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Abstract

Justification is an explanation that supports the
veracity assigned to a claim in fact-checking.
However, the task of justification generation
has been previously oversimplified as summa-
rization of a fact-check article authored by fact-
checkers. Therefore, we propose a realistic
approach to generate justification based on re-
trieved evidence. We present a new benchmark
dataset called ExClaim (for Explainable fact-
checking of real-world Claims), and introduce
JustiLM, a novel few-shot Justification gener-
ation based on retrieval-augmented Language
Model by using fact-check articles as an aux-
iliary resource during training only. Experi-
ments show that JustiLM achieves promising
performance in justification generation com-
pared to strong baselines, and can also enhance
veracity classification with a straightforward
extension.1

1 Introduction

Automated fact-checking typically encompasses
several stages: identify check-worthy claims, re-
trieve relevant evidence, determine the claim’s
veracity using the retrieved evidence, and gen-
erate justification for the verdict on the veracity
(Guo et al., 2022). Despite a wealth of research fo-
cusing on the initial three stages, justification gen-
eration has remained under-explored in the past.
Justifications present essential evidence and ratio-
nales used to arrive at a claim’s veracity judgment,
serving to convince readers and enhance the cred-
ibility of fact-checking systems. This explanatory
process is of paramount importance in gaining the
user’s trust in automated fact-checking (Kotonya
and Toni, 2020a; Atanasova et al., 2020).

Several methods have attempted to generate
justification of verdict by summarizing fact-check

1Code and dataset are released at https://github
.com/znhy1024/JustiLM.

articles that were previously authored by hu-
man fact-checkers (Kotonya and Toni, 2020b;
Atanasova et al., 2020; Russo et al., 2023). Since
a fact-check article per se is manually written to
justify the verdict of a given claim with detailed
presentation and reasoning over digested evidence,
referring to reference documents collected from
multiple sources, directly generating a summary
from such a report as justification sidesteps the
realistic challenges of evidence gathering and
evidence-based reasoning for veracity assessment
we essentially face in the fact-checking task. More
importantly, these existing methods are impracti-
cal because fact-check articles are not available
for new claims that are yet to check (Guo et al.,
2022). Table 1 shows an example illustrating dif-
ferent types of information involved in the fact-
checking practice and their relationship. To justify
the veracity for a claim, the source of information
that can be used practically ought to be the re-
trieved reference documents containing evidence
rather than its fact-check article, which, as an out-
come, has not been written during the checking
process.

In this paper, we propose a more realistic ap-
proach for the task of justification generation
based on a language model approach, which com-
plies with the process of journalistic fact-checking
by well-known fact-check organizations such as
PolitiFact.2 Our goal is to produce high-quality
justifications, drawing upon evidence gathered
from diverse sources. To this end, we construct a
benchmark dataset for Explainable fact-checking
of real-world Claims, named ExClaim, derived
from a public dataset, WatClaimCheck (Khan et al.,
2022), containing newsworthy claims along with
their fact-check articles and reference documents.
ExClaim provides a large searchable corpus by
mixing the reference documents from all claims

2https://www.politifact.com/.
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Table 1: An example claim along with the evidence documents, justification, and veracity. The title
of each evidence document is italicized. The sentences in the fact-check article referring to evidence
documents are marked in the same color as the corresponding documents, and the sentences that directly
entail the justification are in bold.

in WatClaimCheck. Additionally, it curates the
verdict justifications sourced from fact-check ar-
ticles, typically located in a conclusive paragraph
marked by cue phrases like ‘‘Our ruling’’ or ‘‘Our
rating’’ for each claim. Furthermore, we develop
a Justification Language Model called JustiLM
for generating the rationales behind veracity
judgement within the context of few-shot learning.
Presumably, few-shot fine-tuning can mitigate
the training resource requirements and its depen-
dence on high-end hardware, often financially pro-
hibitive, and also enables the model to achieve
comparable effectiveness to state-of-the-art fully-
trained models. JustiLM utilizes fact-check arti-
cles as auxiliary information in its training only
via fine-tuning a pre-trained Retrieval-Augmented
Generation (RAG) model on our curated justifi-
cation dataset. Meanwhile, leveraging fact-check
articles for training enhances the model’s profi-
ciency in generating rationales based on evidence

and articulating them in its generated content.
Our contributions are threefold:

• We propose JustiLM, the first realistic jus-
tification generation method based on a
retrieval-augmented language model that is
trained end-to-end for explainable fact check-
ing of real-world claims, leveraging fact-
check articles as auxiliary information for
model training only.

• We construct ExClaim, a new benchmark
derived from the WatClaimCheck dataset
(Khan et al., 2022) for explainable fact-
checking, which contains 6,951 real-world
claims and their corresponding veracity la-
bels and human-written justifications, to-
gether with a large searchable corpus of
957,949 chunk-level documents for fine-
grained evidence retrieval.
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• JustiLM outperforms In-Context Learning
(ICL) enabled language models, including
Flan-T5, Llama2, and the state-of-the-art
few-shot RAG model Atlas. JustiLM also
shows promising performance compared to
the latest GPT-4 model. A straightforward
extension of JustiLM for joint veracity
prediction and justification generation im-
proves the veracity prediction task with large
margins.

2 Related Work

2.1 Explanations for Fact-checking
Explanations for fact-checking claims have gained
significant prominence in recent times, particu-
larly due to the prevalent use of black-box models
in automated fact-checking systems (Atanasova
et al., 2020; Guo et al., 2022). Several methods
have emerged to address this issue utilizing vari-
ous techniques to provide human readable expla-
nations. One stream of research leverages attention
weights to highlight salient parts in the retrieved
evidence as explanations (Popat et al., 2018; Ma
et al., 2019; Yang et al., 2019; Shu et al., 2019;
Lu and Li, 2020). Another stream of study is to
adopt logic-based rules, such as knowledge graphs
and natural logic relations designed by human ex-
perts (Ahmadi et al., 2019; Gad-Elrab et al., 2019;
Vedula and Parthasarathy, 2021; Krishna et al.,
2022a), where explanations are obtained by trac-
ing the rules path to reach the veracity of the claim.
However, these explanations are not presented in
natural language, rendering them less accessible
to general users. Furthermore, these rule-based
systems encounter challenges when dealing with
real-world claims that may not conform to prede-
fined rules. In contrast, our work places a strong
emphasis on generating textual justifications that
are readily understandable for users, avoiding
manual rule definitions.

