Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

10-2024

Predicting the limits: Tailoring unnoticeable hand redirection
offsets in virtual reality to individuals' perceptual boundaries

Martin FEICK

Kora Persephone REGITZ
Lukas GEHRKE

André ZENNER

Anthony TANG
Singapore Management University, tonyt@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

6‘ Part of the Software Engineering Commons

Citation

FEICK, Martin; REGITZ, Kora Persephone; GEHRKE, Lukas; ZENNER, André; TANG, Anthony; JUNGBLUTH,
Tobias Patrick; REKRUT, Maurice; and KRUGER, Antonio. Predicting the limits: Tailoring unnoticeable hand
redirection offsets in virtual reality to individuals' perceptual boundaries. (2024). UIST '24: Proceedings of
the 37th Annual ACM Symposium on User Interface Software and Technology, Pittsburgh, October 13-16.
1-13.

Available at: https://ink.library.smu.edu.sg/sis_research/9425

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9425&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author

Martin FEICK, Kora Persephone REGITZ, Lukas GEHRKE, André ZENNER, Anthony TANG, Tobias Patrick
JUNGBLUTH, Maurice REKRUT, and Antonio KRUGER

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9425


https://ink.library.smu.edu.sg/sis_research/9425

Predicting the Limits: Tailoring Unnoticeable Hand Redirection
Offsets in Virtual Reality to Individuals’ Perceptual Boundaries

Martin Feick
martin.feick@dfki.de
DFKI and Saarland University,
Saarland Informatics Campus
Saarbriicken, Germany

André Zenner
andre.zenner@uni-saarland.de
Saarland University & DFKI, Saarland
Informatics Campus
Saarbriicken, Germany

Maurice Rekrut
maurice.rekrut@dfki.de

DFKI, Saarland Informatics Campus

Saarbriicken, Germany

Determine Perceptual Boundaries

HR offsets Below, At
and Above individuals’
detection threshold

VR A - 0.00 0.00

stimulus

Kora Regitz
kora.regitz@uni-saarland.de
Saarland University, Saarland

Informatics Campus
Saarbriicken, Germany

Anthony Tang
Singapore Management University
Singapore, Singapore
tonyt@smu.edu.sg

Lukas Gehrke
lukas.gehrke@tu-berlin.de
TU Berlin
Berlin, Germany

Tobias Patrick Jungbluth
tobias.jungbluth@dfki.de
DFK]I, Saarland Informatics Campus
Saarbriicken, Germany

Antonio Kruger
antonio.krueger@dfki.de
DFKI and Saarland University,
Saarland Informatics Campus
Saarbriicken, Germany

Analysis Features Prediction
77 totalMovementTime Base

transitionPointTime

transitionPointDistance

- Below
#handFixations

durationHandFixations
Cz_amplitude_min At
FCz_amplitude_min

FCz theta/Pz alpha ratio Above

Random Forest

Figure 1: We use the psychophysical method of constant stimuli to determine participants’ perceptual boundaries for horizontal
hand redirection (HR) Below, At and Above their individual detection thresholds (DTs). Next, we collect movement, eye gaze
and EEG data, compute features, and analyze them using frequentist and Bayesian statistics. Finally, we train a multimodal
classifier using Random Forest to predict if participants are exposed to HR of different magnitudes corresponding to their

perceptual boundaries, based on a single movement.

ABSTRACT

Many illusion and interaction techniques in Virtual Reality (VR)
rely on Hand Redirection (HR), which has proved to be effective
as long as the introduced offsets between the position of the real
and virtual hand do not noticeably disturb the user experience.
Yet calibrating HR offsets is a tedious and time-consuming pro-
cess involving psychophysical experimentation, and the resulting
thresholds are known to be affected by many variables—limiting
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HR’s practical utility. As a result, there is a clear need for alternative
methods that allow tailoring HR to the perceptual boundaries of
individual users. We conducted an experiment with 18 participants
combining movement, eye gaze and EEG data to detect HR offsets
Below, At, and Above individuals’ detection thresholds. Our results
suggest that we can distinguish HR At and Above from no HR. Our
exploration provides a promising new direction with potentially
strong implications for the broad field of VR illusions.
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1 INTRODUCTION

Virtual reality (VR) allows humans to enter and interact with immer-
sive virtual environments (IVEs), offering a wide range of potential
use cases and applications [41]. In VR, interacting with virtual con-
tent is often challenging because users suffer from the absence of
haptic feedback. For example, imagine Lisa, a VR user who reaches
out to touch a virtual object but only finds “thin air”. As a result,
she reaches through the virtual object because she expected haptic
feedback upon contact. This usually leads to a break in presence
[61], which disrupts the immersive nature of a VR experience. VR
illusion techniques may help address this issue by manipulating
what Lisa feels from what she sees in the virtual environment,
“tricking” her perception into, e.g., believing that she experienced
haptic feedback. The most common types of illusion rely on offset-
ting the position of the virtual hand from the position of the real
hand, and are often referred to as Hand Redirection (HR) [68]. HR
can allow Lisa to interact with objects that are physically out of
reach [27, 53], can enhance haptic feedback when touching virtual
objects [1, 4, 6, 13, 20, 22, 40, 47], and can even simulate physical
properties of virtual objects, such as different weights [55], weight
distributions [71], dimensions [10], stiffness [3], or resistance [25],
purely based on visual manipulations.

However, HR cannot be scaled up infinitely because if the differ-
ence between visual and proprioceptive sensory input becomes too
large, it can be noticed by a user—resulting in a break in presence
[43]. Therefore, the extent to which illusions may be used with-
out detection has received considerable attention in the HCI/VR
research community, where researchers reported detection thresh-
olds (DT) for the extent of unnoticable offsets [1, 7, 10, 14, 19, 22,
22, 23, 26, 32, 33, 37, 51, 63, 66—69]. The authors of these studies
describe several limitations with respect to the generalizability and
static nature of their results. For example, thresholds can be af-
fected by how people move [7, 14, 23], or the complexity of the task
[19] and moreover, seem to differ greatly between individual users
[24, 37]. Calibrating DTs for one specific kind of interaction is a long
and tedious process, traditionally done by conducting psychophys-
ical experiments that require many repetitive and controlled trials.
However, given the dynamic nature of VR, it is unlikely that these
methods produce results that can be used throughout an entire
VR experience. Thus, the question remains: how can we seamlessly
tailor the magnitude of applied redirection to individual users?

