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Abstract

Remote sensing (RS) imagery, requiring specialized satellites to collect and being
difficult to annotate, suffers from data scarcity and class imbalance in certain
spectrums. Due to data scarcity, training any large-scale RS models from scratch is
unrealistic, and the alternative is to transfer pre-trained models by fine-tuning or a
more data-efficient method LoRA [22]. Due to class imbalance, transferred models
exhibit strong bias, where features of the major class dominate over those of the
minor class. In this paper, we propose debLoRA—a generic training approach that
works with any LoRA variants to yield debiased features. It is an unsupervised
learning approach that can diversify minor class features based on the shared
attributes with major classes, where the attributes are obtained by a simple step
of clustering. To evaluate it, we conduct extensive experiments in two transfer
learning scenarios in the RS domain: from natural to optical RS images, and from
optical RS to multi-spectrum RS images. We perform object classification and
oriented object detection tasks on the optical RS dataset DOTA and the SAR dataset
FUSRS. Results show that our debLoRA consistently surpasses prior arts across
these RS adaptation settings, yielding up to 3.3 and 4.7 percentage points gains
on the tail classes for natural → optical RS and optical RS → multi-spectrum
RS adaptations, respectively, while preserving the performance on head classes,
substantiating its efficacy and adaptability 1.

1 Introduction
Remote sensing (RS) is crucial in various applications such as environmental monitoring, resource
management, and disaster response [70, 36]. RS data is collected by various sensors and has multiple
spectrums, including optical RS imagery (dubbed as ORS, 400–700nm) [32], multi-spectral RS
imagery (MSRS, 400–2500nm) [8], and synthetic aperture radar imagery (SAR, 1mm-1m) [48, 13].
These spectrums differ significantly in imaging mechanisms, leading to distinct data characteristics
and processing pipelines [71]. Given this diversity, learning robust and generic representation models
for such data is desirable to reduce processing costs and complexities.

Recently, in natural image domains, large-scale pre-trained visual foundation models (e.g., CLIP [45],
Stable Diffusion [47], and DINO [4]) have shown great advances in robustness and generalization
ability. The zero-shot features extracted from the models show impressive performance in downstream
tasks such as object classification, detection and semantic segmentation [66], even outperforming
the supervised models trained on the specific datasets of those tasks. However, in the RS domain,
training such foundation models from scratch remains challenging. Even though some trials have
been made in past years [8, 16], their works have clear limitations. First, they require large-scale RS
data for effective training, which are available for only ORS but not other spectrums such as SAR

1 Code: https://github.com/doem97/deblora
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and MSRS [43, 10, 17]. Collecting and annotating images in “other” spectrums is difficult due to
many factors such as military restrictions, sensor availability, and high acquisition costs, so the data
scarcity is unlikely to be alleviated in the near future [71]. Second, their works are constrained in
small- or medium-scale models, i.e., they use ViT-L (300M) in [8] and Swin-L (197M) in [16], while
the foundation models in the natural image domain are much larger (e.g., Latent Diffusion has 860M,
and OpenCLIP-H/14 has 986M). Third, their training-from-scratch approaches are computationally
inefficient, requiring a huge amount of GPU memory (VRAM). For instance, [16] reported the need
of 80 * A100 GPU with 80GB VRAM each, totaling 6.4TB.

Instead of learning a foundation model from scratch, we propose to transfer existing foundation
models to RS domains. This approach is both data-efficient and computation-efficient. We answer
two questions: 1) Which foundation models to transfer? 2) Which transfer learning methods to use?
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Figure 1: Long-tailed Problems. This figure shows
1) ORS datasets (take DOTA [59] as an example)
have the long-tailed distribution issue. 2) Model
adaptation methods suffer from weak performance
in tail classes.

For the first question, we consider foundation
models pre-trained on natural images (e.g.,
CLIP [45], Stable Diffusion [47]) as well as
the models from remote sensing (RS) images
(e.g., SkySense [16]). A positive aspect of
these models is that they contain the seman-
tic knowledge necessary for learning a new
RS domain. However, a great challenge is the
large domain gap between natural images and
RS domains, or between different RS spec-
trums. In our preliminary study, we conduct
validation experiments. Fortunately, we ob-
serve successful transfer results both from nat-
ural to ORS in Figure 1 and between different
RS spectrums in Table 3, when compared to
the method of TRS-Res101 [65] which does
not perform any transfer learning. The success
of natural→ORS is due to the shared underly-
ing visual elements like edges, textures, and
contours, which are intrinsic to both natural
and RS images. The success of ORS→other
RS is due to the shared spatial structures, e.g.,
urban areas, buildings, and object outlines, in
different RS spectrums.

For the second question, we found that data-efficient transfer learning methods on foundation models
exhibit a strong bias towards major classes. As shown in Fig. 1, both Fine-Tune and LoRA have
significantly lower F1 scores for tail classes. This is because their learned feature space is biased
towards the discriminative features of head classes while neglecting the tail [62]. Taking the head
class ship (which takes 28.35%) and tail class helicopter (0.64%) as examples on the DOTA
dataset [59]. Fig. 2(a) shows biased LoRA features of “oval tail” in the ship sample n and “rotor
tail” in the helicopter sample m. We say biased because the LoRA fails to understand the “oval
tail with a rotor” in another helicopter sample m′ and embeds m′ wrongly as a ship sample in
the feature space. Please note that the real feature distribution is shown in Figure 3 to support the
illustration of Figure 2. This long-tail issue is particularly severe for transfer learning in the RS
domain due to two reasons. First, RS datasets suffer from more severe data imbalance than natural
image datasets. For instance, the imbalance ratios2 of RS datasets DOTA and ShipRSImageNet
reach 86 and 112, respectively, while CIFAR100-LT [2], a natural image dataset with a similar data
scale, has a ratio of only 50. This is because annotating under-represented tail class samples in RS,
e.g., identifying a rare naval vessel, such as the “Nimitz”, from SAR image, requires a high level of
domain expertise. Second, the data scarcity in RS domains determines that RS adaptation methods
must be data-efficient, such as LoRA. However, as shown in Table 2, using fewer parameters in LoRA
(being more data-efficient) exacerbates long-tail issues. The reason is that this restricts the model
capacity and forces the model to prioritize a limited number of features—usually from head classes.