A few studies have attempted to automati-
cally generate textual justifications by summa-
rizing fact-check articles (Kotonya and Toni,
2020b; Atanasova et al., 2020; Russo et al., 2023).
Atanasova et al. (2020) employ DistilBERT (Sanh
et al., 2019) to extract sentences from fact-check
articles to form justifications. Kotonya and Toni
(2020b) propose a two-step process, initially uti-
lizing a Sentence-BERT (Reimers and Gurevych,
2019) to extract sentences from fact-check articles
and subsequently using the BERTSUM model

(Liu and Lapata, 2019) for abstractive justifica-
tion generation based on the extracted sentences.
Russo et al. (2023) explore several existing ex-
tractive summarization (Erkan and Radev, 2004;
Reimers and Gurevych, 2019) and abstractive
summarization (Raffel et al., 2020; Zhang et al.,
2020; Shleifer and Rush, 2020) approaches for
summarizing fact-check articles. These summa-
rization methods come with inherent limitations
practically, including complete reliance on fact-
check articles (i.e., detailed human justification)
as input, which is hardly available at the time of
deployment, and complete omission of automatic
evidence search and evidence-based reasoning.
Different from these approaches, our method only
assumes the availability of fact-check articles dur-
ing model training and the key evidence exists
within a large corpus which is searchable. There-
fore, our approach generates justifications by har-
nessing the information from retrieved reference
documents during inference, which is a more real-
istic solution for real-world scenarios. Similarly,
Khan et al. (2022) infer claim veracity based on re-
trieved textual references, while Yao et al. (2023a)
retrieve evidence for multi-modal fact-checking
and generate explanations for predicted verac-
ity labels using the BART model (Lewis et al.,
2020a), both of which are stage-wise and full-
dataset trained. In contrast, we base our approach
on the latest RAG framework that is trained end-
to-end and generates justifications by using fact-
check articles to distill supervisory signals for
training.

2.2 Few-shot Fact-checking

The need of few-shot learning is exacerbated
by the continuous increase of computational and
storage requirements for language model train-
ing. However, the specific application of few-shot
learning techniques in the context of fact-checking
has been relatively underexplored. Existing meth-
ods for few-shot fact-checking only focus on the
so-called fact verification task (Lee et al., 2021;
Zeng and Zubiaga, 2022; Zeng and Gao, 2023;
Yue et al., 2023; Pan et al., 2023; Zhang and Gao,
2023) by feeding a few instances together with
gold evidence into the model to predict the ve-
racity of a claim. Different from these methods,
our work primarily centers on generating justifica-
tions to substantiate the veracity of a claim based
on the retrieved evidence. Importantly, we do not
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assume the availability of annotated evidence.
Instead, we necessitate the system to retrieve per-
tinent evidence, conforming to a more realistic
and challenging scenario.

2.3 Retrieval-augmented Language Models

Equipping language models (LM) with external
memory has shown to enhance their performance
in knowledge intensive NLP tasks (Chen et al.,
2017; Thorne et al., 2018; Guu et al., 2020; Lewis
et al., 2020b; Sachan et al., 2021; Izacard and
Grave, 2021b; Borgeaud et al., 2022; Izacard
et al., 2023). Typically, a retriever is used to re-
trieve relevant documents from a large corpus,
which enriches the input of a language model and
contributes to the final output. However, due to
the high cost of acquiring query-document anno-
tations and training retrievers, many implemen-
tations rely on off-the-shelf retrievers, such as
TF-IDF and BM25 (Jones, 2004; Robertson et al.,
1994), which use term-matching techniques. In
this setup, only the parameters of LMs are fine-
tuned.

Recent research has demonstrated the advan-
tages of jointly training the retriever and the LM
in an end-to-end manner, which leverages the su-
pervision signals from the LM to train the retriever
(Guu et al., 2020; Lewis et al., 2020b; Sachan et al.,
2021; Izacard and Grave, 2021b; Izacard et al.,
2023). Moreover, considering the remarkable per-
formance of large language models (LLMs) in
various few-shot NLP tasks, some studies suggest
enhancing LLMs with the retrievers or web search
engines (Mallen et al., 2023; Si et al., 2023; Yu
et al., 2023; Shi et al., 2023; Zhang and Gao,
2023). For example, REPLUG (Shi et al., 2023)
optimizes the retriever by minimizing the KL di-
vergence between the retrieval likelihood and the
black-box LLM likelihood over retrieved docu-
ments. However, there exist inherent limitations
in the interaction between retriever and black-box
LLMs, such as their restricted ability to provide
or access specific information. We refer readers
to a comprehensive survey of retrieval-augmented
LMs (Mialon et al., 2023).

3 Task Formulation

Let C = {(x, z,y)} be a fact-checking dataset of
real-world news claims associated with a textual
knowledge corpus D. Each instance is composed
of a claim x and its corresponding ground-truth

justification y and fact-check article z. C is di-
vided as a training set and a test set, and only
instances in the training set are associated with
fact-check articles if available.

Given a claim x and the corpus D, the goal of
justification generation is to produce a sequence
of tokens, denoted as ŷ, that serves as an explana-
tion for the veracity rendered on the claim using
the evidence retrieved from the corpus. In the
few-shot setting, we randomly select K instances
from the training set, following the similar setup
employed in previous studies for fact verification
(Lee et al., 2021; Liu et al., 2022; Zeng and Gao,
2023), and we do not assume the availability of
development set as this aligns to a more realistic
scenario with limited data resources.

4 ExClaim Dataset

The existing fact-checking datasets based on real-
world claims have limitations for justification
generation. This is because the provided evidence
sources might not cover the evidence documents
that fact-checkers actually rely on when writ-
ing justifications. For example, some datasets
(Vlachos and Riedel, 2014; Wang, 2017; Alhindi
et al., 2018) only provide metadata like speaker,
party, and date without a sizeable knowledge cor-
pus for finding specific evidence. Some studies
(Popat et al., 2016; Baly et al., 2018; Augenstein
et al., 2019; Gupta and Srikumar, 2021; Yang et al.,
2022; Hu et al., 2022) utilize web search to gather
evidence documents, which result in retrieved in-
formation from non-authoritative sources or lead
to the leak of ground truth by inadvertently includ-
ing articles verifying the same claims by other
organizations or sharing the fact-check informa-
tion (Khan et al., 2022). More notably, certain
studies (Hanselowski et al., 2019; Kotonya and
Toni, 2020a; Atanasova et al., 2020; Ostrowski
et al., 2021; Russo et al., 2023) regard fact-check
articles as a primary source of evidence, a prac-
tice that may not align with realistic fact-checking
procedures.

We use the WatClaimCheck (Khan et al., 2022)
dataset that provides the real-world claims along
with the text of reference documents cited by
fact-check articles. However, WatClaimCheck is
constructed for veracity classification and does not
provide ground-truth justifications. For our task,
we construct ExClaim based on WatClaimCheck,
for which we additionally extract justifications
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Split # Instance Avg. # Tokens.

