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Abstract

Multi-agent systems (MASs) have achieved remarkable success

in multi-robot control, intelligent transportation, and multiplayer

games, etc. Thorough testing for MAS is urgently needed to ensure

its robustness in the face of constantly changing and unexpected

scenarios. Existing methods mainly focus on single-agent system

testing and cannot be directly applied to MAS testing due to the

complexity of MAS. To our best knowledge, there are fewer studies

on MAS testing. While several studies have focused on adversarial

attacks on MASs, they primarily target failure detection from an

attack perspective, i.e., discovering failure scenarios, while ignoring

the diversity of scenarios. In this paper, to highlight a typical bal-

ance between exploration (diversifying behaviors) and exploitation

(detecting failures), we propose an advanced testing framework

for MAS called MASTest with diversity-guided exploration and

adaptive critical state exploitation. It incorporates both individual

diversity and team diversity, and designs an adaptive perturba-

tion mechanism to perturb the action at the critical states, so as

to trigger more and more diverse failure scenarios of the system.
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We evaluate MASTest on two popular MAS simulation environ-

ments: Coop Navi and StarCraft II. Results show that the average

distance of the resulting failure scenarios is increased by 29.55%-

103.57% and 74.07%-370.00% on two environments compared to

the baselines. Also, the failure patterns found by MASTest are im-

proved by 71.44%-300.00% and 50%-500.00% on two experimental

environments compared to the baselines.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

In recent decades, multi-agent systems (MASs) have received con-

siderable attention due to their ability to solve complex problems

that involve interaction between multiple agents [2], e.g., multi-

robot control [6, 8], intelligent transportation [32, 39], smart grids

[34], unmanned aerial vehicles [5, 36] andmultiplayer games [4, 33],

etc. However, the robustness of MAS is a well-known challenge,

largely due to training complexities such as sparse rewards and

credit assignment. These issues render MAS particularly vulnerable

to the dynamic and unforeseen scenarios encountered in real-world

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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applications. Thus, before deploying a multi-agent system in real-

world environments, it must undergo rigorous testing to con�rm

its robustness, particularly in safety-critical scenarios such as air

tra�c control systems, military systems and industrial automation.

The primary goal of MAS testing is to uncover as many potential

failure scenarios as possible, where the target MAS makes undesir-

able decisions and ultimately fails to complete its task. Identifying

these diverse failure scenarios enables developers to understand

the weaknesses and di�erent root causes, further enhancing over-

all robustness. However, due to the unpredictable nature of open

environments, such as changing weather conditions, varying ter-

rain, and the behaviors of other participants, there could be an

in�nite number of scenarios. Consequently, a major challenge in

MAS testing is e�ectively detecting these diverse failure scenarios.

Numerous studies [7, 16, 29, 42, 44] have been developed to test

single-agent systems (SASs), such as autonomous driving systems.

However, these methodologies are challenging to apply to MASs

due to the complex interactions and cooperation between multiple

agents. To the best of our knowledge, MAS testing is less explored.

While several studies have focused on adversarial attacks on MASs

by perturbing the observations or actions of agents within the team

[10, 19, 22, 45], they primarily target failure detection from an attack

perspective, often overlooking the diversity and comprehensiveness

of failures. From a testing perspective, our objective is to identify

diverse types of failures, thereby reducing redundant analysis on

similar failures and uncovering a broader spectrum of robustness

issues in the target MAS.

This paper aims to develop an e�ective MAS testing method

capable of generating diverse failure scenarios to expose various

robustness issues. There are two primary challenges: 1) Measur-

ing the diversity of scenarios to ensure the generation of varied

failures. A straightforward approach might involve comparing the

trajectories of two scenarios; however, this method faces signi�-

cant challenges in complex MAS environments. Di�erences such as

trajectory lengths, the number of participants, agent interactions,

and even minor environmental changes can signi�cantly in�uence

trajectory comparisons, a�ecting the measurement of the scenario

diversity. 2) E�ectively generating failures while balancing the need

for scenario diversity against failure detection. Focusing solely on

covering diverse behaviors could lead to many scenarios that do not

necessarily cause failures, highlighting a typical balance between

exploration (diversifying behaviors) and exploitation (detecting

failures). Existing works [7, 12, 16, 25], which primarily perturb the

initial state before the system runs, may not e�ectively achieve this

balance, as modi�cations in the initial stage are di�cult to control

over their impact on the internal state of the MAS during operation.

To tackle these challenges, this paper introduces MASTest, an ad-

vanced testing framework for MAS that balances diversity-guided

exploration with adaptive critical state exploitation to trigger di-

verse failure scenarios during testing. To address challenge❶ for im-

proving diversity, we have developed an abstraction-based method

to measure the behaviors of multiple agents, considering both in-

dividual and team dynamics. Similar to [7], individual behavior is

represented by the abstraction sequence of the agent’s trajectory.

For team behavior, our approach not only abstracts and aggregates

state information among teammates but also examines their collab-

orative relationships through interaction strength. Both individual

and team behaviors are used to guide the exploration, i.e., generat-

ing scenarios with di�erent behaviors. To overcome challenge ❷ for

enhancing failure detection, our framework includes an adaptive

mechanism for identifying critical states that are likely to trigger

diverse failures. We perform targeted action perturbations on these

critical states to increase the likelihood of triggering various fail-

ures. To realize this, MASTest maintains a state criticality table,

which records the perturbation potential of each state based on

three aspects: diversity gain, failure gain, and selection frequency.

A state with a high potential score is considered critical and should

be prioritized for perturbation. This table is dynamically updated

after each test run to re�ect the latest diversity and failure feedback,

thereby providing accurate guidance for subsequent testing.

We evaluate the e�ectiveness of MASTest in two distinct multi-

agent environments: Coop Navi [25] (a cooperative task) and Star-

Craft II [27] (a competitive task). For each environment, we compare

MASTest against three baseline methods. The results demonstrate

that MASTest signi�cantly outperforms the baselines in discovering

diverse failures. Speci�cally, in the Coop Navi environment, MAS-

Test increases the average distance of generated failure scenarios

by 29.55% to 103.57%, and in StarCraft II, this increase ranges from

74.07% to 370.00%. Additionally, MASTest enhances the coverage of

unique failure patterns by 71.44% to 300.00% in Coop Navi and by

50.00% to 500.00% in StarCraft II. Furthermore, an ablation study

con�rms that failure feedback, individual diversity, and team diver-

sity each signi�cantly contribute to the discovery of diverse failure

scenarios. We also demonstrate the practical value of these diverse

failure scenarios in enhancing system robustness. After applying

�xes based on the failure scenarios generated by MASTest, we ob-

served a 45.83% reduction in collisions and a 45.42% improvement

in task completion rates.

