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Test for Infinite Variance in Stock Returns 
 

Yan Xian Ning 

 

Abstract 
The existence of second order moment or the finite variance is a commonly 

used assumption in financial time series analysis. We examine the validation 

of this condition for main stock index return series by applying the extreme 

value theory. We compare the performances of the adaptive Hill’s estimator 

and the Smith’s estimator for the tail index using Monte Carlo simulations for 

both i.i.d data and dependent data. The simulation results show that the Hill’s 

estimator with adaptive data-based truncation number performs better in both 

cases. It has not only smaller bias but also smaller MSE when the true tail 

index α  is not more than 2. Moreover, the Hill’s estimator shows precise 

results for the hypothesis test of infinite variance. Applying the adaptive 

Hill’s estimator to main stock index returns over the world, we find that for 

most indices, the second moment does exist for daily, weekly and monthly 

returns. However, an additional test for the existence of the fourth moment 

shows that generally the fourth moment does not exist, especially for daily 

returns. And these results don’t change when a Gaussian-GARCH effect is 

removed from the original return series. 
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Chapter 1  Introduction 
Moment conditions are important assumptions in economic and econometric time 

series analysis. A lot of model buildings and the corresponding estimate methods are 

based on some moment assumptions of the innovations, hence the series itself. This is 

because various central limited theories (CLTs) (such as Lindeberg-Lévy central limit 

theory) are applied to show consistency of estimators and to deduce the asymptotic 

distribution for the estimators and test statistics. However, there are generally moment 

conditions for the CLTs to be valid. In most cases, the second moment of the series or 

the function form should exist; hence the variance should be finite. Sometimes we 

need higher order moment conditions, such as the finite fourth moment. 

When applying these results to financial time series, such as returns series of 

equity and exchange rate, a natural question is whether those moment assumptions are 

satisfied. It is well known that many financial variables have much heavier tails than 

the normal distribution. This is the so called heavy-tailed stylized fact. One important 

consequence of heavy tails is that some moments may not exist. It has been found 

empirically that high order moments may not exist. For example, in several studies of 

exchange rate yields (Koedijk et al., 1990; Jansen and DeVries, 1991), for different 

currencies and at different time frequencies, there is strong evidence that the maximal 

moment exponent of the empirical densities for these series are less than four, which 

implies that the finite fourth moments of these series do not exist; and in some cases, 

even the second moment does not exist. Such evidence also appears in the stock 

return series; for example, see Loretan and Phillips (1994). 

In this study our interest is in the second order moment, hence the variance of the 

stock index returns. This is a basic condition in most financial time series analysis and 

also for developing the optimal asset allocation theory. Different estimation methods 

have been proposed and the asymptotic distribution of estimators is developed based 

on this condition. Therefore, it is important to check the empirical validity of the finite 

variance assumption.  

We empirically check the validity of this assumption for main stock index return 
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series, including daily data, weekly data and monthly data. As a byproduct of our 

method, we give an estimate of the maximal moment exponent of the series. Our 

method applies the extreme value theory to estimate the tail index of these series, 

which is also the maximal moment exponent. However, in order to choose a better 

way to do such estimation, we compare the performances of two distribution 

assumptions of the tails in two Monte Carlo simulations: the Pareto distribution and 

the Generalized Pareto (GP) distribution. We find the Hill’s estimator with 

data-adaptive truncation number (Hill, 1975; Hall and Welsh, 1985; Phillips et al., 

1996), which is based on the Pareto distribution, performs better in both cases. While 

the GP distribution nests the Pareto type, the tail index estimators through the peaks 

over threshold (POT) method, which are based on GP distribution (Smith, 1987), 

perform less satisfactorily in our simulations. 

 

The rest of the paper is organized as follows. In Chapter 2, we give a literature 

review of the methods applied in this paper. We describe details of the methods in 

Chapter 3. Monte Carol simulations and results are presented in Chapter 4. In Chapter 

5, we present the empirical results for main stock indices return series. Finally, we 

conclude in Chapter 6. 
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Chapter 2  Literature Review 
According to the characteristics of stock return series, mainly the stylized fact of 

heavy tails, it is useful to examine the empirical distribution directly. In fact, 

heavy-tailed distributions, such as the Pareto distribution, have been proved very 

useful in modeling such phenomena in finance and other subject areas. For further 

details, we refer to Embrechts et al. (1997) and papers collected in FinkenstÄadt and 

Rootzen eds. (2003).  

Here we review several approaches that are more relevant to the present study. 

One is to apply the above distributions and to fit a density function to the whole series, 

and then use the estimated parameterized density to make judgments. There are 

examples of this approach applied to stock returns, see a comprehensive literature 

review by Mittnik and Rachev (1993). However, as mentioned by Kearns and Pagan 

(1992), there is a potential problem with this strategy. The fitted density could be 

heavily affected by the vast majority of observations that lie in the center of the 

density, whereas our interest is really focused upon the tails. Consequently, a literature 

has developed that seeks to determine the probability of large deviations by 

concentrating attention upon the ‘‘tails’’ and estimating that part of the density only 

(see Hols and de Vries (1991)). In this way, the estimation of “tail index” becomes the 

subject of interest. In fact, it was first suggested by Mandelbrot (1963) that many 

economic and financial series were best modeled as independently distributed stable 

processes (which are characterized by a tail index, or characteristic exponent, less 

than 2). Subsequent empirical papers included Fama (1965), Officer (1972), Blattberg 

and Gonedes (1974), Hsu et al. (1974), and Akgiray and Booth (1988), which 

estimated the tail index for various stock return series, investigating whether such 

series were consistent with stable laws. For stable laws, the tail index is restricted to 

be less or equal to 2, however, the tail index could take any positive number for real 

data. Thus it is necessary to discriminate between different probability models, e.g., 

Jansen and deVries (1991), Hols and deVries (1991). 
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Summarily, in order to estimate and make an inference about the tail index, it is 

necessary to apply the extreme value theory (e.g.,Leadbetter et al.(1983)), which 

studies the limiting distributions of large realizations (the order statistics) of a series. 

The extreme value theory is based on the distributions mentioned above and has been 

widely used to estimate tail index of financial time series. See, for example, the Hill’s 

estimator based on Pareto distribution, the POT estimator based on GP distribution 

and estimators from the stable law.  

Among these, a simple way is to assume that the tail shape is of the Pareto-type. 

Actually, based on the Pareto distribution assumption of the tails, alternative tail index 

estimators have been proposed. A common feature is that all these estimators are 

based on the order statistics. The most widely used estimator is the Hill’s estimator, 

which was first proposed by Hill (1975) and by Weissman (1978) from a different 

perspective for i.i.d sequence. Other estimators include Pickands (1975), deHaan and 

Resnick (1980), Teugels (1981), et al. Kearns and Pagan (1992) compared three 

estimators through Monte Carlo simulations, corresponding to Pickands (1975), Hill 

(1975) and de Haan and Resnick (1980), and found that the Hill’s estimator performs 

better than the others. In fact, a lot of attentions have been paid to Hill’s estimator in 

the literature. Studies of Hill’s estimator in the i.i.d setting include Hall (1982), Mason 

(1982,1988), Davis and Resnick (1984)，Hall and Welsh (1985), Haeusler and Teugels 

(1985), Csǒrgő, Deheuvels and Mason (1985), Beirlant and Teugels (1989), Mason 

and Turova (1994), Geluk et al. (1997), Resnick and Starica (1997a, 1997b), de Haan 

and Resnick (1998). Recent research has been focusing on applying the Hill’s 

estimator to dependent data. For example, Hsing (1991) studied Hill’s estimator under 

weak dependence assumption; Resnick and Starica (1995, 1998) proved the 

consistency of Hill’s estimator for certain classes of heavy-tailed stationary processes. 

Other related papers which study the Hill’s estimator in dependent case include 

Rootzen, Leabetter and de Haan (1990) , Rootzen (1995), Rootzen et al. (1998) , 

Drees (2000), Ling and Peng (2004).  

Since the performance of the Hill’s estimator is well studied for i.i.d sequences 

and in dependent cases, we apply it in our paper.   
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However, there is a potential problem in the use of the Hill’s estimator, which is 

how to determine the optimal truncation number (m) of the order statistics. In fact, the 

choice is critical to the performance of the Hill’s estimator. Both Hill (1975) and Hall 

(1982) pointed out that the truncation number should be determined based on tail 

characteristic of the data itself. Dumouchel (1983) had suggested that m should be less 

than 10% of the sample size. To choose the optimal truncation number, Hall and 

Welsh (1985) suggested an adaptive data-based procedure. However, this method has 

not attracted much attention in the empirical literature. Phillips et al. (1996) applied 

this procedure to calculate Hill’s estimator. Drees and Kaufmann (1998) proposed a 

sequential procedure to get a consistent estimator of the truncation number. However, 

their method only performs well for few certain distributions and in extremely large 

samples. Generally, the performance of their method is poorer than that proposed by 

Hall and Welsh (1985). Another data-driven approach is to use re-sampling procedure 

where large sample size is usually necessary, see Hall (1990), Danielsson et al. (2001). 

