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FOSS: Towards Fine-Grained Unknown Class
Detection Against the Open-Set Attack

Spectrum With Variable
Legitimate Traffic

Ziming Zhao , Student Member, IEEE, Zhaoxuan Li , Student Member, IEEE, Xiaofei Xie, Jiongchi Yu ,
Fan Zhang , Member, IEEE, Rui Zhang , Binbin Chen , Member, IEEE, Xiangyang Luo ,

Ming Hu , Member, IEEE, and Wenrui Ma

Abstract— Anomaly-based network intrusion detection systems
(NIDSs) are essential for ensuring cybersecurity. However, the
security communities realize some limitations when they put
most existing proposals into practice. The challenges are mainly
concerned with (i) fine-grained unknown attack detection and
(ii) ever-changing legitimate traffic adaptation. To tackle these
problem, we present three key design norms. The core idea is
to construct a model to split the data distribution hyperplane
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and leverage the concept of isolation, as well as advance the
incremental model update. We utilize the isolation tree as the
backbone to design our model, named FOSS, to echo back
three norms. By analyzing the popular dataset of network intru-
sion traces, we show that FOSS significantly outperforms the
state-of-the-art methods. Further, we perform an initial deploy-
ment of FOSS by working with the Internet Service Provider
(ISP) to detect distributed denial of service (DDoS) attacks.
With real-world tests and manual analysis, we demonstrate the
effectiveness of FOSS to identify previously-unseen attacks in a
fine-grained manner.

Index Terms— Intrusion detection system, fine-grained
unknown class detection, isolation forest.

I. INTRODUCTION

NETWORK intrusion detection systems (NIDSs) occupy a
significant role in cybersecurity infrastructures. Over the

past decades, the academic and industrial communities have
invested a lot of research to advance NIDS. The proposed
approaches gradually evolve from signature-based to anomaly-
based detection in the NIDS landscape [1], [2]. The former
aims to characterize the malicious behaviors and hence to
depict the per-class attack fingerprint [3], [4], [5], [6]. Yet
the adversaries could adopt previously-unseen strategies such
as zero-day attacks. We term the unknown a priori and known
attacks collectively as the open-set attack spectrum. To cope
with the open-set attack spectrum, the anomaly-based solutions
construct profiles of benign traffic to discover unforeseen
attacks that deviate from legitimate samples [1], [7], [8], [9],
[10]. Thus anomaly detection becomes an indispensable step
for security in the real world. However, academic communi-
ties and industrial practitioners reveal a series of limitations
when they put most existing anomaly-based proposals into
practice [10], [11], [12], [13]. By summarizing those issues,
we recognize the following two main challenges.

(i) Fine-grained unknown attack detection. The anomaly-
based methods can identify unknown attacks, while previous
proposals are usually binary classification models1 [7], [8].
That is to say, they could only infer whether the sample is
“benign” or “abnormal”, but cannot recognize that the anomaly
is “unknown attack 1”, “unknown attack 2”, or “unknown

1Some existing multi-class detection methods have strong assumptions, and
we summarize them in baselines (§ V-A).
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attack 3”, etc. Yet these fine-grained labels are the key for
defenders to deploy effective countermeasures against the
attacks [10], [12]. For example, the victims can count the
per-flow protocol flag to mitigate flood-based DDoS [14],
[15]. And they can defend the reflection-based attacks by
source verification [16]. In other words, it exists a semantic
gap between the model identification results and the action-
able reports for network operators [11]. If the proposed
scheme can automatically distinguish different unknown attack
classes based on the network traffic characterization, it could
facilitate understanding attack details and implementing coun-
termeasures. Consequently, the first challenge is to detect
the unknown (and known as well) attack in a fine-grained
manner.