In summary, this paper makes the following contributions:

• This work is, to the best of our knowledge, the �rst to speci�cally

address the testing of multi-agent systems (MASs), highlighting

the importance of this emerging type of arti�cial intelligence

system to the research community.

• We introduceMASTest, a novel framework that employs diversity-

guided exploration and adaptive critical state exploitation. It

assesses both individual and team diversity among agents and

adaptively identi�es critical states for action perturbation, aiming

to trigger increasingly diverse failure scenarios.

• We conduct extensive evaluations on two categories of MASs and

compare with six baselines, demonstrating promising results.

• We release the source code of MASTest and detailed experiment

results to facilitate the replication and further research1.

2 Background

2.1 Multi-Agent System

Amulti-agent system consists of a group of interacting agents, each

of which communicates, cooperates with each other to accomplish

a large number of complex tasks that cannot be accomplished by

a single agent. In MAS, a complex task is divided into multiple

smaller tasks, each assigned to a di�erent agent. The actions of an

agent a�ect not only its own state, but also those of its neighbors.

1More details can be found on our website: https://github.com/issta24/ISSTA24_MAT
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This requires each agent to consider the actions of the other agents

when deciding on the best goal-directed action. Based on the task

type, the applications of MAS can be classi�ed into two categories:

cooperative task (e.g., Coop Navi) and competitive task (e.g., Star-

Craft II). Cooperative task is to �nish the given goal together, such

as reaching the destination, while competitive task is to defeat their

opponents together.

The decision-making process of a MAS is often modeled as a

Markov game. Speci�cally, a Markov game for< agents is de�ned

as (N , {S8 }8∈N , {A
8 }8∈N , ?, W ), where N is a set of< agents, S8

and A8 are the state space, action space of agent 8 , respectively.

W ∈ [0, 1) is the discounting factor. S = S1×· · · S< is the joint state

space.A =A1×· · · A< is the joint action space. The state transition

? :S×A → Δ(S) is controlled by the current state and joint action,

where Δ(S) represents the set of all probability distributions over

the joint state space S. Each agent 8 obtains reward A 8 as a function

of the state and agent’s action: S × A → R. At time C , agent 8

chooses its action 08C according to a policy c8 : S8 → Δ(A8 ). The

agents’ joint policy is c =

∏
8∈N c

8
: S → Δ(A). Each agent 8

aims to maximize its own total expected return '8 =

∑)
C=0 W

CAC8 ,

where W is the discounting factor and ) is the time horizon.

2.2 Scenario Description

Scenario. A scenario is a temporal sequence of scenes, where each

scene is a snapshot of the environment including the static and

dynamic objects. Therefore, a scenario can be described by a series

of con�gurable static and dynamic attributes. Static attributes set

the static objects of the scenario, such as the map, destination,

obstacle, etc. Dynamic attributes de�ne the state (e.g., position,

orientation, etc.), trajectory, and behavior (e.g., move, speed up,

etc.) of dynamic objects, such as Non-Player Character (NPC) (i.e.,

other agents which are not target agents). To �nd diverse and

critical scenarios, we can manipulate the static and dynamic objects

in the environment by adjusting their con�gurable attributes, i.e.,

the trajectory described by a set of waypoints.

Scenario observation is a sequence of global state of all objects at

each time step in the simulation environment, including the target

agents, NPCs and other environment elements. We can also obtain

the team trajectory of the target MAS to focus only on the behavior

of the target system. Speci�cally, the team trajectory g of the target

MAS consists of the individual trajectory of each agent g8 , where 8

is the id of agent. g8 contains the local state of the target agent, such

as its position, speed, and health value (the aspects are task-speci�c,

and vary in di�erent MASs). Given a :-dimensional state space ': ,

the individual trajectory g8 can be represented as (B8
0
, · · · , B8

:
), where

B89 refers to the 9-th dimension state.

Failure Scenario. The failure scenario refers to the scenarios where

the target MAS makes the undesirable decisions and ultimately fails

the task. The failure has di�erent de�nitions in di�erent test envi-

ronments. For example, in Coop Navi, the failure refers to whether

the target MAS collides with obstacles and whether all the agents

in the system reach their destinations. While in StarCraft II, it is

de�ned as whether the target MAS are defeated or tied by the oppo-

nents. Users can con�gure MASTest with other failure de�nitions,

as long as such undesirable behaviors can induce reasonably low

rewards.

3 Approach

3.1 Overview

Fig. 1 illustrates the overview of MASTest. Essentially, MASTest

modi�es the participants (e.g., NPCs or opponents) within the en-

vironment to evaluate the robustness of the MAS in completing

tasks. Speci�cally, MASTest captures a concrete state (B) at each

time step. If this state is the ending state, a trajectory is obtained

and it checks if the task has been successfully completed. If not, a

failure is detected. We then collect feedback from the trajectory,

which includes individual and team diversity feedback, failure feed-

back (encompassing both the degree and frequency of failures),

and the selection frequency of each state. This feedback is used to

update the state criticality table by adjusting the potential scores

of the perturbed states within the test scenario. For states that are

not ending, MASTest checks their scores in the table to determine

their criticality; the higher the score, the more critical the state is

considered. Action perturbations are applied only on critical states,

while original actions are maintained for non-critical states. The

action is dispatched to the environment to obtain the next state for

further exploration and testing. The scores in the table re�ect vari-

ous feedback, guiding the generation of diverse failures. Note that

after reaching the ending state, we will reinitialize from the initial

state and continue retesting until the test budget is exhausted.

3.2 State Abstraction

Due to the complexity of the state and the in�nite number of pos-

sible states in the environments, comparing behaviors and main-

taining the state criticality table is challenging. Following existing

methods [17, 18], we employ grid-based abstraction to cluster simi-

lar states into abstract states, thereby reducing complexity.

For an agent � in the target MAS, as detailed in Sec. 2.2, the

concrete trajectory of � denotes as g� : (B�
0
, · · · , B�

:
). Each state

is a multi-dimensional vector, and each dimension is divided into

# equal intervals based on its range [;, D], where ; and D are the

lower and upper bounds respectively. This division transforms the

concrete state space ': into #: discrete abstract states. Hence, each

concrete state B is mapped to a grid (denoted as the abstract state

B̂ = 6(B)), where 6 represents the grid-based abstraction function.