In our paper we choose the optimal truncation number using the adaptive data-based 

procedure suggested by Phillips et al. (1996). 

Except for the well-known Hill’s estimator for tail index, there are also other 

estimators which are not based on order statistics. One estimator is proposed by Smith 

(1987). This estimator is based on POT method and GP distribution; see Smith (1984, 

1987). Koopman and Shephard (2003) applied this method to test for infinite variance 

in important sampling in the context of stochastic volatility models. 

 

As a summary, we will apply the Hill’s estimator with adaptive data-based 

truncation number choosing procedure and Smith’s (1987) method. We will use two 

simulation designs to compare the performance of the two methods. One is the i.i.d 

case and the other is the dependent case with a GARCH structure. We give the details 

of these two estimators in Chapter 3. 
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Chapter 3   Method Description 
The methods used in this paper to estimate the tail index include the Hill’s estimator 

and Smith’s POT method as mentioned in Chapter 2. Details of the two methods are 

given below. 

3.1 the Adaptive Hill’s Estimator 

Suppose we have an i.i.d sequence { }
1

n
tX , where n  is the sample size. If the tail 

behavior of tX  follows the Pareto- Lévy form , for example , as generalized in 

Phillips et al.(1996)  

 1( ) (1 ( )), 0P X x pCx a x xα−> = + >                       (1)  

2( ) (1 ( )), 0P X x qCx a x xα−< − = + >                      (2) 

where ( ) 0( 1,2)ia x i→ =  as x →∞  and , 0.p q ≥ The parameter C  is a scale 

parameter and α , is the tail index, or the maximal moment exponent in the sense that 

{ }sup 0 : rr E Xα = > < ∞ , which determines the tail slope. Models (1) and (2) are 

corresponding to right tail and left tail.  

Indeed, α  is what we are concerned about. If α  is not less than 2 for both 

right tail and left tail, then the variance should exist. However, if anyone of the two is 

significantly less than 2, then the second moment does not exist which means the 

variance is infinite. 

The unknown parameters in (1) and (2) could be estimated by conditional 

maximum likelihood method based on order statistics of the sample under Pareto tails 

assumption, for example, ( ) 0ia x =  as in (1) and (2). For simplicity, we only describe 

the method for parameters in (1); however, the idea is the same for (2).  

Let ,1 ,2 ,n n n nX X X≤ ≤ ≤ denote the order statistics of { }
1

n
tX  in ascending order. 

Then according to Hill (1975), the Hill’s estimator for α  and C  in (1) is defined as  
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1

1
, 1 ,

1
ln ln

m

H n n j n n m
j

m X Xα
−

∧
−

− + −
=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∑                    (3) 

                        ,( / ) H
n n mC m n X α
∧∧

−=                             (4) 

where m is the order statistic truncation number. 

The asymptotic theory for the estimator was established by Hall (1982) in the 

case of tail distributions of forms (1) and (2). When ( ) ( ), 0ia x O x β β−= > , it was 

showed that if ( )m m n=  so that m →∞  and 2 2/ 0m n β β α+ →  as n →∞ , then we 

have the limit distribution for Hα
∧

 

                        1 2 2( ) (0, )d
Hm Nα α α

∧

− ⎯⎯→                      (5) 

(Theorem 2 of Hall, 1982).  

     The asymptotic distribution (5) holds when the truncation number m  is 

optimally selected at order of 2 2n β β α+ . In fact, a central problem in estimating α  is 

how to choose m  as we have mentioned in Chapter 2. Hall and Welsh (1985) 

proposed a procedure to select the optimal order statistic truncation number 

( )m m n=  to minimize the asymptotic mean squared error for the estimators, which 

could be called adaptive data-based truncation number choosing procedure.  

The details of this procedure were presented in Section 4 of Hall and Welsh 

(1985). A simplified version was given in Phillips et al. (1996). When the tail 

distributions are of forms (1) and (2) with ( ) ( )i x Dx o xα αα − −= +  and 1p q= − , then 

by choosing  

2 3 2 1 3( ) , (2 / )m m n n with C Dλ λ⎡ ⎤= = =⎣ ⎦  

and [  ] represents the integer part of its argument, the mean squared error of the 

limit distribution of Hα
∧

 will be minimized. The parameter λ  could be estimated 
adaptively by  

 1

2 3
1 2

1/ 2 ( / )( )m t mn tλ α α α
∧ ∧ ∧ ∧

= −                            
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where mα
∧

 and 1tα
∧

are preliminary estimators of α  using formula (3) with data 

truncation numbers ( )m n nσ⎡ ⎤= ⎣ ⎦ and ( )m n nτ⎡ ⎤= ⎣ ⎦ , respectively, where 0 2 3σ< <  

and 2 3 1τ< < . Then the optimal choice of m could be obtained by  

                          2 3m nλ
∧ ∧⎡ ⎤= ⎢ ⎥⎣ ⎦

                               (6) 

Actually, this is the situation when 1ρ =  in Hall and Welsh (1985). However, this 

situation is usually the case as indicated by their paper. Moreover, it is superior as 

suggested by Drees and Kaufmann (1998). 

In sum, based on formulas (3) and (6), we could obtain the adaptive Hill’s 

estimator of tail index for the sequence { }
1

n
tX . 

3.2 the Smith’s (1987) Method 

Again, suppose we have an i.i.d sequence{ }
1

n
tX , where n  is the sample size. For a 

threshold value 0u > , defining the excesses , , 1, ,t t tY X u X u t s= − ≥ = , where s  

is the sample size of the constructed sequence { }1

s
tY  , then as Smith (1987) had 

argued , as u  increases, the limit distribution of tY  is the generalized Pareto (GP) 

distribution. In particular, tY  has the following asymptotic density  

                   
1 11( ) (1 ) , 0kyf y k γ

γ γ
− −

= + >                         (7) 

the range of y  being 0 ( 0)y k≤ ≤ ∞ ≥  or 0 ( 0)y k kγ≤ ≤ − < .  

   The case of 0k <  means that { }1

s
tY , hence { }1

n
tX have some upper bound which 

guarantees the existence of all moments. However, this is quite unusual in practice as 

pointed out by Koopman and Shephard (2003).  

For model (7), the key is that only 1/ k  moments exist. If we estimate k , then 

we can determine the order of moments for { }1

n
tX  by focusing on 1 k

∧

. 
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The unknown parameter vector '( , )kλ γ= could be estimated by maximum 

likelihood method as discussed in Smith (1987) and Koopman and Shephard (2003). 

In fact the log-likelihood of { }1

s
tY equals  

            
1

1log ( ; ) log (1 ) log
s

i
i

f y s z
k

λ γ
=

= − − + ∑                    (8) 

where 11i iz k yγ −= + .Based on the standard method of Fisher scoring where the score 

vector is  

 

2 1 1

1 1

1 2

1

log (1 ) log /
log ( ; )

(1 ) log /

s s

i i i
k i i

s

i i
i

k z k z ys d f y
s d

s k z yγ

γ
λ

λ
γ γ

− − −

= =

− −

=

⎛ ⎞
− +⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ − + +⎜ ⎟

⎝ ⎠

∑ ∑

∑
 

and the expected information matrix nI where  

 
1 11 ,

1 2(1 2 )(1 )
k

I
k k

+ −⎛ ⎞
= ⎜ ⎟−+ + ⎝ ⎠

 

then we could obtain the maximum likelihood estimator λ
∧

 and the asymptotic 

distribution of λ
∧

 is given by 

            1 1 2 1
( ) (0, ), (1 )

1 1
ds N I where I k

k
λ λ
∧

− − ⎛ ⎞
− ⎯⎯→ = + ⎜ ⎟+⎝ ⎠

          (9) 

The above method is called the peak over threshold (POT) approach; see Smith 

(1984, 1987). It had been used by Koopman and Shephard (2003) to test existence of 

variance of the weights in important sampling. Similar to the problem of choosing m 

in the Hill’s estimator, there is the problem about how to choose the threshold value 

u . Koopman and Shephard (2003) suggested that u should be sufficient large that 

only a small portion of the sample is used to get better results, for example, u taking 

value of the 0.99 upper quantile of the series in their study.  
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3.3 Hypothesis Testing 

Our purpose is to test existence of the second moment of { }1

n
tX , so it is necessary to 

do hypothesis test and make statistic inference based on both estimators . 