2 The imbalance ratio is measured by n1/nk, where 1 and k are the largest and smallest categories. It reflects
the severity of data imbalance [69].
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Figure 2: Two key steps of debLoRA: feature clustering and calibration. (a) The baseline LoRA
feature space is biased towards head classes. Red crosses represent head class samples, and blue
triangles represent tail class samples. The blue star indicates the center of tail class samples.
Dashed blue triangles show the validation samples of the tail class wrongly embedded in the head
class region, indicating the model bias towards head classes. (b) We cluster all features (clusters
denoted by gray dotted boundaries) regardless of class labels. A, B and C are cluster centers used to
generate a de-biased center D, as in Eq. 2. (c) We calibrate the tail class features by “moving” them
closer to D, as in Eq. 3. After these steps, we train the debLoRA module on the calibrated features
of tail classes (together with the original head class features).

To mitigate this bias without needing more data or labels in tail classes, we propose an unsupervised
learning approach, debiased LoRA, dubbed debLoRA. debLoRA is based on the features extracted
from LoRA (or a LoRA variant) and is generic to LoRA variants. To be concise, we use LoRA in the
following to represent itself and its variants. Given the LoRA features, debLoRA has three steps:
clustering, calibration, and training. First, it clusters all the features regardless of class labels by
K-means. Each obtained cluster center represents an attribute from one or shared by multiple classes.
Second, these cluster centers are used to calibrate the LoRA features of tail classes and enhance
the territory of tail classes in the feature space. We illustrate these two steps in Figure 2. Last, the
calibrated features are used as the learning objectives to train a debLoRA module with a similar
network architecture to LoRA. The learned debLoRA is thus a de-biased feature extractor.

We observe that after K-means clustering, each cluster center captures a general visual attribute
shared across different classes. For instance, in Figure 2(b), cluster A corresponds to the general
vehicle attribute “streamlined tail”, which includes both head class sample n and tail class sample m.
Such clusters can thus yield a balanced representation base, making the tail more robust by integrating
common attributes with the head.

One may ask “what if some attributes are dominated by the attribute features of head classes?” We
address this question by proposing a weighting scheme, in the step of calibration. In specific, for each
tail class sample (e.g., m in Fig. 2(c)), we calibrate it by forcing its feature closer to the de-biased
center (D)—the weighted average of all cluster centers. The weights are determined by the number
of samples in each cluster, ensuring that this center is not dominated by clusters with mostly head
class samples. This calibration process results in de-biased representations that capture a more
comprehensive range of visual attributes shared across classes, leading to improved features of tail
classes (e.g., m′). Lastly, we re-train a LoRA module to map biased representations towards these
debiased centers. Please find more details of justifications in Sec. 4.4. Our method significantly
improves the features of tail classes. Moreover, it is efficient as it learns only a lightweight low-rank
module while keeping the original foundation model frozen.

Our contributions can be concluded three-fold: 1) We demonstrate the effectiveness of adapting
foundation models for data-scarce RS domains. 2) We propose Incremental LoRA, a novel method
that de-biases category-specific representations for long-tailed RS adaptation. 3) We conduct extensive
experiments to validate our approach on multiple RS adaptation settings and downstream tasks.

2 Related Works

Representation Learning for RS Images. Self-supervised representation learning in RS image
domains mainly includes contrastive- and generative-based methods. Contrastive-based methods,
such as Tile2vec [27], Seasonal contrast [37] and SauMoCo [30], heavily rely on rich temporal
data or high-resolution samples, which are often unavailable for data-scarce RS spectrums [56].
Generative-based methods, such as RR-SSL [67] and SGSAGANs [15], reconstruct inputs to
capture the global data distribution and learn fine-grained patterns. However, they require large-scale
data to form robust latent space [14]. Recently, foundation models in the RS domain, such as
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SatMAE [8], SpectralGPT [20], and SkySense [16], have shown promising results for ORS tasks.
SpectralGPT [20] tackles spectrum diversity by pre-training separate tokenizers for each spectrum,
which still needs large amounts of data. Another problem is that existing RS foundation models are
much smaller than those in the natural image domain (e.g., SatMAE-L [8] has 300M parameters v.s.
986M of OpenCLIP-H/14 [5]). Instead of learning RS foundation models from scratch, we propose
to adapt them from pre-trained models to RS. Our approach 1) greatly reduces the computational
cost, 2) can be easily adapted to various data-scarce RS spectrums, and 3) benefit from the strong
representation power of large-scale foundation models in other domains.

