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Abstract

The swift advancement in Multimodal LLMs (MLLMs) also presents significant
challenges for effective knowledge editing. Current methods, including intrinsic
knowledge editing and external knowledge resorting, each possess strengths and
weaknesses, struggling to balance the desired properties of reliability, generality,
and locality when applied to MLLMs. In this paper, we propose UniKE, a novel
multimodal editing method that establishes a unified perspective and paradigm
for intrinsic knowledge editing and external knowledge resorting. Both types
of knowledge are conceptualized as vectorized key-value memories, with the
corresponding editing processes resembling the assimilation and accommodation
phases of human cognition, conducted at the same semantic levels. Within such a
unified framework, we further promote knowledge collaboration by disentangling
the knowledge representations into the semantic and truthfulness spaces. Extensive
experiments validate the effectiveness of our method, which ensures that the post-
edit MLLM simultaneously maintains excellent reliability, generality, and locality.
The code for UniKE will be available at https://github.com/beepkh/UniKE.

1 Introduction

The rapid development of Large Language Models (LLMs) [28, 29] has made it increasingly important
to ensure the real-time accuracy of their outputs in an efficient manner. To this end, in the NLP
community, Knowledge Editing [31, 35] has been proposed as a data- and time-efficient way to edit
LLMs, correcting errors or outdated responses while ensuring no negative impacts are created. The
post-edit model is required to generate the desired output given the input (Reliability), also generalize
over other equivalent neighbors of inputs (Generality) without altering the output over other irrelevant
inputs (Locality). Knowledge editing methods can be divided into two main categories based on the
type of knowledge involved: intrinsic knowledge editing [8, 21] where we update specific model
parameters to store new knowledge in a parametric manner; external knowledge resorting [36, 22]
that LLMs perceive the new knowledge contained in the relevant context (e.g., via in-context learning).
Both types of methods have shown good effectiveness in editing LLMs.

Going a step further, with the emergence of advanced multimodal large language models (MLLMs [1]),
there has been a further exploration into Multimodal Editing. Unfortunately, [4] finds that though
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Method Knowledge Type Knowledge Form Locality Generality

Intrinsic Knowledge Editing Intrinsic Knowledge Parametric Neurons

External Knowledge Resorting External (In-context) Knowledge Descriptive Examples

UniKE Intrinsic & In-context Knowledge Unified Vectorized Key-Value Pairs

Figure 1: Comparisons of existing knowledge editing methods and UniKE.
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Figure 2: (a) The generality and locality on MMEdit [4] when applying T-Patcher [8] (intrinsic
knowledge editing), IKE [36] (external knowledge resorting), the combination of these two (TP+IKE),
and UniKE for multimodal editing. (b) The paradigm of intrinsic knowledge editing (Intrin. KE) and
external knowledge resorting (Extern. KE) before and after knowledge unification.

efficient in editing LLMs, existing methodologies face considerable challenges for MLLMs due to the
inherent diversity and complexity of multimodal knowledge. Despite still maintaining high reliability,
they struggle to simultaneously achieve both ideal locality and generality, as shown in Figure 1.

We argue that both approaches, whether intrinsic knowledge editing or external knowledge resorting,
have respective drawbacks for multimodal editing. Specifically, intrinsic knowledge editing (e.g.,
T-Patcher [8] that integrates additional neurons into MLLM) tries to eliminate the risk of losing
previously-learned facts and preserve locality. However, it also leads to the newly integrated knowl-
edge resembling rote memorization [3] with weak generality of its truthfulness, as multimodal
reasoning requires a coordinated understanding of semantics from multiple modalities. Conversely,
though external knowledge resorting (e.g., in-context editing [36]) retrieves generalizable informa-
tion from external databases, the in-context knowledge may not have a strong semantic relevance
with the original input [16]. This can mislead the MLLM into areas they originally excelled, resulting
in weak locality. Figure 2.a provides direct evidence to support the above discussion.

Therefore, how can we effectively edit MLLMs? One intuitive idea lies in directly combining intrinsic
knowledge editing with external knowledge resorting, leveraging the advantages of both. However, in
intrinsic knowledge editing (such as T-Patcher), the extra integrated knowledge typically incorporates
parametric neurons into the model parameters, which is abstract with high-level semantics. Con-
versely, external knowledge resorting, such as in-context editing, feeds the MLLM with descriptive
images and text at the input end, directly describing the content with low-level semantics. Conse-
quently, these two methods exhibit significant differences in paradigms at inconsistent semantic
levels and it is challenging to establish a synergistic correlation with each other. Figure 2.a demon-
strates that simply combining T-Patcher and in-context editing leads to both undesirable locality and
generality in the post-edit MLLM, highlighting the drawbacks of each approach separately.

To address the above issue, we propose UniKE, a novel multimodal editing method that establishes a
unified framework for both intrinsic knowledge editing and external knowledge resorting, enabling
a synergistic knowledge collaboration. First, we develop a unified view for intrinsic and external
knowledge, both represented as vectorized key-value memories at the same semantic levels. Based
on this view, we combine both types of knowledge editing methods, executing them in the latent
space with a unified paradigm, as shown in Figure 2.b. Specifically, intrinsic knowledge editing
integrates extra knowledge into the internal key-value memory at the feed-forward network; external
knowledge resorting leverages an external key-value memory to inject knowledge into self-attention
via feature shifting. Both methods could be performed in the same transformer layers with a
synergistic correlation, preliminarily allowing each to utilize strengths for complementing the other.

Moreover, we further effectively enhance the collaboration between intrinsic knowledge and external
knowledge resorting. Within the unified framework, the two editing methods still require emphasis on
different aspects of knowledge to further complement their respective drawbacks: intrinsic knowledge
should focus on generalizable truthfulness, while external knowledge should have relevant semantics
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to the input samples. So we leverage contrastive learning to disentangle the knowledge representations
into the semantic and truthfulness spaces. In the semantic space, we enable the intrinsic knowledge
to assist in selecting appropriate external knowledge with its inclusion magnitude, preventing the
disruption of locality. Simultaneously, in the truthfulness space, we employ the external knowledge
to identify a generalizable editing direction to regulate the integrated intrinsic knowledge, alleviating
its restriction of generality. Under such a synergistic promotion, extensive experiments show that
UniKE achieves promising results under various settings, ensuring that the post-edit MLLM maintains
excellent reliability, generality, and locality. Overall, our main contributions are three-fold:

• We propose a unified paradigm for multimodal knowledge editing, with both intrinsic and
external knowledge represented as vectorized key-value memories, conducting at the same
semantic levels in the same transformer layers.

• We disentangle the knowledge representations into the semantic and truthfulness spaces, pro-
moting the collaboration between intrinsic knowledge editing and external knowledge resorting.