Claim Train 5,964 25
Test 987 25

Fact-check Train 5,964 1,102
Article Test† 987† 1, 091†

Reference Train 40,089 2,656
Documents Test 6,647 2,404

Justification Train 5,964 129
Test 987 131

Table 2: Statistics of the ExClaim dataset. †:
Note that fact-check articles in the test set are not
used in our method, but exclusively utilized by
baselines that rely on fact-check articles.

from fact-check articles based on the cue phrases
such as ‘‘Our ruling’’ or ‘‘Our rating’’ in the
reports following previous works (Alhindi et al.,
2018; Augenstein et al., 2019; Kotonya and Toni,
2020a) and remove the instances that do not have
such justification content. After extracting the
justifications, we also remove them from fact-
check articles.

Table 2 presents summary statistics of the Ex-
Claim dataset with a total 6,951 real-world claims
and justifications (i.e., 5,964 for training and 987
for testing). The data pose some challenges: 1)
A single reference document is generally much
longer than fact-check article, easily exceeding
the context window of most text generation mod-
els (e.g., 512 tokens of T5 (Raffel et al., 2020) or
1,024 tokens of BART (Lewis et al., 2020a)). In
particular, each claim may correspond to multiple
reference documents from different sources, lead-
ing to excessively long text for evidence. 2) There
is a lack of passage-/sentence-level annotation
in reference documents and fact-check articles.
Since fact-checkers generally refer to only several
pieces of text in reference documents when writ-
ing justifications, most information in a reference
document tend to be irrelevant for generating the
justifications. To address these issues, we split
each document into disjoint 100-word chunks fol-
lowing previous work (Lee et al., 2019; Karpukhin
et al., 2020; Lewis et al., 2020b; Izacard et al.,
2023), resulting in a large textual knowledge cor-
pus D comprising a total of 957,949 chunk-level
documents that systems can search fine-grained
evidence text from. In the rest of the paper, we

refer to these short text chunks as ‘‘reference
documents’’ or simply ‘‘documents’’.

5 Methodology

We base our approach on the retrieval-augmented
generation (RAG) framework (Lewis et al., 2020b;
Sachan et al., 2021; Izacard and Grave, 2021b;
Izacard et al., 2023), which contains a retriever
for fine-grained evidence retrieval and a LM
for textual justification generation. As shown in
Figure 1, the retriever takes the claim text as input
and retrieves the top-N chunk-level documents
from the textual knowledge corpus, and the LM
conditions on these documents together with the
claim to generate justification. The retriever and
LM can be jointly trained within a single RAG
framework, which makes it possible to utilize fact-
check articles as an auxiliary resource to provide
supervisory signals during training, targeting to
enhance the quality of generated justification. We
employ Atlas (Izacard et al., 2023) as our back-
bone model considering two main reasons: 1) its
strong few-shot learning ability in knowledge in-
tensive tasks when its retriever and LM are jointly
trained; 2) its flexibility for incorporating fact-
check articles in the training process.

5.1 Retriever
Given a claim x, the retriever should return the
documents that help LM generate better justifi-
cation. To enable the training of the retriever,
Atlas utilizes a dense retriever named Contriever
(Izacard et al., 2022), which is pre-trained us-
ing the MoCo contrastive loss (He et al., 2020).
Contriever is a dual-encoder architecture that the
pre-trained query encoder Ec and document en-
coder Ed encode the claim x and each document
dj ∈ D, respectively. The embeddings of docu-
ments can be pre-computed to build a collection of
index using FAISS (Johnson et al., 2021) for fast
retrieval. Documents are ranked by the similar-
ity score s(x,dj) = Ec(x)

�Ed(dj) that is calcu-
lated by taking the dot product of the embeddings
of the claim x and document dj .

To mitigate the burden of re-computing em-
beddings for all documents when training the re-
triever, Atlas (Izacard et al., 2023) only updates
the parameters corresponding to the query encoder
while freezing the documents encoder, which still
shows promising results in the few-shot setting.
Therefore, we employ the document encoder for
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Figure 1: The architecture of JustiLM. Gray solid arrows present the inference process without fact-check arti-
cle z. Red dash arrows present the training process of backbone model, where the ground-truth justification
provide supervisory signals to train both retriever and LM. Blue dashed arrows present the training process with
the distillation of z as supervisory signals. The document encoder is fixed during training, while other modules
are trainable. QE: Query Encoder; DE: Document Encoder; Enc: Encoder; Dec: Decoder.

encoding reference documents and the query en-
coder for encoding other inputs. Since there is no
direct supervision available to train the retriever,
Atlas proposes a Perplexity Distillation loss to
leverage the supervisory signals from the LM. The
intuition behind this is that documents contribut-
ing to the LM that help generate lower-perplexity
outputs should be ranked higher (Izacard et al.,
2023).

5.2 Language Model

The language model conditions on the top-N
retrieved documents DN = {dj}Nj=1 by the re-
triever, together with the claim x, to generate
the justification. To aggregate evidence effi-
ciently and effectively from multiple documents in
LM, Atlas employs a T5 encoder-decoder model
(Raffel et al., 2020) with the Fusion-in-Decoder
(FiD) (Izacard and Grave, 2021b) modification.
Each retrieved document dj is encoded indepen-
dently by the encoder, with the claim x prepended
to it. All outputs of the encoder are then concat-
enated. The decoder takes as input this concate-
nation and performs cross-attention to fuse the
evidence and generate outputs. The training ob-
jective is the standard language modeling loss
that encourages the LM to assign higher proba-
bility to the target sequence y given the claim x
and top-N retrieved documents.

5.3 Distillation Techniques

Although directly summarizing fact-check articles
z can generate justifications with reasonable qual-

ity in previous work (Kotonya and Toni, 2020a;
Atanasova et al., 2020), z is by no means avail-
able during inference for new claims in real-world
deployment, as we discussed in §1, making the pre-
vious methods impractical. We propose a realistic
approach to address this limitation: distilling in-
formation from z as auxiliary supervisory signals
for training phase only. We introduce two types of
techniques based on the granularity of distillation
from fact-check articles. The first is article-level
distillation, which utilizes aggregated information
from the entire z. The second is chunk-level dis-
tillation, where we split each article z as multiple
disjoint 100-word chunks z = {zi}Mi=1, where
M = � |z|

100�. Chunk-level distillation utilizes indi-
vidual information of each chunk zi. Both types
of distillation techniques can be applied to train
the retriever and LM.

5.3.1 Article-level Distillation

Article-level distillation is performed at the en-
tirety of a fact-check article, aiming at utilizing
the global-level alignment between fact-check ar-
ticle z and retrieved documents DN as supervi-
sory signals for model training. The basic idea is
that the more similar DN and z are, the easier it
is for LM to generate justification based on DN

closely approximating that generated based on z.
This alignment serves two main purposes. Firstly,
the similarity between DN and z can act as a su-
pervisory signal, guiding the retriever to prioritize
the ranking of documents in DN to resemble z.
Secondly, the justification generated by the LM
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based on z can be used as a supervision signal
to encourage the LM using DN to generate jus-
tification as similar as those generated based on
z. Next, we will discuss two training losses that
serve both purposes.