Thus, multiple similar concrete states may map to the same abstract

state. From this abstraction, we derive the abstract trajectory from

the concrete trajectory g� , i.e., ˆg� = (6(B�
0
), · · · , 6(B�

:
)).

In Fig. 2, we illustrate this concept using a 2-dimensional concrete

state space. The concrete states are abstracted into abstract states,

represented by grid IDs. For example, the abstract trajectory of

Trajectory 1 can be represented as {· · · , 15, 11, 7, 13, 18, · · · } and

that of Trajectory 2 as {· · · , 5, 1, 7, 18, 14, · · · }.

Above, we explained the abstraction of an individual agent’s state.

Similarly, we can also calculate the abstraction of the global state.

The global state encompasses the entire environment, including

the state information of all agents, NPCs, and others.

3.3 Diversity Feedback

To generate diverse failures, it is necessary to assess the behaviors

of multi-agents within a scenario, including incidents such as colli-

sions with other agents (either partners or NPC agents), obstacles,
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Figure 1: Overview of MASTest.

Figure 2: Grid-based state abstraction.

or failures to reach a designated destination. We measure diversity

by comparing currently explored behaviors against historical be-

haviors. Speci�cally, the diversity of behaviors in MAS is evaluated

from two distinct perspectives: the actions of individual agents

(individual diversity) and the coordinated actions among team

members (team diversity).

3.3.1 Individual Diversity. Individual diversity evaluates the di-

versity of individual agents behavior in the MAS, i.e., individual

trajectories generated by each agent. After the ending state, we

can obtain the individual trajectory of each agent � g� and its

corresponding abstract trajectory ˆg� . We use T� to represent the

historical abstract trajectories of the agent � explored in previous

testing. The diversity of the behavior of agent � is calculated as the

di�erences between its current abstract trajecotry and the explored

abstract trajectories:

3�g� = min
ˆg�
′∈T�

38B ( ˆg�, ˆg�
′)

The abstract trajectories have di�erent lengths due to di�erent

execution time. Therefore, for the distance calculation 38B , the exist-

ing time sequence distance metrics, such as Dynamic TimeWarping

[3], may not work well in our situation. To this end, we adopt the

normalized Hamming distance to compute the distance between

two given traces C and C ′ (i.e., abstract trajectories in our context),

which is speci�ed as follows:

38B (C, C ′) =
�0<<8=6(C, C ′) + |;4=(C) − ;4=(C ′) |

<0G (;4=(C), ;4=(C ′))
(1)

where �0<<8=6(C, C ′) computes the Hamming distance [11] be-

tween the segments of common length in C and C ′, i.e., the forehand

states in each trace. The denominator is the maximum length of

two traces, which takes into account the length of the trace and

normalizes the distance to the interval [0, 1].

The �nal individual diversity within the current scenario is cal-

culated by averaging the diversity scores of each agent:

��
= 0E6({3�g� |� ∈ ��})

where � is short for Individual and�� denotes the set of all agents. A

higher �� indicates greater diversity in the behaviors of individual

agents within the new test scenario.

3.3.2 Team Diversity. Di�erences in team strategies tend to a�ect

the behavior of the whole team, e.g., a decentralized strategy on

the formation exhibits a more spread out stand of agents and a

larger distance between agents, while a compact strategy exhibits a

smaller distance between agents. In order to discover di�erent team

behaviors, MASTest does the following four steps: 1) Time Step

Sample, 2) Graph-based Abstraction, 3) Graph Embedding, 4)

Team Diversity Measurement.

1) Time Step Sample: Analyzing the team states at every time

step in a scenario can be time-consuming, given that states at neigh-

boring time steps often exhibit similarity. Therefore, we sample

a selected number of time steps to representatively capture the

essence of the entire scenario.

Previous work has proved that rewards in reinforcement learning

often guide the behavior of the agents and can re�ect the importance
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Figure 3: Illustration of time step sample, graph-based ab-

straction and graph embedding.

of the states [1]. To this end, we record the reward of MAS at each

time step, and take a window centered on the time step with the

highest reward and A as intervals to sample a time step set. As

shown in Fig. 3, assuming the window size is 3, and the center is

the  -th time step, then the set of sampled time step is: { − A ,  ,

 + A }, which is used for subsequent team diversity measurement.

We will present detailed discussion on the determination of window

size and window center in Sec. 6.

2) Graph-based Abstraction: The actions taken by an agent

may potentially change the relations between agents and thus

change the graph. To measure the diversity of behavior embodied

by the MAS team, we abstract the team and the interactions be-

tween teammates as an undirected graph. The state information

and collaborative relations of the target MAS can be well charac-

terized by the structure, the vertices’ attributes, and edges’ weights

of the graph. In this way, MASTest can measure the team diversity

by measuring graph similarity.

As Fig. 3 shows, each agent in the team is a vertex, and each ver-

tex contains a set of attributes of corresponding agent, i.e., position,

speed, health value, shield. The edge between two vertices and its

weight quanti�es interaction between the two agents and the situ-

ation of interaction. We use the distance between the two agents

obtained from the environment to represent the weight, indicating

the extent to which the two agents can interact with each other.

3) Graph Embedding: It is di�cult to compare the similarity

between two graphs directly because the features of the graph are

hard to extract and quantify [20]. Meanwhile, vector operations pro-

vide an easier and faster way to do this [9]. Therefore, we take the

idea of embedding and represent the graph as vectors based on ver-

tex attributes and their interactions with neighbors for subsequent

team diversity measurement. Based on this, MASTest generates

graph embedding for the abstract graph at each sampled time step,

as shown below:

First, MASTest initializes the embedding representation of each

vertex according to its own attribute. Then, MASTest aggregates the

information contained in the neighboring vertices through aweight-

based aggregation function. For a vertex E , N(E) is the neighbor

vertices of E and ℎ:E is the embedding representation of vertex E

after the :-th iteration.F (D, E) is the weight of the edge between

verticesD and E , which is de�ned in Graph-based Abstraction. Then

the embedding of E at (: + 1)-th iteration ℎ:+1E is the sum of ℎ:E and

the weighted and averaged neighbor embedding, which is speci�ed

as follows:

ℎ:+1E ← (D<(ℎ:E , "40=(
1

F (D, E)
∗ ℎ:D ), D ∈ N (E)) (2)

We can obtain the embedding representation of each vertex in

the graph as ℎE . The embedding of the graph � is represented as

4<3 (�) = (ℎE0 , · · · , ℎE< ), where E0, · · · , E< are all vertexes in the

graph � .