• Our method ensures that, under various backbones and editing scenarios, the post-edit MLLM
consistently possesses all three properties well.

2 Related Work

Recent years witness a burgeoning in the techniques of knowledge editing for LLMs [31, 35], with
the post-edit model expected to exhibit three properties [8]: Reliability, Generality, and Locality
(Detailed definitions are given in Appendix B). Knowledge editing methods can be divided into
two main categories based on the type of knowledge: intrinsic knowledge editing and external
knowledge resorting. Intrinsic knowledge editing [6, 21, 18, 19], involves the parametric storage
of knowledge within the model, requiring modifications to LLMs’ parameters. While external
knowledge resorting [36, 22, 37] typically preserves LLMs’ parameters and maintains a knowledge
database to retrieve relevant cases for each input with several information retrieval approaches [9, 24].
Overall, intrinsic and external knowledge exhibit significant differences in the knowledge forms
(parametric neurons and descriptive in-context examples, respectively).

Furthermore, the emergence of MLLMs [1, 38, 15, 26] has sparked several studies on multimodal
knowledge editing [4, 23]. However, [4] find that existing methods fall short of expectations when
editing MLLMs. Though maintaining high reliability, whether intrinsic knowledge editing or external
knowledge resorting, often fails to simultaneously achieve ideal locality and generality as shown in
Figure 1. In this paper, we propose a synthesis of both types of methods for multi-modal editing.
By unifying intrinsic and in-context knowledge as vectorized key-value memories, we facilitate
collaborative interaction between the two within the unified paradigm, fully utilizing the strengths of
each method and enabling the post-edit MLLM to consistently exhibit all three properties well.

3 Method

In this section, we first develop a unified view for knowledge editing (§3.1). Within the unified
framework, we introduce how to realize intrinsic knowledge editing and external knowledge resorting
in the latent space (§3.2). Finally, we further enhance the collaboration between both types of
knowledge to control the overall editing process (§3.3). The overall framework is shown in Figure 3.

3.1 A Unified View for Knowledge Editing

In our general understanding, intrinsic knowledge editing and external (in-context) knowledge
resorting seem to have stark differences. In this section, we will demonstrate that both intrinsic
and in-context knowledge can be unified as vectorized key-value memories, directly acting on the
hidden states within the transformer. Consequently, knowledge editing can be understood as adjusting
the key-value pairs in the memory to activate appropriate knowledge for a given query representation.

Intrinsic Knowledge as Internal Key-Value Memory. Previous studies have demonstrated that
the feed-forward network (FFN) in the transformer harbors a wealth of knowledge [5, 18]. We aim to
conduct intrinsic knowledge editing within the FFN and treat FFN as parametric key-value memory
storing within the MLLM. Considering a two-layer FFN: given the input latent states, the FFN treats
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Figure 3: (a) We develop a unified view for multimodal editing, with both intrinsic and external knowl-
edge represented as vectorized key-value memory. (b) We disentangle the knowledge representation
into the semantic and truthfulness spaces, further enhancing the knowledge collaboration.

it as a query q, with the first FFN layer acting as keys W ffn
K ∈ Rd×d′

, and the second layer as values
W ffn

V ∈ Rd′×d. Here, d is the hidden dimension of the FFN; and d′ is the intermediate hidden
dimension of the FFN, also interpreted as the memory size. Consequently, FFN effectively uses the
query to match the keys, with the intermediate hidden state o representing the weight for each value
in memory. FFN then outputs the weighted sum of all values FFN(q).

o = Act(qW ffn
K + bffnK ) # Matching keys with query.

FFN(q) = oW ffn
V + bffnV # Outputting the weighted sum of values.

(1)

where bffnK ∈ Rd′
, and bffnV ∈ Rd are two bias vectors. Act(·) is a non-linear activation function.

In-context Knowledge as External Key-Value Memory. Traditional in-context knowledge in-
creases the context window space and makes it difficult to quantitatively control [20]. Here we
propose a similar view of in-context knowledge as an external vectorized key-value memory to
establish its connection with intrinsic knowledge. Specifically, in-context learning typically con-
catenates the external multimodal knowledge Xknow with the original input sequence Xinput to
form the combined sequence X = [Xknow, Xinput]. Considering the self-attention mechanism
Attn(Q = X,K = X,V = X) in the transformer, during in-context learning, the attention
Attn(Xinput, X,X) for tokens in the original input sequence can actually be formulated as follows:

Attn(Xinput, X,X) = α Attn(Xinput, Xinput, Xinput)︸ ︷︷ ︸
hinput

+(1− α) Attn(Xinput, Xknow, Xknow)︸ ︷︷ ︸
hknow

(2)

The first term hinput is the original self-attention output without in-context knowledge. The second
term is to treat the hidden states of Xknow as a key-value memory, the hidden state of Xinput as
the query, selectively activating the relevant in-context knowledge hknow. hknow then performs
position-wise feature shifting on the original attention output to achieve in-context editing, with α as
the scaling factor. We give a more complete analysis in Appendix A.

3.2 Unified Knowledge Editing within Latent Space

Assimilation: Intrinsic Knowledge Editing. As intrinsic knowledge is considered as key-value
memory stored within the FFN, akin to [8], we treat intrinsic knowledge editing as the process of
integrating extra knowledge into the internal knowledge memory, thereby establishing connections
with prior knowledge. This process is analogous to the Assimilation phase [27] in human cognition,
where an individual incorporates new knowledge into their existing cognitive structures. Specifically,
based on the analysis in Eq.(1), the newly added parametric knowledge is stored in the FFN as
key-value pairs (the number of new pairs is ne), transforming the output of the FFN as:[

o oextra
]
= Act(q

[
W ffn

K W extra
K

]
+
[
bffnK bextraK

]
)

FFNedit(q) =
[
o oextra

]
·
[
W ffn

V

W extra
V

]
+ bffnV = FFN(q) + oextraW

extra
V

(3)
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where W extra
K ∈ Rd×ne and W extra

V ∈ Rne×d are the extra keys and values, bextraK ∈ Rne is an extra
bias vector. oextra = Act(q ·W extra

K + bextraK ) represents the activated weight of the extra value. In
this way, the newly injected knowledge, in the form of key-value pairs, is seamlessly integrated into
the existing knowledge structure of MLLM.

Accommodation: External Knowledge Resorting. As in-context knowledge can also be vec-
torized into hidden states as external key-value memory, we can interpret in-context knowledge
editing as shifting the original post-attention latent states as shown in Eq.(2), which also allows
in-context knowledge to be introduced in a more controlled manner. This process is analogous to
the Accommodation phase in human cognition, where individuals modify their existing cognitive
schemas to accommodate new information that does not fit into their prior understanding.