(ii) Ever-changing legitimate traffic adaptation. Another cru-
cial problem is that legitimate traffic could be ever-changing.
In most anomaly-based detection, they advocate only using
benign traffic to train the classifier, also known as “zero-
positive” learning [17], [18], then those samples deviating
from legitimate traffic will be considered malicious. However,
it could appear a large number of false positives when the
legitimate traffic manifested as different from priors properties.
Intuitively, an anomaly detector trained on benign HTTP traffic
would identify normal FTP traces as malicious given that these
two protocols are indeed different. Therefore, a pending issue
is to adapt to the changing legitimate traffic as the system
service variation or scenario alteration.

In this paper, we aim to enable fine-grained unknown attack
detection, as well as consider ever-changing legitimate traffic.
To this end, we present FOSS (Fine-Grained Unknown Class
Detection against the Open-Set Attack Spectrum, for short),
a novel tree-based model to handle the above challenges.
At the high level, FOSS is designed to abide by three norms.
Norm ①: Splitting the data distribution hyperplane instead of
dividing the samples. Norm ②: Leveraging the concept of iso-
lation different from distance or density. Norm ③: Advancing
the incremental model update to cope with variable legitimate
traffic. We will provide detailed elaboration on these norms
in § III. To satisfy them, we design FOSS including: feature
extraction, model construction (Norm ①), outlier detection and
classification (Norm ②), and model update (Norm ③).

In summary, this paper makes two key contributions.
• To address the above two issues faced in current anomaly-

based NIDSs, we present FOSS, a novel tree-based
architecture that satisfies the proposed three norms.
Specifically, FOSS designs a model building scheme for
hyperplane partition with the Monte Carlo method to
echo back Norm ①. Then, it leverages the isolation-based
detection following Norm ② to improve the local anomaly
perception and assign fine-grained labels. Finally, FOSS
implements incremental model updates through growing
and retiring mechanisms to cater for Norm ③.

• We fully implement a prototype of FOSS and evaluate it
substantially on our testbed. The results demonstrate that
FOSS significantly outperforms previous methods. Also,
it can achieve robust detection against the train-time and
test-time adversarial attacks. Meanwhile, we explain how
FOSS implements fine-grained unknown class detection
from the feature perception, and the real-world DDoS
evaluation for FOSS reflects its practicality.

II. ASSUMPTIONS AND PROBLEM FORMULATION

A. Motivating Scenarios
Consider security practitioners in the Internet Service

Provider (ISP) data center, where they need to analyze traffic
and report fine-grained labels for each session, e.g., “Benign”,
“Attack 1”, “Attack 2”, etc. In the open world, traffic instances
to be analyzed involve unknown attacks (previously unseen in
the training set), such as zero-day attacks. Naturally, practi-
tioners thought of leveraging anomaly-based models to detect
unknown attacks. However, it has been found in practice
that existing anomaly-based detection solutions mainly report
“benign” or “malicious” and cannot support fine-grained attack
outcomes, which means that practitioners need to analyze
all malicious samples to mark fine-grained labels (is labor
intensive). Alternatively, unsupervised algorithms such as clus-
tering are considered. The problem faced by this solution is
that it does not use the prior knowledge of known attacks,
resulting in misclassifications for some known attack samples.
And practitioners do not know how many unknown attacks
are included in the real-world samples, which may affect the
clustering hyperparameters settings (such as K-means [19]).
More details about the disadvantages of common clustering
algorithms are discussed in § III.

One piece of good news is that a new network intrusion
detection system (i.e., FOSS) is provided, which can support
fine-grained identification of unknown attacks. Specifically, the
proposed NIDS is able to report “Benign”, “Known Attack 1”,
“Known Attack 2”, “Unknown Attack 1”, “Unknown Attack
2”, and so on. Benign and known attack labels correspond
to the prior knowledge in the label library, which is readily
available for result reports. For unknown attacks, the pro-
posed NIDS can divide these unseen attack samples into
fine-grained categories based on traffic characteristics (ideally,
each category corresponds to one attack method/vulnerability).
With these preliminary identification results, practitioners only
need to verify a small number of samples for each unknown
attack type, and could report specific attack characteristics,
for subsequent cross-verifying with the threat intelligence
and expanding the attack knowledge base. Such a new
NIDS is practical and feasible for practitioners. Furthermore,
an additional function of the proposed NIDS is to support
incremental model updates, which can be used to adapt
to new benign/legitimate traffic, and can also be used to
update/expand the known attack library (as unknown attacks
are identified).

