
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2004

Theoretical and practical complexity of UML Theoretical and practical complexity of UML

J. ERICKSON

Keng SIAU
Singapore Management University, klsiau@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
ERICKSON, J. and SIAU, Keng. Theoretical and practical complexity of UML. (2004). Proceedings of the
Tenth Americas Conference on Information Systems (AMCIS 2004), New York, August 5-8. 1669-1674.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9454

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Erickson et al. Theoretical and Practical Complexity of UML

Theoretical and Practical Complexity of UML

John Erickson
University of Nebraska at Omaha
johnerickson@mail.unomaha.edu

Keng Siau
University of Nebraska-Lincoln

ksiau@unlnotes.unl.edu

ABSTRACT

Systems development methods have become more complex, concurrently with today’s systems. UML (Unified Modeling
Language) has been criticized for its complexity, for those learning and using it. Using Rossi and Brinkkemper’s (1996)
metrics, Siau and Cao, (2001) completed a complexity analysis of UML and other modeling techniques, finding that UML is
more complex than other techniques. Siau, Erickson and Lee (2002) argued that Rossi and Brinkkemper’s metrics present
the theoretical maximum, as opposed to a practical complexity, which must be less than the maximum. Therefore, Siau and
Cao’s UML complexity analysis represents the theoretical complexity of UML. The current research proposes that a subset
of UML (a kernel) composed of the most commonly used constructs, would more closely represent the complexity that
practitioners face when using the language. A Delphi study is conducted using practitioners as experts, in an attempt to
identify a use-based UML kernel and UML’s practical complexity.

Keywords

UML, complexity, complexity metrics, Delphi study, modeling method metrics.

INTRODUCTION

Our world becomes more complex every day. Technology and system developers promise a reduction in life’s everyday
burdens because of technological advances. While perhaps some of that has proved real, systems have expended to
encompass more and more of the tasks once performed manually. It should come as no great surprise that systems are now
more complex than ever. For example, the latest versions of Microsoft Windows now approach 100 million lines of code;
that alone should alert us to the realities of software complexity.

If systems and software have become more complex, then is not out of line to suppose that the underlying systems
development process has become more complex concurrently. Further, it should be reasonable to presume that specific
development methods have paralleled our seemingly inexorable march toward greater and greater complexity. An example is
the soon-to-be-released UML (Unified Modeling Language) 2.0. While the original UML 1.X has been criticized for its
complexity, inconsistent semantics, and ambiguity (Dobing and Parsons, 2000; 2002; Zendler, Pfeiffer, Eicks, and Lehner,
2001), the early versions also lacked truly useful extension mechanisms that would facilitate use in a variety of settings.
UML 2.0, purportedly addresses the semantics, ambiguity and extension issues, but likely at the expense of additional and
continued complexity.

UML is an Object-Oriented modeling language that aids developers by allowing creation of models representing the system
being developed. Siau, Erickson and Lee (2002) proposed that Rossi and Brinkkemper’s (1996) metrics present the
theoretical maximum complexity, as opposed to a practitioner-based complexity, that must be less than the theoretical
maximum. Theoretical complexity, per Rossi and Brinkkemper metrics, includes all of the possible constructs that can be
used to create models. Since all the constructs are included, the resulting metrics represent the theoretical complexity. The
current research proposes that a subset of UML, a kernel or practical type of complexity, composed of the most commonly
used constructs, would be more representative of the complexity that practitioners face when using the modeling language.
We refer to this as practical complexity.

In this research, a practitioner-based kernel of UML is developed via a Delphi study, and initial results are presented herein.
The application of the results using a metrical analysis technique is in process at the time of this writing but we will available
for presentation in August. This paper represents a research in process.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 1669

Erickson et al. Theoretical and Practical Complexity of UML

LITERATURE

Rossi and Brinkkemper’s (1996) research proposed and developed a relatively easy to use and straightforward means to
quantitatively measure system development methods. Specifically, the metrics are based on metamodel techniques, and
purport to measure the complexity of the method under analysis. According to Rossi and Brinkkemper (1996), complexity is
critical to measure because researchers believe complexity to be closely related to how easy a specific method is to use and to
learn.