Assuming the hidden states of in-context knowledge have been extracted and stored as key-value
pairs Mext = {(hsem, hpos)}, in the input end, the MLLM is fed only the original sample without
concentrating in-context knowledge. Within a given transformer layer, we initially utilize the pre-
attention hidden states h

pre
input to retrieve the top-K {hsem,i}Ki=1 that exhibit the highest cosine

similarity from Mext, obtaining the corresponding {hpos,i}Ki=1. As indicated in Eq.(2), {hpos,i}Ki=1
then serves as both keys and values for attention computation, with hpre

input acting as the query, thereby
achieving the in-context latent states hknow. Subsequently, by simply specifying a scalar α, hknow is
integrated with the original self-attention output hinput, acting as a shifting direction that steers the
original states closer to the representations of in-context knowledge, thus facilitating editing.

Analysis of the Unified Framework. In real life, assimilation and accommodation work together
with ongoing interaction to drive cognitive development. Within the unified knowledge editing
framework, we also inherently establish a preliminary collaboration between intrinsic knowledge
editing and external knowledge resorting: external knowledge assists in storing more generalizable
intrinsic knowledge; intrinsic knowledge helps to select appropriate external knowledge. As shown in
Figure 3.a, in the l-th transformer layer, the post-self-attention states following in-context editing, are
directly fed into the FFN for intrinsic knowledge editing. when the FFN input integrates generalizable
in-context knowledge, the newly added key-value pairs in FFN also tend to store generalizable
knowledge to be better activated. Moreover, the output of the FFN, having just undergone intrinsic
knowledge editing, is transmitted to the self-attention of the (l + 1) layer. Here, it acts as the query
to select suitable hidden states of in-context knowledge for in-context editing. Overall, compared
to directly combining different knowledge editing methods with various paradigms, we establish a
synergistic correlation with the unification of knowledge editing paradigm, allowing different methods
to utilize their strengths to complement each other.

3.3 Enhanced Collaboration with Knowledge Disentangling

To further promote the collaboration between intrinsic knowledge editing and external knowledge
resorting, it is essential to emphasize different aspects of knowledge: intrinsic knowledge should
prioritize generalizable truthfulness to improve generality, whereas external knowledge should main-
tain semantic relevance to the input samples to preserve locality. Inspired by this, we extract diverse
hidden states for in-context knowledge and innovatively disentangle the knowledge representations
into semantic and truthfulness spaces, further enhancing the collaboration within these two spaces.

Extracting In-context Knowledge Representations. To construct the representations of in-context
knowledge, we first acquire knowledge that the MLLM has not previously mastered, and collect
triplets {(QI , Apos, Aneg)}. QI is the input multimodal question, Apos is the truthful answer, Aneg

is the MLLM’s hallucinated prediction. For each piece of knowledge, we pair QI + Apos as the
positive knowledge, QI + Aneg as the negative knowledge, and separately pass the positive and
negative knowledge through the MLLM, obtaining three critical hidden states. Semantic hidden
state hsem is related to the last token of the question part before MLLM processes the response,
inherently encoding the semantic information on the given examples. Positive hidden state hpos and
negative hidden state hneg correspond to the final token of the entire input from the positive and
negative knowledge, respectively. They provide insights into how the responses guide the MLLM
onto the correct or incorrect track. Note that we store (hsem, hpos) as the key-value pairs in the
knowledge memory for in-context editing in §3.2. More details are given in Appendix C.
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Disentangling Knowledge Representations. Then we explicitly disentangle the representations
of in-context knowledge into semantic and truthfulness spaces. Within the semantic space, hpos

and hneg (along with the semantic hidden states hsem) from the same sample encapsulate identical
meanings; whereas in the truthfulness space, hpos and hneg must be distinctly differentiated.

Specifically, we introduce a truthfulness encoder EncTru(·) and a semantic encoder EncSem(·),
mapping each pair of {hpos, hneg} to the semantic and truthfulness space, deriving a set of semantic
representations (HSem

pos , HSem
neg ) and truthfulness representations (HTru

pos , HTru
neg ), respectively. Within

these two latent spaces, we leverage contrastive learning to probe representations with similar
truthfulness but different semantics, and conversely, those that are semantically similar but differ in
truthfulness. In the truthfulness space, for the given positive or negative truthfulness representations
hTru = hTru

pos,i (hTru
neg,i), examples sharing the same truthfulness HTru

pos (HTru
neg ) form S+, while

those with opposite truthfulness HTru
neg (HTru

pos ) form S−. The objective of contrastive learning is to
minimize the distance between hTru and S+ while maximizing the distance between hTru and S−:

L1(h
Tru, S+, S−) =

n∑
i=1

(
−log

∑
h∈HTru

pos
exp(s(hTru

pos,i, h))∑
h∈(HTru

pos ,HTru
neg ) exp(s(h

Tru
pos,i, h))

− log

∑
h∈HTru

neg
exp(s(hTru

neg,i, h))∑
h∈(HTru

pos ,HTru
neg ) exp(s(h

Tru
neg,i, h))

)
(4)

where s is the similarity function. In the semantic space, for a given semantic hidden state hsem,i,
its corresponding semantic representations (hSem

pos,i and hSem
neg,i) form the S+, while those from other

examples HSem
pos \hSem

pos,i, H
Sem
neg \hSem

neg,i form S−. And the loss of contrastive learning is:

L2(hsem, S+, S−) =

n∑
i=1

−log
exp(s(hsem,i, h

Sem
pos,i)) + exp(s(hsem,i, h

Sem
neg,i))∑

h∈HSem
pos

exp(s(hsem,i, h)) +
∑

h∈HSem
neg

exp(s(hsem,i, h))
(5)

Enhanced Knowledge Collaboration within Disentangled Spaces. After knowledge disentan-
gling, we could further enhance the knowledge collaboration within the two spaces. Specifically,
In the truthfulness space, we calculate the average truthfulness representations (ĤTru

pos and ĤTru
neg )

over all positive and negative hidden states of in-context knowledge, to regulate intrinsic knowledge
editing. As the representations of positive and negative hidden states exhibit distinct truthfulness after
training, we identify an editing direction ζ = ĤTru

pos − ĤTru
neg , pointing from the center of untruthful

representations to the center of truthful representations. And then we utilize a learnable weight Wζ to
map ζ from the truthfulness space back to the representation space: ζ ′ = Wζζ. On this basis, during
intrinsic knowledge editing in Eq.(3), we further combine W extra

V with ζ ′ as follows:

FFNedit(q) =
[
o oextra

]
·
[

W ffn
V

W extra
V + β · ζ′

]
+ bffnV = FFN(q) + oextra(W

extra
V + β · ζ′) (6)

where β is an editing scalar. In the semantic space, as we leverage α in Eq.(2) to control the inclusion
magnitude of in-context knowledge, we further leverage the hidden states after intrinsic knowledge
editing to adaptively control α. Based on hknow, hinput in Eq.(2), we first extract the semantic
representations of the injected in-context knowledge hsem

know = EncSem(hknow) and the hidden states
from the last token of hinput (hinput[−1] serves a similar role as the semantic hidden state hsem). We
then assign the cosine similarity between hsem

know and hinput[−1] to α , with Eq.(2) reformulated as:

Attn(Xinput, X,X) = Sim(hSem
know, hinput[−1]) · hinput +

(
1− Sim(hSem

know, hinput[−1])
)
· hknow, (7)

Analysis of Knowledge Collaboration. In the truthfulness space, ζ is derived from the distri-
bution deviation between hallucinated knowledge and truthful knowledge based on a large number
of examples. As the newly integrated intrinsic knowledge is typically learned from a single editing
sample which easily leads to overfitting, ζ effectively regulates the values of new intrinsic knowledge
into a generalizable truthful direction to improve generality. In the semantic space, when the rele-
vance between the in-context knowledge and the input sample is weak, α = Sim (hsem

know,hinput[−1])
adaptively takes a small value thanks to contrastive training. As external knowledge resorting needs
to prevent the excessive inclusion of unrelated external knowledge, a smaller α effectively reduces its
inclusion magnitude to preserve locality. We further provide quantitative analysis in §4.5.
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Table 1: Main results on one-step editing on the MMEdit. Rel., T-Gen., M-Gen., T-Loc., and M-Loc.
refer to Reliability, T-Generality, M-Generality, T-Locality, and M-Locality, respectively.

EDITING VQA (E-VQA) EDITING IMAGE CAPTION (E-IC)
Method Rel. ↑ T-Gen. ↑ M-Gen. ↑ T-Loc. ↑ M-Loc. ↑ Rel. ↑ T-Gen. ↑ M-Gen. ↑ T-Loc. ↑ M-Loc. ↑

BLIP-2 OPT Size: 3.8B
Backbone Model 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0
FT (last layer) 58.7 54.2 49.4 67.7 63.1 61.1 52.1 51.6 55.0 49.5
KE 85.3 77.4 75.3 93.8 66.4 50.5 49.0 46.3 95.0 64.3
T-Patcher 85.6 80.3 74.6 90.5 89.7 85.6 73.4 70.0 91.1 82.0
MEND 99.4 98.8 79.1 99.9 96.6 96.1 95.8 74.2 94.5 70.8
In-Context Editing 99.7 93.9 93.6 48.8 2.5 96.7 78.2 87.6 49.0 3.0
SERAC 99.4 99.4 86.8 96.8 2.9 99.7 98.9 89.2 95.7 7.5
UniKE (Ours) 98.8 98.4 94.8 98.3 96.7 98.3 96.3 93.2 95.8 85.7

MiniGPT-4 Size: 7.3B
Base Model 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0
FT (last layer) 70.1 65.7 63.9 72.6 65.8 67.4 65.1 62.8 63.5 52.7
KE 91.8 89.0 60.8 96.9 67.8 96.6 67.8 57.4 97.3 64.4
T-Patcher 83.0 68.2 66.0 84.8 82.0 83.8 72.3 67.7 93.9 83.6
MEND 98.8 98.6 82.2 98.2 81.1 96.6 96.1 76.3 98.4 75.3
In-Context Editing 100.0 94.9 90.5 50.3 3.7 90.9 81.6 88.5 52.2 4.7
SERAC 87.7 87.6 85.9 97.5 14.2 91.8 91.4 91.0 97.9 7.2
UniKE (Ours) 98.0 97.4 92.8 98.7 88.8 96.8 95.7 92.4 98.9 87.3

4 Experiments

We first evaluate UniKE on one-step editing (§4.2), the standard setup of multimodal editing. We
further extend the setup to sequential editing (§4.3) and cross-task editing (§4.4) for evaluation.

4.1 Experimental Setup

Dataset & Backbone & baselines. Our experiments are conducted on the MMEdit benchmark [4],
which contains two subtasks: Editing VQA (E-VQA) and Editing Image Caption (E-IC). We leverage
Reliability, generality (T-Generality and M-Generality) and locality (T-Locality and M-Locality)
as the evaluation metrics. For one-step editing, we conduct experiments on BLIP2-OPT [15] and
MiniGPT-4 [38]; for sequential editing and cross-task editing, we conduct experiments on MiniGPT-4.

Furthermore, We use the following baselines: (1) Fine-tuning method: tuning the last layer of
MLLM; (2) Intrinsic knowledge editing method: Knowledge Editor (KE) [5], MEND [21], T-
Patcher [8]; (3) External knowledge resorting method: In-Context Editing (IKE) [36], SERAC [22].

Implementation Details. We conduct knowledge editing in the latent space. In intrinsic knowledge
editing, we add extra key-value pairs into the last four transformer layers; In external knowledge
resorting, we retrieve top-40 in-context hidden states for each case and conduct feature shifting in the
last four layers. More details of the experimental setup are shown in Appendix D.

4.2 Main Results on One-step Editing

Table 1 shows the results of one-step editing, where each edit aims to correct a single mistake.
We further provide a statistical summary in Append D.4. We have the following observations: (i)
Most knowledge editing methods could achieve desirable reliability. (ii) Despite achieving high
locality, most intrinsic knowledge editing methods have room for improvement in generality
(e.g., average generality and locality of T-Patcher across all settings are 71.6 and 87.2). (iii) Although
achieving commendable generality, the locality of external knowledge resorting methods is not
ideal. Specifically, the average locality (generality) of IKE and SERAC are 26.8 (88.6) and 52.5(91.3),
respectively. (iv) Our method effectively balances all three target properties, outperforming the
previous SOTA method, MEND. Compared to MEND which transforms the gradients of knowledge
editing to a generalizable direction for keeping both locality and generality, UniKE significantly
achieves superior locality (93.8 vs. 89.4 on average) and generality (95.1 vs. 88.6 on average).

4.3 Main Results on Sequential Editing

In K-step sequential editing, the model is sequentially edited while encountering mistakes in
Dedit(|Dedit| = K). After the Kth edit, the post-edit MLLM is utilized to evaluate the target
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Table 2: Main results on sequential editing on the MMEdit.
(a) Results on 10-step editing on VQA.