B. Threat Model and Assumptions
Adversary Model. We consider unknown intrusions such

as zero-day attacks that exist in real-world scenarios. In other
words, strong adversaries will adopt the emerging attack strate-
gies that are previously unseen by victims, including variants
of the existing attacks or brand new ones. Therefore, it is hard
to have any prior data about these unforeseen attacks (i.e.,
not included in the training set). In addition, we mainly focus
on encrypted traffic analysis in this paper, since the growing
prevalence of encryption protocols in network transmissions,
such as SSL/TLS and SSH. Concretely, we tend to characterize
traffic behavior by portraying packet field distribution rather
than analyzing transmission content, e.g., TCP Payload.
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TABLE I
THE SYMBOL DESCRIPTION FOR PROBLEM FORMULATION

Fig. 1. Illustrative explanation of two challenges. Subfigure (a) represents the
proposed model that could identify known/unknown attacks in a fine-grained
manner. Subfigure (b) refers to the model that can be incrementally updated
to adapt to new legitimate service traffic.

Assumptions. We assume there is no prior knowledge when
suffering unprecedented attacks in practice. We are also not
aware of how many types of unknown attacks exist in the
collected traffic samples in advance. Meanwhile, we do not
assume additional collaborations from other Internet entities,
such as IP blacklists provided by security vendors. Moreover,
the victim server needs to support variable legitimate traffic
as the scenario and business change. This means that benign
traffic is not set in stone. When the server business changes,
we suppose the victim can provide some legitimate traffic
samples for model adaptation.

C. Problem Formulation
In this section, we provide the precise definition of two

critical challenges concerned in our work, with the involved
notations summarized in Tabel I.

Fine-Grained Unknown Attack Detection. Given a prior
dataset Stra, consisting of samples from benign traffic B
and known cyber attacks {A1

k, A
2
k · · ·An

k} (“k” represents
“known”), where n refers to the number of known classes.
And we use Stra as the training set to fit the model M . When
deploying M in practice, it will encounter the open-world
testset Stes include: (i) samples with the ground-truth labels
from {B,A1

k, A
2
k · · ·An

k}; (ii) instances of emerging classes

{A1
u, A

2
u · · ·Am

u } (“u” represents “unknown”), where m
denotes the number of unknown classes, and it is unknown
to us in advance.

As shown in Figure 1(a), the fine-grained unknown attack
detection refers to: M can identify the specific-attack labels of
test samples, i.e., the sample prediction result is B, A1

k, A2
k,

A1
u, A2

u, or others.2

Ever-Changing Legitimate Traffic Adaptation. In
Figure 1(b), suppose a server will generate legitimate traffic
{L1

o, L
2
o · · ·Ls

o} (“o” represents “original”) in the original
business (e.g., Streaming media: YouTube and Chrome as
examples), while the server could also support legitimate
traffic {L1

n, L
2
n · · ·Lq

n} (“n” represents “new”) after the busi-
ness scenario changes (e.g., Chat: Facebook and WeChat as
examples). Among them, s and q represent the type number
of legitimate traffic from original services and new businesses,
respectively.

Given a trained model M fitted from benign traffic B and
attack samples A, where B denotes a series of original legit-
imate traffic. When the server adjusts the business scenario,
the ever-changing legitimate traffic adaptation refers to: M
can directly perform model growing based on increased legit-
imate traffic {L1

n, L
2
n · · ·Lq

n} without retraining the existing
structure. After growing, the updated model M ′ can recognize
all the original and increased legitimate traffic to realize
business adaptation. On the contrary, if the original legitimate
traffic no longer requires to be supported, the model will be
automatically or manually triggered to the retiring mechanism
to forget the outdated samples.