For the adaptive Hill’s estimator, our null hypothesis should be 0 : 2H α =  and 

alternative hypothesis 1 : 2H α < . Based on formula (5), we have the test statistics  

                   2 ( 2)Ht m α
∧

= −                             (10) 

The null hypothesis 0H  will be rejected when Ht  takes a negative value with large 

Ht  compared to a standard normal distribution. 

For Smith’s (1987) estimator, since we are interested in whether k  is 

significantly different from 1/ 2 , then the null hypothesis could be 0
1:
2

H k =  and 

the alternative hypothesis 1
1:
2

H k > , as showed in Koopman and Shephard (2003). 

Therefore, a signed t-test is available for 0H based on formula (9), which is   

                       13
2st s k

∧⎛ ⎞= −⎜ ⎟
⎝ ⎠

                            (11) 

The null hypothesis 0H  will be rejected for large positive value of st  compared to a 

standard normal distribution. 
 

So far, we have introduced the procedures for estimating the adaptive Hill’s 

estimator and Smith’s (1987) estimator, and we also establish the hypothesis test for 

infinite variance. In the next chapter, we examine their finite sample performance 

through Monte Carlo simulations. 
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Chapter 4  Simulation Study 
We compare performances of the adaptive Hill’s estimator and Smith’s (1987) 

estimator in this chapter. Our simulation study consists of two parts1. In the first 

simulation design, we generate i.i.d sequences which have the Pareto distribution with 

different tail indices and then estimate the tail index and do the statistic test using the 

methods described in Chapter 3. In our second simulation design, the generated data 

has a GARCH (1, 1) structure with innovations being Pareto distribution and we re-do 

the estimation and the test for the tail index. To consider the GARCH (1, 1) situation 

is because this is also a typical phenomenon in financial time series, especially for 

equity return series, see Bollerslev et al. (1992). Since we intend to test for daily, 

weekly and monthly stock returns, which the sample size are typically different in 

practice, we construct the sample size to be large, moderate and small in both 

simulations, corresponding to these time frequencies. 

     We set 0.4, 0.8σ τ= =  when using formula (6) to choose the optimal 

truncation number s  in estimating the Hill’s estimator for both simulations. The 

values are determined arbitrarily from the ranges 0< <2/3σ  and 2 / 3 1τ< < . In fact, 

as showed in Phillips et al. (1996), the results are fairly stable to different choices of 

these two parameters. For Smith’s estimator, we follow the suggestion by Koopman 

and Shephard (2003) by setting the threshold value u  taking value of 0.95 upper 

quantile and 0.99 upper quantile for each series respectively, which means 5% and 1% 

largest values of the original sample (unordered) are used. 

4.1 Simulation Ⅰ 

In this simulation, we generate i.i.d sequence which has the following Pareto density 

 1( )f x x αα − −=  

where α  is the tail shape parameter or the tail index2. 

                                                        
1 All simulations in this Chapterand Empirical study in Chapter 5 are implemented in Matlab; 
matlab codes are provided in Appendix B. 
2 The true data is generated from the uniform distribution in [0, 1] after density transformation. 
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We consider the situations when α  takes value from 0.5 to 4.5 by 0.5, the 

critical case is that when α  equals 2. Three different sample sizes are taken into 

account, for n = 500, 3000, 10000, corresponding to small, moderate and large 

sample size, respectively. For each case, 1000 experiments are repeated. The 

simulation results are presented in Table 1—3. 

From Table 1— 3, we could see that as the sample size increases, the 

performances for both estimators become better and better. The pattern is particularly 

obvious for the Smith’s estimator. In fact, when the sample size is sufficiently large 

(i.e. n =10000), the results are almost perfect for Hα
∧

 and ,1sk
∧

; the two estimators 

( Hα
∧

 and ,11/ sk
∧

) are very close to the true value of α ,  and the bias and the 

standard deviation of the two estimators are rather small relative to the size of each 

value of α . 

For the adaptive Hill’s estimator Hα
∧

, as showed in Table 1—3, the results are 

pretty good for each value of α  and for each sample size, although for large sample 

size the performance is better. Under every situation, both the real standard deviation 

( R std− ) and theoretical standard deviation (T std− ) increases as the value of true 

tail index α  increases, and the real standard deviation ( R std− ) of Hα
∧

 is larger 

than the theoretical standard deviation ( T std− ) which is computed from the 

asymptotic distribution of formula (5). However, the distance between these two 

standard deviations becomes smaller as the sample size n  increases. In fact, the 

two are almost the same for larger sample as we could see in Table 3. This result is 

consistent with Kearns and Pagan (1992) that the theoretical standard deviation for 

tail index estimator is generally underestimated. The adaptive data-based truncation 

number m  increases as the sample size n becomes larger. When the sample size 

n is fixed, m , the average value of m  ,is the same for every value of α . However, 

the ratio of the truncation number to sample size ( / )m n  becomes smaller and 

smaller as the sample size increases, from roughly 0.17 to about 0.08, see Table 1—3, 

which is consistent with condition in Hall and Welsh (1985) . 
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For Smith’s estimator 1k
∧

, the inverse 11/ k
∧

 is really the estimator for α .As we 

could see from Table 1—3, when the threshold u takes value of 0.95 upper quantile, 

the performance of 1k
∧

 is much better than 2k
∧

 that when u takes value of 0.99 

upper quantile. This is true for each value of α and every case of sample size. Both 

the bias and the real standard deviation for 1k
∧

 are smaller than that for 2k
∧

. In fact, 

the performances of 2k
∧

 are rather bad for small and moderate sample sizes as we 

could see from Table 1 and Table 2. Unlike the Hill’s estimator, the real standard 

deviations 1( )R std−  and 2( )R std− decreases as the sample size n  increases. 

Comparing the adaptive Hill’s estimator with the Smith’s estimator, we find that 

under the i.i.d setting with the Pareto distribution, generally the adaptive Hill’s 

estimator is better than the Smith’s estimator for each sample size. The adaptive Hill’s 

estimator has a surprisingly small bias for each value of α  in each case whereas the 

Smith’s estimator only performs well when the sample size is large (see Table 3) or 

the value of α  is not greater than 2 (see Table 1 and Table 2). The bias of the 

Smith’s estimator is substantially large when α  is large, especially when the sample 

size is small. Generally, although the standard deviation of the Hill’s estimator is 

slight larger than that of the Smith’s estimator when α  is larger than 2.5, it is 

smaller when α  is less than 2. For the cases around 2α = , the two are very close. 

In terms of mean square error (MSE), generally, when α  is less than 2, RMSE  of 

Hα
∧

 is smaller and for 2.5α > , RMSE  of 1k
∧

 is smaller. The two are close around 

2α = . 

Importantly, when we do the hypothesis testing as described in Chapter 3, the 

test based on the Hill’s estimator gives the correct answer for each value of α  and 

each sample size at the 1% significant level as showed in the tables, whereas the test 

based on the Smith’s estimator only performs well when the sample size is large. For 

small and moderate sample sizes, the test gives correct answers for only a very narrow 

range of α , however , the significant level is much lower than that for the Hill’s 

estimator. The difference is extremely obvious around the case when α  takes a true 
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value of 2, see Table 1 and Table 2. In sum, the test based on the Hill’s estimator gives 

much better results than that based on the Smith’s estimator. 

In conclusion, for the i.i.d data with the Pareto distribution, the adaptive Hill’s 

estimator has much smaller bias and smaller MSE (for α  less 2.5) than the Smith’s 

estimator, especially when the sample size is not large. And test for the adaptive Hill’s 

estimator shows much higher significant level in the hypothesis test universally. The 

above results imply that the adaptive Hill’s estimator outperforms the Smith’s 

estimator. 

