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Abstract
To better address climate unpredictability, green infrastructure is increasingly deployed
alongside gray infrastructure as an alternative strategy for flood risk mitigation. Previous
research has not clearly distinguished the flood-mitigation effects of green infrastructure
at the local scale due to its complex range of functions including socioeconomic benefits,
ecosystem services, and amenity value. Using data on 3768 housing sales from 2009 to
2019 in Hong Kong, we employ a difference-in-differences framework to examine the
effect of green infrastructure on perceptions of flood risk mitigation, with housing prices
as a proxy for risk perception. We find a positive effect of green infrastructure on the
value of nearby housing. The effect does not exist in apartment units on higher floors,
however. This vertical discrepancy further suggests that the observed pricing effects are
due to green infrastructure’s capacity to reduce perceptions of flood risk. By contrast,
properties near conventional gray infrastructure show no evidence of such effects. The
results thus provide quantitative evidence that supports the ongoing shift toward green
infrastructure as a form of climate change adaptation.
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1 Introduction

As coastal urban populations rise and climate change accelerates, the risks of flooding in the
world’s coastal cities are increasing (Buurman and Babovic 2016). Urban expansion reduces
water-permeable surfaces and increases the prevalence of gray infrastructure, thereby increas-
ing flood risk. Consequently, cities are compelled to build more drainage infrastructure in
order to manage concentrated stormwater runoff (Kim et al. 2017). A representative case of a
city facing chronic flood risk is Hong Kong, which is subtropical, coastal, and comprised of
many low-lying areas. The metropolis of 7.4 million people exemplifies the difficulties
associated with flood-mitigation strategies in coastal cities. Despite the government’s contin-
ued efforts to reduce flooding over the past two decades (Environment Bureau 2015), massive
floods have occurred repeatedly in conjunction with a series of mature tropical cyclones over
the last 10 years (Lau 2019). In 1 day in June 2008, a torrential downpour caused 162 floods
(Aerts et al. 2012). One source of the challenges with flood mitigation is that the increased
intensity of flooding due to climate change is surpassing the capacities of previous preventative
measures. Another is that the reactive nature of gray infrastructural adaptation measures means
they are poorly suited for effectively reducing flood risk (Santoro et al. 2019). The former
problem defies easy solution, since we cannot precisely estimate unforeseen extreme weather.
The latter problem, however, may be mitigated by improving and diversifying adaptive
measures, whether through emergency preparation (e.g., early warning systems) or, promis-
ingly, as we will analyze, green infrastructure (Chambwera et al. 2014).

A recent wave of studies examines resilience-based infrastructure design paradigms—
particularly green infrastructure—rather than solely relying on conventional risk-based ap-
proaches (Denjean et al. 2017; Park et al. 2011). Although conventional risk-based approaches
such as advanced climate modeling, weather forecasting, and risk analysis of historical data
can be useful, single pieces of infrastructure based on such models often do not account for the
interdependency of complex urban systems (Kim et al. 2017; Park et al. 2011). In addition,
optimal adaptations vary over time with urban growth (e.g., the expansion of impervious
surfaces associated with urban sprawl will require larger drainage systems). Furthermore, since
adaptation measures have ancillary effects (co-benefits or co-costs), strategies that can max-
imize the net positive effects of adaptation are desirable in the decision-making stage
(Chambwera et al. 2014). Many studies therefore determine green infrastructure to be a viable
adaptation strategy since it provides other benefits such as ecosystem services, lower mainte-
nance costs, and esthetic pleasure (Costanza et al. 2008; Demuzere et al. 2014; European
Commission 2013). Few studies, however, empirically explore the actual flood risk–reduction
effects of green infrastructure in dense urban settings. This research gap partly owes to the
difficulty of separating the interdependency effects in functions (Chambwera et al. 2014) and
scales (Benedict and McMahon 2002; Weber et al. 2006).

In an effort to close this gap and identify such interdependency effects, we employ the
difference-in-differences (DiD) approach to estimate changes in flood risk perception that are
inherently reflected in people’s economic decisions with respect to housing choice. We use a
total of 13,824 housing sales data to estimate the pricing effect of green infrastructure projects,
comparing sales prices before and after the projects’ completion dates and between areas
nearer and farther away from these projects. Although this study does not indicate the extent to
which elements of green infrastructure contribute to actual threats or risk perceptions, it sheds
light on the risk-reduction function and capacity of green infrastructure in urban residential
markets that stand to be affected by future climate uncertainties.
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Our paper obtains empirical evidence in three ways. First, the study focuses on the
neighborhood-scale effect of green infrastructure on coastal housing markets. Second, rather
than examining the multivalued functions of green infrastructure, our analysis explores its risk
perception effects using vertical proximity factors among residential units in multi-story
residential buildings. Third, differing from the conventional hedonic method used in previous
studies, this paper employs the DiD method as an identification strategy.

2 Green infrastructure and flood mitigation

As flood risk mitigation shifts beyond risk-based approaches and toward more resilience-
based, comprehensive strategies (Lennon et al. 2014; Mei et al. 2018), green infrastructure is
gaining popularity, especially in cities. Green measures for flood management like permeable
paved surfaces, vegetated drainage ditches, and stormwater retention ponds offer a number of
benefits that gray infrastructure, such as sea walls and levees, does not. As a result,
policymakers are spotlighting green infrastructure as an additional and possibly more robust
source of resilience against flood risks (Denjean et al. 2017; Lennon et al. 2014; Park et al.
2011). Hesitancy about green infrastructure remains, however, among urban planners due to
concerns over its performance and public acceptability (Thorne et al. 2018). Indeed, support
for conventional gray infrastructure projects persists despite evident failures. On September
16, 2018, for instance, a tropical cyclone called Typhoon Mangkhut hit Hong Kong. This
“super typhoon”—the strongest in the city’s recorded history—led officials to raise the highest
Signal level, No. 10, for 10 h.1 In the storm’s wake, a sea wall collapsed in the seaside
neighborhood of Sai Kung, expelling sewage offshore. Despite this failure, the government
continues to invest in conventional storm defense systems such as new floating breakwaters.

As the above incident illustrates, gray infrastructure’s efficacy relies on the fact that it is
designed to be “fail-safe.” It promises not to fail based on probabilistic extrapolations of historical
data (Kim et al. 2017; Santoro et al. 2019). One problemwith this approach is that failures of gray
infrastructure, should they occur, are likely to be catastrophic as attested by the collapse of the
levees and flood walls surroundingNewOrleans during the Hurricane Katrina in 2005 (Park et al.
2011). A second problem is that this retrospective strategy may be increasingly unable to cope
with future climate extremes. In light of these issues, green infrastructure is a promising option for
flood risk mitigation thanks to its “safe-to-fail” characteristics (Kim et al. 2017). In other words,
solutions such asmangroves and retention ponds avoid the additional risks that levees or sea walls
introduce due to their potential for catastrophic failure. Green infrastructure is also multi-
functional, providing positive net socioeconomic and environmental benefits such as CO2

sequestration and improved health (Demuzere et al. 2014; Nordman et al. 2018). It can also be
integrated with existing gray infrastructure to reduce impacts from excessive precipitation, floods,
and storm surges (Hill 2015).

