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Abstract: With the rapid development and popularization of mobile and wireless communication technologies, on-demand 

food delivery (OFD) platforms have been able to connect restaurants, customers, and drivers in real time, drastically changing 

dining and food delivery services. Motivated by the critical need for supply and demand management in the on-demand food 

delivery market, we focus on the optimization of customer service area and driver dispatch area for on-demand food delivery 

services. Specifically, for each restaurant, the platform needs to decide the (1) customer service area (CSA), i.e., the surrounding 

area within which customers can see the restaurant’s information and order food from it; and (2) driver dispatch area (DDA), 

i.e., the surrounding area within which drivers can see the restaurant’s information and deliver orders from it. Hence, our focus 

is on the area sizing optimization problem that enables the platform to dynamically balance supply and demand by adjusting 

the radii of its customer service and driver dispatch areas. Leveraging a real dataset from a food delivery platform, we propose 

a data-driven optimization framework that combines discrete choice models for demand estimation, machine learning methods 

for order delivery time prediction, and mathematical programming for the optimization of CSA and DDA areas. The objective 

is to maximize the total number of orders served with a service level requirement on order delivery time. We integrate the model 

tree prediction model for delivery time prediction into our optimization model, resulting in a Mixed Integer Quadratically 

Constrained Program (MIQCP), that can be solved efficiently. Extensive experiments using real-world data demonstrate that 

the proposed framework outperforms several benchmarks in practice. 

 

Keywords: On-demand food delivery, Customer service area, Driver dispatch area, Data-driven optimization 

 

1. Introduction 

Advanced technologies such as smartphones and wireless communications are transforming transportation-enabled 

urban services in many ways at a rapid pace. The emergence and success of on-demand passenger and logistics service platforms 

is one of the most notable innovations (Agatz et al., 2024). As one of the key innovations, on-demand food delivery platforms 

such as Uber Eats, DoorDash, Grab Food, and Meituan that provide door-to-door food delivery services have achieved great 

success in the past few years, especially accelerated by the COVID-19 pandemic. For example, Grab Food, Southeast Asia’s 

largest food delivery service provider in 480 cities in 8 countries, has a GMV of $7.6 billion with a 29% annual increase in 2021. 

Meituan, the largest on-demand food delivery platform in China, serves more than 30 million orders daily and generates a profit 

of 4.71 billion RMB in 2020. According to a report by McKinsey & Company (2021), the food delivery market has doubled 

during the COVID-19 pandemic with a market value of over $150 billion in the US. 
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Fig. 1. Illustration of the on-demand food delivery service.

Fig. 2. The distribution of (re-scaled) order numbers across hours.

As shown in Fig. 1, there are three parties other than the platform in the on-demand food delivery market: customers, restaurants,
and drivers. Customers choose and order food from a restaurant nearby listed on the platform. Once an order is placed, the platform
notifies the restaurant to prepare food and broadcasts/dispatches the order and delivery task information to drivers waiting nearby.
A driver then picks up food from the restaurant and delivers it to the customer.

In a typical food delivery service, demand and supply are both time-dependent, erratic, and uncertain. For example, using the
real data from a crowd-sourcing food delivery platform, Fig. 2 demonstrates the distributions of hourly orders from 09:00 to 21:00.
We can see that the order volume increases greatly during the peak period before noon and evening, resulting in a lack of drivers and
longer delivery time. Customers still have high expectations for delivery time and may abandon the platform and seek alternatives if
the delivery time is too long. For such platforms, it is very challenging and requires great efforts to balance time-dependent supply
and demand.

To coordinate the balance between supply and demand in on-demand platforms, a common approach is dynamic pricing (Taylor,
2018; Feldman et al., 2018; Yang et al., 2020b; Bahrami et al., 2023). When a restaurant is busy with a large number of orders,
the platform could raise the delivery fee to discourage customers from ordering from that restaurant and also encourage drivers
to deliver orders for that restaurant. Another approach is to adjust the restaurant’s customer service area (Yildiz and Savelsbergh,
2019b; Ulmer et al., 2022; Ding et al., 2020). If the number of orders is too high and the delivery time is too long (i.e., delivery
supply is less than demand), the platform could decrease the restaurant’s service area to reduce demand; in contrast, if the number
of orders is too low and the delivery time is short, (i.e., delivery supply is more than demand), then the service area can be enlarged
to serve more customers.

Both of the aforementioned approaches only concentrate on the demand side—the management of customer orders, and ignore
the supply side (the drivers). In this paper, we propose and focus on a new approach to balance supply and demand — by adjusting
the customer service area and driver dispatch area simultaneously. Specifically, for each restaurant in a specified operating time
horizon, the platform decides the (1) customer service area (CSA), i.e., the radius of the surrounding area within which customers can
see the restaurant’s information and order food from it; and (2) driver dispatch area (DDA), i.e., the radius of the surrounding area
within which drivers can see the restaurant’s information and deliver orders from it. Dynamic modifications to the driver dispatch
area (DDA) of a restaurant hold significant business importance. Long pickup distances adversely impact both the order delivery
time and driver utilization. In practical scenarios, the restaurant’s order demand fluctuates dynamically, particularly during midday
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Fig. 3. Restaurant area sizing optimization problem in the on-demand food delivery service.

and evening peak hours. Ensuring timely delivery necessitates the potential expansion of the DDA, which could attract additional
drivers to prevent delays and ensure timely deliveries. On the contrary, during off-peak hours, the adjustment of a restaurant’s DDA
allows for effective regulation of the number of drivers allocated to serve that restaurant. Assigning orders to drivers within a limited
DDA radius aids in controlling the distance covered by drivers. When a driver is assigned a delivery significantly distant from their
current location, it may result in extended delivery times and heighten the prospect of order delays, ultimately casting a negative
effect on customer experience.

This consideration motivates us to consider an optimization problem to coordinate the supply and demand simultaneously,
which we refer to in this study as the Restaurant Area Sizing Optimization (RASO) problem. We propose a data-driven optimization
framework that determines the optimal radius of the customer service area and driver dispatch area. The objective is to maximize
the total number of orders served while ensuring a service level requirement on order delivery time.

Finding the optimal radii of CSA and DDA is challenging. As shown in Fig. 3, while the radius of CSA affects the number of orders
(i.e., demand side) and the radius of DDA affects the number of potential delivery drivers (i.e., supply side) for each restaurant,
the interactions of demand and supply will collectively affect the order delivery time in a complicated way, owing to the high
complexity in dynamic order-dispatching and driver-routing. To address these challenges, we first study the relationship between
the radius of CSA and the number of orders for each restaurant. Second, we examine the number of drivers, which depends on the
radius of the DDA. Third and more importantly, we explore how various factors related to demand, supply, and others, affect the
order delivery time. Moreover, in practical scenarios, due to the flexibility of drivers in delivering orders from various restaurants,
those operating within the driver dispatch area (DDA) of one restaurant may not exclusively serve that restaurant, especially if they
are also within the DDA for other restaurants. This introduces additional complexity to the problem. In the context of this research,
our focus is on treating restaurants within a geographical neighborhood as a cluster, where we assume each restaurant within the
cluster share a common CSA and DDA, and that there is no dependency across clusters.

In summary, the main contributions of this paper are summarized as follows:

• We propose and solve an innovative operational problem, i.e., the Restaurant Area Sizing Optimization (RASO) problem for
on-demand food delivery services, which determines the optimal radii of CSA and DDA for restaurants simultaneously to
balance supply and demand, with the objective of maximizing the number of orders served.

• Specifically, we propose a data-driven optimization framework to solve the RASO problem. On the demand side, a discrete
choice model is developed to characterize the relationship between customer order behavior and customer-restaurant distance,
and then estimate the number of orders for the restaurants. On the supply side, several machine learning models are proposed
to predict the order delivery time with varying sizes of CSA and DDA.

• We integrate a model tree prediction of order delivery time and formulate the RASO problem as a Mixed Integer Quadratically
Constrained Program (MIQCP), which can be solved efficiently.

• We perform a set of extensive numerical experiments using a real-world dataset. The computational study demonstrates that
the proposed framework can significantly improve the number of orders served and outperform benchmark methods.

The reminder of the paper is organized as follows. Section 2 reviews related literature. Section 3 describes the research problem.
Section 4 presents the data-driven framework for joint optimization of CSA and DDA. Section 5 presents the real data, simulator,
and the performance of the customer demand prediction and order delivery time prediction. Section 6 presents experimental results
of the proposed model and other benchmark methods. Finally, we conclude and discuss future research in Section 7.

2. Literature review

Our work is closely related to three streams of literature: (1) supply and demand management for on-demand platforms, (2)
order-dispatching and driver-routing, and (3) delivery time prediction.

Supply and demand management for on-demand platforms. Customer demand and driver supply are two sides of on-demand
platforms, which are usually unbalanced. Many scholars paid attention to supply and demand management in food delivery (Wang,
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2022; Liang et al., 2023) and ride-sourcing markets (Wang and Yang, 2019), including service area management and dynamic
pricing.

In the area of service area management, to the best of our knowledge, Yildiz and Savelsbergh (2019b) are the first to analyze
how service area size impacts the profit of a delivery platform. The authors derive a functional dependency between revenue and
service area size and other parameters, such as customer arrival rate, revenue per customer, compensation per delivery and miles
traveled, and customer satisfaction. Mankad et al. (2019) also investigates how the service area, which is called the ‘‘service outlet’’,
affects a store’s supply and demand. Ulmer et al. (2022) study the dynamic service area sizing problem in an urban delivery and
model it as a Markov Decision Process, and propose a value function approximation method to decide the radius of the customer
service area. Auad et al. (2020) study the customer service area problem and focus on matching the levels of supply and demand.
A Mixed Integer Programming (MIP) model is proposed to determine the optimal service radius that maximizes the number of
orders served. Ding et al. (2020) study restaurant delivery scope problem for restaurants using machine learning algorithms to
rank potential delivery scopes and then combinatorial optimization to select the delivery scope. In the on-demand ride-sourcing
market, Yang et al. (2020a) investigate the optimal matching radius with an objective of enhancing system efficiency in terms of
passenger waiting time, vehicle utilization, and matching rate.

In the area of surge pricing, Tong et al. (2020) study the dynamic pricing strategy for Online-to-Offline (O2O) on-demand food
service in China from both theoretical and empirical perspectives. They demonstrate that platforms that employ dynamic pricing
strategies have much more demand than platforms that use static pricing systems. MacKay et al. (2022) provide an empirical
investigation of the adoption of a dynamic pricing algorithm in an environment with time-varying demand and firm capacity
restrictions in restaurants. They find that dynamic pricing can reduce demand volatility, which results in an increase in the
proportion of transactions during periods of low demand. Bai et al. (2019) propose a pricing framework for an on-demand service
platform, and examine how various factors affect the optimal price, wage, and commission with an objective of maximizing the
platform’s profit or social welfare. Numerous studies have investigated the implementation of pricing strategies to regulate supply
and demand in ride-sourcing markets. Bimpikis et al. (2019) examine spatial pricing discrimination in a ride-sharing platform,
emphasizing the influence of demand patterns on pricing, profits, and consumer surplus. Zhu et al. (2021) propose a Mean-field
Markov Decision Process to depict the dynamics in ride-sourcing systems with mixed agents for spatial–temporal subsidies to solve
the supply–demand imbalance issue. Liu et al. (2023) investigates the impacts of the prevailing threshold-based driver incentives
on ride-sourcing drivers’ labor supply with an extensive ride-sourcing dataset. Extensive relevant research exists on the pricing and
incentive challenges within the ride-sourcing market, spanning various perspectives, such as pricing for pooling services (Ke et al.,
2020; Zhang and Nie, 2021; Bahrami et al., 2022; Ke et al., 2022; Liu and Ouyang, 2023); pricing for platform’s regulations (Li
et al., 2022; Vignon et al., 2023); driver incentives and multi-homing (Sun et al., 2019; Angrist et al., 2021; Guo et al., 2023); and
third-party platform-integration (Zhou et al., 2022).