Method Rel. T-Gen. M-Gen. T-Loc. M-Loc.
FT 67.8 62.4 58.3 66.9 62.3
KE 83.2 82.1 57.9 84.6 64.3
T-Patcher 79.2 62.5 61.4 83.4 79.5
MEND 90.6 86.3 79.5 87.4 76.1
SERAC 87.4 84.4 82.7 87.9 12.5
UniKE (Ours) 91.5 87.1 85.4 88.9 83.1

(b) Results on 20-step editing on VQA.
Method Rel. T-Gen. M-Gen. T-Loc. M-Loc.
FT 64.9 59.6 57.9 62.6 61.7
KE 79.8 74.3 55.7 80.0 60.1
T-Patcher 76.6 56.6 54.8 81.5 78.2
MEND 85.1 80.4 75.7 82.2 73.9
SERAC 87.1 83.0 81.0 85.5 10.7
UniKE (Ours) 88.9 83.4 81.2 85.7 79.6

(c) Results on 10-step editing on image caption.
Method Rel. T-Gen. M-Gen. T-Loc. M-Loc.
FT 65.3 63.8 61.9 58.9 49.8
KE 84.3 64.2 54.3 90.0 60.1
T-Patcher 80.7 67.5 63.6 89.5 80.6
MEND 90.2 89.6 73.5 90.9 73.7
SERAC 88.0 87.6 86.7 92.1 6.8
UniKE (Ours) 91.8 90.4 89.1 93.5 85.0

(d) Results on 20-step editing on image caption.
Method Rel. T-Gen. M-Gen. T-Loc. M-Loc.
FT 64.0 63.1 60.6 56.4 48.2
KE 80.0 58.8 51.2 84.3 57.9
T-Patcher 76.0 64.1 60.0 88.8 79.8
MEND 85.0 84.0 71.4 87.3 71.1
SERAC 87.4 87.0 85.6 90.3 4.8
UniKE (Ours) 88.4 87.2 85.6 90.1 81.1

Table 4: Results of ablation study to illustrate the effect of individual components.

EDITING VQA (E-VQA) EDITING IMAGE CAPTION (E-IC)
Model Rel. ↑ T-Gen. ↑ M-Gen. ↑ T-Loc. ↑ M-Loc. ↑ Rel. ↑ T-Gen. ↑ M-Gen. ↑ T-Loc. ↑ M-Loc. ↑

1 only Intrin 83.5 69.2 67.4 85.3 83.1 85.7 73.3 68.5 94.1 84.4
2 only Latent-IKE 94.6 92.2 93.3 54.1 30.5 89.6 85.9 84.4 59.0 36.8
3 Intrin+IKE 95.5 79.0 71.8 63.8 50.1 89.9 77.2 74.4 61.0 59.4
4 Intrin+Latent-IKE 95.9 93.2 89.6 95.2 85.3 96.5 92.4 89.7 95.2 85.5
UniKE (Ours) 98.0 97.4 92.8 98.7 88.8 96.8 95.7 92.4 98.9 87.3

properties. Table 2 shows the results of sequential editing (K = 10, 20; we exclude IKE as its setup
in sequential editing is meaningless). It can be observed that (i) whether in editing VQA or image
captioning tasks, there is a significant decline in the performance of most methods as the number of
editing steps (K) increases. Particularly for MEND, while it remains competitive in one-step editing,
the results of sequential editing are suboptimal. (ii) The performance of external knowledge resorting
(SERAC) is minimally affected by the increase in K. However, it inherently suffers from a lack of
locality. (iii) In contrast, our method consistently maintains superior performance compared to
the baselines. It consistently outperforms MEND across all metrics of sequential editing, with its
advantages over the baseline becoming increasingly significant as K increases.

4.4 Main Results on Cross-task Editing

Cross-task editing builds on the foundation of sequential editing (we select K = 10) and requires
the MLLM to simultaneously edit VQA and image-caption samples within the same sequence.

Table 3: Main results on cross-task editing.
Method Rel. T-Gen. M-Gen. T-Loc. M-Loc.
FT 65.0 63.2 59.4 57.3 52.2
KE 83.0 71.3 56.0 85.5 60.2
T-Patcher 79.0 63.2 61.2 84.0 79.8
MEND 88.8 87.4 75.3 88.1 73.6
SERAC 87.5 85.0 83.1 90.0 6.6
UniKE 90.7 88.2 86.8 90.4 83.8

Table 3 presents the results of cross-task editing
(averaging the results over all E-VQA and E-IC
samples). It is evident that most baselines struggle
to effectively edit both tasks within a single editing
sequence. In contrast, UniKE excels at integrat-
ing the knowledge from these two distinct tasks,
significantly outperforming baseline methods in
terms of reliability, generality, and locality.

4.5 In-Depth Analysis

Effect of Individual Components. We investigate the effectiveness of each component and conduct
the following experiments on one-step editing: (1) only Intrin & only Latent-IKE: We utilize either
intrinsic knowledge editing or external knowledge resorting (Latent IKE), conducting multimodal
editing in the latent space. In Rows 1 and 2 of Table 4, it is evident that single-type knowledge editing
approaches cannot simultaneously possess all three properties well, resulting in either generality or
locality being unsatisfactory. (2) Intrin + IKE: We simply combine intrinsic knowledge editing and
vanilla in-context editing without paradigm unification. The results in Row 3 demonstrate that if
integrating both types of knowledge editing methods without a unified paradigm, it is difficult to fully
leverage the individual advantages of each method, still leading to suboptimal generality and locality.
(3) Intrin + Latent IKE: We remove the enhanced knowledge collaboration proposed in §3.3.
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Figure 5: (a) Visualization of different knowledge spaces. (b) A qualitative example.

The results in Row 5 validate that the enhanced collaboration based on knowledge representation
disentangling further enables the post-edit MLLM to achieve superior generality and locality.

Effect of In-context Editing in Latent Space. To validate the superiority of in-context editing
in latent space, in Figure 4.a we compare Latent IKE with vanilla IKE across different numbers of
in-context samples/hidden-states (both combined with intrinsic knowledge editing without enhanced
knowledge collaboration). IKE is criticized that in-context samples are difficult to quantitatively
control and take up context window space [20, 16]. It can be observed that in IKE, as the number of
in-context samples increases, though generality generally trends upward, there is a notable decline in
locality. While in our method, via quantitatively controlling the inclusion of in-context hidden states
while also reducing the prompt length, both generality and locality of the post-edit MLLM show
an overall upward trend as the number of in-context samples increases.

Effect of Knowledge Collaboration in Semantic Space. During knowledge collaboration, in
semantic space, we adaptively adjust the inclusion magnitude of in-context knowledge (assigning the
cosine similarity between hsem

know and hinput[−1] to α). To demonstrate the superiority of this strategy,
we further experiment with several fixed values for α. As shown in Figure 4.b, the increase in the fixed
α enhances the impact of in-context knowledge, which tends to improve generality. However, it also
leads to a reduction in locality. In contrast, our method, which adaptively adjusts α based on semantic
relevance, customizes an appropriate injection weight for each in-context knowledge. Thereby, we
ensure an enhancement in generality while also preventing the disruption to locality.