Over the past decade, many studies have examined concepts and applications of green
infrastructure (Barnhill and Smardon 2012; Lennon et al. 2014; Thomas and Littlewood 2010;
Wright 2011). Several studies focus on hazard-reduction functions, which have both

1 The Hong Kong tropical cyclone warning system consists of Signals 1 (standby), 3 (strong wind), 8 (gale or
storm), 9 (increasing gale or storm), and 10 (hurricane). Signal 8 is issued when a sustained wind speed ranges
from 63 to 87 km/h. Signal 9 is issued when wind speed ranges from 88 to 117 km/h. Signal 10, the highest level
in the warning system, indicates persistent hurricane-forced winds exceeding 117 km/h.
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environmental and economic dimensions. For example, wetlands have been shown to reduce
flood damages by 54–78% (Watson et al. 2016). Beyond just providing storm protection,
green infrastructure is also self-maintaining and can host ecosystem services that vertical
levees are unable to provide (Costanza et al. 2008) while also attenuating stormwater runoff
(Liu et al. 2014). China’s national “Sponge City Program,” which relies on green infrastruc-
ture, has also been shown to effectively mitigate floods, though it does not eliminate them
completely (Mei et al. 2018). Green infrastructure can improve insurance value by reducing
the costs of gray infrastructure while decreasing vulnerability and costs of adaptation to
climate change (Green et al. 2016), and it can also reduce the number of insurance claims
compared with conventional stormwater systems (Sörensen and Emilsson 2019).

Despite such benefits, the uptake of green infrastructure in flood management projects
remains low relative to gray infrastructure (Derkzen et al. 2017; Jaffe 2010; Thorne et al.
2018). Many flood management professionals and decision-makers still perceive scientific
uncertainties in the hydrologic service delivery of green infrastructure (Chambwera et al. 2014;
Sussams et al. 2015; Thorne et al. 2018). Part of this problem with valuation is related to green
infrastructure’s cross-boundary and multi-scalar nature (Carter et al. 2018). Interventions such
as planting trees may reduce the threat of flooding downstream, for example, but provide few
tangible benefits at the intervention site (Jackson et al. 2008). Another issue is that willingness
to pay for flood mitigation is mediated by micro-cultural variations in risk perception (Derkzen
et al. 2017; Harclerode et al. 2016; Santoro et al. 2019), which itself is shaped and constrained
by awareness of local weather patterns (Lo and Jim 2015). To identify the economic benefits,
if any, of green infrastructure initiatives, our study examines four relevant sites in Hong Kong,
a city in which policymakers are considering both green and gray options to mitigate floods.

3 Institutional setting and empirical approach

Since extreme rainfall is an unpredictable phenomenon, proving whether flood protection
projects can actually protect against extreme flooding within a short period of time is almost
impossible. As empirical evidence suggests, however, interventions consisting of physical
infrastructure can at the very least lessen perceptions of flood risks (Barnhill and Smardon
2012; Harclerode et al. 2016; Santoro et al. 2019). This, in turn, has its own ancillary
consequences for well-being. Thus, we conceive of risk perception as a valid medium for
investigating the efficacy of green infrastructure in flood-prevention projects.

To overcome the subjective nature of risk perception (Ludy and Kondolf 2012), we employ
property market values as a proxy for measuring risk perception changes. As many studies
demonstrate, perceived risk can be capitalized into housing prices by altering people’s
willingness to pay for risk reduction (Bin and Landry 2013; Hallstrom and Smith 2005;
Nyce et al. 2015). A hedonic pricing model has commonly been used to infer economic
values for nonmarket effects (Denant-Boemont and Hammiche 2019). Omitted variable bias
and misspecification, however, can bias coefficients in hedonic pricing models (List and Uhlig
2017). Recent reviews of the modern econometric methods thus recommend using DiD
models to avert these biases (Kuminoff et al. 2010).

Even with the DiD approach employed in this study, ambiguity remains as to whether the
causal effect on housing prices owes to changes in risk perception or other environmental
benefits that green infrastructure provides. The regressor containing such multivalued func-
tions can be endogenous, but adding those omitted variables problematically also leads to
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multicollinearity. Thus, to identify the effect of risk perception from the multivalued functions
of green infrastructure, we test another treatment variable: vertical distance between residential
units in multi-story residential buildings. The general logic behind this approach is that such
distances represent diminishing exposure to the risk associated with flooding. We adapt this
strategy to the context of Hong Kong, but rather than looking at vertical distance from either
the sea level or surrounding bodies of water, as other studies have done (Boinas et al. 2016;
Keenan et al. 2018), we use vertical distance to a ground-level “blackspot,” or flood risk area,
as defined by the Hong Kong Drainage Services Department (DSD) based on previous records
of flooding. Accordingly, we construct the following two hypotheses: (1) if flood-prevention
infrastructure (whether gray or green) decreases perceptions of flood risks, price appreciation
will be realized in homes located at lower floors, and (2) if other environmental benefits such
as ecosystem services, lower maintenance costs, and esthetic pleasure from green infrastructure
influence the housing market, price increases will be realized in homes located on both higher
and lower floors.

3.1 Project sites

With a large portion of the city consisting of densely populated, low-lying areas, Hong Kong
faces chronic flood risk. The city’s weather patterns exacerbate this risk, with three quarters of
average annual rainfall concentrated into the tropical cyclone season (May through October)
(Chan 2018). Residential areas on higher ground are also not immune from flood threats
caused by intense precipitation (Aerts et al. 2012).

Hong Kong’s flood mitigation systems for the urban drainage trunk and its branches were
initially designed based on 200-year and 50-year return periods of flooding (the estimated
recurrence intervals) (Beckers et al. 2012). Yet, high-density urban development coupled with
climate change has reduced these systems’ capacities, and they are now only able to protect 1-
in-10-year floods (DSD 2004). When intense precipitation and storm surges occur in areas
with inadequate drainage capacity, flood damage can double (Aerts et al. 2012; Beckers et al.
2012). The combination of these two phenomena into “perfect storm” scenarios has caused
substantial coastal and inland flooding, to which the Hong Kong DSD has responded with
several flood-prevention initiatives (Chan et al. 2018).

