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Testing and Debugging: A Reality Check
Pavneet Singh Kochhar

Abstract

Testing and debugging are important activities during software development and

maintenance. Testing is performed to check if the code contains errors whereas de-

bugging is done to locate and fix these errors. Testing can be manual or automated

and can be of different types such as unit, integration, system, stress etc. Debug-

ging can also be manual or automated. These two activities have drawn attention of

researchers in the recent years. Past studies have proposed many testing techniques

such as automated test generation, test minimization, test case selection etc. Stud-

ies related to debugging have proposed new techniques to find bugs using various

fault localization schemes such as spectrum-based fault localization, IR-based fault

localization, program slicing, delta debugging etc. to accurately and efficiently find

bugs. However, even after years of research software continues to have bugs, which

can have significant implications for the organization and economy.

Often developers mention that the number of bugs they receive for the project

overwhelms the resources they have. This brings forth the question of analyzing

the current state of testing and debugging to understand its advantages and short-

comings. Also, many debugging techniques proposed in the past may ignore bias

in data which can lead to wrong results. Furthermore, it is equally important to un-

derstand the expectations of practitioners who are currently using or will use these

techniques. These analyses will help researchers understand pain points and expec-

tations of practitioners which will help them design better techniques. In this thesis,

I take a step in this direction by conducting large-scale data analysis and by inter-

viewing and surveying large number of practitioners. By analysing the quantitative

and qualitative data, I plan to bring forward the gap between practitioners’ expec-

tations and the research ouput. My thesis sheds light on current state-of-practice



in testing in open-source projects, the tools currently used by developers and chal-

lenges faced by them during testing. For bug localization, I find that files that are

already localized can have an impact on the results and this bias must be removed

before running a bug localization algorithm. Furthermore, practitioners have a high

expectation when it comes to adopting a new bug localization tool. I also propose a

technique to help developers find elements to test. Furthermore, through interviews

and surveys, I provide suggestions for developers to create good test cases based on

several characteristics such as size and complexity, coverage, maintainability, bug

detection etc. In the future, I plan to perform a longitudinal study to understand

the causal impact of testing on software quality. Furthermore, I plan to perform an

empirical validation of good test cases based on the suggestions received from the

practitioners.
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Chapter 1

Introduction

Testing and debugging are important activities during software development cycle.

Testing is performed to check if the code contains errors whereas debugging is done

to locate and fix these errors. Testing can be manual or automated and can be of

different types such as unit, integration, system, stress etc. Debugging can also be

manual or automated. These two activities are equally important and have drawn

attention of researchers in the recent years.

Despite the availability of various tools to ensure quality of software through

testing, it is not confirmed if large number of projects are adequately tested or not.

This is important as impact of inadequate testing can consist of a substantial num-

ber of unhandled failures, which leads to poor quality of software, higher software

development costs and delays in time to market the product. A study conducted by

the National Institute of Standards and Technology reported that inadequate soft-

ware testing costs the U.S economy $59.5 billions annually, i.e., about 0.6% of its

GDP [120]. The number of bugs uncovered after the code has been shipped can

overwhelm projects developers when software is not thoroughly tested. For exam-

ple, a triager from Mozilla project admitted that they receive almost 300 bugs every-

day that need triaging [7]. Therefore, it is important to have techniques which can

help developers find buggy files quickly, which can help them resolve the bug faster.

These figures reinforce the fact that software testing and debugging is paramount for
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developing high quality software.

Past studies have proposed many new techniques and performed empirical re-

search on software testing and debugging. Testing related studies in the past have

proposed many techniques such as automated test generation, test minimization,

test case selection, test priortization and empirical studies on test suite quality and

its effectiveness in finding bugs. Studies related to debugging have proposed new

techniques to find bugs using various fault localization schemes such as spectrum-

based, program slicing, delta debugging etc. to accurately and efficiently find bugs.

However, even after years of research software continues to have bugs, which can

have significant implications. Thus, it is important to consider the current state of

techniques and practitioners’ expectations to understand if the practitioners find the

techniques useful or not. Such quantitative and qualitative analysis can provide in-

sights useful for researchers and practitioners. In this thesis, I intend to answer the

following questions:

1. What is the current state of practice and practitioners’ expectations in testing?

1a) What is the adoption of testing in open-source projects?

1b) What is the adequacy of testing in open-source projects?

1c) What is the testing culture of app developers in open-source projects?

2. What are researchers’ biases and practitioners’ expectations in debugging?

2a) What are potential biases in bug localization?

2b) What do practitioners expect from bug localization tools?

Through these analyses, I plan to bring forward the gap between current state of

practice and expectations of practitioners. This will help practitioners be aware of

what tools and techniques researchers are building and help researchers to be aware

of the needs of practitioners to build relevant tools.

My thesis sheds light on current state-of-practice in testing in open-source

projects, the tools currently used by developers and challenges faced by them during
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testing. For bug localization, I find that files that are already localized can have an

impact on the results and this bias must be removed before running a bug localiza-

tion algorithm. Furthermore, practitioners have a high expectation when it comes

to adopting a new bug localization tool. I also propose a technique to help devel-

opers find elements to test. Furthermore, through interviews and surveys, I provide

suggestions for developers to create good test cases based on several characteristics

such as size and complexity, coverage, maintainability, bug detection etc.
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Chapter 2

Literature Review

In this chapter, I will present some of the past work done by researchers in the

domain of software testing and debugging.

2.1 Software Testing

Software testing is an integral part of software development lifecycle. Past studies

have proposed many new techniques test generation, test minimization, test case

selection, test priortization as well as empirical studies on testing.

Greiler et al. conduct a qualitative study of test practices followed by a commu-

nity of people working on plug-in based applications [42]. Rehman et al. discuss

several software component testing issues and classify set of testing techniques used

when a component is integrated with its target system [124]. Memon et al. present

their analysis to improve the current testing techniques and strategies to create new

collaborative development and testing processes where developers can share tools

and information repositories [84]. Cabral et al. present an analysis of testability

issues and testing techniques for software product lines (SPLs) [17].

Zaidman et al. study the co-evolution between production code and test code

on two open source and one industrial project [143]. Fraser et al. use search-based

software testing for test data generation for open source projects [31]. They perform

case study on 100 Java projects selected from SourceForge and give directions for
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future research. Ceccato et al. perform an empirical study to analyse the impact

of automatically generated test cases on accuracy and efficiency of debugging [20].

They compare the effectiveness of debugging between a manually designed test

suite and a test suite generated by Randoop. Their results show that automatically

generated test cases positively affect debugging. Stamelos et al. conduct an em-

pirical study on open source projects to understand the implications of structural

quality and the probable benefits of such analysis on software development [114].

Gopinath et al. investigate the correlation between test suite coverage and its ef-

fectiveness in killing mutants [40]. They start with more than 1,000 GitHub projects

but need to remove most of them due to compilation errors, etc. They end up with

around 200 GitHub projects for their analysis. Most of the projects analysed are

small (less than 1000 lines of code). They find that there is a correlation between

test suite coverage and effectiveness. Our work complements this work by address-

ing a different set of research questions. We also study a larger set of projects and

most of them are of larger size (more than 10,000 lines of code). Inozemtseva and

Holmes also investigate the correlation between test suite coverage and its effective-

ness in killing mutants on 5 large Java programs [47]. They find that there is a weak

to moderate correlation between test suite coverage and its effectiveness. Our work

complements this work by addressing a different set of research questions. We also

study a large set of projects instead of only 5 projects. Many of the projects that

we analyse are as big as the projects that are analysed by Inozemtseva and Holmes

(more than 100,000 lines of code).

Several studies have proposed new techniques and methods to increase code

coverage. Thummalapenta et al. develop an approach that takes as input a user-

specified intent and produces programs in the form of method sequences to pro-

duce the object state specified by user [121]. Their approach uses data from static

as well as dynamic analysis and is able to produce higher coverage than existing

approaches. Pandita et al. propose an approach to produce test inputs to achieve

logical coverage and boundary-value coverage using existing test-generation ap-
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proaches [92]. Their approach is able to increase the coverage and improves the

fault detection capability of new test cases. Park et al. propose a new approach

that combines random testing with techniques such as static program analysis and

concolic execution [93]. They tested their approach on twelve Java applications

and their results show that their approach performs better than some previous ap-

proaches such as pure random, adaptive random, and Directed Automated Random

Testing (DART).

There have been many empirical studies on Android. Takala et al. reported

experiences on applying model based user interface testing on Android applica-

tions [118]. Kropp and Morales investigated strengths and weaknesses of two ap-

proaches for testing mobile GUI applications: the Android instrumentation frame-

work and Positron framework [67]. Bhattacharya et al. performed an analysis on

bug reports and bug fixing process of Android applications [15]. McDonnell et

al. studied the stability and adoption of APIs in Android ecosystem [82]. Syer et

al. studies 15 most popular Android applications and compare them with 3 desk-

top applications [117]. Ruiz et al. investigated the practice of reuse in Android

ecosystem [108]. Maji et al. characterize failures in Android and Symbian mobile

OSes [68].

2.2 Debugging

There are many IR-based bug localization approaches that retrieve source code files

that are relevant to an input bug report [6, 89, 103, 104, 110, 112, 127, 146]. Rao and

Kak conducted a good comparative study on the performance of a number of gen-

eral IR models on bug localization task [103]. They found that simple text models

such as Vector Space Model (VSM) and Smoothed Unigram Model (SUM) perform

better that more sophisticated models like Latent Dirichlet Allocation (LDA).

Zhou et al. propose an extended vector space model named rSVM to locate bug

by leveraging information from similar bug reports [146]. Ali et al. proposed a
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framework called LIBCOOS to combine textual information and binary-class rela-

tionships (e.g., association, aggregation, composition, etc.) for bug localization [6].

Saha et al. made use of structure information retrieved from code structure (e.g,

whether a word is used as a class name or a variable name), and bug report structure

(e.g., whether a word is appeared in the title or description filed of a bug report)

to improve the effectiveness of IR-based bug localization [110]. Sisman et al. en-

hanced existing bug localization techniques by adding more textual information into

bug reports to form better queries [112]. Recently, Wang et al. proposed an inte-

grated approach by considering multiple resources (i.e, version history, similar bug

reports, and structure information) [127].

Practitioners’ Perception, Expectation, and Activities: Lo et al. surveyed hun-

dreds of practitioners in Microsoft on how they perceive the relevance of 517 papers

published in ICSE and FSE in 2009-2014 [74]. They asked each respondent to rate

40 randomly selected papers by answering a question: “In your opinion, how im-

portant are the following pieces of research?”. In this work, we focus on adoption

rather than relevance, and fault localization rather than all software engineering

studies. Since this study is focused rather than general, we can consider more in-

depth questions on thresholds for adoption, and get more respondents to comment

on one topic of interest.

Perscheid et al. studied debugging practice of professional software develop-

ers [97]. Different from them, we investigate what practitioners want for a future

tool, rather than the current state-of-practice. In particular, our study estimates prac-

titioners’ thresholds for adopting fault localization tools.

Empirical Study on Fault Localization: Ruthruff et al. investigated the effective-

ness of a fault localization technique applied on spreadsheets [109]. Jones and Har-

rold performed an empirical study to evaluate Tarantula against four other fault lo-

calization techniques on programs from Siemens test suite [53]. Kochhar et al. pre-

sented a number of threats that researchers need to consider (e.g., misclassification,

incorrect ground truths, etc.) when designing experiments to evaluate information-
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retrieval-based techniques [65].

Parnin and Orso [94] investigated the usability of a spectrum-based fault local-

ization technique named Tarantula [53]. They performed a user study using a defect

in a Tetris application and another defect in NanoXML. They observed how partici-

pants debug with and without Tarantula. The user study highlights that (1) absolute

rank should be used as the evaluation metric, (2) the combination of search and

ranking should be considered, (3) a complete ecosystem for debugging is needed,

(4) more studies on how “richer information” can be used to help debugging is

needed.

Wang et al. [125] investigated the usability of an information-retrieval based

bug localization technique named BugLocator [146]. They analyzed what informa-

tion in a bug report tends to produce good results, how their user study participants

used information in bug reports, and whether the participants behaved differently

when they use BugLocator than without it. In their user study using 8 bugs from

SWT, they find that BugLocator is only useful if bug reports come “without rich,

identifiable information” and bad bug localization outputs “harm developers’ per-

formance”.
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Chapter 3

Adoption of Software Testing

3.1 Introduction

Software testing is an important part of software development life-cycle. Despite

the availability of various tools to ensure quality of software through testing, most

software products suffer from insufficient testing. The consequences of inadequate

testing include a substantial number of unhandled failures, which leads to poor qual-

ity of software, higher software development costs and delays in time to market the

product. A study conducted by the National Institute of Standards and Technol-

ogy reported that inadequate software testing costs the U.S economy $59.5 billions

annually, i.e., about 0.6% of its GDP [120].

Although a large body of research about software testing has been built, software

programs continue to suffer from numerous defects. Consequently, is software test-

ing really popular in development projects? Does it noticeably impact the quality

of software code? What kind of projects are more likely to include tests? These

are some of the important questions which can increase our understanding of the

unexplored areas of software testing and its impact on software evolution. Our goal

in this paper is indeed to fill a research gap in the importance of software testing

through a large-scale empirical evaluation.

In this work, we analyse a large number of open source projects from the GitHub
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hosting site. GitHub platform holds millions of software projects including impor-

tant projects such as Linux and Ruby on Rails. GitHub provides various features

which makes it an important platform for storing open source projects. GitHub also

provides an in-house issue tracking system where users record issues and classify

them as bugs, feature requests, and other self-defined categories. We investigate in

this study different characteristics of software development that are related to test-

ing: e.g., numbers of developers in projects that include test cases. We also study

how the presence/absence of test cases can affect the quality of software in terms of

the number of reported bugs. Finally, we investigate the programming languages in

relation to the projects with test cases.

3.2 Methodology & Statistics

For our empirical study, we analyse projects downloaded using the GitHub API.

GitHub does not follow a distinct ordering scheme to download the projects. Thus,

the results vary every time with a new request. To ensure that most of the projects

are non toy projects in our dataset, we filtered the data and selected the projects

which have more than 500 lines of code (LOC). We have in total 20,817 projects of

sizes 500 to 17 millions LOC. These include well-known projects such as Ruby on

Rails and jQuery.

3.2.1 Collecting the dataset

a) Lines of code: GitHub uses the git software configuration management system

(SCM) to store software revisions. We cloned the git repositories of the projects

and used the SLOCCount1 utility to count the lines of code of the latest revisions of

these projects. Figure 3.1 shows the lines of code of different projects. We observe

that 40% of our projects have LOC between 1,000 and 5,000. Around 27% of the

projects lie between 500 to 1,000 LOC , while more than 23% of the projects have

1http://dwheeler.com/sloccount
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more than 10,000 lines of code. Also, over 15,000 projects (total 20,817 projects)

have more than 1,000 LOC.

Figure 3.1: Distribution of Projects in Terms of Total Lines of Code

b) Test Cases: Test cases are an important part of a project as they help devel-

opers confirm whether their code meets the requirement laid down for the software.

Collection of test cases for large number of projects is an arduous task as different

languages follow different naming conventions. We perform a lightweight identi-

fication of test cases that can scale to thousands of projects. We notice that most

test cases contain the word “test” as part of their file names. Thus we select files

whose name contains the word “test”. For each project, we then count the number

of such files which are treated as the number of test cases. We then investigate the

relationships between the number of test cases and various project characteristics.

c) Issues & Bugs: GitHub has its own issue tracking system which provides

issue trackers for each hosted project where reporters can file issue tickets, and

label them with different tags. We collect all the issues (open and close) reported

through the in-house tracker. We further find information such as reporter’s identity

and different labels used to report the issues. In our dataset, issues are labelled

as enhancement, bug, feature requests, error, fixed etc. Further, we find the issues

labelled as bugs, errors or defects because they most likely represent the actual bugs

in the project. We also calculate the number of bug reporters in a project, i.e., people

who reported issues for the project.

d) Developer contributions: Git records store contributors name and email for
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each revision of the repository. There are two types of contributors: committers and

revision authors. Committers have access to main repository and commit the code

contributions from revision authors. These revision authors are the end contributors

of the code. We calculate the number of developers (i.e., revision authors) for each

project and examine the impact of the number of developers on the presence of test

cases.

3.2.2 Research questions

We examine five research questions which pertains to the importance of software

testing in software development. We collect several software metrics to investigate

correlations between them, which can contribute towards improvement of software

testing process and overall software development. We are thus interested in analyz-

ing the following research questions:

RQ1: How many projects have test cases? Testing is a crucial activity in the

life-cycle of software development process. Testing is used to detect the conditions

under which a program may fail and provides directions to rectify that problem. In-

vestigating test cases in a project is important as we wish to know whether projects

are properly tested or not. Although presence of test cases does not ensure that

project is bug free, but it can help developers analyse the defects and provide moti-

vation to remove those bugs.

In this research question, we examine the prevalence of test cases in open source

projects. We analyse the projects containing test cases to investigate whether test

cases commensurate with the lines of code of the project.

RQ2: Does the number of developers affect the number of test cases present

in a project? Developers are the people who are main contributors of the project.

They analyse requirements, prepare documents, write code and finally test the code.

Usually, developers write unit test cases to test their individual modules or functions

as they have better knowledge about the product or application they are developing.
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They are the best people to write white box tests as they can develop multiple test

cases to extensively test the application. Our dataset consist of both small and big

projects where numbers of developers vary from as small as 1 to several thousands

collectively working on the project.

Thus, we investigate the correlation between the number of developers working

on a project and the number of test cases available for the project.

RQ3: Does the presence of test cases correlate with the number of bugs? A

bug manifests itself as an error, failure or fault which can seriously affect the func-

tionality of a program. The main objective of running test cases is to detect bugs in

the application and find ways to fix it. Test cases can help us to find as many bugs

as possible, thus, improving the efficacy of testing. Test cases can be created by

analysing the bugs which can be further used to create regression test suite.

In this question, we investigate the correlation between the bug count and the

number of test cases. We wish to examine whether presence of test cases has an

effect on the bug count.

RQ4: Does the presence of test cases encourage bug reporting? Bug reports

are the documents which contain details about the bugs in the program. Bug reports

increases the chances of removing bugs from the software. Bug reports are also

called as fault reports, problem reports, change requests etc. When a developer or

tester runs test cases and find bugs, they can log this information in a bug report.

Bug reports and test results can be used to analyse the quality of software.

In this research question, we examine, indirectly, whether the presence of test

cases persuades users to run these test cases and report bugs. To this end, we de-

termine the correlation between number of test cases and number of bug reporters,

i.e., people who report bugs.

RQ5: Which programming languages appear to have more test cases? Our

dataset consists of 20,817 projects written in different languages. Some people pre-

fer writing code using their favourite language. Although we randomly selected our

projects, we still want to determine if people prefer writing test cases in some par-
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ticular programming language. Some of the programming languages provide unit

test framework which supports writing and running of test cases. So, we inves-

tigate whether number of test cases depends upon the popularity of programming

languages.

3.2.3 Statistical measurements

To the best of our knowledge, this is the first study which explores relationship of

test cases with different characteristics of the project on such a large scale. We

use common metrics in statistical analysis to confirm the existence of a correlation

among the data and for examining the statistical significance of our figures.

a) The Mann-Whitney-Wilcoxon (MWW) test: The MWW test is a non-

parametric statistical hypothesis test to assess the statistical significance of the dif-

ference between the distributions in two datasets [79]. As this test does not assume

any specific distribution, we use it for our project as we collected data from dif-

ferent open source projects which might not be normally distributed. Given two

independent samples x and y, of size n1 and n2 respectively, the MWW test allows

us to evaluate whether these distributions are identical. The test first combines and

arranges the data points of the two samples in ascending order of their values. Data

points with identical values are assigned a rank equal to the average position of those

scores in the ordered sequence. Second, the algorithm sums the ranks of data points

in the first sample (x). Let us denote this sum as T. The formula for computing the

Mann-Whitney U for x is :

U = n1n2 +
n1(n1 + 1)

2
− T

The U value calculated above is used to determine the p-value. Given a signifi-

cance level α = 0.05, if p-value < α, then the test rejects the null hypothesis. This

implies that at the significance level of α = 0.05, the two datasets have different

distributions.
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b) Spearman’s rho: Spearman’s rho (ρ), also known as Spearman’s rank corre-

lation coefficient, is a non-parametric measure used to assess statistical dependence

between two variables X and Y using a monotonic function. This measure can

be used when data is not normally distributed. Thus, making it a good fit for the

datasets that we investigate in this study. The values of ρ are limited to the interval

[-1; 1]. A perfect Spearman correlation of -1 or +1 occurs when each variable is a

perfect monotone function of the other. The closer to 0 ρ is, the more independent

the variables are. Equation 2 states the formula for finding this coefficient.

ρ =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2

In this equation, xi and yi represent the ranks of elements Xi and Yi in X and Y

respectively, while x and y represent the averages of the ranks.

3.3 Findings

3.3.1 RQ1: Popularity of Test Cases

To answer this research question, we tabulate the number of test cases in the

projects. Table 3.1 shows the distribution of test cases in the projects. After cu-

ration, our dataset includes 20,817 projects of significant size, out of which 7,982

projects do not contain test cases, which represents 38.34% of the total projects.

The remaining 61.65% of the projects contain one or more test cases. In total, we

have 1,875,409 test cases from 12,835 projects in our dataset. We examine how

presence/absence of test cases correlate with other characteristics of the projects

such as lines of code (LOC).

Table 3.1: Test Cases Distribution

Projects # of Projects % of Projects
Without Test Cases 7,982 38.34%
With Test Cases 12,835 61.65%
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Table 3.2 details the prevalence of test cases: 84.87% of the projects have less

than 100 test cases. 10.7% of the projects have between 100 and 500 test cases,

whereas less than 4.5% of the projects have more than 500 test cases. Only 17

projects have more than 10,000 test cases. The table also shows the mean value of

the size of the projects. For eg., the mean value for the size of 17 projects, which

contain more than 10,000 test cases is 2,568,813.82 LOC.

Table 3.2: Prevalence of Test Cases

# of Test Cases # of Projects % of Projects Mean (LOC)
with Test Cases

1-9 6,195 48.26% 12,813.55
10-49 3,769 29.36% 24,681.08
50-99 931 7.25% 47,610.31

100-249 964 7.51% 901,447.06
250-499 410 3.19% 193,629.08
500-999 303 2.36% 197,660.48

1000-4999 219 1.70% 397,159.98
5000-9999 27 0.21% 701,281.66
> 10000 17 0.13% 2,568,813.82

We believe that bigger projects have higher test cases due to large number of

functionalities that needs to be tested to produce a high quality software. So, we

examine the correlation between the number of test cases in a project to the corre-

sponding number of lines of code.

Figure 3.2: Test Cases and Lines of Code

Figure 3.2 2 shows the distribution of project sizes (in terms of LOC) for projects
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with and without test cases. We observe that projects with test cases have an average

of 107,096 LOC (median=3549) whereas average of projects without test cases is

5,605 LOC (median=1353). We compare the LOC numbers of the set of projects

with test cases and that of those without test cases using Mann-Whitney-Wilcoxon

(MWW) test. Our results show that the difference between these two sets is statis-

tically significant with p-value < 2.2 e−16 3. Thus, we can conclude that projects

with test cases are bigger in size than the projects without test cases.

Figure 3.3: Correlation between Test Cases and Lines of Code

To verify that projects with test cases have higher LOC, we analyse the correla-

tion between the number of LOC and the number of test cases. Figure 3.3 shows the

scatter plot between the number of LOC and the number of test cases. The graph

shows that there is positive correlation between these two metrics. To confirm this

correlation, we use Spearman’s rho which gave a value of 0.427 with p-value < 2.2

e−16 4. The result validates that there is a positive correlation between the number

of test cases and the number of LOC.
2The line in the middle of the box represents the median. The upper part of the box represents

the upper quartile, while the lower part of the box represents the lower quartile. The lines on top and
below the box are referred to as whiskers. Data points above and below these whiskers are regarded
as outliers – data points which are significantly different from the majority of the data points.

3Here, lines of code is the dependent variable and the presence/absence of test cases is the in-
dependent variable. The null hypothesis is: there is no difference in the size of projects with test
cases and those without test cases. The alternative hypothesis is: projects with test cases have more
LOC than those without test cases. We consider a significance level α=0.05. For this α value, if the
p-value < 0.05, we reject the null hypothesis.

4Null hypothesis (rho is zero) is rejected

17



Although correlation between the number of test cases and the number of LOC

is positive, we wish to examine the correlation between the number of lines of code

and the number of test cases per LOC. Here, we only consider projects with test

cases and divide the number of test cases by the corresponding LOC of that project.

Figure 3.4 depicts the correlation between these two variables. We can observe that

with an increase in the number of LOC, we see a decrease in the number of tests

per LOC. The Spearman’s rho for the distribution is -0.451 with p-value < 2.2 e−16,

which confirms that there is a negative correlation between the lines of code and the

number of test cases per LOC.

Figure 3.4: Correlation between Test Cases per LOC and Lines of Code

3.3.2 RQ2: Developers and Test Cases

Developers form an important part of the project as they contribute by writing/mod-

ifying code, developing test cases, running them and solving bugs logged in bug

tracking system. So, finding a correlation between the numbers of developers and

the numbers of test cases is important to understand the impact of these developers

on the presence of test cases. Our dataset consists of 20,817 projects which contain a

total of 2,916,105 developers who have contributed to the code bases of the projects.

The projects with test cases have 2,861,031 developers whereas the projects with-

out test cases have 55,074 developers. Thus, projects with test cases have a higher

numbers of developers. We can observe from Figure 3.5 that projects with test cases
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have more developers. We used MWW test between the set of numbers of develop-

ers of projects with test cases and those for projects without test cases which gave

p-value < 2.2e−16 5. The results signify that the difference between these two sets

is statistically significant.

Figure 3.5: Number of Developers in Projects with/without Test Cases

We wish to examine whether increase in the number of developers leads to an

increase in the number of test cases in that project. We use scatter plot (Figure 3.6)

to examine the correlation between the numbers of developers and the numbers of

test cases. We calculated Spearman’s rho to confirm the correlation between these

two variables which gave a value of 0.207 (p-value < 2.2 e−16). This suggests that

there is a weak positive correlation between the number of developers and test cases.

We further investigate the average number of test cases contributed by each de-

veloper. For each project, we divide the total number of test cases by the corre-

sponding number of developers in that project. Figure 3.7 depicts the correlation

between the numbers of developers and the numbers of test cases per developer. We

use Spearman’s rho to find the correlation between these two variables. The Spear-

man’s value is -0.444 with p-value < 2.2 e−16. Thus, the correlation between the

number of developers and the number of test cases per developer is negative. As

5Here, number of developers is the dependent variable and the presence/absence of test cases is
the independent variable. The null hypothesis is: there is no difference in the number of developers
of projects with test cases and those without test cases. The alternative hypothesis is: projects with
test cases have more developers than those without test cases. We consider a significance level
α=0.05. For this α value, if the p-value < 0.05, we reject the null hypothesis.
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Figure 3.6: Test Cases and Number of Developers

only some of the developers write test cases, we observe a decrease in the test count

per developer with an increase in the number of developers.