In this work, we explore the potential of combining movement,
eye gaze, and electroencephalogram (EEG) data, i.e., brain-computer
interface output, to distinguish whether an applied HR offset is
Below, At, or Above a user’s individual detection threshold (DT).
In our vision, this method allows constant monitoring of a user’s
tolerance to the exposed VR illusion throughout an entire VR expe-
rience, which would allow the VR system to adjust the magnitude
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of employed HR dynamically, depending on context, interaction,
and an individual’s sensitivity to visuo-proprioceptive conflicts.
Therefore, the goal of this work is to understand if movement, eye
gaze, and EEG data can substitute a DT experiment, eventually al-
lowing for continuous adaptation of employed HR offsets. To do so,
we conducted a 2-part experiment with 18 participants performing
a simple docking task while exposing participants to HR offsets of
varying magnitudes. In part 1, we reconstructed each participant’s
psychophysical function describing the participant’s performance
in detecting the type of HR used in our study by using the psy-
chophysical method of constant stimuli. On a per-participant basis,
we then selected the hand offsets that result in a rate of correct
detection of 25%, 50%, and 75%, representing offsets Below, At, and
Above the participant’s DT. In part 2, participants performed a
similar task, but this time, they were only exposed to HR offsets cor-
responding to their individual perceptual boundaries. This is crucial
because the researchers suggested that a personalized threshold is
much more useful than a group threshold [22, 24, 37]. We found
that movement duration and transition points between ballistic and
correction phase can be used to distinguish between HR Below,
At and Above the DT. Our analysis of the gaze features suggested
that in the absence of HR participants look more frequently and
longer to their virtual hand than Above their DTs. Our EEG analysis
showed promising results in distinguishing between movements
under the influence of HR from movements with no redirection
applied. By training a machine learning (ML) model, combining the
three modalities, we can predict whether a user was exposed to HR
significantly above chance level, based on a single trial across all
participants.

In this work, we make four main contributions:

1. We outline a novel method to tailor VR systems to perceptual
thresholds of different magnitudes.

2. We demonstrate the capability of movement, eye gaze and
EEG data to distinguish between HR offsets Below, At and Above
an individual’s DTs.

3. We train a ML multimodal classifier with movement, eye gaze
and EEG features, reaching an overall accuracy of 40.682% with a
mean F1 score of 39.359% on single trial prediction.

4. We open-source a data set and the ML model for movement,
eye gaze and EEG features to the research community.

2 RELATED WORK

Our work is positioned in the field of VR illusions. We first discuss
illusions based on HR in VR, before we outline how EEG, gaze, and
movement data have previously been used to detect mismatches.

2.1 Hand Redirection & Illusions in VR

Hand-based illusion techniques have been of central interest to
the research community because they promise an inexpensive way
to improve VR experiences. For example, the Go-Go interaction
technique [53] dynamically scales hand movements, allowing users
to interact with virtual objects that are out of reach. To achieve
this, the authors visually scaled participants’ real-world movements
up or down. Although users clearly notice the applied offset, they
maintain high control (i.e., agency) over their movements. Such
beyond-real interaction techniques [2] are effective, but many VR
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applications rely on plausible interactions, i.e., the visual manipu-
lation remains unnoticeable. This is possible due to multisensory
integration and the visual dominance phenomenon [18, 31, 35]: in
the case of two conflicting senses, the most plausible sense dom-
inates over the other. Burns et al. [12] found that vision usually
dominates over proprioception during hand movements.

To investigate to what extent vision overrides proprioception in
the case of HR, Zenner and Kriiger [68] studied how much hand off-
set can remain unnoticeable for users. The authors report estimates
for HR DTs on the horizontal, vertical, and depth axes. Following up
on this, researchers looked at variables that may affect the amount
of unnoticeable offset, identifying many contributing variables such
as movement distance [22], direction [7, 14], trajectory [23, 45], task
complexity [19], realism [51], and individual sensitivity [24, 37],
and techniques leveraging blinks [69], saccades [66, 67] or tendon
stimulation [50] have been introduced to increase unnoticeable HR
thresholds. However, the variety of potential factors that may influ-
ence detectability and the lack of understanding when to apply these
techniques hinder HR from becoming an effective tool in VR de-
sign. Moreover, the large number of hand-based illusion techniques
[1, 4,6, 10, 10, 13, 19, 22, 23, 25, 26, 32, 33, 40, 47, 48, 55, 63, 65, 71]
that rely on HR and go beyond what can reasonably be discussed
within the scope of a paper demonstrate the wide scope of this re-
search problem. Therefore, we propose an alternative method that
allows for continuous monitoring of a user’s tolerance to HR and
dynamically adapts the unnoticeable offset. We were inspired from
research looking at detecting perceived mismatches or unexpected
events in VR, using quick responding movement, eye gaze and EEG
data discussed below.

2.2 Movement, Eye Gaze and EEG Data in VR

Generally, targeted movements have two distinct movement phases,
ballistic and (an optional) correction [44]. Feick et al. [24] results
suggest that under the influence of strong gain-based HR the transi-
tion point between the two phases shifts, both in terms of time and
distance. Transition points appear significantly earlier than during
movements with no HR, because participants compensate for the
unexpected offset. Furthermore, the interaction time is significantly
shorter, which is expected given that their applied HR technique
uses gain factors, i.e., participants reached the target faster with less
physical movement required. Gonzalez and Follmer [34] showed
that redirected movements have a variety of distinct properties
that differ from normal movements and presented an approach to
predict redirected movement trajectories. However, the authors did
not incorporate the aspect of noticeability in their investigation.
These positive findings informed our decision to include movement
data in our experiment to investigate whether (H1) participants
distinctly adjust their movements during HR Below, At and
Above their perceptual threshold.

