
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2024

Reinforcement learning based online request scheduling Reinforcement learning based online request scheduling

framework for workload-adaptive edge deep learning inference framework for workload-adaptive edge deep learning inference

Xinrui TAN

Hongjia LI

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Lu GUO

Nirwan ANSARI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
TAN, Xinrui; LI, Hongjia; XIE, Xiaofei; GUO, Lu; ANSARI, Nirwan; HUANG, Xueqing; WANG, Liming; XU, Zhen;
and LIU, Yang. Reinforcement learning based online request scheduling framework for workload-adaptive
edge deep learning inference. (2024). IEEE Transactions on Mobile Computing. 1-18.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9442

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Xinrui TAN, Hongjia LI, Xiaofei XIE, Lu GUO, Nirwan ANSARI, Xueqing HUANG, Liming WANG, Zhen XU, and
Yang LIU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9442

https://ink.library.smu.edu.sg/sis_research/9442

1

Reinforcement Learning Based Online Request
Scheduling Framework for Workload-Adaptive

Edge Deep Learning Inference
Xinrui Tan, Hongjia Li, Member, IEEE , Xiaofei Xie, Lu Guo, Nirwan Ansari, Fellow, IEEE ,

Xueqing Huang, Member, IEEE , Liming Wang, Zhen Xu, and Yang Liu, Senior Member, IEEE

Abstract—The recent advances of deep learning in various mobile and Internet-of-Things applications, coupled with the emergence of
edge computing, have led to a strong trend of performing deep learning inference on the edge servers located physically close to the
end devices. This trend presents the challenge of how to meet the quality-of-service requirements of inference tasks at the
resource-constrained network edge, especially under variable or even bursty inference workloads. Solutions to this challenge have not
yet been reported in the related literature. In the present paper, we tackle this challenge by means of workload-adaptive inference
request scheduling: in different workload states, via adaptive inference request scheduling policies, different models with diverse model
sizes can play different roles to maintain high-quality inference services. To implement this idea, we propose a request scheduling
framework for general-purpose edge inference serving systems. Theoretically, we prove that, in our framework, the problem of
optimizing the inference request scheduling policies can be formulated as a Markov decision process (MDP). To tackle such an MDP,
we use reinforcement learning and propose a policy optimization approach. Through extensive experiments, we empirically
demonstrate the effectiveness of our framework in the challenging practical case where the MDP is partially observable.

Index Terms—Edge computing, deep learning inference serving systems, efficient deep learning inference, reinforcement learning.

✦

1 INTRODUCTION

Edge computing has been highlighted as a promising
solution to support the fast-growing latency-sensitive ap-
plications for the widespread mobile and Internet-of-Things
(IoT) devices [1], which are expected to generate more than
half of the world’s data by 2025 [2]. Given the inherent
latency and bandwidth limitations between end devices and
the remote cloud, it is predicted that more than 75% of the

• X. Tan (E-mail: tanxinrui@ict.ac.cn) is with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China, with
the School of Cyber Security, University of the Chinese Academy of
Sciences, Beijing 100049, China, and also with the CAS Key Laboratory
of AI Safety, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing 100190, China.

• H. Li (corresponding author, E-mail: lihongjia@iie.ac.cn), L. Wang (E-
mail: wangliming@iie.ac.cn) and Z. Xu (E-mail: xuzhen@iie.ac.cn) are
with the Institute of Information Engineering, Chinese Academy of Sci-
ences, Beijing 100093, China.

• X. Xie (E-mail: xfxie@smu.edu.sg) is with the School of Computing
and Information Systems, Singapore Management University, Singapore
188065.

• L. Guo (E-mail: guolu@travelsky.com.cn is with the Research and Devel-
opment Center, TravelSky Technology Limited, Beijing 101318, China.

• N. Ansari (E-mail: nirwan.ansari@njit.edu) is with the Advanced Net-
working Laboratory, Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA.

• X. Huang (E-mail: xhuang25@nyit.edu) is with the Department of Com-
puter Science, School of Engineering and Computing Sciences, New York
Institute of Technology, New York, NY 10023, USA.

• Y. Liu (E-mail: yangliu@ntu.edu.sg) is with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore
639798.

This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2019YFB1005200, and in part by the
Climbing Program of Institute of Information Engineering, Chinese Academy
of Sciences under Grant E3Z0031. X. Tan acknowledges the financial support
of this research by the China Scholarship Council.

edge-generated data will be analyzed locally at the network
edge [3], [4]. Consequently, to support a myriad of edge ap-
plications, ranging from those with ultra-reliability and low-
latency requirements (e.g., cooperative autonomous driving
[5]) to those intending to maintain massive connections of
IoT devices (e.g., intelligent manufacturing [6] and smart
cities [7]), it is urgent to push the deep learning inference
services, such as object detection and speech recognition,
from the large-scale cloud data centers to the edge servers.

As compared with cloud-based inference serving sys-
tems, the limited edge resources and highly fluctuating
workload bring the following great challenges to the pro-
vision of edge inference services with guaranteed quality-
of-service (QoS).

• Since it is common for massive mobile/IoT devices
to initiate simultaneous communications and gen-
erate bursty traffic [8], the arrival rate of inference
requests can be time-varying and the workload of an
edge inference serving system can be highly bursty
(see Section 6.1 for our discussion on the workload
attributes). For the cloud-based inference serving
systems, how to process the time-varying workload
has long been one of its main concerns. Both the
state-of-the-art [9]–[12] and the state-of-the-practice
[13], [14] heavily rely on the resource scaling mecha-
nisms, where the computational resources are scaled
in or out according to the arrival rate of inference
requests and the QoS requirements, e.g., the sys-
tem response latency. However, these mechanisms
implicitly assume that there are always sufficient
cloud computing resources for fulfilling the scalabil-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3429571

2

ity. Unfortunately, such assumption often fails at the
network edge, because the edge servers, dominated
by various physical constraints, are well-known to
be highly resource-constrained [15], [16]. As a result,
the resource scaling mechanisms can hardly obtain
sufficient resource elasticity at the network edge.

• Meanwhile, to facilitate efficient deep learning in-
ference on resource-constrained devices, most ex-
isting studies focus on the design and training of
lightweight deep learning models [17]–[21], but these
models inevitably sacrifices accuracy for small model
size and corresponding shorter inference latency.
Taking the results of differentiable soft quantization
[22] over the ResNet-18 model on the ILSVRC-2012
ImageNet dataset [23] for example, as compared to
the full-precision model, the 4-bit, 3-bit and 2-bit
quantization cause 0.34%, 1.24% and 5.19% accu-
racy degradation, respectively. Owing to the funda-
mental trade-off between accuracy and latency, the
resource-constrained edge inference serving system
cannot rely on a single lightweight model to consis-
tently perform well in different states of workload:
for example, when the workload is in the heavy
state, to guarantee the inference service quality, the
lightweight deep learning model is preferable to
boost the overall service rate of the system; when
the workload is in the light state, i.e., the request
arrival rate is far lower than the overall service rate,
the lightweight model can be “over-compressed” in
the sense of sacrificing too much accuracy.

To address the above challenges, in contrast to the con-
ventional inference serving systems, we consider to pre-
deploy deep learning models with diverse sizes (i.e., dif-
ferent trade-off between inference accuracy and compute
latency) in virtual machines (VMs) or containers of the edge
inference serving system; and then, to boost the system
goodput and QoS perceived by users, we explore the diver-
sity of model sizes, and adaptively schedule deep learning
inference requests with the time-varying arrival rate to VMs
or containers that host deep learning models with different
sizes. Despite the straightforward logic of our idea, moving
from idea to implementation is technically challenging. In
the following, we will outline the specific technical chal-
lenges and our technical contributions, respectively.

1.1 Technical Challenges

To implement our idea of workload-adaptive inference re-
quest scheduling, we must address the following technical
challenges.

• At the resource-constrained network edge, it is im-
possible to use complicated methods to decide how
to schedule each individual arriving request, since
such methods will incur significant computational
overhead when bursts occur. Therefore, the underly-
ing method to schedule each request must be of very
low complexity to avoid the scheduling procedure
itself becoming a bottleneck.

• In real practice, there is no prior knowledge about the
workload. In addition, the service-time distributions

of deployed model instances may be hard to be
known exactly in advance. These raise the problem
of how to achieve good inference service quality
without the knowledge of the workload and models.

• To adaptively schedule inference requests, it would
be ideal to always know exactly the current workload
state. In practice, however, we cannot directly ob-
serve whether the workload is in a bursty or normal
state. Particularly for certain bursty workloads, the
current workload state is not directly observable but
sometimes also difficult to estimate; and the future
workload states are inherently unpredictable.

1.2 Our Technical Contributions

In view of the above challenges, we propose a reinforcement
learning based online request scheduling framework to em-
power edge inference serving systems with the workload-
adaptiveness. The technical contributions are detailed be-
low.

• To ensure the scheduling efficiency and effectiveness,
a probabilistic scheduling framework is proposed to
schedule the inference requests with the minimum
computational effort, where the probability distri-
bution that schedules each inference request to be
served by different models is periodically adjusted
to match the workload-state variation.

• To deal with the sequential decision-making problem
on how to periodically find the optimal probability
distributions for request scheduling, we first theoret-
ically prove that such a problem can be formulated
as a Markov decision process (MDP), where the
arrival of inference requests is assumed to follow a
Markovian arrival process (MAP), which has been
extensively used in the literature to model bursty
traffic [24], and the underlying MAP phases repre-
senting the workload states are observable. Then, it
makes perfect sense to use reinforcement learning to
tackle the MDP. Specifically, based on the proximal
policy optimization (PPO) algorithm [25], we pro-
pose a policy optimization approach to learn good re-
quest scheduling policies that decide the probability
distributions for request scheduling. Note that such
policies are learned from the past experience of infer-
ence request scheduling, so our policy optimization
approach does not require any prior knowledge of
the workload, nor of the models.

• To handle the partially observable Markov decision
process (POMDP) induced by the unobservability
of workload states in practice, we show that, by
simply observing the states of the deployed model
instances, memoryless policies can still be learned to
achieve good performance. The intuition behind this
is that when the workload state changes, the model
instance states will change accordingly. Thus, the
model instance states can convey the workload-state
information that is useful for the workload-adaptive
inference request scheduling.

We employ a highly bursty workload to empirically
evaluate our request scheduling framework on an object

3

recognition task, where the validation set of ILSVRC-2012
ImageNet dataset is used as the test data. The experi-
mental results not only demonstrate that the proposed
framework can effectively handle the latency requirements
while achieving good quality of inference services, but also
verify that our main idea of workload-adaptive inference
request scheduling can be realized: when the workload is in
its burst state, our framework can significantly reduce the
violation ratio of the latency requirement as compared to a
baseline that only uses heavyweight models; while when
the workload is in its normal state, our framework can
significantly improve the goodput as compared to a baseline
that only uses lightweight models. Also, we find that our
framework performs well when the arrival rate of inference
requests changes periodically, showing the generality of
our framework to general variable workloads. Moreover,
our experiments show that our framework can be easily
extended by integrating adaptive batching to further boost
performance. Finally, while we believe that our framework
is generally applicable to any efficiency metrics that can be
measured from the device, in the interest of space, we focus
on achieving good accuracy-latency trade-offs in this paper.