Since 2009, four local flood prevention projects have been completed (Fig. 1, Table 1). The
first site—the Fuk Man Road Nullah improvement project in Sai Kung—was completed in
May 2012. The project involves the construction of 4000 m2 of permeable surface to improve
stormwater drain-off by decking over an existing open nullah (ravine). The second project,
completed in January 2014, is the reconstruction of Kai Tak Nullah—a major channelized
water course in East Kowloon—from Po Kong Village Road to Tung Kwong Road. This
project is classified as a gray infrastructural project consisting of a 100-m-long twin-cell box
culvert with a widened 200-m section of abutted local road that is meant to alleviate flooding
risk in theWong Tai Sin area. The third project, completed in October 2017, is an underground
stormwater storage tank constructed with a permeable surface cover in the neighborhood of
Happy Valley. This project has both green and gray infrastructural components and enables the
storage of 60,000 m3 of stormwater. The most recently completed project, a green infrastruc-
tural development, was finished in November 2017. This project restored a 500-m-long section
of the Kai Tak Nullah into a green river corridor (DSD 2019b). Through these projects, along
with other flood-prevention programs such as flood-pumping schemes and city-wide drainage
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tunnel installation, about 70% of flooding “blackspots” have been removed since 2010 (DSD
2019a).

We expect that flood prevention projects serve to ease perceived flood risk, which will be
reflected in higher housing prices (Belanger and Bourdeau-Brien 2018; Rajapaksa et al. 2017),
particularly near the project sites.2 We further hypothesize that since flooding is the perceived
threat, effects will vary by vertical distance in high-rise apartments and by types of project
(e.g., gray versus green infrastructure).

3.2 Methods

To test these effects empirically, we adopt the DiD approach. We estimate the following
model:

yibt ¼ α0 þ α1 neari � completiontð Þ þ α2 � χit þ γb þ ηt þ εict ð1Þ
where yibt is the log of housing sales price of property i in tertiary planning units b on time t.
The housing sales prices are adjusted to 2019 prices using the relevant monthly consumer price
index and are the seasonal index–adjusted prices. neari is a dummy variable, is equal to 1 if
property i is near to a flood-prevention project, and is equal to 0 otherwise; completiont is an
indicator variable, equal to 1 for all housing sales after a project is completed, and a value of
zero before a new project is completed; the vector of covariates χit includes housing structural
and locational variables, project attributes (i.e., project size and linear distance), and the
occurrence of past floods. γb is building fixed effects; ηt is year and month of year fixed
effects; and εibt is the error term.

Fig. 1 Project site locations. Illustration by authors. Mapping source: Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

2 For instance, if a property is at risk of flooding, market participants may expect substantial repair costs from
flood damages, leading demand for lower-risk properties to rise. However, this risk does not affect the actual
supply of properties at risk of flooding. The subsequent price differential between such properties thus reveals a
market participant’s willingness to pay for flood risk reduction.
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Our DiD strategy uses a full 2 years of data before and after each flood-prevention project’s
completion date to avoid the effects of seasonal variations in housing prices. Rain and storm
events, which are the main causes of flooding, vary seasonally. Shorter-term examinations
would therefore produce misleading results. The logic behind our identification strategy is
straightforward, with the key assumption that before the completion of flood-prevention
projects, housing sales prices near and far from project sites will display the same pricing
trend. In other words, the only reason for a housing price trend change after the completion
date would be the effect of the flood prevention projects.

Our coefficient of interest α1 estimates the effect of flood prevention projects on nearby
housing prices compared with the price of residential units farther away. The effects of
flood prevention projects on housing prices depend crucially on the risk perception of housing
market participants. If infrastructure projects increase housing demand due to properties
becoming perceived as safer, then the pricing effects will be larger for areas near the projects,
and α1 is expected to be positive. Although an individual’s level of risk perception will vary
according to his or her own experiences with flooding, perceptions are likely clustered by
influencing one another within groups (Filatova and Bin 2014; Scherer and Cho 2003), thus
offsetting potential bias that may arise from the subjective nature of risk perception.

A few other estimation details are worth noting. First, since we are conducting our analysis
using panel data, the observations are likely to be autocorrelated. To address this issue, we
cluster standard errors by the apartment building at month levels. Second, we examine the

Table 1 The list of flood-prevention projects

Project name Location Scope Type Start Completion Cost
(HK$)

Improvement of Fuk Man
Road nullah in Sai Kung

Fuk Man
Road in
Sai Kung

Permeability
improvement,
drainage
improvement

Gray Aug. 31,
2009

May 18,
2012

$96
mil-
lion

Reconstruction and
rehabilitation of Kai Tak
Nullah from Po Kong
Village Road to Tung
Kwong Road

Po Kong
Village
Road to
Tung
Kwong
Road

Culvert installation,
Drainage, and
sewer
improvement

Gray Aug. 30,
2010

Jan. 31,
2014

$159
mil-
lion

Happy Valley underground
stormwater storage scheme

Happy
Valley &
Wan Chai
areas

Vegetated detention
basin,
underground
stormwater
storage tank

Green
and
gra-
y

Sep. 30,
2012

Oct. 27,
2017

$1066
mil-
lion

Reconstruction and
rehabilitation of Kai Tak
Nullah from Tung Kwong
Road to Prince Edward
Road East

Tung Kwong
Road to
Prince
Edward
Road East

Kai Tak Nullah
revitalization
(green river
corridor),
drainage
improvement

Green
and
gra-
y

Dec. 30,
2013

Nov. 30,
2017

$1200
mil-
lion

Source: Drainage Services Department (DSD, 2019)
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robustness of our findings by checking for unobserved spatial proximity effects, using
continuous distance to the flood risk reduction projects to replace neari, as well as considering
different time periods before and after project completion.

4 Data

We use data from several sources in our analysis. The owner-occupied multi-residential
property sales transaction data from 2009 to 2019 was obtained from 28Hse.com. This data
contains detailed housing characteristics such as gross floor area and property address. Since
information on building age was not listed in the primary database, we obtained this
information from other real estate agencies such as Spacious, OneDay, and Ricacorp
Properties.

Since the spatial coordination of each property is excluded in the datasets, the address of
each property was manually batch-geocoded in ArcGIS 10.7.1. To optimize the model’s
performance, outliers were excluded, such as homes smaller than 200 ft2, homes located above
the 50th floor, and inflation-adjusted prices to 2019 of less than HK$800,000 or more than
HK$40 million. In light of the Hong Kong protests, which began in June 2019 and went on to
dramatically impact the city’s economy, we restrict our data to prior to this period. Conse-
quently, a total of 13,824 multi-family housing units in 264 apartment buildings were
analyzed.