Retrieval Loss. The technique for training re-
triever is based on the similarity between the entire
fact-check article z and retrieved documents DN .
However, the length of z is commonly larger than
the maximum input length (i.e., 512 tokens) of
query encoder. Therefore, we use the trainable
query encoder Ec to represent z by aggregat-
ing the embeddings of all its chunks and obtain
Ēc(z) = 1

M

∑M
i=1 Ec(zi). The training objective

is to minimize the mean-squared-error (MSE) loss
between the embeddings of z and di:

Lret
g =

1

N |Ēc(z)|

N∑

j=1

||Ēc(z)− Ed(dj)||22. (1)

Generation Loss. The technique for training
the LM generation is based on the distance be-
tween the generated justification using retrieved
documents DN and that directly using the fact-
check article z. During training, the generation
ŷ of the LM using z as input is regarded as su-
pervision signal to guide model’s learning. Let
pL(y | x, DN ) =

∏|y|
k=1 pL(tk | x, DN , t<k) be

the LM probability of generating the ground-truth
justification y conditioned on x and DN , where
pL(tk | x, DN , t<k) is the probability of each
token tk assigned by the LM and t<k denotes the
tokens generated prior to tk. Similarly, the LM
probability of generating y conditioned on z is
pL(y | x, z). The training objective is to minimize
the MSE loss between these two distributions:

Llm
g =

1

|y||V|

|y|∑

k=1

|V|∑

i=1

(pL(ti | x, DN , t<k) (2)

− pL(ti | x, z, t<k))
2,

where V is the vocabulary of the LM.

5.3.2 Chunk-level Distillation

Chunk-level distillation is performed at the gran-
ularity of each chunk of fact-check article, lever-
aging the alignment between chunks {zi}Mi=1 and

documents {dj}Nj=1 to provide supervisory sig-
nals for model training. The intuition is that dif-
ferent chunks of the fact-check article could be
derived from rearranging or modifying specific
text spans sourced from reference documents.
Further, the chunks {zi}Mi=1 may correspond to
certain parts of the ground-truth justification
y. Thus, {zi}Mi=1 can be seen as the ‘‘connec-
tions’’ between DN and y. Aligning {dj}Nj=1 and
{zi}Mi=1 intuitively aids the model in learning the
mapping from DN to y, hence improving its
performance. However, there is no chunk-level
annotation available, which poses an important
challenge for training. We design two training
techniques to address it for chunk-level distillation
in both retriever and LM.

Retrieval Loss. The technique for training the
retriever is based on the relation between similar-
ity score and the LM perplexity, which is inspired
by Izacard et al. (2023) and Shi et al. (2023). In-
tuitively, the more similar the text chunk zi is
to the document dj , the lower LM perplexity of
generating zi conditioned on dj :

s(zi,dj) ∝ pL(zi | x,dj),

where s(zi,dj) = Ec(zi)
�Ed(dj). We train

the retriever to learn the alignment between
dj and its most similar chunk zj∗ , where
j∗ = argmaxi∈[1,M ] s(zi,dj). It involves mini-
mizing the KL-divergence between the similarity
score s(zj∗ ,dj) and the corresponding LM prob-
ability of zj∗ conditioned on dj and x. Specifi-
cally, let the document distribution over DN be
pR(dj | zi) = exp(s(zi,dj))

∑N
k=1 exp(s(zi,dk))

, and the document
posterior distribution according to the LM be
qL(zj∗ | x,dj) =

exp(log pL(zj∗ |x,dj))
∑N

k=1 exp(log pL(zj∗ |x,dk))
. Finally,

the loss function for optimizing the retriever is
given as:

Lret
c =

N∑

j=1

qL(zj∗ | x,dj) log
qL(zj∗ | x,dj)

pR(dj | zj∗)
.

(3)

This loss is exclusively used to optimize the re-
triever’s parameters, without affecting the LM.

Generation Loss. Our technique for training
LM utilizes the attention scores of the LM to
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train the LM itself, which is inspired by pre-
vious work of open-domain QA that trains a
retriever by learning to approximate the attention
scores of the reader (Izacard and Grave, 2021a;
Izacard et al., 2023). The cross-attention scores
between input and output can be used as a proxy
of the usefulness of each input to the justification.
We firstly average decoder cross-attention scores
over all attention heads, layers, and tokens for
each retrieved document dj , resulting an aver-
aged attention score a(x⊕ dj), where ⊕ denotes
concatenation. Then the score that indicates the
usefulness of dj is obtained by applying the soft-

max operator p(dj) =
exp(a(x⊕dj))

∑N
k=1 exp(a(x⊕dk))

following

Izacard et al. (2023). Similarly, the score for each
chunk zi is p(zi), while the score of the most sim-
ilar chunk zj∗ to dj is p′(zj∗) =

exp(p(zj∗ ))
∑N

k=1 exp(p(zk∗ ))
.

The objective is to encourage the score of dj to
approximate the score of its most similar chunk
zj∗ . We then minimize the KL-divergence be-
tween distributions of these two scores:

Llm
c =

N∑

j=1

p′(zj∗) log
p′(zj∗)

p(dj)
. (4)

6 Experiments and Results

6.1 Evaluation Metrics

To assess the consistency of generated justifica-
tions with ground truth, we employ a spectrum of
metrics to make our evaluation balance between
factual accuracy and style diversity of verbal ex-
pressions: ROUGE (Lin, 2004) counts the number
of overlapping units (e.g., n-gram and word se-
quences) between output justifications and ground
truths. MAUVE (Pillutla et al., 2021) measures
the divergence between output justifications and
the ground truths, which could reflect whether the
output is fluent and coherent to the ground (Xie
et al., 2023; Krishna et al., 2022b; Gao et al.,
2023; Xu et al., 2023). SummaCC expands the
SummaC (Laban et al., 2022) to evaluate the cov-
erage and factual consistency through checking
entailment between the output justifications and
ground truth. It sums the aggregating NLI scores
over the pairs of the entire output justification and
each sentence in the ground truth for coverage
(Scialom et al., 2021; Gao et al., 2023), and re-
versely, the pairs of the entire ground truth justifi-

cation and each sentence in the output justification
for consistency (Laban et al., 2022).

6.2 Fallacy of Fact-Check Summarization

We investigate how the previous approach based
on fact-check article summarization (Kotonya and
Toni, 2020b; Atanasova et al., 2020) fails to gener-
alize to the realistic setting given retrieved evi-
dence rather than fact-check articles as input.