Figure 3.7: Correlation between # of Test Cases per Developer and # of Developers

3.3.3 RQ3: Test Cases and Bug Counts

In this research question we examine whether the number of bugs is correlated with

the number of test cases present within a project. First, we identify the issue reports

present in our dataset. GitHub provides an issue tracking system which lets users file

issue tickets, tag them according to the issue and label them as the state of the issue

changes. It also allows the project development team to either enable or disable the

issue tracking system. Users can tag issues and categorize them. However, user-

supplied tags can create a problem for developers as there can be typographical
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errors while tagging. Since tags are not predetermined by GitHub, a tag can be

reported in different forms. For example, a bug can be tagged as defect, type:bug,

bugfix, etc. Table 3.3 depicts several representations of tags which we count as bugs

for our project.

Table 3.3: Tags representing Bugs

bug bug; T bug; Bug Confirmed; bugs; starter bug; bug fix etc.
defect defect; Type-Defect; minor defect
error error; Wow error; build error; error page; user error etc.

Since errors can be represented by any combination of these tags, we use these

tags to account for all the bugs. In total, we have 1,081 projects which contain

24,703 bugs as represented by the tags mentioned above. These projects contain

83,576 test cases written by the project development teams.

Figure 3.8: Correlation between # of Test Cases and # of Bugs

Our aim is to study and see that with increase in the number of test cases, bug

count increases. Figure 3.8 shows a scatter plot to explore the correlation between

the number of bugs and the number of test cases. Here, we can see that as the num-

ber of test cases increases, we see an increase in the number of bugs. We calculated

the Spearman’s correlation which yields rho value 0.181 (p-value = 1.78 e−09),

suggesting a weak correlation between the number of test cases and the number of

bugs.
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3.3.4 RQ4: Test Cases and Bug Reporters

We wish to know if the presence/absence of test cases affects bug reporting. We

examine the relationship between the number of test cases and the number of bug

reporters. Bug reporters are the people who report or log bugs related to a particular

application or software. Based on the user names, we collected the data about peo-

ple who have reported issues in the project. As not all the projects contain issues,

we identified 6,230 projects in which users logged issues. These issues were filed

by 274,276 reporters.

Figure 3.9: Test Cases and Bug Reporters

We can observe from the Figure 3.9 that projects with test cases have higher

number of bug reporters (median=5) as compared to projects without test cases

(median=3). We performed the MWW test and found that the difference between

the set of bug reporters in projects without test cases and those of projects with test

cases is statistically significant (p-value < 2.2 e−16). We can infer that if test cases

are present, it can persuade users to run these test cases and if they found bugs, they

can log them in issue tracking systems.

Figure 3.10 shows the scatter plot of the numbers of bug reporters and the num-

bers of test cases. We computed Spearman’s rho for the distribution which yielded

the value 0.171 (p-value < 2.2 e−16), suggesting a weak dependence between the

number of test cases and the number of bug reporters.
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Figure 3.10: Correlation between # of Bug Reporters and # of Test Cases

3.3.5 RQ5: Test Cases and Programming Languages

With this research question, we attempt to establish whether projects written in

common languages such as C#, Java, PHP or JavaScript, contain more number of

test cases than other languages. We first compute the number of test cases present

in projects depending on the programming language that is used. We then select

projects developed in the top ten languages with the highest number of test cases.

Figure 3.11 shows the number of projects of the corresponding top ten languages

in our dataset. Out of 20,817 projects in our dataset, 19,327 projects use one of these

top ten languages. During the analysis, we find out that Java has 3,112 number of

projects and also the highest count among all the projects. Our dataset contains

3,016, 2,902 and 2,536 projects written in ruby, PHP and Python respectively. Perl

has the lowest number of projects among the projects written in the computed top

ten languages. C++ has the highest number of test cases being 648,773 present in

1,920 projects. Then, we have projects written in ANSI C, PHP and Java having re-

spective count of 286,009, 255,553 and 196,703 test cases. Perl has lowest number

of test cases, i.e., 7,690 present in 630 projects.

Figure 3.12 shows the distribution of the number of tests of top-10 languages

that are used in the projects of our dataset. We observe that median values of some

of the pairs such as C# and Ruby, Python and Java, ANSI C and PHP, Objective-C
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Figure 3.11: Count of Projects and Different Languages

and Perl are almost comparable to each other. JavaScript has a median value of 4

test cases, 1 less than the median value of C# and Ruby.

Figure 3.12: Prevalence of Test Cases for Common Languages

As most of the projects have lower number of test cases, we can observe that

median line is gravitating towards the left, i.e, data is skewed towards the right. The

rest of the projects having higher number of test cases are considered as outliers as

they are small in number and does not have a significant impact on the box plots6.

Thus, we can observe a big difference in the mean and median values for all the

languages.

We further analyze the number of test cases per project. Table 3.4 depicts the

6https://github.com/isis-project/WebKit having 166488 test cases and
https://github.com/chrispilot2293/CM9 having 44871 test cases
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mean number of test cases per project for each language. We observe that C++ has

the highest value, i.e., 337.90, whereas Perl has the lowest value among all the top

ten languages. JavaScript projects has higher number of test cases per project than

Python and Objective-C projects. Although the numbers of projects written in C++,

ANSI C and PHP are less as compared to the numbers of projects written in Java

and Ruby, they have higher mean numbers of test cases per project.

Table 3.4: Distribution of Test Cases per Project

Language # of Projects # of Test Cases Test Cases/Project
C++ 1,920 648,773 337.90

ANSI C 2,197 286,009 130.18
PHP 2,902 255,553 88.06
C# 1,042 81,334 78.05

Java 3,112 196,703 63.20
Ruby 3,016 173,864 57.64

JavaScript 819 39,070 47.70
Python 2,536 103,600 40.85

Objective-C 1,153 21,343 18.51
Perl 630 7,690 12.20

3.4 Conclusion

Our analysis shows the following results:

1. Projects with test cases have more LOC than those without test cases. As

projects grow in size the number of test cases per LOC decreases.

2. Projects with more number of developers have more test cases. However

as the number of developers grow, the number of test cases per developer

decreases.

3. There is weak positive relationship between number of test cases and the num-

ber of bugs.

4. Number of test cases has a weak correlation with the number of bug reporters.
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5. Projects written in popular languages, such as C++, ANSI C, and PHP, have

higher mean numbers of test cases per project as compared to projects in other

languages.
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Chapter 4

Adequacy of Software Testing

4.1 Introduction

One metric that is commonly used to measure the adequacy of testing is code cover-

age, that is, a measure of the set of lines of code or code paths that are executed by

a set of tests. Quality managers can use coverage information to assess test suites,

to decide when to stop testing, and to focus attention on portions of the code that

are not covered and thus may contain faults [142]. Judicious use of code coverage

can help in finding new defects and increasing the robustness of the software [14].

Furthermore, software cost models based on coverage information can be used to

estimate the cost of testing, the cost of removing faults and the potential risk caused

by bugs emerging from uncovered code [98]. Measuring coverage alone, however,

is not enough to obtain a complete picture of the state of testing in open-source soft-

ware. To understand, and potentially improve, the state of testing in open-source

software, it is necessary to correlate code coverage information with other soft-

ware metrics that can characterize the software development process, such as lines

of code, cyclomatic complexity, and number of developers. These easy-to-collect

metrics can help characterize projects in which testing is insufficient, and thus can

help developers and managers assess when more testing effort for their software

may be required.
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4.2 Methodology & Statistics

For our empirical study, we downloaded the projects from GitHub and the projects

distributed by Debian. Our dataset includes projects developed by well-known or-

ganisations such as The Apache Software Foundation and The Eclipse Foundation.

We clone projects that use Maven as the project management tool. Out of 945

projects, 872 projects contain test suites. We analyse these projects and run test

cases. For project set-up, we run the command mvn clean install, which

clears any pre-compiled files of previous builds, builds a dependency tree for all

the sub projects specified in the pom.xml (the root POM) and compiles all the .java

files. Then, we run Sonar using the command mvn sonar:sonar, which per-

forms dynamic analysis by running test cases and then creates reports based on the

results. Unfotunately, many of the projects had compilation errors and dependen-

cies on unavailable external libraries. This observation is consistent with the results

of others [40]. We tried to resolve these issues, however, if after some effort the

project still failed, we discarded the project. In the end, we have 327 projects that

successfully compile, run test cases and produce coverage.

We compute these statistics to characterize the projects in our dataset and as-

sess the suitability of these projects as representative samples to answer our three

research questions. These basic statistics also describe the range of values of the

various metrics for the projects in our dataset. We analyse the correlations of these

metrics with code coverage in Section 4.3.

a) Lines of code (LOC): We used Sonar to count the lines of code of projects in

our dataset, excluding comments, blank lines and test cases. Figure 4.1a depicts the

distribution of the number of lines of code of the projects in our dataset. 90 projects

have between 1 and 5,000 LOC, 56 projects have between 5,000 and 10,000 LOC,

129 projects have between 10,000 and 50,000 LOC, and 25 projects have between

50,000 and 100,000 LOC and 27 projects have more than 100,000 LOC. The largest

project in our dataset is Apache Hadoop, which contains 454,137 LOC. The mean
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size of the projects is 31,120.71 LOC and the median size is 11,484 LOC.

b) Test Cases: We use Sonar to collect the total number of test cases for each

project. Sonar also gives information about the number of test cases that failed

and the number of test cases that were skipped. Test cases can be skipped due to

compilation errors, missing dependencies, etc.

Figure 4.1b shows the distribution of test cases across projects. 147 projects

have fewer than 100 test cases, whereas 41 projects have more than 1,000 test cases.

96 projects have between 100 and 500 test cases and 43 projects have between 500

to 1,000 test cases. The number of test cases varies from 1 to 31,414. The mean

number of test cases per project is 563.97 and the median value is 141.

c) Cyclomatic complexity: Cyclomatic complexity is a measure of the number

of linearly independent paths through the source code of a software program [81].

Cyclomatic complexity is particularly useful in approximating the number of test

cases necessary to ensure exhaustive testing [129]. A program with low complexity

is typically easier to maintain [36].

Figure 4.1c depicts the distribution of cyclomatic complexity of projects in our

dataset. 86 projects have complexity between 1 and 1,000, 140 projects have com-

plexity between 1,000 and 5,000, 46 projects have complexity between 5,000 and

10,000 and 34 projects have complexity between 10,000 and 25,000. 21 projects

have complexity above 25,000 with the highest complexity value being 114,045.

We can observe that most of the projects have complexity below 10,000.

d) Developer contributions: Our projects use different version control systems

such as git, svn and hg (mercurial), so we use git log, svn log, and hg log, respec-

tively, to examine the commit history of all the projects and to extract the names of

all of the developers working on these projects. We also collect developer informa-

tion at the file level, i.e., the number of developers who have made changes to each

file.

Figure 4.1d shows the distribution of the number developers of all the projects.

128 projects have between 1 and 10 developers, 130 projects have between 10 and
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25 developers, 48 projects have between 25 and 50 developers and 11 projects have

between 50 and 75 developers. 10 projects have more than 75 developers, with

the project Netty having the highest number of developers i.e., 146. The mean and

median numbers of developers across all the projects are 18.15 and 13, respectively.

(a) Number of Lines of Code (b) Test Cases

(c) Cyclomatic Complexity (d) Number of Developers

Figure 4.1: Distribution of Projects.

4.3 Findings

4.3.1 RQ1: Coverage levels and Test Success Densities

Motivation: Investigating coverage level of a project is important in understanding

the reliability of the software project. A test suite with high coverage is likely to

have a higher fault detection capability and to better help developers find bugs than
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the one with low coverage [46].

Findings: Table 4.1 shows the distribution of coverage levels. Most of the

projects exhibit low coverage levels, as the average coverage (i.e., sum of cover-

age of all projects divided by number of projects) is only 41.96% and the median

coverage is only 40.30%. Almost one-third of the projects have coverage between

0% and 25%.

Table 4.1: Project Distribution across Coverage Levels

Coverage Level (%) Number of Projects
0-25 105
25-50 90
50-75 92
75-100 40

Coverage indicates the amount of code touched by the test cases, but does not

ensure that the program runs correctly on the tests. We thus next calculate test

success density as the number of test cases that are executed successfully out of

the total number of test cases. Figure 4.2 depicts the test success density of all

the projects in our dataset. We observe that 254 projects have test success density

greater than or equal to 98%, out of which 200 projects have 100% success density.

45 projects have test success density between 75% and 98%, and 6 projects exhibit

success density between 25% and 50%. Only 9 projects in our dataset show a

success rate below 25%.

Figure 4.2: Test Success Density
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4.3.2 RQ2: Correlations at the Project Level

Motivation: Software metrics, such as lines of code, code coverage, cyclomatic

complexity, etc., give quantitative measurements of the degree to which a software

project and its development process exhibit a particular attribute. These metrics can

be used to improve the software quality, to analyse the productivity of a software

project team, to anticipate the future needs of developers and to estimate the amount

of maintenance required for the project. Comparing various metrics with code cov-

erage can help us understand which project attributes are correlated to the adequacy

of testing. This understanding can help us identify characteristics of projects that

are prone to inadequate testing.

Findings: First, we analyse the correlation between lines of code and amount

of code coverage. As the quality of the software is related to coverage [86], we

believe that the coverage should either remain the same or increase with an increase

in LOC.

The scatter plot (Figure 4.3a) between the number of lines of code and coverage

shows that as the number of lines of code increases, the coverage level actually

decreases. The Spearman’s ρ for the distribution is -0.306 with p-value = 1.566e−08,

which shows that there is a negative correlation between number of lines of code

and code coverage. This could be due to the reason that as the size of a project

increases, adding new test cases become increasingly difficult. Furthermore, some

parts such as getters and setters do not need testing and there is no coverage for

them but they still add lines of code to the overall project.

Cyclomatic complexity of software generally increases with an increase in the

number of lines of code [28, 62]. As the cyclomatic complexity of a software project

increases above a threshold, the software becomes error prone [129]. Figure 4.3b

depicts the scatter plot between coverage and cyclomatic complexity. The coverage

level decreases with an increase in the complexity of the code. Spearman’s ρ for

the distribution is -0.276 (p-value = 3.665e−07), which shows a negative correlation

32



(a) Number of Lines of Code vs.
Coverage

ρ = -0.306, p-value < 1.566e−08

(b) Cyclomatic Complexity vs.
Coverage

ρ = -0.276, p-value < 3.665e−07

(c) DIT vs. Coverage
ρ = -0.264, p-value < 1.337e−06

(d) CBO vs. Coverage
ρ = -0.294, p-value < 5.825e−08

(e) LCOM vs. Coverage
ρ = -0.253, p-value < 3.441e−06

(f) NOC vs. Coverage
ρ = -0.171, p-value = 0.002

(g) RFC vs. Coverage
ρ = -0.302, p-value = 2.583e−08

(h) Number of Developers vs.
Coverage

ρ = 0.017, p-value = 0.763

Figure 4.3: Scatter Plots (Project Level)
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between cyclomatic complexity and code coverage. Similar to above, adding test

cases and increasing coverage for complex parts becomes difficult with an increase

in size. Furthermore, test cases are not added for parts with low complexity.

Researchers in the past have shown that CK metrics are associated with sys-

tem maintainability and defect proneness. Ideally, projects with higher CK metric

scores need to be tested more rigorously. Thus, we want to investigate if there is

a correlation between these metrics and coverage. This will inform us whether the

rigor developers test their projects commensurate to the values of these metrics. Fig-

ures 4.3c, 4.3d, 4.3e, 4.3f and 4.3g show the scatter plots between the CK metrics

(DIT, CBO, LCOM, NOC, and RFC) and coverage, and the Spearman’s ρ values

are -0.264 (p-value = 1.337e−06), -0.294 (p-value = 5.825e−08), -0.253 (p-value =

3.441e−06), -0.171 (p-value = 0.002) and -0.302 (p-value = 2.583e−08) respectively.

The values show that there is a small negative correlation between the CK metrics

and coverage. The above results show that with the increasing values of CK metrics,

the coverage level decreases.

The above observations highlight that open-source developers need to increase

the testing effort, to maintain or increase the code coverage level with the increase

in size or complexity or non-maintainability or defect proneness of the software.

Thus, developers who are working on large, complex, less maintainable, and more

defect prone projects should put more emphasis on testing to improve the reliability

of the software.

Test cases are contributed by the developers of a software project. These de-

velopers play a significant role in writing and running these test cases. Figure 4.3h

depicts the scatter plot between the number of developers and the code coverage

of the project. The Spearman’s ρ value is 0.017, with a p-value of 0.763, which

shows that the correlation between the coverage level and the number of developers

is insignificant.
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4.3.3 RQ3: Correlations at the File Level

Motivation: The coverage level of the overall software gives an idea of how well a

project is tested. However, a project may consist of many files having diverse prop-

erties. So, we want to additionally examine the software metrics at the file level,

which can help us to study how these metrics, which vary from file to file, are cor-

related to code coverage. This can enhance our understanding of the characteristics

of files that are inadequately tested.

Findings: We extract the number of lines of code and coverage level for all of the

files that constitute a project. In total, we have 104,797 Java class files, that compile

successfully, accumulated over all the projects. Figure 4.4a shows a scatter plot of

the number of lines of code and coverage. The results are contrary to the correlation

between LOC and coverage at project level (Figure 4.3a). The Spearman’s ρ for the

distribution is 0.183 (p-value < 2.2e−16) depicting a small positive correlation.

We proceed to investigate the correlation between complexity and coverage at

the file level. In Figure 4.3b we observed that with an increase in the complexity of

the system, the coverage of the system drops. We want to determine if more com-

plex files are less covered than less complex files, which would lead to an overall

reduction in the coverage of the software. We draw a scatter plot depicting the rela-

tionship between complexity and coverage level of source code files in Figure 4.4b.

The Spearman’s ρ for the distribution is 0.223 (p-value < 2.2e−16), which shows

that there is small positive correlation between cyclomatic complexity and code

coverage. The results are contrary to the correlation of complexity and coverage for

the overall project.

Next, we examine the CK metrics at the file level. The values of these metrics

at the project level gives us an overall understanding of the system, however these

values may vary from file to file. Thus, we also analyse the correlations of five

metrics i.e., DIT, CBO, LCOM, NOC and RFC with code coverage. Figures 4.4c,

4.4d, 4.4e, 4.4f and 4.4g show the scatter plots between CK metrics (DIT, CBO,
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(a) Number of Lines of Code vs.
Coverage

ρ = 0.183, p-value < 2.2e−16

(b) Cyclomatic Complexity vs.
Coverage

ρ = 0.223, p-value < 2.2e−16

(c) DIT vs. Coverage
ρ = 0.002, p-value = 0.420

(d) CBO vs. Coverage
ρ = 0.154, p-value < 2.2e−16

(e) LCOM vs. Coverage
ρ = 0.078, p-value < 2.2e−16

(f) NOC vs. Coverage
ρ = 0.106, p-value < 2.2e−16

(g) RFC vs. Coverage
ρ = 0.181, p-value < 2.2e−16

(h) Number of Developers vs.
Coverage

ρ = 0.058, p-value < 2.2e−16

Figure 4.4: Scatter Plots (File Level)
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LCOM, NOC and RFC) and coverage. The Spearman’s ρ values are 0.002 (p-value

= 0.420), 0.154 (p-value = 2.2e−16), 0.078 (p-value = 2.2e−16), 0.106 (p-value =

2.2e−16) and 0.181 (p-value = 2.2e−16), respectively. The values show that there are

small positive correlations between CBO, NOC, RFC and coverage, no correlation

between LCOM and coverage, and an insignificant correlation between DIT and

coverage.

Finally, we examine the correlation between the number of developers and the

coverage levels of files created by those developers. For each file, we consider the

number of developers to be the number of people who have been the author of at

least one commit that touches the file. Figure 4.4h depicts the correlation between

the number of developers and coverage for all the files contained in the projects.

There is no correlation between the number of developers and coverage level of the

files. The Spearman’s ρ value is 0.058 with p-value < 2.2e−16.

4.4 Conclusion

Our empirical work highlights the following results:

1. Most of the projects have low coverage levels, with an average of 41.96%.

2. 254 out of the 327 projects that build successfully have test success density

above 98%.

3. Code coverage of a project decreases with the increase in the size as well as

cyclomatic complexity of the project.

4. However, at the file and component levels, coverage increases with the in-

crease in the sizes of the file and component as well as their complexity.

5. The number of developers has an insignificant correlation with the coverage

at the project level, no correlation with the coverage at the file level and a

small positive correlation with the coverage at the component level.
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6. The values of the CK metrics, i.e., DIT, CBO, LCOM, NOC and RFC, de-

crease with the increase in the coverage at the project level. However, these

values increase with the increase in the coverage at the component level. At

the file level, the values increase with coverage except DIT and LCOM values,

which have insignificant and no correlation with coverage, respectively.
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Chapter 5

Understanding the Testing Culture of

App Developers

Smartphones have become pervasive and platforms such as Android and iOS have

gained tremendous popularity recently. According to a Gartner study, worldwide

sales of smartphones to end users increased by 42.3% in 2013 as compared to the

previous year and Android had 78.4% of the market share of the smartphone sales

in 2013 [35]. Furthermore, easy availability of app construction frameworks and

dissemination through online app stores such as Google Play1 and Apple App store2

have attracted a large number of developers and organizations to develop and market

their apps. However, low barriers to development does not ensure that apps are

error free. These error-prone apps can significantly impact user experience and may

cause harm to the reputation of the developers or the organizations. Therefore, it

is important to adequately test these apps before releasing them to the market. A

reliable app with few or no bugs is likely to have a higher chance of being well-

received by the large user base of these smartphones than the unreliable ones.

1https://play.google.com/store?hl=en
2https://itunes.apple.com/us/genre/ios/id36?mt=8
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5.1 Introduction

Although mobile apps use common technologies such as Java, they significantly

differ from web-based and desktop-based applications. An app receives a variety

of inputs from users and its environment which makes it difficult to write effective

test cases. Thus, many recent studies propose new testing tools that are specifically

designed for mobile applications [78, 38, 85]. Despite the growing interest in the

software testing and reliability research community to build tools that can automate

and improve testing of mobile apps, there has been no study that investigates how

developers test these applications in practice. This study is needed to understand

the “pain points” that these developers face which can be used to motivate future

research that addresses concerns that matters to mobile app developers.

To address this need, we conduct an empirical study which is divided into two

parts. In the first one, we analyze over 600 open-source Android apps to examine

the current state of testing in the Android development community. Our dataset in-

cludes small apps to large and popular apps such as K-9 Mail3, FrostWire - Down-

loader/Player4, OsmAnd Maps & Navigation5 and OI File Manager6, which have

more than 1,000,000 installs. In the second one, we conduct surveys with Android

and Microsoft app developers to understand common testing tools used, why they

are used and challenges faced during testing.

5.2 Methodology & Statistics

We collect URLs of all the applications stored on F-Droid7 repository and select

apps which are hosted on GitHub. In total, we have 627 apps in our dataset.

3https://play.google.com/store/apps/details?id=com.fsck.k9
4https://play.google.com/store/apps/details?id=com.frostwire.android
5https://play.google.com/store/apps/details?id=net.osmand
6https://play.google.com/store/apps/details?id=org.openintents.filemanager
7https://f-droid.org/
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Test Cases & Coverage: For each app, we examine the presence of test cases

by checking for the existence of files which contain the word “Test”. We observe

that many test files have the word “Test” either in the beginning of their names,

e.g., TestUtil.java, or at the end of their names, e.g., AccentTest.java. For projects

containing test files, we manually investigate them to build them and run test cases.

Some projects fail to compile due to dependencies on external libraries. We try to

resolve these dependencies issue by downloading libraries. However, many projects

still fail to compile. For projects which compile successfully, we run the test cases

present in the project repository and calculate code coverage using Emma code

coverage tool8.

Survey:

First Study - For each of the 627 apps, we collect e-mail addresses of all de-

velopers that developed these apps. In total, we sent out e-mails to 3,905 distinct

e-mail addresses and ask developers questions about testing tools used by them and

challenges that they face while testing their applications. Many of these develop-

ers work on both open source and commercial projects. We received a total of 83

responses (response rate of 2.13%). The unit of analysis is individual developer.

Second Study - Based on the responses from the first study, we improve our sur-

vey questions and resend the survey to Windows app developers in Microsoft. We

sent out e-mails to 678 developers and received a total of 127 responses (response

rate of 18.73%). The unit of analysis is individual developer.

For the first study, we use a structured survey which consists of several open-

ended questions. The following are the questions that we ask as part of our survey:

8http://emma.sourceforge.net/
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1) How do you test your app code?

Free form text

2) Do you use any test automation tools (e.g., monkeyrunner, robotium,

robolectric, etc)? If so, what tools do you use and why do you use them (e.g.,

for generating test cases, for managing test suites etc.)

Free form text

3) What are the challenges you face during testing either manually or using

automated tools (e.g., lack of documentation, limited support, unclear benefits,

etc.)?

Free form text

For the second study, we also use a structured survey. However, we add addi-

tional questions, and provide multiple choices to better understand app developers

testing behaviors. The questions that we ask include:

1) How do you test your app code?

Checkbox options: Manually, use automated testing tools, don’t test, other

2) If you test your apps, what type of testing do you do on your apps?

Checkbox options: Unit testing, integration testing, system testing, functional

testing, regression testing, acceptance testing, load testing, performance test-

ing, beta testing, other

3) If you use automated testing tools for your apps, what are the names of the

testing tools?

Free form text
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4) If you use automated testing tools, why do you use testing tools?

Checkbox options: Generating test cases, executing test cases, managing test

suites, creating and evaluating test execution results, analysing code coverage,

finding potential bugs, reporting bugs, performing load testing, other

5) Do you face the following challenges during testing either manually or using

automated testing tools and if you do how serious are they?

Challenges: Time constraints, compatibility issues, lack of exposure to tools,

emphasis on development rather than testing, lack of support from employ-

er/organization, unclear benefits of tools, poor documentation, lack of experi-

ence, steep learning curve.

Seriousness levels: Very serious, serious, insignificant, do not face, no opinion

6) Given the availability of testing tools for app development, in your opinion

what are the top 2 things you look for/need/would like to see?

Free form text

Basic Statistics

We now present some statistics describing the data collected for our study in

terms of number of test cases, lines of code and number of developers.

a) Test Cases: Table 5.1 shows the number of apps with and without test cases.

We find that 538 (85.81%) apps do not have any test cases, whereas 89 (14.19%)

apps have at least one test case. This shows that a large number of Android apps

lack test cases.