Long-tailed Data Distribution and its Bias Problem. Long-tailed data distribution, where a few
head classes cover most of the samples, is prevalent in both natural and RS image domains [54, 69].
This imbalance leads to biased feature representations, where the model focuses on discriminative
features for head classes while neglecting subtle but crucial features for tail classes [69, 29]. Zhang
et al. [69] observed that such a feature space is usually broader for head classes than tail classes, and
the decision boundary tends to be biased towards head classes, i.e., many false positive predictions
for head classes. Existing solutions include sample-level, meta-learning, and representation-level
approaches [69]: Sample-level methods, such as re-sampling [49] and data augmentation [7], aim
to directly balance the sample distribution. However, they require sample annotations [2, 49] or
rely on data diversity [7], both of which are unrealistic in the data-scarce RS spectrums such as
SAR [13] and MSRS [8]. Meta-learning methods [26, 57] formulate the problem as “learning to
learn” and adapt the model to a balanced meta-test set. They depend on the data diversity of the
training sets and the availability of balanced validation sets, and therefore, are less applicable for
data-scarce RS domains. The representation-level methods enhance the learned representation space,
including metric learning losses [23], margin-based losses [2], and feature transfer from head to tail
classes [33, 63]. However, they are designed for supervised single-domain settings and do not address
the challenges of model adaptation to RS: 1) handling multiple downstream tasks (e.g., small object
detection, scene segmentation, change detection), and 2) multiple spectrums (such as ORS and SAR).
In contrast, we propose an unsupervised adaptation method to tackle these challenges in this paper.

Transfer Learning in Remote Sensing. Transfer learning in remote sensing primarily focuses
on adaptation within the optical imagery domain. They can be categorized into supervised and
unsupervised methods. Supervised methods [12, 35, 46, 44, 39] align distributions using target labels.
However, they require task-specific annotations, which are scarce in SAR and multispectral domains
and limit the applicability of the obtained models to multiple downstream tasks. Unsupervised
DA (UDA) methods aim to learn domain-invariant features without requiring labeled data in the
target domain, including transfer component analysis [42, 40], manifold alignment [53, 60, 61], and
adversarial learning [1, 11, 51]. However, they are designed for single-source, single-target adaptation
within the same spectrum [41, 38]. Besides, the manifold alignment and adversarial methods require
significant computational resources, often involving the training of several copies of the source model,
while component analysis methods involve complex pipelines. These factors make them unsuitable
for foundation models, which are already computationally intensive. In contrast, our method tackles
multi-spectrum adaptation without requiring extra labels. It is also computationally efficient.

3 LoRA and cLoRA
Our debLoRA is based on the LoRA [22] or its variants [64], but is orthogonal and generic to them.

LoRA. LoRA was initially proposed to adapt a pre-trained large-scale language model to downstream
tasks. It assumes adapted parameters are sparse during model training when the data is limited. It
introduces a low-rank factorization of the difference between original and adapted parameters, i.e.,
∆θ := B·A. Here, θ ∈ Rd×k represents the parameters of pre-trained model, and B ∈ Rd×r and
A ∈ Rr×k denote low-rank factors, with r ≪ min(d, k). The updated parameters θ̂ are thus given by
θ̂ = θ+∆θ = θ+B·A. During inference, the obtained LoRA modules could be combined through a
weighted sum, θ̂ = θ +

∑
i wi∆θi, where wi denotes combination weights.

cLoRA. To tackle the long-tailed issue of LoRA, we also explore its variant cLoRA [64]. The key
idea of cLoRA is to learn a separate LoRA module for each class, denoted as ∆θc for class c, to ensure
that the learned representations of one class do not interfere with those of other classes. Formally,
the adapted parameters for class c are given by θ̂c = θ +∆θc = θ +Bc ·Ac, where Bc ∈ Rd×r and
Ac ∈ Rr×k are the low-rank factors specific to class c. During training, each cLoRA module ∆θc
is optimized using only the data from class c, allowing it to capture class-specific features. During
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inference, as there is no class label available, we use all the cLoRA modules to extract features for the
input. Specifically, for an input x, we obtain the features zc = θ̂c(x) using each cLoRA module θ̂c.
The final feature representation is then obtained by concatenating the features from all the cLoRA:
z = [z1; z2; . . . ; zC ], where C is the total number of classes.

4 De-biased LoRA (debLoRA)

The algorithm of debLoRA consists of two steps: generating debiased features, and then using them
to train a debLoRA module. In the first step, we perform unsupervised clustering on biased feature
space Z (i.e., composed by original LoRA features biased to head classes) to obtain debiased features
Ẑ . In the second step, we use Ẑ as the learning target to train a debLoRA module. The debLoRA
learns the mapping between biased and de-biased features. We justify the feasibility of learning such
a mapping in Section 4.4.

4.1 Problem Formulation

Given a pre-trained feature extractor f : X → Z and a long-tailed RS dataset D = (x, y), where
x ∈ X is an RS image, y ∈ Y is its annotation and Z is the biased feature space3, our goal is to
adapt f to the target dataset D while yielding a de-biased feature space Ẑ , i.e., adapted encoder is
f̂ : X → Ẑ . The de-biased feature representation Ẑ should improve downstream task performance
on tail classes without sacrificing the performance on head classes.

4.2 Stage 1: Representation De-biasing

Feature Clustering. Given a pre-trained encoder fθ : X → Z that maps input images to a biased
representation space, where fθ is parameterized by θ, we first extract features for each sample in the
dataset: zi = fθ(xi), i ∈ N . We then apply K-means clustering on {zi} to obtain K clusters. To
mitigate imbalanced clusters, we impose a constraint that each cluster should contain at least N

K·ρ
samples, where ρ is a pre-defined constant. The clustering objective is:

min
µk

N∑
i=1

min
k

∥zi − µk∥2, s.t. ∀k, nk ≥ N

K · ρ
, (1)

where µk and nk denote the center and size of the k-th cluster, respectively.