4) Team Diversity Measurement: Similar to the individual di-

versity measurement, the team diversity is measured by comparing

the current team behavior and historical team behaviors explored

in the previous testing. Speci�cally, we use the graph embedding to

represent the team behavior and the team diversity in the current

scenario is calculated as:

�)
= min

� ′∈G
6A0?ℎ_38B (4<3 (�), 4<3 (� ′))

where the superscript ) is short for Team, G represents the set of

historical graphs, 6A0?ℎ_38B calculates the distance between two

sampled graph set by the Graph Wasserstein distance [30], which is

widely used to measure the similarity between pairwise graphs. The

larger the �) , the more diverse the team behaviors in the scenario.

3.4 Failure Feedback

Except for the behavior diversity, the primary goal of MAS testing

is to search for scenarios where target agents fail. Hence, we also

evaluate the failure degree of the target MAS in given scenarios.

We de�ne the failure degree of a test scenario from task completion

(i.e., the gap to the goal), and the cost consumption (i.e., the loss in

the process of completing the task).

� = 56>0; + 52>BC (3)

Task Completion refers to the gap to the goal, which is de�ned:

56>0; =

#∑

8=1

� (?08 , ?6>0; ) (4)

where 08 represents the 8-th agent in the MAS, � (?08 , ?6>0; ) indi-

cates the distance of agent 08 from the goal. The speci�c calculation

will be slightly di�erent in di�erent environments. For example,

the gap to the goal can be the distance from the agent to the desti-

nation in cooperative navigation task, or the remaining health of

the opponent agents in competitive game task.

Cost Consumption refers to the cost consumed in completing

the task, which is denoted as 52>BC . For example, in cooperative

navigation, the cost comes from collisions with obstacles; while in

competitive game, the cost comes from the consumption of its own

combat power.

3.5 State Criticality Table Initialization &
Update

We maintain a state criticality table in MASTest to determine the

criticality of each abstract state and guide subsequent action pertur-

bations. Note that the abstract state represents the abstraction of

the global state, rather than the abstract state of an individual agent.

Initially, the state criticality table is set up such that all abstract

states are assigned a uniform criticality of 1. After each testing

iteration, the criticality of each perturbed state is updated based

on three key factors: 1) the emergence of new diverse scenarios
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relative to existing ones, 2) the frequency of failures observed, and

3) how often the state is selected (selection frequency).

1) Diverse Failures Gain. We assess whether perturbing at the

state could produce di�erent failure scenarios compared with ex-

isting failure scenarios. We consider the failure degree (Sec. 3.4),

individual diversity (Sec. 3.3.1), and team diversity (Sec. 3.3.2) to

calculate the criticality update, which is speci�ed as follows:

Δ�35 6 =

�

1 − �� +�)

2
+ W

(5)

where W is a small value (e.g., 10−5) to avoid zero denominator. Note

that, Δ�35 6 is measured from the entire scenario, e.g., from team

and agent trajectories. We use this score to update the criticality of

those abstract states within the scenario that have been perturbed.

Eq. 5 indicates that if a test scenario generated by perturbing a

speci�c state results in both a higher degree of failure and greater

diversity, a higher bonus will be added to the criticality of that state.

2) Failure Frequency: In order not to make too many ine�ective

attempts on a state that is di�cult to trigger a failure of the target

MAS, we count the frequency each state has triggered the failure.

For each state, we record the number of failure scenarios or non-

failure scenarios caused by perturbation on it (denoted as #� and

##� ). A smaller weight (0.1) used in the benign case is to avoid

deducting too much criticality score. The criticality update brought

by failure frequency is computed as follows:

Δ�5 5 =




#�

#� + ##�
, Current scenario is a failure.

−
0.1 · ##�

#� + ##�
, Current scenario is a benign case.

(6)

3) Selection Frequency: To avoid MASTest selecting a particular

critical state multiple times, which may result in local convergence,

we reduce the criticality of the state when selecting it. In this paper,

we choose a �xed value of criticality decay, i.e. Δ�B 5 = −0.05.

According to the above three aspects, the criticality update value

of the perturbed state is:

Δ�B = F1 · Δ�35 6 +F2 · Δ�5 5 +F3 · Δ�B 5 (7)

where F1, F2 and F3 are three hyperparameters to adjust the

weights of the three factors. For each perturbed state, we update

the criticality based on the calculated update value Δ�B .

Critical State Determination. MASTest determines whether a

state is critical to add a perturbation to, based on the criticality of

each state. For each state B8 , the probability of being considered as

the critical state is:

?B8 =
<0G (�B8 , 0)∑

B∈S �B
(8)

where �B8 is the criticality of state B8 , and the denominator is the

sum of the criticality of all states. The higher the criticality of the

state, the higher the probability of being a critical state. In each

scenario execution, MASTest selects the top 10% states as the critical

states to guide the action perturbation

3.6 Action Perturbation

At each time step, if the current state is determined as a critical

state, MASTest will add perturbation on the action of NPCs. Note

that all the dynamic objects except the target MAS which can a�ect

the environment can be considered as NPCs. MASTest employs

Single-point 
mutation

!! …"! !" !# !$ !! …"! !" !
#

%
!$

"! !! …!" !# !$

!! …!" !# !$""

"! !! …!" !# !$

!! …!" !# !$""

Two-point 
crossover

!&

!'

!! …"! !" !# !$ !!!" !#!$
…"!Shuffle

(a) Gene Mutation

(c) Two-point Crossover

(b) Shuffle

Figure 4: Perturbation operators.

three types of perturbation operators: gene mutation, two-point

crossover and shu�e. At each time step, analogising the action that

each NPC originally took to a chromosome, we give an introduction

to three perturbation operators, followed by a description of speci�c

usage for di�erent cases.

(a) Gene Mutation: Modifying one gene in a chromosome as

shown in Fig. 4 (a). The original gene (�3) is replaced by randomly

generating parameter values (� ′
3
), such as the speed of an NPC at

a given moment. (b) Shu�e: As Fig. 4 (b) shows, shu�e randomly

changes the order of genes on the chromosome. (c) Two-point

crossover: Selecting two random points (i.e., ?1 and ?2 in Fig. 4 (c))

on two chromosomes, and swapping the genes between them.