Table 5.1: Distribution of Apps in Terms of Presence of Test Cases

Categories # of Apps % of Apps
Without Test Cases 538 85.81%
With Test Cases 89 14.19%

b) Lines of Code (LOC): We count the lines of code for all the apps in our

dataset. Figure 5.1 shows the distribution of LOC. We can observe that 146 apps

have sizes between 1 LOC to 1,000 LOC, whereas 234 apps have sizes between
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Figure 5.1: Distribution of Apps in Terms of Total Number of Lines of Code

1,000 LOC to 5,000 LOC. Furthermore, 128 apps have sizes between 10,000 LOC

to 50,000 LOC and 35 apps are larger than 50,000 LOC. The largest project in our

dataset is FrostWire - Downloader/Player4, which is a native BitTorrent & Cloud file

downloader with 1,070,130 LOC. Figure 5.1 shows all the apps, apps with test cases

and apps for which test cases run successfully and we get coverage information.

Figure 5.2: Distribution of Apps in Terms of Number of Developers

c) Number of Developers: We want to analyse number of developers involved in

the development of an app. We use the information from git logs and collect unique

e-mail addresses to count the number of developers. Figure 5.2 shows the distri-

bution of the number of developers who worked on different apps in our dataset.

We can observe that a large number of apps (242 apps) are developed by a single
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developer. Also, 217 apps have more than 1 but less than 5 developers, whereas 75

apps have greater than or equal to 5 developers but less than 10 developers.

5.3 Findings

5.3.1 RQ1: Current State of Testing in Android Applications

Figure 5.3 shows the distribution of test suites for the 89 apps. We find that 19

apps have only 1 test suite each, whereas 11 apps have more than 25 test suites.

Furthermore, 23 apps have more than equal to 5 but less than 10 test suites. We can

observe that most of the apps have very few test suites.

Figure 5.3: Distribution of Apps in Terms of Total Number of Test Suites

We use coverage as a measure for the adequacy of testing. We want to analyse if

the projects which have test cases are thoroughly tested or not. We use two measures

of coverage:

1. Line Coverage measures the proportion of lines executed during testing.

2. Block Coverage measures the proportion of code blocks covered, where each

block is a sequence of statements without any jumps or jump targets which is

executed as one atomic unit.
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Out of the 89 apps, we have 41 apps which compile successfully and we run test

cases for these apps. We then calculate code coverage for these apps.

Figures 5.4 and 5.5 show the line and block coverage of the 41 projects, respec-

tively. We observe that 37 projects have line coverage of less than 40%, whereas 36

projects have block coverage of less than 40%. The mean and median value of line

coverage is 16.03% and 9.33%, whereas the corresponding values for block cover-

age are 17.22% and 10.65%, respectively. The results show that most of the apps

have low coverage, which shows that apps are not adequately tested.

Figure 5.4: Line Coverage (Ascending Order)

Figure 5.5: Block Coverage (Ascending Order)
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5.3.2 RQ2: Survey of Android Developers

A large number of automated testing tools are available to test Android applica-

tions. Table 5.2 shows the number of respondents who use a particular tool. Some

developers use more than one tool simultaneously. We briefly explain some of tools

commonly used by Android developers.

a) JUnit9 - A popular unit testing framework for Java. Since Android applica-

tions are written in Java, it can be directly used to test the parts of the code that do

not call the Android API.

b) MonkeyRunner10 - Monkeyrunner tool provides an API to write programs to

control an Android device or emulator from outside of the Android code.

c) Robotium11 - Robotium is a test automation framework, which allows devel-

opers to write black-box UI tests for Android apps. Robotium enables developers

to write function, system and user acceptance test spanning multiple Android activ-

ities.

d) Robolectric12 - It is a unit test framework for Android, which allows devel-

opers to execute test cases in Java Virtual Machine (JVM), rather than running on a

mobile device or emulator.

We can observe that JUnit is the most commonly used testing framework. This

could be due to the fact that JUnit is one of the mature frameworks and have been

used extensively in the industry.

Some developers often leverage automated testing tools to test their apps based

on the requirements of the project and the functionalities provided by the tool. One

of the developers said:

“Robolectric. I use this pretty heavily for unit testing, but the scope of tests is

9http://junit.org/
10http://developer.android.com/tools/help/monkeyrunner_concepts.

html
11https://code.google.com/p/robotium/
12http://robolectric.org/
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Table 5.2: Automated Testing Tools Usage

Tools Number of Respondents
JUnit 18
MonkeyRunner 8
Robotium 7
Robolectric 6
Android unit testing framework 6
Monkey 1
Espresso 1
TestNG 1
Other tools 1
No tool 35

rather limited at the moment. I run my suite of tests against my data model before

checking in code. I find this to be the most mature framework at the moment, but the

amount of supported features is still a bit limited as its a community driven project.

There have been a number of areas (e.g. the PreferenceActivity and Preferencefrag-

ment classes) that are a bit more limited in scope.

MonkeyRunner. I run tests using this generally the night before uploading an

app. My UI tends to be fairly stable at this point, so it’s not that helpful, but it

usually catches any serious functionality that I might have broken.

Robotium. I don’t use this at the moment, but I intend to in the future. One of

my limitations here right now is that there is no free ”recorder” software that I’m

aware of at the moment (a recorder would track a series of keystrokes for testing

purposes, so I could repeat app tests rather than having to do this by hand). I need

to research this a bit further.”

Developers have varying opinions over usage of these tools. Some of them

regularly use such tools (“I use Jenkins as a tool for Continuous integration, for

testing I use monkeyrunner, roboelectric, it’s easy to integrate it with Jenkins. I

also use uiautomator for testing the UI interface.”), whereas others prefer to use

older frameworks like JUnit (“I am testing my application logic (ie. service layer)

with JUnit and/or TestNG as it is not dependent on Android framework. I usually
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do not use automation tools for GUI itself, in fact my experience with GUI testing

frameworks is somewhat ... unbalanced.”). On the other hand, some developers

prefer to write their own scripts to test their applications (“Honestly I prefer to code

instead of spent my time figuring out how complex debugging tools works.”).

Our survey shows that some developers are aware of the new tools coming into

the market and they express their intentions of using those tools for future projects

(“...However, I’m interested in Espresso testing tool. It can write clean test code,

and runs faster than Robotium. I’ll try to use it if I make a next new app.”). Further-

more, some developers who are not satisfied with some tools, plan to use new tools

which provide similar functionalities (“Robotium has been giving us a little bit of

trouble by having tests flake, so I’m going to work on migrating those to espresso in

the near future, as I’ve heard nothing but good things about it so far.”).

Several developers prefer to test applications manually because their applica-

tions are small. Developers do not find it useful to put in effort and learn something

new, when the app can be tested manually in a short amount of time. One of the

developers said “because i only develop some small app. therefore, i don’t need

any test tool. i just write code, run, debug until it’s run correct.”, while another

developer mentioned that “Most of the projects I’ve worked so far are simple and

for short-term. So I was just fine with manual testing.”

Google Play makes it easier for users to search and install apps. Therefore,

some developers do not perform much testing, rather they depend on users who

download their applications to report problems. One of the respondents mentioned

“... if someone comes across a bug, they can submit on the issue tracker and I will

try to fix it.”.

Our survey results also show that a large number of developers prefer testing

their apps manually rather than using any automated testing tool. From our analysis,

we find that such cases occur due to various reasons. The app to be tested could be

simple or it could be difficult to find a tool which can meet the testing requirements

of the developers. One developer stated “I have used robotium for some UI testing,
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however I haven’t found it particularly useful. The things that robotium can test

are very easily verified manually and there are a lot of things it can’t test AFAIK

(layouting, aesthetics, etc)”.

Challenges faced by Android Developers while Testing

This section discusses the challenges faced by the Android developers while testing

their apps either manually or when using automated testing tools. Table 5.3 shows

some of the common challenges confronted by the developers. Some developers

that we survey do not mention any challenges and some mention more than one

challenges. We describe each of the challenges in detail and quote responses from

the developers.

Table 5.3: Challenges Faced by Developers while Testing

Challenges Number of Respondents
Time constraints 20
Compatibility issues 16
Lack of exposure 11
Tool is cumbersome 9
Emphasis on development 6
Lack of organization support 5
Unclear benefits 4
Poor documentation 4
Lack of experience 4
Steep learning curve 2

Time is one of the biggest factors which hinders testing. Most of the developers

want to release their applications as soon as possible before someone else develops

a similar application. In such cases, developers do not want to invest time in testing

but rather develop the application quickly. One developer commented “...I work as

a freelance developer. So often there are time constraints to finish the project. De-

signing and implementing test cases takes some extra time, which makes it difficult

to finish the project in time.”.

Automated testing tools are generic in nature and are developed to suit many

applications. However, several apps contain custom functionalities which make it
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difficult for developers to use automated testing tools. A number of developers were

of the opinion that some parts of the code are hard to test using automated testing

tools, which forces them to resort to manual testing. Also, automated testing tools

are designed to work on specific technology. When developers use different tech-

nology, these automated testing tools no longer work well. One developer lamented

“I tried robolectric, but ran into several issues, that were probably also related to

the fact that I am using Scala on Android.”

Some developers are not aware of automated testing tools available in the mar-

ket. One developer admitted “I have not been aware of them.” Furthermore, lack

of discussion about the importance of automated tests worsens the problem. One

developer commented “... but it’s not a common thing to ’do’ so there isn’t a lot of

discussion around it.”

Usability of a tool is one of the key characteristics of it being used by a large

number of developers. A tool which is easier to use will appeal to more developers

as compared to a tool whose usage is complex. Several developers responded that

they tried to use a particular tool but due to its cumbersome usage, they discarded

the tool. One respondent mentioned “I think Monkey runner is kinda cumbersome,

and breaks easily when changing layout options.”. Yet another commented “There

is some coordination problems with Robotium which can be painful to workaround

sometimes”.

Functionalities of an application are one of the key factors which decide whether

the app is useful or not. If an app provides functionalities which suits the need of a

large number of users, the app will be popular. For example, one of the apps in our

dataset, i.e., Open Explorer13, has between 100,000 - 500,000 installs. Therefore,

developers are often more focussed on adding new features of an app. Thus, they

devote most of their time towards development rather than testing. One developer

commented “... I spend most of the time I dedicate to this project to implementing

features”.

13https://play.google.com/store/apps/details?id=org.brandroid.openmanager

51



With the increasing size of an application, it becomes imperative to adequately

test the application. However, larger application means significant investment in

terms of cost involved in testing it, which can act as a hindrance for many devel-

opers and organizations. If organizations are not able to provide resources to the

developers, it would be difficult for developers to do much testing or invest time to

learn automated testing tools. One developer commented “The advice I was given

was ... not bother with trying to use the Android testing tools/frameworks”. In

several cases, clients are not willing to pay extra for doing automated testing. One

developer commented “...few clients were ready to pay more for automatic tests :

they did manual tests themselves. We never used automatic tests for this reason.”

Testing tools can play an important role during software development life cycle

as they assist developers in writing and running test scripts and creating test results

automatically as compared to manually testing the application. However, it is im-

portant to clarify how the tools would be beneficial to a developer or organization

who wants to use it. Unclear benefits would resist developers from venturing into

the arena of automated testing. One developer stated “The pain points for me would

be assessing what automated test tools are available, assessing their applicability

to my applications and writing comprehensive test scripts or whatever the tools re-

quire. That is probably more effort than what went into writing the applications in

the first place.”

Learning new tools and techniques requires developers to read documentation

and try out examples before they can apply the tool to their app. A good docu-

mentation makes it easier for novice as well as experienced developers to grasp the

functionality of a tool and get started quickly on using the tool to test their apps,

whereas a poor documentation will act as a hindrance for developers to adopt the

tool. Therefore, a good and easy to understand documentation is a must for a new

tool. Four developers in our survey mentioned that lack of documentation is one of

the challenges. One of them mentioned “Testing is documented there, but not very

well and there should be far more information (for instance, how to test interaction
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with data providers - there’s only a chapter how to test OWN data providers, but

that’s not what we need).”

Developers who have prior experience of using automated testing tools are more

likely to use new tools. Our survey responses show that developers with no experi-

ence of using automated testing tools are reluctant to use Android test automation

tools. One developer mentioned “For that, I haven’t used any kind of tool for testing

pourposes. The reason? Well, for starters, I have no experience with testing tools

for any language/platform, so I don’t really know how to tackle that...”.

Some of the developers perceive that using testing tools involve steep learn-

ing curve. One developer mentioned “I fear it would represent a strong learning

curve.”. Another developer commented that “I know what automated testing is how

to write a test case or prepare a test suite. But I don’t know how can I use automated

testing effectively. Learning this will take considerable amount of time and effort.”

5.3.3 RQ3: Survey of Microsoft Developers

Types of Testing

114 out of 127 developers use manual testing whereas 68 developers use automated

testing tools. Some developers use both manual and automated testing. 4 developers

responded that they do no test their apps. Figure 5.6 shows number of developers

who perform different types of testing while developing apps. Most of the devel-

opers i.e., 103 in our survey perform functional testing. 97 developers perform unit

testing, 75 perform integration testing, 74 perform performance testing, 63 perform

regression testing, 47 perform system testing, 45 perform acceptance and load test-

ing and 43 perform beta testing.

Automated Testing Tools Usage

Table 5.4 shows some of tools used by app developers in Microsoft. The results

show that developers prefer using in-house tools. We also analyze why developers
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Figure 5.6: Types of Testing

use automated testing tools. Figure 5.7 shows why developers use automated testing

tools and the corresponding number of developers for each type of usage. 64 devel-

opers use tools for executing test cases, 48 use them for finding potential bugs, 43

use them for analysing code coverage, 37 each use them creating & evaluating test

execution results and for performing load testing, 33 each use them for generating

test cases and managing test suites, whereas 27 developers use tools for reporting

bugs.

Table 5.4: Automated Testing Tools Usage

Tools Number of Respondents
Visual Studio 35
Internal Tool 8
Selenium 7
Microsoft Test Manager 5
Others (QUnit, Robotium etc.) 27

Challenges faced by App Developers

In this section, we discuss the challenges faced by the app developers at Microsoft

while testing their apps either manually or using automated testing tools. Figure 5.8

shows the challenges encountered by developers along with their perceived severity

levels. We can observe that 35 developers consider time constraints as a very seri-

54



Figure 5.7: Usage of Automated Testing Tools

ous challenge and 56 consider it as a serious challenge. Poor documentation is the

next big challenge which was mentioned by 19 developers as very serious and by 32

developers as serious. Lack of exposure, emphasis on development and compatibil-

ity issues were mentioned by several developers as a very serious challenge among

others.

Figure 5.8: Challenges Faced by Developers
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Developer Needs

In this section, we discuss the needs of the developers from the automated testing

tools they use. We ask developers for two additional things they would like to see

in the automated testing tools.

Poor documentation is one of the barriers for learning a new tool. Several devel-

opers expressed that a good documentation will increase their likelihood of using

the tool. One of the developers commented “Proper documentation so that a person

new to the system can easily ramp up using these documents or articles.”

Developers often struggle to meet the deadlines due to the amount of the work

they are assigned and the corresponding amount of time allotted for completion. To

worsen the problem, developers are unaware of the testing tools which would be

helpful for them. Examples of testing from successful projects would go a long way

in motivating developers to use these tools. One of the developers mentioned “We

should have more internal material on proven practices about how to do testing,

which Tools to use and many many samples and how-to Videos would be great.

There is a lot of stuff about .NET code testing but not much about XAML App testing

(at least not enough Deep digging Content)”.

Although there are lot of testing tools available, developers have to put in signif-

icant effort in activities such as generating and executing test cases. An automated

testing tool which accepts the requirements and perform testing would do wonders

for the developers. A developer mentioned “Test case generation on most of the

testing tools I came across needs to be generated by manually. this needs to be re-

duced with tools automation.”, while another one commented “There should a tool

which should accept the requirement from Dev. and should be able to develop the

test suite to run test cases. It reduces lot of testing efforts.”

In general, developers expect tools which are easy to use. One of developers

opined “I would love to see testing tools that are simple to learn and straightforward

to use. Most tools are cumbersome, lacking documentation and support is poor.
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Most of the existing UI Framework testing Tools for XAML feel incomplete.”

5.4 Threats to Validity

Threats to External Validity. Threats to external validity relate to the generalizability

of our results. We have investigated over 600 Android apps from F-Droid, which

is one of the largest repositories of open-source Android apps. Our dataset con-

sists of many kinds of apps from small ones to large and popular ones that contain

more than one million lines of code or downloads. Still, it is unclear if our findings

would generalize to all Android applications. In the future, we plan to reduce this

threat further by analyzing more Android apps. Our respondents might not be rep-

resentative of the entire population of app developers and thus our results might not

generalize to all app developers. We have tried to reduce this threat to validity by

surveying more than 200 developers of Android and Windows, which are the two

most popular mobile app platforms. To the best of our knowledge, our study is the

largest study on app developers to date.

Threats to Internal Validity. Threats to internal validity relate to the conditions

under which experiments are performed. We automatically identify apps which

contain test cases by using the following heuristics: we treat .java files whose names

contain the word “test” as test files. We might miss some test files or mistakenly

consider a file to be a test file when it is not. Furthermore, we manually analyse

89 apps which contain test files and calculate the coverage of test cases contained

in these files. Out of the 89 apps, many failed to compile mainly due to missing

dependencies. We tried our best to resolve all the dependencies by finding and

downloading needed external libraries. However, we still cannot resolve many of

them. We only compute coverage for 41 apps that we can successfully compile.

Furthermore, some developers mention that they prefer manual testing. In such

cases, test cases for these projects might not be available. To calculate the number
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of developers, we use information from git logs. There may be cases where the

same developer uses different e-mail addresses to commit to the same git repository

and we may have wrongly counted the number of developers.

5.5 Conclusion

The following is a summary of our findings:

1. Only around 14% of the apps contain test cases and only around 9% of the

apps that have executable test cases have coverage above 40%.

2. Android app developers prefer using standard framework such as JUnit, but

they also use Android specific testing tools such as Monkeyrunner, Robotium

and Robolectric. However, many Android developers prefer to test their ap-

plications manually without the help of any testing framework or tools. Most

Windows app developers make use of Visual Studio, Coded UI, Selenium,

and Microsoft Test Manager to test their apps.

3. Android and Windows app developers face numerous challenges in testing

their apps and in using automated testing tools. These challenges include

time constraints, compatibility issues, lack of exposure, cumbersome tools,

emphasis on development, lack of organization support, unclear benefits, poor

documentation, lack of experience, and steep learning curve.
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Chapter 6

Bug Localization: Researchers’ Bias

6.1 Introduction

Issue tracking systems, which contains information related to issues faced during

the development as well as after the release of a software project, is an integral part

of software development activity. Issue tracking systems such as JIRA or Bugzilla

can help reporters report various kinds of issues such as bug reports, documentation

update, refactoring request, addition of new feature and so on. Well-known projects

often receive large number of issue reports which might be difficult for developers

to handle. A mozilla developer accepted that the project receives over 300 bugs per

day which needs triaging [7]. Therefore, it is important to have techniques which

can help developers find buggy files quickly, which can help them resolve the bug

faster.

To overcome the above issue, researchers have proposed techniques which use

information given in the bug report to identify source code files that contain the

bug [103, 110, 146]. These techniques often use standard information retrieval (IR)

techniques to compute the similarity between the textual description of bug report

and textual description of source code. Based on the similarity scores, these IR-

based bug localization techniques return a ranked list of source code files which are

likely to be buggy for that bug report. These techniques are evaluated using closed
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and fixed issue reports marked as bugs collected from issue tracking systems. The

evaluation involves comparison of files returned by bug localization techniques with

the actual files changed to fix the bug. Past studies indicate that the performance of

these techniques are promising – up to 80% of bug reports can be localized by just

inspecting 5 source code files [110].

6.2 Biases in Bug Localization

Despite the promising results of IR-based bug localization approaches, a number of

potential biases can affect the validity of results reported in prior studies. If these

biases significantly affect the results of bug localization studies, researchers need to

put more care in cleaning evaluation datasets when evaluating the performances of

their techniques. In this work, we focus on investigating three potential biases:

1. Wrongly Classified Reports. Herzig et al. reported that many issue reports

in issue tracking systems are wrongly classified [44]. About one third of all

issue reports marked as bugs are not really bugs. Herzig et al. have shown

that this potential bias significantly affects bug prediction studies that predict

whether a file is potentially buggy or not based on the history of prior bugs.

This potential bias might affect bug localization studies too as the character-

istics of bug reports and other issues, e.g., refactoring requests, can be very

different. Refactoring can touch a large number of files, while bug fixes are

often more localized [77, 128]. Thus, there is a need to investigate whether

wrongly classified reports significantly skew effectiveness results of bug lo-

calization approaches.

2. Already Localized Reports. Our manual investigation of a number of bug

reports find that the textual descriptions of many reports have already speci-

fied the files that contain the bug. These localized reports do not require bug

localization approaches. The buggy files are already localized and only need
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to be fixed. Evaluating bug localization approaches will these localized re-

ports will unfairly inflate the effectiveness results. Thus, there is a need to

investigate how common are localized reports and whether their presence in

the evaluation data set significantly skew effectiveness results of bug localiza-

tion approaches.

3. Incorrect Ground Truth Files. Kawrykow and Robillard reported that many

changes made to source code files are non-essential changes [55]. These non-

essential changes include cosmetic changes made to source code which do

not affect the behavior of systems. Past bug localization studies often use

as ground truth source code files that are touched by commits that fix the

bugs [110, 146]. However, no manual investigation was done to check if these

files are affected by essential or non-essential changes. Files that are affected

by non-essential changes should be excluded from the ground truth files as

they do not contain the bug. Including these non-essential changes as ground

truth files can unfairly inflate the effectiveness results – with more ground

truth files, there is a higher chance that one of them will be identified by a bug

localization tool. Thus, there is a need to investigate how common are the

incorrect ground truth files and whether their presence in the evaluation data

set significantly skew effectiveness results of bug localization approaches.

6.2.1 Bias 1: Wrongly Classified Reports

Methodology:

Step 1: Data Acquisition. We use Herzig et al’s dataset where they manually ana-

lyzed issue reports (www.st.cs.uni-saarland.de/softevo/bugclassify). We download

the issue reports from JIRA repositories and extract the textual contents of the sum-

mary and description part of the reports. After downloading, we perform the prepro-

cessing steps described previously. In JIRA, each issue report has a unique identifier

represented by project name and unique number. For example, HTTPCLIENT-974
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represents issue number 974 of project HTTPClient. We use the git version con-

trol system of the projects to get the commit log files, which are used to map issue

reports to their corresponding commits. Commit logs contain unique identifier of

the issue report as part of the commit message. We use these mapped commits to

checkout the source code files prior to the commits that address the issue and the

source code files when the issue is resolved. For each source code files, we perform

a similar preprocessing step to represent a file as a bag-of-words.

Step 2: Bug Localization. After the data acquisition, we have the textual content of

the issue reports, the textual content of each source code file in the revision prior to

the fix, and a set of ground truth files that are changed to fix the issue report. We

give the textual content of the issue reports and the revision’s source code files as

input to the bug localization technique, which outputs a ranked list of files sorted

based on the similarity to the bug report.

Step 3: Effectiveness Measurement & Statistical Analysis. After Step 2, we have for

each issue report, a ranked list of source code files and a list of ground truth files.

We compare these two lists to compute the average precision score.

We divide the issue reports into two categories: issue reports marked as bugs in

the tracking system (Reported) and issue reports that are actual bugs i.e., manually

labeled by Herzig et al. (Actual). In Herzig et al.’s dataset, the set Actual is a

subset of Reported. We compute the MAP scores and use Mann-Whitney U test

to examine the difference between these two categories at 0.05 significance level.

We use Cohen’s d to measure the effect size, which is the standardised difference

between two means. To interpret the effect size, we use the interpretation given by

Cohen in his book [23], i.e., d < 0.2 means trivial, 0.20 ≤ d < 0.5 means small, 0.5

≤ d < 0.8 means medium, 0.80 ≤ d < 1.3 means large, and d ≥ 1.3 means very

large.

Results:

Table 6.1 shows the MAP scores for the two categories: reports marked as bugs
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(Reported) and manually classified bug reports (Actual). We observe that there

are differences of -2.33%, 12.25% and 6.98% in the MAP scores for HTTPClient,

Jackrabbit and Lucene-Java, respectively. We perform Mann-Whitney Wilcoxon

test and compute Cohen’s d to examine the differences between the two categories.

The results are also presented in Table 6.1. From the results, we observe that, for

HTTPClient and Lucene-Java, the differences are statistically insignificant and the

effect sizes are trivial (i.e., less than 0.2). For Jackrabbit, the effect size is trivial,

however, the difference is statistically significant.

Table 6.1: Mean Average Precision (MAP) Scores for Reported and Actual

Project Reported Actual Difference d
HTTPClient 0.429 0.419 -2.33% 0.13
Jackrabbit 0.302 0.339 12.25% 0.06

Lucene-Java 0.301 0.322 6.98% 0.04

Effect of Different Misclassification Types. In this section, we analyse

the misclassification type which has the most impact on the difference of

MAP scores between Reported and Actual. Herzig et al. classify issue

reports into 13 categories: BUG, RFE, IMPROVEMENT, DOCUMENTATION,

REFACTORING, BACKPORT, CLEANUP, SPEC, TASK, TEST, BUILD SYSTEM,

DESIGN DEFECT, and OTHERS. We omit issue reports that are misclassified one

category at a time and recalculate the MAP score. For example, RFE to BUG rep-

resents issue reports which are RFE (Actual) but are misclassified as BUG (Re-

ported). Table 6.2 shows the MAP scores when we remove issue reports of par-

ticular misclassification types one at a time. Each row corresponds to a subset of

reports where reports of a misclassification type is removed. We observe that TEST

to BUG has the largest difference in the MAP score followed by misclassification

from IMPROVEMENT to BUG.
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Table 6.2: Mean Average Precision (MAP) Scores when Issue Reports of a Partic-
ular Misclassification Type are Omitted. Omit. = Omitted, Misclass. = Misclassifi-
cation, HC = HTTPClient, JB = Jackrabbit, LJ = Lucene-Java. The last column is
the MAP of all three projects.

Omit. Misclass. Type HC JB LJ Overall
(Actual to Reported)

None 0.429 0.302 0.301 0.312
RFE to BUG 0.427 0.303 0.304 0.313

DOCUMENTATION to BUG 0.43 0.304 0.305 0.315
IMPROVEMENT to BUG 0.416 0.299 0.295 0.307
REFACTORING to BUG 0.428 0.301 0.301 0.311

BACKPORT to BUG 0.43 0.303 0.300 0.313
CLEANUP to BUG 0.429 0.303 0.303 0.314

SPEC to BUG 0.435 0.302 0.303 0.312
TASK to BUG 0.432 0.302 0.301 0.312
TEST to BUG 0.429 0.328 0.313 0.334

BUILD SYSTEM to BUG 0.429 0.306 0.303 0.315
DESIGN DEFECT to BUG 0.424 0.301 0.301 0.311

OTHERS to BUG 0.439 0.303 0.301 0.313

6.2.2 Bias 2: Already Localized Reports

Methodology: We first need to identify localized bug reports. We start by manual

investigating of a smaller subset of bug reports and identify localized ones. We then

developed an automated means to find localized bug reports so that our analysis can

scale to a larger number of bug reports. Finally, we input these reports to a number

of IR-based bug localization tools to investigate whether localized reports skew the

results of bug localization tools.