1.3 Organization
The rest of this paper is organized as follows: the related
work is reviewed in Section 2; the system model and the
request scheduling framework are presented in Section 3;
the policy optimization approach based request scheduling
policies are described in Section 4, followed by experiments
in Section 5; the discussion is presented in Section 6; finally,
our work is concluded in Section 7.

2 RELATED WORK

In this section, we outline related work in two main areas:
workload-adaptive inference serving systems and efficient
deep learning inference at the edge.

2.1 Workload-Adaptive Inference Serving Systems
Even since the rise of deep learning, deep learning inference
serving systems have long been developed and practically
applied to support various deep learning applications [26],
where for one given inference task, multiple instances of the
same deep learning model trained for this task are deployed
in the cloud and then serve the corresponding incom-
ing inference requests. Recently, with the success of deep
learning in many latency-sensitive and massive-connectivity
tasks, most studies have focused on the design of inference
serving systems capable of meeting latency requirements
under variable workloads, leading to several state-of-the-art
systems from the literature [9]–[12], [27] and some state-of-
the-practice systems that are already in use [13], [14].

For instance, SageMaker [13] employs a feedback control
method to dynamically scale the computational resources,
where some customized event-condition-action rules for
resource scaling can be followed by monitoring the sys-
tem operating conditions and adjusting the resources ac-
cordingly; MArk [9], instead, employs a predictive based
method that predicts the upcoming workload states and
proactively scales up or down the resources; Clockwork [10]

is designed to simultaneously serve the inference requests
of many different inference tasks, where the resources can
be effectively shared between different tasks to meet the
latency goal of each task respectively; More recently, Romero
et al. [28] also proposed a system that can reduce the cost
of resource scaling through coordinated use of multiple
models, but their system still mainly uses resource scaling to
handle the variability of workloads, and implicitly requires
great resource elasticity of the computing infrastructure.
These systems have devoted considerable effort towards ex-
ploiting the resource elasticity of the underlying computing
infrastructure. However, unlike the public cloud that can
immediately offer thousands of graphic processing units
(GPUs) and other high-performance hardware accelerators
to MArk to handle bursts, the network edge is constrained
in terms of almost all types of hardware. Thus, although
these systems have been shown to work well in the cloud,
they cannot effectively handle bursty workloads at the net-
work edge.

In general, our request scheduling framework differs
from these existing systems in three aspects: first, although
these existing systems also use other mechanisms, such as
adaptive batching, almost all of them rely on resource scal-
ing to play a key role in handling variable workloads, while
our framework is designed for the network edge where
resource scaling is ineffective; second, unlike many state-
of-the-art systems which require the future workload states
to be predictable [9], [12], [27], our framework does not
have such a requirement and thus can perform well when
the workload-state changes are unpredictable; third, unlike
many state-of-the-art systems [9], [10], our framework does
not assume that the service-time distributions of model
instances are all deterministic, as this assumption can be far
from reality, for example, when recurrent models are used
to process inference requests with different lengths, or when
early-exit models are used to perform adaptive inference
[21]. Moreover, in contrast to some systems that control the
accuracy-latency trade-off by heuristics or empirical rules,
our framework, by applying reinforcement learning, can
automatically learn to achieve a good trade-off between ac-
curacy and latency. Note that although MArk also employs a
countermeasure for the failures of predictive-based method
against unpredictable workloads, this countermeasure is
still a simple and relatively trivial feedback control method.

2.2 Efficient Deep Learning Inference at the Edge

Among recent studies that can facilitate efficient deep learn-
ing inference at the network edge, we find that the major-
ity still concentrates on model compression to find good
lightweight models performing well on general and spe-
cific resource-constrained devices, where the conventional
model compression techniques include quantization [17],
pruning [18], knowledge distillation [19], and lightweight
architecture design and search [20]. Besides these studies
on model compression, there also exist some preliminary
yet promising lines of research. For instance, Guo et al. [29]
suggested caching some inference requests as well as their
corresponding inference results at the network edge, so that
when an arriving inference request is similar to one of the
cached requests, the previous inference result can be reused

4

to avoid repetitive computation; Li et al. [30] proposed an
end-edge collaborative inference method, which adaptively
partitions deep learning models between end devices and
edge servers to accelerate deep learning inference; Marco et
al. [31] presented a method that can accelerate deep learning
inference by adaptively selecting appropriate lightweight
models for inference requests with low inference difficulty.

Despite these research efforts, such studies are rarely
conducted from the perspective of online inference serving,
as they generally ignore the variability of workloads; we
remark that there is a lack of studies investigating how
deep learning inference can be efficiently performed under
variable workloads at the network edge. A notable excep-
tion is the study by Jin et al. [34], where the idea of adap-
tively using different models for different workload states
is also implicitly introduced; however, this study simplifies
the edge inference serving system too much and imposes
some strong assumptions so as to formulate a nonlinear
integer programming problem; also, this study cannot pro-
vide any QoS guarantees. More recently, some studies such
as Jellyfish [35] and ModelIO [36] have been proposed to
improve end-to-end QoS of the edge deep learning inference
services, where they also, in some sense, adopt the idea of
workload-adaptive inference request scheduling. However,
their simple and highly task-specific system models restrict
them from provisioning general-purpose deep learning in-
ference services. By saying that our framework is “general-
purpose”, we mean that our framework is general in its
applicability: it can not only handle general workloads, but
also theoretically incorporate deep learning models with
general service time distributions.

While in the literature there are many task-scheduling
approaches designed for the network edge, and some of
them are even reinforcement learning based [37]–[41], we
find that the differences between the system models of
our framework and these task scheduling approaches are
so large that these task scheduling approaches are neither
applicable to the practical edge inference serving systems
nor straightforwardly comparable to our framework. One of
the key differences is that these task scheduling approaches
require the service times of tasks to be all deterministic and
exactly predictable, while our framework allows the service
times of the inference requests served by a model instance
to follow any general and unknown statistical distribution.
Also, these task scheduling approaches only consider simple
workloads such as Poisson processes, where the arrival rate
is constant over time. This reflects the fact that these task
scheduling approaches do not aim to adaptively schedule
the tasks to match the time-varying workload states. In a
nutshell, compared with these task-scheduling approaches,
our technical novelty is mainly three-fold:

• To efficiently schedule the inference requests when
bursts occur, we employ the probabilistic routing
method, which allows our framework to choose the
model instances for hundreds of inference requests
by executing a relatively computationally intensive
decision-making process only once;

• To provide general-purpose deep learning inference
services, instead of the common practice of heuris-
tically hand-crafting decision processes, we estab-

lish theoretical results showing how to derive the
true Markov decision process for our system model
specifically designed for the general-purpose but
resource-constrained deep learning inference sys-
tems, noting that these theoretical results are the key
to enable our framework to handle general work-
loads and incorporate deep learning models with
general service time distributions.

• To automatically learn good request scheduling poli-
cies with almost no prior knowledge of the work-
loads and deep learning models, we derive the
tractable stochastic policy for our specific action set,
note that without this tractable policy, the stable PPO
method cannot be used.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first detail how our request scheduling
framework can enable an edge inference serving system to
adaptively serve inference requests, and then formulate the
problem of finding the optimal request scheduling policy.
For the sake of convenience, we summarize the frequently
used notations in Table 1 (see Appendix A in the supple-
mentary material for a full table of notations). Also, we pro-
vide a detailed illustration of our framework in Appendix B.

3.1 System Model

3.1.1 System Overview
With reference to the example shown in Fig. 1, we consider
an edge inference serving system serving an inference task
to meet a typical tail latency requirement, which requires
that a certain percentage of the inference requests should
be completed within a required time. In this system, we
have a set N = {1, 2, . . . , n} of deep learning model
instances trained for the same inference task, where these
model instances can use different models with different
model sizes. Following the common practice, we let these
model instances run within their own VMs or containers,
so that their deployment can be quite flexible at the net-
work edge. In the inference serving system, our inference
request scheduling framework introduces a virtual network
function, dubbed scheduler, to receive the inference requests
from end devices and schedule them on the n deep learning
model instances. Note that for simplicity, the scheduler only
determines a “intra-system path”, as illustrated in Fig. 1, for
each arriving request to deliver the request to one of the
model instances; once a request reaches a model instance, it
will be queued for processing. However, as will be shown
later, our framework can be extended to allow the scheduler
to support more complex control. In the following, we rea-
sonably assume that the latency of delivering an inference
request from the scheduler to a model instance is negligible,
as the scheduler is physically positioned close to the model
instances, and the bandwidth between the scheduler and
each model instance can be sufficiently large. Also, we
assume that the communication between the scheduler and
the edge devices is handled by the network infrastructure,
meaning that the latency incurred when an end device sends
a request to the scheduler is not a consideration of the
system.

5

Edge server

Edge inference serving system

Scheduler

Container

Container

Container

Container

Container

Inference requests

PNASNet-5

PNASNet-5

EfficientNet-B0

EfficientNet-B0

Fig. 1: An example of our edge inference serving system for an object recognition task (see Appendix B in the supplementary
material for a more detailed illustration), where two model instances of a lightweight EfficientNet-B0 model [32] and two
model instances of a heavyweight PNASNet-5-Large model [33] are deployed. According to our main idea, the two
EfficientNet model instances should serve most of the arriving inference requests when the workload is in a bursty state,
and the two PNASNet model instances should serve most of the arriving inference requests when the workload is in a
normal state.

3.1.2 System Workload
To model the arrival of the inference requests, we assume
that the requests arrive at the scheduler in a one-by-one
fashion. We further assume that the request arrival stream
aggregated from all the end devices follows a Markovian
arrival process (MAP) introduced by Lucantoni [24], which
has not only been extensively used to model the bursty
arrival processes commonly arise in communication appli-
cations, but recently also been used to model various traffic
streams at the network edge [42]–[44]. The MAP gener-
alizes the Poisson process by allowing the arrival rate to
vary according to a continuous-time Markov chain (CTMC)
with a finite state space M = {1, 2, . . . ,m}, where m is
an unknown positive integer; it is characterized with an
unknown matrix representation (D0, D1), where D0 is an
m×m matrix with negative diagonal elements and non-
negative off-diagonal elements that govern the state transi-
tions without arrivals, and D1 is a non-negative m×m matrix
whose elements represent state transitions with an arrival.
As usual, the states of the underlying CTMC are referred
to as the phases of the MAP. Note that for the workloads
following a MAP, the workload states are exactly the MAP
phases. Moreover, the underlying CTMC is assumed to be
irreducible and positive recurrent. Since, in general, the un-
derlying CTMC is not a predictable process, the MAP phase
changes can be very unpredictable. More details concerning
MAP can be found in [45].

