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Comparison of Evolutionary Algorithms: A Case Study on the
Multi-Objective Carbon-Aware Mine Planning*

Nurul Asyikeen Binte Azhar1,2, Aldy Gunawan1, Shih-Fen Cheng1 and Erwin Leonardi2

Abstract— The NP-hard precedence-constrained production
scheduling problem (PCPSP) for mine planning chooses the
ordered removal of materials from the mine pit and the next
processing steps based on resource, geological, and geometrical
constraints. Traditionally, it prioritizes the net present value
(NPV) of profits across the lifespan of the mine. Yet, the growing
shift in environmental concerns also requires shifts to more
carbon-aware practices. In this paper, we use the enhanced
multi-objective version of the generic PCPSP formulation by
adding the NPV of carbon costs as another objective. We then
compare how the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and the Pareto Envelope-based Selection Algorithm
II (PESA-II) solve several real-world inspired datasets, after
experimenting with the selection pressure parameter of PESA-
II. The outcome reveals that PESA-II runs faster for 75%
of the datasets and gives sets of solutions that are more
distributed. Meanwhile, NSGA-II consistently produces non-
dominated solutions even when the apportionment of a decision
variable is varied. Moreover, we assess how the uncertainty
of ore tonnage at the mine site modifies the Pareto front via
sensitivity analysis. We show that deviations above 15% induce
a larger gap from the original.

Index Terms— Genetic algorithms, Pareto optimization, pro-
duction planning, environmental economics

I. INTRODUCTION

Scheduling problems for mine planning involve optimizing
the sequence of extracting materials and the respective series
of treatment steps throughout the years that the mine is
live. To support these activities, there are various operational
facilities such as the milling plants (e.g. crushing and grind-
ing), refining plants (e.g. hydrometallurgy), storage facilities
(i.e. stockpiles), and waste facilities (e.g. dump and tailings
pond). These facilities have their corresponding machinery
and/or finite capacity. To derive the highest net present value
(NPV) of profits and returns to investors, mine planners need
to prioritize sequences (Fig. 1) and processing decisions that
give the most returns in the earlier years of the mine. In
doing so, they also have to consider the unique and uncertain
geological and geometrical attributes of each mine.

Such scheduling problems can be viewed from a strate-
gic, tactical, or operational angle in Operations Research,
whereby the granularity of decision-making and timeframe
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Fig. 1. Block extraction sequence example from year to year following
precedence and resource constraints for MineLib’s Newman1 instance [1].

range. Both strategic and tactical angles hold long to
medium-term decisions whereas the operational angle is
short-term. The decisions for the strategic angle are mostly
confined to the mine pit in determining its shape and the best
extraction sequence. Meanwhile, the decisions in the tactical
angle involve the extraction sequence and processing steps
of materials. This has been referred to as the precedence-
constrained production scheduling problem (PCPSP) and
is recognized as NP-hard. Lastly, the operational angle is
focused on the everyday deployment of resources at the pit
and/or operational facilities. In this paper, we focus on the
decisions for the tactical PCPSP.

Although the traditional PCPSP prioritizes the NPV of
profits [2], there is a growing push to balance the environ-
mental impacts against the NPV of profits derived when
extracting and processing ores. This goes beyond merely
managing them in the five mining phases of exploration,
planning, implementation, production, and reclamation. In
these phases, the common practices to manage environmental
impact include conducting an environmental impact assess-
ment (planning phase), having environmental management
systems (production phase), and mine rehabilitation (recla-
mation phase) [3].

Furthermore, the increasing push for net zero carbon has
resulted in increasing research that models and trades off
carbon dioxide emission costs directly in scheduling prob-
lems. From the strategic angle, [4] concurrently maximized
the NPV of profits and social benefits to the surrounding
community as well as minimized harmful environmental
outputs, including carbon dioxide costs, using a heuristic.
From the operational angle, [5] and [6] assessed the carbon



dioxide emissions from inter-facility transportation, intra-
facilities, and transportation to the customers using a multi-
objective optimization (MOO) with mixed integer program-
ming (MIP). Meanwhile, [7] used a MOO with a hybrid
particle swarm optimization (PSO) algorithm to minimize
the costs of operating a mine, including carbon dioxide
emission costs. From the tactical angle, [1] added the NPV of
carbon dioxide costs as an additional constraint in a bounded
objective function method when maximizing the NPV of
profits. They used a hybrid of heuristics and MIP. Finally, [8]
used a Non-dominated Sorting Genetic Algorithm II (NSGA-
II) for a MOO formulation of the PCPSP that trades off
between the NPV of profits and carbon dioxide costs.