 

Table 1 : Simulation Results with i.i.d Pareto Distribution ( n = 500 ) 

α  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Hα
∧

 0.494 0.987 1.481 1.974 2.468 2.961 3.455 3.949 4.442 

R std−  0.109 0.217 0.326 0.435 0.543 0.652 0.761 0.869 0.978 

T std−  0.060 0.120 0.180 0.240 0.300 0.360 0.420 0.480 0.540 

( )RMSE Hα
∧

 0.109 0.218 0.327 0.435 0.544 0.653 0.762 0.871 0.980 

m  87 87 87 87 87 87 87 87 87 

Ht  -6.478*** -4.273*** -2.068** 0.137 2.342*** 4.547*** 6.752*** 8.958*** 11.163*** 

 

1k
∧

 1.920 0.937 0.603 0.435 0.332 0.263 0.214 0.177 0.149 

11/ k
∧

 0.521 1.067 1.657 2.301 3.016 3.798 4.669 5.647 6.730 

1R std−  0.685 0.450 0.378 0.346 0.331 0.319 0.312 0.307 0.302 

( )1RMSE k
∧

 0.690 0.454 0.384 0.352 0.338 0.327 0.320 0.316 0.311 

.1st  4.137*** 1.300* 0.338 -0.150 -0.447 -0.644 -0.786 -0.893 -0.975 

          

2k
∧

 1.533 0.488 0.136 -0.056 -0.177 -0.250 -0.307 -0.343 -0.374 
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21/ k
∧

 0.652 2.047 7.345 -17.903 -5.644 -3.996 -3.256 -2.919 -2.674 

2R std−  1.789 1.375 1.232 1.152 1.094 1.062 1.036 1.014 1.001 

( )2RMSE k
∧

 1.849  1.467  1.341  1.279 1.237 1.212 1.194  1.175  1.165  

.2st  1.351* 0.003 -0.452 -0.700 -0.857 -0.951 -1.025 -1.070 -1.111 

Notes: 1) for each value of α , 1000 replications are implemented; 

      2) , , , ,H H sm t k tα are defined as that in Chapter3, R std− is the real standard deviation from simulation and 

T std− is theoretical standard deviation computed from asymptotic distribution (5) corresponding to the true value 

of each α ;RMSE is the root of mean square error; 

      3) the subscription “1” corresponding to the threshold value u being 0.95 upper quantile and “2” corresponding 

to the threshold value u being 0.99 upper quantile; 

      4) the one-side 90%, 95% and 99% critical values for standard normal distribution are ±1.28, ±1.65 and ±

2.33, respectively. ***: 1% significant level; **: 5% significant level; *:10% significant level. 

 

 

Table 2 : Simulation Results with i.i.d Pareto Distribution ( n = 3000 ) 

α  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Hα
∧

 0.499 0.998 1.497 1.995 2.494 2.993 3.492 3.991 4.490 

R std−  0.051 0.102 0.153 0.204 0.255 0.306 0.357 0.408 0.459 

T std−  0.034 0.067 0.101 0.134 0.168 0.201 0.235 0.268 0.302 

( )RMSE Hα
∧

 
0.051 0.102 0.153 0.204 0.255 0.306 0.357 0.408 0.459 

m  322 322 322 322 322 322 322 322 322 

Ht  -12.397*** -8.246*** -4.095*** 0.057 4.208*** 8.359*** 12.510*** 16.661*** 20.812*** 

          

1k
∧

 1.984 0.987 0.654 0.487 0.387 0.320 0.272 0.236 0.208 
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11/ k
∧

 0.504 1.013 1.529 2.052 2.584 3.124 3.674 4.233 4.802 

1R std−  0.280 0.177 0.144 0.129 0.120 0.114 0.110 0.107 0.105 

( )1RMSE k
∧

 0.280  0.178  0.145  0.129 0.120 0.115 0.111  0.108  0.105  

.1st  10.513*** 3.463*** 1.108 -0.072 -0.781 -1.255* -1.593* -1.848** -2.046** 

          

2k
∧

 1.970 0.959 0.617 0.445 0.340 0.270 0.220 0.182 0.153 

21/ k
∧

 0.508 1.043 1.620 2.249 2.939 3.699 4.542 5.480 6.532 

2R std−  0.574 0.391 0.335 0.309 0.294 0.285 0.278 0.274 0.270 

( )2RMSE k
∧

 0.574  0.393  0.339  0.314 0.300 0.292 0.286  0.282  0.279  

.2st  4.656*** 1.460* 0.379 -0.167 -0.497 -0.718 -0.877 -0.996 -1.089 

Notes: Notations are the same as in Table 1. 

 

 

Table 3 : Simulation Results with i.i.d Pareto Distribution ( n = 10000 ) 

α  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Hα
∧

 0.501 1.002 1.503 2.005 2.506 3.007 3.508 4.009 4.510 

R std−  0.033 0.066 0.100 0.133 0.166 0.199 0.232 0.266 0.299 

T std−  0.022 0.044 0.067 0.089 0.111 0.133 0.156 0.178 0.200 

( )RMSE Hα
∧

 0.033  0.066  0.100  0.133 0.166 0.199  0.232  0.266  0.299  

m  770 770 770 770 770 770 770 770 770 

Ht  -18.984*** -12.624*** -6.264*** 0.096 6.456*** 12.816*** 19.176*** 25.536*** 31.896***

1k
∧

 1.992 0.994 0.661 0.495 0.395 0.328 0.281 0.245 0.217 

11/ k
∧

 0.502 1.006 1.512 2.021 2.533 3.047 3.564 4.084 4.607 
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1R std−  0.159 0.098 0.079 0.069 0.064 0.060 0.058 0.056 0.055 

( )1RMSE k
∧

 0.159  0.099  0.079  0.070 0.064 0.060  0.058  0.056  0.055  

.1st  19.270*** 6.389*** 2.094** -0.055 -1.345* -2.205** -2.820*** -3.281*** -3.640***

          

2k
∧

 1.983 0.985 0.652 0.484 0.384 0.317 0.268 0.232 0.204 

21/ k
∧

 0.504 1.015 1.534 2.064 2.605 3.159 3.725 4.304 4.897 

2R std−  0.311 0.205 0.172 0.156 0.147 0.141 0.136 0.133 0.131 

( )2RMSE k
∧

 0.312  0.206  0.173  0.157 0.148 0.142  0.138  0.135  0.132  

.2st  8.565*** 2.808*** 0.882 -0.084 -0.665 -1.053 -1.331* -1.540* -1.702**

Notes: notations are the same as in Table 1. 

 

 

4.2 Simulation Ⅱ 

In this simulation, the generated data come from a GARCH (1, 1) structure with 

Pareto distributed innovations, that is  

 
2

1 10.001 0.1 0.85
t t t

t t t

x h

h x h

ε

− −

=

= + +
 

where tε  is i.i.d Pareto distribution with different tail shape values as in Simulation 

Ⅰ. The three different situations of sample size have been considered, too. For the 

GARCH (1, 1) structure, we set the parameters unchanged for every case in the 

simulation. The values of these three parameters are selected artificially, however, we 

do consider that GARCH effect is usually larger than ARCH effect and the sum of 

coefficients is close to one in practice. The simulation results are presented in Table 4

—6. 

From Table 4—6, we could see that the results are similar as that in Simulation 
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Ⅰ. When the sample size u  increases, both estimators improve. A slight difference 

is that when α  takes value of 0.5, both estimators are poor. This is particularly 

obvious in Table 6 where we cannot get a reasonable result. In fact, this is the case 

when none of the moments exist. And the real standard deviation ( R std− ) and the 

theoretical standard deviation (T std− ) for the Hill’s estimator are very close in each 

case of sample size, which is different from results in Kearns and Pagan (1992) who 

found the distance between those two standard deviation becomes larger when 

dependent relationship exists. However, in their study, the truncation number m  was 

not selected by the adaptive data-based method used in this paper. The ratio of /m n  

decreases as the sample size n  increases. Again, the Smith’s estimator performs 

better when the threshold value u  takes value of 0.95 upper quantile of the series 

than that when u  is 0.99 upper quantile for every situation. 

     Similar as results in Simulation Ⅰ, in general the adaptive Hill’s estimator Hα
∧

 

has much smaller bias for each value of α  and each case of sample size than the 

Smith’s estimator, especially when sample size is not large, see Table 4 and Table 5. 

Actually, in those cases, the bias for Smith’s estimator is unacceptably large when α  

is large than 2. If we look at the mean square error ( )MSE , the adaptive Hill’s 

estimator has smaller MSE  when α  is not greater than 2. Although the Smith’s 

estimator performs very well for in large samples as showed in Table 6, the adaptive 

Hill’s estimator always outperforms it in the hypothesis testing for each case 

considered. In fact, the test performance the adaptive Hill’s estimator is pretty good 

for each value of α , even when the sample size is small. 

 

 

Table 4 : Simulation Results for GARCH (1,1) series with Pareto Distribution ( n =500 ) 

α  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Hα
∧

 0.575 0.998 1.516 2.017 2.523 3.021 3.525 4.030 4.528 

R std−  0.163 0.169 0.231 0.307 0.384 0.464 0.529 0.613 0.674 
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T std−  0.089 0.119 0.183 0.243 0.303 0.364 0.425 0.483 0.545 

( )RMSE Hα
∧

 0.180 0.169 0.231 0.308 0.385 0.464 0.530 0.613 0.674 

m  35 94 92 95 97 96 97 97 97 

Ht  -4.153*** -4.608*** -2.211** 0.024 2.340*** 4.566*** 6.874*** 9.197*** 11.447***

 

1k
∧

 1.541 0.968 0.634 0.457 0.351 0.280 0.228 0.192 0.161 

11/ k
∧

 0.649 1.033 1.577 2.188 2.847 3.572 4.390 5.222 6.216 

1R std−  1.001 0.483 0.379 0.346 0.334 0.322 0.313 0.307 0.303 

( )1RMSE k
∧

 1.101  0.484  0.381  0.349 0.338 0.327 0.318  0.313  0.309  

.1st  3.006*** 1.351* 0.387 -0.124 -0.429 -0.635 -0.786 -0.891 -0.979 

          

2k
∧

 0.320 0.398 0.139 -0.042 -0.179 -0.270 -0.315 -0.355 -0.396 

21/ k
∧

 3.125 2.511 7.201 -23.811 -5.584 -3.700 -3.180 -2.817 -2.522 

2R std−  1.291 1.274 1.225 1.156 1.112 1.079 1.054 1.031 1.006 

( )2RMSE k
∧

 2.119  1.409  1.334  1.277 1.253 1.236 1.213  1.195  1.181  

.2st  -0.232 -0.131 -0.466 -0.700 -0.877 -0.994 -1.052 -1.104 -1.157 

Notes: 1) for each value of α , 1000 replications are implemented; 

      2) , , , ,H H sm t k tα are defined as that in Chapter3, R std− is the real standard deviation from simulation and 

T std− is theoretical standard deviation computed from asymptotic distribution (5) corresponding to the true 

value of each α ;RMSE is the root of mean square error. 