Siau and Cao's (2001) research applied Rossi and Brinkkemper’s complexity metrics to UML. Their reasoning for using the
particular metric set is that they contend that the metrics are among the most comprehensive, and that Rossi and
Brinkkemper’s approach “…have been used to evaluate the ease-of-use of OO techniques.” Siau and Cao (2001) also
compared UML’s complexity with 36 OO techniques from 14 methods, as well as each of the 14 methods in aggregate.

One of Siau and Cao’s (2001) noteworthy findings is that UML is far more complex (from 2 to 11 times more complex) in
aggregate than any of the other methods. The relative overall complexity highlights one of the issues regarding UML, with
the result that it can appear overwhelming to those new to UML (See Figure 1). Additionally, when human cognitive
limitations to short term memory are added to this mix, UML can appear even more difficult to master.

Diagram N
(OT) n (RT) N (PT) P O

(MT)
P R

(MT) R O(MT)
C

(MT)
C`(MT)

Class 7 18 18 1.71 1.22 2.57 0.1 26.40
Use Case 6 6 6 1 0.83 1 0.17 10.39
Activity 8 5 6 0.75 0.2 0.63 0.13 11.18
Sequence 6 1 5 0.67 6 0.17 0.13 7.87
Collaboration 4 1 7 1 8 0.25 0.14 8.12
Object 3 1 5 1.67 3 0.33 0.33 5.92
StateChart 10 4 11 1 0.5 0.40 0.09 15.39
Component 8 10 9 1 3.6 1.25 0.11 15.65
Deployment 5 7 5 1 1.14 1.40 0.2 9.95

Figure 1

Legend:
n (OT) – count of object types per technique.
n (RT) – count of relationship types per technique.
n (PT) – count of property types per technique.
P O (MT) – average number of properties for a given object type.
P R (MT) – average number of properties per relationship type.

R O(MT) – number of relationship types that can be connected to a certain object type.
C (MT) – average complexity for the entire technique.
C`(MT) – total conceptual complexity of the technique.

THEORETICAL FOUNDATION

Humans generally have cognitive problems processing information that is overly complex (Anderson and Lebiere, 1998;
Miller, 1956). This problem surfaces often as people build information systems, which tend to be extremely complex.
Anderson and Lebiere’s Atomic Components of Thought (ACT) breaks knowledge into declarative knowledge and
procedural knowledge. Declarative knowledge is similar to that knowledge captured in a dictionary – it is a list of what we
know. Procedural knowledge, on the other hand is knowledge about how things work. Procedural knowledge depends on
declarative knowledge as a starting point, but uses that knowledge to help solve problems (Anderson and Lebiere, 1998).
Declarative knowledge is produced in chunks, and is constrained by our cognitive limits (Miller, 1956). Procedural
knowledge is used to create production rules that describe productions, or specific steps we use to solve common and
complex problems (Anderson and Lebiere, 1998). See Figure 2.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 1670

Erickson et al. Theoretical and Practical Complexity of UML

Figure 2 (Source Anderson and Lebiere, 1998)

Complexity can take many forms. For the purposes of this research, complexity will be approached from two separate but
closely related perspectives; cognitive complexity as related to human perception, and structural complexity, as related to the
structural properties of the diagramming techniques found in modeling approaches such as UML diagrams. In this context
cognitive complexity can be defined as the mental burden people face as they work with systems development constructs.