De-biased Cluster Centers. For each tail class c, we calculate its de-biased representation center
µ̂c by weighted averaging all the cluster centers:

µ̂c =
∑
k

wk · µk, where wk =
nk

nc
. (2)

Here nk denotes the number of samples from class c in the k-th cluster, and nc is the total number of
samples in class c. The weight wk is proportional to the fraction of class c samples in the k-th cluster.
This ensures that the de-biased center µ̂ is not dominated by head classes.

4.3 Stage 2: De-Biased Low Rank Adaptation (debLoRA)

Tail Class Calibration. For each tail class sample x with representation z, we calibrate z by
moving it closer to the de-biased center µ̂:

z̃ = αz + (1− α)µ̂, (3)
where α ∈ [0, 1] is a hyper-parameter controlling the degree of calibration. We empirically set
α based on the imbalance ratio γ of each tail class: α = min(1, 10

γ ). For tail classes with larger
imbalance ratio, a higher α encourages the calibrated representation z̃ to be closer to the de-biased
center µ̂, as the original representation z is less reliable due to its learning from limited samples.
While for classes with smaller γ, a lower α is used to retain the discriminative information of z. For
instance, the DOTA dataset’s tail class helicopter has high γ = 45.45, so its α reaches 0.22.

3 We define feature space Z as biased if Vol(Zh) ≫ Vol(Zt), and ∃zt ∈ Zt : P (zt ∈ Zh) > P (zt ∈ Zt),
where Zh and Zt denotes the feature spaces of head and tail classes respectively, Vol(·) denotes feature space
volume, and P (·) denotes the probability predicted by the model.
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Figure 3: t-SNE visualization of validation samples and clusters. The first column shows the
distribution of helicopter (tail) and ship (head) validation samples. Subfigures (c)-(g) are the
clusters and their centers when K=5 in K-means. In (h), the dotted lines and stars indicate that we
compute a de-biased center for the tail class (helicopter) by weighted averaging the five cluster
centers, and the blue star is the original biased center of helicopter training samples.

Learning debLoRA. With the pre-trained encoder fθ frozen, we learn a LoRA module gϕ : Z → Ẑ
parameterized by ϕ to map the biased representations to the calibrated ones. The training objective is:

min
ϕ

1

|Dt|
∑
x∈Dt

∥gϕ(fθ(x))− z̃∥2, (4)

where Dt is the set of tail class samples. During inference, we apply the learned LoRA module to
extract the de-biased representations z = gϕ(fθ(x)) for an input image x. The complete algorithm of
debLoRA is summarized in Algorithm 1.
Algorithm 1 debLoRA
Require: Long-tailed training set D = {(x, y)}, pre-trained encoder fθ : X → Z , number of

clusters K, balance factor ρ
Ensure: A LoRA module gϕ that de-biases fθ

1: Extract biased representations z = fθ(x) for each sample x ∈ D using pre-trained fθ
2: Perform constrained K-means clustering on {z} (equation 1) to obtain cluster centers {µk}Kk=1,

where each cluster has at least N
K·ρ samples

3: for each tail class c do
4: Calculate its de-biased representation center µ̂c by weighted averaging all cluster centers

{µk}Kk=1 (equation 2)
5: for each sample x ∈ Dc do
6: Extract biased representation z = fθ(x)
7: Calibrate z to z̃ by moving it closer to µ̂c with factor α = 10/γ (equation 3)
8: end for
9: end for

10: Learn a LoRA module gϕ : Z → Ẑ to map biased representations to calibrated ones
11: return gϕ

4.4 Justification
We discuss the biased representation space of LoRA, and then justify the effectiveness of our three
critical operations in debLoRA: clustering, weighting, and calibration. We show the real sample
distribution in Figure 3 and an illustrative example in Figure 2.
LoRA is Biased. The feature space learned by LoRA is biased towards head classes [62], evidenced
by two observations. 1) The head class representations over-expand their territory into the tail class
space. As shown in Figure 3, most of the ship (head) validation samples are distributed within its
own representation space, while many helicopter (tail) validation samples are wrongly distributed
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in the ship’s space. 2) The center of the entire space is biased towards head class, as the ship
training samples significantly overlap with the helicopter training samples. This bias occurs
because, during training, the encoder is exposed to significantly more diverse samples of head class.

Clustering. By feature clustering, we obtain a set of cluster centers that benefit the tail classes in
two ways. 1) Improved robustness. The obtained cluster centers, shown as red stars in Figure 3(c)-(g),
represent visual prototypes[3], i.e., general visual attributes common to both head and tail classes,
such as “streamlined tail” or “with wooden deck”. These cluster centers are more robust than the
original tail class representations because they leverage the diversity of head class samples. 2)
Reduced imbalance. Certain clusters exhibit reduced long-tail issues. The clusters in Figure 3(d)-(f)
contain more samples from helicopter than ship. This is because the clusters are formed based
on intrinsic visual similarities among images, regardless of their imbalanced class labels. Using these
cluster centers avoids the risk of tail class attributes (e.g., “rotor tail” and its variants in helicopter)
being overwhelmed by head class attributes (e.g., “oval tail” and its variants in ship).