Eye gaze is commonly used in VR systems to select targets or
interact with virtual content [41]. In the context of HR it has been
used in haptic retargeting applications. For example, Matthews et al.
[47] use gaze fixations for target prediction to seamlessly redirect
users’ hands between physical proxies. This works because findings
from interaction studies showed that during targeted movements,
participants predominantly fixate their gaze on objects that are
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relevant to the task, while devoting minimal attention to their own
hand when reaching for an object [42]. We included gaze because
we hypothesize that (H2) participants look at their hand more
frequently and for a longer duration if they start to notice
the HR offset, diverting from their “natural” behavior.

Besides eye gaze, other physiological recordings, such as EEG,
allow observation of users without needing to disrupt their ongo-
ing experience. As such, EEG has recently become more relevant
for VR research and has been leveraged to infer about a variety of
user’s states. These range from broad applications such as detect-
ing emotional states [38], to more fine-grained descriptives of the
user’s subjective VR experience of immersion or their readiness to
interact [28, 29, 49, 58, 59].

In HR, the most relevant previous work focused on detecting a
mismatch between participants’ hand motion and the motion of
the avatar hand. Here, Padrao et al. [52] designed an experiment to
examine the effects of a virtual avatar hand moving in the oppo-
site direction to the movement of a participant’s real hand. Their
results showed a strong similarity to error-related potentials re-
lated to semantic or conceptual prediction violations (captured over
central cortical areas). ERPs and their magnitudes can be used to
differentiate between no and extreme gain-based HR [24]. However,
our work differs substantially from this previous work, because
applying HR around the threshold does not result in an immediate
noticeable event, which in turn severely disrupts the VR experience.
This would be the case with extreme HR and opposite movements,
as these become obvious at the start of the interaction. Therefore,
we focus on whether (H3) ERPs of different magnitudes are
triggered as a result of exposing participant to HR Below, At
and Above their DT.

To address the specific aspects of unnoticeable HR, we further
propose time-frequency decomposed EEG data, which has yet to
be explored as a novel direction in characterizing and understand-
ing brain responses to HR. Spectral features may hold significant
promise for a continuous metric describing participants’ individual
perceptual boundaries, as they do not require as precise a temporal
anchor for meaningful feature extraction as do ERPs. One metric
based on spectral features is the ratio of frontal theta power and
parietal alpha power. This ratio has been shown to correlate with a
subjective rating of workload, or an increased cognitive load [16, 30].
We explore this metric as a correlate of cognitively processing HR,
since predicting the correlation between one’s own movements and
the HR gain likely increases spatial processing demands. In line
with our (H3), a higher and therefore more frequently detected HR
should result in an increased cognitive load as participants need to
elicit a correction movement in order to reach the target.

3 EXPERIMENT

We designed a 2-part experiment, investigating whether gradual
horizontal HR around an individual’s perceptual boundary can be
detected using the 3 modalities: movement, eye gaze and EEG.

In part 1, we used the psychopchysical method of constant stim-
uli analogous to Steinicke et al. [62] and Zenner and Kriiger [68]
to model the discrimination performance for each participant for
the specific type of HR (i.e., gradual horizontal offsets of the virtual
hand to the right; see Figure 1 left). The results were used in part
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2 of the experiment, which was tailored to each participant with
HR offsets that corresponded to their perceptual boundaries. This
way, we ensured that each participant was exposed to the same
magnitude of perceived offsets.

In part 1 and 2, we applied a 2-interval-forced-choice method
(2IFC) [39], where participants were instructed to perform two con-
secutive hand movements, hitting a virtual target with their index
finger. During the first movement, no HR was applied, whereas in
the second movement we either applied HR of different magnitudes
or no HR. Participants were asked to compare both movements
and report if they felt a difference between them by responding to
the 1-alternative-forced-choice (1AFC) question: “Both movements
felt the same” [25] (see Figure 1 left). Participants could respond
by using the “Yes” or “No” button on a presenter stick in their
non-dominant hand [69]. Subsequently, the participants returned
their hand to the initial location and continued with the task. The
location of the virtual target (a red sphere) always appeared in
the same location, 30 cm in front of them [24]. Although the task
remains the same in part 1 and 2 of the experiment, the underlying
methodologies and objectives differ substantially.

Part 1—Determine Perceptual Boundaries. To tailor part 2 to each
participant’s individual perceptual boundary, we modeled their
discrimination performance in distinguishing movements with HR
vs. no HR. To do so, we conducted a psychophysical threshold
experiment, fitting the psychometric quick function [39] through
our collected sample by optimizing the parameters « and f. We
define these probabilities as perceptual boundaries, Below (25%
probability), At (50% probability), and Above (75% probability), with
At representing the conservative detection threshold (CDT) or point
of subjective equality (PSE) [62]. This means that there is a 50%
chance that a participant can detect the presence of HR, respectively,
for 25% and 75%. 75% (Above) is often used as a less conservative
threshold in the literature [24], whereas 25% (Below) was chosen
to include a sample below the CDT, investigating if participants
respond to the offset even without consciously noticing it.

To model the discrimination performance for each individual, a
sufficient amount of data is needed. Based on the HR literature and
our pilot tests, we arrived at the following configuration for the
method of constant stimuli. We tested offsets ranging from 0 cm
to 7 cm in increments of 1 ¢m, resulting in 8 stimuli. Participants
experienced each stimulus 8 times (= 64 stimuli; in total 128 hand
movements) to improve robustness of the fitting and allow for
consistency checks.

Part 2—Collecting Data at Perceptual Boundaries. In the second
part, participants performed a total of 8 rounds of the discrimination
task while only exposed to HR offsets Below, At, Above as well as
no HR (Base). Each round consisted of 16 stimuli trials, 4 X Below,
At, Above and Base, presented in a randomized order, resulting in
32 reaching movements per round. The 2IFC method allowed us to
include a sufficient amount of ground truth reaching movements
(no HR) on what participants experience to be “normal” [28], which
must be captured in VR [17]. In this part of the experiment, the
main focus was on collecting movement, eye gaze and EEG data at
participants’ perceptual boundaries.