Table 6.3: Fully Localized, Partially Localized, and Not Localized Reports

Category Description
Fully Bug reports where all the files containing the bugs are explicitly

specified in the report.
Partially Bug reports where some of the files containing the bugs are explic-

itly mentioned in the report.
Not Bug reports which do not explicitly specify any of the buggy files.

Step 1: Manually Identifying Localized Bug Reports. We manually analysed 350

issue reports that Herzig et al. labeled as bug reports. Out of the 5,591 issue reports

from the three projects, Herzig et al. labeled 1,191 of them as bug reports. We
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randomly selected these 350 from the pool of bug reports from the three software

projects. For our manual analysis, we read the summary and description fields of

each bug report. We also collected the corresponding files changed to fix each bug.

We classified each bug report into one the three categories shown in Table 6.3.

Table 6.4, 6.5, and 6.6 show example bug reports that are fully localized, partially

localized, and not localized.

Table 6.4: Fully Localized Report: HTTPCLIENT-1078

Summary: DecompressingEntity not calling close on InputStream re-
trieved by getContent

Description: The method DecompressingEntity.writeTo(OutputStream
outstream) does not close the InputStream retrieved by get-
Content(). According to the documentation of HttpEn-
tity.writeTo: IMPORTANT: Please note all entity implemen-
tations must ensure that all allocated resources are properly
deallocated when this method returns. -> imho this is not
satisfied in DecompressingEntity.writeTo

Buggy Files: DecompressingEntity.java

Table 6.5: Partially Localized Report: JCR-814

Summary: Oracle bundle PM fails checking schema if 2 users use the
same database

Description: When using the OracleBundlePersistenceManager there is
an issue when two users use the same database for persis-
tence. In that case, the checkSchema() method of the Bun-
dleDbPersistenceManager does not work like it should.
More precisely, the call ”metaData.getTables(null, null,
tableName, null);” will also includes table names of other
schemas/users. Effectively, only the first user of a database
is able to create the schema. probably same issue as here:
JCR-582

Buggy Files: BundleDbPersistenceManager.java, OraclePersistence-
Manager.java

Step 2: Automatic Identification of Localized Reports. In this step, we build an algo-

rithm that takes in a set of files that are changed in bug fixing commits, a bug report,

and outputs one of the three categories described in Table 6.3. Our algorithm first

extracts the text that appear in the summary and description fields of bug reports.

Next, it tokenizes this text into a set of word tokens. Finally, it checks whether the
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Table 6.6: Not Localized Report: LUCENE-3721

Summary: CharFilters not being invoked in Solr
Description: On Solr trunk, all CharFilters have been non-functional since

LUCENE-3396 was committed in r1175297 on 25 Sept
2011, until Yonik’s fix today in r1235810; Solr 3.x was not
affected - CharFilters have been working there all along.

Buggy Files: TokenizerChain.java

name of each buggy file (ignoring its filename extension) appears as a word token

in the set. If all names appear in the set, our algorithm categorizes the report as fully

localized. If only some of the names appears in the set, it categorizes the bug report

as partially localized. Otherwise, it categorizes the bug report as not localized. We

have evaluated our algorithm on the 350 manually labeled bug reports and find that

its accuracy is close to 100%.

Step 3: Application of IR-Based Bug Localization Techniques. After localized, par-

tially localized, and not localized reports are identified, we create three groups of

bug reports. We feed each of them into the VSM-based bug localization tool. We

then evaluate the effectiveness of these tools for each of the three groups of reports.

Step 4: Statistical Analysis. We perform two statistical analyses. First, we compare

the average precision scores achieved by VSM-based bug localization tool for the

set of fully localized, partially localized, and not localized reports using Mann-

Whitney-Wilcoxon test at 5% significance level. We also compute Cohen’s d on the

average precision scores to see if the effect size is small, medium or large.

Second, we compare a subset of bug reports where the VSM-based bug local-

ization technique performs the best and another subset where the VSM-based bug

localization techniques performs the worst. We then compare the distribution of

fully, partially, and not localized bugs in these two subsets. We employ Fisher exact

test [29] to see if the distribution for the first subset significantly differs with the

distribution for the second subset.
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Results:

Number of Fully Localized, Partially Localized, and Not Localized Reports.

The numbers of bug reports that are identified as fully, partially, and not localized

are shown in Table 6.7. We can observe that out of 1,191 bug reports, 398 (33.41%)

bug reports are fully localized i.e., the bug reports contains the name of all the class

files changed to fix the bug. Over 50% of the bug reports are either fully or partially

localized. This shows that a significant number of bug reports are already localized,

and do not benefit from a bug localization algorithm. On the other hand, 546 bug

reports (45.84%) are not localized at all.

Table 6.7: Fully, Partially, and Not Localized Reports

Project Category Number Proportion

HTTPClient
Fully 36 3.02%

Partially 28 2.35%
Not 35 2.93%

Jackrabbit
Fully 299 25.10%

Partially 132 11.08%
Not 402 33.75%

Lucene-Java
Fully 63 5.28%

Partially 87 7.30%
Not 109 9.15%

Average Precision Scores of Fully vs. Partially vs. Not Localized Reports. Ta-

ble 6.8 shows the Mean Average Precision (MAP) of the VSM-based bug localiza-

tion technique when applied to the set of fully, partially, and not-localized reports.

We can note that the MAP score differences between fully localized and not local-

ized bug reports for HTTPClient, Jackrabbit, and Lucene-Java are 84.39%, 99.86%

and 91.16% respectively. Also, the MAP score differences between partially local-

ized and not localized bug reports for HTTPClient, Jackrabbit, and Lucene-Java are

33.05%, 66.42% and 52.71% respectively.

We also perform Mann-Whitney Wilcoxon test to examine the difference be-

tween the following categories: fully & partially, partially & not and fully & not.

Table 6.9 shows the p-values between different categories. The results show that
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Table 6.8: MAP Scores: Fully vs. Partially vs. Not

Project Fully Partially Not
HTTPClient 0.615 0.349 0.250
Jackrabbit 0.560 0.373 0.187

Lucene-Java 0.527 0.338 0.197

Table 6.9: Comparison: Fully vs. Partially vs. Not

Project
Fully-Partially Partially-Not Fully-Not

p-value d Effect Size p-value d Effect Size p-value d Effect Size
HTTPClient 0.007 0.94 Large 0.007 0.53 Medium 3.094e−05 1.27 Large
Jackrabbit 4.544e−05 0.56 Medium < 2.2e−16 0.55 Medium < 2.2e−16 1.14 Large

Lucene-Java 0.010 0.53 Medium 1.851e−05 0.41 Small 3.183e−09 1.04 Large

there are significant differences between average precision scores of fully localized

and partially localized bug reports, fully localized and partially localized bug re-

ports, and partially localized and not localized bug reports, i.e., all the p-values are

less than 0.05. We also compute Cohen’s d to measure an effect size and find that

the effect sizes are small to large. The effect sizes between average precision scores

of fully localized and not localized bug reports are large for all three projects. This

shows that there is a large substantial difference in the effectiveness of a bug local-

ization tool when applied to bug reports which are fully localized and those which

are not localized.

Best vs. Worst Bug Reports. We want to examine the difference between the

proportion of bug reports that are fully, partially, and not localized in the upper

and lower quartile of the bug reports based on the ability of the VSM-based bug

localization tool to localize them. We simply sort the bug reports based on their

average precision scores and identify the subset that appear in the top 25% of the

list (upper quartile) and another subset that appear in the bottom 25% of the list

(lower quartile). For Jackrabbit and Lucene-Java, we randomly select 50 bug reports

from the upper quartile and another 50 from the lower quartile. For HTTPClient,

we randomly select 25 bug reports from the upper quartile and another 25 from the

lower quartile – since in our dataset, HTTPClient has less than 100 bug reports.

Table 6.10 shows the number of fully, partially and not localized bugs for each
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Table 6.10: Fisher Exact Test: Best vs. Worst Reports

Project Fully Partially Not p-value

HTTPClient
Upper 16 5 4

0.0041
Lower 6 4 15

Jackrabbit
Upper 35 9 6

2.807e−13

Lower 7 1 42

Lucene-Java
Upper 22 18 10

8.724e−05

Lower 5 18 27

of the projects. We use Fisher exact test to examine the difference between the

distribution of fully localized, partially localized, and not localized bug reports in

the upper and lower quartiles. The null hypothesis is that there is no difference

between the distribution of fully, partially, and not localized bug reports in the upper

and lower quartiles. The alternate hypothesis is that there is a significant difference

between the distribution of bug reports in the upper and lower quartiles. We find

that the p-values for all the projects are very small, which shows that there is a

significance difference in the distribution of fully localized, partially localized, and

not localized bug reports between the best and worst bug reports.

6.2.3 Bias 3: Incorrect Ground Truth Files

Methodology:

We randomly select 100 bug reports that are not (already) localized (i.e., these re-

ports do not explicitly mention any of the buggy files) and investigate the files that

are modified in the bug fixing commits. We manually perform a diff that gives us

the differences between the modified file and the original file. Based on these differ-

ences we manually decide if a file contains a bug or not. Files that are only affected

by cosmetic changes, refactorings, etc. are considered as non-buggy files. Based on

this manual analysis, for each bug report we have the set of clean ground truth files

and another set of dirty ground truth files.

Thung et al. have extended Kawrykow and Robillard work [55] to automatically

identify real ground truth files [123]. However the accuracy of their proposed tech-

nique is still relatively low (i.e., precision and recall scores of 76.42% and 71.88%).
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Hence, we do not employ any automated tool to identify wrong ground truth files.

We also cannot extend the study to investigate a large number of bug reports since

the identification of wrong ground truth files is time consuming.

Step 2: Application of IR-Based Bug Localization Techniques. After the set of clean

and dirty ground truth files are identified for each of the 100 bug reports, we input

the 100 bug reports to a VSM-based bug localization tool. We evaluate the results

of the tool on dirty and clean ground truth files.

Step 3: Statistical Analysis. We compare the average precision scores achieved by

the VSM-based bug localization tool for the 100 bug reports with clean and dirty

ground truth files using Mann-Whitney-Wilcoxon test at 5% significance level. We

also compute Cohen’s d on the average precision scores to see if the effect size is

small, medium or large.

We remove all the files which were changed when the bug was fixed but these

files are not buggy. For example, all the files which are refactored due to some

changes in other files or change in the comments section. We randomly select 100

bug reports and manually analyse them to examine all the files changed to solve a

bug report. We remove files which are not-buggy i.e., which involve addition or

deletion of import statement, change in comments etc. We found that out of 498

files changed to fix the above 100 bugs, 358 files are buggy. The other 140 files

only involve cosmetic changes such as adding or deleting a variable, changing the

datatype of variables etc. These files actually did not caused the bug but are changed

because of the changes made to the buggy files.

Results:

Number of Wrong Ground Truth Files. We found that out of 498 files changed to

fix the 100 bugs, only 358 files are really buggy. The other 140 files (28.11 %) do

not contain any of the bugs but are changed because of refactorings, modifications

to program comments, due to changes made to the buggy files, etc. Figure 6.1 shows

the diff of a file that is changed in a commit that fix bug report LUCENE-2616. The
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content of the bug report with ID LUCENE-2616 is shown in Table 6.11.

Figure 6.1: Example Diff of a File that is Changed to Fix a Bug in Lucene-Java
Project with ID LUCENE-2616. Note: (1) The name of the file: SegmentInfo.java;
(2) An empty line and an import statement are deleted; (3) An empty line is deleted
and another one is added.

Table 6.11: Bug Report: LUCENE-2616

Summary: FastVectorHighlighter: out of alignment when the
first value is empty in multiValued field

Description: -
Non-Buggy File: SegmentInfo.java

MAP Scores: Dirty vs. Clean. We compare the Mean Average Precision (MAP)

scores of these 100 bug reports when evaluated on dirty and clean ground truths.

Table 6.12 shows that the differences in the MAP scores are between 0 to 0.036.

We also ran Mann-Whitney Wilcoxon test and compute Cohen’s d to check if each

difference is significant or substantial. We find that the difference is not statistically

significant and the effect size is trivial (< 0.2).

Table 6.12: MAP Scores: Dirty vs. Clean Ground Truths

Project Dirty Clean Difference d
HTTPClient 0.207 0.171 0.036 0.08
Jackrabbit 0.115 0.115 0.000 0.08

Lucene-Java 0.271 0.239 0.032 0.17
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6.3 Other Evaluation Metrics

Beside Mean Average Precision (MAP) which we used in the previous sections,

HIT@N and MRR have also been used to evaluate bug localization studies [103,

110, 146]. HIT@N and MRR are presented below:

• HIT@N: This metric counts the percentage of bug reports with at least one

buggy file found in the top N (e.g., 1) ranked results.

• MRR (Mean Reciprocal Rank): The reciprocal rank of a bug report is the

inverse of the rank of the first buggy file in the ranked results. The mean

reciprocal rank takes the average of the reciprocal ranks of all bug reports.

For a set of bug reports Q, MRR is defined as:

MRR =
1

|Q|

Q∑
i=1

1

ranki
(6.1)

where ranki is the rank of the first buggy file in the output ranked list.

Figure 6.2: Before and After Removing Bias 1

The effect of bias 1, bias 2, and bias 3 measured by HIT@1 and MRR are

shown in Figures 6.2 to 6.4. Figure 6.2 shows that for bias 1, its effect in terms of

HIT@1 and MRR scores is minimal. Figure 6.3 shows that for bias 2, its effect in

terms of HIT@1 and MRR score is substantial. Figure 6.4 shows that for bias 3,
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for Jackrabbit, its effect is minimal. For HTTPClient and Lucene-Java, its effect is

more apparent albeit not as substantial as the effect of bias 2.

Figure 6.3: Before and After Removing Bias 2

Figure 6.4: Before and After Removing Bias 3

For MRR since it is a mean of a distribution, we also run Mann-Whitney-

Wilcoxon test and compute Cohen’s d values. The results are shown in Table 6.13.

We find that for bias 1, its effect is not statistically significant for all projects. For

bias 2, its effect is both statistically significant and substantial when comparing the

results of (fully or partially) localized bug reports with results of not localized bug

reports. For bias 3, its effect is not statistically significant for all projects.

To conclude, the above results show that bias 2 has substantial effect on the per-

formance of bug localization techniques. The effects of bias 1 and 3 are more minor
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or even negligible. These results are in line with the findings of Sections 6.2.1,

6.2.2, and 6.2.3.

Table 6.13: Results of Mann-Whitney-Wilcoxon Test and Cohen’d Computation for
MRR. (F-P) = Fully Localized vs. Partially Localized. (P-N) = Partially Localized
vs. Not Localized. (F-N) = Fully Localized vs. Not Localized.

Bias Type Project p-value d

Bias 1

HTTPClient 0.6667 0.241
Jackrabbit 0.7855 0.050

Lucene-Java 0.7336 0.043

Bias 2

HTTPClient
(F-P) 0.5465 0.142
(P-N) 0.0008925 0.364
(F-N) 0.0003381 0.634

Jackrabbit
(F-P) 0.075 0.128
(P-N) <2.2e-16 1.421
(F-N) <2.2e-16 0.962

Lucene-Java
(F-P) 0.2024 0.097
(P-N) 8.201e-08 0.944
(F-N) 3.805e-06 0.775

Bias 3
HTTPClient 0.6464 0.163
Jackrabbit 0.9404 0.088

Lucene-Java 0.7449 0.137

6.4 Conclusion

In this study, I analyze the impact of these potential biases on bug localization re-

sults. This empirical study highlights the following results:

1. Wrongly classified issue reports do not statistically significantly impact bug

localization results on two out of the three projects. They also do not sub-

stantially impact bug localization results on all three projects (effect size <

0.2).

2. (Already) localized bug reports statistically significantly and substantially im-

pact bug localization results (p-value < 0.05 and effect size > 0.8).

3. Existence of non-buggy files in the ground truth does not statistically signifi-

cantly or substantially impact bug localization results (effect size < 0.2).
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These findings suggest that future bug localization researchers need to at least

remove (already) localized bug reports from their evaluation dataset since they

have significant and substantial impact on the performance of bug localization tech-

niques.
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Chapter 7

Bug Localization: Practitioners’

Expectations

7.1 Introduction

Despite numerous studies on bug localization, unfortunately, few studies have in-

vestigated the expectations of practitioners on research in fault localization. It is

unclear whether practitioners appreciate this line of research. Even if they do, it is

unclear whether they would adopt fault localization techniques, what factors affect

their decisions to adopt, and what are their minimum thresholds for adoption. Prac-

titioners’ perspective is important to help guide software engineering researchers to

create solutions that matter to our “clients”.

To gain insights into practitioners’ expectations on bug localization, we sur-

veyed thousands of practitioners from various companies spread across the globe

and obtained 386 responses. To get these thousands of practitioners, we sent emails

to our contacts in IT industry (Microsoft, Google, Cisco, LinkedIn, ABB, Box.com,

Huawei, Infosys, Tata Consultancy Services and many other small to large IT com-

panies in various countries) to disseminate our survey form to their colleagues.

We also sent emails to practitioners contributing to open source projects hosted

on GitHub. In our survey, we first collected demographic information from respon-
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dents, e.g., whether they are professional software engineers, whether they have

contributed to open source projects, their experience level, their job roles, their

English proficiency level, and their country of residence. Next, we gave a brief

overview of research in bug localization, and asked our respondents about their

views of the importance of this research area. We allowed respondents to answer “I

don’t understand” to filter out those with insufficient background knowledge. Next,

we investigated practitioners’ willingness to adopt fault localization techniques, and

their thresholds for adoption measured in terms of various factors: debugging data

availability, granularity level, success criterion, success rate, scalability, efficiency,

ability to provide rationale, and IDE integration.

After the survey, we performed a literature review. We went through papers

published in ACM/IEEE International Conference on Software Engineering (ICSE),

ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE), Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on Foundations of Software Engineering (ESEC-FSE), ACM Interna-

tional Symposium on Software Testing and Analysis (ISSTA), IEEE Transactions

on Software Engineering (TSE), and ACM Transactions on Software Engineering

Methodology (TOSEM) in the last 5 years and identified those that proposed bug

localization techniques. We then compared the techniques proposed in the papers

against the criteria that practitioners have for adoption.

We investigated the following research questions in our survey and literature

review:

RQ1 Do practitioners value research on fault localization?

RQ2 What debugging data are available to practitioners during their debug-

ging sessions?
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RQ3 Which granularity levels (e.g., components, classes, methods, basic

blocks, statements) should a fault localization technique work on?

RQ4 When would a practitioner view a fault localization technique to be suc-

cessful in localizing bugs?

RQ5 How trustworthy (reliable) must a fault localization technique be before

a practitioner will consider its adoption?

RQ6 How scalable must a fault localization technique be before a practitioner

will consider its adoption?

RQ7 How efficient must a fault localization technique be before a practitioner

will consider its adoption?

RQ8 Will a practitioner adopt a trustworthy, scalable, and efficient fault lo-

calization technique?

RQ9 What additional criteria aside from trustworthiness, scalability, and effi-

ciency, must a fault localization technique meet before some practitioners

will consider its adoption?

RQ10 How close are the current state-of-research to satisfy practitioner needs

and demands before adoption?

We investigated RQ1 to understand the general views of practitioners on re-

search in fault localization. In RQ2 to RQ7, we probed the practitioners to better

understand their minimum thresholds for adopting a fault localization technique

considering different factors. We considered availability of debugging data and

preferred granularity level in RQ2 and RQ3. Prior studies have considered a variety

of data and focused on different granularity levels. Unfortunately, none has checked

with practitioners whether they are available or preferred. In RQ4 and RQ5, we con-

sidered success criterion and success rate (i.e., the proportion of time the success

criterion is met) since they were measured in various ways to evaluate past fault

localization techniques [130, 132, 49, 76]. We considered scalability in RQ6 due to

a recent shift in fault localization studies that analyze larger programs, beyond those
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in Siemens suite [46]. We considered efficiency, i.e., the amount of time a technique

takes to produce results, in RQ7, since it is often used as a criterion to evaluate pro-

gram analysis tools (e.g., [111]). We considered RQ8 to understand the willingness

of practitioners to adopt a tool which satisfies a set of desirable properties. We inves-

tigated additional criteria aside from trustworthiness, scalability, and efficiency in

RQ9. We considered RQ10 to evaluate the extent current state-of-research matches

practitioners’ expectations.

7.2 Methodology

7.2.1 Practitioner Survey

Respondent Recruitment

Our goal is to get a sufficient number of practitioners from diverse backgrounds.

We followed a multi-pronged strategy to get respondents:

• First, we contacted professionals from various countries and IT companies

and asked their help to disseminate our survey within their organizations.

We sent emails to our contacts in Microsoft, Google, Cisco, LinkedIn, ABB,

Box.com, Huawei, Infosys, Tata Consultancy Services and many other small

to large companies in various countries to fill up the survey and disseminate it

to some of their colleagues. By following this strategy we can get respondents

from diverse organizations.

• Second, we sent emails to 3,300 practitioners contributing to open source

projects on GitHub, out of which around 150 were not delivered, and around

50 emails received automatic replies notifying the receiver’s absence. By

sending to GitHub developers we get respondents who are open source prac-

titioners in addition to professionals working in industry.

We included practitioners working on open source and closed source projects,
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those working in small as well as large organizations, and those from different na-

tionalities across the globe. A similar methodology of collecting responses through

contacts in industry has been used in previous studies, e.g., [131].

Survey Design

We collected the following pieces of information.

Demographics:

• Professional software engineer: Yes / No

• Involvement in open source development: Yes / No

• Role: Software development / Software testing / Project management / Other

(Pick all that apply)

• Experience in years (decimal value)

• English proficiency: Very good / Good / Mediocre / Poor / Very poor (Pick

one)

• Current country of residence

The demographic information is used to: 1) filter respondents who may not

understand our survey (i.e., respondents with less relevant job roles, respondents

with poor/very poor English proficiency), 2) break down results by groups (e.g., by

roles, by experience levels, etc.).

Practitioners’ Expectations:

Importance. We provided respondents a brief description of research in fault lo-

calization and asked them how they perceive the importance of such line of re-

search. We described fault localization as an approach that generates a ranked list

of suspicious program locations given debugging data (e.g., a crash or a program

failure). We asked respondents to pick one of the following ratings: “Essential”,

“Worthwhile”, “Unimportant”, “Unwise”, and “I don’t understand”. The ratings are

the same as those used in prior studies by Begel and Zimmermann [11] and Lo et
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al. [74]. We included the category “I don’t understand” to filter respondents who do

not understand our brief description. For respondents who selected “Unimportant”

or “Unwise”, we asked why they think research in fault localization is unimportan-

t/unwise. They may or may not provide answers to this optional question.

Adoption. Next, we asked respondents factors that affect their likelihood to adopt a

fault localization technique. We elicited the following pieces of information:

• Availability of debugging data: mathematical specification, textual specifica-

tion, one failing test case, multiple failing test cases, passing test cases, textual

description of a defect. (Options: all the time, sometimes, rarely, never)

• Preferred granularity levels: pinpoint buggy components, pinpoint buggy

classes, pinpoint buggy methods, pinpoint buggy basic blocks, pinpoint buggy

statements (Pick all that apply)

• Minimum success criteria: Top 11 / Top 5 / Top 10 / Top 50 / Other (Pick one)

• Minimum success rate: at least 5% / 20% / 50% / 75% / 90% / Other (Pick

one)

• Minimum scalability: Programs of size 1-100 / 1-1,000 / 1-10,000 / 1-100,000

/ 1-1,000,000 lines of code (LOC) / Other (Pick one)

• Minimum efficiency: Return result in less than 1 second / 1 minute / 30 min-

utes / 1 hour / 1 day / Other (Pick one)

We then asked respondents whether they will adopt a fault localization technique

which is trustworthy (i.e., satisfies a minimum success rate), scalable, and efficient.

If a respondent answered “No”, we asked the respondent his/her reason to not adopt

such a technique. The respondent may or may not answer this optional question.

Next, we asked respondents to indicate their level of agreement (disagreement)

with the following statements:

1A buggy program element exists in the top 1 position of a ranked list returned by a fault local-
ization technique.
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• A fault localization technique must provide a rationale why some program

locations are marked as suspicious. (Options: Strongly agree, Agree, Neutral,

Disagree, Strongly disagree)

• I will still adopt an efficient, scalable, and trustworthy fault localization tech-

nique, even if it cannot provide rationales. (Options: Strongly agree, Agree,

Neutral, Disagree, Strongly disagree)

• A fault localization technique must be integrated well to my favourite IDE.

(Options: Strongly agree, Agree, Neutral, Disagree, Strongly disagree)

• I will still adopt a an efficient, scalable, and trustworthyfault localization tech-

nique, even if it is not integrated well to my favorite IDE. (Options: Strongly

agree, Agree, Neutral, Disagree, Strongly disagree)

We considered the above statements to validate the observations that “more con-

text [is] needed” for debugging and there is a need for a “complete ecosystem for

debugging” [94]. If a respondent chose “Disagree” or “Strongly Disagree” for ei-

ther the second or fourth statement above, we asked their reasons to disagree. A

respondent may or may not answer these optional questions.

At the end of the survey, we allowed respondents to provide free-text comments,

suggestions, and opinions about fault localization and our survey. A respondent may

or may not provide any final comment.

To support respondents from China, we translated our survey to Chinese before

distributing it to them. We chose to make our survey available in Chinese and

English as the earlier is the most spoken language and the latter is an international

lingua franca. A large number of our survey recipients are expected to be fluent

in one of these two languages. Moreover, prior to sending our survey to a large

number of potential respondents, we asked a few practitioners that we know to take

a preliminary version of our survey and give comments. They found that overall

the survey was easy to understand and gave some feedback to improve it further.

We made some minor modifications to the survey based on their feedback. We
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discarded responses that we received from these pilot respondents. The full text of

this survey is publicly available [1].

Data Analysis

Based on our survey responses, we set out to answer the first 9 research questions

described in Section 5.3.2. We plotted practitioners’ responses as charts and used

them to answer the research questions. Considering different factors (e.g., trust-

worthiness, scalability, etc.), we identified thresholds to achieve 50%, 75%, and

90% satisfaction rates (i.e., 50%, 75%, and 90% of respondents are happy with a

fault localization technique if the thresholds are met). Moreover, we summarized

respondents’ reasons for their unwillingness to adopt and their final comments.

