
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-1998

A visual object-relationship query language for user-database A visual object-relationship query language for user-database

interaction interaction

Keng SIAU
Singapore Management University, klsiau@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Programming Languages and

Compilers Commons

Citation Citation
SIAU, Keng. A visual object-relationship query language for user-database interaction. (1998). Telematics
and Informatics. 15, (1-2), 103-119.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9397

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9397&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9397&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9397&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9397&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A visual object-relationship query language for
user±database interaction

Keng Siau*
Department ofManagement, 209College ofBusinessAdministration,University ofNebraska-Lincoln. Lincoln,

NE 68588-0491, USA

Abstract

User±database interaction has a direct and immediate e�ect on the e�ectiveness and e�-
ciency of database end users. Traditional query languages like SQL and QBE require end
users to understand the underlying data structure in the database. This is a burden on end

users, especially novice end users who have little technical knowledge or understanding of
database. To alleviate the need for end users to know the logical database organization, this
paper proposes the use of an object±relationship (OR) model and a formal high-level visual

query language as the interface. Using this interface, end users communicate only domain
knowledge with the system without the need to specify the storage structure or search strate-
gies. The end users deal only with the conceptual model of the database and not the actual

physical implementation of the database. To demonstrate the expressive power of the visual
query language, this paper also provides a proof to show that it is relationally complete and
hence is as powerful as traditional languages such as SQL. # 1998 Elsevier Science Ltd. All
rights reserved.

Keywords: User±database interaction; Iconic interface; Visual query language; Object±relationship model

1. Introduction

To the end users, the user-database interface is the database system. The e�ec-
tiveness and e�ciency of information retrieval depend heavily on the user-friendli-
ness of user±database interface. For a long time, user±database interface has been
beyond the reach of many end users. One of the main reasons for this unfortunate
state of a�airs is the low-priority assigned to user±database interaction research. As
a result, there is a lack of theories and knowledge on what factors contribute to
good user±database interface.

Telematics and Informatics 15 (1998) 103±119

0306-4549/98/$Ðsee front matter # 1998 Elsevier Science Ltd. All rights reserved

PII: S0736-5853(98)00007-0

*Tel:+1-402-472-3078; Fax:+1-402-472-5855; e-mail: klsiau@unlinfo.unl.edu

Another reason that contributes to the unfriendly user±database interface is the
complexity of data models. Data models form the foundation of user±database
interface. Simply speaking, a data model is a collection of high-level data description
constructs that hide many low-level storage details (Ramakrishnan, 1998). A data
model shows the way data is conceptually structured (Price Waterhouse, 1997). A
complex data model will require a complex query language to manipulate and
retrieve data. An abstract data model, will result in abstract and convoluted query
languages. Shortcomings in the semantic expressive power of traditional data models,
such as relational data model led to interest in semantic data models (Elmasri and
Navathe, 1994; Ramakrishnan, 1998). The increased modeling power is derived
from the ability of these newer models to handle semantically meaningful objects
rather than normalized tuples or single records. With the growing popularity of
object-oriented approach, object±relationship model was introduced (Embley et al.,
1992; Martin and Odell, 1992). The object±relationship model is the data model for
the proposed user±database interface.
This paper is organized as follows: the ®rst part of the paper describes the OR

data model and the visual query language, VORQL. A language is not useful unless
it is powerful enough to support the necessary database retrieval functions. The
benchmark to determine the expressive power of a database query language is rela-
tional completeness. The second part of this paper presents a proof to show that the
new language is relationally complete and hence as powerful as traditional relational
query languages such as SQL and QBE.

2. Object±relationship (OR) data model

The object±relationship (OR) model adopts the natural view that the real world
consists of objects and relationships. It is based on the object-oriented approach
which is rooted in object-oriented programming. The two main constructs in the OR
model are object and relationship. An object is a uniquely identi®able entity that
contains both the attributes that describe the state of a real-world object and the
actions that are associated with a real-world object (Connolly et al., 1996). A rela-
tionship establishes a logical connection among objects (Embley et al., 1992). The
strengths of the OR model are its high-level of abstraction, encapsulation, and
inheritance properties (Yourdon, 1994). The biggest strength of the OR model,
however, is the naturalness of the OR constructsÐobject and relationship. By hav-
ing a natural model as the foundation of user±database interface, the task of
designing user±friendly database interface is already half-accomplished. Norman
(1986), for example, argued that many of the problems with interface could be rela-
ted to the di�culties of linking our psychological goals and constructs to the physi-
cal variables of the task. In designing user±database interface, it is important to
distinguish the conceptual model of the database from the actual implementation of
the database [as suggested by Moran (1981) for interactive computer systems].
In this paper, we describe a visual query language designed for the object±rela-