Due to the di�erent dimensions of the action, the speci�c pertur-

bation operations that can be employed are slightly di�erent. When

the dimension of the action is 1, the action is a �nite and discrete

value from a prede�ned set of actions that can only be perturbed

with (a) and (c). When the dimension of the action is greater than 1,

the action is a vector, so all perturbation operators can be adopted.

4 Experiment Design

4.1 Research Questions

We consider the following research questions:

RQ1: (E�ectiveness) Can MASTest e�ectively �nd diverse fail-

ure scenarios of the target MAS compared to the baselines?

RQ2: (Ablation Study) How do the failure feedback, individ-

ual diversity and team diversity contribute to the performance of

MASTest?

RQ3: (Usefulness) How useful is the failure scenarios discov-

ered by MASTest to repair the target MAS?

4.2 Target Models and Environments

Based on the task type, the application of MAS can be classi�ed

into two categories: cooperative task and competitive task. As Fig.

5 shows, the cooperative task (e.g., Coop Navi) requires the target

MAS (small green) to cooperate to reach the destination (big green)

without collisions with teammates, obstacles (black), or NPCs (pink).

(a) Cooperative Task (Coop Navi) (b) Competitive Task (StarCraft II)

Figure 5: Two task types of MAS.
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Whereas the competitive task (e.g., StarCraft II) requires the target

MAS (right & blue) to defeat its opponents, called adversarial agents

(left & red).

For completeness and generalization of experiment, we verify the

e�ectiveness of MASTest on both cooperative and competitive tasks.

We choose two commonly-used simulation environment: Multi-

Agent Particle Environment (MPE) [21] which is a two-dimensional

multi-agent environment and StarCraft II [27] which is a popular

real-time strategy game. For MPE, we use Coop Navi [25] which

requires the MAS to cooperate to reach their destinations without

collision. The target model of MAS is o�cially provided by OpenAI

[24] which is trained by the MADDPG algorithm [21]. For StarCraft

II, we conduct experiments on the map 123B5I, where two-sided

teams each have three types with a total of nine soldiers and try

to defeat their opponents. We use the o�cial model provided by

DeepMind as the target MAS, which is trained by o�-policy actor-

critic and experience replay techniques.

4.3 Baselines and Evaluation Metrics

4.3.1 Baselines. Di�erent categories of tasks (i.e., cooperative and

competitive) have di�erent characteristics, and existing techniques

tend to focus on a speci�c category. Besides, existing testing tech-

niques proposed for a speci�c category of tasks can not easily or

even impossible to be used in another category, e.g., one can not

modify the initial state in the competitive tasks like StarCraft II,

thus the baselines MDPFuzz and GMT cannot take e�ect in these

tasks. Therefore, we choose the corresponding baselines in terms

of the category of tasks.

For cooperative tasks, we compareMASTest with three commonly-

used and SOTA techniques.

• Random randomly selects one NPC and perturbs its action

at a random time step without any feedback.

• MDPFuzz [25] is a popular fuzzing testing framework partic-

ularly for models solving Markov decision process problems.

It generates initial states as test cases that can lead to failure-

triggering trajectories.

• GMT [17] is the SOTA testing framework for decision-making

models. It uses generative di�usion models as test case gen-

erators and novelty-based guidance to diversify agent behav-

iors.

For competitive tasks, we compareMASTest with three commonly-

used and state-of-the-art (SOTA) techniques.

• Random randomly selects one NPC which is trained by

QMIX and perturbs its action at a random time step without

any feedback.

• QMIX [26] is a commonly-used deep multi-agent RL algo-

rithm. We use it to train a testing MAS to reveal failure

scenarios of target MAS via adversarial interactions. We use

the implementation in PyMARL2 [13] for this baseline.

• Wuji [43] is the SOTA testing framework for competitive

tasks by generating diverse behavioral agents. It can gener-

ate a population of adversarial MAS trained by QMIX with

diverse strategies to reveal the diverse failure scenarios of

the target MAS. We use the implementation provided by the

authors.

4.3.2 Evaluation Metrics. Following previous works [12, 17, 25, 43],

we evaluate the diversity of generated failure scenarios from state

coverage (%Coverage) and average distance (#Distance). Besides,

we use the number of failure scenarios (#Failure) and the rate of

failures (%Failure) to evaluate the e�ciency of �nding defects. We

also summarize the failure patterns and de�ne a metric (%Pattern)

based on manual analysis, which re�ects the proportion of found

failure patterns to all patterns.

• %Coverage: The ratio of covered states in terms of the whole

global state space. Following existing studies [17, 25], we

divide each dimension of the state space into 5 parts, and the

whole state space is composed of dozens of units. During

the testing, we obtain the global state at each time step, and

put it in the speci�c unit. %Coverage is then calculated with

the ratio of covered units in terms of all units.

• #Distance: The average distance between the failure scenar-

ios generated by MASTest, where the distance between each

pair of two failure scenarios is calculated by Eq. 1.

• #Failure: The number of failure scenarios of the target MAS.

• %Failure: The ratio of the number of failure scenarios of the

target MAS to the total number of test scenarios.

• %Pattern: The coverage of failure patterns generated by

each method to all failure patterns.

4.4 Experimental Setup

The Overall Setup. In all experiments, we use MASTest and base-

lines to respectively test the target MAS within the same test dura-

tion of two hours following the common setup [12, 43]. For each

method, testing is repeated three times to avoid randomness, and

the average performance is presented.

We conducted preliminary experiments in other two settings

of the experimental environment, i.e., 3< in StarCraft II and Coop

Spread in MPE, and determine the value of parameters based on the

experimental results as shown below. The weightsF1,F2 andF3

in Eq. 7 are set to 0.5, 0.5, and 1. The window size in Sec. 3.3.2 is set

to 5. The interval of time step sampling A is set to 2. We implement

MASTest with PyTorch. All experiments are launched on a server

equipped with an NVIDIA TITAN RTX GPU, Intel Xeon Silver CPU,

64GB RAM, running on Ubuntu 20.04 OS.

For RQ2, we design an ablation study to investigate the e�ec-

tiveness of failure feedback, individual diversity and team diversity.

The detailed settings of variants are as follows:

• w/o Diversity Feedback: The state criticality table is only

updated by failure feedback.

• w/o Failure Feedback: The state criticality table is only up-

dated by diversity feedback (individual diversity and team

diversity).

• w/o TeamDiversity: The state criticality table is only updated

by failure feedback and individual diversity.