In this work, we focus on the balance between the NPV
of profits and carbon dioxide costs in the PCPSP. In doing
so, we leverage the generic PCPSP formulation [9] that has
been augmented into a MOO [8]. This allows reusability and
scalability for future researchers. The carbon dioxide costing
framework used in this MOO formulation is adopted from
[4]. Primarily, we compare two multi-objective evolutionary
algorithms (MOEA) of NSGA-II [10] and Pareto Envelope-
based Sorting Algorithm II (PESA-II) [11]. Segments of
these algorithms – the initial solution, crossover, and mu-
tation – use the tailored heuristics proposed in our earlier
work [8] that have been implemented on an NSGA-II. The
limitations in runtime were encountered with the use of
NSGA-II for small to medium instances. Hence, we now
explore how PESA-II may address this shortcoming through
differences in its selection mechanism, convergence metrics
archive structure and use of parameters. Our contributions to
this research space as follows:

1) Based on our knowledge, PESA-II has not been used
and generally, the use of MOEAs have been sparse.

2) We examine how the selection pressure parameter of
PESA-II alters its performance against the parameter-
less NSGA-II. Furthermore, we evaluate how the
Pareto fronts of both NSGA-II and PESA-II alter with
two methods of varying a decision variable.

3) We propose a framework to assess uncertainty within
the dual MOEA setup. We demonstrate it by assessing
how the uncertainty of ores at a mine site affects the
Pareto front with two scenarios of over- or under-
assessment of ores in a sensitivity analysis.

Based on the PCPSP formulated in the next section, we
describe the set of algorithms, experiment framework, and
the results in Sections III, IV and V, respectively.

II. PCPSP DEFINITION FOR MINE PLANNING

Running a mine requires seamlessly scheduling the extrac-
tion sequence of materials from the ground and its processing
to form the desired end products for customers. To model
mines, materials underground are discretized into three-
dimensional blocks. Each of these blocks has its respective
proportion of ore grade, impurities (e.g. sulfur, silicon,
phosphorus), and hence, the associated economic profit. Due
to the unique geology and geometry of each mine site, each
block has a set of preceding blocks that need to be extracted

before it can be reached. The sequence of extraction has to be
considered holistically over decades of the mine life together
with the treatment at each facility that has its respective
heavy machinery and capacities.

The holistic decisions for this scheduling problem are
taken for the best NPV of profits. However, the activities
in this scheduling problem consume raw materials (e.g.
water, energy) and release harmful by-products (e.g. carbon
dioxide, chemical waste). These environmental effects can
be modeled in the PCPSP. We focus on modeling carbon
dioxide as it has been flagged as the leading greenhouse gas
for global warming and climate change.

A. Carbon Dioxide Costing Framework

Carbon dioxide costs reflect the costs required to capture
and convert carbon dioxide emitted during the energy con-
sumption of mining activities. Alike [8], we leverage the
costing framework by [4] to augment the generic PCPSP
formulation.

The carbon dioxide costs C consist of two types of
materials extracted from the mine pit: (1) valuable ore Qi,o
and (2) invaluable material considered as waste Qi,w. Both
materials consume energy per tonne of material to extract
em using coal whereas the former also consumes energy per
tonne of material to further process ep. The total use of coal
for energy is then multiplied with the factors for carbon in
coal fc and carbon dioxide conversion from carbon fa to give
the total carbon dioxide emitted. Finally, it is multiplied by
the technology cost to absorb the carbon dioxide released
Cc. The formula is shown below.

C =
(Qi,o +Qi,w)em +Qi,oep

1000
fc faCc (1)

B. Enhanced Multi-Objective PCPSP Formulation

The scheduling problem in mining is complex due to its
size, uncertainty, and multi-disciplinary specializations. The
amount of valuable ore, impurities, and material structure
at a chosen mine site are determined by geologists and
chemists through ongoing drill samples and imaging. This
information is also used by mining engineers to determine
how best to access the ore and the machinery required. Once
the materials are extracted, the chemical properties and the
desired customer products affect treatment decisions.