tionship (OR) model. The main objective of this language is to provide for data

104 K. Siau/Telematics and Informatics 15 (1998) 103±119

independence. Data independence is de®ned as the capacity to change the schema at
one level of a database system without having to change the schema at the next
higher level. Two forms of data independence can be de®nedÐlogical and physical
data independence. Based on the ANSI/SPARC DBMS framework (Tsichritzis and
Klug, 1978), logical data independence can be de®ned as the capacity to change the
conceptual schema without having to change the external schema or application
programs (Connolly et al., 1996; Ramakrishnan, 1998). Physical data independence
is the capacity to change the internal schema without having to change the con-
ceptual (or external) schema (Elmasri and Navathe, 1994; Hansen and Hansen,
1996). The new query language, Visual Object±Relationship Query Language
(VORQL), provides for both physical and logical data independence. With this
interface, end users need not worry about the physical or logical structure of the
database. They communicate with the database systems using concepts that exist in
the real world (i.e. objects and relationships).

3. Visual object±relationship query language

VORQL aims to provide end users both physical and logical data independence.
The user interface for this query language is shown in Fig. 1. To facilitate ease of
use, the interface is based on icons, menus, and visual form-structures. According to
Siau and Nah (1997), ``the iconic interface is especially important for novice users
who use the interface on an infrequent and ad-hoc basis.'' A simple point-and-click
interface is used for specifying queries as far as possible.

Fig. 1. User-Database Interface

K. Siau/Telematics and Informatics 15 (1998) 103±119 105

The querying is based on the OR schema that is depicted on the interface. This
interface is di�erent from the traditional relational interface where the users have to
remember the structure of the relational schema. Because our working memory is
limited to a capacity of only 7�2 chunks (Miller, 1956), it is almost impossible for
novice end users to manipulate the database structure in the working memory (the
database structure is not in the long term memory because these are ad-hoc and
infrequent users) and at the same time trying to formulate the SQL queries. By
depicting the schema on the interface and allowing users to specify queries based on
the schema, the required working memory is signi®cantly reduced. As argued by
Larkin and Simon (1987), by a diagram is (sometimes) worth ten thousand words''.
The querying process of VORQL is discussed below.

3.1. The querying process

The querying icons are displayed on the left of the interface. The querying icons
include the QUERY, RESTRICT, DUPLICATE, STATISTICAL, RETRIEVE,
INSERT, DELETE, UPDATE,UNION, CONDITION, FORMAT, and EXECUTE
icons. Queries are formulated visually in VORQL by clicking within the vicinity of
the objects, relationships, or attributes to be included in the query using a mouse
and specifying the condition using various form structures. There are ®ve steps in
VORQL query speci®cation: Duplicate, Restrict, Action, Condition, and Format.

3.1.1. DUPLICATE step
This is required for queries that need to make multiple distinct references to the

same object or relationship. By ®rst clicking on the DUPLICATE icon and then on
an object or a relationship, a duplicate object or relationship will be created on the
screen. To di�erentiate the various occurrences of the same object, the system will by
default append a unique integer number (1,2,. . .) to the di�erent occurrences. The user
can overwrite this default by providing a new name. The purpose of this step is similar
to the use of ``range variable'' in SQL or ``correlation variable'' in standard SQL.

3.1.2. RESTRICT step
The user can restrict the OR schema to only those objects and relationships of

interest in the query. In other words, those objects and relationships not of interest
will be removed from the screen. There are two approaches. The user can click the
STAY icon on the pop-up menu of the RESTRICT icon to select the required
objects and relationships. This is e�cient if the number of required objects and
relationships is small. Alternatively, the user can click the REMOVE icon and select
those objects and relationships to be removed from the schema. This is e�cient
when the number of objects and relationships to be removed is small.