As shown in Fig. 2, patterns of changes in the average housing sales prices varied in each
neighborhood. In particular, the sale prices in Sai Kung, a low-density neighborhood not
connected to the subway network with a sizeable expatriate population (Fig. 1), were well
below other neighborhoods until the beginning of 2016, but then began to increase over the
past 4 years (Fig. 2(1)). In contrast, as shown in the average sales prices between the Po Kong
Village Road and Tung Kwong Road areas in Wong Tai Sin, patterns differ even within the
same neighborhood (Fig. 2(2 and 4)). These divergent patterns signify that structural and
locational factors impact housing prices, too. To account for such structural variables, we
include unit square footage, year of construction, floor level, and the ground elevation of each
building. Although other common variables such as number of bathrooms and bedrooms are
not included in our equations due to limitations of data accessibility, these variables are
substantially proportional to the unit square footage of housing stock in Hong Kong. Other
variables that are commonly assessed in similar studies, such as garage size and roof type, are
not applicable for the multi-family apartment samples.3 As for locational variables, nine
proximity factors that are most commonly used in similar studies are included as covariates
(Table 2). Since the size of green infrastructure may have a heterogeneous impact on housing
prices, the net permeable surface area of each project is considered in the regressions, too.

To establish the spatial extent of the risk perception effect of flood prevention measures on
housing prices, we employ flooding blackspots in our analysis. Flooding records indicate that

3 Overland flood insurance, which is a consideration in many contexts, is another variable that is often included
in similar studies. Yet, for Hong Kong and the wider Asia Pacific, such policies are unavailable and/or unpopular
(Lamond et al. 2017; Chan et al. 2018). The lack of such policies means that our study does not suffer from a
systematic bias. Although some local property insurance covers water damage, this is mostly limited to pipe
leakages, seepages, and drainage problems (Chan et al. 2018). Government policy does not typically support
private insurers who might wish to offer this service, as there is often a lack of accurate flood risk information.
Meanwhile, other private insurers estimate that risks are simply too high to offer flood premium packages.
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within the project sites, floods have affected adjacent areas up to 10 ha around each flooding
blackspot (DSD 2019a). Thus, we define the impact area for the treatment group by a 180-m
buffer radius (roughly equivalent to 10 ha). For the control group, the impact area is limited to
560 m, as no flooding blackspot has ever impacted an area beyond this measure. The authors
manually produced the georeferenced flood-prevention data based on DSD project informa-
tion. Other necessary GIS data for locational and demographic variables were obtained from
governmental sources, Hong Kong Geodata Store, and the ArcGIS Open Data community
(Appendix Table 7).

To separate the risk perception effect from the multivalued functions of green infrastructure,
we construct dummy variables by vertical distances. Since the maximum height of storm tide–
induced flooding was 8.23 m during all tropical cyclones for which Signal 8 or higher was
raised between 1954 and 2018 in Hong Kong (Appendix Table 8), we consider properties to
be lower-floor units (LOW, Table 2) if the apartment unit is located on the third floor or lower.
This is roughly consistent with the maximum height of flooding: in the historical data, four out
of 25 tropical cyclones generated tides which could have affected units on the third floor. As
indirect impacts of floods such as odor pollution can be detectible even at a vertical distance of
30 m (Chen 2017), we specify higher-floor units (HIGH, Table 2) as those located on the tenth
floor and above. Differentiating unit locations between lower and higher floors, rather than
measuring a continuous vertical distance, controls for potential multicollinearity issues.

Fig. 2 Average housing sales price for each of the four project impact areas. In each subfigure, the blue line
represents the quarterly average housing sales price over time for each project site. The dashed x-axis line
indicates when the area’s flood prevention project was completed. The light gray line in the background
represents the quarterly average housing price trend within 560 m of the project. The price trend reflects real
prices without adjustment for inflation or seasonality
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5 Results

5.1 Main results: DiD estimation

We report the main estimates in Table 3. Each column reports the results from one regression
using the DiD method shown in Eq. (1). Table 3 contains two major findings. First, the
completion of green infrastructure projects substantially raised nearby housing prices. The
results in column (1) indicate that based on the trend before project completion, housing prices
near green infrastructure are higher than those located far away. Specifically, the completion of
the green infrastructure projects leads to a price appreciation that is 12.6% greater than the
pricing trend among far away housing units. Second, the completion of hard infrastructure
projects has little effect on housing prices. The points estimated in column (2) indicate that
after the completion of hard infrastructure, the difference between the before and after
completion dates of nearer and farther areas is not significant at any meaningful level of
statistical significance.

The results reported in the rest of the columns show that apartment units located on the third
floor or lower experience a 14.3% price increase (column (3)), while price changes for
apartment units located on the tenth floor or higher (column (4)) are not statistically significant.
These contrasting results indicate that the pricing effects are associated with risk perception
changes due to green infrastructure. Since flooding has a vertical vector (i.e., a maximum
height of flooding water level), vertical distance directly affects flood risk perceptions, thereby

Table 2 Variable definitions and summary statistics (N = 13,824)

Variables Definition Mean SD Min Max

PRICE Housing sales price (HK$, million) 7.83 6.48 0.80 40.00
AREA Gross floor area (square feet) 767.92 362.15 218 3350
YEAR Year built 1992.99 16.95 1913 2017
FLOOR Floor of building on which apartment unit is located 13.97 9.91 0 50
LOW 1 if apartment unit is located on 3rd floor or lower* 0.09 0.29 0 1
HIGH 1 if apartment unit is located on 10th floor or higher* 0.67 0.47 0 1
ELEV Ground elevation above sea level (meter) 16.97 18.20 5.00 126.00
PARK Distance from nearest park (meter) 115.40 68.46 8.69 371.45
SCHOOL Distance from nearest school (meter) 115.14 63.90 10.25 418.31
MTR Distance from nearest metro station (meter) 889.16 911.09 87.90 6034.31
SHELTER Distance from nearest emergency shelter (meter) 2847.63 2917.59 43.00 12,287.75
COMM Distance from nearest community building (meter) 318.28 164.72 23.10 788.56
SPORTS Distance from nearest sports ground (meter) 1025.11 390.65 181.08 1807.39
ROAD 1 if property adjoins** a major road* 0.11 0.32 0 1
SHOPPING Distance from nearest shopping center (meter) 2489.42 1619.66 267.65 6148.81
DISTANCE Distance from nearest project site (meter) 347.55 171.51 8.66 640.01
GREEN Net area of green permeable surface (hectare) 9.25 7.92 0.11 16.54
PAST_FLOOD1 1 if apartment unit was sold after the completion of a

project in an area having experienced a flood in
the year prior to the sale*

0.04 0.19 0 1

PAST_FLOOD2 1 if apartment unit was sold after the completion of a
project in an area having experienced a flood in
the 3 years prior to the sale*

0.01 0.05 0 1

*0 if otherwise

**We consider a property to adjoin a major road if it is within 30 m of its center line
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resulting in different effects between low and high floors. By contrast, other potential socio-
environmental functions of green infrastructure do not rely on verticality. Typical market
information such as a proximity to a park or similar urban amenity, for instance, only considers
horizontal distance, leading to the same impact on both the lower and higher floors of a
building (see Appendix Tables 9 and 10).