The unique properties at each mine site usually lead
to research that utilizes tailored mathematical formulations
based on an operating site. Unfortunately, this may hinder
re-usability, scalability, and ease of comparison amongst
models. Meanwhile, the MineLib library [9] provides generic
formulations for three problem variants – including the
PCPSP which is the most complex – and supporting real-
world datasets. We adopt and enhance this generic formula-
tion for our work.

The generic PCPSP [9] defines B as the set of blocks
that can be extracted from the mine pit, where each block
b ∈ B has its own set of preceding blocks Bb that need to
be extracted. Each block can be sent to different destinations
D . Each d ∈ D has a set of resources R and operational



units of qbdr to process each block. There are two decision
variables for the PCPSP. Firstly, the binary decision variable
xbt states if a block is extracted during period t ∈ T . Next,
the continuous decision variable ybdt states the portion of the
block sent to a destination after extraction in that period.

While the generic PCPSP has one objective, we adopt
the enhanced multi-objective formulation [8]. Originally, it
maximizes the NPV of profits. The NPV of profit p̃bdt for the
material that has been extracted and processed in the period
t is derived from pbd

(1+α)t , with α as the discount rate.

(Objective 1) Z1 = max ∑
b∈B

∑
d∈D

∑
t∈T

p̃bdtybdt (2)

The additional objective, namely Objective 2, shown in
equation (3) minimizes the NPV of carbon costs. The NPV of
carbon cost c̃bdrt for carbon dioxide emitted when materials
are extracted and processed in the period t is derived from

cbdr
(1+α)t , with α as the discount rate. This addition aids
jurisdictions with the economic instrument of carbon credit
trading; a system that was introduced to decrease emissions.
Miners can hence leverage on the additional objective to
adhere to their respective carbon emissions cap.

(Objective 2) Z2 = min ∑
b∈B

∑
d∈D

∑
r∈R

∑
t∈T

c̃bdrtybdt (3)

To extract a block, the depth, ore type, ore composition,
and material surrounding the ore (e.g. sand) affect the order
that it can be extracted. This is represented by constraint (4)
that sets out the set of preceding blocks Bb for each block.
Each preceding block b′ in that set has to be extracted in an
earlier period or the same period before that block can be
extracted.

∑
τ≤t

xbτ ≤ ∑
τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T (4)

Next, constraint (5) ensures that once a block is extracted,
it is sent to at least one processing destination. The choice of
processing destination depends on the type of ore, material
composition, and customer requirements. Conversely, if a
block is not extracted, it is not sent to any processing
destination.

xbt = ∑
d∈D

ybdt ∀b ∈ B, t ∈ T (5)

If a block is extracted, constraint (6) then ensures that it
can only be extracted once throughout the mine’s lifespan.

∑
t∈T

xbt ≤ 1 ∀b ∈ B (6)

For all resources, constraint (7) ensures that the use of
each resource r is within capacity limits for all periods. These
resources include diggers, grinders, and refining plants.

Rrt ≤ ∑
b∈B

∑
d∈D

qbdrybdt ≤ R̄rt ∀ r ∈ R, t ∈ T (7)

Additionally, constraint (8) caters to any supplementary
requirements unique to that mine site. This side constraint
can model diverse situations such as ore grade constraints.

a ≤ A y ≤ ā (8)

Finally, constraints (9) and (10) represent the type and
range of values for the two decision variables of xbt and
ybdt .

xbt ∈ {0,1} ∀b ∈ B, t ∈ T , (9)

ybdt ∈ [0,1] ∀b ∈ B,d ∈ D , t ∈ T . (10)

III. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
FOR THE MULTI-OBJECTIVE PCPSP