Feick et al.

c f distance = 30 cm L real hand
2 —7  position
: =%
1
% % ! 0-7cm
o o
T virtual hand

start ® target?" position
0 peakAcc

c 2 transition

g 3

5 ] peakVel

) time
trialStart trialEnd

Figure 2: Shows the effect of horizontal HR and our events
used during targeted reaching movements in our experiment.

3.1 Participants

We recruited 18 right-handed participants (six females, twelve
males), aged 18-31 (mean: 25.05; SD: 3.05) from the general public
and the local university. We asked participants not to consume
alcohol or caffeine 12 hours before the study. Participants had a
range of different educational and professional backgrounds, in-
cluding media informatics, computer science, education, pharmacy,
cybersecurity, entrepreneurship, biomedical engineering, data sci-
ence, and artificial intelligence. All participants reported normal or
corrected-to-normal vision and did not report any known health
issues which might impair their perception or proprioception. Nine
participants had never used VR before, six had used it a few times
(one to five times a year), no one reported using it often (6—10 times
a year), and three others used it regularly (more than 10 times a
year). Participants not associated with our institution received € 30
as remuneration for participating in the experiment. The study was
approved by the University’s Ethics Board.

3.2 Apparatus

We used a simple virtual environment consisting of a table, the
experimental setup, and an instruction screen, which was imple-
mented in Unity3D (v.2022.2.0). We included an androgynous repre-
sentation of the virtual hand [57] to prevent unwanted effects such
as a drift in DT [51]. The experimental logic was implemented us-
ing the Unity Experiment Framework (UXF v.2.4.3) [11], the Unity
Staircase Procedure Toolkit [70] and the VRQuestionnaireToolkit
[21]. Participants remained seated on a chair throughout the exper-
iment with a table in front of them. They wore an HMD, an EEG
headset and a Vive tracker attached to their dominant hand with a
finger spline to fixate their index finger. We used the HTC VIVE
Pro Eye tracking system (SRanipal SDK) to capture eye movements.
The experiment ran on an XMG PRO One offering an Intel® Core
17-10870H CPU, 32 GB RAM and an Nvidia® GeForce RTX 3070.

3.2.1 EEG Setup. EEG data were captured from 32 actively am-
plified electrodes using BrainAmp DC amplifiers from BrainProd-
ucts. Electrodes were placed according to the international 10-20
system, using the nasion/inion as reference points. To establish a
connection between the electrodes and the scalp, conductive gel
was applied and the impedance of all active electrodes was reduced
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to 5-10 kOhm before the experiment started [28]. The EEG data
were sampled at a rate of 500 Hz.

3.3 Experimental Protocol

Participants arrived at the location and first received a general
introduction to the study, i.e., we showed them the setup and ex-
plained the EEG headset to ensure that they were comfortable with
it. Next, we gathered participants’ consent and asked them to fill in
a demographic questionnaire. We then started with the procedure
of attaching the EEG electrodes to the heads of our participants.
This procedure was carried out with two experimenters, one iden-
tified as male and one as female, to improve the comfort of our
participants and to reduce the preparation time to about 40 min.

Subsequently, participants were placed in the IVE and guided
through an open-ended practice round, showing them the effect
of horizontal HR. By doing so, we allowed them to familiarize
themselves with the system and the task. Once they felt comfortable,
we moved to the first part of the experiment, where we modeled
their discrimination performance.

Participants were told to sit comfortably and to move their hand
to the target position at a consistent and comfortable speed. The
system monitored that they stayed within a reasonable time range.
Once their virtual index fingers reached the goal position, their
finger needed to remain in that position for one second, before
the 1AFC question appeared. Participants were required to stay
within a 5 mm radius for the dwell time indicator to remain active.
Participant and experimenters were not allowed to talk to avoid
interrupting the continuous docking task or introducing artifacts
in the data. This part of the experiment took 40-45 min.

Next, participants took a longer break (about 15 min), while
the experimenters configured part 2 of the experiment. In part 2,
participants performed the same task tailored to their perceptual
boundaries. After each of the eight rounds, participants took a break
to reduce the effects of proprioceptive fatigue [54]. On average, the
data collection took 35-40 min, during which participants were
not allowed to remove the VR headset, to avoid moving the EEG
electrodes. In total, the experiment was about 2.5 h and we provided
complementary snacks and water.

3.4 Data Collection

We collected data from six sources: a pre-study questionnaire for
demographic information; EEG, eye tracking and movement data;
system logs (including trial times, object position and orientation,
and velocity); and we collected participants’ responses to the 1AFC
question in VR [21]. To synchronize our data streams with VR
interactions and the events, we used the lab streaming layer (LSL)!.

3.5 Events, Pre-Processing & Analysis

Our data from part 2 of the study were split into epochs correspond-
ing to the conditions, the trials and the events within them. We
pre-processed, filtered, and analyzed the data using the methods
described below. An overview of the events can be seen in Figure 2.
The trialStart event is triggered after the participants successfully
held the start position for 1 sec and moved 5 mm away from the
start, and the trialEnd event as soon as they reached the target.

Ihttps://github.com/scen/labstreaminglayer
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3.5.1 Gaze and Movement Data. We statistically analyzed our data
after verifying the parametric test assumptions at a = .05. We per-
formed RM ANOVAs and applied Greenhouse-Geisser corrections
when the assumption of sphericity was violated. In the presence of
a main effect, we performed post hoc pairwise comparison t-tests
adjusted using the Bonferroni-Holm method. In addition, we con-
ducted a Bayesian analysis using JASP following Wagenmakers
etal. [64]. We exported the previously used measures totalTime [24]
and peakVelocity [56]. We extracted the transition points between
ballistic and correction phases according to Liu et al. [44] in the time
(transitionPointTime) and spatial domain (transitionPointDistance).
We statistically analyze the two gaze features, #handFixations and
durationHandFixations previously used by Lavoie et al. [42]. We
define #handFixations as the number of gaze intersects where the
virtual hand is fixated for at least 60 ms. DurationHandFixations is
the total duration of hand fixations that are > 60 ms.

3.5.2  EEG.. Our analyses focused on the midline eletrodes FCz, Cz
and Pz that have previously been successfully used to detect mis-
matches in VR [24, 28, 29, 58]. Here, we only provide an overview
of our EEG analysis. More details can be found in the supplement.