Order dispatching and driver routing. Order-dispatching is important for on-demand transportation services such as ride-
hailing, ride-sharing, and food delivery. For ride-hailing, the task is dispatching vehicles to serve passengers; for food delivery, the
task is dispatching drivers with recommendations of delivery routes to deliver food within a promised time period.

For recent studies on ride-sharing, the reader may refer to Agussurja et al. (2019), Qin et al. (2020), Lyu et al. (2024), Luo et al.
(2023). For food delivery, the order-dispatching and driver-routing problem is formalized as meal delivery routing problem (MDRP)
in Reyes et al. (2018), which is a variant of dynamic pickup and delivery problem (DPDP) that received much attention for the
past decades (for example, Psaraftis et al. (2016), Du et al. (2023)). In a recent study on MDRP, Yildiz and Savelsbergh (2019a)
formulate the problem assuming that the platform has perfect information about order arrivals and solve it using a combined column
and row generation approach. Ulmer et al. (2021) formulate the problem as a stochastic dynamic pickup and delivery problem using
a route-based Markov Decision Process (MDP). An anticipatory customer assignment policy is proposed for order-dispatching and
vehicle routing. Weng and Yu (2021) aim to improve the working conditions of drivers by order-dispatching algorithm design. A
queuing-model-based algorithm is proposed with the objective of minimizing the waiting time of drivers while ensuring a good
user experience. In addition, machine learning methods have been employed in food delivery order-dispatching and driver-routing
problems, such as (Bozanta et al., 2022; Gao et al., 2021; Chen et al., 2022).

Delivery time prediction. Delivery time prediction is a variant of the ETA (Estimated Time of Arrival) problem (Wang et al.,
2014, 2018, 2019). It estimates travel time between multiple points, which is often approximated by analytical functions (such as the
ideas proposed by Beardwood et al. (1959), Wang and Odoni (2016), Chen and Wang (2018)), or predicted using machine learning
and deep learning models. Compared with the traditional ETA problem, delivery time prediction in on-demand food delivery services
is more challenging since the delivery time is endogenously affected by the demand and supply in the market.

Only limited work focuses on order delivery time prediction in food delivery. Liu et al. (2021) develop a data-driven framework
that integrates travel time prediction and order-dispatching for a single restaurant. Hildebrandt and Ulmer (2021) propose two
methods: an offline method that predicts order arrival time based on state features by means of gradient-boosted decision trees
(GBDTs), and an offline-online method that exploits an offline supervised learning approximation with a deep neural network to
perform detailed online simulations in real-time. Gao et al. (2021) discuss a time prediction module that simultaneously predicts
order pickup time from the restaurants, driving time on the road, and delivery time to the customer’s location. In the context of
online retailing, Salari et al. (2022) develop a data-driven framework to predict the distribution of order delivery time and set the
delivery time promised to customers using tree-based machine learning models.

In Table 1, we present an overview of the relevant literature that focuses on the area sizing optimization problem for same-day
delivery services (SDD) and food delivery services (FD). The table delineates the specific characteristics and features explored in the
papers: ‘‘Objective’’ specifies the objective function employed in the optimization model; ‘‘Decision’’ indicates the decision variables
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Table 1
Literature on area sizing optimization problem in food and same-day delivery.

Paper Objective Decision Methodology Approach Instance

SDD Ulmer et al. (2022). Served orders Service Radius MDP CA + VFA ×
Banerjee et al. (2023). Served orders Service Radius IP Rolling horizon + CA ✓

FD Yildiz and Savelsbergh (2019b). Total profit Service Radius IP AfQ + FOA ×
Auad et al. (2020). Served orders Service Radius IP Solver ×
Ding et al. (2020). GMV Candidate Service Scopes IP ML + Heuristics ✓

Proposed RASO-MT Model. Served orders Service & Dispatch Radius MIQCP MNL + ML + Solver ✓

Note. RASO-MT: Restaurant Area Sizing Optimization with Model Tree; GMV: Global Merchandise Volume; MDP: Markov Decision Process; IP: Integer
Programming; CA: Continuous Approximation; VFA: Value Function Approximate; AfQ: Approximation for Queueing; FOA: First-Order Algorithm; MNL:
Multinomial Logit Model; ML: Machine Learning.

to be optimized; ‘‘Methodology’’ identifies the modeling method used; ‘‘Approach’’ identifies the primary approaches employed to
solve the model; ‘‘Instance’’ denotes whether the experiments conducted in the respective papers employed real-world datasets as
instances for evaluation.

In this paper, we present the first work to jointly optimize the customer service area and driver dispatch area, which requires
demand estimation and order delivery time prediction. This is a new lever for balancing supply and demand in food delivery services.

3. Problem description

In this section, we present a formal description of the RASO problem for on-demand food delivery service, then present a simple
example for illustration.

3.1. Problem statement

In the context of food delivery services, each restaurant is associated with a customer service area (CSA), denoted as 𝐴𝑐 , which
represents the geographical region within which customers can view the restaurant’s information and place food orders. Each
restaurant is also associated with a driver dispatch area (DDA), denoted as 𝐴𝑑 , wherein drivers can access the restaurant’s information
and fulfill delivery orders. Both the CSA and DDA are determined by the platform and can be adjusted dynamically. To begin, we
consider a food delivery system consisting of a cluster of restaurants , wherein a fleet of capacitated and homogeneous drivers
 = {𝑑1, 𝑑2,… , 𝑑𝑚,…} delivers a set of orders  = {𝑜1, 𝑜2,… , 𝑜𝑛,…} that arrive starting from the initiation of the operating horizon
 .

Customer Orders: Each order 𝑜 ∈  can be described as a tuple (𝑜+, 𝑜−, 𝐿𝑜), where 𝑜+ denotes the pickup location (restaurant),
𝑜− represents the delivery location (customer), and 𝐿𝑜 indicates the promised delivery time (all orders have a guaranteed delivery
time, e.g., 45 min). We assume that the order preparation time varies based on the restaurant and follows a Gamma distribution,
a topic further discussed in Section 5.2. Customers have the option to cancel their orders if they fail to secure a driver within a
specified time frame.

Drivers: The system comprises a total number of  homogeneous drivers. Each individual driver 𝑑 ∈  possesses a service
capacity denoted as 𝑝 (representing the maximum number of orders they can carry). Drivers’ initial locations are influenced
by multiple factors, which are beyond the scope of this model. In practice, areas with a high volume of orders tend to attract
more drivers. Therefore, in the simulation and evaluation presented in Sections 5 and 6, we assume that drivers’ initial locations
correspond to the distribution of customer order locations.

Operating Horizon, CSA and DDA: The initiation of the operating horizon  is denoted by 𝑡 = 1, and its conclusion, signifying
the end of the operating, is indicated as 𝑡 = |𝑇 |. At the commencement of each time period 𝑡 ∈  , the platform is required to make
three decisions: (1) determining the radius of the CSA, denoted as 𝜌𝑐 , which directly influences the demand for each restaurant;
(2) specifying the radius of the DDA, denoted as 𝜌𝑑 , which significantly impacts the delivery supply for each restaurant; and (3)
establishing the method for dispatching orders to available drivers for delivery. For each time period 𝑡 ∈  , the platform has the
option to establish the radii 𝜌𝑐 and 𝜌𝑑 and subsequently perform specific multiple order-dispatching in batches.

The entire decision-making process in the Restaurant Area Sizing Optimization (RASO) can be summarized as follows: At the
initiation of each RASO decision time 𝑡, the platform first determines the radius 𝜌𝑐 for the CSA, represented as 𝐴𝑐 , and the radius 𝜌𝑑
for the DDA, denoted as 𝐴𝑑 . During time period 𝑡, at each order-dispatching decision time, the platform receives 𝑡 orders within
𝐴𝑐 for each restaurant and observes a set of drivers 𝑡 within 𝐴𝑑 for each restaurant. Subsequently, the platform makes decisions
regarding the dispatch of orders to drivers. These dispatched decisions lead each driver 𝑑 ∈  to implement a delivery route 𝖱𝖳𝑑 ,
defined as a sequence of visiting locations, based on their ongoing carrying orders 𝛺𝑑 and newly dispatched orders 𝑂𝑑 . In the event
that an order 𝑜 ∈  cannot find an available driver, it will be held until the next dispatching time unless it is cancelled by the
customer. These decisions are made iteratively until the end time |𝑇 | of the operating horizon  . In order to describe the problem
more clearly, all variables and parameters related to the restaurant will be added with the index 𝑟 in Section 4 and Section 5.



6

J. Yang et al.

Fig. 4. Example of a restaurant’s (a) customer service area and (b) driver dispatch area.

Table 2
Notation for the restaurant area sizing optimization problem.
Sets:
 Set of Restaurants
 Set of orders
 Set of drivers
 Planning horizon;  =

{

1, 2,… , |𝑇 |
}

Input parameters:
𝐿𝑜 Promised delivery time for order 𝑜
𝜖max A threshold predetermined as upper bound for average order delay
𝜌min
𝑐,𝑟 , 𝜌

max
𝑐,𝑟 Minimum and maximum allowed radius of restaurant 𝑟’s customer service area (CSA)

𝜌min
𝑑,𝑟 , 𝜌

max
𝑑,𝑟 Minimum and maximum allowed radius of restaurant 𝑟’s driver dispatch area (DDA)

Decision variables:
𝜌𝑐,𝑟 Radius of customer service area (CSA) of restaurant 𝑟
𝜌𝑑,𝑟 Radius of driver dispatch area (DDA) of restaurant 𝑟
Intermediate variables:
𝑂𝑟(𝜌𝑐,𝑟) Function, the output is the number of prospective orders of restaurant 𝑟
𝑂𝑟(𝜌𝑐,𝑟 , 𝜌𝑑,𝑟) Function, the output is the total number of served orders of restaurant 𝑟
𝐿𝑟(𝜌𝑐,𝑟 , 𝜌𝑑,𝑟) Function, the output is the average delivery time for served orders of restaurant 𝑟

3.2. Example

The impact of the radius 𝜌𝑐 of the CSA on demand, exemplified by the number of orders received by a restaurant, and the
influence of the radius 𝜌𝑑 of the DDA on supply, demonstrated by the number of available drivers for the restaurant, is illustrated in
Fig. 4. In Fig. 4(a), when the CSA radius is 𝜌𝑐 , only 2 orders are expected to arrive within the CSA (colored in gray), while 6 drivers
are available within the DDA (colored in orange). The estimated demand is considerably lower than the available service capacity,
suggesting a potential benefit in increasing the CSA radius to attract more orders for that restaurant, for instance, expanding it to
𝜌′𝑐 to accommodate 9 expected orders. In Fig. 4(b), when the DDA radius is 𝜌𝑑 , 9 orders are expected within the CSA, but only 1
driver is available within the DDA. The service capacity is significantly lower than the estimated demand, indicating the platform’s
advantage in increasing the DDA radius to attract more available drivers for that restaurant, for example, extending it to 𝜌′𝑑 to
include 6 drivers.

4. Solution method

This section presents the optimization framework for the RASO problem. We begin by introducing the main steps and the master
optimization model in Section 4.1. Subsequently, we delve into customer order estimation on the demand side in Section 4.2, order-
dispatching algorithms, and service operation in Section 4.3, and order delivery time prediction in Section 4.4. We present a specific
Mixed Integer Quadratically Constrained Programming (MIQCP) model in Section 4.5, incorporating a model tree prediction for
order delivery time. Lastly, we discuss a possible method to consider overlapping service areas for multiple restaurants in Section 4.6.
Important notation is summarized in Table 2.

4.1. Framework and optimization model

We present a data-driven optimization framework encompassing customer demand estimation, order-dispatching, order delivery
time prediction, and optimization of customer service and driver dispatch areas. The framework is depicted in Fig. 5.