Experimental Setup. 1) Full training: We in-
clude two existing models, ExplainMT (Atanasova
et al., 2020) and ExplainerFC (Kotonya and Toni,
2020b). ExplainMT is an extractive model while
ExplainerFC is extractive-abstractive. We parti-
tion the training set of ExClaim into 5,000 in-
stances for training and 964 for validation. We
train the two models to summarize fact-check ar-
ticles, and test them by inputting fact-check ar-
ticles versus evidence documents retrieved with
BM25 (Robertson et al., 1994). 2) Few-shot train-
ing: We train the RAG model Atlas (Izacard et al.,
2023) under few shots with fact-check articles as
input and test it using fact-check articles versus
documents retrieved by its pre-trained retriever
Contriever. In this setting, Contriever will be fixed
during fine-tuning since the LM’s input is fact-
check articles. We use randomly sampled 30
shots from the training split, and report the results
averaged over 3 trials based on different seeds.

Results. As shown in Table 3, for both set-
tings, we observe that using retrieved documents
as input dramatically declines the performance
compared to inputting fact-check articles. This
suggests that the fact-check article summarization
approach struggles to generalize to the retrieved
documents, especially in few-shot setting, indicat-
ing the impracticality of previous approaches and
the importance of the more realistic framework
outlined in §3. That is, models need to generate
justifications based on retrieved evidence instead
of fact-check articles which are not available for
new claims during inference.

6.3 Few-shot Justification Generation

6.3.1 Baselines

1) Lead-4 (Nallapati et al., 2017) selects as jus-
tification the first sentence from each document
among the top-4 documents retrieved by BM25.
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Method #Para. Test ROUGE-1 ROUGE-2 ROUGE-L SummaCC MAUVE

ExplainMTFull-dataset 132M
F.C. Article 35.01(−) 22.13(−) 21.25(−) 22.70(−) 5.59(−)

(Atanasova et al., 2020) Retr. Docs 19.33(−) 9.55(−) 17.59(−) 9.34(−) 5.27(−)

ExplainerFCFull-dataset 340M
F.C. Article 62.10(−) 38.03(−) 54.25(−) 50.67(−) 14.63(−)

(Kotonya and Toni, 2020b) Retr. Docs 47.16(−) 24.88(−) 44.13(−) 35.82(−) 10.07(−)

AtlasFew-shot ∼3B
F.C. Article 40.93(0.97) 26.71(1.15) 33.98(1.01) 29.72(1.22) 28.25(2.46)

(Izacard et al., 2023) Retr. Docs 28.14(0.87) 13.91(1.31) 21.87(1.12) 12.64(0.87) 25.37(0.69)

Table 3: Results of justification generation methods trained on Fact-check Article (F.C. Article) and
tested on Fact-check Article / Retrieved Documents (Retr. Docs). Para.: Parameters. Standard deviation
is in parentheses.

2) Retriever + ICL-enabled LMs: We use BM25
as the sparse retriever and Contriever (Izacard
et al., 2022) as the dense retriever, and choose
Flan-T5 (11B) (Chung et al., 2022), Llama2 (70B)
(Touvron et al., 2023), and GPT-4 (OpenAI, 2023)
as the ICL-enabled LMs. We prompt the model
to generate justifications by concatenating few-
shot training instances along with a test instance.
3) Atlas (Izacard et al., 2023) is the SoTA RAG
model with strong few-shot ability, which con-
sists of a trainable dense retriever Contriever and
a LM-adapted variant of T5 (Lester et al., 2021)
with FiD (Izacard and Grave, 2021b) modified
to increase the number of retrieved documents.
We also include a non-joint training setting by re-
placing the retriever with BM25.

6.3.2 Experimental Setup

For our method JustiLM, we randomly sample 30
instances from the training set for fine-tuning. We
use the Atlas (Izacard et al., 2023) with its released
pre-trained checkpoint3 of 3B parameters as our
backbone model. Following the Atlas paper, we
retrieve top-20 documents for each instance. We
set training steps as 100, batch size as 8, and
learning rate as 4× 10−5 with linear decay and 5
warmup steps for both the LM and the retriever.

For the distillation techniques to train the LM,
we begin by fine-tuning the LM to take fact-
check articles as auxiliary input and generate jus-
tification, which provides a warmup for LM. For
BM25 + ICL-enabled LMs, we use the Pyserini4

toolkit to build BM25 model. For Flan-T5, We
use the code and pre-trained checkpoints from

3https://github.com/facebookresearch/atlas.
4https://github.com/castorini/pyserini.

HuggingFace Transformers.5 We use the origi-
nal code and pre-trained checkpoints of Llama2.6

We use the API service of GPT-4 from OpenAI.7

Given different length constraints of these LMs,
we intend to maximize the utilization of their spe-
cific input capabilities. We adjust the number of
the shots and/or the number of retrieved docu-
ments to maximally utilize their input context win-
dows. We prioritize to ensure that these models
have access to as many of the top-20 retrieved
documents as possible because effective genera-
tion requires an adequate amount of information,
with the secondary goal to maximize the number
of few-shot examples used. Specifically, we set
1-shot ICL with top-10 documents for Flan-T5,
2-shot ICL with top-20 documents for Llama2
and 3-shot with top-20 documents for GPT-4.

For fair and robust comparison, we perform
experiments three times, with training instances
sampled using different random seeds. We report
the mean and standard deviation of each metric
over the three runs in all experiments. The seeds
and training instances are kept the same across
different models. All the experiments use a server
with 8 NVIDIA Tesla-V100 32GB GPUs.

6.3.3 Main Results

The results of few-shot justification generation
methods are reported in Table 4a. Lead-4 that
directly presents the retrieved documents as jus-
tification does not yield satisfactory results, due
to simple evidence stacking without generating a
clear explanation of the rationale.

5https://huggingface.co/google/flan-t5
-xxl.