The research proposes to adopt the ideas on regarding structural complexity proposed by Briand, Wüst, and Lounis (1999), in
which the physical (structural) complexity of diagrams affects the cognitive complexity faced by the humans using the
diagrams as aids to understand and/or develop systems. (See Figure 3)

Structural Complexity Cognitive Complexity
affects

Figure 3 (Adapted from Briand, Wüst, and Lounis, 1999)

Since cognitive complexity is difficult and arguably even impossible to measure, structural complexity will be used to
explain cognitive complexity. Structural complexity can be defined as a function of the number of distinct elements (or
constructs) that constitute a given diagramming technique. Rossi and Brinkkemper (1996) formulated seventeen distinct
definitions relating to the structural complexity of each diagramming technique. Using all available constructs (the
metamodel component); these definitions form an estimate of the total structural complexity of the diagramming technique,
which this research terms theoretical complexity.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 1671

Erickson et al. Theoretical and Practical Complexity of UML

Structural complexity is a part of the structural characteristics of the information or modeling system, and for this research
refers to the elements, or constructs that comprise a given diagramming technique. These constructs would include meta-
construct types such as objects (classes, and interfaces), properties (class names, attributes, methods, and roles), and
relationships and associations (aggregations generalizations, specializations).

Figure 4 (Erickson and Siau, 2003)

For example, the class diagram in Figure 4 uses a number of constructs, in presenting the information it represents. There are
six classes, and one interface. The classes each have a name, attributes, and methods. In addition, the class has relationships
with other classes, and also with the Interface. However, the diagram does not make use of all the constructs that could be
used in a class diagram. The Rossi and Brinkkemper metrics serve as the operational definition (as well as a measure) of the
structural complexity of diagrams, which we propose represents theoretical complexity. The current research proposes to
define practical complexity as a subset of the Rossi and Brinkkemper metrics, based on the practitioner identification, and
artifact-based validation of the UML kernel.

RESEARCH QUESTION

Siau et al. (2002) provided evidence indicating that the theoretical metrics (total structural complexity) might not be
representative of the complexity practitioners’ face when using UML class and use case diagrams. This result motivates the
research question:

Can an alternative set of complexity measures based on practitioner usage patterns be defined?

In other words, instead of including all the constructs available in a modeling method in computing the method complexity,
the proposed research will base the complexity computation based on the usage patterns of the modeling constructs. The
research objectives for this study are, (i) determine the most commonly used constructs in the UML diagrams and, (ii) use the
results to define or identify an alternative to the established metrics (i.e., theoretical complexity metrics), and propose that
they represent a kernel of UML (i.e., practical complexity metrics).

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 1672

Erickson et al. Theoretical and Practical Complexity of UML

RESEARCH METHODOLOGY

The research investigates practical complexity, and the formulation of a UML kernel by means of a Delphi study. Delphi
studies attempt to form a reliable consensus of a group of experts in a specialized area (Ludwig, 1997). The approach is a
process that focuses on collecting information from the expert group though a series of questionnaires, and providing
feedback to the group between questionnaires. Because the research is aimed at identifying the complexity that people face
when using UML, a Delphi study composed of a group of practitioners with at least two years of UML experience form a
better platform than other approaches (e.g., survey or case study) for identifying a UML kernel. Usually the group of experts
is geographically dispersed, as is the case for many of the subjects participating in this research (i.e., the different
organizations and people involved). The questionnaires are designed to allow the collection of expert opinions on the
subject, and then to facilitate the refinement or focus of the subsequent versions to narrow in on a consensus.

PRELIMINARY RESULTS

Based on respondent ratings, the final diagram importance ratings are presented in Table 2 below. The experts rated relative
diagram importance on a 5-point Likert type scale with 1 being the most important and 5 the least important. The top 4
diagrams in terms of mean rating scores were also selected by the respondents to be included in the kernel. The next highest
rated diagram in terms of importance attained only a 31% consensus level, indicating the respondents clearly distinguished
between important and less important diagrams, and kernel and non-kernel diagrams. Results are available for the nine
diagrams individually, but are not presented here because of space limitations.

The results (see Table 1) indicate that practitioners clearly distinguish between what they consider to be the more important
and less important UML diagrams (and diagram constructs). This can be thought of as a measure of practical complexity,
which practitioners could use as a starting point to train UML newcomers. From a research perspective, the research results
could be used to further the development of practical complexity measures, and to verify the results by examining
implementation artifacts in various organizations and across system types. The results could also be helpful in the future
development of UML.