Event-related Potentials (ERPs). We followed Gehrke et al. [28,
29]’s approach to extract single-trial ERPs. After applying a band-
pass filter from 0.1 to 15 Hz, ERPs were extracted around three
event markers coupled to the hand movement: peakAcceleration,
peakVelocity, and transitionPointTime. ERPs were baseline corrected
by subtracting the average amplitude of the last 100 ms preceding
the trial start. To ascertain effects the linear mixed-effects, model
was fit at each time point. Effects were assessed using likelihood
ratio tests for the main effects with Benjamini-Hochberg correc-
tion [9]. For post-hoc analyses, we specifically focus on the time
window between 150-250 ms following salient moments of the
movement phase with respect to HR. Specifically in HR, we believe
this moment is a good approximation at which the HR offset may
be consciously experienced [60].

Event-Related Spectral Perturbation (ERSP). First, we set out to
confirm that our experimental task elicited robust spectral brain
modulations. Hence, the evoked spectral response was compared to
a baseline. To this end, grand-average ERSP were computed using
the ‘newtimef’ function in EEGLAB. In order to account for different
trial segment duration and maintain the time-frequency resolution
across participants, the spectograms were linearly time-warped
to the median times of the movement. Then, a spatio-temporal
cluster test (using MNE-python [36]) was conducted in comparison
to power values in a —300 to —100 ms pre-trial baseline window.

Lastly, we focus our analyses on one specific spectral feature: the
ratio of theta band power at electrode FCz and alpha band power at
Pz. This ratio has been shown to correlate with a subjective rating
of workload, or an increased cognitive load [16, 30]. Effects were
assessed analogous to the ERP analyses.

3.6 Results

3.6.1 Part 1—Determine Perceptual Boundaries. We computed the
thresholds at 25%, 50% and 75% detectability based on the fittings
of the psychometric function. The results for 75% detectability
are depicted in Figure 3, suggesting that the participant provided
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consistent responses. Plots for 25% and 50% can be found in the
supplementary materials. However, for P09 the fitting did not reach
convergence and therefore we could not compute the DTs, which
means that the participant could not continue part 2 of the experi-
ment. This could have happened for various reasons. For example,
the participant perhaps did not really understand the study task, or
the HR offsets tested were too small. However, for the remaining 17
participants, we were able to compute DTs shown in Figure 4. The
horizontal HR 50% DTs obtained are comparable to those of the
existing literature [68]. Furthermore, Figure 4 (left) supports Hart-
fill et al. [37]’s and Feick et al. [23]’s recommendations towards
personalized DTs, because thresholds differ substantially across
participants, but are consistently high or low for each individual
[22]. This further demonstrates the need for novel approaches to
tackle this problem, supporting our overarching research objective.

Threshold experiments can be subject to noise and are very sen-
sitive to their configuration (#repetitions, #steps, etc.). For example,
it could be that 25% and 50% result in DT clusters that overlap and
are perceived as more or less the same. Therefore, verifying that our
HR DTs are perceptually different is a prerequisite for part 2. We sta-
tistically analyzed the resulting thresholds and found a main effect
(F(1.036) = 105.7, p < .001, 3 = .869, BFjp; > 1000) of condition
on the DTs. Post-hoc tests revealed that Below has significantly
lower thresholds than At (p < .001,d = —1.663, BF1p > 1000) and
Above (p < .001,d = —3.524, BFyp > 1000). Similarly, At showed
lower thresholds than Above (p < .001,d = —1.861, BFjp > 1000)
with strong positive correlations (p < .001, BFjo > 280, with p > .8)
between Below, At, Above based on the DT. As a result, we can
confirm that our obtained HR DTs are perceptually different.

3.6.2  Part 2—Distinguish Perceptual Boundaries. To ensure that
participants did not suffer from fatigue, we first visualized their
discrimination performance for the 8 rounds in Figure 5. The graph
suggests that there is no notable shift in Base, Below, At, Above over
the 8 rounds. Bayesian analysis provided strong evidence for the
absence of an effect between study round and the four conditions,
Base (F(7) = 25.584, p = .520, 0, = .064, BFyc; = 10.6), Below
(F(7) = 0.664, p = 702, n} = .049, BF ey = 16.5), At (F(7) = 0.443,
p = 872,13 = .033, BFoy = 24.4) and Above (F(7) = 0.780,
p = .605, 7712, = .057, BF,y = 13.1). Thus, we conclude that
individuals’ thresholds remain consistent throughout part 2
of the experiment, allowing us to link our analysis back to
the established perceptual boundaries.

Movement data. We extracted and analyzed the 4 features, total-
Time, peakVelocity, transitionPointTime and transitionPointDistance.
We found evidence for a main effect on totalTime (F(3) = 25.584,
p < .001, 75 = .615, BF;y¢; > 1000), transitionPointTime (F(3) =
15.792, p < .001, ryf, = .497, BF;,¢; > 1000) and transitionPointDis-
tance (F(3) = 40.493, p < .001, r712, = .717, BF;,¢; > 1000), but not
for peakVelocity (F(3) = 0.336, p = .724, %, = .021, BFjpy = 0.111).
Post-hoc tests showed significant differences between movements
without HR and any other condition. Transition points from ballistic
to correction phase appeared significantly earlier, and hand move-
ments took significantly longer when horizontal HR was applied.
The latter effect is in the opposite direction to what Feick et al. [24]
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reported for gain-based HR. This is an interesting finding that can
be explained by the HR direction. Gain-based HR effectively leads
to shorter movements because less physical distance is required
to reach the virtual target, in contrast to horizontal HR, which in-
creases physical movement distance (see Figure 2), and most likely
also task difficulty. Figure 6 reports the test statistics, which are in
line with previous findings that investigate the effects of redirected
movements [24, 34]—but we extend them to distinct perceptual
boundaries around the noticeability threshold. Thus, our findings
support (H1), confirming the potential of movement data to
differentiate between HR of magnitudes corresponding to
individuals’ sensitivity to visuo-proprioceptive offsets.