First, delivery time prediction is depicted on the right. Based on real-world data concerning historical orders and deliveries,
the key steps for delivery time prediction are as follows: (1) generating instances with various CSA and DDA radii, (2) extracting
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Fig. 5. Optimization framework for restaurant area sizing optimization problem.

relevant features from instances to predict delivery times, (3) simulating order deliveries using a predefined dispatch algorithm to
obtain order delivery times as label data, and (4) training supervised machine learning models for delivery time prediction.

Next, customer order estimation is presented on the left. Initially, we calculate the distance between customers and restaurants,
using it as an input feature to develop a customer choice model. This model allows us to investigate the relationship between
customer order behavior and the distance to the restaurant. Subsequently, we compute the probability of a customer placing an
order and estimate the total number of prospective orders for each restaurant.

The central illustration of the main optimization framework follows. At the beginning of time period 𝑡, we initiate the process
with the collection of essential information, such as the locations of customers and drivers. Subsequently, we utilize our proposed
data-driven approaches to develop two models: one for estimating customer order demand and the other for predicting delivery
times. Through the integration of the estimation and prediction models with our proposed optimization model, we can effectively
solve the RASO problem. Consequently, we can determine the optimal radii of the CSA and DDA for restaurants, thereby achieving
a balance between supply and demand. The dispatch decisions result in updated delivery routes for each driver, with each driver
having their designated route.

Specifically, we propose a master optimization formulation for the RASO problem. Our formulation focuses on a single time
period, and it can be easily extended to multiple time periods using the rolling horizon methodology. The primary goal from the
platform’s perspective, as expressed in objective (1), is to maximize the number of served orders while guaranteeing a satisfactory
level of order delivery time. More precisely, the platform aims to ensure that the order delivery delay for each restaurant 𝑟 ∈ 
in any time period 𝑡 ∈  remains below a predetermined threshold 𝜖𝑚𝑎𝑥 (which could be 0 by default), as stipulated in constraint
(2). Here, we assume that all orders have the same promised delivery time. The selection of the CSA and DDA radii occurs within
practically permissible ranges, as indicated by constraints (3)–(5).

[𝐑𝐀𝐒𝐎] max
𝜌𝑐,𝑟 ,𝜌𝑑,𝑟

𝑂𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟), (1)

s.t. 𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) − 𝐿𝑜 ≤ 𝜖max, (2)

𝜌min
𝑐,𝑟 ≤ 𝜌𝑐,𝑟 ≤ 𝜌max

𝑐,𝑟 , (3)

𝜌min
𝑑,𝑟 ≤ 𝜌𝑑,𝑟 ≤ 𝜌max

𝑑,𝑟 , (4)

𝜌𝑐,𝑟, 𝜌𝑑,𝑟 ∈ R+. (5)
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In each time period 𝑡 ∈  , the decision variables 𝜌𝑐,𝑟 and 𝜌𝑑,𝑟 represent the radii of the restaurant’s CSA and DDA, respectively.
The function 𝑂𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) quantifies the total number of successfully delivered orders from restaurant 𝑟 and represents the count of
served orders. The function 𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) calculates the average delivery time for the served orders from restaurant 𝑟. The primary
challenges in solving the RASO problem are twofold: firstly, achieving accurate approximation of the objective function 𝑂𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟)
through a closed-form formula, and secondly, accurately approximating the delivery time 𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) and effectively integrating it
into the optimization formulation. In reality, both 𝑂𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) and 𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) are challenging to estimate or express mathematically,
as they depend on the complex interplay between supply and demand, and are undoubtedly influenced by decisions 𝜌𝑐,𝑟 and 𝜌𝑑,𝑟
simultaneously. To address these challenges, we introduce a data-driven approach to approximate function 𝑂𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) based on
real-world data. Additionally, we utilize machine learning models to derive the optimal representation of function 𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟). The
details of our approach are elaborated in the subsequent subsections.

4.2. Customer order demand estimation

We begin by discussing the estimation of customer order demand. Customers are notably sensitive to the restaurant’s proximity
on the demand side. Longer distances from the restaurant tend to lead to extended delivery times, thereby reducing customers’
willingness to place orders. The objective is to understand the relationship between the number of prospective orders 𝑂𝑟(𝜌𝑐,𝑟) and
the radius of CSA 𝜌𝑐,𝑟 while taking into account customers’ order behavior. In particular, we employ a multinomial logit (MNL)
model to investigate how the distance between a customer’s location and the restaurant influences their order behavior.

Customer choice set : From a customer’s perspective, they have three choices: to order from restaurant 𝑟, to order from any other
restaurant, or not to order on the platform at all. To represent this customer choice, we introduce a binary decision variable 𝑧𝑖,𝑟,
which signifies the order behavior for each restaurant:

𝑧𝑖,𝑟 =

{

1, if customer 𝑖 place an order at restaurant 𝑟,
0, if customer 𝑖 does not place an order at restaurant 𝑟.

(6)

The variable 𝑈𝑖,𝑟 denotes the utility experienced by customer 𝑖 when placing an order at restaurant 𝑟. In real-world scenarios,
𝑈𝑖,𝑟 relies on several factors, including the restaurant’s cuisine style, meal price, delivery fee, rating, customer preferences, and the
distance between the customer and the restaurant. This paper assumes the following expression for 𝑈𝑖,𝑟:

𝑈𝑖,𝑟 = 𝑉𝑖,𝑟 + 𝜷𝑟 ⋅ 𝐱𝑖,𝑟 + 𝜖𝑖,𝑟, (7)

where 𝐱𝑖,𝑟 = (𝑥𝑖,𝑟,1, 𝑥𝑖,𝑟,2,… , 𝑥𝑖,𝑟,|𝑀|

) represents the factors that relative to the customer restaurant selection, 𝜷𝑟 = (𝛽𝑟,1, 𝛽𝑟,2,… , 𝛽𝑟,|𝑀|

)𝑇

are the restaurant choice parameters, the dimension is |𝑀|. The value 𝑉𝑖,𝑟 is a constant representing the location utility1 when 𝐱𝑖,𝑟 = 0,
while 𝜖𝑖,𝑟 captures numerous unknown or unobservable factors treated as random variables following the Gumbel distribution. Based
on the latest industry study conducted by Nextbite (2021), 77% of surveyed customers identified delivery time as the most crucial
factor when selecting an online restaurant for delivery. The primary objective of this paper is to examine how a restaurant’s CSA
(radius) affects the volume of restaurant orders (demand). Generally, the distance between a customer and a restaurant plays a
significant role in food delivery time and subsequently influences customer preferences for restaurant selection. To simplify the
representation, we substitute the vector of factors 𝒙𝑖,𝑟 and 𝜷𝑟 with variable 𝑥𝑖,𝑟 representing the distance between the restaurant
and the customer, along with a corresponding constant 𝛽𝑟, to model this influence. Intuitively, the farther the customer is from the
restaurant and the longer the delivery time, the less inclined the customer will be to place an order (i.e., 𝛽𝑟 < 0).

Then, the probability that customer 𝑖 will place an order from restaurant 𝑟 is:

Pr(𝑧𝑖,𝑟 = 1) = Pr(𝑈𝑖,𝑟 > 𝑈𝑖,𝑟′ ,∀𝑟′ ≠ 𝑟)

= 𝑒𝑉𝑖,𝑟+𝛽𝑟⋅𝑥𝑖,𝑟

𝑒𝑉𝑖,𝑟+𝛽𝑟⋅𝑥𝑖,𝑟 +
∑

𝑟′ 𝑒
𝑉𝑖,𝑟′+𝛽𝑟⋅𝑥𝑖,𝑟′

.
(8)

The food delivery platform offers a vast number of restaurants, providing customers with a wide range of choices. Additionally,
the utility 𝑈𝑖,𝑟 is influenced by numerous unobservable variables, making it challenging to precisely determine its value. In such
cases where explicitly computing the denominator for each individual and alternative combination is infeasible due to the large
number of alternatives (Train, 2009), a large constant value can be employed to approximate the denominator. Consequently, we
assume a reduced form of the probability as follows:

Pr(𝑧𝑖,𝑟 = 1) ≈ 𝛼𝑟 ⋅ 𝑒
𝛽𝑟⋅𝑥𝑖,𝑟 , (9)

where 𝛼𝑟 and 𝛽𝑟 are restaurant-specific parameters. In this context, the probability is considered in its reduced form when other
factors, such as price and ratings, remain unobservable. With access to additional data, we could incorporate a greater number of
variables into both the utility function and the probability function. Assuming that the number of customers per unit area (e.g., 𝑘𝑚2)
is 𝑛𝑟, the number of orders from customers at a distance 𝑥 from restaurant 𝑟 can be expressed as follows:

𝑂𝑟(𝑥) = 2𝜋𝑛𝑟𝛼𝑟𝑒𝛽𝑟𝑥𝑥. (10)

1 The city of Singapore is divided into five districts. In our analysis, we make the assumption that restaurants within the same district share the same location
utility 𝑉𝑖,𝑟.
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Table 3
Notation for order-dispatching.
Sets and Variables:

𝑙𝑑 Current location of driver 𝑑
𝛺𝑑 Ongoing carrying orders by driver 𝑑
𝑝remain
𝑑 Remaining capacity for driver 𝑑
𝑐𝑜,𝑑 Distance between order pickup location 𝑜+ and driver’s current location 𝑙𝑑
𝖱𝖳𝑑 Planned delivery route for driver 𝑑
pick Orders that have been dispatched and are being picked up by the drivers
avail Drivers with available capacity and in the restaurant’s DDA

Finally, defining 𝛼′𝑟 = 2𝜋𝑛𝑟𝛼𝑟, the number of prospective orders that restaurant 𝑟 can receive within its CSA (a certain radius 𝜌𝑐,𝑟)
can be given as:

𝑂𝑟(𝜌𝑐,𝑟) = ∫ 𝑃 (𝑧𝑖,𝑟 = 1) ⋅ 𝑛𝑟 ⋅ 2𝜋𝑥d𝑥

= ∫ 2𝜋𝑛𝑟𝛼𝑟 ⋅ 𝑒𝛽𝑟𝑥𝑥d𝑥

= ∫ 𝛼′𝑟 ⋅ 𝑒
𝛽𝑟𝑥𝑥d𝑥

(11)

4.3. Order dispatching and service operation

While this study does not specifically focus on order-dispatching techniques, it acknowledges the significance of dispatching
decisions throughout the entire service process. This subsection provides a brief description of the order-dispatching algorithm. The
notation used in the order-dispatching algorithm is provided in Table 3.

The following dispatching rules and assumptions are applied:
Algorithm 1 Order-Dispatching Algorithm
Input: , , , 𝛺𝑑 , 𝜌𝑑,𝑟, 𝑝remain

𝑑
Output: 𝖱𝖳′

𝑑

1: procedure Dispatch(,)
2: for 𝑑 ∈  do
3: if 𝛺𝑑 ≠ ∅ then
4: Get driver 𝑑 current location 𝑙𝑑 and delivery location 𝑜− for order 𝑜 ∈ 𝛺𝑑
5: Re-schedule the planned route 𝖱𝖳𝑑 by solving a open TSP problem with unvisited locations for carried orders 𝛺𝑑
6: Update the delivery route 𝖱𝖳𝑑

7: Initialize dispatched and being picked up orders pick = ∅
8: for 𝑑 ∈  do
9: if 𝑑 is going to pick up order 𝑜 ∈  then

10: Update pick ← pick ∪ 𝑜

11: for 𝑜 ∈  do
12: Get the order restaurant 𝑟 ∈ 
13: if 𝑜 ∈ pick then
14: Continue
15: Initialize the available drivers set avail = ∅
16: for 𝑑 ∈  do
17: Calculate the distance 𝑐𝑜,𝑑 between order 𝑜 pickup location 𝑜+ and driver 𝑑 current location 𝑙𝑑
18: Calculate the remaining capacity 𝑝remain

𝑑 for driver 𝑑
19: if 𝑐𝑜,𝑑 ≤ 𝜌𝑑,𝑟 and 𝑝remain

𝑑 ≥ 1 then
20: avail ← avail ∪ 𝑑
21: Assign order 𝑜 to driver 𝑑 ∈ avail with maximum 𝑝remain

𝑑
22: do greedy insertion
23: Insert pickup node 𝑜+ and delivery node 𝑜− to route 𝖱𝖳𝑑 at positions with minimum distance increased
24: Update 𝖱𝖳𝑑 ← 𝖱𝖳𝑑 ∪ (𝑜+, 𝑜−)
25: return new delivery plan route 𝖱𝖳′

𝑑 for 𝑑 ∈ 

• Dispatch fairness: If the number of orders carried by driver 𝑑 is large/small (i.e., 𝛺𝑑 is large/small), s/he will be
less/more likely dispatched new orders. The dispatch fairness is centered on preventing the overload of certain drivers with a
disproportionately large number of orders, while others remain underutilized. Specifically, our algorithm implements a priority
rule that gives precedence to drivers carrying the lowest number of orders at any given time. This method ensures that new
orders are more likely to be dispatched to these drivers, thereby promoting a more balanced distribution of work.
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Table 4
Features for predicting average order delivery time.
Features Definition

𝜌𝑐,𝑟 Radius of CSA of restaurant 𝑟
𝜌𝑑,𝑟 Radius of DDA of restaurant 𝑟
𝐷𝑟(𝜌𝑑,𝑟) Number of available drivers in DDA of restaurant 𝑟
𝑂𝑟(𝜌𝑐,𝑟) Number of prospective orders in CSA of restaurant 𝑟

• Order re-dispatch: Orders that have not been picked up within a specified time frame (e.g., 10 min) but have been assigned
a driver can be re-dispatched to a new driver. This rule serves to enhance the flexibility of the dispatch algorithm by allowing
for order re-dispatch, which has the potential to reduce order pickup time.