Weighting and Calibration. One might ask, “Are the data imbalances within each cluster or among
different clusters still issues?” E.g., the 5-th cluster in Figure 3 contains only ship samples and seems
irrelevant to helicopter. To answer this, we perform the weighted averaging over cluster centers,
and the calibration over tail class samples: 1) Weighted averaging. When calculating the de-biased
representation center for each tail class (equation 2), we assign higher weights to clusters containing
a larger fraction of that particular tail class. The de-biased center (red star in Figure 3(h)) better
captures the true distribution of the validation samples of helicopter, compared to the original
biased center (blue star in Figure 3(h)). 2) Calibration. We calibrate the representation of each
tail class sample by moving it closer to the class’s de-biased center (equation 3). The calibration
factor α is inversely proportional to the imbalance ratio of the tail class. This design ensures severely
underrepresented tail classes like helicopter receive stronger calibration.

5 Experiments and Analyses
We evaluate our debLoRA on two settings: 1) adapting natural image foundation models to RS, and
2) adapting ORS foundation models to SAR. For the first setting, we conduct experiments on two
representative RS tasks: object classification and oriented object detection. For the second setting,
we conduct experiments on a representative SAR task—fine-grained ship classification.

Natural → RS adaptation. 1) Foundation model. We use two state-of-the-art foundation models:
Stable Diffusion v1.5 (SD) [47] and OpenCLIP [25]. Both models have shown impressive general-
ization ability on various tasks when adapted to domains like medical images [58]. However, their
transferability from natural images to the RS domain remains under-explored. 2) RS dataset. We
use the DOTA dataset [10], a large-scale benchmark for RS object recognition. DOTA contains
188,282 instances from 15 categories, covering various scales, orientations, and shapes. We define
the long-tail split as follows: 6 classes with <1% instances as tail, 3 classes with 1%-5% instances
as middle, and the remaining 6 classes (each with >5% instances) as head. This split exhibits a
clear long-tail distribution, evidenced by the performance gap between head and tail classes for the
baseline methods (see Table 1 row 1). 3) Tasks. For the classification task, we obtain features from
the adapted foundation models and train a linear classifier. We report the macro F1-score that fairly
evaluate the performance across all classes. For detection, we train a FCOS detector head [52] on
obtained representations and evaluate using the mAP.

ORS → SAR adaptation. 1) Foundation model. We use SatMAE-L [8], the state-of-the-art
open-sourced foundation model for RS. SatMAE-L is pre-trained on large ORS datasets using self-
supervised learning. It has 307M parameters and requires 6,144 GPU hours to train from scratch.
2) SAR dataset. We evaluate our method on the fine-grained ship classification task of SAR. Existing
SAR ship datasets have insufficient samples to evaluate the model performance reliably, e.g., only
2 samples in test set for tail class “WingInGrnd” on the FUSAR-Ship dataset. We thus create a
new dataset by combining two high-resolution (<10m/pixel) SAR datasets: FUSAR-Ship [21] and
SRSDD [31]. Details of this combined dataset are provided in the Appendix. 3) Ship classification
task. We follow the same setup as in the natural → RS setting for this SAR task.

Implementation Details. 1) Fine-tuning baseline. We fine-tune the foundation models until the
training loss stabilizes. During inference, we use null prompts as no ground truth is available. For
SD, we extract features from the U-Net after applying one denoising step [50]. For OpenCLIP, we
extract features from its visual encoder’s final layer before the projection head. 2) LoRA and variants.
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We apply LoRA modules to all linear layers in the foundation models. We use a rank of 8 for LoRA,
as it suffers from the most severe long-tail issues. We also validate our method with higher ranks
(e.g., 64) in Table 2. During inference, we extract features from the U-Net encoder output followed
by global average pooling (GAP). For cLoRA, we concatenate the category-specific features after
GAP. 3) debLoRA. The debLoRA involves two hyperparameters: the calibration factor α, and the
number of clusters K. We set α as inversely proportional to the imbalance ratio of the tail class, as
described in Section 4.4. We empirically set K=32 (ablation study on K are provided in Appendix).

Evaluation Metrics. 1) Classification. We use linear probing (i.e., train a linear classifier on the top
of frozen features) to evaluate the learned representations [18, 19]. It is simple and avoids introducing
additional learning operations. We apply GAP and ReLU on the extracted features before linear
probing. We report the macro F1-score, which assigns equal importance to all classes—more suitable
for evaluating imbalanced datasets. We report scores for head, middle, and tail classes separately,
as well as the overall score averaged across all categories. 2) Detection. We use the lightweight
FCOS [52], an anchor-free detector head, to avoid potential interference from pre-defined anchors.
We extract high-resolution feature maps from the SD U-Net output. During feature clustering and
re-training, we use per-instance features for each category. During inference, we extract features
from the entire image and feed them to the detector head. We report the mAP metric.

Table 1: Ablation study of debLoRA. We apply
our debLoRA based on LoRA and cLoRA. Results
are reported for the adaptation from SD → DOTA
recognizer. Params (M) refers to the number of
updated parameters during the adaptation. Our
results are marked in gray .