5.2 Robustness checks

To ensure that our main results are valid, we conduct seven robustness checks. First, we use
DIST, a continuous distance variable, instead of the dummy variable NEAR to test whether the
flood risk–reduction effect generally decreases with distance to the new flood
mitigation infrastructure (Table 4). Second, we change the time period before and after project

Table 3 Effect of flood management project on housing price nearby: DiD estimation

(1) GREEN
INFRA.

(2) GRAY
INFRA.

(3) LOW FLOORS (4) HIGH
FLOORS

COMPLETION ×
NEAR

0.119*** (0.033) 0.019 (0.048) 0.134** (0.054) 0.036 (0.064)

Other variables Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Building fixed effects Yes Yes Yes Yes
Constant − 20.423** (7.340) − 1.640 (5.702) − 41.441***

(7.328)
− 8.209 (5.815)

N 1644 2023 423 2479
Adj. R2 0.863 0.768 0.895 0.813

Dependent variable is log(PRICE). The sample for all regressions spans 4 years: 2 years before and after each
flood prevention project’s completion date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1

Table 4 Effect of flood management project on nearby housing prices: continuous estimation

(1) GREEN
INFRA.

(2) GRAY INFRA. (3) LOW FLOORS (4) HIGH
FLOORS

COMPLETION × DIST − 0.002*** (0.001) 0.005 (0.005) − 0.010* (0.013) − 0.001 (0.001)
Other variables Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Building fixed effects Yes Yes Yes Yes
Constant − 24.595*** (8.206) − 1.982 (5.800) − 36.902***

(6.990)
− 8.706 (5.778)

N 1644 2023 423 2479
Adj. R2 0.862 0.767 0.893 0.812

Dependent variable is log(PRICE). The sample for all regressions spans 4 years: 2 years before and after each
flood-prevention project’s completion date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1
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completion using a 2-year window instead of a 4-year window (Table 5). Third, we conduct a
placebo test to check the validity of the shorter time window, which may be biased by
unobserved time-variant factors correlated with model errors (Table 6). Fourth, we perform
a balance test (Appendix Table 11) to confirm that the means of the control and treatment
groups are broadly the same. Fifth, we perform spatial error and spatial lag models using a
spatial weight matrix to explore for spatial dependence in our data. We find no evidence of
spatial dependence (Appendix Table 12). Sixth, to account for potential multicollinearity when
using building fixed effects, we estimate an additional specification using tertiary planning unit
fixed effects. Our results remain broadly the same (Appendix Table 9). Seventh, to test for an
anticipation effect during the construction period of the projects, we conduct two placebo tests
with a 2-year and 4-year windows surrounding the start date as opposed to the completion
date. We find no evidence of an anticipation effect in our results (Appendix Tables 13 and 14).

5.2.1 Continuous distance

Even though we construct the treatment and control groups based on the flood prevention
project impact areas around the DSD’s flooding blackspots, weather unpredictability may
affect the robustness of the results. Thus, we use a continuous variable DIST (distance to
the nearest flood infrastructure—green or gray infrastructure) to test if the effect of flood
risk perception generally decreases with distance to the new flood infrastructure project.
Table 4 indicates that housing sale prices decrease with increased distance from green
infrastructure projects (column (1)). Apartment units located on the third floor or lower
show the same trend as the negative distance effect of green infrastructure projects
(column (3)). The effects of gray infrastructure (column (2)) and housing units located
on the tenth floor or higher (column (4)) are still insignificant. These results are thus
consistent with those in our main DiD model.

5.2.2 Different time window: shorter-term effects

In the main results, we use a 4-year window to test for the effect of new flood
infrastructure projects on housing prices. To confirm that the effect also exists in the

Table 5 Robustness check: 2-year window examination

(1) GREEN INFRA. (2) GRAY INFRA. (3) LOW FLOORS (4) HIGH FLOORS

COMPLETION ×
NEAR

0.055** (0.021) − 0.037 (0.050) 0.194** (0.097) 0.024 (0.050)

Other variables Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Building fixed effects Yes Yes Yes Yes
Constant − 19.882** (7.092) − 1.291 (5.877) − 25.636*** (6.406) − 6.985 (6.561)
N 718 1208 251 1311
Adj. R2 0.879 0.766 0.827 0.815

Dependent variable is log(PRICE). The sample for all regressions spans 2 years: 1 year before and after each
flood-prevention project’s completion date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1
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short term, a 2-year window—1 year before and 1 year after completion—is adopted
here, with the results shown in Table 5. In the short term, the completion of green
infrastructure projects caused a 5.7% housing sales price increase compared with more
distant projects. As shown in column (3), the risk perception effects of flood infra-
structure are even more pronounced (a 21.4% price appreciation) in this shorter time
frame after project completion. The effects of gray infrastructure (column (2)) and the
effects on higher-floor units (column (4)) are still not significant in this shorter
window.

5.2.3 Different time window with placebo test

Although we test different impact periods with 4-year and 2-year time windows,
unobserved time-variant factors could potentially still correlate with model errors
(Bajari et al. 2012). For example, individuals’ economic behavior may differ during
months of political and/or social unrest (such as during the Hong Kong Umbrella
Protests from September to December 2014, which fall within our study period).
Thus, we use the same 2-year time window in a non-impact period (a time period
that should be unaffected by any anticipation of the green infrastructure’s completion)
as a placebo test. One time window comprises housing sales between 730 (2 years)
and 365 days (1 year) prior to project completion, while the other comprises housing
sales between 365 days before and on the dates of project completion. The results in
Table 6 provide evidence that the flood risk perception effects on housing prices did
not exist prior to project completion. The negative effect at the 10% significance level
in column (3) signifies that housing units located on the third or lower floor without
any flood prevention infrastructure are more exposed to flood risks, resulting in
housing price depreciation. This finding further supports our main result, which
demonstrates that risk perception effects of flood prevention projects are more salient
for lower-floor units.

Table 6 Robustness check: 2-year window examination for placebo tests

(1) GREEN
INFRA.

(2) GRAY
INFRA.