In single-objective optimization, the best solution is found
by comparing the value of the objective function against
other solutions. In a MOO, there is no single best solution
but a set of solutions that have the best trade-off between
competing objectives, also defined as dominance. A solu-
tion is dominant or non-dominated when it is not outper-
formed by any other solution in all considered objectives
and is strictly better than all other solutions in at least
one objective. To derive this set of non-dominated solu-
tions, techniques have been categorized as decomposition-
based, domination-based, preference-based, indicator-based,
and hybrid approaches [12], [13]. Decomposition-based,
preference-based, indicator-based, and hybrid can be catered
for many-objective optimization problems (i.e. problems
with four or more objectives). These are popular in recent
years as MOO problems increase in complexity. Meanwhile
for less complex bi-objective problems such as ours, the
decomposition-based and domination-based approaches suf-
fice [14]. The decomposition-based scalarizes the MOO to
become a single objective problem(s). The domination-based,
often linked with MOEAs, leverages the Pareto-dominance
relations of solutions in the objective space and constantly
maintains a set of non-dominated solutions [15].

The decomposition-based approach of bounded objective
function was used by [1] to trade off the NPV of profits
against the NPV of carbon costs. However, it required multi-
ple runs to form the approximated Pareto front. To overcome
this limitation, [8] used the MOEA of NSGA-II to produce
a diverse set of Pareto optimal solutions in one run. MOEAs
are differentiated by the attributes of fitness assignment,
diversity mechanism, elitism, and external population. In
this paper, we evaluate how differences in these attributes
affect the performance of PESA-II versus NSGA-II for the
enhanced MOO formulation of the generic PCPSP.

A. Overview and Implementation of NSGA-II and PESA-II

While both NSGA-II and PESA-II are evolutionary algo-
rithms that can address MOO problems, they have distinct
strategies to evolve solutions that are diverse and non-
dominated, until convergence. NSGA-II uses non-dominated
sorting and crowding distance. The process of non-dominated
sorting group solutions into Pareto fronts based on their
dominance relationships. Next, crowding distance – a met-
ric that reflects the density of solutions – is assigned to
each solution within its front. The complexity of NSGA-
II is O(MN2). Meanwhile, PESA-II uses a hyperbox-based
approach. Hyperboxes are regions in the objective space
that represent and organize non-dominated solutions. They



help ensure coverage of the entire Pareto front by capturing
different regions of trade-off solutions. The hyperboxes are
dynamically adapted in each generation to accommodate
changes in the distribution of non-dominated solutions. The
complexity of PESA-II is O(MN).

For both NSGA-II and PESA-II, we initialize a population
for both NSGA-II and PESA-II using the heuristic proposed
by [8]. This initialization provides a feasible solution by
prioritizing sets of blocks that can be extracted based on
resources available cumulatively in each time period. From
the initial population, solutions are evaluated. Next, NSGA-
II employs non-dominated sorting based on dominance re-
lationships amongst solutions and assigns crowding distance
for the density of solutions around each solution. The non-
dominated solutions are tracked using Pareto front ranking
and maintained within the population structure for NSGA-
II. Meanwhile, PESA-II determines non-dominated solutions
Θ and stores them in an external archive Λθ . PESA-II
constructs hyperboxes H for the objective space, assigns
solutions to them, and tracks the density of each hyperbox.
Then, reproduction begins.

In each generation of reproduction, parent solutions X are
distinguished using binary tournament selection. For NSGA-
II, solutions from less crowded regions and higher-ranking
Pareto fronts are preferred. For PESA-II, non-dominated
solutions that are part of less dense hyperboxes are preferred.
Following that, the crossover and mutation heuristics by [8]
are employed that cater to the nuances of the PCPSP and
minimize constraint violations. If any violations occur, solu-
tions are repaired to become feasible again. For NSGA-II, the
offspring population Ω′

x is kept separately at first. Following
that, the repaired solutions are evaluated for both NSGA-II
and PESA-II. After evaluation, the offspring solutions Ω′

x
for NSGA-II are combined with the solutions at the start of
the generation Ωx. Finally, the non-dominated sorting and
crowding distance are updated for NSGA-II and only the
best, non-crowded solutions are retained, with Pareto front-
ranking, if the population size exceeds. Meanwhile, the ex-
ternal population of non-dominated solutions and hyperboxes
are updated for PESA-II. The external population of PESA-II
is truncated at the generation end to ensure population limits.

B. Use of Tailored Heuristics within NSGA-II and PESA-II

We applied tailored heuristics from our prior work [8]
of initial solution generation, reproduction, and improve-
ment/repair operator to assess their adaptability to other
MOEAs. The initial solution and reproduction steps mini-
mize constraint violations as much as possible.