Method Macro F1 Score (%) Params (M)
Head Middle Tail Overall

Zero-Shot 99.2 97.3 87.8 94.3 —
Fine-Tune 99.1 96.7 86.8 93.7 860

cLoRA 99.1 94.3 89.3 94.2 0.08
w/ debLoRA 99.3 97.5 93.5 96.6 0.08

LoRA 99.4 97.2 91.8 95.9 0.08
w/ debLoRA 99.1 98.7 94.5 97.1 0.08

Ablation study. In Table 1, rows 1 and 2 show
the results of using zero-shot features of SD or
fine-tuned SD features on DOTA to train RS ob-
ject recognizers. Recognizers’ performances are
strongly biased to head classes—around 12 per-
centage points drop for tail classes. From rows
3 and 5, we can see such issues get resolved a
bit when using LoRA methods. Rows 4 and 6
show that debLoRA significantly outperforms
LoRA methods on tail classes—by 4.2 points
and 2.7 points, respectively. Specifically, com-
pared to cLoRA, debLoRA does not even sacri-
fice the performance for head classes. To quan-
titatively validate its working mechanism, we
analyzed feature discrimination. Results show
that debLoRA enlarges inter-class distances and reduces intra-class distances for tail classes (see
Appendix). In addition, debLoRA needs just the same amount of parameters as LoRA (0.08M),
which is appealing for computation.

Table 2: Compare LoRA ranks. The table com-
pares different ranks of the LoRA module. Our
results are marked in gray .

Method Macro F1 Score (%) Params
(M)Head Middle Tail Overall

Rank 8 99.4 97.2 91.8 96.1 0.08
w/ debLoRA 99.1 98.7 94.5 97.1 0.08

Rank 16 99.0 95.9 92.4 95.8 0.16
Rank 32 99.4 96.9 93.0 96.4 0.32
Rank 64 99.1 96.9 94.0 96.7 0.64

w/ debLoRA 99.1 98.7 96.2 98.0 0.64

LoRA Ranks. We investigate the impact of
different LoRA ranks on the long-tailed classifi-
cation performance in Table 2. We have two key
observations. 1) As the LoRA rank decreases,
the performance on tail classes drops more sig-
nificantly than on head classes. For example,
when the rank is reduced from 64 to 8, the F1-
score of tail classes decreases by 2.2 percentage
points, while that of head classes even increases
by 0.3 percentage. This supports our hypothesis
that the limited parameter capacity of low-rank
LoRA forces it to prioritize learning the head
classes, exacerbating the long-tail problem. 2) debLoRA consistently improves the performance on
middle and tail classes across different LoRA ranks. Notably, with rank 64, debLoRA achieves a 2.2
percentage points improvement on tail classes while maintaining the performance on head classes.

Compare with SOTA. 1) Object Classification. Table 3 compares our debLoRA with state-of-the-art
methods under three adaptation tasks. We draw four key observations from the table. 1) debLoRA
consistently outperforms LoRA on tail classes across all adaptation tasks, with the largest gain of 4.7
percentage points for ORS → SAR (i.e., SatMAE → FUSRS). This shows the consistent efficiency of
our approach in tackling the long-tail problem of RS domains. 2) Compared to SD → DOTA setting,
cLoRA performs exceptionally well under OpenCLIP → DOTA setting, slightly surpassing LoRA.
We hypothesize that OpenCLIP’s feature space aligns particularly well with cLoRA’s class-specific
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Table 3: State-of-the-art comparison under different adaptation settings. The experiments are
conducted on two RS adaptation settings: 1) Natural→ORS, where we adopt Stable Diffusion (SD)
and OpenCLIP as foundation models and DOTA as the target dataset. 2) ORS→SAR, where we
adopt SatMAE as the foundation model and FUSRS (SAR imagery dataset) as the target dataset.
Results are evaluated by linear probing and reported in macro F1-Score (%). The highest result in
each position is highlighted by bold. Our results are marked in gray .

Method SD → DOTA OpenCLIP → DOTA SatMAE → FUSRS Mean
Head Middle Tail Head Middle Tail Head Tail Head Middle Tail

Zero-Shot 99.2 97.3 87.9 93.1 92.7 91.7 78.3 67.8 90.2 95.0 82.5
Fine-Tune 99.1 96.7 86.8 93.1 91.1 89.2 88.6 73.6 93.6 93.9 83.2

cLoRA 99.1 94.3 89.3 97.3 93.3 92.2 89.9 82.0 95.5 93.8 87.9
w/ debLoRA 99.3 97.5 93.5 97.6 95.8 95.0 92.5 86.1 96.5 96.7 91.5

LoRA 99.4 97.2 91.8 96.6 92.7 91.6 87.1 76.3 94.4 95.0 86.6
w/ ResLT [9] 99.4 97.7 93.0 97.7 94.1 93.8 86.6 75.4 94.6 95.9 87.4
w/ SADE [68] 99.1 97.3 92.4 97.3 93.0 92.5 89.6 78.4 95.3 95.2 87.8
w/ debLoRA 99.3 97.7 95.1 97.2 95.6 94.8 90.1 81.0 95.5 96.7 90.3

Table 4: Evaluation on the oriented object detec-
tion task. We implement debLoRA for long-tailed
detection tasks. Our results are marked in gray .

Method mAP (%)↑ Average
Head Middle Tail (%)↑

Zero-Shot 71.0 73.7 55.9 66.9
Fine-Tune 76.3 84.9 64.3 75.2
LoRA 77.5 86.3 66.5 76.7

w/ Reweight [28] 74.3 86.8 66.9 76.0
w/ ECM [24] 78.1 87.4 68.5 78.0
w/ debLoRA 79.4 88.5 73.2 80.4