3.1.3 Inference Request Serving
For each deep learning model instance, the service process
can be naturally modeled as a finite-capacity queue, where
it is assumed that inference is carried out with a batch size

of 1, which is customary when performing deep learning
inference with real-time considerations [46]. To be specific,
the inference requests are assumed to be served one-by-one
at each model instance on a first-come-first-served basis,
where each model instance’s service times (i.e., the infer-
ence latency times) are generally distributed and mutually
independent, which allows the service times of different
model instances follow different unknown distributions that
depend jointly on the model architectures and the hardware
resources available to the model instances. Moreover, for
notational simplicity, without loss of generality, we assume
that all model instances have the same buffer capacity c,
which is the maximum number of inference requests that
can be stored in the buffers of their VMs or containers
(including the one that is in progress, if any); we remark
that our request scheduling framework in this paper can
be easily extended to the case where the model instances
have different queue capacities. When the buffer of a model
instance is full, any new inference request scheduled to
the model instance will be rejected and considered lost.
Now, we can define the state of each model instance as
(l, ω, φ1, φ2, . . . , φl) where l denotes the total number of
inference requests in service and waiting for service in the
buffer of the model instance, ω denotes the elapsed service
time of the request in service, and φi denotes the age of the
ith oldest requests for i ∈ {1, 2, . . . , l}. Note that: the age of
an inference request is the time elapsed since the request’s
arrival; for notational simplicity, we shall let ω = 0 when
the model instance is idle. Therefore, we further define a set
U which contains all the possible model instance states as
elements, namely,

U :=
⋃c

i=0 Vi. (1)

6
TABLE 1: Notations frequently used in Section 3

Symbol Description

n The number of deep learning model instances
N The set of model instances in the system
m The number of MAP phases
M The set of MAP phases
c The buffer capacity of model instances
l The number of inference requests in a model instance
ω The elapsed service time of a request being served
φi The age of the ith oldest requests in a model instance
U The set containing all the possible model instance states
τ The duration of each time slot

s(t) The system state at the beginning of time slot t
S The set of all possible system states
o(t) The observation of the system state s(t)

O The set of all possible observations
h(t) The MAP phase at the beginning of time slot t
u
(t)
i The state of model instance i when time slot t begins

a(t) The action for request scheduling during time slot t
∆ The probability simplex over the set of model instances
r(t) The reward of the system for time slot t
υ(t) The total number of requests delayed during time slot t
b(t) The total number of requests rejected during time slot t
gi The expected accuracy of model instance i

Here, V0 = {0} and, any element in Vi for i ∈ {1, 2, . . . , c}
is of the form (i, ω, φ1, φ2, . . . , φi), where ω, φ1, φ2, . . . , φi

are non-negative real numbers satisfying ω ≤ φ1 ≥ φ2 ≥
· · · ≥ φi.

3.1.4 Inference Request Scheduling
For the scheduler responsible for request scheduling, a
classic probabilistic routing method [47]–[52] is adopted to
schedule inference requests among deep learning models.
This simple but efficient method requires a probability dis-
tribution over the model instance set N to be specified, so
that each model instance is associated with a probability.
Upon an arrival, the scheduler randomly selects one of
the model instances according to the specified probability
distribution, and then schedules the request to the selected
model. In other words, the scheduler randomly splits the
arrival process into n sub-processes, one for each model
instance. Owing to its simplicity, this probabilistic routing
method can be implemented very efficiently, allowing each
request to be scheduled immediately upon its arrival. More
importantly, even under a high arrival rate of requests,
the scheduler can still work well without falling into a
congestion collapse. Note that, by leveraging e.g., Alias
method [53], the probabilistic routing can be scalable to the
number of model instances (n), even if n is very large.

3.2 Problem Formulation
Recall that the edge inference serving system needs to
satisfy a tail latency requirement, such as requiring 99% of
the inference requests to be responded within 1 second. To
achieve our goal of adaptively scheduling requests so as to
meet this tail latency requirement and achieve high infer-
ence service quality, our purpose is to periodically adjust
the probability distribution for request scheduling, which
results in a sequential decision-making problem that can be
cast in the reinforcement learning framework. Specifically,
we assume that time is slotted into discrete-time intervals of
equal duration τ , such that the time interval [tτ, (t + 1)τ)

is referred to as time slot t, where t ∈ {0, 1, 2, . . . }. In the
reinforcement learning framework, for any given time slot t,
at the beginning of the time slot, the probability distribution
over N is adjusted as follows:

1) The scheduler (in reinforcement learning termi-
nology referred to as an agent) perceives an ob-
servation o(t) of the current system state s(t) =

(h(t), u
(t)
1 , u

(t)
2 , . . . , u

(t)
n) ∈ S, where h(t) ∈ M is the

current phase of the MAP; for i ∈ N , u
(t)
i ∈ U

is the current state of model instance i, includ-
ing the current number and ages of the inference
requests waiting for service from model instance
i and being served by model instance i, together
with the elapsed service time of the inference re-
quest currently being served by model instance i;
S = M × Un is the set of all system states, not-
ing that U is the model-instance-state set formally
defined in Section 3.1.3.

2) On the basis of o(t), the scheduler samples an action
a(t)=(y

(t)
1 , y

(t)
2 , . . . , y

(t)
n) ∈ ∆ from a policy π(·|o(t))

to specify the probability distribution used to sched-
ule the inference requests arriving during this time
slot, where ∆ is the (n−1)-dimensional probability
simplex; for i ∈ N , y(t)i gives the probability that
an inference request is scheduled to model instance
i during this time slot; π is a probability density
function over the action set ∆, conditioned on the
observation.

Then, during the time slot t, the scheduler uses the action
a(t) to schedule the arrival requests. At the end of the time
slot t, the system updates itself as follows:

1) In part as a consequence of a(t), the scheduler
receives a stochastic real-valued reward r(t) ∼
R(·|s(t), a(t)), where R(·|·, ·) : R×S×∆→ [0,∞] is
the conditional density function characterizing the
reward dynamics so that R(r(t)|s(t), a(t)) gives the
probability density for the reward of a time slot
being r(t) when the system state at the beginning
of the time slot is s(t) and the action used in the
time slot is a(t).

2) The system transitions into a new system state
s(t+1) ∼ P (·|s(t), a(t)), where P (·|·, ·) : S × S ×
∆ → [0,∞] is the conditional density function
characterizing the system transition dynamics so
that P (s(t+1)|s(t), a(t)) gives the probability density
for the system state at the end of a time slot being
s(t+1) when the system state at the beginning of the
time slot is s(t) and the action used in the time slot
is a(t).

To attain our goal of achieving good inference service qual-
ity while fulfilling the tail latency requirement, we define
the multi-objective reward r(t) as the following, for all
t ∈ {0, 1, 2, . . . },

r(t) = −υ(t) − αb(t) + β
∑n

i=1giν
(t)
i , (2)

where υ(t) ≥ 0 denotes the number of delayed inference
requests which have completed service during time slot
t with overall system response latencies (i.e., the sojourn

7

times) longer than the required time of the tail latency
requirement; b(t) ∈ {0, 1, 2, . . . } denotes the number of
inference requests rejected in time slot t; for i ∈ N , gi ∈ [0, 1]
denotes the expected accuracy of model instance i, and
ν
(t)
i ∈ {0, 1, 2, . . . } denotes the number of requests that have

completed service without violating the latency requirement
at model instance i during time slot t; α > 0 and β > 0
are two predetermined weights that trades off the different
terms to meet the tail latency requirement. By maximizing
the expected cumulative reward over time, we propose
to increase the average

∑n
i=1 giν

(t)
i over time to improve

the system goodput, and meanwhile decrease the average
υ(t) + b(t) over time to ensure the tail latency requirement.
Note that since g1, g2, . . . , gn are data-dependent, they are
usually intractable in practice. However, a dataset indepen-
dent of the models’ training data can serve as the validation
data to evaluate the models unbiasedly, and then for all
i ∈ N , the validation accuracy of model instance i on the
validation data can be used as an approximation of gi. Even-
tually, we arrive at the following result (see Appendix C
in the supplementary material for the formal statement),
which justifies the use of reinforcement learning approaches
to tackle the above sequential decision-making problem.

Proposition 1 (Informal statement). If the system states are
fully observable, that is, ∀t ∈ {0, 1, 2, . . . }, o(t) = s(t), then the
above sequential decision-making problem is a Markov decision
process (MDP), where the future of the process depends on the
history of the process only through the current state of the system.

Notice that, to ensure the decision process is Markovian,
the scheduler has to monitor the model instance states,
as well as perceive the phases of the underlying MAP.
Unfortunately, although the model instance states are easily
accessible, it is practically impossible for the scheduler to
access the MAP phases. As a result, in practice, we have to
deal with a partially observable Markov decision process
(POMDP). In this POMDP, the underlying MAP phases
that directly expose the workload-state information are un-
observable, and so the scheduler needs to decide how to
schedule the requests by observing only the model instance
states. Nevertheless, these model instance states can still re-
veal some indirect workload-state information, because the
transitions of MAP phases have direct impacts on the model
instance states, especially on the queue lengths (i.e., the
numbers of requests waiting for service). Hence, hereafter,
we let o(t) = (u

(t)
1 , u

(t)
2 , . . . , u

(t)
n) for all t ∈ {0, 1, 2, . . . },

and let O = Un denote the set of observations. Remark that
this observation definition is quite general for many arrival
processes that are non-Markovian or more general than the
MAP, implying that the MAP assumption does not restrict
the generality of our framework. Furthermore, the two con-
ditional density functions characterizing the system transi-
tion dynamics and the reward dynamics can be alternatively
denoted as P̃ (·, ·|·, ·, ·) : M ×O×M ×O×∆→ [0,∞] and
R̃(·|·, ·, ·) : R×M ×O ×∆→ [0,∞], respectively.

Despite the partial observability of the practical decision
process, we still consider a parameterized memoryless pol-
icy πθ(·|·) : ∆ × O → [0,∞], with parameters θ ∈ Θ,
where Θ is an appropriate compact Euclidean parameter
set. Then, given a discount factor γ ∈ (0, 1) and the density

I(·, ·) : M × O → R of an initial system state distribution,
our objective is to find the optimal policy parameters that
maximize the time-discounted expected cumulative reward,
i.e.,

max
θ∈Θ

E
[∞∑
t=0

γtr(t)
∣∣∣(h(0), o(0))∼I(·, ·), a(t) ∼ πθ(·|o(t)),

(h(t+1), o(t+1))∼ P̃ (·, ·|h(t), o(t), a(t)),

r(t)∼R̃(·|h(t), o(t), a(t))
]
.

(3)

Note that the system can have quite complex dynamics:
in general, neither the system transition dynamics nor the
reward dynamics can be expressed in closed-form. This fact,
together with the uncountability of both the state and action
sets, suggests that classic dynamic programming methods
are inapplicable to our problem, even if the MAP phases
are observable, the MAP parameters are known, and the
service-time distributions are also all known. Moreover,
since U is a “combinatorial” set where each element is
structured, it is hard to construct a system simulation model
that can output valid system states, thus preventing us from
using model-based methods. Therefore, we need a model-
free policy gradient approach to tackle our problem.

4 POLICY OPTIMIZATION APPROACH

In this section, we present the model-free policy gradient ap-
proach that we use to find good request scheduling policies.
At first glance, to tackle our policy optimization problem,
it seems that deep deterministic policy gradient (DDPG)
algorithm [54] is a convenient choice among the most widely
used policy gradient algorithms. This is because DDPG is
based on the deterministic policy gradient theorem [55],
which allows the elimination of the action density in the
policy gradient computation. As will be shown later, it is
not so straightforward to derive the closed-form of poli-
cies over our action set ∆. Despite the convenience, we
empirically find that DDPG fails to learn good policies
for the scheduling-policy-optimization-problem instances in
our experiments. Therefore, we instead use proximal policy
optimization (PPO) algorithm [25], which is empirically
much more stable for our problem.