Effect of Knowledge Collaboration in Truthfulness Space. During knowledge collaboration, in
the truthfulness space, we identify a truthful editing direction, ζ to guide intrinsic knowledge editing.
To assess the effects of ζ, we conduct the following experiments: (1) w/o ζ: removing the regulation
of ζ as per Eq.(3); (2) random ζ: replacing ζ with a random tensor; (3) semantic ζ: generating ζ in
the same manner within the semantic space. As depicted in Figure 4.c, ζ could further enhance the
generalizability of intrinsic knowledge, thus achieving superior editing performance. However,
when ζ does not point towards the correct editing direction (random or semantic ζ), it acts as a
disruptor, thereby impairing the editing performance compared to w/o ζ.

Visualization of Different Knowledge Spaces. To give an intuitive perspective on the disentangled
knowledge representations, we employ t-SNE [30] for dimensionality reduction, visualizing the
embedding distributions for semantic and truthfulness representations across both positive and
negative hidden states. As shown in Figure 5.a, the positive and negative hidden states display
similar distributions in the semantic space, yet are distinctly separated in the truthfulness space. This
visualization effectively confirms the efficacy of our approach to knowledge disentangling.
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Qualitative Examples. As shown in Figure 5.b and Appendix E, UniKE achieves reliable multi-
modal editing while generalizing to similar scenarios and ensuring accuracy for irrelevant examples.

5 Conclusion

In this paper, we introduce UniKE, a multimodal editing framework that establishes a unified paradigm
for both intrinsic knowledge editing and external knowledge resorting. We conceptualize both types
of knowledge as vectorized key-value memories and effectively enhance their collaborations with
knowledge disentangling. Extensive experimental results demonstrate that our method enhances the
post-edit MLLMs across various settings (one-step editing, sequential editing, and cross-task editing),
ensuring that they maintain excellent reliability, generality, and locality simultaneously.
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Appendix

A In-context Knowledge as External Key-Value Memory

In §3.1, we provide a brief analysis of how in-context knowledge can be considered as an external
vectorized key-value memory, and how to conduct in-context editing as feature shifting in the latent
space. Here, we present a more detailed derivation of Eq.(2). Specifically, in-context learning
typically concatenates the external multimodal knowledge Xknow with the original input sequence
Xinput to form the combined sequence X = [Xknow, Xinput]. Considering the self-attention
mechanism Attn(Q,K, V ) = softmax(QWqW

⊤
k K⊤)VWv in the transformer (Wk,Wq,Wv denote

the learnable key, query, and value matrices, respectively), the in-context knowledge simply changes
the attention module through prepending a context matrix before the original input examples. During
in-context learning, the attention Attn(Q = Xinput,K = X,V = X) for tokens in the original
input sequence can actually be formulated as follows:

Attn(Xinput, X,X)

= Attn(Xinput, [Xknow, Xinput], [Xknow, Xinput])

= Softmax
(
XinputWq

(
XknowWk, XinputWk

)⊤)(Xknow

Xinput

)
Wv

= α · Softmax
(
XinputWqW

⊤
k X⊤

input

)
XinputWv + (1− α) · Softmax

(
XinputWqW

⊤
k X⊤

know

)
XknowWv

= α · Attn(Xinput, Xinput, Xinput) + (1− α) · Attn(Xinput, Xknow, Xknow)

= α · hinput + (1− α) · hknow,
(8)

Here α is a scalar that represents the sum of normalized attention weights between in-context
knowledge and the original input:

α =

∑
i exp(xinputWqW

⊤
k X⊤

input)i∑
i exp(xinputWqW⊤

k X⊤
know)i +

∑
j exp(xinputWqW⊤

k X⊤
input)j

(9)

where xinput is the token within the original input sequence. We can find that in-context learning
actually applies a position-wise modification to the original attention output by shifting the original
output features, with the self-attention controlling the shift direction and α controlling the shift
distance. Therefore, in this paper, we dynamically adjust the value of α to control the inclusion
magnitude of in-context knowledge representations.

B Task Definition

B.1 Multimodal Knowledge Editing

The goal of multimodal knowledge editing is to efficiently modify an initial MLLM’s behavior
based on a specific edit descriptor, without incurring significant retraining costs or affecting its
behavior on other unrelated samples. Formally, (ve, xe, ye) ∈ Dedit is the edit descriptor, where
ve refers to the visual input, xe refers to the textual input, ye denotes the desired output. And we
represent the MLLM (with its parameters denoted as θ) as a function f : (V,X) −→ Y that maps
the multimodal input (v, x) to its corresponding prediction yo = fθ(v, x). For intrinsic knowledge
editing, the parameters of the post-edit MLLM fpost are updated to θe ((ve, xe, ye)); while for
external knowledge resorting methods, the MLLM’s parameters remain θ, and additional relevant
external knowledge K is incorporated as the extra input. On this basis, a successful edit should first
adjust the MLLM’s output on the input (ve, xe) from yo to ye. Additionally, there is a broad set of
inputs closely associated with the edit descriptor, referred to as the editing neighbor N (ve, xe). The
MLLM’s behavior should also be corrected for examples within this neighbor while maintaining its
performance for out-of-neighbor examples unaltered:

fpost(v, x) = fθe(v, x) or fθ(v, x,K) =

{
ye if (v, x) ∈ N (ve, xe)

yo if (v, x) /∈ N (ve, xe)
(10)

Based on the above analysis, there are often three metrics used to measure the performance of the
post-edit MLLM: reliability, locality, and generality.
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Reliability. Knowledge editing is reliable when the post-edit MLLM successfully changes predic-
tion from yo to ye [8]. We access the reliability based on the average accuracy of the edit case:

Mrel = E(ve,xe,ye)∼Dedit

[
1f(ve,xe;θe(ve,xe,ye))=ye

]
(11)

Locality. Knowledge editing should be implemented locally, ensuring that the post-edit MLLM
should not change the output of irrelevant out-of-neighbor examples. And we leverage two metrics
to evaluate locality: MText

loc (T-Locality) and MImg
loc (M-Locality). For T-Locality, we remove

the visual modules of MLLM, and leverage rudimentary question-and-answer datasets DLoc-T =
{(xt, yt)} to examine whether the MLLM’s understanding of pure textual input remains unaffected.

MText
loc = E (ve,xe,ye)∼Dedit

(xt,yt)∼DLoc-T

[
1f(xt;θe(ve,xe,ye))=f(xt,θ)

]
(12)

Of course, we also need to consider the potential ramifications of knowledge editing on visual
comprehension. Given DLoc−M = {(vm, xm, ym)}, M-Locality is measured by the rate at which
the post-edit MLLM maintains the same predictions as the pre-edit MLLM on multimodal input.