• Driver routing behavior: Following order dispatch, drivers deliver their carried orders by solving an open Traveling Salesman
Problem (TSP) to optimize their route. In this rule, we assume that drivers always follow the shortest one-way delivery travel
route from their current location to the restaurant and customer locations of assigned orders. This route is derived by solving
an open TSP, where the driver does not return to the starting location.2

• Order cancellation: If a newly generated order cannot find an available driver within a certain time (e.g., 15 min), it is
assumed that the customer becomes impatient and cancels the order. In other words, customers have the option to cancel
orders if the platform fails to find a driver within a specific time period.

To summarize, we present the rules for order-dispatching and service operations using the pseudocode in Algorithm 1.
Specifically, Lines 2 − 6 reconstruct each driver’s delivery route based on the orders they are carrying. Lines 7 − 10 list the orders
that have already been dispatched and are currently being picked up by the designated driver. Any remaining orders are dispatched
to drivers in the DDA with the largest available capacity, as demonstrated in Lines 11 − 21. Additionally, Lines 22 − 24 implement
a greedy insertion approach to incorporate new orders into the driver’s current route with minimal increase in distance. Notably,
the value of DDA radius 𝜌𝑑,𝑟 significantly impacts the number of available drivers on the supply side, subsequently affecting order
delivery times, as evident from Lines 19 and 20 in Algorithm 1. An increase in the DDA radius 𝜌𝑑,𝑟 while keeping the restaurant’s
CSA unchanged results in more available drivers on the supply side, potentially reducing order delivery times. However, a larger
DDA may also lead to longer pickup travel distances for orders, potentially increasing the overall delivery time. The estimation of
order delivery time will be discussed in the subsequent subsection.

4.4. Order delivery time prediction

This subsection focuses on estimating the order delivery time. Specifically, given the radii 𝜌𝑐,𝑟 and 𝜌𝑑,𝑟 of the CSA and DDA for a
restaurant 𝑟, our objective is to derive a mathematical representation of 𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) that effectively approximates the average order
delivery time for served orders from restaurant 𝑟. To achieve this, we adopt a data-driven approach utilizing a customized simulator
and dataset (as detailed in Section 5). By employing various supervised machine learning models, we aim to obtain closed-form
formulas for order delivery time, which can then be integrated into the RASO formulation introduced in Section 4.1.

Feature Generation For each restaurant 𝑟, Table 4 presents the features considered for predicting the average order delivery
time.

To ensure both interpretability and accuracy of the prediction model, we propose four simple features. The CSA radius (𝜌𝑐,𝑟)
and DDA radius (𝜌𝑑,𝑟) for each restaurant 𝑟 are considered. 𝐷𝑟(𝜌𝑑,𝑟) represents the platform’s supply, where a larger DDA allows
more available drivers for order dispatch, potentially reducing the order delivery time. On the other hand, 𝑂𝑟(𝜌𝑐,𝑟) represents the
platform’s demand, where a larger CSA allows more customers to place orders from the restaurant, which may increase the order
delivery times.

4.5. A mixed integer quadratically constrained programming model

After conducting feature engineering and building prediction models, the subsequent step involves selecting an appropriate pre-
diction model that aligns with the proposed RASO model. In their study, Liu et al. (2021) explored various machine learning models,
encompassing both linear and non-linear (tree-based) models, for delivery time predictions. In this paper, we comprehensively
evaluate several regression models, including ordinary least squares (OLS), ridge regression (Ridge), linear support vector regression
(SVR), model tree (Wang and Witten, 1996), classification and regression trees (Loh, 2011), and XGBoost (Chen and Guestrin, 2016).
The selection process and experimental details are presented in the following section, specifically in Section 5.4.

2 It is important to note that in real-world scenarios, due to complexities such as left turns in intersections, the actual travel distance for order delivery tends
to be equal to or greater than the travel distance derived from the open TSP solution.
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Fig. 6. Example of a model tree with ridge regression functions in the leaf nodes.

4.5.1. Model tree
In this subsection, we demonstrate how the RASO model proposed in Section 4.1 can integrate a trained machine learning model

for delivery time prediction. We explore both linear and non-linear (tree-based) models and select one that exhibits both good
prediction performance and optimization compatibility. Specifically, based on our numerical experiments with prediction models,
detailed in Section 5, we choose the model tree as the prediction model. Unlike linear models, which assume linear functional
relationships between ground truth labels and features (e.g., ordinary least squares and ridge regression), and some tree-based
models that predict feature vector values through data feature splitting based on decision rules (e.g., classification and regression
trees), the model tree combines linear regression models (e.g., ridge regression) for data feature splitting in a tree structure. Unlike
classification and regression trees, which usually predict the mean or median value of labels in each leaf node, the model tree can
fit any regression models in the leaf nodes. Formally, the model tree offers good interpretability and can capture both linear and
non-linear relationships in the data, making it a suitable choice with a limited amount of training data (Quinlan et al., 1992; Frank
et al., 1998; Gama, 2004; Potts and Sammut, 2005).

4.5.2. Linearization of model tree
Next, we demonstrate the integration of the model tree into the RASO formulation, resulting in a Mixed Integer Quadratically

Constrained Programming (MIQCP) model. The updated model is efficiently solvable using commercial optimization solvers such
as Gurobi and CPLEX within a reasonable timeframe.

Fig. 6 depicts a model tree with ridge regression functions assigned to its leaves. The tree’s depth is 3, containing 7 branch nodes
and 8 leaf nodes. The feature vector 𝒔 characterizes the status based on decision variables. At each branch node, a decision rule
based on the split feature’s value is applied. For instance, in node 1 (the root), if the rule is true, the feature vector 𝒔 is routed to
the left; otherwise, it is routed to the right. Each leaf node corresponds to a ridge regression function 𝓁𝑗 , where 𝑗 represents the
index of leaf nodes. In this example, the feature vector 𝒔 reaches leaf node 3 as the final destination.

Generally, a model tree is defined by (1) its tree structure, (2) decision rules at each branch node, and (3) linear regression
functions assigned to each leaf node. Such a model tree can be represented as a Mixed Integer Linear Program (MILP). In the
following sections, we introduce additional notation, which can be found in Table 5.

Following the decision rule at branch node 𝑖 ∈ , we introduce the following set of constraints relevant to the delivery time
predictions:

𝒔𝑘 ≥ 𝑣𝑖𝑘 + 𝜇 −𝑀𝑏𝑖(𝒔), (12)

𝒔𝑘 ≤ 𝑣𝑖𝑘 +𝑀(1 − 𝑏𝑖(𝒔)), (13)

𝑏𝑖(𝒔) ∈ {0, 1}, (14)

where 𝑏𝑖(𝒔) = 1 indicates 𝒔𝑘 less than 𝑣𝑖𝑘, feature vector 𝒔 will be routed to the left branch, and 𝑏𝑖(𝒔) = 0 indicates 𝒔𝑘 greater than
𝑣𝑖𝑘 and will be routed to the right branch. To locate the leaf node 𝑗 where feature vector 𝒔 belongs, we introduce two sets, left

𝑗 (𝒔)
and right

𝑗 (𝒔), and we have:

 = left
𝑗 (𝒔) ∪ right

𝑗 (𝒔), ∀𝑗 ∈  . (15)
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Table 5
Notation for the mixed integer quadratic constrained programming (MIQCP) model.
Sets:
: branch nodes set;
 : leaf nodes set;
left

𝑗 (𝒔): for 𝒔, set of branch nodes where the left branch following leaf node 𝑗;
right

𝑗 (𝒔): for 𝒔, set of branch nodes where the right branch following leaf node 𝑗;
Input parameters:
𝜇: a small constant value;
𝑀 : a large constant value;
𝒔: a feature vector characterize the status based on decision variables;
𝓁𝑗 : linear function at leaf node 𝑗, ∀𝑗 ∈ ;
𝒔𝑘: value of feature 𝑘 in vector 𝒔;
𝑣𝑖𝑘: value of feature 𝑘 if it is selected for splitting at the branch node 𝑖;
Decision variables:
𝑏𝑖(𝒔): binary variable, 1 if 𝒔 branches left at node 𝑖, ∀𝑖 ∈ ;
𝑐𝑗 (𝒔): binary variable, 1 if 𝒔 is located to the leaf node 𝑗, ∀𝑗 ∈ ;
𝑣𝑗 (𝒔): prediction value of 𝒔 at leaf node 𝑗, ∀𝑗 ∈ .

Accordingly, we establish the following constraints for each leaf node 𝑗 ∈  :

𝑐𝑗 (𝒔) ≤ 𝑏𝑖(𝒔), ∀𝑗 ∈  , 𝑖 ∈ left
𝑗 , (16)

𝑐𝑗 (𝒔) ≤ 1 − 𝑏𝑖(𝒔), ∀𝑗 ∈  , 𝑖 ∈ right
𝑗 , (17)

∑

𝑗∈
𝑐𝑗 (𝒔) = 1, (18)

where 𝑐𝑗 (𝒔) = 1 indicates that feature vector 𝒔 will be routed to leaf node 𝑗. Constraints (16)–(17) are responsible for enforcing the
branch path, while constraint (18) ensures that each feature vector 𝒔 can be routed to only one leaf node. Ultimately, the predicted
value of the delivery time for feature vector 𝒔 is given by:

𝑣𝑗 (𝒔) = 𝓁𝑗 (𝒔)𝑐𝑗 (𝒔), ∀𝑗 ∈  . (19)

4.5.3. Revised RASO model
Finally, the revised RASO, with the integrated model tree predictor for delivery time called RASO-MT, is formulated as follows:

[𝐑𝐀𝐒𝐎 −𝐌𝐓] max
𝜌𝑐,𝑟 ,𝜌𝑑,𝑟

∑

𝑟∈
𝑂𝑟(𝜌𝑐,𝑟), (20)

s.t. Constraints (3)-(5), (11)-(19),

𝐷𝑟(𝜌𝑑,𝑟) = 𝑃𝑊 𝐿(𝜌𝑑,𝑟), ∀𝑟 ∈ , (21)

𝒔 = [𝜌𝑐,𝑟, 𝜌𝑑,𝑟, 𝑂𝑟(𝜌𝑐,𝑟), 𝐷𝑟(𝜌𝑑,𝑟)], ∀𝑟 ∈ , (22)

𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) =
∑

𝑗∈
𝑣𝑗 (𝒔), ∀𝑟 ∈ , (23)

𝐿𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟) − 𝐿𝑜 ≤ 𝜖max, ∀𝑟 ∈ . (24)

The objective function (20) is designed to maximize the total number of prospective orders 𝑂𝑟(𝜌𝑐,𝑟), which will be discussed in
the following paragraph. Constraints (3)–(5) restrict the feasible domains of the decision variables, and constraints (11)–(19) show
the integration of the order demand estimation and delivery time prediction with the optimization tool. Constraint (22) represents 𝒔
as a feature vector. In the decision time, the platform can observe the drivers’ current locations and compute the distance between
the restaurant and those drivers. In real-world scenarios, the total number of drivers 𝐷𝑟(𝜌𝑑,𝑟) in the DDA for restaurant 𝑟 with radius
𝜌𝑟,𝑑 can be approximated using a piecewise linear function (Constraint (21)). This modeling approach is widely adopted in practice
and is supported by popular commercial optimization solvers like Gurobi and CPLEX. Constraint (23) indicates that the average
order delivery time equals the predicted value at the selected leaf node 𝑗. Constraint (24) is the delivery time constraint.