Next, we detail our policy optimization approach based
on PPO. Since both the standard state-action value function
and state value function are useless when memoryless poli-
cies are considered for our POMDP, we start by defining the
observation-action value function Qθ : O × ∆ → R of a
policy πθ, for all o ∈ O and a ∈ ∆, as follows:

Qθ(o, a) := E
[∞∑
t=0

γtr(t)
∣∣∣ o(0)=o, a(0)=a, h(0)∼dθ(·|o),

r(t)∼R̃(·|h(t), o(t), a(t)), a(t)∼πθ(·|o(t)),

(h(t+1), o(t+1))∼ P̃ (·, ·|h(t), o(t), a(t))
]
,

(4)

where dθ(·|·) : M × O → [0, 1] is the conditional visitation
distribution of the hidden MAP phases given the observa-
tions; for completeness, the definition of dθ is provided in
Appendix D in the supplementary material. Also, we define

8

the observation value function Vθ : O → R of a policy πθ by
the following, for all o ∈ O,

Vθ(o) := E
[∞∑
t=0

γtr(t)
∣∣∣ o(0)=o, h(0)∼dθ(·|o),

a(t)∼πθ(·|o(t)), r(t)∼R̃(·|h(t), o(t), a(t)),

(h(t+1), o(t+1))∼ P̃ (·, ·|h(t), o(t), a(t))
]
,

(5)

Then, the advantage function Aθ : O × ∆ → R of a policy
πθ is defined for all o ∈ O and a ∈ ∆ as follows:

Aθ(o, a) := Qθ(o, a)− Vθ(o). (6)

By using PPO, given an old policy πθ̃ with its corresponding
advantage function Aθ̃ , and a clipping threshold ϵ ∈ [0, 1),
we aim to find a new policy that maximizes the following
surrogate objective function with respect to θ,

E
[
min

(πθ(a|o)
πθ̃(a|o)

Aθ̃(o, a), Cϵ

(πθ(a|o)
πθ̃(a|o)

)
Aθ̃(o, a)

)∣∣∣o∼ρθ̃(·),

a∼πθ̃(·|o)
]
,

(7)

where the term πθ(a|o)/πθ̃(a|o) is well-known as the impor-
tance weight [56], ρθ̃(·) is the observation visitation density
of πθ̃ (see Appendix D in the supplementary material for
the definition), and Cϵ is a cut function defined for all x ∈ R
as: if x < 1 − ϵ, then Cϵ(x) = 1 − ϵ; else if x > 1 + ϵ,
then Cϵ(x) = 1 + ϵ; otherwise, Cϵ(x) = x. The main
rationale behind this surrogate objective is to approximately
impose a soft constraint on the distance between the old and
new policies in the parameter space, such that stable policy
improvement can be achieved by avoiding destructively
large policy updates. If, for every sampled observation-
action pair, the importance weight of a policy is always
above 1 + ϵ when the advantage function is positive, or
below 1 − ϵ when the advantage function is negative, then
the gradient of this surrogate objective is zero, i.e., the policy
can no longer be updated further based on the gradient.

Observe that, in order to use first-order methods to opti-
mize the surrogate objective, πθ must be differentiable with
respect to θ. To obtain such a πθ over the probability simplex
∆, a very intuitive idea for action sampling is to first draw a
random sample from an n-variate Gaussian with parameters
given by a θ-parameterized neural network, and then use
the softmax function to map the random sample from Rn

to ∆. Specifically, suppose that there is a neural network
defining a deterministic function f(·, ·) : O×Θ→ Rn, given
an observation o and policy parameters θ, we first feed o into
the neural network parameterized by θ to compute f(o, θ);
then, we sample an action a = (y1, y2, . . . , yn) by generating
each yi as follows:

yi =
exp

(
fi(o, θ) + ξi

)∑n
k=1 exp

(
fk(o, θ) + ξk

) , (8)

where, for all i ∈ N , ξi is an independent sample drawn
from N (0, σ2) with σ > 0, and fi(o, θ) denotes the ith

element in f(o, θ). Although the softmax is a non-invertible
function, in the following result, we derive the closed-form
expression of the policy πθ corresponding to our action
sampling routine, so that the derivatives of this tractable
πθ with respect to θ can be computed.

Proposition 2. Let (z1, z2, . . . , zn) ∼ N (f(o, θ),Σ) where
o ∈ O, θ ∈ Θ, σ > 0, and Σ is the n × n diagonal matrix
with all diagonal elements equal to σ2. If a random variable
a = (y1, y2, . . . , yn) is given by yi = exp(zi)/

∑n
k=1 exp(zk)

for all i ∈ N , then by letting qi = −fi(o, θ) + log yi for all
i ∈ N , the probability density function of a is given by

πθ(a|o) =
exp

(
(2nσ2)

−1
(
∑n

k=1 qk)
2 − (2σ2)

−1∑n
i=1 q

2
i

)
√
n(σ
√
2π)

n−1 ∏n
j=1 yj

.

(9)

Proof. See Appendix E in the supplementary material.

With the aid of this tractable πθ , we present a practical
policy optimization algorithm in Algorithm 1. As is shown,
the scheduler in Algorithm 1 keeps performing the update
of its policy periodically. For each policy update period,
the latest updated policy πθ̃, also known as the actor, is
used to schedule inference requests for T time slots (T is
a sufficiently large positive integer) to collect a trajectory
of πθ̃. This trajectory is formed by the observation o(t), the
action a(t) and the reward r(t) of time slot t in the period
for all t ∈ {0, 1, . . . , T − 1}, as well as the final observation
o(T). Then, as an approximation to the intractable surrogate
objective, we train the actor with the following objective:

max
θ∈Θ

T−1∑
t=0

min
(πθ(a

(t)|o(t))
πθ̃(a

(t)|o(t))
Ã(t), Cϵ

(πθ(a
(t)|o(t))

πθ̃(a
(t)|o(t))

)
Ã(t)

)
, (10)

where Ã(t) is an estimation of the unknown advantage
Aθ̃(o

(t), a(t)) for all t ∈ {0, 1, . . . , T − 1}. By using the gen-
eralized advantage estimation (GAE) method [57], we com-
pute the advantage estimation Ã(t) for all t ∈ {0, 1, . . . , T −
1} as follows:

Ã(t) =
T−1∑
k=t

(γλ)
k−t(

r(k) + Ṽϕ∗(o(k+1))− Ṽϕ∗(o(k))
)
, (11)

where λ ∈ [0, 1] is a predefined parameter that adjusts
the estimation’s bias-variance trade-off; Ṽϕ∗ is a parametric
function (with parameters ϕ∗) learned to appropriate the
observation value function Vθ , which is not known in prac-
tice. This approximation of the observation value function
is known as the critic, and is also tuned periodically with a
mean-squared error loss.

Note that because we use memoryless policies for our
POMDP, either the observation-action value function de-
fined in Eq. (4) or the observation value function defined
in Eq. (5) generally cannot be written in an exact recursive
form. As a result, compared with the situation if our ap-
proach is applied directly to the underlying MDP of our
POMDP, the advantage estimators may be more biased,
and the approximate problem given in Eq. (10) may have
more deviation from the exact problem given in Eq. (3).
Still, our empirical investigation shows that memoryless
policies can perform quite well. Alternatively, the estimation
method introduced by Shmyrin [58] allows us to achieve the
optimal estimation of the MAP phases, where this method
requires knowing the arrival times of the inference requests
and the parameters (D0 and D1) of the MAP. However,
even though the MAP-phase estimation is optimal, it can
still be very inaccurate for certain MAPs. Moreover, in

9

Algorithm 1 PPO-based request scheduling policy optimization

Input: initial policy parameters θ̃, initial approximate observation value function parameters ϕ∗

1: loop
2: for t = 0, 1, . . . , T − 1 do
3: Run the edge inference serving system for a time slot by following πθ̃ to collect o(t), a(t), r(t) and o(t+1)

4: end for
5: Compute the advantage estimators Ã(0), Ã(1), . . . , Ã(T−1) according to Eq. (11)
6: Train the actor to find a good parameter setting θ ∈ Θ to the optimization problem in Eq. (10)
7: Train the critic for a good parameter setting ϕ to minimize 1

T

∑T−1
t=0

(
Ṽϕ(o

(t))− Ṽϕ∗(o(t))− Ã(t)
)
2

8: θ̃ ← θ and ϕ∗ ← ϕ
9: end loop

practice, we can not know the parameters of the MAP.
Therefore, to estimate the MAP phases, we have to first
estimate the number of MAP phases and then estimate the
MAP parameters. Since the MAP parameter estimation is
inexact, the empirical MAP-phase estimation can even be
far from optimal. Thus, we argue that it is meaningless to
perform MAP-phase estimation in our framework. For gen-
eral POMDPs, although recurrent neural networks (RNNs)
are widely used to provide memories of past observations
to estimate the current state [59]–[61], and have shown to be
effective for some challenging POMDPs [62], we empirically
find that RNNs are ineffective for the scheduling-policy-
optimization-problem instances in our experiments. From a
theoretical perspective, they are also unlikely to be effective.
This is due to the fact that since the MAP phase is the
only observable component of a system state, by using an
RNN to estimate the underlying system states, the RNN
is essentially served as an estimator of the MAP phases,
and the implicit MAP-phase estimation performed by the
RNN can never be better than the optimal MAP-phase
estimation. Moreover, the information available to the RNN
for MAP-phase estimation is very incomplete because the
observations do not include the exact arrival times of the
inference requests; and the MAP-phase information is also
not explicitly provided to guide the RNN training. These
two factors naturally degenerate the accuracy of MAP-phase
estimation.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate our request scheduling framework. In the following, we
first describe our experimental setup, including the exper-
imental settings, the baseline approaches for comparison,
and the evaluation metrics to measure the performance of
inference request serving. Then, we provide the experimen-
tal results.

5.1 Experimental Setup

5.1.1 Simulation Scenario
We evaluate the effectiveness of our framework using a
realistic simulation scenario like Fig. 1, where an inference
task of object recognition is processed by an edge server
equipped with an Intel Xeon Platinum 8259CL processor
and four Nvidia Tesla T4 GPUs. Just as illustrated in
Fig. 1, for the target inference task, we employ a pretrained

PNASNet-5-Large model [33] and a pretrained EfficientNet-
B0 model [32] from the Pytorch image models library
[63] to, respectively, serve as a heavyweight model and a
lightweight model, where on the validation set of ILSVRC-
2012 ImageNet dataset [23] the former model achieves
82.78% top-1 classification accuracy, while the accuracy of
the latter model is 77.69%. For both the heavyweight and
lightweight models, we deploy two model instances with
buffer capacity c = 15 on the edge server, and assign
one GPU to each model instance, so that there are a total
of four model instances and the computational resources
available for each model instance are almost the same. For
the configuration of schedulers, we set the duration τ of
each time slot to 1 second. Note that, we use the validation
set of the ImageNet dataset as the test data for performance
evaluation, meaning that during evaluation the inference
requests are drawn randomly and independently from the
validation set of the ImageNet dataset; while for the training
of the schedulers, we use the “matched frequency” version
of the ImageNet-V2 dataset [64] as the validation data to
provide the validation accuracy of each model instance in
the reward computation of Eq. (2). Following the standard
preprocessing, we resize the ImageNet images to 256× 256
pixels, and center crop the resized images to 224×224 pixels.