      3) the subscription “1” corresponding to the threshold value u being 0.95 upper quantile and “2” 

corresponding to the threshold value u being 0.99 upper quantile; 

      4) the one-side 90%, 95% and 99% critical values for standard normal distribution are ±1.28, ±1.65 and ±

2.33, respectively. ***: 1% significant level; **: 5% significant level; *:10% significant level. 
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Table 5 : Simulation Results for GARCH (1,1) series with Pareto Distribution ( n = 3000 ) 

α  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Hα
∧

 0.472 0.974 1.498 2.003 2.504 3.001 3.503 4.005 4.510 

R std−  0.165 0.117 0.130 0.158 0.203 0.246 0.291 0.321 0.345 

T std−  0.063 0.064 0.101 0.134 0.167 0.201 0.234 0.267 0.301 

( )RMSE Hα
∧

 0.168  0.120  0.130  0.158 0.203 0.246 0.291  0.321  0.345  

m  65 334 312 328 327 328 333 331 332 

Ht  -6.160*** -8.727*** -4.135*** 0.016 4.174*** 8.268*** 12.488*** 16.654*** 20.965***

 

1k
∧

 3.664 1.042 0.664 0.493 0.392 0.325 0.276 0.240 0.211 

11/ k
∧

 0.273 0.960 1.505 2.030 2.550 3.080 3.618 4.169 4.733 

1R std−  3.052 0.658 0.155 0.129 0.123 0.115 0.112 0.107 0.104 

( )1RMSE k
∧

 3.476  0.659  0.155  0.129 0.123 0.115 0.112  0.108  0.105  

.1st  22.370*** 3.834*** 1.163 -0.052 -0.762 -1.240* -1.581* -1.840** -2.041**

          

2k
∧

 1.563 0.950 0.629 0.452 0.347 0.276 0.226 0.187 0.156 

21/ k
∧

 0.640 1.053 1.590 2.214 2.886 3.624 4.435 5.354 6.430 

2R std−  0.973 0.382 0.344 0.310 0.296 0.286 0.280 0.276 0.272 

( )2RMSE k
∧

 1.067  0.385  0.346  0.314 0.301 0.291 0.286  0.283  0.281  

.2st  3.360*** 1.423* 0.408 -0.153 -0.485 -0.709 -0.868 -0.991 -1.089 

Notes: notations are the same as in Table 4. 
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Table 6 : Simulation Results for GARCH (1,1) series with Pareto Distribution ( n =10000 ) 

α  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Hα
∧

 - 0.964 1.500 2.005 2.506 3.009 3.513 4.013 4.515 

R std−  - 0.112 0.089 0.110 0.145 0.154 0.176 0.205 0.230 

T std−  - 0.044 0.067 0.090 0.112 0.134 0.156 0.179 0.201 

( )RMSE Hα
∧

 - 0.118  0.089  0.110 0.145 0.154  0.176  0.205  0.231  

m  - 801 741 745 768 792 791 775 772 

Ht  - -13.331*** -6.313*** -0.003 6.312*** 12.773*** 19.225*** 25.445*** 31.804*** 

 

1k
∧

 - 1.023 0.666 0.497 0.397 0.330 0.282 0.246 0.218 

11/ k
∧

 - 0.978 1.502 2.011 2.517 3.035 3.552 4.068 4.593 

1R std−  - 0.175 0.079 0.068 0.065 0.059 0.057 0.055 0.054 

( )1RMSE k
∧

 - 0.176  0.079  0.068 0.065 0.059  0.057  0.055  0.054  

.1st  - 6.785*** 2.138** -0.034 -1.326* -2.201** -2.821*** -3.282*** -3.644*** 

          

2k
∧

 - 0.983 0.657 0.487 0.386 0.318 0.269 0.233 0.205 

21/ k
∧

 - 1.017 1.523 2.053 2.590 3.148 3.718 4.295 4.887 

2R std−  - 0.229 0.174 0.156 0.148 0.140 0.136 0.133 0.131 

( )2RMSE k
∧

 - 0.230  0.174  0.157 0.149 0.141  0.137  0.134  0.132  

.2st  - 2.807*** 0.905 -0.075 -0.657 -1.053 -1.334* -1.543* -1.705** 

Notes: notations are the same as in Table 4. 

 

 

Summary for our simulation study, we find that the adaptive Hill’s estimator 

outperforms the Smith’s estimator for both i.i.d series and dependent series where a 
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GARCH (1, 1) structure exists. In both simulations, the adaptive Hill’s estimator has 

smaller bias for each value of α  and every case of sample size, it also has smaller 

MSE  than that of the Smith’s estimator when α  is less than 2.5. Though the 

Smith’s estimator does well when the sample size is large (10000 in our simulations), 

it is poor when we do the hypothesis test for infinite variance. The performance of the 

adaptive Hill’s estimator is pretty good in the hypothesis test and keeps at 1% 

significant level even for small sample. 

The results presented above imply that it is better to use the adaptive Hill’s 

estimator in our empirical study. 
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Chapter 5   Empirical Study 
We apply the above adaptive Hill’s estimator to main stock index returns in order to 

test whether or not the second moment of these series exists. In addition, we also test 

for the existence of the fourth moment as a byproduct. 

Our empirical data consists of eleven stock index returns series: the Dow Jones 

Industrial Average index (Dow), Standard& Poor 500 index (S&P 500) and Nasdaq 

index for the American market; the CAC 40 index, FTSE 100 index and DAX index 

for the European stock markets; the Nikkei 225 (N 225), Hang Seng index (HSI), 

Straits Times index (STI), Taiwan Weighted index (TWII), and Seoul Composite 

index (KS11) for the Asian markets3. These include the main stock indices over the 

world. For each stock index, there are three different time frequencies of returns: daily, 

weekly and monthly. The returns are defined as 1100*(log log )t tP P−− , where tP  is 

the closing price at time t . So in all, we have thirty-three time series. The length for 

these series ranges from about 11 to 59 years according to data availability. The daily 

returns series has the largest sample size and the monthly returns series has the 

smallest sample size. Number of observations for each series could be seen in Table 7. 

Summary statistics for each returns series are presented in Table 7. We could see 

clearly the existence of heavy tails in these series. The Kurtosis of these returns, at all 

three frequencies, is far larger than three as showed in the table. An extreme case is 

the HSI: all the three series have Kurtosis larger than ten. And the daily returns has 

the largest Kurtosis value for almost each index, but the weekly returns and monthly 

returns have close Kurtosis except several cases ( for example, Nasdaq, HSI). 

Additionally, there is commonly negative Skewness for every index at all frequencies 

(except monthly returns for FTST 100). However, the absolute value of Skewness is 

typically very small and close to zero in fact, except the case of HSI. 

 

 

                                                        
3 All data are from yahoo.finance.com. 
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Table 7: Descriptive Statistics 

 Dow S&P500 

 N Me. Std. Max. Min. Skew. Kurto. N Me. Std. Max. Min. Skew. Kurto.

D 14716 0.03 0.91 9.67 -25.63 -1.61 50.32 14716 0.03 0.90 8.71 -22.90 -1.27 36.38 

W 3051 0.13 2.01 11.86 -15.39 -0.43 6.63 3051 0.14 1.97 13.21 -13.01 -0.39 6.31 

M 701 0.57 4.12 13.47 -26.42 -0.67 6.16 701 0.62 4.09 15.10 -24.54 -0.58 5.44 

               

 Nasdaq CAC 40 

 N Me. Std. Max. Min. Skew. Kurto. N Me. Std. Max. Min. Skew. Kurto.