(3) LOW FLOORS (4) HIGH
FLOORS

COMPLETION ×
NEAR

0.004 (0.049) 0.046 (0.069) − 0.075* (0.038) − 0.067 (0.053)

Other variables Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Building fixed effects Yes Yes Yes Yes
Constant − 28.957**

(13.269)
− 2.411 (6.278) − 28.799***

(7.175)
− 8.082 (6.194)

N 1120 983 326 1423
Adj. R2 0.902 0.770 0.925 0.843

Dependent variable is log(PRICE). The sample for all regressions spans 2 years before each flood-prevention
project’s completion date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1
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6 Discussion and conclusion

Gray infrastructure remains a popular form of flood mitigation, both in Hong Kong and
worldwide. Increases in extreme weather caused by climate change, however, force reconsider-
ation of flood mitigation strategies, including the adoption of green infrastructure as a resilience-
based flood preventionmeasure. An increasing number of studies examine whether this trend for
flood management can achieve its risk management goals. However, the multi-functional nature
of green infrastructure renders its effects ambiguous, making it difficult to determine whether
they derive from its risk-reduction function or other socio-environmental factors.

Our approach to evaluating the effects of green infrastructure is novel in several
respects. First, this paper focuses on risk perception effects on housing prices at the
local scale. Second, this study employs a different econometric approach—the DiD
method—as an identification strategy. Third, we use a unique set of vertical proximity
factors to address potential endogeneity issues associated with the multivalued func-
tions of green infrastructure.

The empirical analysis of flood infrastructure projects offered here supports the hypothesis
that green infrastructure projects more effectively lower perceptions of vulnerability to floods
than gray infrastructure projects. The first set of findings show that housing prices increased by
nearly 13% in areas proximate to green infrastructure projects in the 2 years after their
completion compared with areas farther away. The estimation results, using horizontal and
vertical distances as well as different event years, are summarized as follows: (1) the risk
perception effect of green infrastructure on housing markets is more pronounced in the year
immediately following project completion, (2) only units on lower floors (i.e., those most
subject to flood risks) experience the positive effect of green infrastructure projects, and (3)
there is no significant effect of gray infrastructure proximity on risk perception of flooding.
Overall, the results suggest that green infrastructure has increased market stability in the face of
flood risk and thus validates green infrastructure’s flood risk reduction function.

At this stage, we are unable to provide evidence for whether the specific elements of green
infrastructure provide more or fewer benefits for housing prices due to the relatively small
number of completed projects in our study. Hong Kong, of course, is also a rather unique case
in some respects compared with other cities, especially outside of East Asia, given the
propensity of high-rise residential buildings. Nevertheless, the city shares many characteristics
with other coastal cities such as low-lying, densely populated areas. This commensurability
means that Hong Kong, despite certain idiosyncrasies, can still serve as an important example
for other coastal metropoles.

Uncertainties regarding weather extremes are increasingly challenging urban sus-
tainability. It is therefore important to consider comprehensive approaches when
determining how to improve climate change adaptation strategies. This is especially
important for reducing flooding, which generates a large proportion of climate risk
(Smith 2018). City planners and policymakers continue to question the value of green
infrastructure (Thorne et al. 2018). We hope that our analysis of flood risk perception
effects will improve stakeholders’ understanding of the budgetary and distributional
aspects of flood management investment, tipping the scales in favor of going green.

Acknowledgements We are thankful to Nam Young Kwon for assistance in collecting data on housing sales
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Research Cluster.
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Appendix

Table 7 Details of supplementary GIS data (all for within Hong Kong)

Data Description Source and URL

District
bound-
aries

2016 population by census (boundaries of
tertiary planning units and street
blocks/village clusters)

DATA.GOV.HK https://www.pland.gov.
hk/open_data/tpu_sb_vc/2016BC_TPU_SB_
VC.geojson

Ground
elevation

Digital terrain model (DTM) DATA.GOV.HK http://www.landsd.gov.
hk/mapping/en/download/data/Whole_HK_
DTM_5m.asc

Parks and
open
space

Country parks Hong Kong Geodata Store https://geodata.gov.
hk/gs/view-dataset?uuid=6bbc334b-cdb1-48
ce-8a78-c58979327124&sidx=0

Parks, zoos, and gardens Hong Kong Geodata Store https://geodata.gov.
hk/gs/view-dataset?uuid=5901dbab-6f89-4
c41-8eec-e1f8ea9a7966&sidx=0

Public open space DATA.GOV.HK https://geodata.gov.
hk/gs/dataset/48e12cef-cbfd-4509-9c70-7
ad31250bef5

Schools Locations of schools ESRI China Hong Kong Ltd., DATA.GOV.HK
https://services3.arcgis.com/6j1KwZfY2
fZrfNMR/arcgis/rest/services/Hong_Kong_
School_Location_and_
Information/FeatureServer

MTR
stations

Locations of MTR (subway) stations ESRI ArcGIS Online Community http://services.
arcgis.com/2ycVue24EK6
qzjat/arcgis/rest/services/MTR_
Stations/FeatureServer

Emergency
shelters

Locations of emergency shelters ESRI China Hong Kong Ltd. http://services1.
arcgis.com/Kx7MT7XYah0
yCLi4/arcgis/rest/services/Feature_
EmergencyShelter/FeatureServer

Libraries Locations of libraries ESRI China Hong Kong Ltd. https://services3.
arcgis.com/6j1KwZfY2
fZrfNMR/arcgis/rest/services/Libraries_in_
Hong_Kong/FeatureServer

Community
centers

Locations of community halls and
community centers

Hong Kong Geodata Store https://geodata.gov.
hk/gs/view-dataset?uuid=ab11c2b0-8437-41
d2-afe7-9f4418b817df&sidx=0

Sports
grounds

Locations of sports grounds DATA.GOV.HK http://www.lcsd.gov.
hk/datagovhk/facility/facility-sg.json

Major roads Road network (2nd generation) DATA.GOV.HK http://static.data.gov.
hk/td/road-network-v2/CENTERLINE.kmz

Shopping
centers

Locations of shopping centers DATA.GOV.HK https://services3.arcgis.com/6j1
KwZfY2
fZrfNMR/arcgis/rest/services/Housing_
Authority_Shopping_Centres_in_Hong_
Kong/FeatureServer

Cultural
facilities

Locations of cultural facilities ESRI ArcGIS Online Community
https://services3.arcgis.com/6j1KwZfY2
fZrfNMR/arcgis/rest/services/Museums_in_
Hong_Kong/FeatureServer

Flood-prone
areas

Locations of flooding blackspots ESRI ArcGIS Online Community, DATA.GOV.
HK http://www.dsd.gov.
hk/datagovhk/data/flood_prevention_eng.csv
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Table 8 Mature tropical cyclones with Signal 8 or higher between 1954 and 2018 in Hong Kong

Year Month Name Highest
signal hoisted

Maximum
astronomical tide
(m)