3.1.3. ACTION step
There are four categories of queries: Retrieve, Insert, Delete, and Update. Each of

these categories can be activated by choosing the respective operator icons on the
interface. The four icons are:

106 K. Siau/Telematics and Informatics 15 (1998) 103±119

(a) RETRIEVE
Its function is similar to the Select-clause in SQL. The user selects the

attributes to be retrieved by clicking on them. To output all the attributes of
an object or a relationship, the user simply clicks within the vicinity of the
object or relationship.

(b) INSERT
The user selects an object or a relationship where a new instance is to be

inserted. The values for the new instance are speci®ed using Insert-form,
which will be discussed under the Condition step.

(c) DELETE
The user selects an object or a relationship where an instance or a group of

instances is to be deleted. The condition for the deletion is speci®ed using the
Delete-form.

(d) UPDATE
The user selects an object or a relationship where an instance or a group of

instances is to be updated. The update condition is speci®ed using the
Update-form.

3.1.4. CONDITION step
Following the Action step, the user will click the CONDITION icon to start the

Condition step. Condition for the query is speci®ed using four possible form struc-
tures: Condition-form, Insert-form, Delete-form, and Update-form. The system is
intelligent enough to display the appropriate form structures to guide the user in this
phase. The four possible cases are:

(a) RETRIEVE action
If the user selects the RETRIEVE icon in the Action step, a Condition-

form is displayed in this step to allow the user to enter the condition for the
query. The attributes in the Condition-form are generated from those objects
and relationships restricted in the RESTRICT step. For example, to get the
details of suppliers that supply red parts stored in London, the condition can
be speci®ed as shown in Fig. 2.

Note that the names of the objects and relationship, Supplier, Part, and
Supplies, are displayed together with their attributes but on di�erent rows.
Those conditions speci®ed on the same line (or row) will be interpreted as
conjunction (i.e. AND) and those on di�erent lines as disjunction (i.e. OR).
For sophisticated and expert users, a condition line is provided for them to

Fig. 2.

K. Siau/Telematics and Informatics 15 (1998) 103±119 107

enter the condition if they choose to do so. This provides the ¯exibility of
both visual and command-line interface.

(b) INSERT action
If the user selects the INSERT icon in the Action step, the system will

automatically display an Insert-form when the user clicks the CONDITION
icon. The attribute values for the new instance can then be entered into the
Insert-form. The user can enter more than one instance by simply entering
them on consecutive rows. For example, if the user speci®es that s/he wishes
to insert a new instance into Supplier entity in the Action step, the system will
display the Insert-form after the user clicks the CONDITION icon. The user
can then specify the values of the various attributes as shown below in Fig. 3.

(c) DELETE action
A Delete-form will be displayed for the user to enter the condition if the

user selects the Delete icon in the Action step. For example, the following
®gure shows the speci®cation of condition if the user wants to delete all pro-
jects in Chicago (Fig. 4).

(d) UPDATE action
For the update action speci®ed in the Action step, an Update-form is pro-

vided for the user to enter the old value and the new value of the attribute.
The Update-form for updating the color of all red parts to green is shown
below in Fig. 5.

(e) FORMAT step
The user can also specify his/her own output format. Assuming that the

user selects the Supplier and Part objects in the Restrict step, the following
Format-form will be shown when the user clicks the FORMAT icon (Fig. 6).

The order of the instances returned for a query can be speci®ed using the Sort By
operator. The default order of sorting is in ascending order. To reverse the order, the
user can enter the keyword Desc (i.e. descending) into the appropriate box. The user
can also specify sorting on more than one attribute. The order of this combination is

Fig. 3.

Fig. 4.

108 K. Siau/Telematics and Informatics 15 (1998) 103±119

determined by entering integer values (i.e. 1, 2, etc.) into the boxes. The functions of
header and footer are self-explanatory. The last row of the Format-form is for user
to specify whether redundant duplicate instances are to be eliminated in the output.
The default is set to NO.