In the following, we provide a brief discussion on the prospective orders 𝑂𝑟(𝜌𝑐,𝑟) and served orders 𝑂𝑟(𝜌𝑐,𝑟, 𝜌𝑑,𝑟). Suppose a
customer places an order from a restaurant, and the platform accepts the order and proceeds to dispatch a driver for delivery. Each
order can result in two outcomes: (1) if an available driver is nearby, the order is successfully delivered and classified as ‘‘served’’;
(2) if the platform fails to locate an available driver within a certain waiting time (e.g., 15 min), the customer cancels the order,
and it is marked as ‘‘expired’’. In the extreme case where the DDA radius 𝜌𝑑,𝑟 = 0, all orders will expire as no drivers are available
for the restaurant. From the perspective of the platform, since the aim is to maximize the number of orders served, in other words,
they want each order can be delivered successfully within the promised delivery time and the number of expired orders to be as
low as possible (ideally zero). We have observed that expired orders tend to occur when the service capacity is much smaller than
the number of prospective orders. For instance, this can happen when the CSA radius is extremely large (e.g., 10 km) and the DDA
radius is very small (e.g., 1 km). To address this issue, we impose a penalty during data preparation for training machine learning
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Fig. 7. An Illustrative example: with and without overlapping customer service areas (CSAs).

models used in delivery time prediction. This is achieved by setting a large delivery time 𝛥𝑡 for expired orders. Consequently, in case
of expired orders occur during the solution of the RASO problem, the corresponding predicted average order delivery time will not
satisfy the time constraint (24). This approach ensures that when solving the RASO problem, the primary focus is on maximizing
the total number of orders that can be successfully delivered, represented by the sum of 𝑂𝑟(𝜌𝑐,𝑟) for all restaurants in the set .

4.6. Overlapping customer service areas of restaurants

In the RASO-MT model, the objective function (20) is decomposable across restaurants due to the separate consideration of
each restaurant 𝑟 ∈  in estimating the number of prospective orders 𝑂𝑟(𝜌𝑐,𝑟), as proposed in Section 4.2. However, particularly
in areas of high demand such as Singapore, it is challenging to circumvent the scenario where two restaurants have overlapping
customer service areas (CSAs). The presence of overlapping CSAs introduces competition between restaurants; customers within
these areas may choose between multiple providers, potentially dividing the prospective orders in overlapping CSAs among the
competing restaurants and compromising the accuracy of the 𝑂𝑟(𝜌𝑐,𝑟) estimates. Here, we present a simple example for illustration.

As illustrated in Fig. 7, two restaurants, 𝑟1 and 𝑟2, have CSAs with radii 𝜌𝑐,𝑟1 and 𝜌𝑐,𝑟2 , respectively. We assume the overlapping
CSA is 𝐴overlap

𝑟1 ,𝑟2 , with the number of customers per unit area (𝑘𝑚2) for restaurant 𝑟1 and 𝑟2 being 𝑛𝑟1 and 𝑛𝑟2 , respectively.
Take restaurant 𝑟1 as an example. In the absence of an overlapping CSA (i.e., 𝐴overlap

𝑟1 ,𝑟2 = 0), as shown in Fig. 7(a), customers within
the CSA may choose to place orders exclusively with the restaurant. Consequently, we can approximate the value of 𝑛𝑟1 and employ
Eqs. (10) and (11) to independently calculate the number of prospective orders for each restaurant. When there is an overlapping
CSA (i.e., 𝐴overlap

𝑟1 ,𝑟2 > 0) as shown in Fig. 7(b), with customers shared between 𝑟1 and 𝑟2, the density of customers per square kilometer
(𝑘𝑚2) in the overlapping CSA, 𝑛overlap

𝑟1 , is different to that in the non-overlapping CSA, 𝑛non-overlap
𝑟1 . To better estimate the number of

prospective orders for restaurant 𝑟1, it is necessary to calibrate the value of 𝑛𝑟1 . Consequently, we can introduce the following set
of equations to more precisely approximate the values of 𝑛𝑟1 , taking into account the overlapping CSA with restaurant 𝑟2:
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, (25)

where 𝑓𝑟1 represents the proportion of orders placed to restaurant 𝑟1 in the overlapping area. Similarly, we can get a set of equations
for restaurant 𝑟2 with a proportion 𝑓𝑟2 . For the overlapping areas shared by restaurants 𝑟1 and 𝑟2, we have 𝑓𝑟1 +𝑓𝑟2 = 1. In practice,
the value of 𝑓𝑟1 and 𝑓𝑟2 can be approximated using historical customer ordering data. We can generalize this to multiple restaurant
scenarios and establish a set of equations for each restaurant with overlapping CSAs.

In our case study, the customer order density, 𝑛𝑟, can be inferred from historical customer ordering data, along with the parameter
𝛼𝑟, as demonstrated in Eq. (11). Since the historical data already indicates an adjustment for the presence of overlapping CSAs, the
estimation of 𝛼′ = 2𝜋𝑛𝑟𝛼𝑟 from historical customer ordering data reduces the need to incorporate constraints (25) in the RASO-MT
model. Moreover, a recent study by Meituan-Dianping (Ding et al., 2020), which aims to optimize delivery scopes similarly to CSAs in
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our study, treats each restaurant as an independent entity without considering its overlapping CSAs. This provides partial justification
that the prediction of total prospective orders for each restaurant independently from historical data is a good approximation, from
the perspective of an industry platform. It supports using the sum of orders 𝑂𝑟(𝜌𝑐,𝑟) for each restaurant 𝑟 ∈  as the objective
function within our RASO framework.

5. Simulator, dataset, and prediction models

In this section, we first introduce the simulator we developed to simulate the process of food delivery services in Section 5.1,
including decisions on the radii of CSA and DDA for restaurants, order generation, dispatching, pickup, and delivery. Then in
Section 5.2, we present a real-world delivery dataset from a crowd-sourcing food delivery platform. The performance of customer
demand estimation is discussed in Section 5.3, followed by a discussion on the performance of order delivery time prediction models
in Section 5.4.

5.1. Simulator for on-demand food delivery service

To better simulate the real-world environment in food delivery service and also to generate training samples for order delivery
time prediction depicted in Fig. 5, we develop a simulator that is calibrated using real data. The simulator contains several
components: service area decisions, dispatch area decisions, order generation, information collection, order-dispatching algorithm,
and status updates of orders and drivers. In Algorithm 2, we show the entire simulation procedure. As can be seen, we solve the
RASO problem for each time period 𝑡 ∈  to get the optimal radius for CSA and DDA for each restaurant, then for each order-
dispatching interval 𝑘 ∈ [𝑡, 𝑡 + 1), we proceed the following steps: (1) generating new order requests for each restaurant within
the CSA; (2) gathering information about all dispatched and newly generated orders, drivers, and restaurants, such as each order’s
pickup and delivery locations, driver’s location, driver’s carried orders, restaurant dispatch area, and so on; (3) implementing the
order-dispatching algorithm to dispatch orders to drivers who have available capacity in the DDA; (4) updating orders’ status for
orders that have been successfully dispatched, picked up and delivered, as well as for orders that have been canceled by customers;
and (5) updating the drivers’ planned delivery routes based on newly dispatched orders.

Algorithm 2 Simulation
Input: information of orders , drivers  and restaurants 
1: procedure Simulation(,,)
2: for each area optimization time period 𝑡 ∈  do
3: Area optimization: Solve the RASO model and get the optimal customer service area 𝐴𝑐,𝑟 and driver dispatch area 𝐴𝑑,𝑟.
4: for each order dispatch time interval 𝑘 ∈ [𝑡, 𝑡 + 1) do
5: Order generation: generate new order requests for each restaurant according to the orders arrival rate within the customer service

area 𝐴𝑐,𝑟
6: Information collection: collect information of all dispatched and newly generated orders, drivers, and restaurants;
7: Order dispatch: dispatch remaining and newly generated orders to drivers in the driver dispatch area who have available capacity

using Algorithm 1;
8: Update orders’ status: update the status of orders that have been successfully dispatched, picked up and delivered, also for orders

that have been canceled by customers;
9: Update drivers’ status: update drivers’ planned delivery route based on newly dispatched orders;

10: end for
11: end for

We also account for the random ready time for orders in our simulations. In food delivery services, the preparation time (which
includes cooking the meal and making it ready for pickup) for restaurants is often highly uncertain. Accurately estimating the food
preparation time for each order can yield significant benefits, both for delivery drivers and the customers’ experience. In this study,
we make the assumption that the food preparation time for each restaurant follows distinct gamma distributions, characterized by
different shape parameters 𝛼 and a scalar parameter 𝛽. This choice is motivated by the common use of gamma distributions for
modeling waiting times in on-demand food delivery platforms (Ulmer et al., 2021; Gao et al., 2022).

5.2. Real-world dataset

The dataset used in the numerical experiments is provided by a crowd-sourcing food delivery platform in Singapore. The data
contains a sample of around 80,000 order records for over 2,000 restaurants and over 30,000 customers over 8 months (October 2020
to May 2021). Each delivery record includes order and driver information, including order pickup and delivery locations, delivery
distance, order accept time, driver ID, and fee paid. This study focuses on a cluster of restaurants known as ‘‘hawker centre’’ (or ‘‘food
centre’’), which represents an open-air complex commonly found in Singapore. The ‘‘hawker centre’’ is a popular dining destination
featuring various food stalls or vendors, offering a wide variety of affordable and delicious local dishes. Each restaurant in the same
hawker center shares the same radii for CSA and DDA (𝜌𝑐 , 𝜌𝑑). Fig. 8 depicts customer locations (i.e, order delivery locations) from
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Fig. 8. Orders delivery locations of selected hawker centres: (a) Ghim Moh Market & Food Centre, (b) Maxwell Food Centre, (c) Bedok Interchange Hawker
Centre, and (d) Old Airport Road Food Centre. (Blue circle represents the CSA)

four well-known hawker centres3 in Singapore, one located in the central business district, and the others in the residential area.
Customer locations are depicted by red dots and hawker centre locations are depicted by blue markers. After cleaning the data
and removing some missing values, we choose the top nine restaurants based on the number of orders in the dataset for further
investigation. Fig. 9 is a histogram that groups the times customers placed orders into 45-minute intervals, illustrating the average
number of orders across time periods throughout the day, ranging from 6:00 to 21:45, for the four selected restaurants. The 𝑥-axis
represents the time period; and 𝑦-axis shows the (re-scaled) average number of orders. Notably, the restaurants exhibit substantial

3 Due to space limitations, we will concentrate on presenting the results of four representative hawker centres in the main body of the paper. The remaining
five hawker centres are included in the appendix for reference to ensure the paper’s readability.
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Fig. 9. (Re-scaled) Average number of orders for restaurants over time (Every 45 min).

peaks during the noon hours (9:45 to 12:00) and the evening hours (16:30 to 18:00). The distributions of order preparation time
are visualized in Fig. 10.