6https://github.com/facebookresearch/LLAMA.
7https://openai.com/gpt-4.
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#Parameters ROUGE-1 ROUGE-2 ROUGE-L SummaCC MAUVE

Lead-4 (Nallapati et al., 2017)
– 22.72(−) 5.72(−) 14.11(−) 2.26(−) 7.95(−)

Retriever + ICL-enabled LMs
BM25 (Robertson et al., 1994)

+ Flan-T5 (Chung et al., 2022) 11B 27.99(2.39) 14.14(1.06) 20.74(1.66) 14.55(0.90) 12.42(1.22)

+ Llama2 (Touvron et al., 2023) 70B 31.45(0.51) 12.36(0.25) 20.72(0.22) 13.05(0.38) 7.88(0.15)

+ GPT-4 (OpenAI, 2023) Unkown 39.72(1.97) 17.12(1.97) 26.18(2.26) 24.98(2.49) 14.73(2.86)

Contriever (Izacard et al., 2022)
+ Flan-T5 ∼11B 23.75(1.91) 11.34(1.17) 18.11(1.48) 9.93(0.29) 12.07(0.90)

+ Llama2 ∼70B 31.28(0.51) 11.52(0.82) 20.42(0.70) 11.06(0.14) 7.91(0.09)

+ GPT-4 Unkown 36.83(1.37) 14.10(1.66) 23.36(1.75) 20.07(2.37) 9.85(0.96)

Atlas (Izacard et al., 2023)
No joint training 3B 31.42(1.61) 16.53(0.86) 24.67(1.00) 13.55(0.54) 25.19(4.37)

Joint training ∼3B 31.91(1.78) 17.81(1.19) 25.60(1.16) 13.81(1.11) 25.51(2.08)

JustiLM (Ours)
Lret

g + Llm
g ∼3B 33.48(1.33) 18.59(0.79) 27.12(0.81) 15.04(1.27) 20.29(2.00)

Lret
g + Llm

c ∼3B 36.70(0.77) 19.23(0.84) 28.39(0.75) 14.80(0.45) 32.99(3.33)

Lret
c + Llm

g ∼3B 36.51(1.01) 18.67(1.00) 27.94(0.96) 14.77(0.19) 37.08(1.53)
Lret

c + Llm
c ∼3B 36.30(0.91) 18.68(0.96) 27.97(0.99) 14.69(0.48) 35.30(1.09)

(a) On the original test set with 987 claims indicated in Table 2.

#Parameters ROUGE-1 ROUGE-2 ROUGE-L SummaCC MAUVE

Lead-4 (Nallapati et al., 2017)
– 21.87(−) 3.95(−) 12.61(−) 1.70(−) 6.62(−)

Retriever + ICL-enabled LMs
BM25 (Robertson et al., 1994)

+ Flan-T5 (Chung et al., 2022) 11B 22.86(2.27) 7.63(0.70) 14.74(1.52) 10.94(2.37) 7.00(0.17)

+ Llama2 (Touvron et al., 2023) 70B 31.01(0.29) 9.64(0.32) 18.73(0.17) 11.49(0.69) 6.99(0.60)

+ GPT-4 (OpenAI, 2023) Unkown 38.28(1.44) 13.74(1.75) 23.36(2.20) 25.10(2.29) 7.47(1.30)

Contriever (Izacard et al., 2022)
+ Flan-T5 ∼11B 20.44(1.27) 7.93(0.48) 14.45(0.85) 10.18(2.03) 8.24(0.48)

+ Llama2 ∼70B 31.01(0.84) 9.81(0.73) 19.07(0.63) 10.75(0.52) 6.62(0.54)

+ GPT-4 Unkown 35.93(1.09) 12.07(1.51) 21.46(1.79) 21.79(2.22) 6.25(0.37)

Atlas (Izacard et al., 2023)
No joint training 3B 29.76(0.98) 13.40(0.34) 22.16(0.32) 10.78(0.55) 12.56(1.56)

Joint training ∼3B 30.78(1.95) 15.75(1.72) 23.84(1.48) 12.20(0.45) 14.09(2.34)

JustiLM (Ours)
Lret

g + Llm
g ∼3B 32.76(0.89) 17.40(0.65) 26.61(0.61) 14.75(1.45) 10.57(0.94)

Lret
g + Llm

c ∼3B 35.55(0.31) 17.84(0.48) 27.30(0.21) 14.11(1.40) 16.78(4.64)

Lret
c + Llm

g ∼3B 35.51(0.51) 17.21(0.70) 26.53(0.06) 14.30(0.40) 20.02(7.39)
Lret

c + Llm
c ∼3B 35.48(0.59) 17.52(0.86) 26.92(0.57) 13.99(0.49) 19.17(7.04)

(b) On the new test set with 348 claims published later than the claims from the WatClaimCheck dataset used for training.

Table 4: Few-shot justification generation results on test set (a) and new test set (b). Standard deviation
is in parentheses.

Both Flan-T5 and Llama2 outperform Lead-4,
demonstrating the LM’s ability to generate jus-
tifications based on retrieved evidence. Flan-T5
performs comparably with Llama2 in ROUGE

and SummaCC scores and better in MAUVE,
despite much fewer parameters. The reasons are
likely two-fold: 1) Flan-T5’s instruction fine-
tuning on 1.8K tasks, which effectively enhances

343



the pre-trained language models (Sanh et al., 2022;
Chung et al., 2022); 2) its fine-tuning on Chain-of-
Thought (CoT) data (Wei et al., 2022), aligning
with the common presentation of ground-truth
justifications that provide rationales to conclude
the veracity, as exemplified in Table 1.

Incorporating ICL-enabled LMs with the dense
retriever Contriever does not exhibit improve-
ment over using the sparse retriever BM25. Dense
retrievers that trained on extensive in-domain
training datasets like MS-MARCO (Nguyen et al.,
2016), are often surpassed by sparse retrievers
when applied to new domains without large anno-
tated datasets (Thakur et al., 2021; Izacard et al.,
2022). While Contriever is a strong unsupervised
retriever for bridging this gap, BM25 still remains
competitive (Izacard et al., 2022).

When training only the LM of Atlas, it demon-
strates superior overall performance compared to
Flan-T5 and Llama2, despite its much fewer pa-
rameters. This finding indicates that merely re-
lying on the implicit knowledge of LMs without
parameter updates is insufficient when the size of
LM is not large enough. Joint training of the re-
triever and LM leads to further performance gains,
implying its benefits in the few-shot setting.

Compared to Atlas, JustiLM makes improve-
ments in different metrics, indicating that utilizing
fact-check article as auxiliary training signals en-
hances justification quality. With our proposed
distillation techniques, JustiLM considerably im-
proves all ROUGE scores. Compared to Atlas,
the combination of article-level distillation on
retriever and chunk-level distillation on LM in-
creases ROUGE-1, ROUGE-2, and ROUGE-L
scores by 15.0%, 7.97%, and 10.9%, respectively,
suggesting that JustiLM can generate justifica-
tions which are more similar to those written by
fact-checkers. Furthermore, 3 out of 4 combina-
tions of distillation techniques outperform Atlas
in MAUVE scores, with the highest gain being
45%. This suggests that JustiLM’s justifications
are more fluent and coherent with ground truths. It
can be attributed to our distillation method allow-
ing the model to learn from fact-check articles that
are much more informative and detailed than the
explanatory justifications. Lastly, JustiLM effec-
tively enhances the SummaCC score, indicating
the improvements on the factual consistency of
generated justifications.