3.2. Other querying icons

Most of the querying icons have been described in the previous section. This sec-
tion describes the remaining icons: QUERY, STATISTICAL, UNION, and EXE-
CUTE icons. For every new query or subquery, the user needs to ®rst select the
QUERY icon. This is to indicate to the system that the subsequent Restrict step,
Action step, and Condition step are meant for a new query. The system allows the
user to specify the query and store it before execution. Those queries speci®ed but
not yet executed will be depicted as square objects on the OR schema with the query
identi®er enclosed. This provides VORQL the capability to accept nested queries as
subsequent queries can refer to these stored queries in their speci®cation. Each query
can be named by the user or by the default numbering generated by the system.
The UNION icon is meant for connecting together two or more query speci®ca-

tions. The STATISTICAL icon is for the user to specify statistical operations on
selected attributes. A form is provided for this purpose. For example, if the user
speci®es the attributes of Supplier object for output in the Action step and then
clicks the STATISTICAL icon, the following form is provided (Fig. 7).
Standard operations such as COUNT, SUM, AVG, MAX, and MIN are provided

in the form. In addition to these standard statistical functions, the Group By
operation and the speci®cation of Group Condition operation are also included in
the Statistical-form. The COUNT function returns the number of instances or
values speci®ed in a query. The functions SUM, MAX, MIN, and AVG are applied
to a set or multiset of numeric values and return respectively, the sum, the maximum

Fig. 5.

Fig. 6.

K. Siau/Telematics and Informatics 15 (1998) 103±119 109

value, the minimum value, and the average of those values. The Group By function
allows the user to apply these statistical functions to subgroups of instances based
on the same value of the grouping attributes. Queries are not executed until the user
selects the EXECUTE icon. During execution, subqueries will be linked to the main
query and the whole query will be translated to Standard SQL query before sending
it to the underlying relational system.

3.3. Features of VORQL

It would be user-friendlier and de®nitely more appealing to allow the user to spe-
cify the condition of the query using mouse, icons, and pictures rather than forms.
This would be an ideal user-database interface for novice end users. However, this
approach is limited in power and the speci®cation is usually ambiguous. On the
other hand, using the conventional command-line approach allows complex condi-
tion to be speci®ed unambiguously. But this requires the users to learn the exact
syntax of the language and to follow the syntax rigidlyÐa far from ideal user±
database interface. A viable approach at this point in time is a visual form-based
approach. The visual approach for specifying condition using forms provides the
capability of specifying complex condition unambiguously and less rigidly. The form
structures in VORQL are an extension of QBE-table. The form structures in
VORQL extend QBE concept of tables in two important aspects. In QBE, each
relation has its own QBE-table which contains the attributes of the relation whereas
the various form structures in VORQL will join up all the objects and relationships
speci®ed in a query (i.e. a form contains multiple ``relations''). This combination
makes the JOIN operation, which has been repeatedly found to be a major problem
in relational user±database interaction, implicitly depicted in the structure of the
forms and frees the user from the tedious task of specifying the JOIN operation in
the query. The second extension is that VORQL uses di�erent form structures (i.e.
Condition-form, Format-form, etc.) for di�erent querying steps.
The form structure for specifying condition is chosen for this user-database inter-

face because experimental results have shown that QBE ``required about one-third
the training time and appear to be about equally accurate as those using SEQUEL''
(Thomas and Gould 1975). An experiment comparing QBE and SQL performed by

Fig. 7.

110 K. Siau/Telematics and Informatics 15 (1998) 103±119

Greenblatt and Waxman (1978) also found that QBE involved less training time,
required less time per query, resulted in more correct queries, and subjects were
more con®dent in their answers. The use of form structure also has support from
the Visual Language arena where Shu (1986) stated that forms are a natural inter-
face between user, data, and program.

4. Relational completeness of VORQL

The expressive power of a language is an important criterion when designing user±
database interface. The benchmark for measuring the expressive power of a rela-
tional query language is the relational completeness criterion. Codd (1972) ®rst
proposed relational tuple calculus as a benchmark for evaluating data manipulation
languages based on the relational model. That is, a language without at least the
expressive power of the safe formulae of relational calculus, or equivalently of rela-
tional algebra, was deemed inadequate. A language that can (at least) simulate safe
tuple calculus, or equivalently, relational algebra or safe domain calculus, is said to
be complete (Ullman, 1988).
The notion of completeness was also extended to Entity±Relationship (ER) based

query languages by Atzeni and Chen (1983). They introduced two formal de®nitions
of completeness: E±R completeness and simpli®ed E±R completeness, the latter
being a weak version of the former. However, their de®nition of completeness is not
able to express queries involving comparisons between unrelated objects. Hence, ER
complete and simpli®ed ER complete languages are less powerful than relationally
complete query languages.
In this paper, we adopt the Codd's (1972) criteria for completeness as the bench-

