in the prompt can

alleviate this situation. As for OSS-Fuzz drivers, the API usage diver-

sity is case by case since they are from di�erent contributors. Some

drivers, e.g., [5] are minimally composed and some are extensively

exploring more features of the target, e.g., [9]. One interesting �nd-

ing is that some OSS-Fuzz drivers are modi�ed from the test �les

rather than written from scratch, which is a quite similar process

as querying LLM with examples. For example, kamailio driver [6]

is modi�ed from test �le [7]. Prompting with this example, LLM

can generate similar driver code.

Code Metric: Oracle. We did statistics on the oracles of the dri-

vers. The result is quite clear: in all 78 questions resolved by LLMs,

OSS-Fuzz drivers of 15 questions contain at least one oracle which

can detect semantic bugs, while there are no LLM-generated dri-

vers have oracles. The used semantic oracles can be categorized as

following: ❶ check whether the return value or output content of

an API is expected, e.g., [11]; ❷ check whether the project internal

status has expected value, e.g., [13]; ❸ compare whether the outputs

of multiple APIs conform to speci�c relationships, e.g., [12].

LLMs tend to generate fuzz drivers with minimal API usages,

signi�cant space are left for further improvement such as

extending the use of API outputs or adding semantic oracles.

Fuzzing Metric: Coverage and Crash. Figure 9a, 9b plot the

coverage and crash comparison results. Instead of presenting every

detail of the experiments for hundreds of drivers, the plots lists the

comparison in certain metrics while the full experiment details can

be found at [61]. Overall, in most questions, the LLM-generated

drivers demonstrate similar or better performance inmetrics

of both coverage and the number of uniquely found crashes.

Note that there are no false positive since the generated fuzz drivers

are already �ltered by the semantic checkers provided from our

evaluation framework. If only the fully automatic validation process

are adopted, i.e., removing the last two checkers in Figure 3, the

fuzzing outcomewill be messed with huge number of false positives,

incurring signi�cant manual analysis e�orts.

LLM-generated drivers can produce comparable fuzzing out-

comes as OSS-Fuzz drivers. In large scale application, how to

practically pick e�ective fuzz drivers is the major challenge.

8 Discussion

Relationships With OSS-Fuzz-Gen. The Google OSS-Fuzz

team has undertaken a parallel work called OSS-Fuzz-Gen [48] for

LLM-based fuzz driver generation. Their public information con-

tains one security blog [55] and the source code repository [48]. Our

work is complementary to theirs. Overall, at the time of submission,

they put high e�orts on �lling the engineering gap between LLM

interfaces and OSS-Fuzz projects. Their experiments are conducted

on top commercial LLMs, aiming to showcase that LLM-generated

fuzz drivers can help in �nding zero-day vulnerabilities and reach-

ing new testing coverage. However, there few discussion on the

fundamental questions such as the design choices behind their

prompt strategy, the pros and cons for di�erent strategies, how

the e�ectiveness varies for di�erent models and parameters, and

what are the inherent challenges and potential future directions.

Our study, on the other hand, complements theirs by exploring

these fundamental issues. We carefully designed prompt strategies,

evaluated them on various models (open and commerical LLMs)

and temperatures, and distilled �ndings from the results.

Contributing to OSS-Fuzz-Gen. We carefully examined the

prompt strategies of OSS-Fuzz-Gen from their implementation and
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validated where our insights can help. Interestingly, their current

strategy support part of our insights. For instance, they adopted

10 time repeat results [46] and used a lower temperature (0.4) in

experiments [47]. Besides, we found that OSS-Fuzz-Gen only identi-

�es and �xes build errors while ignoring the runtime errors caused

by driver. Their generation ends when a compilable fuzz driver is

synthesized and then they manually checks the validity of these

drivers. To improve this, we implemented our strategies for drivers

with fuzzing runtime errors in their platform, including the identi�-

cation (automatic part of validation process) [49–51, 53], categoriza-

tion, and the corresponding iterative �x procedure [52, 54]. These

enhancements added new functionalities re�ning the generation

results, where the cases showing its e�ectiveness are quickly iden-

ti�ed [44, 45] during their benchmark tests (29 APIs, 18 projects).

Currently, the improvement is merged into the main branch and is

actively used to fuzz all 282 supported projects, marking a signi�-

cant milestone to us. We are keeping re�ne our commitments, such

as integrating more �ne-grained error information during �x.