MImg
loc = E (ve,xe,ye)∼Dedit

(vm,xm,ym)∼DLoc-M

[
1f(vm,xm;θe(ve,xe,ye))=f(vm,xm;θ)

]
(13)

Generality. It is not sufficient for knowledge editing to merely correct individual erroneous inputs.
The post-edit MLLM should also generalize to equivalent neighbors with strong generalization [10,
25]. In multimodal scenarios, equivalent neighbors can be rephrased textual sentences or rephrased
images, corresponding to the metrics of T-Generality and M-Generality, respectively. And then
generality is assessed by the average accuracy on examples uniformly sampled from these equivalent
neighbors ( N (xe) or N (ve)).

MText
gen = E (ve,xe,ye)∼Dedit

(xr)∼N(xe)

[
1f(ve,xr ;θe)=ye

]
(14)

MImg
gen = E (ve,xe,ye)∼Dedit

(vr)∼N(ve)

[
1f(vr,xe;θe)=ye

]
(15)

B.2 Sequential Editing

Previous multi-modal editing focuses on one-step editing, addressing a single error from one target
sample at a time, and subsequently evaluating the three metrics based on the sample itself, its
equivalent neighbors, and its out-of-neighbor examples. However, one-step editing is not applicable
to practical situations. Following [8], we extend multimodal editing into the setup of sequential editing.
In K-step sequential editing, we have a set of target samples Dseq to be edited in a sequence (|Dseq| =
K; each sample in Dseq also contains its own equivalent neighbors and out-of-neighbor examples).
After continuously editing all K target samples, we obtain a post-edit MLLM f

θe
(∑

(v,x,y)∈Dseq
(v,x,y)

).

We first evaluate the reliability, locality, and generality of the post-edit MLLM within the sequence
in a manner similar. And the final performance of the above metrics will be averaged over all
Dseq ∼ Dedit.
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B.3 Cross-Task Editing

On the basis of sequential editing, we further allow the K target samples within a sequence to come
from different tasks. For example, a single sequence might include samples from both the VQA task
and the image caption task. This requires the MLLM to integrate knowledge from distinct tasks to
achieve cross-task editing. The evaluation for the above metrics is similar to that of sequential editing.
However, instead of separately reporting metrics for each task, we mix the data from different tasks
and calculate a single set of (Reliability, T-Locality, M-Locality, T-Generality, M-Generality) for the
mixed data. This provides a measure of the post-edit MLLM’s average performance across different
tasks.

C Preparing In-context Knowledge for Representation Extraction

To extract representations of in-context knowledge, we should first prepare a set of
in-context knowledge for the MLLM. In multimodal scenarios [14, 13, 34, 2], We
aim to provide in-context knowledge that the MLLM has not previously mastered,
which means the MLLM cannot provide correct answers to the corresponding questions.

Right: Red.

Wrong: Blue.

Question:What color is the car 
coming towards us in the distance

Right: Owl.

Wrong: Sparrow.

Question:What kind of animal is this?

Right: Inter Miami CF.

Wrong: Paris Saint-Germain

Question:Which soccer club does 
this player currently play for?

ImageVisual Objects that 
MLLMs focus on

Image

Image

Visual Objects that 
MLLMs focus on

Visual Objects that 
MLLMs focus on

Level I: Insufficient vision extraction

Level II: Inaccurate vision recognition

Level III: Incorrect text-vision 
collaborative reasoning

Figure 6: We attribute MLLMs’ hallucinated re-
sponses to deficiencies at three levels.

And we attribute MLLMs’ hallucinated re-
sponses to deficiencies at three levels, as shown
in Figure 6: (1) Insufficient vision extraction.
MLLMs first utilizes a Visual Prompt Generator
(VPG, e.g., Qformer [15]) to abstract image fea-
tures [38]. However, some necessary reasoning-
aware visual details that complement the pri-
mary content and semantically connect the text
instructions, may be ignored and not extracted
by the VPG [12, 11]. (2) Inaccurate vision
recognition. Even if the VPG extracts suffi-
cient visual features for reasoning, the MLLM
might fail to understand the corresponding vi-
sual objects if it has not been sufficiently ex-
posed to these feature patterns during training,
resulting in inaccurate recognition of visual ob-
jects [17, 33]. (3) Incorrect text-vision col-
laborative reasoning. Even with sufficient vi-
sion extraction and accurate vision recognition,
MLLMs may struggle with understanding the
spatial relationships between different visual regions. Moreover, they may exhibit errors in common-
sense knowledge when combining vision with text instructions, ultimately resulting in incorrect
text-vision collaborative reasoning [32].

On this basis, we collect a substantial set of hallucinated predictions from MLLMs across these three
levels to develop in-context knowledge. For each multimodal question QI with MLLMs’ hallucinated
predictions Aneg , we additionally provide a truthful answer Apos. For each piece of knowledge, we
pair QI +Aneg as the negative knowledge and QI +Apos as the positive knowledge. For example,
assuming [IMG] is an image of Lionel Messi, “[IMG] Question: Which soccer club is this player
currently playing for? Answer: Paris Saint-Germain.” represents the negative knowledge; while
“[IMG] Question: Which soccer club is this player currently playing for? Answer: Inter Miami.”
represents the positive knowledge. Subsequently, as stated in §3.3, we can extract several critical
hidden states for the collected in-context knowledge.

D Experimental Details

D.1 Dataset

We conduct experiments on the MMEdit benchmark [4], which consists of two sub-tasks: Editing
VQA (E-VQA) and Editing Image Caption (E-IC). We leverage Reliability, locality (T-Locality
and M-Locality), and Generality (T-Generality and M-Generality) as the evaluation metrics. The
definitions of each metric are given in the previous section (Appendix B). We leverage BLIP2-
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Table 5: Average results of one-step / sequential editing across various sub-tasks, backbones, and
sub-metrics (locality and generality, with T-Locality&M-Locality and T-Locality&T-Generality as
the specific sub-metrics). The best result is marked bold. The second best result is underlined.

ONE-STEP EDITING SEQUENTIAL EDITING
Methods Reliability Generality Locality Reliability Generality Locality

FT 64.3 58.1 61.2 65.5 61.0 58.4

KE 81.1 65.4 72.4 81.8 62.3 72.7
T-Patcher 84.5 71.6 87.2 78.1 61.3 82.7
MEND 98.6 88.6 89.4 87.7 80.0 80.3

IKE 96.8 88.6 26.8 – – –
SERAC 94.7 91.3 52.5 87.5 84.8 48.8

UniKE (Ours) 98.0 95.1 93.8 90.2 86.2 85.9

OPT [15] and MiniGPT-4 [38] as the backbone models, which are under BSD 3-Clause License. And
the MMEdit benchmark is under MIT license.