mark for measuring the expressive power of VORQL. Even researchers in the ER
area uphold the superiority of relational completeness. For example, Campbell et al.
(1985) concluded that ``relational completeness for an ER query language is impor-
tant; we can now design ER query languages that will be as powerful as traditional
relational query languages''.
Since relational algebra is relationally complete (Date, 1995), it follows that, to

show that VORQL is also relationally complete, it is su�cient to show that VORQL
includes analogs of each of the eight algebraic operators: Select, Project, Product,
Union, Intersect, Di�erence, Join, and Divide. In fact, it is su�cient to show that
VORQL includes analogs of the ®ve primitive algebraic operations since Join,
Intersection, and Divide can in turn be de®ned using the ®ve primitives. The ®ve
primitive relational algebraic operations are union (U), di�erence (ÿ), product (�),
selection (�), and projection (�). The proof is by induction on the number of
operators.
To prove that VORQL is relationally complete, we need to have the relational

representation of the OR model. The relational representation of the OR model is as
follows:
An object O with key attribute k and other attributes a1; a2; . . . an, is represented

by the relation:

K. Siau/Telematics and Informatics 15 (1998) 103±119 111

O k; a1; a2; . . . ; an� �

The name of this relation is the same as the name of the object.
A relationship R with attributes a1; a2; . . . ; an and involving objects
O1; O2; . . . ; Om with roles role1; role2; . . . ; rolem respectively and keys
k1; k2; . . . ; km respectively, is represented by the relation:

R2�O1ÿrole1ÿk1; O2ÿrole2ÿk2; . . . ; Omÿrolemÿkm; a1; a2; . . . ; an�

The name of this relation is the same as the name of the relationship.
Lemma 1. The base relation can be retrieved by VORQL.
Proof. Consider an object O with key attribute k and attributes a1; a2; . . . ; an.
To retrieve O,

VORQL(O)= Choose RETRIEVE icon, click object O.

Consider a relationship R involving objects O1 to On with roles role1 to rolen and
where the keys are ki with i ranging from 1 to n. The attributes of the relationship
are a1; a2; . . . ; am.
To retrieve R,

VORQL(R) = Choose RETRIEVE icon, click relationship R. &

Lemma 2. VORQL can create duplicate relations.
Proof. Consider an object O with key attribute k and attributes a1; a2; . . . ; an. We
can create another occurrence of object O using the DUPLICATE icon and name
the new occurrence O0.
VORQL(O0)= Choose DUPLICATE icon, click object O.

Name the new occurrence O0.

Consider a relationship R involving objects O1 to On with roles role1 to rolen and
where the keys are ki with i ranging from 1 to n. The attributes of the relationship
are a1; a2; . . . ; am. We can similarly create another occurrence of relationship R
using the DUPLICATE icon and name the new occurrence R0.

VORQL(R0)= Choose DUPLICATE icon, click relationship R. &
Name the new occurrence R0.

Theorem 1. VORQL satis®es the property of relational completeness.
The proof of relational completeness is done as follows:

Step A. Show that VORQL can produce relations derived by a
single relational operation on the base relations.

112 K. Siau/Telematics and Informatics 15 (1998) 103±119

Steps B and C. Show that if VORQL can produce relations RA and RB,
then VORQL can produce relations that are derived by a
relational operation on RA and/or RB.

Step D. Show that by induction, VORQL can produce any rela-
tion that can be derived by an arbitrary number of rela-
tional operations on the base relations.

Proof: Step A. Show that VORQL can produce relations derived by a single rela-
tional operation on the base relations.

A.1 Projection (denoted by [])

i. VORQL(O[x])= Choose RETRIEVE icon, click those attributes in set x
on object O.

ii. VORQL(R[x])= Choose RETRIEVE icon, click those attributes in set x
on relationship R.

A.2 Selection (denoted by �sp where sp is the selection predicate)

i. VORQL(�spO)= Choose RETRIEVE icon, click O.
Choose CONDITION icon, specify sp using the Condi-
tion-form.

ii. VORQL(�spR)= Choose RETRIEVE icon, click R.
Choose CONDITION icon, specify sp using the Condi-
tion-form.