5.1.2 Workloads
In the main experiments, we adopt a two-phase MAP with
the following parameter matrices D0 and D1 as the work-
load,

D0 =

[
−180.036 0.036
0.0002 −10.002

]
, D1 =

[
180 0
0 10

]
, (12)

where this MAP is also known as a switched Poisson process
(SPP). Roughly speaking, this arrival process is alternately
in its two phases during exponentially distributed times.
If the MAP is in the first phase, then independently of
the phase process, inference requests arrive according to
a Poisson process with intensity 180; otherwise, inference
requests arrive according to another Poisson process with
intensity 10, independently of the phase process as well.
Hereafter, we refer to the first and second states of the
MAP, respectively, as the bursty and normal states of the
workload. We remark that this MAP has several character-
istics. First, since the underlying CTMC of the MAP is not a
predictable process, the workload-state switching between
the bursty and normal states is unpredictable. Second, this
MAP can be highly bursty as the arrival rate in the bursty

10

state is 18 times higher than that in the normal state, making
it challenging for an edge inference serving system with
constrained and constant resources to maintain good QoS in
both states. Third, the mean holding time of the normal state
is 18 times longer than that of the bursty state, implying that,
after a sufficiently long time, the inference requests will be
a fifty-fifty mixture of the arrivals in the two states, such,
that the two states can have equal importance in evaluation.
Fourth since approximately 95% of a long trajectory is in
the normal state, the training of schedulers may suffer from
this “state imbalance”. More specifically, due to the “state
imbalance”, the rewards yielded in the bursty state are
very sparse, maybe leading to a sparse reward problem.
Since in the literature, it seems difficult for DDPG to tackle
sparse reward problems [65]–[67], the sparsity of rewards
may be a reason for the failures of DDPG. Throughout
our experiments, the initial phase of this MAP is sampled
according to the stationary distribution. Hereafter, this MAP
is also referred to as our main workload. Moreover, as
detailed later, we also use a non-Markovian arrival process
to evaluate the generality of our framework.

5.1.3 Latency Requirement
With regards to the above experimental settings and the un-
predictability of our main workload, we adopt a moderate
98th percentile (P98) latency of 300 milliseconds (ms) as the
benchmarking latency requirement, noting that similar P98
latency requirements have also been adopted in previous
work [9]. This latency requirement dictates that 98% of the
inference requests must be completed within 300 ms.

5.1.4 Algorithm Settings
Here we give the detailed algorithm settings, including the
neural network architecture settings, the parameter settings
for Algorithm 1, and other parameter settings of the MDP.
Specifically, in our main experiments, we find that by setting
the two weights α and β to 1, the schedulers can be trained
to meet the latency requirement. For more implementation
details of our policy optimization approach, we let the
policy network of actor and the value network of critic use
the almost same architecture of a two-hidden-layer fully-
connected tanh network with 90 hidden units in the first
hidden layer and 60 hidden units in the second hidden
layer, where there is no parameter sharing between these
two networks; we set the discount factor as γ = 0.99, the
clipping threshold ϵ = 0.2 and the GAE parameter λ = 0.95.
Note that before feeding the observations into the neural
networks, we convert the queue lengths to binary vectors
through one-hot encoding; we normalize the elapsed service
times between 0 and 1; we apply zero-padding to convert
the ages into vectors of length 16, and then normalize them
into the range [0, 1], respectively.

5.1.5 Training Settings
For training details, we develop a simulator to facilitate
faster training, where the model instances are assumed to
have deterministic service times; we set T = 5 × 104,
σ = 0.698 and train a single actor for 250 million time
slots, meaning that the workload traces used for training are
instances of our main workload with duration of 250 million

time slots; we optimize the training objectives in each policy
update period using the Adam optimizer [68] for 5 epochs
with an initial learning rate of 2.5 × 10−4 and a mini-batch
size of 104.

5.1.6 Evalution Settings
For evaluation settings, we consider long runs over 0.6
million time slots, meaning that the workload traces used
for evaluation are instances of our main workload with
the duration of 0.6 million time slots. Note that all the
instances used for training and evaluation are generated in-
dependently. In the evaluation, if a policy optimized by our
approach is evaluated, the actor will act deterministically
with σ = 0. Since, in practice, all of our model instances
exhibit negligible service-time variability, we find that the
additional assumptions on service times do not introduce
discrepancies between simulation and reality.

5.1.7 Baseline Approaches
Based on our framework, we also develop a variant with
adaptive batching, as will be detailed later. Under the
practical partial observability, we respectively refer to our
framework and its adaptive-batching variant as RL-PO and
RL-PO-B for short. We compare them against the following
baseline approaches.

• The conventional approach with lightweight models
(LW for short) only uses the model instances of the
lightweight model. That is, the four model instances
in the edge server are all the model instances of Ef-
ficientNet, and the inference requests are scheduled
with fairness among the model instances.

• The conventional approach with heavyweight mod-
els (HW for short) only uses the model instance of the
heavyweight model, where the inference requests are
served by four model instances of PNASNet. Follow-
ing the previous work [10], we also develop a variant
(referred to as HW-E) that can proactively reject the
buffered inference requests that will inevitably miss
the latency deadline.

• Our proposed approach with the full observability
(RL-FO for short) and its adaptive-batching variant
(RL-FO-B for short) assume that the states of the
workload can be observed, such that the policies for
the underlying MDP can be directly learned.

• The single queue approach (SQ for short) serves
the inference requests using a standard single queue
model with the same hybrid model instance setting
as our framework. To improve the utilization of
heavyweight models, if there are two idle model
instances, respectively, of PNASNet and EfficientNet,
then the upcoming arrival will be served by the
model instance of PNASNet.

• The request scheduling approach of InFaaS [28] also
uses the same hybrid model instance setting as our
framework. We refer to this baseline approach as
InFaaS for short. Briefly, for this baseline approach,
time is also divided into fixed-duration time slots; the
goal is to achieve “load balancing” between PNAS-
Net and EfficientNet while avoiding any model in-
stance being continuously overloaded. Note that,

11

Approach
Overall Bursty state Normal state

Ratio Rate VR Ratio VR Reject Delay HWSR Ratio VR Reject Delay HWSR
(%) (RPS) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

M
A

P
(S

PP
)

LW 77.69 14.72 0 77.69 0 0 0 — 77.69 0 0 0 —
HW 41.43 7.851 49.95 0.089 99.89 48.11 51.78 — 82.78 0.007 0 0.007 —
HW-E 69.05 13.08 16.61 55.31 33.19 33.19 0 — 82.78 0 0 0 —
RL-PO 79.24 15.01 1.447 75.85 2.891 1.499 1.393 12.78 82.62 0.003 0 0.003 96.25
RL-FO 80.14 15.18 0.366 77.64 0.732 0.293 0.439 10.66 82.62 0 0 0 97.25
RL-PO-B 79.49 15.05 0.884 76.56 1.594 1.499 1.393 3.664 82.43 0.174 0 0.174 93.14
RL-FO-B 80.18 15.19 0.079 77.82 0.161 0.064 0.096 5.099 82.54 0 0 0 93.69
SQ 79.59 15.08 0 78.86 0 0 0 22.85 80.37 0 0 0 52.65
SA 80.39 15.23 0.499 78.01 0.998 0.102 0.895 19.99 82.78 0 0 0 99.99
InFaaS 78.22 14.82 1.695 76.12 3.389 0.001 3.388 24.22 80.35 0 0 0 52.18

N
on

-M
ar

ko
vi

an LW 77.69 14.72 0 77.69 0 0 0 — 77.69 0 0 0 —
HW 41.45 7.854 49.93 0.125 99.85 48.14 51.71 — 82.77 0.011 0 0.011 —
HW-E 69.05 13.08 16.59 55.32 33.17 33.17 0 — 82.78 0 0 0 —
RL-PO 79.23 15.01 1.553 75.75 3.103 2.246 0.857 12.11 82.72 0.003 0 0.003 98.78
RL-FO 80.27 15.21 0.329 77.76 0.651 0.563 0.008 11.63 82.77 0.008 0 0.008 99.93

TABLE 2: Results for the P98 latency requirement of 300 ms. “Ratio”, “VR”, and “HWSR” stand for the goodput, violation,
and heavyweight model scheduling ratios, respectively. “Rate” stands for the goodput rate, which measures the density of
correctly and timely classified inference requests in the number of requests per second (RPS). “Reject” stands for the request
rejection ratio, which is the proportion of rejected inference requests. “Delay” stands for the request delay ratio, which is
the proportion of delayed inference requests. The “Overall” columns show the overall results over entire workloads. The
“Bursty state” and “Normal state” columns show the results in the bursty and normal states, respectively. The “MAP
(SPP)” rows show the results on our main Markovian workload. The “Non-Markovian” rows show the results of our
non-Markovian workload. The gray background is used to highlight the results of our framework.

0 10 20 30 40 50 60
Million time slots

35

40

45

50

55

60

65

70

G
oo

dp
ut

 r
at

io
 (%

)

FO-overall
PO-overall
FO-normal
PO-normal
FO-bursty
PO-bursty

(a) Goodput ratio.

0 10 20 30 40 50 60
Million time slots

5

10

15

20

25

30

35

40

45

50

Vi
ol

at
io

n
ra

tio
 (%

)

FO-overall
PO-overall
FO-bursty
PO-bursty

(b) Violation ratio.

0 10 20 30 40 50 60
Million time slots

10

20

30

40

50

60

70

80

90

H
ea

vy
w

ei
gh

t m
od

el
 s

ch
ed

ul
in

g
ra

tio
 (%

)

FO-normal
PO-normal
FO-bursty
PO-bursty

(c) PNASNet scheduling ratio.

Fig. 2: Learning curves of our framework on our main workload. “PO” and “FO” stand for the partial and full observability,
respectively. The curves labeled “overall” present the overall results. The curves labeled “normal” and “bursty” present
the results in the normal and bursty states, respectively. The shaded regions represent the standard deviation over trials.

to ensure that the performance of this baseline ap-
proach is comparable, the duration of each time slot
is set to 0.1 second, which is an order of magnitude
smaller than the default setting of InFaaS.

• The stationary approximation approach (SA for
short) not only assumes that the workload states
are observable, but also assumes that the holding
times in the bursty and normal states are always
sufficiently long, such that if a fixed probability dis-
tribution is used for request scheduling in each state,
the inference serving system can almost always be in
its stationary states. Under these assumptions, if the

MAP parameters and all the information about the
model instances are also known, then using Erlang’s
waiting time distribution of the M/D/1 queue [69], a
solvable approximation problem of maximizing the
heavyweight model utilization with respect to the
tail latency requirement can be formulated, where
two probability distributions are found, respectively,
for the bursty and normal states. During the evalu-
ation, these two distributions are respectively used
in their corresponding states. More details about this
baseline approach can be found in Appendix F.

Notably, our comparisons are fair in the sense that, during

12

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Required latency (second)

78.8

79.0

79.2

79.4

79.6

79.8

80.0

80.2

80.4

80.6
G

oo
dp

ut
 r

at
io

 (%
)

RL-PO
RL-FO
SA

(a) Goodput ratio.

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Required latency (second)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Vi
ol

at
io

n
ra

tio
 (%

)

P98
RL-PO
RL-FO
SA

(b) Violation ratio.

Fig. 3: Results for varying required latencies.

evaluation, the computational resources available for all the
approaches are the same. However, due to the additional
strong assumptions, the fully-observable versions of our
framework and the stationary approximation approach are
most likely intractable in practice.