D 9435  0.03  1.19  13.26  -12.04  -0.30 13.27 4624 0.02 1.32  7.00  -7.68 -0.13 5.92 

W 1951  0.16  2.73  17.38  -29.18  -1.16 14.30 957 0.09 2.70  11.03  -12.13 -0.14 3.95 

M 448  0.70  6.35  19.87  -31.79  -0.85 5.96 219 0.37 5.62  12.59  -19.23 -0.57 3.61 

               

 FTSE100 DAX  

 N Me. Std. Max. Min. Skew. Kurto. N Me. Std. Max. Min. Skew. Kurto.

D 6123  0.03  1.03  7.60  -13.03  -0.51 10.47 4436 0.03 1.39  7.55  -9.87 -0.23 6.87 

W 1265  0.13  2.18  10.07  -19.29  -0.71 8.83 918 0.16 2.91  12.89  -14.08 -0.30 5.14 

M 290  -0.55  4.62  30.17  -13.49  1.27 9.27 211 0.71 6.21  19.37  -29.33 -0.91 6.08 

               

 N225 HSI 

 N Me. Std. Max. Min. Skew. Kurto. N Me. Std. Max. Min. Skew. Kurto.

D 6025  0.01  1.38  12.43  -16.14  -0.15 10.05 5328 0.04 1.73  17.25  -40.54 -3.08 73.48 

W 1268  0.02  2.73  11.05  -12.79  -0.28 4.79 1121 0.19 3.76  13.92  -54.01 -3.01 42.75 

M 293  0.10  6.00  18.29  -21.35  -0.37 3.60 258 0.83 8.32  26.45  -58.16 -1.52 13.28 

               

 STI TWII 

 N Me. Std. Max. Min. Skew. Kurto. N Me. Std. Max. Min. Skew. Kurto.

D 5115  0.02  1.26  12.87  -10.55  -0.13 12.38 2697 -0.01 1.62  8.52  -9.94 -0.13 5.42 

W 1067  0.12  2.91  19.87  -25.51  -0.51 12.28 561 -0.04 3.65  18.32  -14.29 -0.06 5.18 
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M 246  0.52  6.70  24.86  -21.72  -0.34 5.73 131 -0.22 7.73  22.42  -21.50 -0.02 3.35 

               

 KS11  

 N Me. Std. Max. Min. Skew. Kurto.        

D 2700  0.03  2.14  10.02  -12.81  -0.13 6.19        

W 570  0.13  4.66  17.44  -21.35  -0.38 5.67        

M 131  0.64  10.06  39.76  -31.81  0.24 4.41        

Notes: 1) D : daily returns ;W : weekly returns ; M :monthly returns; 

2) N : number of observations; Me.: mean; Std.: standard deviation; Max..: maximal value; Min..: minimal value;  

Skew.: skewness; Kurto.:Kurtosis; 

3)Time period: Dow:1950.01.01-2008.06.30 ; S&P500 :1950.01.01-2008.06.30 ; Nasdaq :1971.02.01-2008.06.30 ; 

CAC 40 :1990.03.01-2008.06.30 ;FTSE 100 :1984.04.01-2008.06.30 ;DAX :1990.11.26-2008.06.30 ; 

N 225 :1984.01.04-2008.06.30 ; HSI :1986.12.31-2008.06.30 ;STI :1987.12.28-2008.06.30 ; 

TWII: 1997.07.01-2008.06.30; KS11:1997.07.01-2008.06.30. 

 

The tail index estimator and test results are showed in Table 8. We consider three 

kinds of tails for each series: right-tail which is corresponding to positive extreme 

values in the returns; left-tail which is corresponding to negative extreme values and 

two-tail which combines all the extreme values. If any of these three tail indices is 

less than 2, then the second moment does not exist for that series. Except for testing 

the second moment or the infinite variance where 2α = , we also test the existence 

for the fourth moment. The values of test statistics are expressed in 2t  and 4t  

respectively, see Table 8. 

As we could see from Table 8, the value of α
∧

 is in the range of (2.630, 5.050) 

for daily data; and (2.078, 4.324) for weekly data, (1.853, 5.312) for monthly data 

respectively. These results are similar as that in Loretan and Phillips (1994). The 

smallest value of α
∧

 , which is also the only case that 2α
∧

< , appears in the left-tail 

for monthly returns of STI which is about 1.853 and the biggest value of α
∧

 is about 
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5.312 which is the left-tail index for monthly data of TWII. Most values of α
∧

 is 

larger than 3. And typically the left-tail value is smaller than that of the other two, 

however, there are cases where the right-tail values is larger, for example, daily 

returns for Nasdaq and CAC 40, weekly returns for STI and TWII , and monthly 

returns for TWII. The values of α
∧

 imply that for most series, the first three moment 

should exist but the fourth moment may not exist. 

When we look at the results for the hypothesis test of 2α = , the evidence is 

obvious. The null hypothesis could not be rejected for any case. The value of test 

statistics 2t for the second moment is positive for almost every series, and in fact 

takes relatively large values in most cases. The only negative value of 2t happens for 

the left tail of monthly returns for STI which is negative of -0.294, however, we can’t 

reject the null hypothesis, too. The above results show that we should accept the null 

hypothesis that 0 : 2H α = , thus universally the second moment exists for all the 

indices and at all frequencies. 

However, when we perform an additional test for the existence of the fourth 

moment, there is strong evidence that the null hypothesis should be rejected, 

especially for daily returns. If we look at the values of 4t which is the test statistics 

for the null hypothesis 0 : 4H α = , we could find that it is negative in most cases as 

showed in Table 8. And the null hypothesis is rejected at three time frequencies for 

different indices. For example, it is been rejected for daily returns of Dow index, S&P 

500, Nasdaq, CAC 40, FTSE100, DAX, HSI and STI, all at 1% or 5% significant 

level. For weekly returns, it’s been rejected for Nasdaq, HSI, STI, TWII, KS11 etc; 

and for monthly returns, DAX, STI, KS11. There are situations where the null 

hypothesis can’t be rejected for several series, for example, weekly returns of Dow, 

CAC 40 and FTSE 100, and monthly returns of Dow and FTSE 100. These series are 

mainly concentrated on weekly and monthly frequencies. It seems that the null 

hypothesis has been rejected generally for daily returns and less frequently for weekly 
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returns and monthly returns. A special case is N 225 index where the null hypothesis 

could not be rejected for any of these three time frequencies. The test results imply 

that the fourth moment generally does not exist, especially for daily returns. 

Further, since the GARCH effect exists commonly in these return series, to check 

the robustness of our results, we remove the GARCH effect from the original return 

series. A Gaussian-GARCH model has been estimated to each series, and then we 

re-estimate the Hill’s estimator to the residuals4. The results are presented in Table 9. 

From the table, we could see clearly that we obtain very close tail index estimators as 

results in Table 8 for almost every series. The tail index is universally larger than 2 

and less than 4, mainly in the range of (3, 4). The evidence for general existence of 

second moment is overwhelming. For the existence of fourth moment, the pattern 

with respective to time frequency is similar as that in Table 8. The null hypothesis is 

more likely to be rejected for daily returns and less likely for weekly returns and 

monthly returns. Seemly the GARCH effect doesn’t have much impact on the results. 

 

In sum, the results in Table 8 and Table 9 imply that for stock index returns, the 

second moment does exist at time frequencies of daily, weekly and monthly; hence 

the variance is finite for these series. However, the fourth moment seldom exists, 

especially for daily returns. The maximal moment exponent seems less than 4 

generally for stock index returns over the world. The results are robust to the 

existence of GARCH effect. The evidence is obvious and small difference among 

these indices may be induced by gap in sample size partly. 

 

 

 

 

 

                                                        
4 For these return series, the existence of GARCH effect is commonly. We estimate the Gaussian 
GARCH model for every series using matlab. The specification of the GARCH structure is chosen 
based on BIC. However, for most series, a GARCH (1, 1) specification is sufficient enough to 
explore the GARCH effect. 
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Table 8: Empirical Results for Tail Index 

  Dow  S&P 500 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 3.574  209  11.375 -1.541*  3.668 185 11.343  -1.129 

 left-tail 3.525  286  12.897 -2.007**  3.388 260 11.194  -2.465*** 

 two-tail 3.672  308  14.672 -1.439 *  3.730 294 14.833  -1.157 

           

W right-tail 3.962  78  8.662 -0.085  3.919 83 8.740  -0.185 

 left-tail 3.531  85  7.056 -1.082  3.394 96 6.831  -1.484* 

 two-tail 3.703  102  8.602 -0.749  3.827 85 8.422  -0.399 

           

M right-tail 4.024  33  5.813 0.034   3.551 43 5.085  -0.736 

 left-tail 3.201  35  3.554 -1.181  2.923 32 2.609  -1.524* 

 two-tail 3.804  50  6.378 -0.346  4.241 43 7.346  0.395  

           