The initial solution generation stage involves computing
preceding blocks (cones), cumulative resource requirements,
and earliest extraction periods for each target block to
prioritize blocks accordingly. In the reproduction stage, an
offspring is produced with an interdependent-period single-
point crossover, considering the entire mine lifespan. Sub-
sequently, mutation only targets blocks without precedence
to randomly alter their extraction period. At the end of both
stages, infeasible solutions are repaired, and solutions are

improved by focusing on fringe cone sets. Profitable cones
are added if no resource violation occurs. Otherwise, those
with minimal resource consumption are favored. Conversely,
less profitable cones are prioritized when removing blocks.

C. Use of Parameters in PESA-II

NSGA-II primarily focuses on finding a well-distributed
set of non-dominated solutions without explicit preference
handling mechanisms. However, PESA-II uses three parame-
ters inflation factor, selection pressure, and deletion pressure.

The inflation factor β is used when constructing hyper-
boxes. It controls the expansion in the range of values when
creating a hyperbox. A higher inflation factor results in a
larger range and a more sparse hyperbox.

The selection pressure ζ is used in reproduction when
selecting parent candidates. It influences the sensitivity of
the selection process to the hyperbox population size. Larger
values of ζ make the selection process more biased against
hyperboxes with larger populations.

Finally, the deletion pressure η is used to reduce the size of
the external population of non-dominated solutions at the end
of each generation. It influences the selection probabilities in
the roulette wheel selection. Higher values give more weight
to hyperboxes with larger populations.

IV. EXPERIMENTS

For our experiments, we varied three attributes: the deci-
sion variable ybdt , the PESA-II algorithm selection pressure
parameter ζ , and the ore assessment for Wilma1 dataset, as
summarized in Fig. 2. Initially with the four datasets (Part
I), we vary how portions of blocks are sent to processing
destinations (Part II). Blocks are apportioned to destinations
based on the profit of processing them there using two func-
tions. The argmax function assigns to the destination with the
best profit while the softmax function allows sending to less
profitable destinations. Next, we vary the selection pressure
parameter ζ for PESA-II (Part III). From the PESA-II
results of each ζ parameter, we form the approximated Pareto
front with the NSGA-II results to evaluate the best value
of ζ for PESA-II for each dataset. Then, we compare the
best PESA-II results with NSGA-II using three evaluation
metrics. Finally, we vary the ore assessment for the Wilma1
dataset for different scenarios in a sensitivity analysis (Part
IV). We examine how the approximated Pareto front changes
via two scenarios of over- and under-assessment of ore. The
tuning of parameters in NSGA-II such as those within the
binary tournament selection are not presented in this paper
due to space limitations, but follow the earlier work in [8].

For all experiments, we use a population size of 100 and
run for generations of three to ten. The number of gener-
ations is capped relatively low since we focus on finding
feasible solutions quickly so that a suitable algorithm can be
scaled up for large instances in future work. Meanwhile, the
inflation pressure β and deletion pressure η for PESA-II are
set as 0.1 and 0.5 respectively. The rest of the parameters
follow that of [8]. Both the NSGA-II and PESA-II models
were developed with Python. These were run on a Linux



Fig. 2. Experiments Framework with Three Parts Varied.

operating system with 3.5 GHz 3rd generation Intel Xeon
Scalable processor, 128 vCPUs, and 128 Gb memory.

A. Datasets and Scenario Variants for Sensitivity Analysis

There are four real-world datasets used, summarized in
Table I. Wilma1 is an operating copper and gold mine. It has
been transformed to fit the generic formulation and the data
anonymized for confidentiality. Meanwhile, the rest of the
datasets are publicly available from MineLib [9]. Newman1
and Zucksmall are iron ore mines while Kd is a copper mine.

TABLE I
KEY CHARACTERISTICS OF THE DATASETS.