5.1.8 Evaluation Metrics
For evaluation metrics, we introduce the goodput ratio,
which is the proportion of inference requests that are cor-
rectly classified within the required latency among the total
number of inference requests arriving. Also, to examine
whether the tail latency requirement is met, we introduce
the violation ratio, which is the proportion of delayed or
rejected inference requests among the total number of in-
ference requests arriving. Furthermore, to gain insight into
how the inference requests are scheduled, we introduce the
heavyweight model scheduling ratio, which is the propor-
tion of inference requests that are scheduled to the model
instances of PNASNet among the total number of inference
requests arriving.

5.2 Experimental Results
5.2.1 Main Results on the MAP
We summarize our results in Table 2. For the experiments on
our main Markovian workload, we need to first investigate
two primary questions: can our framework adaptively serve
inference requests as expected, and can our framework
outperform the conventional approaches? From the results
in Table 2, we answer both questions positively. Specifi-
cally, even under the partial observability, our framework
exhibits two distinct behaviors in the bursty and normal
states: in the normal state, more than 96% of the inference
requests are scheduled to the heavyweight PNASNet model,
achieving 82.62% goodput ratio with almost no rejected
and delayed requests; by contrast, in the bursty state, only
12.78% of the inference requests are scheduled to the heavy-
weight PNASNet model, such that the burstiness of the
workload is properly handled with less than 3% violation
ratio. Since these behaviors appear to be consistent with
our idea of workload-adaptive inference request scheduling,

we demonstrate that this idea can be implemented by our
framework. For the comparisons between our proposed and
conventional approaches, as shown in Table 2, under the
partial observability and without violating the latency re-
quirement, our framework achieves 79.24% overall goodput
ratio, which is more than 1.5% higher than that of the best
performing conventional approach using only EfficientNet.
Here, we remark that this advantage of our framework is
compelling since the goodput does not include any correctly
classified but delayed requests. Looking into the results,
we observe that the conventional approaches suffer from
either “over-compressing” or “under-compressing” of the
models. More specifically, for the conventional approach
using only EfficientNet, there are no delayed and rejected
requests no matter what state the workload is in; however,
when the workload is in its normal state, this approach
keeps its model instances idle most of the time, thus leading
to the waste of the underlying computational resources. As
a result, even though this approach, due to its zero violation
ratio, achieves higher goodput ratio than our framework
in the bursty state, it yields significantly lower goodput
ratio than our framework in the normal state (77.69% versus
82.62%) and performs worse overall than our framework.
For the conventional approach using only PNASNet and
without proactive rejection of delayed requests, the edge
inference serving system is tricked into a denial-of-service
status when bursts occur, as almost all of the inference
requests are either delayed or rejected in the bursty state,
while our framework can always maintain the availability
of the deep learning inference service.

By comparing the results of our framework under the
partial and full observability, we can evaluate how the
unobservability of workload states impacts the performance
of our proposed method, and empirically evaluate the per-
formance of our policy optimization approach in a similar
fashion to the “ablation study”. Specifically, from Table 2,
we find that, under the full observability, our framework
achieves 80.14% overall goodput ratio with less than 0.4%
overall violation ratio, showing that if the workload states
are observable, then the performance of our framework can
be substantially improved. Since our framework gives simi-

13

lar results in the normal state under different observability,
this improvement under the full observability is attributed
to the good inference request scheduling in the bursty state,
where the significant increase of the goodput ratio and
the decrease of the violation ratio show that the learned
policy can respond rapidly and effectively to the explicit
burstiness. Also, in Fig. 2, we present the learning curves
of our framework under the partial and full observability
to illustrate how the evaluation metrics change over the
course of training, where we find that with the knowledge
of workload states, both the performance and the sample
efficiency of our policy optimization approach can be im-
proved. In summary, besides the inevitable negative impact
of the workload-state unobservability on the performance
of our framework, the above findings indicate that our
policy optimization approach can effectively leverage useful
information to learn better policies. Moreover, we vary the
required latency of the P98 latency requirement from 150
ms to 450 ms in steps of 25 ms and compare our framework
under different observability with the stationary approxi-
mation approach. The results, plotted in Fig. 3b, show that,
even under the partial observability, our framework can
always meet the P98 latency requirements with the required
latencies in our experimental range. Meanwhile, the results
in Fig. 3a show that, under the same algorithm settings of
our policy optimization approach, our framework achieves
a goodput ratio that decreases as we decrease the required
latency; however, even for the lowest required latency of
150 ms and under the partial observability, our framework
still outperforms the conventional approaches. As we can
see in Fig. 3b, due to the approximation errors of various
types, the stationary approximation approach maintains a
violation ratio of about 0.5%, which is smaller than the
target violation ratio of 2%. Nevertheless, in the bursty state,
such an approach often schedules more inference requests
to the heavyweight PNASNet model than our framework to
achieve higher goodput ratio. In our experiments, we find
that our policy optimization approach tends to find “conser-
vative” policies avoiding scheduling more than 15% of the
inference requests to the heavyweight PNASNet model in
the bursty state, thereby limiting its performance.

From Table 2, we can see that our framework outper-
forms the request scheduling approach of InFaaS: even
under the partial observability, our framework enjoys about
1.1% accuracy gap with this baseline approach while yield-
ing lower violation ratio. Besides, the results show that
this baseline approach suffers from two major drawbacks.
First, in the normal state, it performs poorly due to the
heavyweight model scheduling ratio of about 50%. Second,
in the bursty state, its performance is highly dependent on
the time slot duration. This is because by reducing the time
slot duration, there will be fewer inference requests being
scheduled to the overloaded heavyweight model instances,
and thus the violation ratio can be reduced. However, from
an engineering perspective, it may be difficult to further
reduce the time slot duration.

Finally, we find that the single queue approach can
also, to some extent, realize our idea of workload-adaptive
inference request scheduling. As we can see from the re-
sults in Table 2, in the bursty state, this approach achieves
superior goodput ratio, where the high heavyweight model

scheduling ratio of 22.85% does not cause any delay and
rejection of the inference requests; however, in the normal
state, this approach schedules only slightly more than half
of the inference requests to the heavyweight model and
fails to take full advantage of the heavyweight model,
thereby yielding lower goodput ratio than our framework.
Overall, this approach has the same level of performance as
the adaptive-batching variant of our framework under the
partial observability, where our framework is advantageous
in the normal state but worse in the bursty state. Compared
to our framework, the main advantages of the single queue
approach are that it is simple, easy to implement, and does
not need any training. However, these advantages come at
a cost: this approach is agnostic of the latency requirements,
meaning that the quality of inference services is hard to be
controlled according to the requirements. Moreover, as will
be discussed later, we believe that our framework has much
better extensibility and greater potential than the single
queue approach.

5.2.2 Results of the Adaptive-batching Variant
Here, we develop an adaptive-batching variant as an ex-
ample to show the extensibility of our framework. With
the help of adaptive batching, our framework can not only
determine how to schedule the inference requests, but also
determine how the inference requests are served by the
model instances, thereby allowing more fine-grained control
over the quality of inference services. Note that a detailed
discussion is in Section 6.2 to fully illustrate the potential
extensibility of our framework.

To integrate adaptive-batching in our framework, we
slightly modify the general bulk service rule introduced by
Neuts [70], and consider that the model instances follow
our modified rule to serve the inference requests in batches.
Specifically, at the beginning of each time slot, the scheduler
not only determines the probability distribution for request
scheduling, but also determines the batch configurations
by selecting a minimum batch size and a maximum batch
size for each model deployed in the framework, where the
maximum batch size is no less than the minimum batch
size. Then, under our modified rule, if the number of infer-
ence requests waiting for service from a model instance is
less than the corresponding minimum batch size when the
model instance finishes serving a batch, the model instance
must wait until the number of inference requests in the
buffer reaches the minimum batch size, whereupon all the
inference requests in the buffer are served together in a
batch; if the number of inference requests waiting in the
buffer is no less than the corresponding minimum batch
size, but less than the corresponding maximum batch size,
a batch of inference requests is served, where the batch size
is the maximum of the elements that are in a predetermined
set and no more than the number of waiting requests; if the
number of waiting requests is no less than the correspond-
ing maximum batch size, the model instance serves a batch
whose size is the corresponding maximum batch size. In
our implementation, we use {1, 3, 5} as the predetermined
set of all the batch sizes that are available for both the
PNASNet and EfficientNet models, so that the minimum
and maximum batch sizes should also be selected from this
set. Of course, the system state of this adaptive-batching

14

0 10 20 30 40 50 60
Million time slots

40

45

50

55

60

65

70
G

oo
dp

ut
 r

at
io

 (%
)

FO-overall
PO-overall
FO-normal
PO-normal
FO-bursty
PO-bursty

(a) Goodput ratio.

0 10 20 30 40 50 60
Million time slots

0

5

10

15

20

25

30

35

40

45

Vi
ol

at
io

n
ra

tio
 (%

)

FO-overall
PO-overall
FO-bursty
PO-bursty

(b) Violation ratio.

0 10 20 30 40 50 60
Million time slots

10

20

30

40

50

60

70

80

H
ea

vy
w

ei
gh

t m
od

el
 s

ch
ed

ul
in

g
ra

tio
 (%

)

FO-normal
PO-normal
FO-bursty
PO-bursty

(c) PNASNet scheduling ratio.

Fig. 4: Learning curves of the adaptive-batching variant on our main workload.

0 10 20 30 40 50 60
Million time slots

1.7

2.0

2.3

2.6

2.9

3.2

3.5

3.8

4.1

4.4

B
at

ch
 s

iz
e

FO-Max-Avg
FO-Min-Avg

PO-Max-Avg
PO-Min-Avg

(a) PNASNet, bursty state.

0 10 20 30 40 50 60
Million time slots

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

B
at

ch
 s

iz
e

FO-Max-Avg
FO-Min-Avg
PO-Max-Avg
PO-Min-Avg

(b) PNASNet, normal state.

PO FO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
til

e

0.81

0.96

0.19

0.37

0.96

0.63

Bursty

PO FO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.99 1.00.99 1.0

Normal
Batch-size=1 Batch-size=3 Batch-size=5

(c) Final PNASNet configurations.

0 10 20 30 40 50 60
Million time slots

1.3

1.6

1.9

2.2

2.5

2.8

3.1

3.4

3.7

4.0

B
at

ch
 s

iz
e

FO-Max-Avg
FO-Min-Avg

PO-Max-Avg
PO-Min-Avg

(d) EfficientNet, bursty state.

0 10 20 30 40 50 60
Million time slots

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

B
at

ch
 s

iz
e

FO-Max-Avg
FO-Min-Avg
PO-Max-Avg
PO-Min-Avg

(e) EfficientNet, normal state.

PO FO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
til

e

1.0
0.93

0.93
1.0

Bursty

PO FO
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.99 1.0 1.00.99

Normal
Batch-size=1 Batch-size=3 Batch-size=5

(f) Final EfficientNet configurations.

Fig. 5: Additional results of the adaptive-batching variant. (a), (b), (d), and (e) plot the average minimum and maximum
batch sizes of the two models against the number of time slots during training. (c) and (f) plot the final batch
configurations learned for the PNASNet and EfficientNet models, respectively, where the minimum and maximum batch
size configurations are distinguished by darker versus lighter shades.

variant should include the batch sizes of all the batches in
service.