design. However, debLoRA remains robust
across both foundation models. 3) The perfor-
mance gains of debLoRA are most significant
for SatMAE → FUSRS (+4.7 points) compared
to SD → DOTA and OpenCLIP → DOTA (+3.3
and +3.2 points, respectively). This suggests
that our method can leverage domain similarity
more effectively when adapting between related
image domains (SatMAE and FUSRS are RS
datasets). We think this is because debLoRA’s
clustering step captures and utilizes the shared
domain-specific visual patterns (e.g., spatial
structures and textures) when the source and
target domains are closely related. 4) debLoRA consistently outperforms long-tailed recognition
methods, ResLT [9] and SADE [68] (2.5 and 2.9 points by average). ResLT and SADE mainly
introduce re-weighting strategies to balance the learning of different classes, but they do not directly
rectify the bias in the feature space. In contrast, debLoRA explicitly learns a de-biased representation
center for tail classes. 5) We further validate the generalizability of our method by conducting experi-
ments on additional long-tailed datasets Places365-LT [34], iNaturalist [55], and fMoW-S2 [6, 8].
Our debLoRA consistently outperforms baselines, achieving up to 7.2% improvement on tail classes
(see Appendix). 2) Oriented Object Detection. We validate our method’s generalization ability on
the oriented object detection task in Table 4. We have two key findings. 1) Our debLoRA achieves
the highest mAP scores across all positions. Notably, debLoRA outperforms vanilla LoRA by an
impressive 6.7 percentage points. 2) Notably, all methods performed better in the middle classes
than in the head. This might be attributed to the greater intra-class variation in head classes, whereas
middle classes have more distinct and compact features.

6 Conclusion
In this paper, we propose debLoRA, a novel approach for adapting foundation models to data-
scarce and long-tailed remote sensing domains while mitigating representation bias. Our method
introduces unsupervised clustering to capture robust visual attributes shared across classes, and
feature calibration to rectify the bias in tail class representations. We validate the effectiveness of
debLoRA through extensive experiments on multiple RS adaptation settings and downstream tasks,
where it consistently outperforms vanilla LoRA and other long-tailed recognition methods. Notably,
debLoRA achieves significant performance gains on tail classes without sacrificing the performance
on head classes, highlighting its ability to learn debiased feature representations.
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A Appendix

This appendix contains the following supplementary information:

1. Section A.1 details on the customized SAR ship dataset used in the ORS → SAR setting,
complementing the experiments in Section 5.

2. Section A.2 presents experiments on additional datasets, including natural image datasets
and a multi-spectral remote sensing dataset, to demonstrate the generalizability of our
method.

3. Section A.3 provides ablation studies and additional analyses, including quantitative feature
analysis, sensitivity to cluster number K, and statistical analysis with error bars.

4. Section A.4 discusses the limitations of our work.

A.1 Details of the customized SAR ship dataset

We selected the FUSAR-Ship [21] and SRSDD [31] datasets as our source datasets due to their
high resolution (≤ 10m) and fine-grained ship subcategories, as shown in Figure A1. However,
both datasets have limitations. Figure A1(a) shows that the FUSAR-Ship dataset has insufficient
test samples (i.e., certain categories have only ≤ 15 test samples) and unclear category definitions
(e.g., “Reserved” or “Unspecified” categories). Figure A1(b) reveals that the SRSDD dataset also
suffers from insufficient test samples. To address these issues and establish a robust benchmark, we
combined the ship categories from both datasets, merging those with fewer than 10 test samples into
an “others” category.
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Figure A1: Constraints of the SAR datasets’ test sets. This figure illustrates the per-category test
sample distribution of (a) the FUSAR dataset and (b) the SRSD dataset. The FUSAR dataset suffers
from insufficient test samples and vaguely defined classes (indicated by “∗”). Similarly, the SRSDD
dataset also has the issue of insufficient test samples.

A.2 Experiments on Additional Datasets

To demonstrate the generalizability of our debLoRA method, we conducted experiments on three
additional datasets: two from the natural image domain (Places365-LT [34] and iNaturalist 2018 [55])
and one multi-spectral remote sensing dataset (fMoW-S2 [6, 8]). These datasets were chosen for
their unique properties: 1) Places365-LT exhibits a substantial domain gap from Stable Diffusion’s
pre-training data, allowing us to evaluate the performance of our domain adaptation model. 2)
iNaturalist 2018 has a high imbalance ratio of 500, enabling us to assess our model’s performance
under severe class imbalance conditions. 3) fMoW-S2 contains multi-spectral data, including visible,
near-infrared, and shortwave infrared bands, complementing our existing experiments on optical
(DOTA) and SAR (FUSRS) imagery. The results are given in Table A1 and Table A2.

Table A1: Comparison on Places365-LT and
iNaturalist2018 datasets. Results reported in top-
1 accuracy (%). Our results are marked in gray .

Method Places365-LT iNaturalist 2018 Mean
Head Middle Tail Head Middle Tail Head Middle Tail

Zero-Shot 40.3 36.9 24.9 36.2 29.4 8.9 38.3 33.2 16.9
Fine-Tune 43.2 31.1 39.0 66.5 69.2 67.5 54.9 50.2 53.3
LoRA 48.2 42.0 44.9 71.9 74.6 71.2 60.1 58.3 58.1

w/ debLoRA 50.9 51.2 49.2 72.6 79.8 78.4 61.8 65.5 63.8

1) On Places365-LT and iNaturalist 2018 (Ta-
ble A1), debLoRA consistently outperforms
LoRA, especially for tail classes. We observe
improvements of 4.3% and 7.2% for Places365-
LT and iNaturalist 2018 tail classes, respectively.

2) For the fMoW-S2 dataset (Table A2), we
adapted Stable Diffusion (SD) to the scene
recognition task. The dataset was manually divided into “Head” (34 classes comprising 80% of the
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Table A2: Results on the
fMoW-S2 dataset.