Gaze data. Next, we analyze the two features, #handFixations
and durationHandFixations depicted in Figure 7. We found evi-
dence for a main effect for both #handFixations (F(2.322) = 5.616,
p = .005, r]f, = .260, BF;,,.; = 16.141) and durationHandFixations
(F(1.9) = 6.510, p = .005, 17?, = .289, BF;;,.; = 35.118), depending on
the condition. Post-hoc pairwise comparisons for #handFixations
showed significant differences between Base and At (p = .002,d =
.929, BF1p = 7.453) as well as Below and Above (p = .018,d =
.742, BFyo = 3.401). DurationHandFixations showed significant dif-
ferences between Base and At (p = .002,d = .916, BFjp = 8.306) as
well as Base and Above (p = .002,d = .938, BFjo = 5.462). Bayesian
analysis provided evidence for the absence of an effect between
Base and Below for #handFixations (BF1y = 0.311), and between At
and Above for durationHandFixation (BFyo = 0.252).

Contrary to (H2), participants looked at their virtual hand
more frequently and for longer during hand movements
without HR than in any other condition. We believe that this
could be the result of the nature of the task, which we fur-
ther discuss in section 5. Nevertheless, #handFixations and
durationHandFixations clearly separate movements without
HR from movements with HR at individuals’ 75% DT.

EEG data. First, we examine ERPs by plotting the mean ERP
amplitudes for the electrodes FCz and Cz (available in appendix) lo-
cated above frontal cortical areas analog to [24, 28, 29, 52]. However,
we did not observe the typical ERP amplitude following prediction
violations in VR that often exhibit a negative component followed
by a strong positive deflection. Given the absence of a distinct event,
this is not surprising because semantic violations could, in fact, ap-
pear at different points during the interaction given the nature of
HR around the noticeability level.

We examined the peak negativity in the 150-250 ms window
following salient moments of the movement; see Figure 8. We found
a main effect of HR for FCz at both peakAcceleration (y? = 15.7, p =
.001) and peakVelocity (y* = 16.3,p < .001). Similar main effects
were observed at Cz for peakAcceleration (y* = 32.5, p < .001) and
peakVelocity (x* = 23.1,p < .001).

Post-hoc tests revealed significant differences between Base and
Below (p = .005) as well as Base and Above (p = .001) at electrode
Cz. There were no other significant differences between conditions
after p-adjustments. While some differentiation between the base-
line and HR conditions was observed, suggesting a trend towards
increasingly larger peak amplitude from modest negativity at Base,
all the way to the strongest at Above, the pattern was inconclusive.
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Psychometric functions at 75% DT per participant
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Figure 3: Depicts the plotted psychometric functions with 75% probability of a correct response (i.e., 75% DT) for each participant.
The modeled discrimination performance shows an S-shaped curve typical for human perception. For P09 marked with a “?”,
we could not compute DTs, because all stimuli were perceived as equal according to the discrimination performance.
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Figure 4: Shows the obtained thresholds corresponding to
individuals’ perceptual boundaries. Below shows significantly
lower thresholds than At and Above. At has significantly
lower thresholds than Above.

The spectral equivalent to ERP is ERSP which provides another
view on the effects of HR around the DT. For this type of analysis,
we included the Pz electrode, because it is located above the parietal
lobe of the brain, responsible for movement guidance. Figure 10
shows the grand average ERSP cluster permutation test against the
pre-stimulus baseline. The black contours outline the significant
activity in the spectral power, differing from the baseline.

Atelectrode FCz an initial burst in theta power occurred with the
onset of movement and lasted until the peak velocity was reached.
We observed a desynchronization in the beta range between 20-
30 Hz lasting throughout the movement phase. Interestingly, a
synchronization between 35-40 Hz first appeared at maximum
acceleration, lasting until the end of the trial. At Pz, the dominant
spectral feature was a desynchronization in the alpha band, appear-
ing at maximum acceleration, lasting until the end of the trial. Peak

strength of the desynchronization was between maximum velocity
and the onset of the correction phase. Taken together, we consider
these findings to be validations of the recorded data, clearly demon-
strating task-related spectral dynamics. Post-hoc tests for theta and
alpha bands showed significant differences between Base and all
other conditions; see Figure 9.

Finally, we calculated the ratio of theta FCz and alpha Pz, which
is commonly used to measure cognitive load [16, 30]. Similarly,
we found a main effect and a post-hoc test showed a significant
difference between Base and any other condition.

Nevertheless, we can only partially confirm (H3), because
contrary to previous studies [28, 58], we did not observe
the same distinct ERP signatures. However, our analysis of
the peak error negativity showed promising results at the
peakAcceleration event, especially at Cz. As a result, peakAc-
celeration is an interesting marker for further exploration.
Our ERSP analysis allowed us to distinguish between move-
ments under the influence of HR from movements with no
redirection applied. However, we did not find evidence that
would suggest that, based on the presented features, we can
easily differentiate between HR of different magnitudes.

3.6.3 Summary. In part 1 of the experiment, we established partic-
ipants’ perceptual boundaries Below, At and Above their personal
DTs using the method of constant stimuli. We verified that the
thresholds obtained are perceptually different from each other and
that the participants did not suffer from proprioceptive drift or
fatigue in part 2 of the experiment. Our analysis showed that move-
ment time and the transition points from ballistic to correction
phase can be used to distinguish between all three perceptually
different HR offsets (H1). Furthermore, participants looked signifi-
cantly more often and longer at their virtual hand when no HR was
applied than Above the DT (H2). Finally, ERP peak error negativity
and the ERSP results showed great potential to detect the presence
of HR, even at the unnoticeable Below level (H3).
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Figure 5: Shows the participants’ discrimination performance at Base, Below, At and Above their individual DTs over the 8 study
rounds. The horizontal red line shows the expected probability of a correct response for Base = 0%, Below = 25%, At = 50% and
Above = 75%. The boxplots display participants’ responses throughout part 2 of the experiment. Visual inspection and Bayesian

analysis suggest that there is no noticeable difference in discrimination performance, e.g., caused by fatigue.
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Figure 6: Shows p-values and Bayesian factors for the 4 move-
ment features totalTime, peakVelocity, transitionPointTime
and transitionPointDistance.
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Figure 7: #HandFixations occurred significantly more fre-
quently in the Base condition and Below the threshold than
Above it. Besides looking more frequently to the hand, partic-
ipants also spent more time looking at the hand in the Base
condition than At and Above the threshold.