7.2.2 Literature Review

We went through full research papers published in ICSE, FSE, ESEC-FSE, ISSTA,

TSE, and TOSEM from 2011 to 2015. We have a total of 417, 255, 169, 350,

and 137 ICSE, FSE/ESEC-FSE, ISSTA, TSE, and TOSEM papers to consider, re-

spectively. We selected papers from the above conferences and journals as they are

premier publication venues in software engineering research community and state-

of-the-art latest findings are published in these conferences and journals.

We read the titles and abstracts of these papers and judged whether each of

the papers proposes a new fault localization technique that can help practitioners

pinpoint the root cause of a failure. We included papers on spectrum-based fault lo-

calization (e.g., [130]), information-retrieval-based fault localization (e.g., [146]),

and specialized fault localization techniques (e.g., [80]). We excluded papers

on automatic repair (e.g., [57, 72]), empirical study on debugging (e.g., [101]),

theoretical analysis of existing debugging techniques (e.g., [137]), failure repro-

duction (e.g., [49]), debugging comprehension (e.g., [57, 106]), failure clustering

(e.g., [43]), bug prediction (e.g., [102]), and bug detection (e.g., [83]). Debugging
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comprehension and failure clustering techniques do not produce a ranked list of po-

tential buggy program locations. Bug prediction focuses on future bugs, while bug

detection focuses on detecting unknown bugs that have not manifested as failures.

For each fault localization paper, we read its content and analyzed the capabil-

ities of the proposed technique in terms of the following factors: debugging data

required, granularity level, success rate, scalability, efficiency, ability to provide ra-

tionale, and IDE integration. We compared the capabilities of techniques proposed

in the papers with practitioners’ thresholds for adoption. To check for IDE integra-

tion, we also searched if the authors publish any tool papers based on the original

papers. If they do, we checked the contents of the tool papers (and accompanying

videos, if any) too. We then identified discrepancies between the current state-of-

research and practitioners’ needs and demands.

This study is a first cut in assessing the extent existing research studies match

up to practitioners’ expectations. In-depth assessments and comparisons of success

rate, efficiency or scalability require a more comprehensive and head-to-head eval-

uation of the techniques over a representative bug collection, which we leave as

future work.

7.3 Findings

7.3.1 Statistics of Responses Received

In total we received 403 responses. These responses were made by respondents

from 33 countries across five continents – see Figure 7.1. The top two countries

where the respondents reside are China and the United States.

We excluded 3 responses made by respondents who are neither professional

software engineers nor open source developers, and whose job roles are neither

software development, software testing, or project management. These respondents

have the following roles: Linux operation and maintenance, business analyst, and
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Figure 7.1: Countries Our Survey Respondents Reside

cloud migration support. We also excluded 8 responses made by respondents who

did not understand our description of fault localization (i.e., he/she chose the “I

don’t understand” option). Moreover, we excluded 6 responses from respondents

who participated in the English version of our survey but indicated their English

language proficiency level as “Poor” or “Very Poor”. At the end, we had a set of

386 responses.

Out of the 386 respondents, 80.83%, 30.05%, and 17.10% described software

development, software testing, and project management as their job role respec-

tively. Note the percentages do not add up to 100% since some respondents perform

multiple roles (especially for respondents in small to medium sized companies, or

from open-source projects). Based on their experience level, we grouped respon-

dents into three categories: low, medium, high. We first sorted respondents based

on their experience in years. Respondents in the bottom and top quartile were put in

the low and high categories respectively, while the others were put in the medium

category. Out of the 386 respondents, 78.13% and 44.24% are professional and

open-source software developers, respectively. Note that the percentages do not add

up to 100% since some respondents are both professional and open-source software

developers.
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7.3.2 Answers to Research Questions

RQ1: Importance of Fault Localization. Figure 7.2 shows the percentages of rat-

ings of various categories (i.e., Essential, Worthwhile, Unimportant, Unwise) given

by respondents from the following demographic groups:

• All respondents (All)

• Respondents with software development role (Dev)

• Respondents with software testing role (Test)

• Respondents with project management role (PM)

• Respondents with low experience (ExpLow)

• Respondents with medium experience (ExpMed)

• Respondents with high experience (ExpHigh)

• Respondents who are open source practitioners (OS)

• Respondents who are professional software engineers (Prof)

From Figure 7.2, we can notice that most respondents gave “Essential” and

“Worthwhile” ratings. Only a minority gave “Unimportant” and “Unwise” ratings

(less than 10%) across all demographic groups. Around 20-35% of respondents

across demographic groups rated fault localization as an “Essential” research topic.

We notice that testers value fault localization techniques slightly more than de-

velopers and project managers (less percentage of testers marked fault localization

as “Unimportant” or “Unwise”). To check whether this difference is statistically

significant, we performed the Fisher’s exact test [29] and found no significant dif-

ference (p-value = 0.265).

As experience level increases, less percentage of respondents view fault local-

ization as “Essential”. We can especially notice a sharp drop in the percentage of

respondents rating fault localization as “Essential” between ExpMed and ExpHigh

groups. Again, we performed the Fisher’s exact test and this time we found that the
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Figure 7.2: Importance of Fault Localization Research to Respondents of Various
Demographic Groups

difference is statistically significant (p-value = 0.014). We also performed the Spear-

man correlation test [113] and found that there is a significant (p-value = 0.007) yet

small negative correlation (ρ = -0.14) between experience (in years) and ratings

(mapped to a value between 1 (“Unwise”) to 4 (“Essential”)). These results suggest

that more experienced developers perceive fault localization to be less “Essential”

than less experienced ones.

For respondents who rated “Unimportant” and “Unwise”, some of them de-

scribed their reasons, as follows:

• Disbelief that fault localization techniques can deal with difficult bugs, e.g.,

– “Hairy bugs hide in interaction between various components and I don’t

think automated tools help much. I’m well aware of what static analysis

can do and very few hard bugs would be solved with it.”

– “My opinion is scoped by the web development, but still: different frame-

works, different technologies and for each one you’ll need to adapt your

potential tool to solve specific bugs ...”

• Disbelief that fault localization techniques can provide rationale, e.g.,

– “I doubt any automated software can explain the reason for things such
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as broken backwards compatibility, unclear documentation, what really

should happen etc. They require human analysis.”

• Belief that the status quo is good enough, e.g.,

– “... And even if you will succeed, I don’t think personally I would pay

for it, because for my cases usual stack trace is over than enough.”

Figure 7.3: Availability of Debugging Data to Practitioners (Math-Spec = Mathe-
matical specification, Text-Spec = Textual specification, One-Test= One test case,
Multi-Tests = Multiple test cases, Suc-Tests = Successful test cases, Text-Desc =
Textual description)

RQ2: Availability of Debugging Data. Figure 7.3 shows practitioners’ feedback

on availability of different debugging data, which were assumed to be available

by prior fault localization studies: specification (e.g., [39]), single failing test case

(e.g., [99]), multiple failing test cases (e.g., [10]), passing test cases (e.g., [10]), and

bug reports (e.g., [146]). The following are our findings:

• Most respondents indicated that mathematical specifications are rarely or

never available. Textual specifications are more common with almost 70%

of the respondents indicated that they are available “all the time” or “some-

times”.

• Test cases are more commonly available than specifications. More than 70%

of the respondents mentioned that these debugging data are available “all the

time” or “sometimes”.
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• Bug reports are also commonly available with close to 80% of the respondents

mentioned that they are available “all the time” or “sometimes”.

RQ3: Preferred Granularity Level. Different fault localization techniques pin-

point bugs at different granularity levels, e.g., class (file) [146], method [138], basic

block [76], statement [53]. Figure 7.4 shows practitioners’ preferred granularity

levels. Note that the percentages do not add up to 100% since a respondent can in-

dicate more than one preferred granularity level. We notice that the top-3 preferred

granularity levels are: method, statement, and block, respectively. There is no clear

winner among these three granularity levels, with method being slightly preferred

by practitioners. Class and component are too coarse granularity levels to many

respondents. A technique that can pinpoint the right buggy component or class may

still require practitioners to manually check a large chunk of code.

Figure 7.4: Percentages of Respondents Specifying Various Preferred Granularity
Levels

RQ4: Minimum Success Criterion. Fault localization techniques return a list of

suspicious program elements. If buggy program elements appear at the end of a

long list, practitioners may be better off doing manual debugging. Figure 7.5 shows

percentages of respondents with their minimum success criteria. Around 9 percent

of respondents did not consider a fault localization session that requires him/her to
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Figure 7.5: Percentage of Respondents Specifying Various Minimum Success Cri-
teria

inspect more than one program element to find a bug as successful. The threshold

was 5 program elements for 73.58% of the respondents. Moreover, almost all re-

spondents (close to 98%) agreed that inspecting more than ten program elements is

beyond their acceptability level.

Figure 7.6: Minimum Success Rate vs. Satisfaction Rate

RQ5: Trustworthiness. Intuitively, a technique that is unsuccessful most of time

will be considered as untrustworthy (unreliable) and is less likely to be used. Fig-

ure 7.6 shows the percentages of respondents who were satisfied with different suc-

cess rates. A very small proportion of respondents can tolerate a fault localization
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technique that is only successful 5% of the time. Around twelve percent of respon-

dents were satisfied with a technique that has a 20% success rate. To achieve a

satisfaction rate of 50%, 75%, and 90%, a fault localization technique needs to be

successful 50%, 75%, and 90% of the time, respectively.

Figure 7.7: Minimum Program Size vs. Satisfaction Rate

RQ6: Scalability. Figure 7.7 shows the minimum program sizes that fault local-

ization techniques need to support before practitioners consider them useful. To

achieve a satisfaction rate of 50%, 75%, and 90%, a fault localization technique

needs to be scalable enough to deal with programs of size 10,000 LOC, 100,000

LOC, and 1,000,000 LOC, respectively.

Figure 7.8: Maximum Runtime vs. Satisfaction Rate

RQ7: Efficiency. Figure 7.8 shows the maximum amount of time practitioners are
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willing to wait for a fault localization technique to provide a recommendation. Few

respondents were willing to wait more than an hour for a fault localization technique

to do its job (less than 9%). To achieve a satisfaction rate of at least 50%, a fault

localization technique needs to finish its computation in less than a minute. This

efficiency threshold satisfied more than 90% of the respondents.

RQ8: Willingness to Adopt. We find that almost all the respondents (except less

than 2 percent) were willing to adopt a trustworthy, scalable, and efficient fault

localization technique. The main reasons why some of the respondents were still

unwilling to adopt are as follows:

• Resistance to change

– “Since I already have one and to use another would require training

time and time to get used to it”

– “I would probably prefer traditional breakpoint / single stepping debug-

ging watching what the program does. This of course depends on the

kind of bugs. If it could find difficult to locate bugs”

• More information needed

– “would it be open source? Would it work with my main programming

language? Would it work with distributed environments? These are im-

portant aspects and I cannot commit to adoption without the answers.”

• Disbelief of possibility of success

– “I don’t think you can do it.”

RQ9: Other Factors. After asking respondent willingness to adopt a trustworthy,

scalable, and efficient fault localization technique, we ask about two additional fac-

tors: ability to provide rationale and IDE integration. We provided practitioners

with four statements (listed in Section 5.3.2) and asked respondents to indicate their
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Figure 7.9: Other Factors Affecting Adoption

levels of agreement or disagreement with the statements. Figure 7.9 shows respon-

dents’ agreement levels for the four statements.

From the figure, we find that more than 85% of our respondents strongly agreed

or agreed that ability to provide rationale is important. Adoption rate reduces for

fault localization techniques that cannot provide rationale – more than 15% dis-

agreed or strongly disagreed that they will still use a trustworthy, scalable, and ef-

ficient fault localization technique if it cannot provide rationale why some program

locations are marked as suspicious, and many were on the fence (around 40% chose

“Neutral”). Reasons why they chose not to adopt (i.e., they picked “Disagree” or

“Strongly disagree”) include:

• Lack of trust due to possibilities of false positives

– “False positives are worst than false negatives in my opinion. That is, if

the tool tells me where the bug is but that’s not actually true, that annoys

me greatly.”

– “I need to know why the debugger considers code faulty, otherwise I will

consider it a false positive and ignore. Not providing a rationale also

means I have to investigate code that might be a false positive, which is

a waste of my time.”
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– “Software development is all about logic. Debugging is done logically

and rationally. Therefore any tool should facilitate in the rational think-

ing of the developer and not intuitive thinking”

• Rationale is needed for bug fixing and code quality improvement

– “Because to make a decisions about bug fixing I want to *exactly* know

why the automated tool “thinks” that the code have a bug.”

– “... I would also need to provide the fix, so I feel some rationale would

also help with that.”

– “Rationale gives understanding which will help in improving the code

quality for future”

• Rationale is needed to incorporate practitioners’ own domain knowledge

– “So that I can filter the results through my own knowledge ...”

Furthermore, we find that IDE integration is less important than ability to pro-

vide rationale – only less than 65% agreed or strongly agreed that IDE integration

is necessary. Without IDE integration, adoption rate is likely to reduce (albeit less

substantially than when rationale is not provided) – more than 5% disagreed or

strongly disagreed that they will still use a trustworthy, scalable, and efficient fault

localization technique if it is not integrated to their favourite IDE, and many were

on the fence (around 40% chose “Neutral”). Reasons why they chose not to adopt

(i.e., they picked “Disagree” or “Strongly disagree”) include:

• Extra steps are needed which affects debugging speed

– “Testing is awkward and should be made as easy as possible. No inte-

gration means extra steps which means testing will be more cumbersome

and hence less used.”

– “debugging needs to be fast and efficient”

• Developers have a strong reliance on IDE
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– “Currently Visual Studio 2013 provides all the tools required to build,

test and deploy and application. It is not worthwhile attempting to use

a different tool for debugging.”

– “IDE is our environment. If I can’t add something into my environment,

it’s useless.”

• Developers refuse to change personal workflow for convenience reason

– “If it doesn’t fit into my workflow, then it’s more trouble than it’s worth.”

– “Personal habits, or feel inconvenient.”

– “Convenience.”

7.3.3 Respondents’ Final Comments

Some respondents provided additional comments and suggestions:

• Integration with continuous integration tool would be a plus

– “I would be interested in running an automated debugging tool as part

of continuous integration, so that rather than the test just failing, it gives

a report on what the likely cause of the problem is.”

– “Would be nice if it will be pluggable to the build systems such as Gra-

dle, Maven, SBT, etc. For example, auto-run after failed test on the CI.”

– “... Can I also run it offline i.e. CLI, CI server, via SonarQube or Sonar-

Graph, etc..? ...”

• Need to support multiple languages and workflows

– “Should be able to run from cmd-line. Doesn’t need rational, just needs

to give me suggestions of where to look at in the code with many objects

interacting, it is sometimes hard to determine the cause. Should work

with most programming languages.”
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– “A debugging or bug-finding tool should be easily integrable into other

workflows. Portability and ability to be used with other tools is the most

important characteristic for me when choosing the tools to integrate into

a development process.”

• Extension of work to evaluate claim of bug existence is needed

– “... Having an automated tool would be useful to not only locate the

source of a bug, but to evaluate the original claim of a bugs existence.

Having a tool automatically confirm a bug and perhaps where to look

to fix it would easily convince a maintainer that this bug report is worth

looking at. ...”

7.4 Current State of Research

At the end of our literature review process, we identified 2, 5, 3, 2, and 4 fault lo-

calization papers from ICSE, FSE/ESEC-FSE, ISSTA, TSE, and TOSEM, respec-

tively. Jin and Orso presented their technique F3 in ISSTA 2013 [50] and TOSEM

2015 [51]. In this study, we considered the journal version. Table 7.1 shows the ca-

pabilities of state-of-the-art fault localization techniques in terms of seven factors.

Debugging Data: From Table 7.1, we notice most of the papers use test cases as

debugging data, followed by bug reports. From Section 7.3.2, we find that most of

the respondents mention that these data are available “all the time” or “sometimes”

during their debugging sessions. No paper relies on manually created specification

as debugging data which are often unavailable. The work by Mariani et al. used

automatically generated specifications to help automated debugging [80].

Granularity Level: From Table 7.1, we notice that only two papers (i.e., [71, 133])

work at method level granularity – which is the most preferred option. Most pa-

pers work at statement level granularity, which is the second most preferred option.

There are several papers that work at class (file) level granularity which most re-
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spondents found to be too coarse-grained.

Trustworthiness: We analyzed the papers using the most popular success criterion

indicated by our respondents, i.e., buggy program elements must appear in the top-5

positions (Top 5). Using this criterion, we read the papers and checked the success

rates of the techniques proposed in them. By comparing a technique’s success rate

with our survey results, we can derive a satisfaction rate. Our survey results point

out that a fault localization technique with a success rate of 50%, 75%, and 90% sat-

isfies at least 50%, 75%, and 90% of our respondents, respectively. From Table 7.1,

we can note that none of the papers can satisfy at least 75% of our respondents. Five

papers can satisfy at least 50% of our respondents. These papers are those that use

bug reports as debugging data instead of test cases. Unfortunately, they work at a

coarser level of granularity (i.e., class (file)) that is not preferred by a large majority

of our respondents. We put some papers in category “?” since we cannot ascertain

the success rates of the fault localization techniques presented in those papers.

Scalability: Our survey results point out that a fault localization technique that sup-

ports at least 1,000,000 LOC, 100,000 LOC, and 10,000 LOC satisfies at least 90%,

75%, and 50% of the respondents, respectively. Table 7.1 shows that 6 papers can

satisfy at least 75% of our respondents, while 7 can satisfy at least 50% of our re-

spondents. We put the work by Kim et al. [58] in category “?” since the paper does

not mention the number of lines of code of programs used to evaluate their work

(i.e., various components of Mozilla Firefox and Core programs).

Efficiency: Our survey results point out that a fault localization technique that can

produce output in less than a minute satisfies at least 90% of the respondents. From

Table 7.1, we find that 5 papers can satisfy at least 90% of our respondents. Some

papers do not describe the runtime of their proposed techniques and thus we put

them in the “?” category.
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Table 7.1: Capabilities of Current State-of-Research

Factor Type Papers

Debugging Data
Specification -
Test Cases [9],[10], [71], [80], [99],

[107], [116] [139], [141],
[144]

Bug Reports [51], [58], [71], [133]5,
[140], [146]

Granularity
Method [71], [133]

Statement [9], [10], [80]6, [99], [116],
[139], [141] [144]

Basic Block [51]
Other [58], [107], [140], [146]

Factor Sat. Rate Papers

Success Rate
90% -
75% -
50% [51], [58], [99], [107], [133],

[140], [144], [146]
? [9]7, [10]8, [80]9, [139]7,

[141]8

Scalability
90% [80], [133]
75% [51], [71], [140], [144], [146]
50% [9], [10], [99], [107], [116],

[139], [141]
? [58]

Efficiency
90% [9], [71], [107], [116], [140]

? [51], [58], [80], [133], [141],
[146]

Factor Support? Papers
Rationale Yes [80]10, [116]10

IDE Integration Yes -

Provide Rationale: Most fault localization techniques only highlight potentially

buggy program elements. Practitioners can understand why these program elements

are highlighted by reading the description of the heuristics employed by the tech-

niques, e.g., they are highlighted because they are executed more often by failed

test cases, but rarely or never by successful test cases (e.g., [10, 139]), they are

5The technique proposed in the paper uses crash traces.
6The technique identifies faulty method invocations.
7Most likely its satisfaction rate is below 50%. The mean number of program elements to check

to locate bugs is substantially larger than 5.
8Only relative evaluation scores are shown in the paper.
9The technique returns connected components containing method invocations. The size of each

component is not reported.
10To some extent (see paragraph).
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highlighted because they contain contents that are textually similar to the content of

the input bug report (e.g., [146, 140]), etc. Unfortunately, these basic rationales are

not likely to be sufficient to help practitioners separate false positives from real bug

locations or fix bugs – c.f., [94].

We highlight two papers by Sun and Khoo [116] and Mariani et al. [80] which

go an extra mile. Both papers provide a graph-based structure that a practitioner

can inspect to better understand why a program element is flagged as potentially

buggy – which is referred to as a bug signature by Sun and Khoo. However, since

no user study has been conducted to evaluate the graph-based structures that are

returned by these approaches, it is unclear whether these graph-based structures can

help practitioners to debug better.

IDE Integration: None of the fault localization techniques proposed in the 15 pa-

pers that we have reviewed has been integrated into a popular IDE. We find that the

work by Zhou et al. [146] has been integrated into Bugzilla by Thung et al. [122],

however, Bugzilla is not an IDE. IDE integration requirement is expressed as one of

the prerequisites for adoption by some of our survey respondents.

7.5 Discussion

7.5.1 Implications

Large demand for fault localization solutions. Devanbu et al. recommended

disseminating empirical findings and giving attention to practitioner beliefs, in par-

ticular where results are preliminary [26]. Fault localization tools are currently

research prototypes. Thus, participants may not have used them before. Our survey

is a practical way to reach out to a large number of practitioners and get their feed-

back. It is similar to a requirement elicitation phase in a typical software project

where a developer tries to understand client’s requirement (without a system be-

ing completed). Several studies have also tried to understand the adoption factors
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of tools in a similar way [131]. Our survey highlights the importance of research

in fault localization. More than 97% marked this field of research as “Essential”

or “Worthwhile”. Almost all respondents indicated that they are willing to adopt

a fault localization technique that satisfies some criteria. Thus, although there are

challenges in this research area, we encourage researchers to continue innovating

since there is still a wide “market” awaiting working solutions.

High adoption barrier exists. Despite practitioners’ enthusiasm in this field of

research, they have high thresholds for adoption. More than eighty percent of re-

spondents indicated that they view a fault localization session as successful only if

it can localize bugs in the top 5 positions. To satisfy 75% of our respondents, a fault

localization technique needs to be successful 75% of the time, be able to process

programs of size 100,000 LOC, and complete its processing in less than a minute.

Inability to provide rationales of why program elements are marked as potentially

buggy and poor integration to practitioners’ favorite IDEs are likely to reduce prac-

titioners’ willingness to adopt (with around 5-15% of respondents indicated that

they would withdraw their willingness to adopt, and about 40% of respondents sat

on the fence).

Large improvement in trustworthiness (reliability) of existing techniques is

needed. Our literature review highlights that the most crucial issue with existing

fault localization techniques is their trustworthiness. Without this quality, practi-

tioners may ignore outputs of fault localization techniques. The best performing

studies cannot satisfy 75% of the respondents or more. Even many of those that can

satisfy at least 50% of the respondents work at a granularity level that is considered

too coarse by most of the respondents (i.e., class (file)). One of the studies by Qi et

al. [99] work at a preferred granularity level and can satisfy more than 50% of the

respondents (its success rate is beyond 50%) – however its effectiveness has only

been tested on 5 different bugs from small to medium sized programs (less than 100

kLOC). Recent efforts have mitigated this issue by developing techniques that can

help practitioners estimate reliability of a fault localization output [69, 70].
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Some improvement in scalability is needed. Another issue with existing fault

localization techniques is their scalability. To achieve 90% satisfaction rate, such

techniques need to work on programs of size 1,000,000 LOC. Among the papers

we used in our literature review, only 2 papers [80, 133] have demonstrated that the

proposed techniques are able to satisfy such requirement.

Research on ways to provide suitable debugging rationale is needed. Among

the papers that we have investigated, there are only 2 papers proposing techniques

that can offer some explicit rationales behind their recommendations in the form

of graph-based bug signatures. However, more user studies are needed to check if

these signatures are useful to help debugging. Future research should be devoted on

designing more advanced fault localization techniques that can provide explicit and

useful rationales to help practitioners debug better.

Community-wide effort to integrate state-of-the-art fault localization tech-

niques to popular IDEs is needed. None of the papers investigated in our literature

survey describe integration to a popular IDE. There is a need for a community-wide

effort to encourage the integration of state-of-the-art fault localization techniques

to popular IDEs. Campos et al. [18] and Pastore et al. [95] have released Eclipse

plugins that implement two existing fault localization techniques, i.e., [4] and [96],

respectively. However, many latest techniques (including those analyzed in Sec-

tion 7.4) have not been integrated to IDEs yet.

7.5.2 Limitations

Noisy Responses. It is possible that some of our survey respondents do not under-

stand fault localization or our questions well, and thus their responses may introduce

noise to the data that we collect. To reduce this threat to validity, we drop responses

that are submitted by people who are neither professional software engineers nor

participants of open source projects, and whose job roles are none of these: soft-

ware development, testing, and project management. We also drop responses by
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respondents who select the “I don’t understand” option, or declare to have “Poor”

or “Very poor” English proficiency level. We also translate our survey to Chinese to

ensure that respondents from China can understand our survey well. Still, we cannot

fully ascertain whether participant responses are accurate reflections of their beliefs.

This is a common and tolerable threat to validity in many past studies about practi-

tioners’ perceptions and expectations, e.g., [60], which assume that the majority of

responses truly reflect what respondents truly believe.

Generalizability. To improve the generalizability of our findings, we have surveyed

386 respondents from more than 30 countries across 5 continents working for var-

ious companies (including Microsoft, Google, Cisco, LinkedIn, ABB, Box.com,

Huawei, Infosys, Tata Consultancy Services and many more) or contributing to

open source projects hosted on GitHub, in various roles. Still, our findings may

not generalize to represent the expectations of all software engineers. For example,

practitioners who are not proficient in either English or Chinese are not represented

in our survey.

Overall Expectation. We consider practitioners’ overall expectation for “all spec-

trum” of bug types. Practitioners’ expectations for a particular type of bugs (e.g.,

concurrency bugs) may differ. We also consider “all spectrum” of practitioners. In

the future, we plan to collect, and even control for practitioners’ prior experience

with automated debugging tools, or even automated test generation or automated

bug finding tools. Such exposure, may bring down the expectations of users, while

making them realize the utility of such tools.

Adoption Factors. We have only considered several factors that may affect the

adoption of a fault localization technique: debugging data availability, preferred

granularity level, success criterion, success rate, scalability, efficiency, ability to

provide rationale, and IDE integration. There could be other factors that contribute

to adoption that we have not investigated. We plan to consider these factors in a

future study.
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Willingness to Adopt vs. Actual Adoption. Our survey can only estimate prac-

titioners’ willingness to adopt. Actual adoption is a complex process which in-

volves not only individual attitudes (e.g., perceived usefulness) but also organi-

zational support (e.g., training, incentives) and social influence (e.g., support by

peers/colleagues) – c.f., [5, 73, 119]. Still, individual attitudes is one factor that

leads to actual adoption and our survey measures such factor. When state-of-the-art

fault localization techniques achieve practitioners’ perceived thresholds for adop-

tion, it would be interesting to perform industrial studies to let practitioners use

such techniques for a substantially long period of time (to overcome their resistance

to change) and under various settings for a thorough evaluation, and collect further

feedback.
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Chapter 8

Learning to Test: Helping Developers

Make Testing Decisions

8.1 Introduction

Companies spend thousands of dollars and developers often spend significant

amount of time in testing their software. Even though projects spend almost 40%

of the time during testing, more than 80% of the open-source developers agree that

their projects lack testing plans [145]. In another study, developers mention that

they spend 50% of their time on testing [12]. Even though it is hard to ascertain

how much time developers spend on testing, it is known that complete testing is

often not possible due to limited availability of time and resources. Open source

developers and industry professionals mention that they often face schedule con-

straints, due to which they cannot perform testing [64]. Thus, developers need to

prioritize parts they need to test, which is not a trivial task.