Potential Improvements. From our perspective, to improve

the performance of LLM-based fuzz driver generation, e�orts from

three dimensions can be further explored. First, the domain knowl-

edge contained inside the target scope can be modeled and utilized

for better generation. For instance, to test network protocol APIs,

the communication state machine of that protocol can be learned

�rst and then used to guide the driver generation. Besides, more so-

phisticated prompt-based solutions can be explored, such as hybrid

approaches combining traditional program analysis and prompt

strategies, or agent-based approaches. Lastly, �ne-tuning based

methods is also a promising direction since this can enhance both

the generation’s e�ectiveness and e�ciency from a model level.

Threat to Validity. One internal threat comes from the e�ec-

tiveness validation of the generated drivers. To address this, we

carefully examined the APIs and manually wrote tests for them

to check whether the semantic constraints of a speci�c API have

been satis�ed or not. Another threat to validity comes from the

fact that some OSS-Fuzz drivers, e.g., code written before Sep 2021,

may already be contained in the model training data, which raises a

question that whether the driver is directly memorized by the model

from the training data. Though it is infeasible to thoroughly prove

its generation ability, which requires the retrain of LLMs, we found

several evidences that supports the answers provided by these mod-

els are not memorized: Many generated drivers contain APIs that

do not appear in the OSS-Fuzz drivers, especially for those drivers

hinted by example usage snippets or iteratively �xed by usage and

error information. Besides, the generated drivers share a distinct

coding style as OSS-Fuzz drivers. For example, the generated code

are commented with explanation on why the API is used and what

it is used for, etc. The main external threat to validity comes from

our evaluation datasets. Our study focused on C projects while the

insights may not be necessarily generalizable to other languages.

9 Related Work

Fuzz Driver Generation. Several works [1, 2, 21, 23, 25, 62–64]

have focused on developing automatic approaches to generate fuzz

drivers. Most of these works follow a common methodology, which

involves generating fuzz drivers based on the API usage existed

in consumer programs, i.e., programs containing code that uses

these APIs. For instance, by abstracting the API usage as speci�c

models such as trees [63], graphs [21], and automatons [62], several

works propose program analysis-based methods to learn the usage

models from consumer programs and conduct model-based driver

synthesis. In addition, a recent work [23] emphasizes that unit tests

are high quality consumer programs and proposes techniques to

convert existing unit tests to fuzz drivers. Though these approaches

can produce e�ective fuzz drivers, their heavy requirements on the

quality of the consumer programs, i.e., the consumers must contain

complete API usage and are statically/dynamically analyzable, limit

their generality. Furthermore, synthesized code often lacks human

readability and maintainability, limiting their practical application.

Some parallel works [31, 48] have also explored the LLM-based

fuzz driver generation. However, their main goal is to build tools

demonstrating the potential of LLM-based generation. Our study

complements them by focusing on delivering the �rst comprehen-

sive understanding of the fundamental issues in this direction.

LLM for Generative Tasks. Recent works have explored the

potential of LLM models for various generative tasks, such as code

completion [56], test case generation [14, 15, 29, 40, 42, 58, 60]

and code repairing [16, 38, 59]. These works utilize the natural

language processing capabilities of LLM models and employ spe-

ci�c prompt designs to achieve their respective tasks. To further

improve the models’ performance, some works incorporate itera-

tive/conversational strategies or use �ne-tuning/in-context learning

techniques. In test case generation, previous research works have

primarily targeted on testing deep learning libraries [14, 15] and

unit test generation [40, 42]. Considering the intrinsic di�erences

between fuzz drivers and other tests and the di�erence on studied

programming languages, these works cannot answer the funda-

mental e�ectiveness issues of LLM-based fuzz driver generation,

indicating the unique values of our study.

10 Conclusion

Our study centers around answering fundamental issues of LLM-

based fuzz driver generation’s e�ectiveness. To do that, we designed

a dataset and six prompt strategies, and did extensive evaluation on

di�erent models and temperatures. Our study not only established

the basic understanding on this direction but also indicates the po-

tential future improvements. Furthermore, our insights have been

applied into industrial practical fuzz driver generation platform.

11 Data Availability

The source code and data involved in our study can be found at [61].
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