A.3 Cartesian Product (denoted by �)

i. VORQL(Oi�Oj)= Choose RETRIEVE icon, click Oi and Oj.
ii. VORQL(Ri�Rj)= Choose RETRIEVE icon, click Ri and Rj.
iii. VORQL(O�R)= Choose RETRIEVE icon, click O and R.
iv. VORQL(R � O)= Choose RETRIEVE icon, click R and O.

If Oi � Oj or Ri � Rj, choose the DUPLICATE icon to duplicate the object or the
relationship (see Lemma 2).
If O and R are directly linked on the OR schema, then duplicate either O to get O0

or R to get R0. Following that, we can have either O� R0 or O0 � R.

A.4 Union (for compatible objects/relationships)

i. VORQL(Oi U Oj)= Choose RETRIEVE icon, click Oi.
Choose UNION icon.
Choose RETRIEVE icon, click Oj.

ii. VORQL(Ri U Rj)= Choose RETRIEVE icon, click Ri.

K. Siau/Telematics and Informatics 15 (1998) 103±119 113

Choose UNION icon.
Choose RETRIEVE icon, click Rj.

iii. VORQL(O U R)= Choose RETRIEVE icon, click O.
Choose UNION icon.
Choose RETRIEVE icon, click R.

iv. VORQL(R U O)=
Choose RETRIEVE icon, click R.
Choose UNION icon.
Choose RETRIEVE icon, click O.

If Oi � Oj or Ri � Rj, choose the DUPLICATE icon to duplicate the object or the
relationship (see Lemma 2).

A.5 Di�erence (denoted by ÿ)

i. VORQL(OiÿOj)= Choose RETRIEVE icon, click Oi.
Choose CONDITION icon, specify Oi not exist in Q2.
Choose QUERY icon. (i.e. Q2)
Choose RETRIEVE icon, click Oj.

ii. VORQL(RiÿRj)= Choose RETRIEVE icon, click Ri.
Choose CONDITION icon, specify Ri not exist in Q2.
Choose QUERY icon. (i.e. Q2)
Choose RETRIEVE icon, click Rj.

iii. VORQL(OÿR)= Choose RETRIEVE icon, click O.
Choose CONDITION icon, specify O not exist in Q2.
Choose QUERY icon. (i.e. Q2)
Choose RETRIEVE icon, click R.

iv. VORQL(RÿO)= Choose RETRIEVE icon, click R.
Choose CONDITION icon, specify R not exist in Q2.
Choose QUERY icon. (i.e. Q2)
Choose RETRIEVE icon, click O.

If Oi � Oj or Ri � Rj, choose the DUPLICATE icon to duplicate the object or the
relationship (see Lemma 2).

Step B. In this step, we assume that two arbitrary relations RA

and RB are derivable by VORQL queries. We then show
that any relation resulting from a single relational operation
on RA and/or RB is also derivable by a VORQL query.
We assume that the VORQL query, QA, for RA is of the
following form:

Choose RETRIEVE icon, click aA1; aA2; aA3; . . . : aAm.
Choose CONDITION icon, specify condition(A) using
the Condition-form.

114 K. Siau/Telematics and Informatics 15 (1998) 103±119

Similarly, assume that the VORQL query, QB, for RB is
of the same form:

Choose RETRIEVE icon, click aB1; aB2; aB3; . . . ; aBn.
Choose CONDITION icon, specify condition(B) using
the Condition-form.

B.1 Projection:
VORQL(RA[x])= Choose RETRIEVE icon, click those attributes in set x

from the list of attributes retrieved by QA (i.e.
aA1; aA2; aA3; . . . ; aAmf g).

B.2 Selection:
VORQL(�spRA)= Choose RETRIEVE icon, click QA.

Choose CONDITION icon, specify sp using the Condi-
tion-form.

B.3 Cartesian Product:
VORQL(RA�RB)= Choose RETRIEVE icon, click QA and QB.

B.4 Union:
VORQL(RA U RB)= Choose RETRIEVE icon, click QA.

Choose UNION icon.
Choose RETRIEVE icon, click QB.

B.5 Di�erence:
VORQL(RAÿRB)= Choose RETRIEVE icon, click QA.

Choose CONDITION icon, specify RA not exist in Q2.
Choose QUERY icon. (i.e. Q2)
Choose RETRIEVE icon, click QB.