GPT-4 demonstrates exceptionally strong abil-
ity in providing factually consistent responses and

outperforms other ICL-enabled methods Flan-T5
and Llama2 across all metrics. In comparison,
JustiLM falls relatively below GPT-4 in ROUGE-1
and SummaCC, but outperforms GPT-4 in ROUGE-
2/L and MAUVE. This highlights its effective-
ness, especially considering its small model size
and independence from intensive compute and
storage resources required by very large mod-
els. Also, its ease of fine-tuning with more and
new training data provides significant flexibil-
ity in addressing the ever-changing landscape of
misinformation.

6.3.4 Generalization on New Claims

To address the concern of pre-trained LMs having
potentially seen the evaluation data during their
pre-training, we investigate how different meth-
ods perform on a new test set with new emerg-
ing claims made after their training. Since the
WatClaimCheck dataset exclusively encompasses
claims prior to July 2021 (Khan et al., 2022) and
the newest pre-training data of Llama2 are cut
off by September 2022, we gather a new set of
claims made between October 2022 and Septem-
ber 2023, yielding a new test set comprising 348
instances, each with their associated reference
documents and justifications. Following the same
steps detailed in §4, the newly collected reference
documents are added into the corpus for model
retrieval. As shown in Table 4b, all methods dem-
onstrate performance drop on the new test set.
Nonetheless, the findings obtained based on the
original test set still hold true for the new test data.
Additionally, compared to baseline methods, the
relatively mild performance drop in JustiLM sug-
gests stronger generalizability and robustness of
our distillation techniques.

6.3.5 Ablation on Distillation Techniques

Table 5 reports the result of ablations on our
distillation techniques. We observe that the dis-
tillation during LM training results in greater
improvements compared to the retriever. This is
expected, considering that the LM benefits from
direct supervision from ground-truth justifications
during training, while the retriever relies on the
weak supervision from LM and the distillation
of fact-check articles. Additionally, the LM has
a larger number of parameters than the retriever,
with 3 billion parameters for the LM compared
to 110 million parameters for the retriever. As
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Component Loss ROUGE-1 ROUGE-2 ROUGE-L SummaCC MAUVE

Retriever
Lret
g 32.13(0.99) 16.45(0.39) 25.15(0.59) 14.53(0.23) 26.53(3.38)

Lret
c 31.29(1.53) 17.26(0.94) 25.19(1.15) 13.77(1.41) 19.17(1.57)

LM
Llm
g 36.30(1.80) 19.23(1.05) 28.52(1.04) 14.92(0.73) 27.09(7.20)

Llm
c 37.03(0.80) 18.89(0.90) 28.29(0.79) 14.56(0.69) 34.16(3.73)

Table 5: Results of ablations on different distillation techniques. Parentheses enclose standard deviation.

Method macro-F1 ROUGE-1 ROUGE-2 ROUGE-L SummaCC MAUVE

Majority 23.34(−) – – – – –

Atlas-CLS 25.81(0.46) – – – – –

JustiLM-Llm
g 44.00(1.51) 32.52(1.39) 18.20(0.61) 26.34(0.88) 14.76(1.17) 18.68(1.80)

JustiLM-Llm
c 41.33(4.49) 35.87(1.02) 19.52(0.68) 28.22(0.86) 15.02(0.95) 32.98(2.96)

Table 6: Results of joint veracity prediction and justification generation. Parentheses enclose stan-
dard deviation.

a result, the LM tends to capture more knowl-
edge from fact-check article during the distillation
process, leading to substantial improvements in
performance.

6.4 Joint Veracity-Justification Performance

In this section, we demonstrate that JustiLM can
be easily extended for joint veracity prediction
and justification generation. We follow Khan et al.
(2022) to map the original veracity labels assigned
by fact-checking websites, resulting in 388, 532,
and 67 instances for the false, mixture, and true
classes in the test split, respectively. Such class
imbalance is consistent with the report by Khan
et al. (2022). To mitigate the impact of imbalanced
class distribution, we balance the 30 training shots
across the three classes by randomly sampling 10
instances per class from the training set.

We make the LM generate the justification and
veracity label at the same time. For veracity label
prediction, let ycls,i be a veracity label, and its pre-
dicted score assigned by the LM conditioned on
the claim and the retrieved documents is defined
as β(x, ycls,i, DN ) = 1

|ycls,i| log pL(ycls,i | x, DN )

following Liu et al. (2022). In this way, we rank
all classes by the predicted scores and select the
top-ranked class. During training, we calculate
the probability of prediction by applying softmax
function on the predicted scores, and use cross-
entropy as the loss function.

Table 6 presents the result. The Atlas-CLS,
which directly predicts veracity label with Atlas,

shows a limited improvement in macro-F1 score
compared to the Majority method. This suggests
that predicting the veracity of real-world claims
remains challenging for this original RAG model
in a few-shot setting. When performing joint ve-
racity prediction and justification generation with
the LM training, a substantial boost in verdict pre-
diction is observed for our method. Specifically,
we achieve absolute improvements of 18.19 and
15.52 in macro-F1 using article-level and chunk-
level techniques, respectively. This indicates that
justification generation can help veracity predic-
tion by consolidating evidence from retrieved doc-
uments. We also find that jointly training JustiLM
with the veracity prediction task does not im-
prove the performance of justification generation,
which is consistent with the findings by Atanasova
et al. (2020). We conjecture that it remains chal-
lenging for the model to boost both tasks simulta-
neously with few-shot training instances. Potential
solutions could consider either leveraging a larger
multi-task training dataset, such as T0 (Sanh et al.,
2022), or using an independent veracity classifier
that can be jointly trained with the retriever and
the LM. However, both options necessitate adding
data and computational resources. We will leave
this for future studies.

6.5 Case Study

Table 7 presents example justifications generated
by JustiLM, the strong ICL baseline GPT-4, and
the few-shot RAG model Atlas. Atlas’s generated
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Claim Says Wisconsin women facing pay discrimination can’t ‘‘do something about it’’ under bill
passed by Republicans.

Ground Truth Falk said women facing pay discrimination can’t ‘‘do something about it’’ under a bill passed
by Wisconsin Republicans. But of the four legal options available under the current law, only
one would be eliminated by the bill. We rate Falk’s statement False.

Atlas Falk said that under a Republican-backed bill, women facing pay discrimination can’t ‘‘do
something about it.’’ Falk said that under the GOP bill, women facing pay discrimination can’t
‘‘do something about it.’’ But the bill doesn’t change the law. It simply makes it harder for
women to file lawsuits. Falk said that under the GOP bill, women facing pay discrimination
can’t ‘‘do something about it.’’

GPT-4 A statement by Kathleen Falk, a former Dane County executive, claims that women in
Wisconsin would no longer have ‘‘a right to do something’’ about pay discrimination on the
job if a bill is signed by Governor Walker. The bill in question would take away the right
of women who suffer pay discrimination to sue in state court. However, there are still other
avenues for employment discrimination victims, including filing a complaint with the state
Equal Rights Division, filing a complaint with the federal Equal Employment Opportunity
Commission, and filing a lawsuit in federal court. Therefore, while the bill may limit one
avenue for action, it does not completely prevent women from taking action against pay
discrimination.