  Nasdaq  CAC 40 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 2.760  168  4.926 -4.018***  3.307 110 6.855  -1.817** 

 left-tail 3.385  160  8.760 -1.944**  3.527 92 7.325  -1.133 

 two-tail 3.212  171  7.924 -2.576***  4.002 100 10.011  0.006  

           

W right-tail 3.631  71  6.872 -0.777  4.293 46 7.776  0.497  

 left-tail 2.859  60  3.326 -2.210**  4.264 39 7.070  0.413  

 two-tail 3.190  84  5.455 -1.855*  4.338 67 9.569  0.692  

           

M right-tail 3.490  27  3.872 -0.662  4.462 17 5.076  0.476  

 left-tail 2.359  28  0.951 -2.170**  2.482 15 0.934  -1.470* 

 two-tail 3.643  34  4.791 -0.520  3.905 19 4.151  -0.104 
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  FTSE100  DAX 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 3.734  127  9.769 -0.750  3.264 118 6.864  -1.999** 

 left-tail 3.099  132  6.312 -2.589***  3.394 89 6.574  -1.430 

 two-tail 3.751  139  10.320 -0.735  3.792 94 8.686  -0.505 

           

W right-tail 4.090  63  8.294 0.178   3.364 43 4.471  -1.043 

 left-tail 3.522  48  5.272 -0.828  4.197 36 6.590  0.295  

 two-tail 3.865  65  7.518 -0.272  3.968 58 7.493  -0.061 

           

M right-tail 3.260  18  2.672 -0.785  3.193 23 2.861  -0.968 

 left-tail 4.113  20  4.726 0.127   2.069 17 0.143  -1.990** 

 two-tail 3.951  26  4.975 -0.062  2.663 20 1.484  -1.494* 

           

  N225  HSI 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 3.732  125  9.681 -0.750  3.155 121 6.353  -2.324** 

 left-tail 4.053  116  11.054 0.142   2.630 159 3.969  -4.320*** 

 two-tail 3.851  146  11.182 -0.450  2.939 238 7.244  -4.092*** 

           

W right-tail 3.541  59  5.918 -0.881  3.289 51 4.601  -1.270 

 left-tail 3.610  51  5.748 -0.697  2.644 58 2.450  -2.583*** 

 two-tail 3.458  60  5.648 -1.049  2.911 102 4.600  -2.750*** 

           

M right-tail 3.071  25  2.676 -1.162  3.062 25 2.656  -1.172 

 left-tail 4.019  19  4.401 0.021   2.650 18 1.379  -1.432* 

 two-tail 3.574  23  3.774 -0.511  2.217 82 0.983  -4.036*** 
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  STI  TWII 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 2.809  149  4.937 -3.635***  3.923 62 7.571  -0.152 

 left-tail 2.771  154  4.782 -3.814***  3.831 73 7.823  -0.360 

 two-tail 3.134  143  6.778 -2.590***  4.258 75 9.777  0.558  

           

W right-tail 2.633  48  2.193 -2.368***  2.590 33 1.695  -2.025** 

 left-tail 3.066  48  3.693 -1.618**  3.922 28 5.085  -0.103 

 two-tail 3.011  83  4.607 -2.252**  4.324 41 7.440  0.518  

           

M right-tail 2.095  31  0.266 -2.651***  2.731 13 1.318  -1.144 

 left-tail 1.853  16  -0.294 -2.147**  5.312 12 5.736  1.136  

 two-tail 3.617  17  3.333 -0.395   4.598 17 5.357  0.617  

           

  KS11   

  α
∧

 m  2t  4t       

D  right-tail 3.800  66  7.310 -0.407      

 left-tail 3.425  72  6.043 -1.221      

 two-tail 5.050  71  12.850 2.212       

           

W right-tail 2.941  35  2.784 -1.566**      

 left-tail 2.078  30  0.213 -2.632***      

 two-tail 3.111  35  3.285 -1.316*      

           

M right-tail 2.021  13  0.038 -1.784**      

 left-tail 4.436  12  4.219 0.377       

 two-tail 2.760  19  1.657 -1.351*      

Notes: 1) D : daily returns ;W : weekly returns ; M :monthly returns; 
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     2) right tail is defined as tail of { }1

n
tX ;left tail is defined as { }1

n
tX− ;two tail is defined as 

{ }1

n
tX ; 

     3) α
∧

: tail index estimated; m :adaptive truncation number ; 2t : the test statistics for 

2α = ; 4t : the test statistics for 4α = ; 

4) Time period : Dow 1950.01.01-2008.06.30 ; S&P 500 :1950.01.01-2008.06.30 ; 

 Nasdaq :1971.02.01-2008.06.30 ; CAC 40 :1990.03.01-2008.06.30;  

FTSE 100 :1984.04.01-2008.06.30 ; DAX :1990.11.26-2008.06.30 ; 

N 225 :1984.01.04-2008.06.30 ; HSI :1986.12.31-2008.06.30 ; 

STI :1987.12.28-2008.06.30 ; TWII: 1997.07.01-2008.06.30;  

KS11:1997.07.01-2008.06.30. 

5) the one-side 90%, 95% and 99% critical values for standard normal distribution are  

±1.28, ±1.65 and ±2.33, respectively. ***: 1% significant level; **: 5% significant 

level; *:10% significant level. 

 

 

Table 9: Empirical Results for Tail Index after Removing the GARCH Effect 

  Dow  S&P 500 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 3.580  198  11.116 -1.478*  3.455 194 10.135  -1.897 **

 left-tail 3.496  326  13.504 -2.276**  3.535 275 12.728  -1.927** 

 two-tail 3.612  336  14.773 -1.779**  3.662 312 14.681  -1.491* 

           

W right-tail 3.742  76  7.593 -0.562  3.876 80 8.388  -0.278 

 left-tail 3.466  88  6.875 -1.253  3.386 101 6.964  -1.543* 

 two-tail 3.966  122  10.859 -0.093  3.927 90 9.138  -0.174 

           

M right-tail 3.704  32  4.820 -0.418  3.448 41 4.634  -0.884 
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 left-tail 3.162  38  3.582 -1.291*  3.271 34 3.704  -1.063 

 two-tail 3.767  59  6.786 -0.448  3.569 44 5.204  -0.715 

           

  Nasdaq  CAC 40 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 2.730  164  4.672 -4.067***  3.250 109 6.522  -1.959** 

 left-tail 3.388  145  8.357 -1.842**  3.569 92 7.522  -1.035 

 two-tail 3.238  165  7.953 -2.446***  4.015 102 10.176  0.038  

           

W right-tail 3.441  68  5.940 -1.153  4.307 45 7.737  0.514  

 left-tail 2.884  63  3.507 -2.215**  4.377 39 7.421  0.588  

 two-tail 3.110  89  5.238 -2.098**  4.307 58 8.786  0.585  

           

M right-tail 3.488  26  3.795 -0.652  4.746 16 5.493  0.746  

 left-tail 2.555  30  1.520 -1.979**  2.724 16 1.447  -1.276* 

 two-tail 3.112  33  3.193 -1.276  4.256 20 5.045  0.286  

           

  FTSE100  DAX 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 3.735  125  9.700 -0.740  3.211 115 6.492  -2.116** 

 left-tail 3.115  134  6.454 -2.561***  3.446 89 6.821  -1.307* 

 two-tail 3.669  144  10.013 -0.994  3.664 95 8.109  -0.819 

           

W right-tail 3.883  59  7.230 -0.226  3.501 41 4.807  -0.798 

 left-tail 3.782  50  6.300 -0.385  4.147 37 6.530  0.224  

 two-tail 3.666  65  6.714 -0.674  3.949 57 7.358  -0.096 

           

M right-tail 3.588  19  3.461 -0.449  2.810 21 1.856  -1.363 

 left-tail 3.604  19  3.495 -0.432  2.306 18 0.648  -1.797** 
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 two-tail 4.077  27  5.397 0.101   2.477 25 1.192  -1.904** 

           

  N225  HSI 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 3.631  123  9.045 -1.023  3.137 117 6.148  -2.334*** 

 left-tail 4.026  118  11.003 0.070   2.663 171 4.336  -4.371*** 

 two-tail 3.944  147  11.782 -0.171  2.851 280 7.119  -4.807*** 

           

W right-tail 3.359  57  5.129 -1.210  3.277 48 4.424  -1.252 

 left-tail 3.733  52  6.250 -0.481  2.706 66 2.869  -2.628*** 

 two-tail 3.566  59  6.015 -0.833  3.094 98 5.414  -2.243** 

           

M right-tail 2.942  24  2.308 -1.296*  2.916 24 2.243  -1.328* 

 left-tail 3.957  20  4.377 -0.048  2.865 19 1.884  -1.237 

 two-tail 3.754  22  4.114 -0.288  2.801 50 2.830  -2.121** 

           