Step C. In step B, it is assumed that a relation R can be produced
by a VORQL query Q of the form:
Choose RETRIEVE icon, click aA1; aA2; aA3; . . . ; aAm
Choose CONDITION icon, specify condition(A) using
the Condition-form.
However, some relations can be produced only by a query
of the form Q1UQ2U. . .UQn where each Qi; 1 <� i <� n,
has the form assumed for Q.
It will be shown in this step that this violation of the

K. Siau/Telematics and Informatics 15 (1998) 103±119 115

assumption in step B does not alter the result in step B.
Assume RA and RB to be produced by VORQL queries of
the form:

QA1UQA2U . . .UQAn

and

QB1UQB2U . . .UQBm

Each query QAi or QBj will produce a relation RAi or RBj.
In other words, RA equals (RA1URA2U . . .URAn) and
similarly for RB.

C.1 Projection: RA�x�
RA x� � � RA1 x� �URA2 x� �U . . .URAn x� �

Each of the sub-relations can be expressed by a VORQL query, as shown in step
B:1, and by step B:4 the unions of the sub-relations can be done by a VORQL
expression.

C.2 Selection: �A

�RA � �RA1U�RA2U . . .U�RAn

An argument similar to C:1 applies here, showing that �RA can be done by a
VORQL query.

C.3 Cartesian Product: RA � RB

This is equal to
RA1�RB1URA1�RB2U. . .URA1�RBm

U
RA2�RB1URA2�RB2U. . .RA2�RBm

U
.
.
.
U
RAn�RB1URAn�RB2U. . .URAn�RBm

Similar argument applies here.

C.4 Union: RAURB

This is equal to
RA1URA2U . . .URAnURB1URB2U . . .URBm

116 K. Siau/Telematics and Informatics 15 (1998) 103±119

Similar argument applies here.

C.5 Set Di�erence: RA ÿ RB

This is equal to
(((RA1ÿRB1)ÿRB2)ÿ. . .ÿRBm)
U
(((RA2ÿRB1)ÿRB2)ÿ. . .ÿRBm)
U
.
.
.
U
(((RAnÿRB1)ÿRB2)ÿ. . .ÿRBm)

Similar argument can also be applied here, showing that the long chain of unions
and set di�erences can be produced by a VORQL query.

Step D. Show that by induction, VORQL can produce any relation
that can be derived by an arbitrary number of relational
operations on the base relations.

It has been shown that it is possible to use a single VORQL query to produce any
of the base relations, and that a single VORQL query can produce any relation that
can be derived by a single relational operation on the base relations. It has also been
shown that if two relations RA and RB can be produced by queries QA and QB, then
any relation resulting from a single relational operation on RA and/or RB can be
produced by a VORQL query.
It therefore follows by induction that the VORQL query can derive relations

involving any number of relational operations on the base relations. Hence,
VORQL is relationally complete and hence has at least the same expressive power as
relational query languages like SQL and QBE.

5. Conclusions and future research

User±database interaction is a critical component of database research. Better
interface increases the productivity of and empowers the end users. Although
database has been the subject of much research, the major part of the research
focuses on designing and development of new database architectures. No doubt
these are important areas of research, the adoption of database systems by end
users and the satisfaction of end users depend more on the user interface than the
underlying database architectures that the users do not come into direct contact.
Despite the pivotal role of user±database interface, research in this area is severely
lacking.

K. Siau/Telematics and Informatics 15 (1998) 103±119 117

In this paper, we present the Visual Object±Relationship Query Language
(VORQL) for the object±relationship (OR) model. The design of the interface
employs icons, menus, and visual form-based structures to facilitate database
retrieval by novice end users. The query language, VORQL, is a complete non-pro-
cedural visual query language with a syntax that is more ¯exible than SQL. It pro-
vides both physical and logical data independence which free the users from
worrying about the physical and logical organization of the database. As it is tradi-
tional to demonstrate the expressive power of new query languages for user±data-
base interaction, a proof is also presented in the paper to show that VORQL is
relationally complete and is, therefore, at least as powerful as traditional database
languages like SQL and QBE.

References

Atzeni, P. Chen, P.P., 1983. Completeness of query languages for the entity±relationship model. In: Chen,

P.P. (Ed.), Entity±Relationship Approach to Information Modeling and Analysis. ER Institute, pp.