Moreover, the original setup of MMEdit only involves one-step editing, where each edit aims to
correct a single mistake from a single target sample, and the above metrics are assessed after each edit.
We further extend the setup to sequential editing and cross-task editing, both of which are defined in
the previous section. For sequential editing in E-VQA and E-IC, we select K = 10 and K = 20 as
the editing steps within a sequence. For cross-task editing, we choose K = 10, with each editing
sequence containing 5 E-VQA samples and 5 E-IC samples. Additionally, we no longer report the
results for E-IC and E-VQA separately in cross-task editing; instead, we present the average results
of all E-IC and E-VQA samples.

D.2 Baselines

Fine-tune. Fine-tuning is the most widely employed strategy for adapting pre-trained language
models to specific tasks. So we leverage vanilla fine-tuning as the baseline for multimodal editing.
We only tune the last layer of MLLM, which has been verified as the most effective fine-tuning
strategy in [4].

Knowledge Editor (KE). KE [6] is a intrinsic knowledge editing method that corrects erroneous
knowledge in language models without re-training the whole model. It leverages a hypernetwork (a
bidirectional-LSTM) to predict the weight update for constrained optimization.

MEND. Model Editor Networks with Gradient Decomposition (MEND [21]) is also a method of
intrinsic knowledge editing. It learns to transform the editing gradients into a generalizable direction
via employing a low-rank decomposition of gradients, aiming to keep both generality and locality
during knowledge editing.

T-Patcher. T-Patcher [8] is also a typical intrinsic knowledge editing method that integrates addition
neurons for addressing mistakes in the last several layers of the Feed-Forward Network (FFN) within
language models.

In-context Knowledge Editing (IKE). IKE [36] edits the language model by prompting the model
with several retrieved edit demonstrations from the external database. As a result, the language model
can generate outputs that align with the provided knowledge when given a refined knowledge context
as a prompt.

SERAC. SERAC [22] is also a method of external knowledge resorting. It leverages an explicit
memory system to cache edits, which is later utilized to adjust the output of the language model during
inference. Moreover, the memory system employs a small auxiliary scope classifier to determine
whether the input falls within the scope of the memory cache.

D.3 Implementation Details

We conduct knowledge editing in the latent space with a unified paradigm. In intrinsic knowledge
editing, we add extra 10 key-value pairs in the FFN of the last four transformer layers; for external
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It used to be called 
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After Editing
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name of this 
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Locality
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platform now?
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After Editing

Before Editing

After Editing
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After Editing

Before Editing

After Editing
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Reliability
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Before Editing
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After Editing
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the lion chase 
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Generality
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Lions usually choose smaller 
and slower prey.

What is the 
person doing?

Locality

Feeding a dog.

Why is the 
lion chasing 

the antelope?

Before Editing

After Editing

Before Editing

After Editing

Feeding a dog.

Reliability

Seagulls eat fish.

Before Editing

Seagulls may look for 
food such as ice cream.

After Editing

Why did the 
seagull fly to 
this person?

Generality

The seagull looks happy

The seagull wants to 
eat the ice cream.

What does 
this animal 
usually eat?

Locality

Grass, leaves, fruits 
and other plants

What does 
this animal 
feed on?

Before Editing

After Editing

Before Editing

After Editing

Grass, leaves, fruits 
and other plants

Reliability

Android 12.

Before Editing

Android 14.

After Editing

What is the 
latest system 

for this 
company’s 

mobile phones?

Generality

Android 12.

Android 14 is available.

What is the 
latest version 

of this 
company’s OS?

Locality

What is the 
latest version 
of this OS?

Before Editing

After Editing

Windows 11.

Before Editing

After Editing

Windows 11.

(a)

(c)

(b)

(d)

(e)

Figure 7: Qualitative examples of multimodal editing.

knowledge resorting, we retrieve top-40 hidden states of in-context knowledge with the highest
similarity for each case and conduct feature shifting for in-context editing in the last four transformer
layers. To extract the hidden states of in-context knowledge, we collect more than 15K triplets.
Furthermore, during knowledge disentangling, both the truthfulness encoder and the semantic encoder
simply consist of several MLP layers. We leverage the collected in-context knowledge representations
to pre-train the encoders via contrastive learning. During contrastive learning, both encoders are
optimized using the Adam optimizer with a learning rate of 1e-4. After that, completing a single
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one-step edit takes only a matter of seconds and we run all experiments with 6 NVIDIA RTX A6000
GPUs.

D.4 Statistical Summary of Results

In Table 5, we present a statistical summary of the average reliability, locality, and generality of the
post-edit MLLM for both one-step and sequential editing. Although some methods (e.g., MEND)
achieve reliable editing in multimodal scenarios, UniKE effectively balances all three target properties,
significantly outperforming baseline methods in terms of generality and locality.

E Qualitative Examples

In Figure 7, we show more qualitative examples. In case (a), after altering the MLLM’s cognitive
bias of a particular concept through knowledge editing, we enable the MLLM to leverage its existing
world knowledge to automatically correct other related details associated with that concept. In
cases (b) and (c), after updating outdated knowledge through UniKE, the MLLM can activate this
updated knowledge to correctly answer a series of related questions. In cases (d) and (e), model
editing enables the MLLM to look beyond the superficial aspects and answer questions from a
deeper perspective. Furthermore, for all five cases, we ensure the locality of the post-edit MLLM
without altering its original responses to irrelevant inputs.

F Limitations

There still exist some limitations in our work: (1) At present, we have only considered editing
MLLMs with visual comprehension capabilities, and have not addressed editing in visual generation
scenarios. (2) Due to the resource limitation, we do not afford to edit MLLMs with a larger number
of parameters such as the 65B LLaMA Adapter V2 [7].

G Broader Impacts

Ethical Impacts. This study does not raise any ethical concerns. The research does not involve
subjective assessments or the use of private data. Only publicly available datasets and models are
utilized for experimentation.

Expected Societal Implications. This study proposes a data- and time-efficient way to edit MLLMs.
A major societal concern with this technology lies in its potential for misuse. For example, some
malicious individuals may exploit our technology to fabricate false information for knowledge editing
and spread rumors. To counter these threats, it is crucial to develop strong ethical standards and
implement ongoing surveillance.

18


	Towards unified multimodal editing with enhanced knowledge collaboration
	Citation
	Author

	Introduction
	Related Work
	Method
	A Unified View for Knowledge Editing
	Unified Knowledge Editing within Latent Space
	Enhanced Collaboration with Knowledge Disentangling

	Experiments
	Experimental Setup
	Main Results on One-step Editing
	Main Results on Sequential Editing
	Main Results on Cross-task Editing
	In-Depth Analysis

	Conclusion
	In-context Knowledge as External Key-Value Memory
	Task Definition
	Multimodal Knowledge Editing
	Sequential Editing
	Cross-Task Editing

	Preparing In-context Knowledge for Representation Extraction
	Experimental Details
	Dataset
	Baselines
	Implementation Details
	Statistical Summary of Results

	Qualitative Examples
	Limitations
	Broader Impacts