Method SD → fMoW-S2
Head Tail Overall

Fine-Tune 46.2 34.6 44.9

LoRA 46.5 38.1 46.2
w/ ResLT 46.8 38.6 46.5
w/ debLoRA 46.8 41.2 46.8

samples) and “Tail” (28 classes comprising 20% of the samples).
Results were evaluated by linear probing. debLoRA achieves the
highest overall accuracy (46.8%) and tail class accuracy (41.2%), sur-
passing the second-best method (ResLT) by 0.3 and 2.6 percentage
points, respectively.

These results confirm that our method effectively addresses the long-
tailed distribution problem across various domains, including natural
images and multi-spectral remote sensing data. The consistent im-
provements, particularly for tail classes, highlight the robustness of debLoRA in handling class
imbalance and domain adaptation challenges.

A.3 Ablation Studies and Additional Analyses

To provide a comprehensive evaluation of our debLoRA method, we conducted several ablation
studies and additional analyses. These experiments aim to validate the effectiveness of our approach,
investigate its sensitivity to key hyperparameters (i.e., cluster number K), and demonstrate the
statistical significance.

Table A3: Quantitative feature analysis
on the DOTA dataset. Inter-class distance is
measured as the average cosine distance be-
tween class centers, while intra-class distance
is the average cosine distance between sam-
ples and their corresponding class centers.

Method Inter-class Intra-class
Head-Tail Tail-Tail Tail

Fine-tuning 0.674 0.621 0.170
LoRA 0.702 0.607 0.182

w/ debLoRA 0.719 0.632 0.146

Quantitative Feature Analysis. To further vali-
date the effectiveness of our debLoRA method, we
present a quantitative analysis of the learned features,
focusing on inter-class and intra-class distances. Ta-
ble A3 shows the results on the DOTA dataset.

Our analysis reveals several key observations about
debLoRA. First, it enlarged the inter-class distance
between tail and head classes, with the average co-
sine distance increasing from 0.702 to 0.719. This
indicates improved separation between these class
groups. Second, debLoRA reduced the intra-class
distance for tail classes, as evidenced by the decrease in average cosine distance from 0.182 to 0.146.
This suggests a tighter clustering of tail samples. Finally, we observed an increase in inter-class
distance among tail classes, with the average cosine distance rising from 0.607 to 0.632. This
demonstrates better separation among different tail classes. These findings support the effectiveness
of debLoRA in improving feature separation for tail classes.

Table A4: Ablation study on
the number of clusters (K)
in debLoRA. Our default
value is marked in gray .

K
Macro F1 Score (%)
Head Middle Tail

16 99.1 96.9 90.4
32 99.3 97.7 95.1
64 99.3 97.4 94.8

Sensitivity to Cluster Number K. We conducted an ablation study
to investigate the sensitivity of our method to the number of clusters
(K) used in the de-biasing process. Table A4 shows the results on the
SD → DOTA adaptation.

From the table we can observe that performance generally improves
as K increases, with the most significant gains observed for tail
classes. For instance, when K increases from 16 to 32, the F1 score
for tail classes improves by 4.7%. The performance peak around
K=32 suggests a good default value for our method. These findings
indicate that our method is sensitive to K but remains effective across
different values.

Table A5: Error Bar Analysis. Reported in mean
± std. Our results are marked in gray .

Method Macro F1 Score (%)
Head Middle Tail

Zero-Shot 99.2 ± 0.1 97.4 ± 0.3 87.6 ± 0.6
Fine-Tune 99.1 ± 0.1 96.7 ± 0.1 86.8 ± 0.2

LoRA 99.3 ± 0.1 97.2 ± 0.1 91.8 ± 0.2
w/ ResLT 99.3 ± 0.1 97.5 ± 0.3 92.9 ± 0.3
w/ debLoRA 99.3 ± 0.1 97.5 ± 0.2 94.8 ± 0.3

Statistical Analysis with Error Bars. To
demonstrate the statistical significance of our
results, we report the results of three runs with
random initializations on the SD → DOTA ex-
periment. Table A5 shows the results.

These results demonstrate that our debLoRA
method consistently outperforms other ap-
proaches, especially for tail classes, with sta-
tistically stable improvements. The small std
across all methods indicate the stability of the
results. Notably, debLoRA shows the most substantial improvement for tail classes, with a mean
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F1 score of 94.8% and a standard deviation of only 0.3%, highlighting both the effectiveness and
consistency of our approach in addressing the long-tailed distribution problem.

A.4 Limitations

While our proposed debLoRA method has proven effective in adapting foundation models to remote
sensing domains with limited data and long-tailed distributions, we acknowledge three key limitations:
Assumption of shared visual attributes. Our method assumes that visual attributes are shared across
classes, enabling robust representation learning through clustering. However, if the visual attributes
are highly class-specific or there is significant intra-class variation, the effectiveness of our approach
may be reduced.

Sensitivity to hyperparameters. The performance of debLoRA depends on the selection of hyper-
parameters, such as the number of clusters K. The optimal value of K may differ depending on the
specific dataset and adaptation setting.

Limited evaluation on SAR datasets. Due to the scarcity of large-scale SAR datasets with sufficient
samples for reliable evaluation, we created a customized dataset by combining two existing SAR
datasets. Further investigation is needed to assess the performance of our method on a broader range
of SAR datasets and tasks.

By acknowledging these limitations, we aim to provide a transparent and objective assessment of our
work and to encourage future research addressing these challenges to further improve long-tailed
adaptation in remote sensing domains.
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