Name Block Precedence Periods Destinations Resources

Newman1 1,060 3,922 6 2 2
Wilma1 1,960 3,688 4 3 3
Zucksmall 9,400 145,640 20 2 2
Kd 14,153 219,778 12 2 2

For the sensitivity analysis, we focus on the latest real data,
Wilma1, with two scenarios of over- and under-assessment of
ores. Typically, the exact amount of ore is unknown until the
material has been extracted and assessed. In the meantime,
the amount of ore is estimated based on drill samples. Hence,
the amount of actual ore, in tonnes, may deviate from the
initial estimate. We model how the approximated Pareto front
may change if the actual tonnes of ore are above or below
the initial estimate. We do so by deviating the tonnes of
ores uniformly randomly for each block in the following
scenarios:

1) Under-assessment of ore: Actual ore more than esti-
mate by the ranges 5−10%, 10−15% and 15−20%

2) Over-assessment of ore: Actual ore less than estimate
by the ranges 5−10%, 10−15% and 15−20%

B. Varying Apportionment of Decision Variable ybdt

The continuous decision variable ybdt determines the por-
tion of the block sent to a processing destination. At each

TABLE II
INCREASE OR DECREASE IN ORES FOR SENSITIVITY ANALYSIS.

Ores / Ranges 5-10% 10-15% 15-20%
Under Assessment

Copper 20 +7.356% +12.432% +17.613%

Copper 25 +7.490% +12.589% +17.531%

Silver +7.620% +12.487% +17.461%

Gold +7.493% +12.460% +17.498%

Overall Tonnes +0.067% +0.113% +0.157%

Over Assessment
Copper 20 -7.508% -12.39% -17.597%

Copper 25 -7.587% -12.458% -17.625%

Silver -7.550% -12.487% -17.473%

Gold -7.525% -12.502% -17.475%

Overall Tonnes -0.068% -0.112% -0.158%

destination, the type of processing results in an end product
with economic value that can be negative or positive. We
vary it via:

1) Argmax function: All blocks are sent to the most
profitable destination

2) Softmax function: Most blocks are sent to the most
profitable destination, but some can be sent to less
profitable destinations

softmax =
eλ pbd

∑
D
d=1 eλ pbd

(11)

C. Varying Selection Pressure Parameter for PESA-II

For each parent candidate in the binary tournament selec-
tion process of reproduction, a selection score is calculated in
PESA-II. This score is inversely proportional to the power of
ζ for the hyperbox population size that the candidate belongs



to. We vary the values of ζ from 0.5 to 1.5 for this score:

Score =
1

Population size of solution’s hyperboxζ
(12)

D. Evaluation Metrics

From the solution sets of both NSGA-II and PESA-II, the
approximated Pareto front is formed. Besides computation
time, the solution sets are then assessed with five evaluation
metrics for the quality of non-dominated solutions and the
even spread of solutions relative to the Pareto front. The
former is measured by the ratio of non-dominated solutions
(RNI) [16], distance metric [17], and the weakly Pareto-
compliant inverted generational distance plus (IGD+) [18].
The latter is measured by the diversity metric [17] and the
Pareto-compliant hypervolume (HV) [19].

The RNI indicates the fraction of the approximated Pareto
front Φz that comes from the population of solutions Ωx, with
size Ω. A value close to one is preferred.

Ratio of non-dominated individuals (RNI) =
|Φx|
Ω

(13)

Meanwhile, the distance metric shows the collective dis-
tance of the population of solutions Ωx from the Pareto front
Φz. The distance d(x,z) between a solution x ∈ Ωx and all
solutions z ∈ Φz is based on the Euclidean distance that is
summed, and then averaged against the population size Ω.
A value close to zero is preferred.

Distance metric =
∑

Ω
x=1 mind(x,z)

Ω
(14)

Similar to the distance metric formula above, the IGD+

also measures the average distance between the solution set
and the Pareto front, but the calculation for the distance
d(x,z) differs. In IGD+, the distance between x and z is
measured as follows for a maximization problem, whereby
a value close to zero is also preferred.

dIGD+(x,z) =

√√√√ Ω

∑
i=1

(max{zi − xi,0})2 (15)

Next, the diversity metric shows the balanced dispersion
of solutions relative to the Pareto front. The distance between
extreme solutions in the Pareto front d j and that for the
population of solutions dk are used together with the distance
between consecutive solutions di and the average distance d̄
for all di. A higher value is preferred, close to one.