Maximum storm
surge (m)

Maximum
storm tide (m)

Station

1954 8 Ida 9 3.18 1.68 4.86 North
Poi-
nt

1954 7 Pamela 9 2.83 1.16 3.99 North
Poi-
nt

1957 9 Gloria 10 3.08 1.34 4.42 North
Poi-
nt

1960 6 Mary 10 2.77 1.10 3.87 North
Poi-
nt

1961 5 Alice 10 2.59 0.55 3.14 North
Poi-
nt

1962 9 Wanda 10 5.03 3.20 8.23 Tai Po
Kau

1964 8 Ida 9 3.63 2.16 5.79 Tai Po
Kau

1964 9 Ruby 10 3.54 2.96 6.50 Tai Po
Kau

1964 10 Dot 10 2.65 0.58 3.23 North
Poi-
nt

1965 7 Freda 8 2.99 1.01 4.00 North
Poi-
nt

1968 8 Shirley 10 2.85 1.78 4.63 Tai Po
Kau

1971 7 Lucy 8 2.91 1.40 4.31 Tai Po
Kau

1971 8 Rose 10 2.56 0.64 3.20 North
Poi-
nt

1978 8 Elaine 8 2.90 1.15 4.05 Tai Po
Kau

1979 8 Hope 10 4.33 3.23 7.56 Tai Po
Kau

1989 7 Gordon 8 3.31 1.36 4.67 Tai Po
Kau

1993 6 Koryn 8 3.01 1.46 4.47 Tai Po
Kau

1997 8 Victor 9 2.76 1.01 3.77 Quarry
Bay

1999 9 York 10 2.39 0.74 3.13 Quarry
Bay

2001 7 Utor 8 3.47 1.35 4.82 Tai Po
Kau

2003 7 Imbudo 8 2.75 1.02 3.77 Quarry
Bay

2008 9 Hagupit 8 3.77 1.77 5.54 Tai Po
Kau

2012 7 Vicente 10 3.09 1.47 4.56 Tai Po
Kau
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Table 8 (continued)

Year Month Name Highest
signal hoisted

Maximum
astronomical tide
(m)

Maximum storm
surge (m)

Maximum
storm tide (m)

Station

2017 8 Hato 10 3.57 1.18 4.75 Quarry
Bay

2018 9 Mangkhut 10 3.88 2.35 6.23 Quarry
Bay

Storm tide is the combination of storm surge and astronomical tide

Sources: Storm surge records in Hong Kong during the passage of tropical cyclones (Hong Kong Observatory
2019); Maximum storm surge and sea level recorded in Hong Kong during the passage of tropical cyclones
between 1954 and 2015 (Lau 2016); A brief history of Hong Kong typhoons (Cheung 2017)
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Table 9 Full set of DiD estimation (combined model)

(1) (2) (3)

AREA 0.012*** (0.001) 0.012*** (0.001) 0.012*** (0.001)
YEAR 0.010*** (0.002) 0.010*** (0.001) 0.010*** (0.001)
FLOOR 0.005*** (0.001) 0.005*** (0.001) 0.005*** (0.001)
ELEV 0.002 (0.001) 0.001 (0.001) 0.002*** (0.001)
PARK − 0.034** (0.016) − 0.030** (0.013) − 0.034** (0.013)
SCHOOL − 0.029** (0.013) − 0.030* (0.016) − 0.029* (0.016)
MTR − 0.087***

(0.026)
− 0.087** (0.036) − 0.086 (0.056)

SHELTER 0.012 (0.068) 0.042 (0.032) 0.013 (0.028)
COMMUNITY − 0.023***

(0.009)
− 0.023*** (0.006) − 0.023*** (0.006)

SPORTS − 0.016 (0.013) − 0.017 (0.013) − 0.016 (0.013)
ROAD − 0.009 (0.010) − 0.009** (0.004) − 0.009** (0.004)
SHOPPING − 0.064** (0.032) − 0.063* (0.038) − 0.065* (0.038)
DISTANCE 0.007 (0.012) 0.007 (0.005) 0.007 (0.005)
GREEN_AREA − 0.001 (0.001) − 0.001 (0.001) − 0.001 (0.001)
PAST_FLOOD (1-year) 0.085*** (0.032) 0.083** (0.036) –
PAST_FLOOD (3-year) – – − 0.087 (0.087)
GREEN_NEAR − 0.014 (0.038) − 0.014 (0.031) − 0.015 (0.031)
GREEN_COMPLETION − 0.022 (0.057) − 0.018 (0.062) − 0.075 (0.062)
GREEN_NEAR ×

GREEN_COMPLETION
0.125*** (0.031) 0.127*** (0.031) 0.126*** (0.031)

GRAY_NEAR 0.116* (0.065) 0.087** (0.039) 0.119*** (0.037)
GRAY_COMPLETION 0.049* (0.028) 0.049** (0.022) 0.049** (0.022)
GRAY_NEAR × GRAY_COMPLETION 0.042 (0.056) 0.045 (0.052) 0.039 (0.052)
LOW_FLOOR − 0.047** (0.022) − 0.050* (0.027) − 0.048* (0.027)
COMPLETION − 0.067***

(0.024)
− 0.070** (0.029) − 0.068** (0.029)

LOW_FLOOR × COMPLETION 0.067*** (0.026) 0.067** (0.032) 0.068** (0.032)
HIGH_FLOOR − 0.008 (0.017) − 0.008 (0.019) − 0.009 (0.019)
HIGH_FLOOR × COMPLETION − 0.008 (0.022) − 0.007 (0.024) − 0.008 (0.024)
Time dummies Yes Yes Yes
Space fixed effects Building Tertiary planning

units
Tertiary planning

units
Constant − 5.213 (4.877) − 5.037*** (1.456) − 5.221*** (1.468)
N 3768 3768 3768
Adj. R2 0.812 0.812 0.812

Dependent variable is log(PRICE). The sample for all regressions spans 4 years: 2 years before and after each
flood-prevention project’s completion date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1
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Table 10 Full set of DiD estimation (separate models)