  STI  TWII 

  α
∧

 m  2t  4t   α
∧

 m 2t  4t  

D  right-tail 2.738  138  4.334 -3.707***  3.877 62 7.390  -0.242 

 left-tail 3.071  146  6.472 -2.805***  3.925 74 8.278  -0.162 

 two-tail 3.019  134  5.897 -2.839***  4.297 77 10.077  0.651  

           

W right-tail 2.489  47  1.675 -2.591***  2.568 33 1.631  -2.057** 

 left-tail 3.016  50  3.591 -1.740**  3.950 28 5.158  -0.067 

 two-tail 2.606  110  3.177 -3.656***  4.149 42 6.965  0.242  

           

M right-tail 2.202  27  0.524 -2.336***  2.662 13 1.193  -1.206 

 left-tail 1.929  17  -0.147 -2.135**  5.421 12 5.926  1.231  

 two-tail 2.905  17  1.867 -1.128  5.018 17 6.222  1.050  
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  KS11   

  α
∧

 m  2t  4t       

D  right-tail 3.732  66  7.035 -0.545      

 left-tail 3.502  73  6.415 -1.065      

 two-tail 4.860  73  12.217 1.837       

           

W right-tail 2.894  34  2.607 -1.612*      

 left-tail 2.140  30  0.384 -2.547***      

 two-tail 2.932  35  2.756 -1.580*      

           

M right-tail 1.863  12  -0.238 -1.851**      

 left-tail 4.742  13  4.943 0.669       

 two-tail 3.628  20  3.641 -0.416      

Notes: notations are the same as in Table 8. 
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Chapter 6   Summary of Conclusion 
The problem that the variance of stock returns is finite or infinite is really related to 

extreme events in the stock returns. Based on extreme value theory, we examine this 

problem in this paper.     

We compared two tail index estimators through Monte Carlo simulations: Hill’s 

estimator with adaptive data-based truncation number and Smith’s estimator through 

POT method. We find that the adaptive Hill’s estimator performs better in both i.i.d 

setting and dependent environment with GARCH (1, 1) structure. It has not only 

much smaller bias for all cases but also smaller MSE  when the true tail index α  is 

not more than 2. And importantly, the Hill’s estimator shows undoubted results for the 

test of infinite variance. The Smith’s estimator does perform well when the sample 

size is large; however, the performance is poor when sample size is small. 

    When we apply the adaptive Hill’s estimator to main stock index returns over the 

world, the results show that for most indices, the second moment does exist for daily, 

weekly and monthly returns. Thus the variance of stock index returns is finite 

commonly. However, an additional test for the existence of the fourth moment shows 

that generally the fourth moment does not exist, especially for daily returns. These 

conclusions don’t change when the GARCH effect is removed from the original series. 

The results imply that for most stock returns, the maximal moment existed is around 

three, and difference among different time frequencies (i.e. daily, weekly, monthly) is 

small. 
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Appendices 

Appendix A.  
Time Plots of Close Price for All the Series 
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Appendix B. 
The following are matlab codes used in this paper. 
 
1. Codes for simulationⅠand simulation Ⅱ. 
function  result=result(nob,rep); 
% This function returns the retults of the adaptive Hill's estimator and GP estimator. 
alpha=[0.5 2;1 2;1.5 2;2 2;2.5 2;3 2;3.5 2;4 2;4.5 2]; 
for j=1:9; 
    a=alpha(j,1); 
    data=simulate_par(nob,a,rep);  % data=simulate_garchpar(nob,a,rep); 
    for i=1:rep; 
        x=data(:,i); 
        y=sort(x,'descend'); 
        n=length(y); 
        m1=floor(n^0.4); 
        m2=floor(n^0.8) 
        y1=log(y(1:m1));； 
        y2=log(y(1:m2)); 
        a1=1/(sum(y1(1:m1-1))/(m1-1)-y1(m1)); 
        a2=1/(sum(y2(1:m2-1))/(m2-1)-y2(m2)); 
        c=abs(a1/(sqrt(2)*(n/m2)*(a2-a1))); 
        lad=c^(2/3); 
        m=floor(n^(2/3)*lad); 
        if( m<n); 
        h=log(y(1:m)); 
        est=1/(sum(h(1:m-1))/(m-1)-h(m)); 
        ad=2/sqrt(m); 
        t1=(est-2)/ad; 
        pa(:,i)=[est;m;ad;t1]; 
        gp(:,i)=gpest(x); 
        continue; 
        end; 
    end; 
    result(:,j)=[mean(pa(1,:));  std(pa(1,:)); mean(pa(3,:)); mean(pa(4,:));mean(pa(2,:));  
std(pa(2,:));mean(gp(1,:));std(gp(1,:));mean(gp(2,:));mean(gp(3,:));std(gp(3,:));mean(gp(4,:))]; 
end; 
  
result; 
return 
 
function pa=Hill(x) 
% This function returns the adaptive Hill's estimator. 
        y=sort(x,'descend'); 
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        n=length(y); 
        m1=floor(n^0.4); 
        m2=floor(n^0.8); 
        y1=log(y(1:m1)); 
        y2=log(y(1:m2)); 
        a1=1/(sum(y1(1:m1-1))/(m1-1)-y1(m1)); 
        a2=1/(sum(y2(1:m2-1))/(m2-1)-y2(m2)); 
        c=abs(a1/(sqrt(2)*(n/m2)*(a2-a1))); 
        lad=c^(2/3); 
        m=floor(n^(2/3)*lad); 
        if( m<n); 
        h=log(y(1:m)); 
        est=1/(sum(h(1:m-1))/(m-1)-h(m)); 
        ad1=2/sqrt(m); 
        ad2=4/sqrt(m); 
        t1=(est-2)/ad1; 
        t2=(est-4)/ad2 
        pa=[est;m;t1;t2]; 
        end; 
        pa; 
       return 
 
function y=gpest(x); 
% This function returns the GP estimators of tail index and the t-test statistics. 
data=x; 
d=data; 
nd=length(d); 
u1=quantile(d,0.95); 
u2=quantile(d,0.99); 
j=1; 
k=1; 
for i=1:nd; 
    if (d(i)>=u1); 
        d1(j)=d(i); 
         
     j=j+1; 
    end; 
end; 
  
for i=1:nd; 
     if (d(i)>=u2);  
         d2(k)=d(i);  
         k=k+1;  
     end; 
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end;  
  
z1=d1-u1;                    
z2=d2-u2; 
n1=length(z1); 
n2=length(z2); 
  
beta1=gpfit(z1);      
beta2=gpfit(z2);  
  
delt1=beta1(1); 
t1=sqrt(n1/3)*(delt1-1/2); 
  
delt2=beta2(1); 
t2=sqrt(n2/3)*(delt2-1/2); 
y=[delt1;t1;delt2;t2]; 
return 
 
function y=simulate_par(nob,alpha,rep) 
% This function generates Pareto distribution data. 
rand('seed',1); 
for i=1:rep; 
    x=rand(nob,1); 
    y(:,i)=(1-x).^(-1/alpha); 
end; 
return 
 
% function y=simulate_garchpar(nob,alpha,rep) 
% This funcion generates data with GARCH structure and Pareto innovations. 
beta=[0.001 0.10 0.85]; 
w=beta(1); 
a1=beta(2); 
b1=beta(3); 
rand('seed',1); 
ep=simulate_par(nob,alpha,rep); 
for i=1:rep; 
    yp(1)=sqrt(w/(1-a1-b1)); 
    h(1)=w/(1-a1-b1); 
    e=ep(:,i)./100; 
          for j=2:nob; 
          h(j)=w+a1*yp(j-1)^2+b1*h(j-1); 
          yp(j)=e(j)*sqrt(h(j)); 
          end; 
          y1=yp(2:nob)'; 
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y(:,i)=y1; 
end; 
y; 
return 
 
 
 
2. Codes for empirical study. 
function pa=Hill(x) 
% This function returns the adaptive Hill's estimator. 
        y=sort(x,'descend'); 
        n=length(y); 
        m1=floor(n^0.4); 
        m2=floor(n^0.8); 
        y1=log(y(1:m1)); 
        y2=log(y(1:m2)); 
        a1=1/(sum(y1(1:m1-1))/(m1-1)-y1(m1)); 
        a2=1/(sum(y2(1:m2-1))/(m2-1)-y2(m2)); 
        c=abs(a1/(sqrt(2)*(n/m2)*(a2-a1))); 
        lad=c^(2/3); 
        m=floor(n^(2/3)*lad); 
        if( m<n); 
        h=log(y(1:m)); 
        est=1/(sum(h(1:m-1))/(m-1)-h(m)); 
        ad1=2/sqrt(m); 
        ad2=4/sqrt(m); 
        t1=(est-2)/ad1; 
        t2=(est-4)/ad2 
        pa=[est;m;t1;t2]; 
        end; 
        pa; 
       return 
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