109±121.

Campbell, D.M., Embley, D.W., Czejdo, B., 1985. A relationally complete query language for an entity±

relationship model. Proceedings of the Fourth International Conference on Entity±Relationship

Approach, Chicago, Illinois, USA, pp. 90±97.

Card, S.K., Moran, T.P., Newell, A., 1983. The Psychology of Human±Computer Interaction. Lawrence

Erlbaum Associates.

Chen, P.P., 1976. The entity±relationship model: toward a uni®ed view of data. ACM Transactions on

Database Systems 1(1), pp. 9±36.

Connolly, T., Begg, C., Strachan, A., 1996. Database Systems: A Practical Approach to Design, Imple-

mentation and Management. Addison±Wesley Wokingham, UK.

Codd, E.F., 1972. Relational completeness of database sublanguages. In: Randell R. (Ed.), Data Base

Systems. Prentice Hall. Englewood Cli�s, NJ.

Date, C.J., 1995. An Introduction to Database Systems, 6th ed. Addison±Wesley. Wokingham, UK.

Elmasri, R., Navathe, S.B., 1994. Fundamentals of Database Systems, 2nd ed. Addison±Wesley.

Wokingham, UK.

Embley, D.W., Kurtz, B.D., Wood®eld, S.N., 1992. Object-Oriented Systems Analysis: A Model-Driven

Approach. Yourdon Press.

Greenblatt, D., Waxman, J., 1978. A study of three database query languages. In: Shneiderman, B. (Ed.),

Databases: Improving Usability and Representativeness. Academic Press, New York.

Halpin, T., 1995. Conceptual Schema & Relational Database Design, 2nd ed. Prentice Hall. Englewood

Cli�s, NJ.

Hansen, G.W., Hansen, J.V., 1996. Database Management and Design, 2nd ed. Prentice Hall. Englewood

Cli�s, NJ.

Kroenke, D.M., 1995. Database Processing: Fundamentals, Design, and Implementation, 5th ed. Prentice

Hall. Englewood Cli�s, NJ.

Larkin, J.H., Simon, H.A., 1987. Why a diagram is (sometimes) worth ten thousand words. Cognitive

Science 11, pp. 65±99.

Martin, J., Odell, J.J., 1992. Object-Oriented Analysis and Design. Prentice Hall. Englewood Cli�s, NJ.

Miller, G.A., 1956. The magical number seven plus or minus two: some limits on our capacity for pro-

cessing information. Psychological Review 63, 81±97.

Moran, T.P., 1981. The command language grammar: a representation for the user interface of interactive

computer systems. International Journal of Man±Machine Studies 15, 3±50.

Norman, D.A., 1986. Cognitive engineering. In: Norman, D.A., Draper, S. (Eds.), User-Centred Systems

Design: New Perspectives on Human±Computer Interaction.

118 K. Siau/Telematics and Informatics 15 (1998) 103±119

Price Waterhouse, 1977. Technology Forecast 1997. Price Waterhouse Technology Center.

Ramakrishnan, R., 1999. Database Management Systems. McGraw±Hill. New York.

Siau, K., Nah, F., 1997. An experimental study on user interpretation of icons. In: Salvendy, G., Smith,

M.J., Koubek, R.J. (Eds.), Design of Computing Systems: Cognitive Considerations, Elsevier, pp. 721±

724.

Shu, N.C., 1986. Visual programming languages: a perspective and a dimensional analysis. In: Chang,

S.K. Ichikawa, T., Ligomenides, P.A. (Eds.), Visual Languages. Plenum Press.

Thomas, J., Gould, J., 1975. A psychological study of query by example. In: Proceedings of the 1975

National Computer Conference, Anaheim, CA. June 1975, pp. 439±445.

Tsichritzis, D., Klug, A., (Eds.), 1978. The ANSI/SPARC DBMS Framework. AFIPS Press.

Ullman, J.D., 1988. Principles of Database and Knowledge-base Systems, vol. I. Computer-Science Press.

Yourdon, E., 1994. Object-Oriented Systems Design: An Integrated Approach. Yourdon Press.

K. Siau/Telematics and Informatics 15 (1998) 103±119 119

	A visual object-relationship query language for user-database interaction
	Citation

	PII: S0736-5853(98)00007-0