To aid developers make testing decision, we propose a “learning to test” frame-

work named TestAdvisor. It automatically learns a model from program elements

that are tested in a previous version to provide suggestions on program elements to

test in a newer version. We extract a comprehensive set of features from source code

and version control system. The features can be grouped into six categories: impact,
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Figure 8.1: Overview of TestAdvisor

functionality, process, ownership, code and semantic. We combine the various fea-

tures to build a ranking model by using a machine learning technique namely Naive

Bayes. Our choice is based on the fact that Naive Bayes has been successfully used

in many past studies that require ranking or classification step [126, 147].

Moreover, to deal with cold start problem and make our approach applicable to

projects with limited training test cases, we also consider the cross-project setting.

Data from other projects are used to learn a model that is then applied to a target

project. We propose an enhanced learning strategy to allow TestAdvisor to work bet-

ter on cross-project setting. Our adapted TestAdvisor (referred to as TestAdvisorCP )

estimates the utility of a project in a training data for cross project setting. Data

from some projects may be better than others in creating a generalizable model that

can work well across projects. Based on the utility estimates, TestAdvisorCP learns

multiple models, each being trained on a randomly selected subset of projects in

the training data having high utility. These models are then integrated into a unified

composite model.

8.2 TestAdvisor and TestAdvisorCP

In this section, we first present an overview of our approach. Next, we describe the

features we use to build a ranking model.
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8.2.1 Overview

The goal of this study is to guide developers to make informed testing decisions us-

ing a machine learning model built by considering a comprehensive set of features.

Figure 8.1 presents an overview of our framework. Below, we explain its steps:

1. Label Identification: For each data file, we consider it as “tested” if it is

covered by at least one test case, or “untested” otherwise. Similarly, each

method in the project is considered “tested” if a test case touches that method.

We use heuristics to identify test classes, i.e., files which contain “test” in the

name. For identifying calls to classes and methods by test cases, we build a

call graph for each project. First, we leverage Maven automated build system

to build projects and use java-callgraph [41] to construct call graphs. We then

parse the call graphs to get tested and untested program elements.

2. Source Code Parsing: We leverage open-source tools to collect metrics such

as Lines of Code (LOC), Cyclomatic Complexity from the source code. We

write a parser to collect process and ownership features from the history of

these projects. Our parser extracts information about each file and method

changed as well as number of lines added, deleted and changed in both the

previous and latest version. We also write a parser to collect information

about test cases from call graphs.

For collecting the semantic features, we extract syntactic information from the

source code using Java Abstract Syntax Tree (AST). We make use of Eclipse

Java Development Tools (JDT) [30], which provides tools to build Java ap-

plications and to generate AST from the source code. We extract three types

of AST nodes: a) method invocations and class instance creation nodes, b)

control-flow nodes such as for loops, while loops, if statements, break state-

ments, switch statements etc., and c) method, enum and type declarations.

For each file and method, we extract these nodes as a vector of tokens.
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3. Feature Generation: We extract a comprehensive set of features character-

izing program elements. We describe the features in detail along with their

intuition and how we extracted them in Section 8.2.2.

4. Feature Integration: To build a ranking model, we combine the different

features generated, which are used in the next step, i.e., model building.

5. Model Building and Testing Suggestion: Using the above steps we generate

feature vectors for each project. Each vector is a set of features collected

for each file or method. We use these feature vectors and labels to build a

machine learning model to learn about code previously tested by developers.

We model the decision on whether to test a code as a ranking problem. We

use Naive Bayes as our default technique for model building and ranking.

Using the above learning process, we get a ranking model which we use on a

newer version to rank program elements to be tested. We can build this model

offline and can use it to provide suggestions to developers on elements to test

when they want to create new test cases.

8.2.2 Feature Extraction

Feature extraction is an important part of “learning to test” as the quality of features

extracted from the dataset will determine the performance of the model. We extract

different features from the source code and version control system. We divide these

features into six categories: impact, functionality, process, ownership, code and

semantic. Table 8.1 shows the features we collect and their respective definitions.

We briefly explain the intuition behind each set of features and how we collect them

in the following sub-sections.
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Table 8.1: Features used for the learning model. Features appended by (f) and (m)
are only calculated at the file level and method level, respectively, while others are
computed at both the levels.

Metric Definition
Impact Features

HS Hub Score
AS Authority Score
CT Between Centrality

Functionality Features
CS Cosine Similarity
JC Jaccard Index
JW Jaro-Winkler
NG N-Gram
SD Sorensen-Dice coefficient

LCS Longest Common Subsequence
DL Damerau-Levenshtein

Process Features
NC Total number of Commits

TLD Total number of LOC deleted
ALD Average number of LOC deleted
MLD Maximum number of LOC deleted
TLA Total number of LOC added
ALA Average number of LOC added
MLA Maximum number of LOC added
TLC Total number of LOC added, deleted or modified
ALC Average number of LOC added, deleted or modified
MLC Maximum number of LOC added, deleted or modified

Ownership Features
TDO Total number of developers
MO Highest proportion of commits
MiC Total number of developers who have made less than 5% of the total commits
MaC Total number of developers who have made more than 5% of the total commits

Code Features
LOC Lines of Code
CC Cyclomatic Complexity
CA Afferent Couplings
CE Efferent Couplings
SC Total count of statements

CLOC Total count of comment LOC
CD Comment Density
NL Nesting Level

DIT (f) Depth of Inheritance Tree
CBO (f) Coupling between Object Classes
RFC (f) Response For Class

LCOM (f) Lack of Cohesion between Methods
NOC (f) Number of Children
CBOI (f) Coupling between Object Classes Inverse
TNM (f) Total number of methods

TNPM (f) Total number of public methods
TNLM (f) Total number of local methods
TNS (f) Total number of setters
TNG (f) Total number of getters
TNA (f) Total number of attributes
NP (m) Number of Parameters

Semantic Features
MC Method Invocations & Class Instances
CFN Control-flow nodes
DN Declaration nodes
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Impact Features

These features are collected from the static call graph, which contains the caller-

callee relationships for different files and methods. These relationships can be help-

ful to understand the dependencies between various program elements. Some pro-

gram elements are highly impactful; change in these elements can induce changes

in its dependant elements. Thus, these elements may need to be thoroughly tested.

To identify these impactful elements, we compute a number of scores proposed by

social network researchers, which includes hub score, authority score and between-

ness centrality. For example, hubs act as important aggregators and dispensers of

information, thus, developers tend to perform more testing for hub methods [19].

We compile each project in our dataset and use the generated bytecode to con-

struct call graphs using java-callgraph1. We input this call graph structure to

Jung [54] to compute various impact features at both the file and method level.

The call graph gives information about different method calls. We aggregate these

method calls to generate calls between files.

Functionality Features

Developers often specify the main functionalities of an application in a README

file which serves as an introduction for novice as well as experienced developers

to understand the goal of a project. Developers may want to test program elements

implementing these main functionalities rather than those implementing secondary

functionalities.

For these features, we compute similarity between source code files or meth-

ods and the README file. We consider several similarity measures such as Co-

sine similarity, Jaccard index, Jaro-Winkler distance, etc. We chose these measures

as they consider lexical similarity and represent both term-based (Cosine similar-

ity, Jaccard index) and character-based (Jaro-Winkler, N-gram) similarity [37]. We

compute these features using an open-source library - java-string-library [25].
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Process Features

These features describe the changes of source code i.e., how many changes are

made to program elements (e.g., files or methods). These features can be useful

for developers to understand which program elements are changed often and might

need investigation as changes can often induce bugs. Thus, such program elements

might need to be tested more rigorously.

We use the version control system of each project to calculate these features. At

the file level, we use git log --numstat to get all the files changed and the

number of lines changed in each commit. For the method level, we use git log

-U1 -w, to download the commit patches for each commit. Similar command has

been used in a previous study to get commit patches [19]. We write a parser which

reads the commit patches and extract methods changed in each commit and the

number of lines modified.

Ownership Features

These features describe the ownership of different program elements (e.g., files or

methods) by developers, e.g., how many developers modify a particular program

element, what are their respective contributions, etc. Ownership features can help

developers gauge how much testing effort should be put in as these features can

serve as proxy for software quality [87]. We use the git logs retrieved from the ver-

sion control to get information about contributors and their respective contributions

for each file or method.

Code Features

These features describe the code in terms of size, complexity, cohesion, coupling,

comment availability, and depth of inheritance. These features can help developers

identify elements that need to be tested. For example, with increasing size and

complexity of a file, more testing effort may needed as the file is more likely to be
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buggy.

To calculate these features, we use SourceMeter [75], which is a static source

code analyis tool available for various languages such as Java, C, C++, Python etc.

SourceMeter computes features at different levels of granularity such as files and

methods.

Semantic Features

Programs have well-defined syntax represented by Abstract Syntax Trees (AST).

Semantics represent the meaning of various elements in a program, which can be

used to differentiate between different files and methods. These features are dif-

ferent from the above proposed features as there can be cases where features such

as lines of code can be the same across files, however, their semantics may differ,

e.g., the order of program constructs may differ corresponding to different program

logic.

Following Wang et al. [126], we leverage deep learning to automatically gen-

erate semantic features from the Abstract Syntax Tree of the source code. We use

Deep Belief Network (DBN) [45], which is a deep neural network, composed of

multiple layers of Restricted Boltzmann’s Machines (RBM) [13]. The RBM, used

to learn representation from input data, consists of a two-layer network. The first

layer is called visible layer containing the input node, wheras the second layer is the

hidden layer including several hidden nodes. DBN is formed by stacking multiple

RBMs where the hidden layer of the former RBM is the visible layer of the next

RBM. By applying deep architecture with more RBM layers, DBN is able to learn

more meaningful features. In this paper, we use number of hidden layers as 10, the

number of nodes in each hidden layer as 100, and the number of iterations as 200

since they are well-tuned parameters [126].

We first create input vectors after traversing the AST based on the position of

the elements in the tree. Similar to [126], we filter noisy instances by using Closest

List Noise Identification (CLNI) [61], which identifies k-nearest neighbors and if a

111



certain number of neighbors have opposite labels, then that instance is considered as

noise. As our feautres are semantic tokens, similar to [126], we apply edit distance

similarity algorithm [88] to detect and eliminate mislabeled data. After filtering the

noise, we use DBN on the filtered instances. DBN automatically learns features

based on the difference between two vectors. DBN accepts only numerical vectors

and all the vectors of a project must be same in length. We first create mapping

between tokens and integers, and create integer vectors. We assign a unique value

to each token i.e., different method names will be assigned different values. As our

integer vectors have different lengths due to different files having various semantic

features, we append zeroes to the vectors to make them of uniform length. Adding

zeroes makes the vectors acceptable by DBN and it does not impact the results.

8.2.3 TestAdvisorCP

Cross-project model learning is helpful when training data within a single project

is too few to create an effective discriminative model. It addresses this cold start

problem by borrowing training data from other projects. However, it remains a

challenge to learn a cross-project model due to the diversity of data across projects,

which causes low accuracy. To deal with this challenge, we propose a new learning

strategy to improve the effectiveness of TestAdvisor in cross-project setting. We

refer to TestAdvisor with the new learning strategy as TestAdvisorCP.

In a nutshell, TestAdvisorCP estimates the utility of various projects in a training

set for cross project model learning. Data from some projects may be better than

others in creating a generalizable model that can work well across projects. The util-

ity estimates are then used to create randomly selected samples of projects of high

utility. These samples are in turn used to learn multiple learning models that are

then integrated to create a unified model. Figure 8.2 demonstrates the model learn-

ing steps of TestAdvisorCP and the standard cross-project solution. Compared to

standard cross-project model learning, TestAdvisorCP randomly samples the train-
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Figure 8.2: Comparison between Enhanced and Standard Cross-project Model
Learning.

Algorithm 1: Enhanced Cross-Project Model Learning
Input : T = {Tp | 1 ≤ p ≤ N}: Set of training data where N is the

number of projects
CLS: A classification algorithm
SP :Sampling percentage
NP :Number of samples

Output: ECP : Composite cross-project model
1 for Tp ∈ T do
2 Randomly select Tx1 , . . . , Tx10 ∈ T (Txi

6= Tp)
3 Run CLS on Tp to train model M
4 Deploy M on Tx1 , . . . , Tx10

5 EvaScore[Tp]← HIT@10 score
6 end
7 ECP ← {}
8 for 1 ≤ i ≤ NP do
9 n← SP ×N // sample size

10 Randomly pick n projects without replacement from T where projects
with higher EvaScore[Tp] scores have higher chance to be selected

11 Run CLS on the selected n projects to train SMi

12 ECP ← ECP ∪ SMi

13 end
14 return ECP

ing data to filter out projects that are best for cross-project setting.

Algorithm 1 describes how TestAdvisorCP works. The algorithm takes as input

a training data T = {Tp | 1 ≤ p ≤ N} consisting of N projects, a classifica-
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tion algorithm CLS, sampling percentage SP , and number of samples NP . Al-

gorithm 1 samples the training data to retain projects that are likely to be good for

cross-project model learning. To achieve that, for every project p in T , Algorithm 1

randomly picks up 10 other projects xi (1 ≤ i ≤ 10) (line 1). At lines 3 to 4, it runs

CLS on all instances of p to construct a model M , and deploy M to predict labels

(i.e., “test” or “not”) of program elements in xi (1 ≤ i ≤ 10). At line 4, we compute

Hit@10 score to assess the effectiveness of M . The Hit@10 score estimates the

utility of using p in cross-project setting. A low value of Hit@10 indicates that the

feature values of program elements in p are unique and solely represent the specific

characteristics of p. Therefore, p is not suitable to be used in constructing a model to

predict for labels of program elements in other projects. On the other hand, higher

values of Hit@10 indicate features of program elements of p are potentially good

for cross-project setting. We store the Hit@10 scores of various p in EvaScore.

In the next steps, TestAdvisorCP builds multiple models from randomly selected

samples of projects from T . The scores stored in EvaScore are used as the cri-

teria to include a project to the samples. At lines 8 to 12, TestAdvisorCP creates

NP samples of size SP × N . For every sample, we randomly pick a number of

projects from the input N projects, where the probability of a project being selected

is proportional to its score. Thus, projects with higher scores stored in EvaScore

have more chance to be included to the sample. For every sample, we run CLS to

construct a prediction model SMi. The algorithm returns a collection of all models

trained from the NP samples.

We apply Equation 8.1 to estimate the ranking score of an instance x (denoted

as ECP(x)) using the collection of models as follows:

ECP (x) =

∑NP
i=1 SMi(x)

NP
(8.1)

In the equation above, NP is the number of samples, SMi(x) is the ranking score

returned by SMi model. The final ranking score of x is the average of all ranking
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scores generated by the NP SMi models. The higher the final ranking score, the

more likely the label of x is “test”. By default, we set NP = 10 and SP = 10%.

8.3 Experimental Setup

In this section, we describe the dataset we use, the evaluation metrics and baselines,

and the research questions we investigate.

Dataset

We perform several steps to create our benchmark dataset. Firstly, we fetch top

2,500 most popular open-source Java projects from GitHub (sorted by the sum of

their number of stars and number of forks). GitHub contains many toy projects,

thus, we only consider popular projects similar to prior studies [105, 66]. We only

clone the git repositories of projects which use Maven as we leverage Maven to au-

tomatically build the projects and construct call graphs from compiled classes. Out

of the 2500 projects, 831 projects use Maven. Secondly, we collect 342 Apache

Java projects which use Maven and are hosted on GitHub. After removing the over-

lapping projects, our dataset contains 1,143 projects.

Next, we ignore projects with less than 10 Java files as these projects are too

small to analyse. We also filter out projects which have less than 5 tested files.

For each project, we have two versions: current version (i.e., latest version as of

June 2016) which serves as a test dataset, and previous version (i.e., version one

year prior to current version) which serves as a training set. We compile these

two versions using mvn compile:compile. We ignore projects whose current and/or

previous version cannot be compiled. In the end, our dataset has 103 projects.

Table 8.2 shows the statistics of our dataset, which contains 103 projects having

a total of 46 million SLOC, 83 thousand source code files, 0.9 million methods,

280 thousand commits and over 45 thousand test files contributed by more than 5

thousand developers spanning over period of 15 years, i.e., 2001-2016. We consider
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Table 8.2: Study Subjects.
Number of Projects 103
Source LOC 46,700,733
Number of Source Code Files 83,694
Number of Methods 965,474
Cyclomatic Complexity 5,743,959
Test LOC 12,628,328
Number of Test Files 45,718
Test Cyclomatic Complexity 1,265,859
Number of Commits 280,101
Number of Developers 5,307
Total Period 04/2001 - 06/2016

the file that contains word ”test” in its name as a test file. Our dataset contains

popular projects such as Apache Commons IO [8], which is a library of utilities for

IO functionalities and Joda-Time [52], which is date and time library for Java.

Evaluation Metrics and Baselines

Metrics. Our approach outputs a ranked list of files or methods. A number of

metrics can be used to calculate the accuracy of approaches producing ranked lists.

We use the actual files or methods that developers test as ground truth. A good

ranked list includes these ground truth files or methods early in it. We use several

popular metrics:

Hit@N: This metric counts the percentage of projects with at least one ground

truth file or method found in the top N (e.g., 5) of the ranked list produced by a

technique.

Mean Average Precision (MAP): To compute MAP, first we compute the Aver-

age Precision (AP) as follows:

AP =
M∑
i=1

P (i)× rel(i)
#All tested files

(8.2)

where M is the number of retrieved files or methods, rel(i) is a binary value that

represents whether this file or method is tested or not. P (i) is the precision at
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position i of the retrieved list, which is defined as:

P (i) =
#Ground truth files/methods at top i positions

i
(8.3)

MAP is the mean of the average precisions over all the lists for the projects.

Mean Reciprocal Rank (MRR): The reciprocal rank of a project is the inverse

of the rank of the first ground truth file in a ranked list. The mean reciprocal rank is

the average of the reciprocal ranks for all the projects. For a set of projects Q, MRR

is defined as:

MRR =
1

|Q|

Q∑
i=1

1

ranki
(8.4)

where ranki is the rank of the first ground truth file in a ranked list of the ith project.

Baselines. We compare TestAdvisor with three baselines and two state-of-the-art

defect prediction techniques at both the file and method level. Our first baseline

(B1) considers that a file or a method should be tested if it was changed in a bug-

fix commit between the current version and the previous version. We compute the

number of times a file or a method has been changed in a bug-fix commit and pro-

duce a ranked list with files changed more often ranked higher. The second baseline

(B2) is similar to B1 except we consider the complete history of the project. The

third baseline (B3) randomly creates and returns a ranked list of files or methods.

For comparison with defect prediction, we consider state-of-the-art defect predic-

tion technique proposed by Wang et al. [126] which uses deep learning to learn

semantic representation from source code. We refer to this technique as DP1. Sim-

ilar to Wang et al. [126] we use post-release bugs i.e., bugs found after the release,

for the two different versions of each project. We count all the bug fix commits

from commit logs by matching keywords such as ‘bug‘, ‘fix‘, ‘issue‘ etc., a similar

heuristic used in the past studies [19, 105]. For our second defect prediction tech-

nique (DP2), for each instance, we use term frequencies of the AST nodes. This

baseline was also used by Wang et al. [126] to compare their technique. Similar to
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Wang et al. [126], we use re-sampling technique Synthetic Minority Over-sampling

Technique (SMOTE) [21], which has been used in many previous studies, on DP1

and DP2.

Research Questions

RQ1: How effective is TestAdvisor compared to the baselines?

In this question, we examine the effectiveness of TestAdvisor compared with

the baselines considering within-project setting. Our aim is to investigate whether

TestAdvisor can leverage the features we collect to learn a model that can accurately

prioritize files and methods for testing. If our technique performs well, it will be

able to rank ground truth files and methods higher than other files and methods.

To answer this question, for each of the 103 projects, we use the previous version

to train a model, and employ the model to rank files or methods in the current

version. The ranked lists of files or methods which are generated are then evaluated

to compute Hit@5, Hit@10, MAP, and MRR.

RQ2: How effective is TestAdvisor compared to state-of-the-art defect predic-

tion techniques?

In this question, we examine the effectiveness of TestAdvisor compared with

two defect prediciton techniques. Firstly, we consider state-of-the-art technique

proposed by Wang et al. [126] that use deep learning (Deep Belief Network) to learn

semantic features from the source code. After checking with the authors [126], we

could not get the source code. We, thus, reimplemented their technique and used

the same parameter values as used by the authors. Secondly, we use AST nodes

that were used in our technique and each instance is represented as a vector of term

frequencies of these nodes. This baseline was also used by Wang et al. [126].

RQ3: What is the effect of using different sets of features?

TestAdvisor combines six different sets of features: impact, functionality, pro-

cess, ownership, code and semantic. In this question, we analyze each of the feature
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sets individually. We also evaluate the value of using all the feature sets together. In

particular, we investigate whether TestAdvisor with all feature sets performs better

than if only one set is used. For each project, we create feature vectors for each

feature set and follow a similar methodology as in RQ1 to evaluate the different sets

of features.

RQ4: What is the effect of using different classification algorithms?

By default, we use Naive Bayes as the classification algorithm. Many other al-

gorithms are available to produce a ranking model. In this question, we investigate

the effectiveness of other classification algorithms when each of them is used inside

TestAdvisor. We consider six popular classification algorithms: Logistic Regres-

sion, Decision Table, ADTree, J48, Random Forest, and Bayes Net.

Logistic Regression is used to model a dichotomous outcome variable by esti-

mating probabilities using a logistic function on independent variables [24]. De-

cision Table consists of a hierarchical table with rows corresponding to possible

actions that can be taken for each relevant condition [63]. Alternating Decision

Tree (ADTree) is represented as an alternation of decision nodes, which specify

a predicate condition and prediction nodes, and classification is done by travers-

ing the paths for which these decision nodes are true [33]. J48 is an open source

implementation of C4.5 algorithm [100], which uses entropy information to build

decision trees. Random Forest is an ensemble learning method and aggregates the

predictions made by a multitude of decision trees constructed on a training set [16].

Bayesian Network (Bayes Net) is a graphical model that represents a probabilis-

tic relationship between between a set of random variables using a directed acyclic

graph [34].

We use the implementations of these algorithms made available in Weka toolkit.

We follow a similar methodology as in RQ1 to evaluate the different classification

algorithms.

RQ5: How do TestAdvisor and TestAdvisorCP perform in cross-project setting?
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TestAdvisorCP is designed to boost the effectiveness of TestAdvisor for cross-

project setting. In this question, we evaluate the performance of these two ap-

proaches and investigate whether and to what extent TestAdvisorCP outperforms

TestAdvisor. For each of the 103 projects, we use the remaining 102 projects as

training data. We repeat the process 103 times using different project as test data

and report the average scores of the evaluation metrics.

8.4 Findings

In this section, we describe findings which answer each of our research questions.

RQ1: Effectiveness of Our Approach

Tables 8.3 and 8.4 show the Hit@5, Hit@10, MAP and MRR scores of our approach

and the three baselines at file and method level, respectively.

From Table 8.3, we observe that at file level, B1, B2 and B3 achieve Hit@10

scores of 0.864, 0.942 and 0.786, respectively, whereas the corresponding score for

TestAdvisor is higher, i.e., 0.990. The improvements in Hit@10 score of TestAdvi-

sor as compared to the three baselines are 14.58%, 5.09% and 25.95%, respectively

and improvements in MAP scores are 82.75%, 68.24% and 96.52%, respectively.

Similarly, we find improvements in the value of Hit@5 and MRR scores for TestAd-

visor. Since MAP is a mean of scores, we can perform Mann-Whitney Wilcoxon

(MWW) test [79] to compare the MAP score of our approach with those of the

three baselines. As we run the MWW test multiple times, we perform Bonferroni

correction [3] to counteract the results due to multiple comparisons. We find that

the difference is significant (p-value<0.05). We also compute Cohen’s d and find

that the effect size is large when the MAP score of TestAdvisor is compared against

the three baselines.

From Table 8.4, at the method level, we observe that TestAdvisor outperforms

the three baselines in terms of Hit@5 by 140.21%, 89.43% and 75.63% and Hit@10
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by 100.00%, 52.81% and 71.43%, respectively. We observe similar improvements

for MAP and MRR scores. We also run Mann-Whitney Wilcoxon test to com-

pare the MAP scores and find that the differences are statistically significant (p-

value<0.05), after performing the Bonferroni correction. The effect size using Co-

hen’s d is large when we compare TestAdvisor against each of the three baselines.

Table 8.3: TestAdvisor versus baselines (File Level). B1 considers bug history be-
tween the current and the previous version to rank files. B2 takes the full history of
the project. B3 produces a random list.

Models Hit@5 Hit@10 MAP MRR
B1 0.825 0.864 0.371 0.627
B2 0.845 0.942 0.403 0.680
B3 0.650 0.786 0.345 0.482

TestAdvisor 0.961 0.990 0.678 0.875

Table 8.4: TestAdvisor versus baselines (Method Level). B1 considers bug history
between the current and the previous version to rank files. B2 takes the full history
of the project. B3 produces a random list.

Models Hit@5 Hit@10 MAP MRR
B1 0.291 0.408 0.145 0.217
B2 0.369 0.534 0.149 0.288
B3 0.398 0.476 0.137 0.274

TestAdvisor 0.699 0.816 0.426 0.623

TestAdvisor is significantly and substantially more effective than the baselines
in ranking files and methods to be tested.

RQ2: Comparison with Defect Prediction

Table 8.5 and 8.6 show the comparison of TestAdvisor with state-of-the-art defect

prediction techniques.

From Table 8.5, we observe that TestAdvisor can achieve significant improve-

ment over the two defect prediction techniques at the file level. The improvement in

MAP score of TestAdvisor over the two baselines are 66.58% and 62.98%, respec-

tively and improvement in MRR score are 47.55% and 46.32%, respectively. We

121



perform Mann-Whitney Wilcoxon (MWW) test to compare the MAP score of our

approach with those of the two defect prediction techniques. Similar to RQ1, we

perform Bonferroni correction for multiple-comparison correction and find that the

difference is signficant (p-value<0.05). We also compute Cohen’s d and find that

the effect size is large when the MAP score of TestAdvisor is compared against the

two approaches.

Table 8.5: TestAdvisor versus defect prediction (File Level). DP1 is state-of-the-art
defect prediction using deep learning. DP2 uses the term frequencies of AST nodes.