• w/o Individual Diversity: The state criticality table is only

updated by failure feedback and team diversity.

For RQ3, to verify the usefulness of the failure scenarios, we

repair the target MAS used in Coop Navi with the failure scenarios

uncovered by MASTest and other baselines. Here, “repair” repre-

sents constructing a dataset to �ne tune the model, which contains

data on the environmental settings that make the target MAS fail,
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i.e., trajectories of NPCs, locations of obstacles, etc. In the process

of repairing, we take the failure scenario as the input data to retrain

the target agents. These failure scenarios are generated by di�erent

methods, including random generation. In the process of retesting,

we randomly generate scenarios as test data and test the perfor-

mance of the target agents. Since the target MAS in StarCraft II are

black-boxed and inaccessible, we cannot obtain the model structure

and training code of the target MAS. Therefore, we cannot repair

them by ourselves, but we can help the model repair by submitting

the failure scenarios to the developer.

5 Results and Analysis

5.1 RQ1: E�ectiveness of MASTest

We prove the e�ectiveness of MASTest from two aspects: automated

evaluation and manual evaluation.

5.1.1 Automated Evaluation of Failure Scenario. Table 1 presents

the results of %Coverage, #Distance, #Failure and %Failure of target

MAS in column 2 - 5. For cooperative task, MASTest achieves satis-

fying performance on �nding diverse failure scenarios. Compared

with the best baseline (GMT), MASTest improves 14.40%, 29.55%,

14.49% and 14.77% on the four metrics, respectively. The main rea-

son is that MASTest uses the diversity and failure degree to guide

the generation of failure scenarios. While in GMT, the novelty of

the termination state is used as a guide for generating test cases,

which can not reasonably characterize the target MAS’s strategy.

In addition, Gaussian random noise is used to mutate the test cases,

which is ine�cient.

For competitive task, MASTest outperforms other baselines in

terms of %Coverage and #Distance. The goal of the adversary

trained by QMIX is only to win, so #Failure and %Failure is the

highest. In order to explore diversity, Wuji and Random testing em-

ploys mutation which is random and without guidance. Therefore,

the failure scenarios produced by these two methods have lower

performance than MASTest on all four metrics. Compared with the

best baseline (Wuji), MASTest improves 26.14%, 74.07%, 17.15% and

24.42% on the four metrics, respectively.

Due to space constraints, we also present the trends of %Cover-

age, #Distance and #Failure over time on our website. For example,

over time, the %Coverage gradually increases and reaches a plateau,

and at each moment, MASTest outperforms other baselines. #Dis-

tance tends to increase and then decrease or keep decreasing over

time, with MASTest still outperforming other baselines.

Table 1: E�ectiveness of MASTest and baselines.

Method
Metric %Coverage #Distance #Failure %Failure %Pattern

Cooperative Task

Random 43.30% 0.28 841.6 40.50% 25.00%

MDPFuzz 57.60% 0.33 1373.6 67.90% 41.67%

GMT 61.80% 0.44 1469.3 73.10% 58.33%

MASTest 70.70% 0.57 1682.2 83.90% 100.00%

Competitive Task

Random 26.53% 0.12 546.7 49.70% 16.67%

QMIX 31.60% 0.1 1040.6 96.80% 33.33%

Wuji 36.15% 0.27 772.7 72.90% 66.67%

MASTest 45.60% 0.47 905.2 90.70% 100.00%

5.1.2 Manual Evaluation of Failure Scenario. We manually analyze

failure scenarios generated by MASTest and baselines to provide a

high-level view of the failure patterns. Speci�cally, we use DBSCAN

[38] to cluster all the failure scenarios generated by MASTest and

the baselines. The parameter cluster radius in DBSCAN, indicat-

ing the maximum distance between failure scenarios in the same

cluster, can in�uence the number of clusters generated. A small

value would generate too much clusters and the failure scenarios

in di�erent clusters might correspond to the same pattern, while

a big value would generate few clusters and the failure scenarios

in a cluster can demonstrate di�erent patterns, both of which is

undesirable. Through pilot experiments, we set the parameter as

0.7 and obtain 12 clusters. We sample 10 failure scenarios from each

cluster. Then, the �rst two authors work together to summarize the

failure pattern of the scenarios for each cluster. When a discrep-

ancy arises, the third author is involved and they discuss together

and reach an agreement. In order to further con�rm the reliabil-

ity of manual analysis, after the manual analysis, we additionally

recruited two testers with rich testing experience to analyze the

failure patterns. Speci�cally, two testers each randomly selected 10

failure scenarios from each of the 12 clusters. Then they compare

each failure scenario with the 12 patterns we summarized. If the

match is successful, it is considered consistent; otherwise, it is in-

consistent. The average consistency rate of the 12 clusters is 98%

and no new failure patterns are found.

Table 2 shows the coverage of our approach and the baselines in

revealing these failure patterns, where F1-1 to F1-8 and F2-1 to F2-4

are failure patterns of cooperative task, and F3-1 to F3-4 and F4-1 to

F4-2 are failure patterns of competitive task. Fig. 6 demonstrates the

discovered failure patterns for cooperative task, and the detailed

failure pattern descriptions are presented below. The patterns and

detailed descriptions for competitive task is shown on our website

due to space limit. Based on the crash de�nition of the experimental

environment, the failure patterns of cooperative task compose of

two categories collision (F1) and failing to reach the destination

(F2).

Collision (F1). Fig. 6 shows the failure patterns related with

collision, which contains the following 12 unique failure patterns.

F1-1: The target agents gather around the destination, while the

NPC also moves towards the destination, and engage in a round-

robin chase. The target agents do not choose to leave, resulting in

multiple collisions.

Table 2: The coverage of failure patterns.

C
o
o
p
e
ra
ti
v
e Method F1 F2 Sum Details

Random 3 0 3 F1-4, F1-7, F1-8

MDPFuzz 4 1 5 F1-1, F1-4, F1-7, F1-8, F2-1

GMT 5 2 7 F1-1, F1-4, F1-6, F1-7, F1-8, F2-1, F2-4

MASTest 8 4 12 F1-1 to F1-8, F2-1 to F2-4

C
o
m
p
e
ti
ti
v
e Method F3 F4 Sum Details

Random 1 0 1 F3-1

QMIX 2 0 2 F3-1, F3-2

Wuji 3 1 4 F3-1, F3-2, F3-4, F4-2

MASTest 4 2 6 F3-1 to F3-4, F4-1 to F4-2
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Figure 6: Failure patterns on Coop Navi task. The green globules are target agents, and the red globule is NPC.