(1) GREEN* (2) GRAY** (3) LOW FLOORS (4) HIGH FLOORS

AREA 0.012*** (0.001) 0.012*** (0.001) 0.012*** (0.001) 0.012*** (0.001)
YEAR 0.010*** (0.002) 0.010*** (0.002) 0.010*** (0.002) 0.010*** (0.002)
FLOOR 0.005*** (0.001) 0.005*** (0.001) 0.005*** (0.001) 0.005*** (0.001)
ELEV 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001)
PARK − 0.036** (0.016) − 0.034** (0.016) − 0.035** (0.016) − 0.034** (0.016)
SCHOOL − 0.027** (0.013) − 0.025* (0.013) − 0.026* (0.013) − 0.025* (0.013)
MTR − 0.080*** (0.025) − 0.086*** (0.027) − 0.088*** (0.028) − 0.089*** (0.027)
SHELTER 0.044 (0.063) 0.013 (0.069) 0.041 (0.062) 0.040 (0.062)
COMMUNITY − 0.023** (0.009) − 0.023** (0.009) − 0.022** (0.009) − 0.023** (0.009)
SPORTS − 0.017 (0.013) − 0.015 (0.013) − 0.016 (0.013) − 0.016 (0.013)
ROAD − 0.010 (0.010) − 0.010 (0.011) − 0.010 (0.011) − 0.010 (0.011)
SHOPPING − 0.062* (0.033) − 0.062* (0.032) − 0.061* (0.033) − 0.062* (0.033)
DISTANCE 0.001 (0.012) 0.003 (0.010) − 0.004 (0.099) − 0.001 (0.010)
GREEN_AREA − 0.001 (0.001) − 0.001 (0.001) − 0.001 (0.001) − 0.001 (0.001)
PAST_FLOOD 0.096*** (0.032) 0.091*** (0.032) 0.098*** (0.032) 0.097*** (0.032)
NEAR − 0.024 (0.038) 0.106 (0.065) − 0.013 (0.028) − 0.018 (0.016)
COMPLETION 0.007 (0.039) 0.023 (0.038) 0.045* (0.026) 0.017 (0.041)
COMPLETION × NEAR 0.126*** (0.030) 0.043 (0.058) 0.047** (0.024) 0.005 (0.019)
Constant − 5.054 (4.889) − 5.448 (4.894) − 5.263 (4.898) − 5.321 (4.911)
N 3768 3768 3768 3768
Adj. R2 0.811 0.811 0.810 0.810

Dependent variable is log(PRICE). The sample for all regressions spans 4 years: 2 years before and after each
flood-prevention project’s completion date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1

Table 11 Balance test

Variables Mean
(control)

Mean
(treatment)

Differences Two-sample t test Pr(|T|>|t|)

AREA 752.296 754.046 1.751 0.392
YEAR 1990.637 1990.801 0.164 0.254
FLOOR 13.239 13.315 0.076 0.170
LOW 0.067 0.069 0.002 0.128
HIGH 0.687 0.686 − 0.001 0.124
ELEV 17.394 17.324 − 0.070 0.247
PARK 103.262 104.136 0.874 0.177
SCHOOL 120.983 120.395 − 0.589 0.003
MTR 771.085 769.892 − 1.193 0.780
SHELTER 2642.739 2675.615 32.876 0.057
COMMUNITY 292.909 293.797 0.888 0.251
SPORTS 1088.036 1087.254 − 0.782 0.599
ROAD 0.058 0.059 0.001 0.575
SHOPPING 2331.522 2316.059 − 15.463 0.215
DISTANCE 359.038 357.076 − 1.963 0.146
GREEN_AREA 9.211 9.125 − 0.085 0.122
PAST_FLOOD1 0.005 0.006 0.001 0.198
PAST_FLOOD2 0.012 0.011 − 0.001 0.484

This table provides the mean values for the control and treatment groups for the control variables. The final
column provides respective p values using a two-sample t test
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Table 12 Spatial regression models

(1) OLS (2) OLS (RS*) (3) Spatial error (4) Spatial lag

AREA 0.012*** (0.001) 0.013*** (0.001) 0.012*** (0.001) 0.012*** (0.001)
YEAR 0.010*** (0.002) 0.012*** (0.002) 0.013*** (0.001) 0.013*** (0.001)
FLOOR 0.005*** (0.001) 0.005*** (0.001) 0.005*** (0.001) 0.005*** (0.001)
ELEV 0.002 (0.001) − 0.008 (0.151) 0.008 (0.001) 0.010 (0.071)
PARK − 0.035** (0.016) − 0.046** (0.022) − 0.008*** (0.071) − 0.008*** (0.002)
SCHOOL − 0.024* (0.013) − 0.034** (0.017) 0.001 (0.002) 0.000 (0.002)
MTR − 0.088*** (0.027) − 0.073** (0.035) − 0.078*** (0.018) − 0.078*** (0.018)
SHELTER 0.042 (0.062) − 0.003 (0.070) − 0.001*** (0.001) − 0.001*** (0.001)
COMM − 0.022** (0.009) − 0.045* (0.023) 0.003 (0.003) 0.003 (0.003)
SPORTS − 0.016 (0.013) − 0.043 (0.026) − 0.027 (0.026) − 0.027 (0.026)
ROAD − 0.010 (0.011) − 0.011 (0.009) − 0.005 (0.004) − 0.005 (0.004)
SHOPPING − 0.062* (0.033) − 0.061* (0.036) 0.080** (0.034) 0.080** (0.034)
DISTANCE − 0.001 (0.010) 0.001 (0.012) − 0.030*** (0.007) − 0.030*** (0.007)
GREEN_AREA − 0.001 (0.001) − 0.001 (0.002) − 0.003 (0.002) − 0.003 (0.002)
PAST_FLOOD1 0.099*** (0.032) 0.084*** (0.027) 0.013 (0.034) 0.013 (0.034)
Constant − 5.054 (4.889) − 5.448 (4.894) − 5.263 (4.898) − 5.321 (4.911)
Rho (ρ) − 0.002 (0.003)
Lambda (λ) 0.003 (0.005)
Sigma (σ) 0.338*** (0.007) 0.338*** (0.007)
N 3768 1132 1132 1132
Adj. R2 0.810 0.825

Column (2) is a random sample (30%) of column (1). Columns (3) and (4) use the same sample as column (2).
Standard errors are clustered at the building level by year and month (in parentheses). Dependent variable is
log(PRICE)

***p < 0.01

**p < 0.05

*p < 0.1

Table 13 Robustness check: 2-year window examination of construction start dates for placebo tests

(1) GREEN
INFRA.

(2) GRAY
INFRA.

(3) LOW FLOORS (4) HIGH
FLOORS

COMPLETION ×
NEAR

− 0.054 (0.035) − 0.037 (0.053) − 0.006 (0.039) 0.035 (0.034)

Other variables Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
Building fixed effects Yes Yes Yes Yes
Constant 3.199 (9.744) − 3.445 (4.389) − 19.084***

(5.356)
− 7.181* (4.169)

N 2064 1843 613 2662
Adj. R2 0.940 0.912 0.956 0.929

Dependent variable is log(PRICE). The sample for all regressions spans 2 years: 1 year before and after each
flood-prevention project’s start date. Standard errors in parentheses

***p < 0.01

**p < 0.05

*p < 0.1
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