Diversity metric =
d j +dk +∑

Ω−1
i=1 |di − d̄|

d j +dk +(Ω−1)d̄
(16)

Finally, the HV metric gives the volume of the objective
space that is bounded by the solution set Ωx and a reference
point r. HV uses the m-dimensional Lebesgue measure λm,
for m objectives, that quantifies the volume of a set in
Euclidean space. The choice of reference point is problem-
dependent, guided by [20]. A higher value is preferred.

HV (Ωx,r) = λm(
⋃

x∈Ω

[x;r]) (17)

TABLE III
AVERAGE METRICS FOR BEST ζ ACROSS DATASETS FOR PESA-II.

Best ζ

selection
Averages Best

variant
RNI Distance IGD+ Diversity HV

Newman1

0.8 0.208 0.027 0.021 0.915 2.801 Softmax

Wilma1

1.2 0.125 0.027 0.021 0.987 3.229 Argmax

Kd

1 0.188 0.169 0.142 0.963 2.698 Softmax

Zucksmall

1 0.042 0.059 0.034 0.887 1.895 Softmax

V. COMPUTATIONAL RESULTS

Both NSGA-II and PESA-II are run from generations
three to ten using the argmax and softmax functions to
apportion the decision variable ybdt . The results from both
variants are used to form the approximated Pareto front and
compared throughout further experiments (Fig. 2) as well.

A. Effect of Varying Selection Pressure for PESA-II

PESA-II is run with selection pressure parameter ζ rang-
ing from 0.5 to 1.5 using the argmax and softmax
functions. We compare the results from each value of ζ

using the five evaluation metrics to determine the best ybdt
apportionment type alongside the best ζ . These results are
summarized in Table III.

The performances of argmax and softmax functions
differ for each dataset. For Newman1, the argmax variant
provided better metrics. Meanwhile, the softmax variant
provided better metrics for Wilma1, Kd, and Zucksmall.
Hence, the nuances within datasets may influence the so-
lution quality from each variant. The best values for ζ also
differ. It is one for half the datasets – Kd and Zucksmall
– whilst Newman1 and Wilma1 are at 0.8 and 1.2 respec-
tively. This shows that balancing bias towards less densely
populated hyperboxes is preferred.

Fig. 3. Number of Best Variants Summed across All ζ Values.

Furthermore, when the best ybdt variant for each ζ value
is compared across datasets in Fig. 3, the softmax variant
performed better for 75% of the datasets – Wilma1, Kd, and
Zucksmall. Across the ζ values ranging from 0.5 to 1.5,
the softmax provided the best variant in 55% of the ζ

values for Wilma1, 100% for Kd and 55% for Zucksmall.
Meanwhile, the argmax performed better for 91% of the ζ

values for Newman1.



TABLE IV
METRICS FOR BEST GENERATION ACROSS DATASETS FOR NSGA-II AND PESA-II.

Model Gen. Argmax Softmax

RNI Distance IGD+ Diversity HV RNI Distance IGD+ Diversity HV
Newman1

NSGA-II 10 0.923 0.001 0.001 0.736 1.126 0.387 0.018 0.004 0.725 0.991

PESA-II 5 0.667 0.019 0.015 0.687 1.680 0 0.025 0.020 1 3.975

Wilma1

NSGA-II 10 0.768 0.008 0.002 0.789 0.926 0.600 0.013 0.004 1.021 0.966

PESA-II 5 0.5 0.002 0.001 0.981 2.035 0 0.047 0.034 1 3.755

Kd

NSGA-II 10 0.04 0.344 0.066 0.749 0.774 1 0 0 0.629 0.945

PESA-II 8 0 0.314 0.310 1 3.707 1 0 0 1 3.897

Zucksmall

NSGA-II 10 0.703 0.009 0.003 0.743 0.948 0.292 0.021 0.010 0.648 0.960

PESA-II 9 0.333 0.044 0.027 0.806 1.618 0 0.053 0.033 0.958 2.167

B. Performance Comparison between NSGA-II and PESA-II

PESA-II with the best ζ value is next compared with
NSGA-II. We compare metrics from the best generation as
well as the average, summarized in Table IV.

Firstly, running NSGA-II for more generations provides
better metrics. For NSGA-II, the best generations across
all four datasets are from generation ten. However, this is
not necessary for PESA-II. All datasets provide the best
metrics before generation ten – five, five, eight, and nine
for Newman1, Wilma1, Kd, and Zucksmall respectively.