F1-2: The NPC suddenly accelerates behind the target agent, and

the target agent cannot escape in time, resulting in a collision.

F1-3: The NPC’s moving direction is perpendicular to the target

agent’s moving direction. The NPC suddenly accelerates, and the

target agent does not adjust its speed in time, resulting in a collision.

F1-4: The NPC hovers near the destination, but the target agent

chooses to collide with the NPC in order to reach the destination.

F1-5: The obstacle, target agent, and destination are on the same

line, and the target agent does not choose a detour and collides

with the obstacle in order to reach the destination.

F1-6: During the chase between the NPC and the target agent, the

target agent causes a collision with an obstacle in order to escape.

F1-7: A target agent makes a decision error: it should move to the

top right, but chooses to move upwards, resulting in a collision

with the obstacle.

F1-8: The target agents move to the same location because they

have the same destination. As they move forward, their proximity

results in a collision.

Failing to reach the destination (F2). MASTest �nds four

failure patterns related with not reaching the destination, shown

in Fig. 6.

F2-1: A target agent chooses a wrong direction and leaves the setup

area (i.e., crosses the border line), eventually failing to reach the

destination.

F2-2: The NPC is close to the destination and the target agent

chooses not to move up in order to avoid the NPC. In this way, the

target agent does not reach the destination.

F2-3: In this case, the obstacle is very close to the destination and

thus the target agent judges that it cannot move up and �nally does

not reach the destination.

F2-4: The target agent is constantly being chased by the NPC,

resulting in a focus on escaping rather than going to the destination,

and ultimately not reaching the destination.

As shown in Table 1 and 2, we present %Pattern and speci�c

failure patterns discovered by each method. The results show that

MASTest can discover the most diversi�ed failure scenarios and

cover all the failure patterns discovered by baselines.

Then, we carry out further qualitative analysis of the results.

Speci�cally, we analyze why our approach can generate some fail-

ure scenarios and the baselines can not. This is due to the fact that

our approach can recognize the critical state based on the feedback

mechanism. It perturbs the NPCs at the critical state, which can trig-

ger the failure scenario more e�ectively. In contrast, the baselines

cannot recognize critical state, which makes many perturbation

operations ine�ective. Fig. 7 shows a concrete example and we

provide more detailed analysis on the website due to space limit.

As shown in Fig. 7(a), our approach recognizes the current state

as the critical state, i.e., the target agent is moving towards the

destination, and the NPC is at a suitable distance from the topmost

target agent. The NPC is perturbed to turn and run towards the

target agent, and �nally collides with it. In the contrast, baselines

select a non-critical state for perturbation, as shown in Fig. 7(b). Due

to missing the critical opportunity, after the perturbation, the NPC

Figure 7: Illustration of qualitative analysis.
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cannot interfere with the target agent in time, which eventually

causes the target agent to reach the destination.

Answering to RQ1: Compared with the commonly-used and

SOTA techniques, MASTest can discover diverse failure scenarios

during the same testing period.

5.2 RQ2: Ablation Study

Table 3 shows the results of %Coverage, #Distance, #Failure and

%Failure of the failure scenarios found byMASTest and four variants

(w/o Failure Feedback, w/o Diversity Feedback, w/o Team Diversity

and w/o Individual Diversity).

We �rst focus on the impact of failure feedback and diversity

feedback on the results, i.e., w/o Failure Feedback, w/o Diversity

Feedback. When removing Failure Feedback, %Coverage decreases,

#Distance increases, #Failure and %Failure greatly decrease. The

reason for this phenomenon is as follows: MASTest w/o Failure

Feedback wastes a lot of energy on the states that is hard to trigger

failure scenarios. As a result, #Failure and %Failure are reduced.

As the total number of failure scenarios is reduced, the state space

covered is correspondingly reduced, so %Coverage is reduced. How-

ever, although the number of failure scenarios is low, the generated

failure scenarios are di�erent from each other, so #Distance in-

creases.

In addition, for the failure scenarios generated by w/o Diversity

Feedback, %Coverage decreases, #Distance decreases, #Failure and

%Failure increase. When Diversity Feedback is removed, MASTest

focuses on perturbing those states that are prone to trigger target

MAS failure and ignores the diversity of resulting failure scenarios.

In this way, #Failure and %Failure increases. Although the number

of failure scenarios is high, resulting failure scenarios are similar,

so %Coverage and #Distance are still lower than MASTest.

To assess the e�ect of team diversity and individual diversity

in �nding diverse failure scenarios, we report the performance

impact of removing these two parts separately. As Table 3 shows,

removing one of team diversity and individual diversity results

in a decrease in %Coverage and #Distance, with little e�ect on

#Failure and %Failure. This is because removing one part of diversity

feedback reduces the diversity of failure scenarios, but does not

a�ect the function of the failure feedback. And the existence of

the other part of diversity feedback can still maintain the balance

Table 3: Ablation study on failure and diversity feedback.

Method
Metric %Coverage #Distance #Failure %Failure

Cooperative Task

w/o Failure Feedback 65% 0.61 1273.0 63.30%

w/o Diversity Feedback 50.10% 0.28 1773.5 88.15%

w/o Team Diversity 60.90% 0.42 1690.4 83.7%

w/o Individual Diversity 65.6% 0.49 1689.5 84.00%

MASTest 70.70% 0.57 1682.2 83.90%

Competitive Task

w/o Failure Feedback 36.90% 0.5 513.0 50.20%

w/o Diversity Feedback 29.80% 0.21 983.0 96%

w/o Team Diversity 35.20% 0.33 910.5 90.70%

w/o Individual Diversity 38.10% 0.37 912.3 90.60%

MASTest 45.60% 0.47 905.2 90.70%

Table 4: Model repair by MASTest and baselines.

Method #Collision %Completion

Before Repair 386.4 51.3%

Repair by Random 375 51.8%

Repair by MDPFuzz 350.9 60.8%

Repair by GMT 320.1 64.7%

Repair by MASTest 209.3 74.6%

with the failure feedback, so #Failure and %Failure do not change

signi�cantly. Moreover, removing team diversity leads to greater

in�uence than removing individual diversity, which indicates that

team diversity better represents the diversity of the entire team

behaves in MAS, thus �nding more diversi�ed failure scenarios.

Answering to RQ2: Both failure feedback and diversity feedback

(team diversity & individual diversity) are useful for �nding di-

verse failure scenarios. In addition, team diversity is more helpful

than individual diversity.