Construct Mean Standard
Deviation

% “Yes” for
Kernel

Class 1.00 0.00 100.0%
Use Case 1.61 0.79 90.9%
Sequence 1.73 0.70 95.5%
Statechart 1.81 0.51 100.0%

Component 2.31 0.70 31.8%
Activity 2.41 0.55 27.3%

Collaboration 2.57 0.87 22.7%
Deployment 2.69 0.75 9.1%

Object 3.00 0.86 9.1%
Table 1 UML Diagram results (Shading indicates kernel)

DISCUSSION

If we include just the first 4 diagrams in the kernel, and assume that it represents the most commonly used diagrams in UML,
then the structural complexity (Briand, Wüst, and Lounis 1999) and related cognitive complexity that users experience should
be more manageable than if the users were commonly using all of the diagrams, and all of their related constructs to model
systems. If all of the constructs associated with the non-kernel items also “disappear”, that should represent a significant
(non-statistical) reduction in complexity. This research identifies 116 total constructs in the nine primary UML diagrams,
and 58 of those are included in the top 4 importance rated diagrams. Of those 58 constructs, 31 were identified by
respondents as kernel items, and would make up the UML kernel. This results in 26.7% of the total number of UML
constructs comprising the respondent identified UML kernel.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 1673

Erickson et al. Theoretical and Practical Complexity of UML

While a smaller number of constructs may be an indicator of less complexity, using the Rossi and Brinkkemper metrics
should provide a more concrete analysis of the kernel. This analysis is currently in progress and will be available by the
conference date.

REFERENCES

1. Anderson, J., and Lebiere, C. (1998) The Atomic Components of Thought, Lawrence Erlbaum Associates.

2. Briand, L., Wüst, J., and Lounis, H. (1999c) “A Comprehensive Investigation of Quality Factors in Object-Oriented

Designs: An Industrial Case Study”. 21st International Conference on software Engineering, Los Angeles, CA. pp 345-
354.

3. Dobing, B. and Parsons, J. (2000) Understanding the Role of Use Cases in UML: A Review and Research Agenda,

Journal of Database Management, Vol. 11, No. 4. pp. 28 – 36.

4. Erickson, J., Siau, K. (2003) "Unified Modeling Language? The Good, The Bad, and The Ugly," in: Toppi, H., Brown,

C. (eds.), IS Management Handbook, pp483-497, Auerbach.

5. Fenton, N. and Pfleeger, S. (1997) Software Metrics A Rigorous and Practical Approach, PWS Publishing, pp. 243-278.

6. Kobryn, C. (2002) “What to Expect from UML 2.0”, SD Times, accessed 10/22-2002.

7. Ludwig, B. (1997) “Predicting the Future: Have you considered using the Delphi Methodology?”, Extension Journal,

October, Vol. 35, No. 5.

8. Miller, G. (1956) “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information”, The Psychological Review, Vol. 63 No. 2, March.

9. Rossi, M. and Brinkkemper, S. (1996) “Complexity Metrics for Systems Development Methods and Techniques,”

Information Systems, Vol. 21, No. 2 pp. 209-227.

10. Siau, K., and Cao, Q. (2001) “Unified Modeling Language (UML) – A Complexity Analysis”, Journal of Database

Management, Vol. 12, No. 1, pp 26-34.

11. Siau, K., Erickson, J., and Lee, L. (2002) “Complexity of UML: Theoretical versus Practical Complexity”, Workshop

on Information Technology and Systems (WITS). Barcelona, Spain, December 16-18.

12. Weyuker, E. (1988) “Evaluating Software Complexity Measures”, IEEE Transactions on Software Engineering, Vol. 14,

No. 9, pp 1357-1365.

13. Zendler, A., Pfeiffer, T., Eicks, M., and Lehner, F. (2001) “Experimental Comparison of Coarse Grained Concepts in

UML, OML and TOS”, Journal of Systems and Software, Vol. 57, pp 21-30.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 1674

	Theoretical and practical complexity of UML
	Citation

	tmp.1731312127.pdf.aE2Pb