Models Hit@5 Hit@10 MAP MRR
DP1 (Wang et al.) 0.689 0.816 0.407 0.593
DP2 (AST Based) 0.718 0.816 0.416 0.598

TestAdvisor 0.961 0.990 0.678 0.875

Similarly, from Table 8.6, we observe that TestAdvisor can achieve significant

improvement at the method level. The improvement in MAP score of TestAdvisor

over the two baselines are 204.29% and 230.23%, respectively and improvement in

MRR score are 222.80% and 229.63%, respectively. After performing the Bonfer-

roni correction, we find a significant difference (p-value<0.05) in MAP scores of

our approach and the two techniques at the method level and the effect size, com-

puted using Cohen’s d, is large.

Table 8.6: TestAdvisor versus defect prediction (Method Level). DP1 is state-of-
the-art defect prediction using deep learning. DP2 uses the term frequencies of
AST nodes.

Models Hit@5 Hit@10 MAP MRR
DP1 (Wang et al.) 0.282 0.369 0.140 0.193
DP2 (AST Based) 0.282 0.388 0.129 0.189

TestAdvisor 0.699 0.816 0.426 0.623

TestAdvisor is significantly and substantially more effective than the baselines
in ranking files and methods to be tested.
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RQ3: Different Feature Sets

Table 8.7 shows the scores of various evaluation metrics when different feature sets

are used to rank files. We can observe that using a combination of all feature sets

performs better than if only one set is used. Among the six categories of features,

code and impact features perform the best. Table 8.8 shows the corresponding

scores for method level. We can observe a similar trend: The combination of all

features perform best, and impact features perform better than other features at the

method level.

Table 8.7: Hit@5, Hit@10, MAP and MRR scores when a particular feature is used
and the combination of all features (File Level).

Features Hit@5 Hit@10 MAP MRR
Impact 0.893 0.951 0.604 0.795

Functionality 0.786 0.913 0.460 0.699
Process 0.847 0.913 0.513 0.715

Ownership 0.748 0.825 0.434 0.630
Code 0.970 0.990 0.637 0.867

Semantic 0.806 0.913 0.483 0.678
Combined 0.961 0.990 0.678 0.875

Table 8.8: Hit@5, Hit@10, MAP and MRR scores when a particular feature is used
and the combination of all features (Method Level).

Features Hit@5 Hit@10 MAP MRR
Impact 0.641 0.699 0.373 0.544

Functionality 0.311 0.388 0.163 0.202
Process 0.350 0.505 0.194 0.259

Ownership 0.311 0.398 0.169 0.201
Code 0.417 0.505 0.152 0.272

Semantic 0.485 0.573 0.258 0.410
Combined 0.699 0.816 0.426 0.623

At both file and method levels, the combination of all features perform the
best. Among the individual feature sets, code and impact features perform the
best.
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RQ4: Different Classification Algorithms

Tables 8.9 and 8.10 compare the evaluation scores of different classification algo-

rithms at file and method levels. TestAdvisor uses Naive Bayes to build a ranking

model and produce a ranked list. We observe that Bayes-based learning models (i.e.,

Naive Bayes and Bayes Net) and Random Forest, which constructs many decision

trees, achieve the highest performance. Next in the line are Logistic Regression,

which is a linear classifier and ADTree, whcih consists of an alternation of decision

nodes. The worst performing ones are J48 and Decision Table.

Table 8.9: Hit@5, Hit@10, MAP and MRR scores for different classification algo-
rithms (File Level).

Models Hit@5 Hit@10 MAP MRR
Logistic Regression 0.893 0.961 0.653 0.830

Decision Table 0.893 0.961 0.622 0.825
ADTree 0.932 0.971 0.669 0.813

J48 0.854 0.932 0.612 0.756
Random Forest 0.951 0.971 0.747 0.888

Bayes Net 0.951 0.990 0.677 0.872
Naive Bayes 0.961 0.990 0.678 0.875

Table 8.10: Hit@5, Hit@10, MAP and MRR scores for different classification al-
gorithms (Method Level).

Models Hit@5 Hit@10 MAP MRR
Logistic Regression 0.709 0.816 0.443 0.632

Decision Table 0.641 0.699 0.401 0.546
ADTree 0.680 0.757 0.441 0.580

J48 0.602 0.670 0.386 0.512
Random Forest 0.718 0.806 0.473 0.651

Bayes Net 0.709 0.816 0.427 0.631
Naive Bayes 0.699 0.816 0.426 0.623

TestAdvisor can be coupled with different classification algorithms and
among the algorithms investigated, the best performing ones are Naive Bayes,
Bayes Net and Random Forest.
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RQ5: Cross-Project Setting

Tables 8.11 and 8.12 compare the effectiveness of TestAdvisor and TestAdvisorCP

for the cross-project setting at file and method level respectively. At the file level,

TestAdvisor can achieve Hit@5 and Hit@10 scores of 0.860 and 0.910, whereas the

corresponding values for TestAdvisorCP are 0.930 and 0.970. Similarly, we observe

that TestAdvisorCP can outperform TestAdvisor in terms of MAP and MRR scores

by 21.14% and 15.20% respectively. We perform Mann-Whitney Wilcoxon test and

find that the difference between MAP scores of TestAdvisorCP and TestAdvisor is

significant at the confidence level of 95%. We also compute Cohen’s d and find that

the effect size is small (but not negligible).

At the method level, TestAdvisorCP can achieve Hit@5 and Hit@10 scores of

0.840 and 0.920, which are higher than the corresponding values of TestAdvisor.

Comparing the MAP and MRR scores of TestAdvisorCP and those of TestAdvisor,

we observe that the earlier can outperform the latter by 82.51% and 71.93% re-

spectively. We perform Mann-Whitney Wilcoxon test and find that the difference

between the MAP scores is significant at the confidence level of 95%. We also

compute Cohen’s d and find that the effect size is medium.

These results show that our enhanced cross-project strategy is effective. This is

true for both file and method levels, considering all evaluation metrics. The Hit@5,

Hit@10, MAP, and MRR scores can be increased by up to 80%.

Table 8.11: Hit@5, Hit@10, MAP and MRR scores of TestAdvisor and
TestAdvisorCP considering cross-project setting (File Level).

Models Hit@5 Hit@10 MAP MRR
TestAdvisor 0.860 0.910 0.492 0.684

TestAdvisorCP 0.930 0.970 0.596 0.788

Table 8.12: Hit@5, Hit@10, MAP and MRR scores of TestAdvisor and
TestAdvisorCP considering cross-project setting (Method Level).

Models Hit@5 Hit@10 MAP MRR
TestAdvisor 0.630 0.750 0.223 0.399

TestAdvisorCP 0.840 0.920 0.407 0.686
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TestAdvisorCP can outperform TestAdvisor in the cross-project setting by a
statistically significant and substantial margin.

8.5 Conclusion

In this study, I propose a “learning to test” framework named TestAdvisor, which

automatically extracts a comprehensive set of features which can be grouped into 6

categories, i.e., impact, functionality, process, code, ownership and semantic. These

features are then used to build a ranking model trained using files and methods

which have been tested in a previous version or in another project. These ranking

models are used to identify files and methods that require testing in a new version or

a new project. I empirically evaluate TestAdvisor and its extension that is designed

for cross project setting (i.e., TestAdvisorCP ) on a large dataset of 103 open-source

Java projects collected from GitHub. Some of the findings of this study are:

1. For within-project setting, TestAdvisor can improve the performance of

several baselines by 13.73%-140.21%, 5.10%-100.00%, 68.24%-210.95%,

28.68%-187.10% in terms of Hit@5, Hit@10, MAP and MRR, respectively.

Compared with state-of-the-art defect prediction techniques, TestAdvisor can

improve MAP scores by 62.98%-230.23% and MRR scores by 46.32%-

229.63%.

2. At both file and method levels, the combination of all features perform the

best. Among the individual feature sets, code and impact features perform

the best.

3. TestAdvisor can be coupled with different classification algorithms. Among

the seven classification algorithms investigated, the best performing ones are

Naive Bayes, Bayes Net and Random Forest.

4. TestAdvisorCP can outperform TestAdvisor in the cross-project setting by a

statistically significant and substantial margin.
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Dataset

Our dataset is made publicly available and it can be downloaded from:

https://github.com/smusis/learning-test.
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Chapter 9

What Make Good Test Cases?

9.1 Introduction

Test cases are a central piece in testing and practitioners put in a significant amount

of time writing and maintaining them. However, despite testing effort, it is often

seen that bugs appear in programs. Moreover, for many projects, testing effort

continues to be high as systems evolve. These bring forward the issue of test case

quality and prompt us to investigate the question of what make good test cases. Past

studies mostly analyze artifacts that practitioners make (e.g., code and bug reports)

rather than surveying or interviewing practitioners. The latter is often needed to get

deeper insights into rationales behind practitioner actions.

In this study, we complement the existing empirical studies that investigate test

case quality by conducting interviews with industrial and open-source practitioners

to understand the characteristics of good test cases. We validate the hypotheses

that we formulate from the interviews by doing a survey on 254 practitioners from

Facebook, Microsoft, Google, LinkedIn, Salesforce, other small to large companies,

and top 650 projects (ranked based on their popularity1) on GitHub. Our study

produces 29 validated hypotheses on characteristics of good test cases in several

dimensions: test case contents, size and complexity, coverage, maintainability, bug

1Number of stars + number of forks
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detection, and others.

9.2 Methodology

Our study consists of two parts: open-ended practitioner interviews and a validation

survey. The goal of the first part (described in Section 9.2.1) is to get insights into

practitioner views to help us formulate a set of hypotheses. These hypotheses are

then checked by the validation survey (described in Section 9.2.2) which is sent to

a large number of practitioners (i.e., hundreds of them).

9.2.1 Open Ended Interviews

Participants

We contact the top 42 practitioners who contributed the most to Apache projects

hosted on GitHub2 and practitioners from our industry partner in China (i.e., Heng-

tian3) to find practitioners who are willing to spend a block of their time to get

interviewed. Many Apache practitioners are highly experienced and many Apache

projects are well-known. This motivates us to pick Apache practitioners as our can-

didate interviewees. Insigma Hengtian is a large software outsourcing provider in

China. Its service include delivering test cases (i.e., test outsourcing) and solutions

for its clients which include Fortune 500 companies. We pick Hengtian due to its

long experience as a test outsourcing provider and our prior experience conducting

research with them – c.f., [136, 134, 135]. Many practitioners in the company have

created a large number of test cases for many external systems belonging to many

clients coming from different industries and parts of the globe.

Following Opdenakker [90], to get more participants, we use several ways to

conduct interviews: face-to-face, via Skype, via email, and via an online form. At

the end, we get 5 participants from Apache who are willing to be interviewed –

2Ranked based on their number of commits.
3http://www.hengtiansoft.com/
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either via Skype, email, or online form. These participants include members of

Apache Hadoop, Hive, SystemML, Commons-Math, Sling, etc. with an average

professional experience of 20 years. We also get 16 participants from Hengtian

who are willing to be interviewed face-to-face or via online form. The average

experience of these practitioners is 4 years. In total, we interview 13 practitioners

face-to-face or via Skype, and 8 practitioners via email or online form.

Protocol

Asynchronous: via email or online form. We first ask participants some de-

mographic questions (e.g., their number of years of professional experience, etc.).

Next, we ask a set of open-ended questions including:

a) How would you define a good and a bad test case?

b) What criteria do you use to characterize a test case quality?

c) What factors do you consider while writing test cases?

d) What kinds of issues do you face in the creation and management of test cases?

The participants respond to these questions in writing via an online form or through

email.

Synchronous: face-to-face or via Skype. We start the interview by describing

our study and asking for permission to record the interview. Then, initial questions

which are related to the participant demographics are asked. Next, we start our dis-

cussion which is loosely guided by a set of open-ended questions which we prepare

in advance. These questions are the same questions that we ask participants who

prefer to provide their responses via email or online form. We encourage the prac-

titioners to talk in detail about any relevant topic which our questions do not cover.

We ask follow up and clarification questions for answers we find interesting. At the

end of the interview, we allow the participants to provide suggestions, comments,

and opinions about writing better test cases. The interviews typically last between

30 minutes to 1 hour.
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Table 9.1: List of Hypotheses

Contents
H1 A good test case is specific or atomic, i.e., one test case should be testing one aspect of a require-

ment.
H2 Test cases in a test suite should be self-contained, i.e., independent of one another.
H3 A good test case should check for normal and exceptional flow.
H4 Test cases must perform boundary value analysis i.e., take as input values at the extreme ends of

an input domain.
H5 Test cases should serve as a good reference documentation.

Size and Complexity
H6 Most test cases should be small in size (in terms of its lines of code).
H7 Large test cases are often hard to understand and maintain.
H8 Large test cases may be needed to detect difficult bugs.
H9 A good suite contains lots of small test cases (with fewer LOC) and few large test cases.

H10 Increased complexity in a test case can lead to bugs in the test code itself.
Coverage

H11 Code coverage is necessary but not sufficient.
H12 Code coverage should be used to understand what is missing in the tests and create tests based on

that.
H13 Higher coverage does not mean that a test suite can detect more bugs.
H14 Each test case should have a small footprint, i.e., the amount of code it executes.
H15 A test case that is designed to maximize coverage is often long, not understandable and brittle (i.e.,

breaks easily).
H16 Designing test cases to cover different requirements is often more important than designing test

cases to cover more code.
Maintainability

H17 A good test case should be well-modularized.
H18 A good test case should be readable and understandable.
H19 Test cases should be simpler than the code being tested.
H20 Test code should be designed with maintainability in mind since evolution of code often requires

changing of test code.
H21 Traceability links should be maintained between test code, requirements, and source code.

Bug Detection
H22 A good test case should attempt to break functionality to find potential bugs.
H23 Test even the simplest things that cannot go wrong.
H24 During maintenance, when a bug is fixed, it is good to add a test case that covers it.
H25 Test assertions can help detect subtle errors that might otherwise go undetected.
H26 Adding common errors and possible causes as comments in test code is helpful to debug failures.

Others
H27 A good test case should be designed such that its results are deterministic.
H28 Test cases in a test suite should not have side effects so running a test before or after another should

not change the results.
H29 Test cases should use tags or categories, such as slow tests, fast tests etc., so as to be able to run a

specific set of tests easily at a time.

Data Analysis

At the end of the interviews, we create interview transcripts manually by replaying

the recordings. These transcripts are then analyzed to create a set of hypotheses.

We group similar hypotheses into a small set of dimensions. Tables 9.1 lists the

hypotheses that we have created divided into seven dimensions. We choose to cre-

ate hypotheses that can hold true for testing at various levels of granularity (unit,

integration, or system). These hypotheses are the input of the second part of our
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study (i.e., validation survey).

9.2.2 Validation Survey

Respondents

In the validation survey, we try to get as many practitioners as possible to support or

refute our hypotheses. We follow a multi-pronged approach to get survey respon-

dents:

• First, we contact professionals in our network who are working for various or-

ganizations such as Facebook, Microsoft, Google, Box.com, LinkedIn, Sales-

force, Infosys, Tata Consultancy Services (TCS) and many other small to

large companies in various countries. We ask them to fill in our survey and

distribute it to their friends and colleagues. Doing this helps us in getting

diverse set of responses from industrial practitioners around the world.

• Second, we invite people working on the top 650 most popular open source

projects in GitHub (based on the sum of their number of stars and number of

forks). Many projects in GitHub are “toy” projects and thus similar to prior

studies, e.g., [105], we only consider highly popular ones. We analyze the

commit history of practitioners and rank them based on the number of com-

mits in which a test file was added or edited. Following Zaidman et al. [143],

we heuristically identify test files by looking for the occurrence of the word

“Test” in the file name. We send invitations to the top 1,000 practitioners who

have committed at least 10 commits in which at least a test file was changed

in each commit. Doing this helps us in getting diverse set of responses from

open source practitioners around the world. Of the 1,000 invitations, 64 of

these are not successfully delivered and we receive 1 automatic reply notify-

ing the receiver’s absence.

In total, we receive 254 responses. The top two countries where the respondents
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come from are China and United States. The professional experience of these 254

respondents vary from 0.2 years to 30 years, with an average of 6.01 years.

Protocol

Our validation survey consists of two parts: hypotheses and rationales. We describe

them below:

1. In the first part, we present our hypotheses as statements that we ask our

respondents to rate. Each respondent can rate each statement as: strongly

agree, agree, neutral, disagree, strongly disagree, and I don’t understand.

We include the option I don’t understand to prevent respondents providing

arbitrary ratings to hypotheses that they are not clear about. Respondents can

also choose not to provide any rating to any question.

2. Although ratings help us to understand respondent positions on the hypothe-

ses, they are not sufficient for us to understand respondent reasonings. Thus,

in the second part, we ask a few additional questions. First, we randomly

select two statements that a respondent has rated as strongly agree or agree.

We then ask the respondent the reason why he/she has provided such ratings.

Second, we randomly select two statements that a respondent has rated as

strongly disagree or disagree and ask he/she to provide his/her reasons. An-

swering these questions is optional.

Data Analysis

Hypotheses part: We collate the ratings that the practitioners provide to the hypothe-

ses. After discarding the “I don’t understand” ratings which form a small minority,

we convert each rating to a Likert score from 1 to 5. We map strongly disagree, dis-

agree, neutral, agree, and strongly agree to 1, 2, 3, 4, and 5, respectively. We then

compute the average Likert score of each statement and plot Likert scale graph. A

Likert scale graph ( ) is a bar chart which shows number of responses cor-
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responding to strongly agree, agree, neutral, disagree, strongly disagree, and N/A

or I don’t understand, respectively.

Rationale part: We collect arguments that practitioners have provided to support or

refute each hypothesis. We then summarize these arguments.

9.3 Findings

In this section, we describe characteristics of good test cases. We divide the char-

acteristics into six dimensions: test case contents, size and complexity, coverage,

maintainability, bug detection, and others. For each dimension, we describe a list of

hypotheses (described in Section 9.2) and their ratings. We then describe arguments

that support or refute the hypothesis as provided by our interview participants and

survey respondents.

9.3.1 Contents

Intuitively, the contents of a test case would significantly affect its quality. In this

dimension, we investigate practitioners agreement on some hypotheses that describe

characteristics of good test cases based on their contents.

Specific (H1).

In general, practitioners advice that a test case should be specific, i.e., it should

try to test only one functionality. Out of the responses that we receive, 93 indicate

strong agreement and 87 agreement with hypothesis H1. The overall Likert score is

3.94 (i.e., close to “agree”). The following are some of the comments that support

or refute the hypothesis:

U “I prefer atomic things or smaller test cases that test one thing if possible.

It’s easy to understand, easy to manage.”

U “One test case should be testing one aspect of a use case.”

134



D “...If you are in a scenario where test is actually taking little extra time then

at least I do not see a problem in verifying multiple different things in the

same test or testing multiple scenarios in the same test.”

From the above comments, we note that many practitioners support this hypoth-

esis since specific (or atomic) test cases are easier to understand. However, in cases

where tests take longer to run, testing multiple things in one test case may be a more

efficient alternative.

Self-Contained (H2).

Most respondents express that test cases should be self-contained with no or

minimal dependency on other test cases present in a suite. The average Likert score

for this hypothesis is 3.94 (i.e., mostly “agree”). Interestingly, 47, 17, and 6 respon-

dents neither agree/disagree (i.e., they are neutral), disagree, or strongly disagree

with this hypothesis, respectively. The following are some comments that support

or refute the hypothesis:

U “The more isolated the tests, the better. You might create a library of things,

the tests need to use [a] library of utilities but apart from that I prefer the

test to be isolated. ”

U “I try to be maybe have 3 or 4 instance variables within the setup and I am

using the nested classes to minimize the scope so you are not sharing, not a

lot of globals floating around, fairly localized to where they are used but a

bit of reuse is fine I think.”

D “Some test cases may share commonalities.”

D “There may be inherent relationships or dependencies between test cases.”

From the above comments, again we note that respondents prefer self-contained

test cases since they are easier to understand. On the other hand, we note that there

is a trade-off between the simplicity achieved by self-contained test cases and reuse

potentials. Respondents that disagree with this statement often highly value reuse

over simplicity. Some test cases are inherently related or dependent on one another
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and keeping them self-contained may mean a lot of duplication.

Consider Different Flows (H3).

Almost all of our respondents strongly agree (133 respondents) or agree (103

respondents) that it is important for test cases to check both normal and exceptional

flow. The Likert score for this statement is 4.47 which is substantially higher than

the scores for H1 and H2. We do not receive any comment that refutes the hypoth-

esis. The following are comments that support the hypothesis:

U “You focus on the happy case to verify the business functionality was needed

... then [write tests] to make sure any edge cases have been properly ad-

dressed.”

U “A test case will typically have some assertions to check for the happy cases

or you could also be testing for failure. It is important to write test cases for

failure path... ”
This hypothesis seems to be more or less universally supported, at least among

the practitioners whom we interview and survey. Among the five hypotheses in the

content dimension, this hypothesis gathers the most support.

Perform Boundary Value Analysis (H4).

Boundary value analysis refers to testing at the boundaries between partitions

of the input space, which include both valid and invalid values. This hypothesis re-

ceives the second highest support among the five hypotheses with an average Likert

score of 4.24. The comments that we receive include:

U “Test cases should be considered as a whole. Some must address nominal

input with intermediate values well within the application domain, some

must address nominal input with special values (zero, input at boundaries,

null size), some must address invalid input in order to check errors are cor-

rectly detected.”

U “You have always want to test corner cases because that is where things

tend to go wrong. You will test for a general case and then go after specific

corner cases, which can cause problems.”

136



D “Too much effort for too little benefit most of the time.”

D “Not every situation requires boundary value analysis. Boundary value

analysis should only be performed on some circumstances.”
From the comments, we learn that many practitioners perceive that there is a

higher probability of finding bugs at the boundaries of input partitions (i.e., corner

cases). Thus, many of them agree with the hypothesis. However, a few respondents

describe that boundary value analysis requires much effort and may not pay off and

thus, they suggest to only perform it for some specific circumstances.

Serve as a Reference Documentation (H5).

Well commented, named and designed test cases may serve as a good reference

documentation. Most of our survey respondents agree that test cases should be

designed as such – its average Likert score is 3.93. This hypothesis however receives

the lowest support among the hypotheses in this dimension. The following are some

comments that we receive:
U “I am a big fan of using tests as reference documentation. Writing readable

tests so that you don’t have, if want, to document the details of an API... If

you can stay at the overview level in the documentation and details in the

tests, it is very efficient.”

U “Test cases are often written before documentation examples and should

provide example use cases for functionality.”

D “Documentation is written for humans possibly unfamiliar with the prod-

uct. Test cases are written for 1 compilers & runtimes, and 2 for people

likely *intimately familiar* with the product. These are not the same group

of people. Test cases can be *used* in documentation, but documentation

cannot consist *solely* of test cases.”

D “Writing easy to understand tests is hard and is not worth. It’s better to

have separate reference code, which can be runnable as tests.”
From the comments, practitioners view test cases as a good complement to tra-

ditional documentation (e.g., API’s textual documentation). High-level overview
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can be given in the documentation, while details are pushed to test cases. Also, test

cases can serve as early documentation since they are often written before textual

documentation. However, some practitioners push back on the idea because writ-

ing easy-to-understand test cases is hard, and they view the benefit is not worth the

effort.

9.3.2 Size and Complexity

Size and complexity of test cases are important attributes to consider. The size

and complexity of a piece of code have often been associated to its quality [115].

Unfortunately, no or little study has focused on test code. In this dimension, we

consider five hypotheses that describe characteristics of good test cases in terms of

their size and complexity, and investigate developer support, or lack of, to them.

Small in Size (H6).

A large number of respondents agree that test cases should be small whereas

some are neutral or even disagree with this hypothesis (average Likert score = 3.83).

Some of the comments we receive are:

U “A good test should be short, should fit on to 10 lines or less of code, is

self-contained, has a clear intent and its scope is obvious...”

U “I am more a fan of many small tests than few big ones.”

U “Each test method should test one feature.”

D “Some codes need complicated test logic to cover logics of it.”

D “I am careful to keep the simplicity, but not care the number of lines.”

Practitioners mention that as test cases should be clear and test only one func-

tionality, they should be small in size. However, some practitioners care for sim-

plicity without worrying about size, and sometimes test cases can be long to cover

complex logic.

Understandability and Maintainability of Large Test Cases (H7).

In general, practitioners confirm that large test cases are hard to understand and
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maintain (average Likert score = 3.71):

U “Large cases attempting to do everything at once are difficult to understand

and more importantly difficult to maintain. When code changes, the tests

must be rewritten, which is bad.”

U “Test cases which are large in size and doing a lot, test cases which intro-

duce or have any kind of synchronization are difficult to maintain in the long

term.”

U “For me it is a bad sign if test becomes long and complicated. It can also

be a sign of bad design.”

D “Large test cases are often necessary, especially in testing cases that require

bootstrapping.”

D “I think there is a case for them so long as you are clear that you are doing

a random walk through the system. It is Ok to have some for smoke testing...

It is the exception not the rule and it is for a particular purpose.”
From the comments, large test cases are often viewed as harder to understand

and maintain since they often do several things at the same time and thus are more

susceptible to changes when the SUT changes. Large test cases can also be an

indication of bad design (either in the test code or in the system under test (SUT)).

However, they might be required for specialized testing or for cases that require

bootstrapping – these should be exceptions and not the rule though.

Large, Complex Test Cases and Difficult Bugs (H8).

Previously, practitioners express that large test cases are hard to understand and

maintain (H7). In this hypothesis, we would like to confirm whether practitioners

agree that large test cases can be useful to detect difficult-to-find bugs. We find that

118 respondents strongly agree or agree with this hypothesis. A substantial number

of respondents choose to be neutral or disagree (70 neutral respondents, and 32

respondents who disagree or strongly disagree). The average Likert score is 3.60

which is the lowest among hypotheses in this dimension. Some of the comments

that we receive are:

139



U “Complex test cases will cover integration environment and they can lead

to some very good bugs being discovered.”

U “Sometimes the most awkward bugs appear when a series of steps are hap-

pening in the code.”

D “...will detect less bugs ultimately because they would be harder for us to

understand and maintain. It goes together with the readability factor. ”

D “...strategy matters, not the size of test case.”

From the comments, many practitioners agree that long and complex test cases

can detect some hard-to-find bugs since they can cover long series of steps that

cannot be simulated by simple test cases. However, some practitioners disagree by

stating that poor understandability will make such test cases less able to find bugs in

the long run. Others argue that what matters is the strategy practitioners apply for

testing – with a good strategy, small and simple test cases can be sufficient to find

many hard-to-find bugs.

Large and Small Test Case Mix (H9).

Most practitioners are of the opinion that a test suite should contain a good mix

of many short and a few large test cases (average Likert score = 3.96). Few of the

comments that came out during interview and survey are:

U “A combination of lots of small tests and some large tests is ideal but you

cannot throw away large test by a lot of small tests.”

U “Small tests eg unit tests and large tests like fuzzers, integration tests, etc

will find *different* bugs.”

U “This would cover most situations of requirements.”

D “For me it is better to have lots of [small] tests.”