5.3 RQ3: Usefulness of MASTest

In RQ3, we repair the model used in Coop Navi with the failure sce-

narios uncovered by MASTest and other baselines. Table 4 reports

the performance of the model before and after repair. We use the

number of collisions as well as the percentage of task completion

(i.e., the number of completed tasks out of the total number of tasks)

to re�ect the usefulness of failure scenarios for repairing models.

The results show that the number of collisions occurred after the

target MAS was repaired using the failure scenarios generated by

MASTest was lower than that before the repair (209.3 vs 386.4),

and the percentage of task completion is higher than that before

the repair (74.6% vs 51.3%). Moreover, MASTest brings a higher

enhancement to the target MAS than other baselines.

Answering to RQ3: The performance of the target MAS is e�ec-

tively improved by repairing with the failure scenarios discovered

by the MASTest, outperforming other baselines.

6 Discussion

6.1 Selection of Window Center

As mentioned in Sec. 3.3.2, we use a window to sample several time

steps to represent the team’s strategy throughout the test scenario.

In this section, we evaluate the impact of window center on the

performance. Speci�cally, we randomly set the window center (de-

noted as random center) or choose the time of maximum reward

as the window center (denoted as reward center), and compare the

diversity of failure scenarios resulting from both schemes.

Table 5: Performance comparison of di�erent window center.

Setting
Metric %Coverage #Distance #Failure %Failure

Cooperative Task

random center 66.40% 0.52 1618.1 80.70%

reward center (MASTest) 70.70% 0.57 1682.2 83.90%

Competitive Task

random center 40.70% 0.41 867.4 86.90%

reward center (MASTest) 45.60% 0.47 905.2 90.70%
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Table 5 shows the results with di�erent settings of window cen-

ter. Results show that using the maximum reward as the basis for

selecting the window center produces better results than randomly

selecting the window center.

6.2 Threats to Validity

The �rst threat concerns about the generality of the proposed ap-

proach. Although we only experiment with StarCraft II and Coop

Navi, the two environments are di�erent and involve di�erent types

of tasks and agents, and we repeat the experiment multiple times.

This could alleviate the threat to some extent.

The second threat is that sampling time step is based on the

related work [1]. The performance of MASTest is superior to other

baselines, and based on simple comparative experiments, the use

of the maximum reward as the basis has a better e�ect than the

random scheme. And in the future we would conduct more detailed

experiments to study the impact of di�erent settings.

The third threat is that the granularity of state abstraction follows

existing works. Despite following existing work, we have achieved

better performance than baselines under the current setup. Further-

more, this is a con�gurable parameter, and it would not be di�cult

for users to tune it based on a small scale validation dataset or

directly apply the value we used considering its good performance

in several popular experimental environments.

The fourth threat is the patterns of the failure scenarios are

identi�ed and analyzedwith human e�orts. BothMPE and StarCraft

II are multi-agent environments widely used for academic research.

Our in-depth analysis of the environment and the collaborative

e�orts of multiple authors to identify the patterns of the failure can

e�ectively mitigate the threat.

7 Related Work

There are some studies about agent testing focusing on the diver-

sity of policy failures. They collected the trajectories of agents and

compared the similarity between trajectories to quantify the be-

havioral diversity of agents [7, 15, 35]. BehAVExplor [7] measured

the potential of test cases to �nd multiple violations by comparing

the distance of the trajectories of the vehicles under test. Li et al.

[15] compared the mutual information of the agents’ trajectories in

order to motivate each agent to produce di�erent behaviors. SeqDi-

vFuzz [35] was based on the siamese network model to compare

the similarity of state sequences to determine whether to continue

to execute test cases, thereby improving test e�ciency. EMOGI

[28] used the duration and moving distance to represent di�erent

strategies of the agent, resulting in agents with di�erent behaviors.

Mazouni et al. [23] introduced quality diversity for policy testing,

which describes how a solution actually solves the task. Depending

on quality diversity, they optimized the test input to �nd di�erent

faults in reinforcement learning. However, these methods only fo-

cused on the behavioral diversity of the single agent and cannot

measure the behavioral diversity of a multi-agent team well. By

characterizing the structure and interactions of multi-agent teams,

MASTest can discover diverse failure scenarios involving diverse

team strategies.

Some techniques designed for testing decision-making models

can also be applied to MAS testing [17, 25]. Pang et al. [25] proposed

a black-box fuzzy testing framework MDPFuzz to test intelligent

software in several Markov decision process scenarios. Li et al.

[17] proposed a testing framework for decision-making policies

based on novelty guidance and di�usion model to diversify agent

behaviors. Although they can work on some MASs, they do not

consider the characteristics of MASs, so they do not perform as

well as our MASTest.

Adversarial attack is widely used to evaluate the robustness of

MAS from the attack perspective [10, 14, 19, 22, 31, 45], including

modifying observations, actions, communications, etc. The robust-

ness is re�ected by the failure probability of the target MAS after the

attack. Ilahi et al. [14] considered attacks that rely on perturbing the

state space, the reward space, the action space, and the model space,

where one can perturb the model’s learned parameters. Ma and Li

[22] proposed a grey box attack method for MARL communication

and evaluate the performance of MARL. Tu et al. [31] proposed a

method to attack the communication of multi-agent systems by

generating adversarial messages. However, these methods only

focused on successful attack on MAS but ignore the diversity of

the discovered failure scenarios. In addition, some general-purpose

deep learning testing methods [37, 40, 41] have been proposed to

evaluate model robustness. However, these methods tend to be

ine�ective in evaluating the robustness of MAS due to their lack of

consideration for action sequences in MASs.

8 Conclusion

Multi-agent systems (MASs) draw considerable attention for solv-

ing complex problems involving interactions between multiple

agents. Before deploying MAS into the real world, it should be

adequately tested to ensure its robustness under diverse scenarios.

However, to our best knowledge, MAS testing has not been investi-

gated. In this paper, we propose a testing framework MASTest with

diversity-guided exploration and adaptive critical state exploitation.

It measures both individual diversity and team diversity among

multiple agents, and adaptively selects critical states for action per-

turbation during operation, thus triggering more diversi�ed failure

scenarios of MAS. Experimental results show that MASTest is able

to �nd more diverse failure scenarios compared to baselines in both

automated and manual evaluation. Furthermore, we demonstrate

failure scenarios generated by MASTest can repair the target MAS

more e�ectively than other baselines.
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