In our experiments, we evaluate the adaptive-batching
variant on our main workload under different observability

15

and provide the empirical performance results in Table 2. As
shown by the results, the main advantage of the adaptive-
batching variant is that it effectively reduces the violation
ratio of our framework: under the partial observability, the
overall violation ratio is reduced from almost 1.45% to less
than 0.9%; under the full observability, the overall viola-
tion ratio is reduced from almost 0.37% to less than 0.1%.
Because of this advantage, under the partial observability,
the adaptive-batching variant improves the overall goodput
ratio to 79.49%, yielding an improvement of 1.8% over the
conventional approach using only EfficientNet. However,
keeping most of the algorithm settings (including the two
weights α and β) unchanged, the policies learned for the
adaptive-batching variant appear to be more “conserva-
tive”: in the bursty state, whatever the observability is full
or partial, the heavyweight model scheduling ratio drops to
less than 6%; even in the normal state, there is a smaller pro-
portion of inference requests scheduled to the heavyweight
PNASNet model. This may explain why, under the full ob-
servability, the goodput ratio improvement achieved by the
adaptive-batching variant is so slight. This “conservative”
performance may be caused by the fact that the policies are
learned in a naive manner similar to H-PPO [71], where the
dependence between discrete and continuous components
of actions is neglected.

In Fig. 4, we present the learning curves of the adaptive-
batching variant. As can be seen by comparing Fig. 4c
with Fig. 2c, the adaptive-batching variant requires more
training time to achieve the same level of heavyweight
model scheduling ratio. Moreover, to better understand how
adaptive batching works, in Fig. 5, we illustrate the final
batch configurations learned for the two models and the
evolution of the batch configurations over the course of
training. As we can see, most of the curves in Fig. 5b
and Fig. 5e rise or fall monotonically and become flatter
as the training time increases, implying the importance of
the batch configurations in the normal state. In particular,
to prevent a high proportion of inference requests from
being delayed, for any of the two models, the minimum
batch size should always be set to small values in the
normal state. Meanwhile, in Fig. 5a and Fig. 5d, the curves
appear to be more variable, possibly because sometimes
the performances of some different batch configurations in
the bursty state are similar. Despite the improvement, we
notice from Fig. 5c that, under the partial observability, the
adaptive-batching variant finally uses the problematic batch
configurations where, in the bursty state, the heavyweight
PNASNet model mostly only serves batches of size 5, since
such batch configurations require high heavyweight model
scheduling ratio to perform well in the bursty state.

5.2.3 Results on the Non-Markovian Workload
Here, we adopt another non-Markovian arrival process as
the workload to demonstrate the generality of our frame-
work to handle more general workloads. Through the exper-
iments on this non-Markovian workload, we aim to show
that the practical use of our framework is not restricted by
the assumption that the workload is a MAP. Essentially, this
non-Markovian workload is a time-varying Poisson process
with the arrival rate periodically switching between a low
and a high value, where in each period of the arrival rate

process, the arrival rate first stays at the low value for a
fixed time duration, and then stays at the high value for the
rest of the period. For convenience, if the arrival rate is at the
high value, we say that the workload is in the bursty state;
otherwise, we say the workload is in the normal state. For
the purpose of comparison, we set the low and high values
of the arrival rate to 10 and 180, respectively. Also, the time
durations of the normal and bursty states in each period
are set to the mean sojourn times of our main workload’s
normal and bursty states, respectively. Of course, the system
state under this non-Markovian workload should include
the directly unobservable time elapsed since the last arrival
rate switching. Except for the modifications with respect to
the new system state, we use the same algorithm settings
as on our main workload. Note that the key distinction
between our main workload and the non-Markovian work-
load is that the state switching of our main workload is
unpredictable and governed by a CTMC; while the state
switching of the non-Markovian workload is deterministic
and periodic.

In the lower part of Table 2, we provide the experimental
results on the non-Markovian workload. As can be seen,
under the partial observability, our framework on the non-
Markovian workload yields almost the same performance as
that on our main workload, and consistently outperforms all
the conventional approaches. Under the full observability,
our framework performs even slightly better on the non-
Markovian workload than on our main workload, achiev-
ing 80.27% goodput ratio on the non-Markovian workload
compared to 80.14% on our main workload. We believe
this superior performance of our framework on the non-
Markovian workload under the full observability is non-
trivial: in both the bursty and normal states, higher heavy-
weight model scheduling ratio is achieved with similar or
even lower violation ratio, implying that the learned policy
may be able to predict the workload states in the upcom-
ing time slot and use the prediction to guide the request
scheduling. Also, the arrival rate process is a deterministic
process dependent only on time and thus is predictable,
implying that it is possible to accurately estimate the current
workload state and the elapsed time since the last arrival
rate switching. Then, our framework also can work under
the full observability in practice. Moreover, we present the
learning curves of our framework on the non-Markovian
workload in Fig. 6, where we see that the learning curves
on the two workloads are similar. Consequently, these em-
pirical results verify the effectiveness of our framework on
the non-Markovian workload.

5.2.4 Results on the Efficiency of Probabilistic Routing

In our implementation, the probabilistic routing of arriving
inference requests is run as an individual thread. Empir-
ically, we found that our framework allows an inference
request to be scheduled to a model instance within a few
nanoseconds upon its arrival. Since the average overhead of
probabilistic routing is several orders of magnitude smaller
than the average interarrival time when our main workload
is in its burst state, it is demonstrated that the request
scheduling overhead is indeed negligible.

16

0 10 20 30 40 50 60
Million time slots

20

25

30

35

40

45

50

55

60

65

70
G

oo
dp

ut
 r

at
io

 (%
)

FO-overall
PO-overall
FO-normal
PO-normal
FO-bursty
PO-bursty

(a) Goodput ratio.

0 10 20 30 40 50 60
Million time slots

5

10

15

20

25

30

35

40

45

50

55

Vi
ol

at
io

n
ra

tio
 (%

)

FO-overall
PO-overall
FO-bursty
PO-bursty

(b) Violation ratio.

0 10 20 30 40 50 60
Million time slots

10

20

30

40

50

60

70

80

90

H
ea

vy
w

ei
gh

t m
od

el
 s

ch
ed

ul
in

g
ra

tio
 (%

)

FO-normal
PO-normal
FO-bursty
PO-bursty

(c) PNASNet scheduling ratio.

Fig. 6: Learning curves of our framework on the non-Markovian workload.

6 DISCUSSION

In this section, we discuss why burstiness is one of the
most important edge inference workload attributes; we also
discuss the further extensibility and fault tolerance of our
framework.

6.1 Bursts in Edge Inference Workloads
Before we move on to discuss the edge deep learning
inference workloads, it is important to know the bursts are
generally caused by what. In a nutshell, the phenomenon
of sudden workload bursts is also known by names such
as “flash crowd”, “flash event” or “spike”, and is well-
known to be triggered by unpredictable external events [72],
[73]. This external-event-triggered nature, coupled with the
sustainable Internet-of-things (IoT) growth in the network
edge, makes burstiness one of the most important edge
workload attributes. To see this, consider a typical edge
service scenario where a few edge servers serve hundreds of
thousands of event-driven IoT devices together. If an unex-
pected event triggers a number of IoT devices to simultane-
ously generate workload, then a “flash crowd” will appear.
In related analyses, Eismann et al. [74] study the workload
attributes of serverless applications and find that 81% of
the analyzed use cases exhibit bursty workloads; Pekar et
al. [75] study the workload attributes of IoT applications
and find that workload bursts are likely to occur in most
of the analyzed use cases. These analyses show that bursts
normally exist in modern IoT and serviceless computing
services. In the case of edge deep learning inference, we
provide the following examples to further illustrate how
bursty workloads can occur:

• For the private chatbot system providing internal
tools for the employees of an organization, where
the domain-specific language models are deployed
in the local private cloud of the organization, if
an unexpected event happens and prompts many
employees to simultaneously and intensively query
the models, then a system workload burst will occur;

• for the vehicular edge computing system [76] in
the vehicle-to-everything scenario, where the deep

learning models are deployed in the roadside units
to enable various applications, such as autonomous
driving and road safety, if traffic congestion is caused
by accidents, then there will be service workload
bursts.

6.2 Extension of Our Framework

Beyond the adaptive-batching variant, we believe that our
framework can be further extended in the following ways.

• Our framework can be further extended to enable
more combinatorial and complex actions, e.g., adap-
tively ensembling models, adaptively changing the
model instances. If the computing infrastructure has
sufficient resource elasticity, our framework can even
be extended to support adaptive resource scaling.
However, there are many open issues that must still
be addressed, such as how to tackle the highly-
structured system states with time-varying model
instance settings.

• Mainly for system-model simplicity, in our frame-
work, the update of the probability distribution for
request scheduling is time-triggered. However, since
the decision process is directly derived from the sys-
tem’s underlying continuous-time Markov process,
our framework can be naturally extended to allow
the update of the probability distribution for request
scheduling to be triggered by events such as the
rejection of an inference request.

• Although our framework can only handle one in-
ference task, it can be extended to allow adaptive
resource provisioning for multiple inference tasks.
From a technical perspective, this extension of our
framework is roughly equivalent to extending our
framework to enable adaptive resource scaling for a
single inference task.

6.3 Fault Tolerance of Our Framework

For simplicity and clarity, we restrict the focus of this paper
to optimizing the service quality of the inference serving

17

systems whose model instance settings are expected to
be able to invariant over time. To handle the unexpected
faults leading to changes in model instance settings, a
straightforward approach sufficient for small-scale inference
serving systems is per-taining multiple request scheduling
policies for different pre-designed model instance settings,
and then accordingly switching the model instance setting
and request setting when faults are located.

7 CONCLUSION

In this paper, we considered the question: how can a deep
learning inference service be adaptive to different workload
states of a bursty workload at the resource-constrained
network edge? To address this question, we introduced
the idea of workload-adaptive inference request scheduling,
and proposed a request scheduling framework for general-
purpose edge inference serving systems to implement this
idea, where the inference requests are scheduled to be
served by different types of models according to a policy
learned by reinforcement learning. Empirically, we not only
demonstrated the effectiveness of our framework in practi-
cal settings, but also showed that our framework provides
the generality to handle general workloads. In the future, we
believe that our framework can be extended in various ways
as discussed earlier, and there will be new optimization
methods to improve the request scheduling performance of
our framework.

REFERENCES

[1] N. Ansari and X. Sun, “Mobile edge computing empowers internet
of things,” IEICE Transactions on Communications, vol. 101, no. 3,
pp. 604–619, 2018.

[2] D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world
from edge to core,” International Data Corporation, IDC white
paper, 2018.

[3] M. Satyanarayanan, “The emergence of edge computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[4] R. van der Meulen, “What edge computing means for
infrastructure and operations leaders,” Gartner, Techical report,
2018. [Online]. Available: https://tinyurl.com/4s98xc5p

[5] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge com-
puting for autonomous driving: Opportunities and challenges,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[6] L. Li, K. Ota, and M. Dong, “Deep learning for smart industry:
Efficient manufacture inspection system with fog computing,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4665–
4673, 2018.

[7] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, and Q. Yang,
“Incorporating intelligence in fog computing for big data analysis
in smart cities,” IEEE Transactions on Industrial informatics, vol. 13,
no. 5, pp. 2140–2150, 2017.

[8] A. Alnoman, S. K. Sharma, W. Ejaz, and A. Anpalagan, “Emerging
edge computing technologies for distributed iot systems,” IEEE
Network, vol. 33, no. 6, pp. 140–147, 2019.