4 PREDICTING PERCEPTUAL BOUNDARIES
USING A MULTIMODAL CLASSIFIER

To better understand the potential of our proposed method, we
combine the three modalities: movement, gaze and EEG by training
a multimodal classifier. Here, our goal was to predict whether users
were exposed to no HR vs. HR Below, At or Above their detection
thresholds based on a single trial. Unlike Si-Mohammed et al. [58],
we did not perform a per-participant analysis, but aggregated our
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Figure 8: Amplitude minima in the 150-250 ms time window
at electrode FCz (a) and Cz (b) following peak acceleration
(left column) and peak velocity (right column).

collected samples into one data set, which we make publicly avail-
able to the community in the supplementary materials. This way,
researchers can train their own models or formulate new research
hypotheses. The data set contains 4352 x 77 data points.

4.0.1 Features. Following our statistical analysis, we used the fea-
tures totalTime, transitionPointTime, transitionPointDistance, #hand-
Fixations, durationHandFixations, Cz_amplitude_min, FCz_amplitude
_min and FCz theta/Pz alpha ratio. Then, we normalized all features
using z-scoring. Since FCz theta/Pz alpha ratio is a continuous high-
dimensional feature, we computed skewness, median, interquartile
range (igr), kurtosis, cumulated frequency (cumfreq_3), the 10th
and the 90th quantile (quantile_10 and quantile_90).

4.0.2 Training. We performed a 10-fold cross-validation by shuf-
fling the data and splitting them in a stratified way, preserving the
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Figure 9: Top: Event-related spectral perturbations at elec-
trodes FCz (a) and Pz (b). Changes in power from a —300 to
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Figure 10: Ratio of power in theta (4-8 Hz) frequency range at
electrode FCz divided by power in alpha (8-13 Hz) frequency
range at electrode Pz. Significant time points for the main
effect condition are marked by black bars.

relative imbalance in the data set. Samples of each class in the train
and the test set are removed until the data set is balanced. Then
we trained a classifier using Random Forest. We provide our model
and code base in the supplementary materials.

4.0.3 Results. Our results show that without any optimization, we
can achieve an overall accuracy of 40.682% and a mean F1 score
of 39.359% at a theoretical probability of 25%, with a confusion
matrix shown in Figure 11. We computed Combrisson and Jerbi
[15]’s adjusted chance level of 36.184% at p < .001. This method
takes the number of classes and samples into account, where if
the accuracy is higher than the adjusted chance level, the result is
statistically significant by a p-value. Since our classifier exceeds
this probability, we can conclude that we can predict the correct
class with an accuracy significantly higher than chance level. In
particular, movements without HR can be correctly predicted with
an accuracy of 63.2%. It appears that there is ambiguity between
movements Below, At and Above the DT. Here, the classifier per-
formance seems rather weak under the influences of HR At (28.0%)
and Below (29.2%) the DT, while Above can be predicted with an
accuracy of 40.4%.
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Figure 11: Confusion matrix for 10-fold cross-validation of
our multimodal classifier. The classifier can distinguish Base
from any other condition. It appears that between move-
ments under the influences of HR At and Below the DT are
challenging to predict.
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Figure 12: Shows mean permutation feature importance, sug-
gesting that the most relevant features are totalTime, #hand-
Fixations, transitionPointDistance and durationHandFixa-
tions, because their predictive power is above average.

The permutation feature importance depicted in Figure 12 sug-
gests that no single feature dominated the prediction, but highlights
that totalTime, #handFixations, transitionPointDistance and dura-
tionHandFixations are above average in terms of prediction power.

4.0.4 Summary. We trained a multimodal classifier using Random
Forest and performed a 10-fold cross-validation, achieving an over-
all classification accuracy of about 40%. This is significantly higher
than the adjusted chance level and demonstrates that movement,
gaze and EEG data collected Below, At or Above participants’ in-
dividual detection thresholds can be used to distinguish no HR
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from any other condition. However, for movements under the in-
fluence of HR Below, At and Above the DT, it is challenging to
separate them from one another. All features contributed to the
prediction of the perceptual limits, with totalTime, transitionPoint-
Distance, #handFixations and durationHandFixations contributing
most significantly. This marks a substantial step forward in tailoring
illusions to individuals’ perceptual boundaries.

5 DISCUSSION & FUTURE WORK

5.0.1  Predicting Perceptual Boundaries of HR. Considering all re-
sults, we provide evidence for being able to distinguish between
hand movements with (At and Above) from without HR. Focusing
on this binary classification problem would yield more impressive
prediction accuracy, but it is insufficient to address our vision of
predicting the perceptual boundaries of users. While we can differ-
entiate At and Above from no HR, we acknowledge that our current
model performs rather poorly between HR offsets of different mag-
nitudes. Our results still support our research goal, because offsets
Below can be safely used (practically not crucial to detect), and
appear to be indistinguishable from no HR, following our Bayesian
features analysis. The effects start to occur when reaching At, but
seem to be more prominent at Above.

We envision that users would start the VR experience with no
offset and the system would increase it (Below) until it detects
the unnoticeable limit (At, Above). Theoretically, it could dynami-
cally adjust offsets within that range (Below) and detect potential
shifts (At = no HR). However, based on our data, we cannot yet
differentiate if HR offsets corresponds to At or Above DT.

Given the ambiguity in the Below condition, we would argue
that achieving an overall accuracy of 40% for a 4-stage classifier
on this type of data, without a sophisticated learning model and
any hyperparameter tuning, is promising for a novel approach. We
want to emphasize that the participants experienced horizontal
HR offsets of different magnitudes in part 2 of the experiment and
that our analysis was performed across all participants. Therefore,
we can confidently say that our method is tailored to individuals’
perception rather than fixed offset magnitudes. Most likely, better
prediction accuracy can be achieved when training and evaluat-
ing on a per-participant level similar to [58]; however, obtaining
the necessary per-user data through a controlled psychophysical
experiment in advance defeats the purpose of our method.