JustiLM Falk said that women facing pay discrimination can’t ‘‘do something about it’’ under a
bill passed by Republicans. The measure would make it harder on victims of employment
discrimination because it is easier to sue in state court than in federal court. But eliminating
the state lawsuit option wouldn’t affect the three other avenues of legal recourse available to
workplace discrimination victims. And Falk’s claim was women facing pay discrimination
would have no options at all.

Table 7: An example of generated justifications by different methods compared to the ground-truth
justification.

justification catches that the GOP bill does not
change the law, but fails to highlight the key point
that women still have viable avenues to address
pay discrimination. Both GPT-4 and JustiLM suc-
cessfully refute the claim by providing that cru-
cial point.

More specifically, Atlas falls short in deliver-
ing convincing and comprehensive justification
due to its tendency to provide incomplete and re-
petitive responses. In contrast, GPT-4, being the
SoTA LLM, impresses with its ability to gener-
ate well-rounded justification, but appears to be
lengthy and less focused. JustiLM, on the other
hand, successfully highlights key points for fact-
checking the claim with a precise and refined jus-
tification. Despite its relatively small model size,
JustiLM may not always offer the same level
of details as GPT-4, but it can produce concise
and accurate justifications that closely resemble
the ground truth, making JustiLM promising and
valuable for users seeking quick and trustworthy
fact-check explanations.

7 Discussion

There is no passage-/sentence-level annotation in
the original long-form reference documents and
fact-check articles, which are costly to obtain. We
do not have ground truths for training and eval-
uating evidence retrieval model. Since these long
documents bury specific evidence in them, directly
using them for training will introduce a consider-
able amount of irrelevant text. While we mitigate
this challenge by splitting each original refer-
ence document into disjoint 100-word chunks for
retrieval, we believe that acquiring fine-grained
evidence annotations will benefit the training and
evaluation.

In our experimental setup, evidence retrieval is
conducted under the assumption that the needed
evidence for fact-checking a given claim exists
in the retrieval corpus. However, in a real-world
searching scenario where gold evidence may be
absent from the retrieval corpus, it is valuable to
investigate how justification generation methods
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perform under this more challenging scenario by
varying the ratio of gold reference documents in
the retrieval corpus.

Additionally, while our experiments include
the NLI-based metric SummaCC, providing au-
tomated evaluation on the factuality of generated
justifications, we believe that a sound human eval-
uation should involve professional fact-checkers.
Such evaluation, currently not conducted, ne-
cessitates close collaboration with fact-checking
organizations and needs particular networking and
setup, such as the integration with their existing
workflow and the provision of motives for them
to participate in evaluation, which could be war-
ranted as a separate study by itself and is part of
our future plan.

As the SoTA LLM, GPT-4 shows strong
ability in generating factually consistent and
informative justifications, therefore, developing
justification methods based on those powerful
API-based LLMs is beneficial. However, these
blackbox LLMs have strict constraints on ac-
cessing their specific internal information, which
poses important open challenges for being in-
teracted with deeply and providing supervision
signals to retriever.

In this work, we address the justification genera-
tion task with a realistic approach, which generates
justifications based on the retrieved evidence us-
ing an end-to-end retrieval-augmented language
model. Furthermore, incorporating our distillation
techniques with the RAG model Atlas demon-
strates a marked improvement in performance.
This affirms that utilizing fact-check articles dur-
ing training to provide supervision signals can
strongly enhance justification generation.

8 Conclusion and Future Work

We propose a justification generation language
model JustiLM for realistic fact-checking of
real-world news claims, where justification gen-
eration is performed based on retrieved evidence
from large textual corpus, and introduce a new
benchmark dataset ExClaim for this task. JustiLM
leverages fact-check articles as auxiliary re-
sources during training to distill article-level and
chunk-level training signals to guide justifica-
tion writing. Experimental results show JustiLM
outperforms ICL-enabled Flan-T5 and Llama2,

as well as the SoTA few-shot RAG model At-
las. JustiLM also demonstrates comparable and
promising performance when compared to GPT-4.

In the future, we will explore the adaptation
of various LLM-based reasoning methods (e.g.,
CoT [Wei et al., 2022], ToT [Yao et al., 2023b],
and GoT [Besta et al., 2023]) into JustiLM to en-
hance the reasoning ability for improving the task
of justification generation, which aims to assist
the LMs in providing better signals for guid-
ing evidence retrieval and improving reasoning
over retrieved evidence during justification gener-
ation. We also plan to develop a human evaluation
scheme involving fact-checking experts to provide
a more comprehensive and efficient assessment on
machine-generated justifications.
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Riedel, and Douwe Kiela. 2020b. Retrieval-
augmented generation for knowledge-intensive
NLP tasks. In Advances in Neural Information
Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020,
NeurIPS 2020, pages 9459–9474, virtual.

Chin-Yew Lin. 2004. ROUGE: A package for
automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81,
Barcelona, Spain. Association for Computa-
tional Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth,
Jay Mohta, Tenghao Huang, Mohit Bansal,
and Colin Raffel. 2022. Few-shot parameter-
efficient fine-tuning is better and cheaper than
in-context learning. In Advances in Neural
Information Processing Systems 36: Annual
Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans and
virtual.

350

https://doi.org/10.18653/v1/2020.coling-main.474
https://doi.org/10.18653/v1/2020.coling-main.474
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.1162/tacl_a_00503
https://doi.org/10.1162/tacl_a_00503
https://doi.org/10.18653/v1/2022.emnlp-main.15
https://doi.org/10.18653/v1/2022.emnlp-main.15
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/2021.naacl-main.158
https://doi.org/10.18653/v1/2021.naacl-main.158
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


Yang Liu and Mirella Lapata. 2019. Text sum-
marization with pretrained encoders. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP),
pages 3730–3740, Hong Kong, China. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/D19-1387

Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-
aware co-attention networks for explainable
fake news detection on social media. In Pro-
ceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 505–514, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2020.acl-main.48

Jing Ma, Wei Gao, Shafiq Joty, and Kam-Fai
Wong. 2019. Sentence-level evidence embed-
ding for claim verification with hierarchical
attention networks. In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 2561–2571,
Florence, Italy. Association for Computational
Linguistics. https://doi.org/10.18653
/v1/P19-1244

Alex Mallen, Akari Asai, Victor Zhong,
Rajarshi Das, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. When not to trust lan-
guage models: Investigating effectiveness of
parametric and non-parametric memories. In
Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9802–9822,
Toronto, Canada. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2023.acl-long.546
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