5.3. Results on customer demand estimation

Using the real-world order data, we conduct numerical experiments to evaluate the proposed estimation of customer order
demand based on the discrete choice model proposed in Section 4.2. Fig. 11 displays histograms representing the total number
of customer orders in relation to the distance between the restaurant and the customer for selected hawker centres. The 𝑥-axis
indicates the customer’s distance (in kilometers) from the restaurant, while the 𝑦-axis represents the number of orders placed for
each restaurant. It shows that as the distance from the restaurant increases, the number of orders exhibits a steep initial increase,
followed by a gradual decrease. This observation aligns with the number of orders described by the expression 𝛼′𝑟𝑒

𝛽𝑟𝑥𝑥 = 2𝜋𝑛𝑟𝛼𝑟𝑒𝛽𝑟𝑥𝑥,
which is dependent on the distance 𝑥 from the restaurant, as indicated in Eq. (10). Notably, a greater distance from the restaurant
leads to an increase in the marginal service area (represented by 2𝜋𝑥𝑛𝑟). However, it also results in a reduction in customers’
willingness to place orders (demonstrated by 𝛼𝑟𝑒𝛽𝑟𝑥 with a negative 𝛽𝑟). To estimate the prospective orders approximation function
(11) for each restaurant, non-linear least squares is employed. The coefficient of determination (𝑅2) is utilized as a performance
metric to determine the values of 𝛼′𝑟 and 𝛽𝑟 for each restaurant:

�̄� = 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖, 𝑆𝑆res =

𝑛
∑
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𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)2, 𝑅2 = 1 −

𝑆𝑆res
𝑆𝑆tot

, (26)

where 𝑛 is the total number of estimated values, and 𝑦𝑖 and �̂�𝑖 are the actual value and its estimate, respectively. If the fitted value
is exactly the same as the actual value, 𝑅2 = 1. The fitting function of each restaurant and its 𝑅2 value are displayed at the top
right in each subfigure. We observe that the estimation works well for all hawker centres, with 𝑅2 value ranging from 0.827 (Ghim
Moh Market & Food Centre) to 0.892 (Maxwell Food Centre). This demonstrates the effectiveness of the customers’ choice model
for estimating the number of prospective orders with different service radii. In the appendix, we show the estimation performance
for all nine hawker centres.

As comparisons, we also explored the application of other machine learning models to predict customer demand. Specifically, we
refine our dataset to distill four core features for the customer demand estimation: (1) Time of Day: inferred from order timestamps,
reflects the daily patterns that impact how customers place orders. (2) Day of the Week: segments the data into weekdays and
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Fig. 10. Histogram of restaurants’ orders preparation time. The red curve represents a gamma distribution function derived through non-linear least squares
regression.

Fig. 11. Histogram of customers orders in terms of customer-restaurant distance. The red curve represents the function derived through non-linear least squares
regression.
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Table 6
Performance comparison of ML methods and customer choice model on customer order estimation
at Ghim Moh Market & Food Centre.
Model MAE RMSE 𝑅2

Ridge Regression 9.707 154.69 0.425
Decision Tree 6.398 100.317 0.759
Random Forest 6.351 98.255 0.764
XGBoost 2.137 9.399 0.970
Customer Choice Model 3.424 52.623 0.828

Table 7
Details of experimental instances.

Instance Hawker Centre Area Orders Drivers 𝛼′
𝑟 𝛽𝑟

1 Ghim Moh Market & Food Centre Residential [50, 80] [20, 30] 957.04623 −0.62405
2 Maxwell Food Centre Central [20, 50] [10, 20] 610.58451 −0.65582
3 Bedok Interchange Hawker Centre Residential [15, 35] [5, 15] 282.61976 −0.51956
4 Old Airport Road Food Centre Residential [20, 40] [5, 15] 428.82034 −0.62944
5 Kovan Food Centre Residential [60, 90] [20, 30] 217.19399 −0.44593
6 Bukit Merah View Market & Food Centre Central [30, 60] [10, 20] 935.43501 −0.77316
7 Hong Lim Food Centre Central [25, 45] [5, 15] 499.51778 −0.6803
8 Bukit Timah Market & Food Centre Residential [80, 105] [25, 35] 185.56244 −0.39559
9 Alexandra Village Food Centre Residential [35, 55] [10, 20] 252.13369 −0.52519

weekends, thereby capturing fluctuations in weekly demand. (3) Restaurant’s Customer Service Area: determined by the radius 𝜌𝑐,𝑟,
quantifies a restaurant’s potential customer base. (4) Delivery Distance: calculated from the distance between the restaurant and
delivery locations, provides insights into logistical efficiency and customer proximity. The results of the machine learning (ML)
methods’ performance and our customer choice model in estimating customer orders are presented in Table 6.

Our experimental results demonstrate that XGBoost outperforms other models across all metrics, such as MSE, RMSE, and the
𝑅2 score, thereby indicating its superior predictive performance. Furthermore, tree-based ML models exhibit robust predictive
capabilities for customer orders. Notably, our customer choice model attains lower MSE and RMSE values, in addition to a
higher 𝑅2 score, when compared to both Decision Tree and Random Forest models. Nonetheless, although XGBoost demonstrates
remarkable performance, translating its complex, non-linear predictions into a closed-form expression for seamless integration
with our optimization model is a significant challenge. Given these considerations, we decide to continue with the proposed
customer choice model for demand estimation. Our decision is based on balancing predictive accuracy and compatibility with the
optimization model, particularly focusing on the requirement for a closed-form demand function that can be integrated seamlessly
into the optimization framework. We contend that the customer choice model, despite its inherent simplifications, represents a
viable compromise, offering an adequately precise depiction of customer demand and ensuring compatibility with our optimization
strategy.

5.4. Model selection for order delivery time prediction

For order delivery time prediction, we evaluate six machine learning models: ordinary least squares (OLS), ridge regression
(Ridge), linear support vector regression (SVR), model tree, regression tree, and XGBoost (Gradient Boosting Decision Tree). We
implement 5-fold cross-validation to select the best parameters (e.g., coefficient value for the regulation term, maximum depth of
the tree in tree-based models) for all models. In the experiment, nine instances were generated for different restaurants (with different
𝛼′𝑟 and 𝛽𝑟) and different numbers of orders and drivers. The composition of training instances was designed to cover a broad spectrum
of scenarios encountered in real-world applications, which ensures that the model is exposed to diverse data patterns. As shown in
Fig. 12, nine representative hawker centres were selected for the case study, with some located in city central areas and others in
residential areas. The hourly orders placed at these hawker centres ranged from low (15 to 35 orders) to high (80 to 100 orders).
The detailed information on instances is shown in Table 7. We simulate deliveries for each restaurant from 11:00 to 12:00—which
generates over 8,000 data points for each instance—with 80% as the training and validation set and 20% as the test set. We fine-
tuned the parameters of the machine learning models used to optimize performance according to the metrics. For the calibration
of coefficients in Ridge Regression, we optimized the ‘alpha’ parameter (representing the regularization strength) through cross-
validation to achieve a balance between model complexity and prediction accuracy. For Linear SVR, we concentrated on adjusting
the ‘C’ and ‘max_iter’ parameters to enhance the model’s performance, utilizing grid search to determine the optimal values. For
both the Regression Tree and Model Tree, we modified the ‘max_depth’, ‘min_samples_split’, and ‘min_samples_leaf’ parameters to
mitigate overfitting and ensure the model’s capacity to discern underlying data patterns. The ‘Learning_rate’ for XGBoost was set
at 0.3. The configurations of the parameters are summarized in Table 8. All training, validation, and testing were conducted using
Python 3.9, leveraging the scikit-learn (Pedregosa et al., 2011) and XGBoost packages (Chen and Guestrin, 2016).

We use the mean absolute percentage error (MAPE) and 𝑅2 score as performance metrics for the prediction models:

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|𝑦𝑖 − �̂�𝑖|
𝑦𝑖

× 100%. (27)
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Fig. 12. Selected hawker centres locations in Singapore.

Table 8
Parameter configurations for ML methods.
Model Parameter Value

Ridge Regression Alpha 0.5
Linear SVR C 1,000
Linear SVR Max_iter 10,000
Regression/Model Tree Max_depth 5
Regression/Model Tree Min_samples_split 2
Regression/Model Tree Min_samples_leaf 10
XGBoost Learning_rate 0.3

The performance of the machine learning models in predicting average order delivery time is shown in Table 9. All tree-based
models exhibit strong predictive accuracy for average delivery time, as indicated by their 𝑅2 scores. Conversely, the linear models
(i.e., OLS, Ridge, and SVR) exhibit significantly lower 𝑅2 scores and higher MAPE values when compared to the tree-based models
(i.e., model tree, regression tree, and XGBoost). Particularly noteworthy is the model tree, which consistently outperforms all other
models, achieving the lowest MAPE across all instances as well as the highest 𝑅2 score, surpassing XGBoost, linear models (OLS,
Ridge, and SVR), and the regression tree. Considering prediction accuracy, compatibility, and computational performance, we opt
for the model tree as the delivery time prediction model and seamlessly integrate it into the RASO-MT model using the linearization
method introduced in Section 4.5.2.

6. Experiments and discussion

In this section, we conduct a set of numerical experiments to evaluate the performance of the proposed RASO-MT model
comparing it with several benchmarks in practice and discuss its computational scalability. Then, we discuss the impact of some
important factors and variables on the performance of food delivery services, such as the threshold of order delay and temporal
distribution of customer order demand. We run the experiments in Python 3.9 using Gurobi 11.0.0, on a 2.5 GHz Xeon CPU.

6.1. Model performance

We report the performance of the proposed RASO-MT model in terms of the following four metrics: (1) growth rate of orders
served; (2) average delivery time of served orders; (3) average travel distance per driver, defined as the total distance traveled to
deliver their dispatched orders; and (4) on-time rate, which is the ratio of orders delivered in promised time to total orders arriving
within a specific period of time. We use Fixed-CSA-DDA as a baseline, where both the restaurant’s CSA and DDA are fixed, with
radii set to 5 km (commonly used choices made by practitioners). For convenience, the index 𝑟 is omitted for the intermediate
variables and decision variables defined in Table 2 when it is clear.
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Table 9
Performance of ML methods on average delivery time prediction.

(a) Ghim Moh Market & Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.578 0.567
Ridge Regression 0.577 0.566
Linear SVR 0.344 0.325
Regression Tree 0.900 0.161
Model Tree 𝟎.𝟗𝟏𝟐 𝟎.𝟏𝟒𝟕
XGBoost 0.893 0.176

(b) Maxwell Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.483 0.659
Ridge Regression 0.483 0.658
Linear SVR 0.198 0.351
Regression Tree 0.883 0.199
Model Tree 𝟎.𝟖𝟖𝟖 𝟎.𝟏𝟕𝟔
XGBoost 0.848 0.248

(c) Bedok Interchange Hawker Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.485 0.626
Ridge Regression 0.485 0.625
Linear SVR 0.251 0.345
Regression Tree 0.914 0.167
Model Tree 𝟎.𝟗𝟐𝟐 𝟎.𝟏𝟓𝟒
XGBoost 0.882 0.212

(d) Old Airport Road Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.489 0.699
Ridge Regression 0.489 0.698
Linear SVR 0.275 0.393
Regression Tree 0.903 0.170
Model Tree 𝟎.𝟗𝟏𝟎 𝟎.𝟏𝟓𝟖
XGBoost 0.834 0.264

Table 10
Growth rate of served orders for selected hawker centres.
Hawker Centre Ghim Moh Maxwell Bedok interchange Old Airport Road

Growth Rate 20.5% 19.0% 29.6% 19.4%

We conducted experiments during lunchtime (11:00 to 12:00), varying the number of drivers in the system from small to medium
and large scales, with each increment involving an addition of five drivers. The range of the number of drivers for each hawker
center is shown in Table 7. Each driver is assumed to have a service capacity of 10 orders (𝑝 = 10). Moreover, we set the promised
delivery time for orders (𝐿𝑜) to 50 min with the threshold for order delay, 𝜖max = 0, which is commensurate with common customer
expectations (e.g., Liu et al. (2021)). We recorded the metric for results before and after the deployment of the RASO-MT as MFix
and MRASO-MT, respectively, which were used to verify the effectiveness of our model. Then we define the MRat as the changing
ratio between MFix and MRASO-MT as follows:

MRat =
MRASO-MT −MFix

MFix
(28)

The results are presented in Table 10, demonstrating that the RASO-MT model’s newly introduced restaurant’s CSA and DDA
lead to significant improvements in the number of served orders, ranging from 19.0% to 29.6% for the selected four prominent
hawker centres when compared to the conventional fixed CSA and DDA approach. Detailed experimental outcomes are depicted in
Fig. 13. Specifically, the average travel distance of drivers increased by 16.5% to 20.3%, 11.1% to 26.0%, 15.1% to 27.0%, and
5.6% to 13.7% for the four hawker centres, respectively. It is also evident that there was a decline in delivery efficiency to a certain
degree. The average order delivery time experienced increases of 2.4% to 6.3%, 6.0% to 9.7%, 4.3% to 27.7%, and 4.2% to 15.3%
for the corresponding centres. These findings indicate that the proposed method demonstrates superior performance with a sufficient
number of drivers (e.g., large instance), as the corresponding rise in the average order delivery time remains comparatively modest.
As the number of orders served grows, the on-time delivery rate is observed to decrease, with reductions of up to 2.5%, 7.6%, 6.9%,
and 7.0%, respectively (Fig. 13(c)). Full details of the evaluation results are provided in Table A.2 in Appendix.