Secondly, NSGA-II provides better-quality solutions. It
provides the best convergence (RNI, distance, and IGD+)
for Newman1, Kd, and Zucksmall. Meanwhile, PESA-II
provides the best solutions for Wilma1 (distance and IGD+)
and Kd (RNI, distance and IGD+). Even so, overall PESA-
II gives a Pareto front that is more evenly distributed, by
leading the diversity and HV metrics for all datasets.

Thirdly, the argmax and softmax variants behave dif-
ferently in NSGA-II and PESA-II for non-dominated solu-
tions. For NSGA-II, both variants simultaneously can give
solutions that are part of the Pareto front. The RNI is more
than zero for both variants, across all datasets. However,
for PESA-II, only one variant can provide non-dominated
solutions at a time, across all datasets. For the Newman1,
Wilma1, and Zucksmall datasets, the RNI was more than
zero for the argmax variant, but zero for the softmax
variant. For the Kd dataset, the RNI was more than zero
for the softmax variant, but zero for the argmax variant.
Hence, NSGA-II seems to provide non-dominated solutions
more stably versus PESA-II.

Finally, the runtime for PESA-II is on average faster for
75% of the datasets versus NSGA-II (Fig. 4). For PESA-II,
the average runtime is 3.1% faster for Newman1, 1.6% faster
for Wilma1, and 2.6% faster for Zucksmall. NSGA-II was
on average faster than PESA-II only for Kd, by 5.3%.

Fig. 4. Runtime at Generation Ten for Argmax, Softmax, and Averages.

C. Scenario Variants on Wilma1 for Sensitivity Analysis

Based on the best ζ value for the Wilma1 dataset from
Section V-A, NSGA-II and PESA-II are run for the ore
assessment scenarios described in Section IV-A. The results
from both algorithms are used to form an approximated
Pareto front for each scenario and are compared against the
original. The Pareto front alterations are displayed in Fig. 5.

TABLE V
CONVERGENCE METRICS FROM INITIAL PARETO FRONT.

Scenario 5-10% 10-15% 15-20%
Distance Metric

Over assessment of ore 0.055 0.065 0.140

Under assessment of ore 0.053 0.070 0.119

Average 0.054 0.068 0.129

IGD+ Metric

Over assessment of ore 0.008 0.007 0.017

Under assessment of ore 0.008 0.007 0.013

Average 0.008 0.007 0.015

These deviations are evaluated using the distance and
IGD+ metric. It measures the convergence gap between the
Pareto front from each scenario versus that of the original



Fig. 5. Changes in Pareto Front with Deviations in Ore Assessment.

(Table V). For ore deviations below 15%, the gap from the
original can be considered minute, averaging 0.054 (distance)
or 0.008 (IGD+) for the 5− 10% ore deviation, and 0.068
(distance) or 0.007 (IGD+) for the 10−15% ore deviation.
With ore deviations above 15%, the gap is more pronounced,
averaging 0.129 (distance) or 0.015 (IGD+).

VI. CONCLUSION

This paper compares the performances of two MOEAs,
NSGA-II and PESA-II, in a multi-objective optimization
framework that enables mine production scheduling to be
carbon-aware. We assess how the selection pressure parame-
ter of PESA-II affects its performance and evaluate it against
the parameter-less NSGA-II using real-world datasets. We
also evaluate the sensitivity of the Pareto fronts when there
are uncertainties in the amount of ores. The results show
that besides being faster, PESA-II generally provides more
diverse solutions. Meanwhile, NSGA-II can reliably provide
non-dominated solutions. Furthermore, deviations in ore as-
sessment cause relatively minute alterations to the Pareto
front if they are below 15%.

The initial solution heuristic used may not be suitable
for datasets with much larger precedence, blocks and time
periods. Hence, future work may explore a more efficient
heuristic without sacrificing the feasibility and quality of
solutions. When faster heuristics are derived, the experiment
framework can also be more rigorous with replication of
experiments in multiple runs and their statistical compar-
isons. Subsequent works can also replace or extend the
additional objective function to other environmental concerns
such as treatment costs of water and other greenhouse gases.
Furthermore, other uncertainties can be examined in the
sensitivity analysis such as the economic price of ores.
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