To summarize, practitioners have a high agreement that a combination of many

small and a few large test cases is apt for most of the situations. However, some

practitioners have a strong preference of keeping test cases short.

140



Complexity and Bugs in Test Cases (H10).

In our interviews, several practitioners state that test cases can often become

long and hard to manage. This increased complexity of test cases can lead to bugs in

the test code. A large number of our survey respondents agree with this hypothesis

(average Likert score = 4.03). Some of the comments practitioners made to justify

their support or lack of support are:

U “If the test is really hard to read and understand and it is complex in its own

right there is a good chance that... there is a bug in the test itself.”

U ‘We might put ourselves at risk of not understanding the test when we come

back to it later. Or a test failure during a refactoring that appeared decou-

pled from its requirement, might be modified. Because it is not clear why it

fails.”

D “Complex test cases make an environment less productive, but do not di-

rectly cause bugs.”
In general practitioners find that there is a higher likelihood of bugs appearing in

the test code if the complexity of test cases increases. A few practitioners disagree

though stating that the relationship between complex test cases and bugs is unclear.

This hypothesis receives the maximum agreement in the size and complexity di-

mension.

9.3.3 Coverage

Code coverage, the amount of code covered by test cases, is often used as a measure

of test quality. Coverage information can help practitioners in finding parts of the

code which are not covered and might contain bugs.

Code Coverage, Necessary but Insufficient (H11).

A hundred and ninety four of our respondents support (agree or strongly agree

with) this hypothesis – resulting in an average Likert score of 3.98. The following

are some of their comments that support or refute the hypothesis:
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U “Code coverage is important but it is just one axis of the quality of the test.”

U “The more coverage you got, generally speaking, the better.”

U “It does not measure the combinatorial explosion of possible interactions.”

D “I could certainly write tests that provide good code coverage but do not

actually test what users are going to use from the software.”

D “Code coverage is nice but not all that useful. Running a line isn’t an in-

dicator that you’ve tested it. Not running a line is an indicator that you

haven’t but you are better of caring about features. ”
In general, many practitioners find that code coverage is a good starting point

as it gives information whether we have exercised a piece of code. However, some

practitioners have strong skepticism against the usefulness of coverage as a quality

metric. They argue that covering a code may not mean that it has been tested, and a

test case that covers a code may not mimic what real users would do in practice.

Code Coverage and New Test Cases (H12).

Practitioners in general agree that coverage information can be leveraged to un-

derstand shortcomings of current test cases to write new tests (average Likert score

= 3.96). Some practitioners provide these rationales:

U “Use code coverage to understand what is missing in the tests and then

create intelligent test based on that.”

U “I look at my code coverage, I am not at 100% then I know I must have

not got any tests for place order where there is probably some interesting

business functionality”

D “I prefer to focus on features, rather than code coverage.”

From the practitioner comments, we find that code coverage can be helpful in

writing test cases; however, for some practitioners, it is not the focus.

Higher Coverage and Detecting More Bugs (H13).

In general, practitioners agree that a higher coverage does not mean that a test

suite can detect more bugs. This hypothesis receives an average Likert score of 4.02,
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which is the highest for hypotheses in this dimension. More than 190 practitioners

agree or strongly agree with this statement. Here are some of the comments:

U “Because high coverage is useless unless you are also making the right

assertions.”

U “Because code coverage does not consider semantic of the code.”

U “If you write good test case they will also increase code coverage, just that

focussing exclusively on code coverage is not useful.”

D “More coverage, less chance of bugs.”

D “Hitting all code passes increases probability of finding edge test case that

was not thought of.”
From the comments, many practitioners complain that code coverage does not

consider the semantic of the code and is useless without good assertions. Also,

they argue that achieving code coverage is not a good proxy to writing good test

cases. However, eighteen practitioners whom we survey disagree with the statement

stating that coverage has its place in detecting bugs.

Small Footprint (H14).

This hypothesis is a slightly controversial one; only a slight majority of our

survey respondents (51.85%) agree or strongly agree that a single test case should

have a small footprint (i.e., the amount of code it executes). Still, the average Likert

score is 3.52, and thus the balance tips towards agreement with many practitioners

(68 of them) on the fence. The following are the rationales that practitioners give to

support or refute the hypothesis:

U “Developer test should test a single responsibility but does not necessarily

mean a method, i.e., a single responsibility of the thing on the test.”

U “Simple. The larger the footprint the more bottlenecks there are in the test-

ing process and the slower the testing process is.”

D “...this is overrated. Tests should be maintainable. ...But worshipping this

principle can often be the enemy of maintainable tests.”
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D “If you can write a simple test that covers a lot of code, that can make

writing tests more efficient.”
The proponents of this hypothesis argue that a single test case should have a

single responsibility. Also, test cases that cover a lot of code can cause a bottleneck

and slow down the testing process. Others disagree stating that this hypothesis

should not be followed rigidly; one argues that by covering as much code as possible

with as few test cases, one can safe the cost of writing test cases.

Maximizing Code Coverage, and Long, Not Understandable, and Brittle Test

Cases (H15).

This hypothesis is also a slightly controversial one; only 54.66% of the respon-

dents agree or highly agree that a test case that is designed to maximize coverage

is often long, not understandable and brittle (i.e., breaks easily). Although this hy-

pothesis receives the lowest agreement among others in this dimension, the balance

again tips towards agreement with an average Likert score of 3.51. The following

are some comments given by practitioners:

U “If you try to over-focus on code coverage people will try to go through all

sorts of loops... it is quite difficult. You have to go through a lot of effort to

trigger that to occur and it is not just worth the effort.”

U “Because the desire for coverage often makes people lose sight of the true

goal of a given test case.”

D “Optimizing for coverage doesn’t mean complicated tests unless the code

being tested is complicated.”

D “The more code I can test with a maintainable test the better.”

Most practitioners agree that focussing solely on coverage can create problems

since people can often lose sight on the true goal of testing, and start doing “all sorts

of loops” which can be harmful. However, 43 respondents disagree and 6 strongly

disagree with the hypothesis stating that one can often optimize coverage without

causing issues mentioned in the hypothesis.
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Code Versus Requirement Coverage (H16).

Most practitioners agree that requirement coverage is more important than code

coverage resulting in the average Likert score of 4.00. We only receive positive

comments supporting this hypothesis which include:

U “The core goal for me would not be to maximize code coverage. It will be

to maximize testing basic case and corner cases for a feature.”

U “I don’t believe it is an effective use of time to test the most basic of code

(getter/setter, etc...)”

U “Code coverage is a technical measure that isn’t directly related to user-

facing features. User-facing features are the actual thing that an application

should care about.”
From the comments, we find that practitioners prefer requirement coverage,

since some code is of little value and is less likely to be buggy (e.g., getter or setter

methods). Moreover, test cases that achieve requirement coverage often mimic well

how clients would use a piece of SUT.

9.3.4 Maintainability

Software system evolves and so should its test cases. Maintainability of code (in-

cluding test code) is an important aspect as it helps to ensure that a software system

continues to serve its intended purpose.

Well-Modularized (H17).

Most respondents agree or strongly agree that test cases should be well modu-

larized and the average Likert score is 4.27. Only 4 respondents disagree or strongly

disagree with this hypothesis. Following are some of the comments that support or

refute the hypothesis:

U “Test code is code. If the test is simple for people to understand, it should

be short and simple in the code.”
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U “...It might mean that you are trying to test too much stuff at once and maybe

you should break that down into smaller modules or units.”

U “It is easier to maintain it if it is. ...”

D “Tests that are too modularized, tend to make debugging of regressions more

complex.”
From the comments, most practitioners agree that if a test case is large, it should

be broken down into smaller modules or units, since it would then be simpler to read

and easier to change as a software system evolves. One drawback that a respondent

mentions is too modularized test may make debugging more complex.

Readable (H18).

More than 96% of the respondents agree that test cases should be readable and

understandable. Among the hypotheses in this dimension, this one receives the

highest Likert score of 4.59. Practitioners give a number of supportive comments,

including the following:

U “Like any code, if you have to maintain it you better be able to understand

it.”

U “Tests reflect intent. Tests should tell a story of how the code is supposed

to work. Tests are one of our best tools for understanding the way code is

meant to work. Tests communicate across time to future developers about

the code.”
From the comments, we find that practitioners highly value readable and under-

standable code. A few respondents mention that this is hard to achieve though. One

of them mentions: “It is challenging to keep the unit test looking nice.” We do not

receive any comments that refute this hypothesis.

Simpler than Tested Code (H19).

This is yet another slightly controversial hypothesis with the lowest Likert score

in this dimension (i.e., 3.67). Only 57.6% of the respondents agree or strongly

agree that test code should be simpler than the tested code, while 16.3% indicate
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their disagreement or strong disagreement. We receive the following rationales:

U “If the test is complicated it is harder to understand what is the actual fail-

ure. Code could get complicated but tests never should.”

U “If the test is more complicated than the code being tested then the API

being tested is too complicated.”

D “Sometimes a fairly simple algorithm, say A*, can have a fair number of

corner cases that warrant complicated test cases.”

D “Because sometimes test cases have a more elaborate setup and teardown

requirements than the code under test.”
From the comments, although many practitioners support the hypothesis, some

express their reservations. The earlier group of respondents argues that simple tests

are essential, for example, for effective debugging, while the latter group argues that

some functionalities have many corner cases requiring complicated tests, and others

require elaborate setup and teardown requirements. The findings suggest that this

hypothesis can be used as a guiding principle, barring some exceptions.

Designed with Maintainability in Mind (H20).

Most practitioners agree or strongly agree that test code should be designed

with maintainability in mind (average Likert score = 4.15). Some comments which

support or refute this hypothesis are:

U “Strongly Agree, it can be less fast, but should be designed with maintain-

ability”

U “...if your tests aren’t maintainable the code they test isn’t.”

D “Personally I will rewrite my tests instead of changing them a lot.”

D “Spending too much time making tests clean and maintainable is a waste of

time when the requirements change and the test case is no longer applica-

ble.”
From the comments, proponents express that maintainability is a very important

property of good test cases (even more important than efficiency), and if test cases

are not maintainable, the code they test is also often hard to maintain. On the other
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hand, we note some reservations from a few respondents who find that designing

test cases with maintainability in mind may not pay off. This is true especially for

software projects for which requirement changes often; for such cases, rewriting

test cases from scratch may require less effort than changing test cases many times.

Traceability Links (H21).

More than 175 practitioners agree or strongly agree that traceability links should

be maintained between test cases, code and requirements (average Likert score =

3.97). Only seven respondents disagree or strongly disagree with the hypothesis.

The following are some of the rationales that our respondents give to support the

hypothesis:

U “Can reduce other workload and help improve the efficiency of the team.”

U “You can quickly locate the part needs to be updated, to make quick updates

and to update documentation.”

D “It sounds like a lot of project management overhead, which would lead to

slower development velocity. ”
From the comments, we find that practitioners value traceability links as these

can be used to help practitioners to quickly identify parts requiring changes when

a software system evolves. However, some think maintaining such links creates

significant project management overhead.

9.3.5 Bug Detection

Bug detection is one of the main reasons of writing test cases. When practitioners

write a new functionality or add a piece of code, they need to test whether that code

is working fine or not.

Attempt to Break Functionality (H22).

A total of 207 respondents agree or strongly agree that a test case should attempt

to break a functionality. The hypothesis receives an average Likert score of 4.12.

The following are some comments that we receive:
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U “We will never be able to predict the full range of crazy things users do with

our product. The more ways we can think of to try to break our code, the

less it will break when users actually go do crazy things.”

U “Many bugs can be found more easily by testing edge cases that develop-

ers didn’t think about. Often these bugs can have impacts on real-world

workloads as well.”

U “In a distributed system, it is common that some component can’t perform

the designed function well either due to network issues or machine hang

etc.”

D “First and foremost, tests should ensure the code works as expected, in the

environment its expected to run. Having other negative tests is less impor-

tant.”

Overall, practitioners agree that test cases should try hard to break functionali-

ties. This can be done by testing corner cases, simulating network issues or other

environment problems, or performing “crazy” things that users may do with a sys-

tem. By testing for such cases, practitioners can have a stronger assurance that a

system would work well in practice under diverse environments and usage patterns.

Seven respondents disagree or highly disagree though and a rationale that one of

them provides is testing positive cases is more important than negative ones. When

practitioners are hard pressed for time, testing positive cases may matter more.

Test Even the Simplest Things (H23).

The majority of respondents agree that testing even the simplest things is valu-

able (average Likert score = 3.91). However, a minority of respondents (i.e., 9.80%)

disagree or strongly disagree with 16.73% respondents on the fence. The following

are their rationales:
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U “Even the simplest of things tested can give you useful information in the

sense that it will make sure when someone makes a change in the future,

even to the simplest of things like hashcode for example or an equality check,

people do not actually break that in the future.”

U “Whenever you think something cannot go wrong, it probably will.”

U “Even write the stupid test because sometimes it is the one that will find the

very stupid bugs.”

D “It is wasting time and codes.”

D There’s a line where test cases become more of a burden to carry than the

value they provide. Adding a unit test for a tautology or for something

incredibly simple is simply duplication.”
The proponents argue that “the simplest things” (e.g., equals() and hashcode())

may also break sometime in the future, and people make “stupid” mistakes. The

opponents on the hand argue that testing simplest things may not add much value

and adding them is a waste of time and code.

Add New Test Cases For Fixed Bugs (H24).

We receive a high agreement for this hypothesis (average Likert score = 4.40),

which is the highest for this dimension. We only receive positive comments, which

include the following:

U “If there is a bug in the code, then writing the test helps to clarify what the

error is.”

U “The test should be written *before* fixing the bug, to ensure you actually

understand the bug. Then, once the bug is fixed, you *have* the test, so keep

it.”

U “If a bug happened once, it can happen again.”

Practitioners support this hypothesis since writing test cases helps one to under-

stand a bug. Moreover, the generated test case can help to ensure that the bug will

not happen again without being detected.
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Use Assertions to Detect Subtle Errors (H25).

A test assertion contains an expression which describes a property that should

be (or should never be) observed for a system under test. Most of our respondents

agree that assertions are a crucial part of test code and can be helpful in detecting

subtle errors (average Likert score = 4.02). We present some practitioner comments

below:

U “They can do that if you push the envelope a bit in the testing. If you don’t

just stick to the normal case.”

U “Yes because something you might be taking for granted to be true could

very well be false.”

U “You need something to fail, you need to have assertions in a test otherwise

you are just exercising the system and not making any statements about what

it should be doing.”

Practitioners argue that assertions are essential and one cannot only rely on the

appearance of exceptions alone to detect failures. However, expressions used in the

assertions need to be designed well so that they can detect bad cases effectively.

Commenting Test Code with Common Errors and Possible Causes (H26).

A large number of our respondents (i.e., 193) agree or strongly agree that com-

menting test code with common errors and possible causes is a good idea (average

Likert score = 3.99). A few disagree though. Following are some of the comments:

U “The name often will say the scenario I am trying to test out or there will

be; this is especially true for complicated test, where if I write a test today

and go back a month later, I think it is going to be difficult to understand

what I am trying to test.”

U “...comments is usually a convenient way to document those things...”

U “New people don’t know your code/history.”

D “Comments are not executable, and thus, not self-validating. This applies

to comments in test code as much as comments in SUT code.”
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D “Comments that are outdated can do more harm than good. If the comments

are misleading then they can cause people to waste time exploring dead

ends.”
Proponents argue that this is a good practice to help one understands test code

when he/she needs to revisit it again; it is also helpful for others who are not the

original writer of the test code. On the other hand, others argue that the comments

may get outdated and cause more harm than good.

9.3.6 Others

Deterministic (H27).

Most practitioners we survey agree that a good test case should be deterministic

and produce the same output every time it is run (average Likert score = 4.05).

However, again a few disagree. The following are some of their explanations:

U “If a test involves some aspect of randomness, it can be very hard if not

impossible to reproduce a failure”

U “If tests pass or fail due to random factors then they get ignored and become

useless.”

D “Sometimes it is good to see transient failures to detect a race condition,

for example.”
From the comments, we can infer that non-determinism in a test case can make

it harder to debug when the test case fails, and the test case may then be rendered

useless; however, in some cases, such tests may be useful to detect concurrency

issues such as race condition.

Side Effect Free (H28).

Almost all our respondents agree that test cases should be side effect free. In

this dimension, we receive the highest agreement for this hypothesis with 203 re-

spondents agreeing or strongly agreeing with it. We present some of the comments

below:
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U “If tests impact each other, it becomes extremely hard to reproduce and

interpret test failures.”

D “Test cases can not guarantee the absence of side effects, but it can be

reduced.”
Side effect free test cases make debugging easier when failure happens. How-

ever, at times it is hard to guarantee complete absence of side effect.

Tag Test Cases as Slow or Fast (H29).

Several common testing frameworks like JUnit provide the functionality of

adding tags to test cases. Most of our respondents agree or strongly agree that the

use of such tags to indicate, for example, fast or slow tests, is helpful (average Likert

score = 3.93). There are many who are on the fence though (i.e., 61 respondents).

We only receive positive comments and the following are some of them:

U “It is very important to have fast tests and if you have slow tests, maybe

define tags or categories. It can be the fast ones and slow ones are activated

by a different switch.”

U “For practitioners’ convenience when debugging suite-wise problems or re-

gressions.”

U “I usually use BDD develop my project. And it’s important to me that it is

running fast test when I am developing and more detailed but slower test

before I commit my code.”
From the comments, we find that tags can be helpful as they support running

of selective tests which can make practitioners complete their tasks faster. Practi-

tioners can run fast test cases for quick verification and slow test cases can be run

occasionally.

9.4 Implications

For Researchers: Our research suggests new directions for empirical software en-

gineering researchers. Developer perception matters [56, 131, 27, 59] but they may
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not always be correct [26]. Moreover, some of the hypotheses are slightly contro-

versial with two sizable camps for and against them. For example, hypothesis H14

(each test case should have a small footprint, i.e., the amount of code it covers)

only receives an average score of 3.52 and is only supported by 51.85% of our re-

spondents. One way to nicely augment our study is to mine software repositories

and analyse history of projects to get a deeper understanding of such slightly con-

troversial hypotheses. For example, one can correlate test case footprint with its

effectiveness to find bugs based on historical data. Another way, is to perform con-

trolled experiments or field studies, and investigate the correlation between test case

footprint and the time it takes for debugging test case failures and/or maintaining

test cases. Clearly, it is not possible to perform all such studies and describe them

in one paper. Thus, we encourage others to perform such future studies to provide

further empirical evidence to further support or refute our hypotheses.

Our results also highlight opportunities for automated software engineering re-

searchers to build tools that can help practitioners create better test cases:

• One can envision a tool that can detect smells in test code by looking for

violations of some of the 29 hypotheses, especially those that receive high

average Likert scores.

• From the ratings and comments that we receive for H17 and H18, many prac-

titioners value well-modularized, well-written and well-commented test code

which follows a consistent coding style. However, creating such test cases is a

challenging task. Automated tools can potentially be built to suggest suitable

test code refactoring or renaming to improve the modularity, readability, and

understandability of test cases. To the best of our knowledge, no such tool

currently exists.

• From ratings and comments that we receive for H16, we find that practitioners

value requirement coverage more than code coverage. Unfortunately, to the

best of our knowledge, there is no tool that can take a requirement document

expressed in natural language and generate a set of maintainable test cases
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from it. Existing work on automated test case generation [91, 32, 2] mainly

focus on generating test cases that can cover more code. Recently, Jensen et

al. propose a domain specific language for practitioners to express business

rules which can then be converted to tests [48]. However, most requirements

are in the form of natural language and converting them to domain specific

rules may take much time and effort.

• From ratings and comments that we receive for H21, practitioners value trace-

ability links between test cases, source code, and requirements. However, for

many projects, these links may not have been made explicit and kept up-

to-date. Past studies have looked into recovering traceability links between

source code and requirements by employing information retrieval [22] and

future tools can extend these existing works by incorporating static analysis

to infer and maintain 3-way links between test code, source code, and require-

ments.

For Practitioners: Novices are often unsure on characteristics of good test cases

and what factors they need to consider to write such test cases. Our findings pro-

vide a list of characteristics that matter to experienced practitioners. The average

Likert score of all the hypotheses are above 3.5 (somewhat/close to “agree”) and

12 hypotheses are above 4.0 (between “agree” and “strongly agree”). The top 5

hypotheses agreed by most respondents are: H3, H17, H18, H24 and H28. We en-

courage novices to consider these important factors when designing test cases. For

example, following H3, they should check for both normal and exception flow, and

following H28, test cases should not have side effects.

Our survey respondents consist of experienced practitioners, and they disagree

on a number of hypotheses. Our results present different practitioner perspectives

which often highlight tradeoffs and special circumstances. For example, based on

practitioner ratings and comments for H23, we find that testing “simplest things”

may detect future problems or “stupid” mistakes, but these “simplest things” may be

large in number and testing them (e.g., hashcode(), equals() methods) may consume
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much time and resources. For H26, we find that commenting test code with common

errors and possible causes may be helpful to aid understanding, but these comments

may also be a source of problems if they get outdated. For H1, most respondents

agree that a test case that tests one aspect of a requirement is good since the test

case would be easier to understand; however, for test cases that require long time to

run, putting many things in one test may have its place. Our findings bring up such

tradeoffs and special considerations which may not be obvious to even experienced

practitioners (and thus the difference in opinions).
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Chapter 10

Conclusion and Future Work

Testing and debugging are two important activites during software development

lifecycle. While testing deals with writing and running test cases to prevent bugs,

debugging deals with finding location of a bug when an issue is reported in the

issue tracking system. With increasing size and complexity of software, there is

an increased need to find issues with the current testing and debugging techniques

and at the same time undestand practitioners’ view points to bring forward the gap

between practitioners’ expectations and the research ouput.

This dissertation sheds light on various aspects of testing and degugging: adop-

tion and adequacy of testing, testing culture, researchers’ bias and practitioners’

expectations of bug localization, designing good test cases and helping develop-

ers make testing decisions. I provide a quick recap of the empirical studies I have

conducted and recommendations for researchers and practitioners.

10.1 Summary

Adoption and Adequacy of Testing

In chapters 3 and 4, I presented large-scale studies on adoption and adequacy of

testing in open-source projects. Using a dataset of over 20,000 projects, I tried to

understand popularity of test cases, correlations between test cases and various met-
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rics such as developers, bug count, bug reporters and programming languages. I find

that over 60% of the projects contain test cases, projects with test cases have higher

LOC than those without test cases and projects with more number of developers

have more test cases. Furthermore, projects written in popular languages such as

C++, ANSI C and PHP have higher mean numbers of test cases.

In another study on over 300 projects, I studied the adequacy of testing and

found that average coverage is only 41.96% and median coverage is only 40.30%.

Furthermore, I analysed correlations between coverage and various metrics such as

LOC, cyclomatic complexity, number of developers and CK metrics (DIT, CBO,

LCOM, NOC and RFC) at the project and file level. At the project level, there is

a weak correlation between coverage and all other metrics except number of devel-

opers. On the contrary, at the file level, there is a weak positive correlation between

coverage and LOC, complexity, CBO, NOC, RFC and no correlation between cov-

erage and metrics LCOM and number of developers.

Understanding the Testing Culture

In chapter 5, I presented a study to understand the testing culture of app developers

in open-source and industry. First, I measured the current state of testing in Android

apps by collecting 627 apps and find that the mean and median values of line and

block coverage are very low. Then, I surveyed Android developers to understand

current testing tools used and challenges faced by them. Popular tools such as

JUnit, MonkeyRunner, Robotium etc. are widely used. Challenges often faced

by these developers are time constraint, compatibility issues, lack of exposure to

tools, cumbersome usage, lack of support, unclear benefits and poor documentation

among others. A survey on Microsoft developers show that they commonly use

automated testing tools for executing test cases, finding potential bugs, analysing

code coverage, performing load testing, generating test cases etc. and manjority

of them prefer using internal tools. Furthemore, challenges faced by Microsoft

developers overlap with the challenges faced by Android developers.
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Bug Localization: Researchers’ Bias and Practitioners’ Expectations

To bring forward the gap between practitioners’ expectations and current research

output, I presented two studies in chapter 6 and 7. First, I studied three different

biases that can have a potential impact on bug localization. These biases are wrongly

classified bug reports, already localized reports and incorrect ground truth files.

Through an analysis of over 5,000 bug reports, I found that out of the three biases,

already localized reports have a significant impact on bug localization. The files

that are already localized, i.e., the bug report contains name of one or all of the

buggy files, must be removed before running bug localization technique. Second, I

surveyed over 300 practitioners spread in more than 30 countries to understand their

expectations and thresholds for adoption of bug localization technqiues. We find

that although practitioners are enthusiastic about research in fault localization, they

have high thresholds for adoption. Practitioners expect a fault localization technique

to satisfy some criteria in terms of debugging data availability, granularity level,

trustworthiness (reliability), scalability, efficiency, ability to provide rationale, and

IDE integration. Furthermore, from a literature review of research papers published

in the last 5 years on fault localization, I find that there is a need to make state-

of-the-art fault localization techniques more trustworthy, scalable, able to provide

insightful rationales, and integrated to popular IDEs.

Learning to Test

In chapter 8, I proposed a technique that takes as input several features: impact,

functionality, process, ownership, code and semantic to provide recommendations

to developers on program elements to test. I also proposed an enhanced cross-

project model learning to deal with cold start problem and use data from a different

project. Using this technique on over 100 projects, I proved that the technique per-

forms better than several baselines and state-of-the-art defect prediction techniques.
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Good Test Cases

In chapeter 9, I presented a work where I conducted interviews and surveys with

practitioners to understand what makes good test cases. Initially, I conducted inter-

views with industrial and open-source practitioners to understand the characteristics

of good test cases. These results were validated using a set of hypotheses and a sur-

vey responded by 254 practitioners. In the end, several categories were identified to

check test cases: test case contents, size and complexity, coverage, maintainability,

bug detection, and others.

10.2 Future Direction

Empirical Validation of Good Test Cases

Test cases are a central piece in testing and practitioners put in a significant amount

of time writing and maintaining them. I interviewed and surveyed many practition-

ers to understand what make good test cases across different dimensions: content,

size and complexity, coverage, maintainability, bug detection and other. The results

provide practitioners’ belief and insights on how to design better test cases. Next

step in this direction would be to collect a large dataset and validate claims of prac-

titioners. This will help us understand the gap between practitioners’ expectations

of good test cases and the current state-of-practice. Furthermore, these insights

can be used by tool builders to generate automated test cases that are in line with

practitioners’ expectations.

Longitudinal Study on Testing

Testing is a continuous process overlapped with software development. In this the-

sis, I presented several studies on testing, coverage and test suite effectiveness con-

sidering a particular snapshot or point in time. These studies can be complemented

by performing a longitudinal analysis to understand the impact of testing and cover-
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age on number of bugs over time. Furthermore, in addition to correlation as consid-

ered in this thesis, studying causation can shed more light on circumstances when

testing has a significant impact.
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