To comprehensively evaluate our proposed area sizing optimization strategy, we also assess its performance against additional
benchmark policies for longer service times, ranging from 09:00 to 15:00. The two new benchmarks are:

• Fixed-CSA: The restaurant’s CSA is fixed with a radius of 5 km, while the DDA is optimized.
• Fixed-DDA: The restaurant’s DDA is fixed with a radius of 5 km, while the CSA is optimized.4

We have selected Ghim Moh Market & Food Centre, with learned parameters 𝛼′𝑟 = 957.04723 and 𝛽𝑟 = −0.62405 to conduct a
comprehensive and in-depth analysis. We also analyze the effects of different parameter settings, including the threshold of delay
and order arrival rate. Additionally, we assume the number of drivers in the system equals 15 for all time periods 𝑡 ∈  , and these
drivers are randomly distributed in the area. The maximum and minimum radius for both restaurants’ CSA (𝜌max

𝑐 , 𝜌min
𝑐 ) (the index

𝑟 is omitted when it is clear) and DDA (𝜌max
𝑑 , 𝜌min

𝑑 ) are set to be 2 km and 10 km, respectively.
Table 11 shows the number of orders served and the average order delivery time for the proposed RASO-MT model compared to

other benchmark policies. To compare the policies, we calculate the relative improvement in terms of the number of orders served

4 The radius for a restaurant’s CSA is set to around 4 km in Ding et al. (2020). However, in our paper, we set the fixed radius of restaurant’s CSA or DDA
slightly higher, to 5 km, to account for the higher maximum delivery distance of 10 km in our dataset compared to Ding et al. (2020).
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Fig. 13. Experiment results for selected hawker centres: (a) growth rate of average travel distance, (b) growth rate of average delivery time, and (c) on-time
rate of served orders.

Table 11
Number of orders served and average order delivery time for different polices.
Policy RASO-MT Fixed-DDA Fixed-CSA Fixed-CSA-DDA

Number of Orders Served 𝟖𝟎𝟐 686 673 673
Order Delivery Time (minute) 𝟒𝟐.𝟕 40.4 39.5 39.2

M𝑜
Rat, and the actual average order delivery time for each time period 𝑡 ∈  . Compared with policies Fixed-DDA, Fixed-CSA and

Fixed-CSA-DDA, we find that the RASO-MT model serves the most orders with 16.9%, 19.2% and 19.2% improvements, and also
causes the average delivery time increased by 5.7%, 8.0% and 8.9%, respectively. It is worth noting that the average delivery time
of orders for Fixed-CSA is slightly higher than that of Fixed-CSA-DDA. This is because, for Fixed-CSA-DDA, both the CSA and DDA
are fixed at 5 km, whereas for Fixed-CSA, since the CSA is fixed at 5 km, the model only ensures that the delivery time constraint
is not violated and finds it unnecessary to expand the DDA to bring in more drivers for delivery. Therefore, the DDA is set to be
slightly less than 5 km, resulting in fewer drivers being used for delivery and consequently, a slightly higher average delivery time of
orders compared to Fixed-CSA-DDA. The results indicate that adjusting the CSA and DDA simultaneously for restaurants can result
in substantial service improvements at the cost of slightly longer delivery times.

6.2. Comparison with grid search and computational scalability

We further underscore the advantages of the RASO-MT framework, which integrates a predictive tree-based model into the
MIQCP optimization framework by comparing it with a straightforward grid search method.

• Grid Search: This method determines the CSA and DDA radii for restaurants by incrementally increasing them from 2 km to
10 km in 0.2-kilometer steps until the predicted average customer delay surpasses the threshold.

Table 12 presents the comparison between the RASO-MT framework and the Grid Search method, emphasizing the number of
orders served and the average order delivery time. The results demonstrate that our framework achieves a higher number of orders
with reduced average delivery times.
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Table 12
Comparison of RASO-MT and grid search methods at Ghim Moh Market & Food
Centre.
Policy RASO-MT Grid search

Number of Orders Served 𝟖𝟎𝟐 791
Order Delivery Time (minute) 𝟒𝟐.𝟕 45.0

Table 13
Characteristics of the MIQCP model for Ghim Moh Market & Food Centre solved by Gurobi
11.0.0.
Model Value

Rows & Columns 4 & 8
Variables 8 (continuous), 30 (integers with 29 binary)
Quadratic constraints 3
General constraints 129
Presolved Rows & Columns 12 & 1,108
SOS constraints 1
Computational time ≈ 2.1 s

Additionally, we discuss the computational scalability of the RASO-MT framework. As detailed in Section 4.5, representing a
trained model tree as a Mixed Integer Linear Program (MILP) introduces additional decision variables for each branch node and
leaf node, increasing the RASO-MT model’s complexity. Specifically, the model’s complexity escalates with the tree’s size, due to an
increase in the required binary decision variables for linearization. Due to the four straightforward yet effective features extracted
for delivery time prediction, the model tree depth that achieves the best validation and test performance does not exceed 5. As a
result, the integration of the model tree into our RASO-MT framework requires no more than 32 additional binary decision variables.
Moreover, leveraging Gurobi 11.0.0’s robust capability for MIQCP problems, all experimental instances were resolved within 5 s.
Table 13 presents the detailed attributes and the computational time of the MIQCP model for Ghim Moh Market & Food Centre
as optimized by Gurobi 11.0.0. Considering that the optimization of CSA and DDA is a real-time decision-making problem at the
restaurant level, the computational efforts required by the solution approach are acceptable.

6.3. The impact of the threshold for order delay

To understand the impact of the threshold for order delay on performance, we calculate the number of orders served with the
varying values of 𝜖max from −10 min (orders are required to deliver within 40 min) to 10 min (orders are required to be delivered
within 60 min) for all policies.5 However, the delivery time constraint may be violated when we have a negative value of 𝜖max for
Fixed-CSA-DDA, since the fixed radius of CSA 𝜌𝑐 = 5 km and radius of DDA 𝜌𝑑 = 5 km were specially selected to allow orders to
be delivered within 50 min. To ensure fairness in comparison, we decrease the radius of CSA 𝜌𝑐 for Fixed-CSA-DDA from 5 km to
4.5 and 4 km when 𝜖max = −5 and 𝜖max = −10, respectively, to satisfy the delivery time constraint (24).

As shown in Fig. 14(a), as 𝜖max becomes larger, both RASO-MT and Fixed-DDA can serve more orders. We also observe that the
RASO-MT policy can provide the best solution quality with the largest number of orders served. When 𝜖max is set to −10, -5, 0, 5, and
10 min, RASO-MT serves 3.1%, 13.4%, 19.2%, 20.6% and 20.6% more orders compared to Fixed-CSA, and serves 11.0%, 16.6%,
16.9%, 10.5% and 6.8% more orders compared to Fixed-DDA. Furthermore, compared with policies with a fixed radius of CSA 𝜌𝑐 ,
the relative improvement in the number of orders served by our RASO-MT framework will gradually increase with longer allowed
delays, until it reaches the maximum value of 20.6% (𝜌𝑐 equals 10 km). This indicates that our RASO-MT is more advantageous
when customers are more patient with delivery times. Finally, for RASO-MT, we see that the increased number of orders served is
69, 39, 10, and 0 with each 5-minute increment in the value of 𝜖𝑚𝑎𝑥 from −10 to 10. These observations imply that allowing more
time for delivery helps achieve more orders, while the benefits progressively decrease.

We also calculate the actual order delivery time in each time period 𝑡 ∈  with different 𝜖max, as depicted in box plots in
Fig. 14(b). As can be observed, for policies that can optimize the radius of CSA 𝜌𝑐 (i.e., RASO-MT and Fixed-DDA) to serve more
orders, the average order delivery time increases proportionally with the number of orders served. For example, we find that the
average order delivery time for RASO-MT is always larger than Fixed-DDA across all 𝜖max, since RASO-MT can always serve more
orders than Fixed-DDA. However, for Fixed-CSA that can only optimize the radius of DDA 𝜌𝑑 , we also find that as 𝜖max increases,
so does the actual average order delivery time. The explanation for this is a larger 𝜖max will make the policy presume that customers
are more lenient with the order delivery time, resulting in a smaller DDA radius, fewer available drivers, and a longer delivery time.

It is worth noting that Fixed-CSA-DDA serves fewer orders at 𝜖max equals to −10 and -5, which are 582 and 638, respectively,
compared to Fixed-CSA, which serves 673 orders for both 𝜖max values of −10 and -5. This happens because we decrease the radius of

5 In industry practice, the platforms usually require drivers an ETA which is different from the ETA promised to the customers. This difference can be
represented by the parameter 𝜖max. From another perspective, the impact of 𝜖max can also be interpreted as the impact of ETA (i.e., 𝐿𝑜) when 𝜖max = 0. For
example, assume the initial 𝐿𝑜 = 50 and 𝜖max = 0. If customers are more patient with delivery times, the platform can increase 𝐿𝑜 to 60 min. Practically, this is
equivalent to raising 𝜖max to 10 min while keeping 𝐿𝑜 = 50 unchanged.
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Fig. 14. Impact of the threshold for order delay (𝜖max) on (a) number of orders served and (b) actual delivery time of orders.

Fig. 15. Comparisons of average order delivery time with 𝜖max equals to −10.

CSA 𝜌𝑐 from 5 km to 4 km (𝜖max = −10) and 4.5 km (𝜖max = −5) to ensure the delivery time constraint (24) that the predicted average
order delivery time 𝐿𝑟(𝜌𝑐 , 𝜌𝑑 ) must be less than or equal to 𝐿𝑜+𝜖max (by default, the promised delivery time 𝐿𝑜 = 50) min in each time
period 𝑡 ∈  . To better comprehend the importance of the delivery time constraint, we compare Fixed-CSA-DDA and Fixed-DDA,
the two policies with the fewest served orders. We compare the actual average order delivery time of Fixed-CSA-DDA, Fixed-DDA
and the predicted average order delivery time of Fixed-DDA with 𝜖max values −10 for 𝑡 ∈  from 09:00 to 15:00.6. The results can
be found in Fig. 15. For Fixed-DDA, we observe that the predicted order delivery time is always less than 40 min (𝐿𝑜 + 𝜖max), and

6 Given the same instance, the ‘‘actual’’ means the calculated average order delivery time achieved via the simulation procedure described in Algorithm 2
The ‘‘predicted’’ denotes the predicted average order delivery time by the trained model tree in Section 5.4.
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Fig. 16. Radius over time for policies: (a) RASO-MT, (b) Fixed-CSA, and (c) Fixed-DDA.

the actual average order delivery time only exceeds 40 min slightly in time period 10:30 to 11:15 due to the prediction errors. The
actual delivery time of Fixed-CSA-DDA never exceeds 40 min even between both 09:45 to 10:30 and 10:30 to 11:15 when the peak
of orders occurs. We also find that the actual delivery time of Fixed-DDA is greater than that of Fixed-CSA-DDA in every time
period 𝑡. This is because the more orders that are served, the longer the average order delivery time will be, and Fixed-DDA can
serve more orders by adjusting CSA radius 𝜌𝑐 .