[9] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting
cloud services for cost-effective, slo-aware machine learning in-
ference serving,” in 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), 2019, pp. 1049–1062.

[10] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vig-
fusson, and J. Mace, “Serving dnns like clockwork: Performance
predictability from the bottom up,” in 14th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 20), 2020,
pp. 443–462.

[11] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving
system,” in 14th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 17), 2017, pp. 613–627.

[12] C. Zhang, M. Yu, F. Yan et al., “Enabling cost-effective, slo-aware
machine learning inference serving on public cloud,” IEEE Trans-
actions on Cloud Computing, 2020.

[13] Amazon Web Services. Use amazon sagemaker elastic inference.
[Online]. Available: https://tinyurl.com/55yww9h6

[14] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Branden-
burg, “Swayam: distributed autoscaling to meet slas of machine
learning inference services with resource efficiency,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference, 2017, pp. 109–
120.

[15] M. Enguehard, Y. Desmouceaux, and G. Carofiglio, “Efficient la-
tency control in fog deployments via hardware-accelerated popu-
larity estimation,” ACM Transactions on Internet Technology (TOIT),
vol. 20, no. 3, pp. 1–23, 2020.

[16] R. Olaniyan, O. Fadahunsi, M. Maheswaran, and M. F. Zhani, “Op-
portunistic edge computing: concepts, opportunities and research
challenges,” Future Generation Computer Systems, vol. 89, pp. 633–
645, 2018.

[17] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Train-
ing deep neural networks with binary weights during propaga-
tions,” in Advances in neural information processing systems, 2015,
pp. 3123–3131.

[18] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135–1143.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[20] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural ar-
chitecture search on target task and hardware,” arXiv preprint
arXiv:1812.00332, 2018.

[21] X. Tan, H. Li, L. Wang, X. Huang, and Z. Xu, “Empowering adap-
tive early-exit inference with latency awareness,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 11, 2021,
pp. 9825–9833.

[22] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan,
“Differentiable soft quantization: Bridging full-precision and low-
bit neural networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 4852–4861.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 2009, pp.
248–255.

[24] D. M. Lucantoni, “New results on the single server queue with
a batch markovian arrival process,” Communications in Statistics.
Stochastic Models, vol. 7, no. 1, pp. 1–46, 1991.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[26] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible,
high-performance ml serving,” arXiv preprint arXiv:1712.06139,
2017.

[27] H. Qin, S. Zawad, Y. Zhou, S. Padhi, L. Yang, and F. Yan,
“Reinforcement-learning-empowered mlaas scheduling for serv-
ing intelligent internet of things,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 6325–6337, 2020.

[28] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: Au-
tomated model-less inference serving,” in 2021 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 21), 2021, pp. 397–411.

[29] P. Guo, B. Hu, R. Li, and W. Hu, “Foggycache: Cross-device
approximate computation reuse,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
pp. 19–34.

[30] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand
accelerating deep neural network inference via edge computing,”
IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp.
447–457, 2019.

[31] V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib, “Optimizing
deep learning inference on embedded systems through adaptive
model selection,” ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 19, no. 1, pp. 1–28, 2020.

[32] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[33] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural

https://tinyurl.com/4s98xc5p
https://tinyurl.com/55yww9h6

18

architecture search,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 19–34.

[34] Y. Jin, L. Jiao, Z. Qian, S. Zhang, N. Chen, S. Lu, and X. Wang,
“Provisioning edge inference as a service via online learning,” in
2020 17th Annual IEEE International Conference on Sensing, Commu-
nication, and Networking (SECON). IEEE, 2020, pp. 1–9.

[35] V. Nigade, P. Bauszat, H. Bal, and L. Wang, “Jellyfish: timely
inference serving for dynamic edge networks,” in 2022 IEEE Real-
Time Systems Symposium (RTSS). IEEE, 2022, pp. 277–290.

[36] X. Wang, G. Gao, X. Wu, Y. Lyu, and W. Wu, “Dynamic dnn model
selection and inference off loading for video analytics with edge-
cloud collaboration,” in Proceedings of the 32nd Workshop on Network
and Operating Systems Support for Digital Audio and Video, 2022, pp.
64–70.

[37] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu,
“Deep-reinforcement-learning-based offloading scheduling for ve-
hicular edge computing,” IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 5449–5465, 2020.

[38] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta rein-
forcement learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 1, pp. 242–253, 2020.

[39] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen,
“Deep reinforcement learning for delay-oriented iot task schedul-
ing in sagin,” IEEE Transactions on Wireless Communications, vol. 20,
no. 2, pp. 911–925, 2020.

[40] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, “A drl agent for
jointly optimizing computation offloading and resource allocation
in mec,” IEEE Internet of Things Journal, vol. 8, no. 24, pp. 17 508–
17 524, 2021.

[41] S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao, “Deep reinforcement
learning-based task scheduling in iot edge computing,” Sensors,
vol. 21, no. 5, p. 1666, 2021.

[42] Z. Zhuang, J. Wang, Q. Qi, J. Liao, and Z. Han, “Adaptive and
robust routing with lyapunov-based deep rl in mec networks
enabled by blockchains,” IEEE Internet of Things Journal, 2020.

[43] Y. Zhang, B. Feng, W. Quan, G. Li, H. Zhou, and H. Zhang,
“Theoretical analysis on edge computation offloading policies for
iot devices,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4228–
4241, 2018.

[44] P. Borylo, A. Lason, J. Rzasa, A. Szymanski, and A. Jajszczyk,
“Energy-aware fog and cloud interplay supported by wide area
software defined networking,” in 2016 IEEE International Confer-
ence on Communications (ICC). IEEE, 2016, pp. 1–7.

[45] D. M. Lucantoni, “The bmap/g/1 queue: a tutorial,” Performance
Evaluation of Computer and Communication Systems, pp. 330–358,
1993.

[46] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “Eie: efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 3, pp. 243–254, 2016.

[47] M. Combé and O. J. Boxma, “Optimization of static traffic allo-
cation policies,” Theoretical Computer Science, vol. 125, no. 1, pp.
17–43, 1994.

[48] X. Guo, Y. Lu, and M. S. Squillante, “Optimal probabilistic routing
in distributed parallel queues,” Performance Evaluation Review,
vol. 32, no. 2, pp. 53–54, 2004.

[49] S. C. Borst, “Optimal probabilistic allocation of customer types
to servers,” ACM SIGMETRICS Performance Evaluation Review,
vol. 23, no. 1, pp. 116–125, 1995.

[50] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of
customers,” Journal of the ACM (JACM), vol. 22, no. 2, pp. 248–260,
1975.

[51] J. Anselmi and G. Casale, “Heavy-traffic revenue maximization in
parallel multiclass queues,” Performance Evaluation, vol. 70, no. 10,
pp. 806–821, 2013.

[52] J. Sethuraman and M. S. Squillante, “Optimal stochastic schedul-
ing in multiclass parallel queues,” in Proceedings of the international
conference on Measurement and modeling of computer systems, 1999,
pp. 93–102.

[53] R. A. Kronmal and A. V. Peterson Jr, “On the alias method for
generating random variables from a discrete distribution,” The
American Statistician, vol. 33, no. 4, pp. 214–218, 1979.

[54] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-

forcement learning.” in Proceedings of the International Conference
on Learning Representations, 2016.

[55] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings
of the International Conference on Machine Learning, 2014.

[56] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
method. John Wiley & Sons, 2016, vol. 10.

[57] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage esti-
mation,” arXiv preprint arXiv:1506.02438, 2015.

[58] I. Shmyrin, “States of a map flow of events: Optimal estimation by
the maximal a posteriori state probability criterion,” Automation
and Remote Control, vol. 65, no. 9, pp. 1444–1451, 2004.

[59] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent
policy gradients,” Logic Journal of the IGPL, vol. 18, no. 5, pp. 620–
634, 2010.

[60] M. Hausknecht and P. Stone, “Deep recurrent q-learning for par-
tially observable mdps,” arXiv preprint arXiv:1507.06527, 2015.

[61] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-
based control with recurrent neural networks,” arXiv preprint
arXiv:1512.04455, 2015.

[62] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev
et al., “Grandmaster level in starcraft ii using multi-agent rein-
forcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[63] R. Wightman, “Pytorch image models,” https://github.com/
rwightman/pytorch-image-models, 2019.

[64] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet
classifiers generalize to imagenet?” in International Conference on
Machine Learning. PMLR, 2019, pp. 5389–5400.

[65] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “Gep-pg: Decoupling
exploration and exploitation in deep reinforcement learning al-
gorithms,” in International conference on machine learning. PMLR,
2018, pp. 1039–1048.

[66] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and
N. R. Waytowich, “Integrating behavior cloning and reinforcement
learning for improved performance in dense and sparse reward
environments,” arXiv preprint arXiv:1910.04281, 2019.

[67] G. Matheron, N. Perrin, and O. Sigaud, “The problem with ddpg:
understanding failures in deterministic environments with sparse
rewards,” arXiv preprint arXiv:1911.11679, 2019.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[69] G. J. Franx, “A simple solution for the m/d/c waiting time
distribution,” Operations Research Letters, vol. 29, no. 5, pp. 221–
229, 2001.

[70] M. F. Neuts, “A general class of bulk queues with poisson input,”
The Annals of Mathematical Statistics, vol. 38, no. 3, pp. 759–770,
1967.

[71] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid actor-critic rein-
forcement learning in parameterized action space,” arXiv preprint
arXiv:1903.01344, 2019.

[72] X. Zhou, Z. Zhao, R. Li, Y. Zhou, T. Chen, Z. Niu, and H. Zhang,
“Toward 5g: When explosive bursts meet soft cloud,” IEEE net-
work, vol. 28, no. 6, pp. 12–17, 2014.

[73] M. Curiel and A. Pont, “Workload generators for web-based
systems: Characteristics, current status, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1526–1546,
2018.

[74] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “A review of serverless use
cases and their characteristics,” arXiv preprint arXiv:2008.11110,
2020.

[75] A. Pekar, J. Mocnej, W. K. Seah, and I. Zolotova, “Application
domain-based overview of iot network traffic characteristics,”
ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–33, 2020.

[76] Y.-J. Ku, P.-H. Chiang, and S. Dey, “Real-time qos optimization
for vehicular edge computing with off-grid roadside units,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 975–
11 991, 2020.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Reinforcement learning based online request scheduling framework for workload-adaptive edge deep learning inference
	Citation
	Author

	Introduction
	Technical Challenges
	Our Technical Contributions
	Organization

	Related Work
	Workload-Adaptive Inference Serving Systems
	Efficient Deep Learning Inference at the Edge

	System model and problem formulation
	System Model
	System Overview
	System Workload
	Inference Request Serving
	Inference Request Scheduling

	Problem Formulation

	Policy optimization approach
	Experiments
	Experimental Setup
	Simulation Scenario
	Workloads
	Latency Requirement
	Algorithm Settings
	Training Settings
	Evalution Settings
	Baseline Approaches
	Evaluation Metrics

	Experimental Results
	Main Results on the MAP
	Results of the Adaptive-batching Variant
	Results on the Non-Markovian Workload
	Results on the Efficiency of Probabilistic Routing

	Discussion
	Bursts in Edge Inference Workloads
	Extension of Our Framework
	[comment=Revised following Reviewer Point P 3.1]Fault Tolerance of Our Framework

	Conclusion
	References