It is important to note that the perceptual boundaries Below,
At or Above of the individual detection thresholds should not be
considered as distinct effects. For example, the average horizontal
25% threshold corresponds to an offset of 2.58 cm, while the 50%
threshold was 3.56 cm at the target location of the hand, 30 cm in
front of the participants. Thus, the type of effect always remains the
same (i.e., virtual hand offset to the right), and only its magnitude
changes. In light of this, achieving an overall accuracy of about
40% in single-trial classification, given the limited amount of data
that can reasonably be collected in a psychophysical experiment,
demonstrates the impressive potential of our approach. We expect
that with more data the robustness and prediction accuracy will
improve further. Therefore, we recommend future work to build
on our foundation and the data set provided, adding other types
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of redirection [67, 68] and interaction [4, 5, 33, 40], or without in-
forming participants [8]. Hence, researchers can simply retrain our
multimodal classifier using our resources, extending beyond our
current setup to test its validity in diverse and more applied VR
settings. To this end, there also seems to be a tendency towards
movement and gaze features being most effective. This opens up ex-
citing opportunities, because these are much easier to monitor than
EEG data. However, it remains to be explored how these modalities
perform in more complex VR scenarios and interactions.

5.0.2  Generalizability & Limitations of the Method. As with any
novel method, the main question remains whether our results are
directly related to the effects of HR. To the best of our knowledge,
we controlled for as many variables as possible to isolate potential
effects by (1) calibrating individuals’ detection thresholds [24, 37]
and (2) verifying that the threshold did not drift over the course of
the experiment [54]. In the next iteration of this research, we aim to
investigate the robustness of the method in more realistic and com-
plex IVEs. For example, to ensure that we operate at participants’
perceptual boundaries, we used an established methodology [62, 68]
and informed the participants about the presence of HR. As a result,
some effects may be related to the procedure itself, rather than the
interaction under the influence of HR. For example, participants
may have spent more time looking at their virtual hand when no
HR was applied because they observed their hand closely to detect
a potential offset, in contrast to the 75% Above threshold condition,
where participants noticed the offset relatively early and therefore
returned to their natural behavior, i.e., looking at the target [42].
Additionally, we used a specific type of HR (i.e., horizontal offsets
to the right) [68], a fixed virtual distance [22] and only looked at
hand movements performed by participant’s dominant hand. Thus,
the generalizability of the method to bi-manual interactions [33],
other HR algorithms [46, 50, 67, 69, 72], or greater visuo-haptic
integration [18, 40] remains to be explored.

Furthermore, by informing the participants about the procedure
and designing the task around HR detection, we used a very con-
servative approach. For our first exploration, this was needed to
ensure comparability between participants, but it is far from any
real VR experience. For example, Benda et al. [8] found that the
detectability of HR differs greatly when participants are informed of
its presence. The application of HR techniques without informing
users is more realistic and practically relevant for VR design. As
a result, much larger HR offsets can be used without disrupting
the VR experience, which may help to improve the power of our
method. Finally, understanding how other variables and VR inter-
actions affect movement, gaze and EEG features is crucial to assess
the potential of the method for constant monitoring in immersive
VR experiences, going beyond substituting a threshold experiment.
Ultimately, we rely on further research to validate our method.

5.0.3 Practicality and Utility of the Method. Our method relies on
tracking hand movements, gaze and participants’ EEG. The first two
measures can be monitored with most modern HMDs and do not
require additional trackers, such as the one we used in our experi-
ment. The bottleneck of the method is the acquisition of EEG data,
because it is a time-consuming, tedious, and uncomfortable proce-
dure for users. Calibrating a DT for one type of interaction takes
about 10 minutes using a state-of-the-art DT experiment which



Tailoring Hand Redirection Offsets in VR to Individuals’ Perceptual Boundaries

is equivalent to }1 of the time it took 2 experiments to position

gel-based EEG electrodes. However, this is only a hardware limita-
tion because companies such as Galea® offer HMDs with integrated
physiological sensing capabilities for not just EEG, but also ECG,
EDA and face EMG. Ultimately, this would allow ubiquitous data
collection inside IVEs, and in contrast to calibrating just a single
DT for one type of interaction, it enables us to constantly monitor
participants’ perceptual sensitivity and adapt if necessary. In this
way, the system could collect more data in varying environments,
improving the robustness and overall accuracy. With this promising
potential on the horizon, our investigation marks a significant step
forward with serious implications for the broad spectrum of per-
ceptual VR illusion techniques, pushing toward immersive sensory
experiences that feel indistinguishable from reality.

6 CONCLUSION

In this work, we introduced a novel method using movement, gaze
and EEG data with the goal to distinguish between HR offsets corre-
sponding to participants’ individual perceptual boundaries Below,
At and Above their DTs. We conducted a 2-part experiment with
18 participants to investigate the potential of our proposed method.
First, we established participants’ distinct perceptual boundaries
using the method constant stimuli, and verified that participants
did not suffer from fatigue. Our analysis showed that movement
data, especially movement duration and transition points from bal-
listic to correction phase, can be used to distinguish between HR
Below, At and Above the DT. The number of gaze intersects with
the virtual hand and their duration was significantly lower in the
presence of HR than without HR. HR at the perceptual boundaries
did not trigger distinct ERP signatures, but peak error negativity
at the peakAcceleration event was significantly lower Above the
DT. Our ERSP analysis allowed us to distinguish movements under
the influence of HR from movements with no redirection applied.
However, we did not find evidence that would suggest that we
can differentiate between HR of different magnitudes solely based
on using ERPs or ERSP. When combining the modalities through
training a multimodal classifier, we achieved an overall prediction
accuracy of about 40% for all four HR magnitudes. Overall, we can
differentiate At and Above from no HR, but our current prediction
model struggles to separate HR offsets of different magnitudes,
which needs to be improved. Our work marks the first step towards
achieving our long-term goal of dynamically tailoring VR illusions
to individuals’ perceptual boundaries.
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