6.4. Comparison of radius adjustments over time

Next, we investigate how these policies generate the radii of the restaurant’s CSA 𝜌𝑐 and DDA 𝜌𝑑 over time 𝑡 ∈  , except for
Fixed-CSA-DDA. Fig. 16 shows the radius adjustments of the three policies. When only one of the areas can be adjusted, we find
that policies Fixed-CSA and Fixed-DDA react to the peak periods (from 09:45 to 12:00) by setting a larger radius of DDA 𝜌𝑑 or a
smaller radius of CSA 𝜌𝑐 , respectively, and to the off-peaks (from 09:00 to 09:45 and 12:00 to 15:00) by setting a smaller radius of
DDA 𝜌𝑑 or a larger radius of CSA 𝜌𝑐 , respectively. In addition, it is interesting to observe that RASO-MT can adjust the CSA and DDA
simultaneously by setting the radius of DDA 𝜌𝑑 to the maximum value and a relatively moderate radius of CSA 𝜌𝑐 during the peak
periods. During the off-peak periods, as the platform aims to serve more orders, the radius of CSA 𝜌𝑐 is set to the maximum value
and the radius of DDA 𝜌𝑑 can be smaller to meet the demand. Overall, we observe that it is always beneficial to maintain a large
radius of CSA 𝜌𝑐 when the restaurant has sufficient service capacity, which can bring more drivers to satisfy the order demand, and
the radius of CSA 𝜌𝑐 will only be decreased to ensure orders will not be delayed when no more drivers can be found (𝜌𝑑 reaches its
maximum value, 10 km).
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Fig. 17. Radius over time (RASO-MT) with customer orders arrival distribution.

6.5. Comparison with different customer order arrival rates

Last, we analyze the radius adjustment decisions over time 𝑡 ∈  for different customer order arrival rates. In a peak scenario,
where customer order arrival rates are more than double those of off-peak periods, we illustrate the radius adjustment decisions
with RASO-MT in Fig. 17. The results demonstrate that the DDA radius adjustments align with the changes in customer order arrival
rates. Moreover, the CSA radius 𝜌𝑐 only decreases to around 7 km during peak periods from 11:15 to 12:45, which corresponds to
the highest order peak.

By combining the results presented in Figs. 16 and 17, we observe that our RASO-MT approach may primarily adjust the radius of
the restaurant’s DDA 𝜌𝑑 first, and then adapts the CSA radius 𝜌𝑐 to meet the average order delivery time constraint. This adjustment
allows us to reduce the CSA radius when the restaurant encounters a shortage of service capacity during peak periods.

7. Conclusion

This paper introduces the restaurant area sizing optimization problem (RASO) as a new operational problem for managing supply
and demand in on-demand food delivery services. The main objective is to maximize the total number of orders served while ensuring
a required service level for order delivery time. Initially, we examine the relationship between the radius of the customer service
area and the number of customer orders received by the restaurant, focusing on the demand side. Subsequently, we analyze the
number of drivers, which depends on the radius of the driver dispatch area, and explore various factors to predict the average
order delivery time on the supply side. To model the problem, we integrate closed-form formulations for order estimation using a
customer choice model and delivery time prediction with model tree. The resulting integrated model is formulated as an MIQCP
(Mixed Integer Quadratically Constrained Program) and can be efficiently solved using Gurobi as the optimization solver.

We utilize a customized simulator that simulates order generation, placement, and dispatch, along with real-world food delivery
data provided by our industry partner to conduct extensive experiments. The objective is to evaluate the performance of our proposed
RASO-MT model and compare it with other benchmark area sizing policies. The results show a significant performance improvement
achieved through our approach, indicating that simultaneous adjustments of the radii of the customer service area (CSA) and driver
dispatch area (DDA) can substantially increase the total number of orders served within an acceptable delivery time. Furthermore,
we investigate the impact of various factors related to demand, supply, and the threshold for order delay on radius adjustment
decisions over time.

Several future research directions can be explored. First, although overlapping CSAs were discussed in Section 4.6, future research
should investigate their nuanced effects on customer demand estimation. We intend to refine demand estimation collecting more
real-world delivery data and explore advanced deep learning methods for more accurate customer demand modeling. Another
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natural avenue involves modeling the RASO problem as a Markov Decision Process and utilizing reinforcement learning approaches
to establish a policy for sequential decision-making on CSA and DDA from end to end. Additionally, synergizing our area sizing
optimization with other powerful tools, such as surge pricing, could be explored. For instance, in scenarios with extreme under-
supply where increasing the DDA fails to bring sufficient supply to serve orders placed within the CSA with a radius 𝜌min

𝑐 , an
integrated optimization method that combines area sizing and surge pricing could prove valuable.
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Appendix

See Figs. A.1 and A.2 and Tables A.1 and A.2

Fig. A.1. Histogram of customer restaurants’ orders preparation time for all nine hawker centres.
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Fig. A.2. Histograms of customer orders based on customer-restaurant distance segments for all nine hawker centres.

Table A.1
Performance of ML methods on average delivery time prediction.

(a) Kovan Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.598 0.507
Ridge Regression 0.598 0.506
Linear SVR 0.481 0.366
Regression Tree 0.902 0.153
Model Tree 𝟎.𝟗𝟐𝟐 𝟎.𝟏𝟑𝟑
XGBoost 0.851 0.182

(b) Bukit Merah View Market & Hawker Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.429 0.524
Ridge Regression 0.428 0.523
Linear SVR 0.117 0.244
Regression Tree 0.845 0.189
Model Tree 𝟎.𝟖𝟓𝟔 𝟎.𝟏𝟔𝟗
XGBoost 0.826 0.205

(c) Hong Lim Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.452 0.648
Ridge Regression 0.452 0.647
Linear SVR 0.263 0.356
Regression Tree 0.890 0.195
Model Tree 𝟎.𝟖𝟗𝟓 𝟎.𝟏𝟕𝟗
XGBoost 0.804 0.268

(d) Bukit Timah Market & Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.571 0.551
Ridge Regression 0.572 0.551
Linear SVR 0.450 0.373
Regression Tree 0.919 0.139
Model Tree 𝟎.𝟗𝟑𝟗 𝟎.𝟏𝟏𝟑
XGBoost 0.900 0.171

(e) Alexandra Village Food Centre

Model 𝑅2 MAPE

Ordinal Least Square 0.487 0.565
Ridge Regression 0.487 0.564
Linear SVR 0.270 0.315
Regression Tree 0.891 0.183
Model Tree 𝟎.𝟗𝟎𝟏 𝟎.𝟏𝟔𝟐
XGBoost 0.842 0.219
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Table A.2
Experimental results for all nine hawker centres.

(a) Ghim Moh Hawker & Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (73) 20 small 311.52 15.58 0 0 1.000 2,307
25 medium 320.95 12.84 0 0 1.000 2,244
30 large 329.77 10.99 0 0 1.000 2,215

RASO-MT (88) 20 small 362.97 18.15 7 40.00 0.920 2,377
25 medium 386.36 15.45 4 8.88 0.955 2,294
30 large 391.00 13.03 0 0 1.000 2,239

(b) Maxwell Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (42) 10 small 170.47 17.05 2 16.59 0.952 2,508
15 medium 192.29 12.82 1 2.76 0.976 2,342
20 large 196.71 9.84 0 0 1.000 2,234

RASO-MT (50) 10 small 208.03 20.80 9 106.93 0.820 2,628
15 medium 228.93 15.26 5 31.71 0.900 2,410
20 large 245.41 12.27 2 28.10 0.960 2,334

(c) Bedok Interchange Hawker Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (27) 5 small 107.06 21.41 10 137.96 0.629 2,767
10 medium 135.82 13.58 2 10.07 0.926 2,392
15 large 137.91 9.19 1 0.52 0.963 2,295

RASO-MT (35) 5 small 123.20 24.64 14 663.70 0.600 3,201
10 medium 160.00 16.00 5 63.56 0.857 2,520
15 large 175.00 11.67 0 0 1.000 2,342

(d) Old Airport Road Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (31) 5 small 113.77 22.75 10 257.06 0.677 2,754
10 medium 133.05 13.31 2 2.58 0.935 2,298
15 large 145.18 9.68 0 0 1.000 2,231

RASO-MT (37) 5 small 120.17 24.03 13 504.10 0.649 2,991
10 medium 147.16 14.72 5 70.58 0.865 2,405
15 large 165.13 11.01 0 0 1.000 2,274

(e) Kovan Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (65) 20 small 342.43 17.12 6 38.25 0.907 2,565
25 medium 355.72 13.43 3 21.36 0.953 2,495
30 large 374.81 12.49 0 0 1.000 2,440

RASO-MT (90) 20 small 426.25 21.31 15 75.43 0.833 2,767
25 medium 428.28 17.13 15 63.66 0.833 2,706
30 large 463.96 15.46 6 21.93 0.933 2,526

(f) Bukit Merah View Market & Hawker Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (55) 10 small 182.95 18.21 0 0 1.000 2,316
15 medium 208.17 13.88 0 0 1.000 2,154
20 large 220.93 11.05 0 0 1.000 2,125

RASO-MT (60) 10 small 184.99 18.50 0 0 1.000 2,435
15 medium 219.87 14.66 0 0 1.000 2,189
20 large 220.36 11.02 0 0 1.000 2,151

(g) Hong Lim Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (40) 5 small 106.10 21.22 13 191.55 0.675 2,962
10 medium 156.67 15.67 1 1.88 0.975 2,348
15 large 178.00 11.87 0 0 1.000 2,289

RASO-MT (47) 5 small 120.76 24.15 19 267.55 0.596 3,071
10 medium 182.06 18.21 1 9.74 0.978 2,449
15 large 203.74 13.58 0 0 1.000 2,295

(continued on next page)
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Table A.2 (continued).
(h) Bukit Timah Market & Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (67) 25 small 378.47 15.14 3 29.61 0.955 2,569
30 medium 397.74 13.26 1 11.90 0.985 2,531
35 large 412.66 11.79 0 0 1.000 2,511

RASO-MT (104) 25 small 527.06 21.08 22 115.71 0.788 2,863
30 medium 539.93 17.99 15 62.04 0.856 2,710
35 large 544.70 15.56 14 59.39 0.865 2,685

(i) Alexandra Village Food Centre

Method/Served Orders Drivers Size Total distance (km) Avg distance (km) Delayed orders Avg delay (s) On-time rate Avg delivery time (s)

Fixed-CSA-DDA (42) 10 small 179.20 17.92 2 36.83 0.952 2,508
15 medium 203.17 13.54 1 7.67 0.976 2,408
20 large 227.35 11.37 0 0 1.000 2,366

RASO-MT (56) 10 small 223.19 22.32 15 188.12 0.732 2,878
15 medium 255.57 17.04 2 12.52 0.964 2,421
20 large 258.08 12.90 0 0 1.000 2,383

Note. Drivers: Number of drivers in the system; Size: Size of the instance; Total Distance (km): Total travel distance of all drivers for the delivery; Avg Distance (km): Average travel
distance per driver to deliver their dispatched orders; Delayed Orders: Number of orders that cannot be delivered within the promised delivery time; Avg Delay (s): Average delay of all
orders; On-Time Rate: Ratio of orders delivered on time to total orders; Avg Delivery Time (s): Average delivery time for served orders.
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