Essentially, the second challenge requires that the model be
able to support incremental updates. Therefore, this capability
of incremental update also applies to expand the knowledge
base of known attacks. When the instance of any fine-grained
unknown attack reaches an adequate number, the model will
automatically update to enable learning for this attack. Sub-
sequently, the unknown attacks that have been identified will
become known attacks in the new model. Furthermore, readers
may be concerned about whether an adversary could stealthily
inject attack traffic into the updated legitimate traffic. On the
one hand, performing expert analysis for part of the samples
can facilitate improving data quality in practice. On the other
hand, we also consider this train-time data pollution in § V-E
(evaluation results show that the impacts of poisoned samples
could be alleviated due to the training sampling ψ in our design
§ IV-A), and the proposed retiring mechanism (§ IV-C) could
trigger the instance forgetting and node deletion to rectify the
wrong branches.

III. PROPOSED DESIGN NORMS FOR FINE-GRAINED
UNKNOWN CLASS DETECTION

We elaborate here on the three key norms for fine-grained
unknown class detection with variable legitimate traffic.

Norm 1: Splitting the data distribution hyperplane instead
of dividing the samples. So-called methods that divide the sam-
ples refer to the current supervised-based and anomaly-based

2Note that the model marks the attack with a series of fine-grained
codenames (e.g., “new attack 1”, “new attack 2”), rather than naming each
attack (e.g., “Heartbleed”). We aim to automatically detect unknown attacks
and distinguish their types from each other in this work, which benefits
network operators to analyze and further deploy countermeasures. The specific
attack names can be given by the security communities, just like we could
also call “Heartbleed” as “Buffer over-read.”
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Fig. 2. The norm 1: hyperplane partition.

Fig. 3. The norm 2: leverage the isolation concept.

(one-class) detections. As Figure 2(a) shows, the supervised-
based [20], [21], [22] approach generally trains a classifier to
distinguish benign traffic and known attacks. This classifier
is not suitable for unknown attacks as lacking corresponding
prior knowledge in the training set, thus it tends to random
guess against new attacks. A typical anomaly-based (also
known as “zero-positive” learning [17]) model is depicted in
Figure 2(b), it uses solely the legitimate samples to fit the
detector, which works well in identifying the instances that
deviate from normal [1], [7], [23]. However, it usually reports
normal or abnormal rather than specific attack categories, and
it could not be very sensitive to subtle outliers (also known as
“local anomalies are difficult to detect” [24]).

We collectively refer to Figure 2(a) and (b) as the methods
that divide the sample. In contrast, our proposal is splitting
the data distribution hyperplane, it iteratively selects one
dimension feature and separates the region into two subspaces,
as shown in Figure 2(c). Given that dividing the sample bound-
ary is prone to failure in an open-set environment, splitting
the hyperplane is more suitable for the scenario with variable
samples. Note that the distribution hyperplane partition range
does not consider all regions at once, the specific split process
will be adjusted according to the situation. For instance,
a classifier could select the split threshold Ts ∈ [Dmin, Dmax]
in sample subset Set1, while using T ′s ∈ [D′min, D

′
max] in

sample subset Set2 based on a specific dimension D or D′,
where Dmin/D′min and Dmax/D′max refer to the minimum
and maximum values of the corresponding dimension features.
To be clarified, this process aims to split subspace without
utilizing any labels, the minimum and maximum values are
only used to help reduce invalid partitions in the current
situation. Readers may be confused about whether this state-
ment is similar to the unsupervised clustering algorithms,
we immediately elucidate this problem in Norm 2.

Norm 2: Leveraging the concept of isolation different from
distance or density. Compared to common unsupervised clus-
tering algorithms, we tend to leverage the concept of isolation.
Figure 3(a) and (b) illustrate distance-based (e.g., K-means
[19]) and density-based (e.g., DBSCAN [25]) methods respec-
tively, as two typical unsupervised clustering algorithms.
They have some disclosed drawbacks in open-set detection,

Fig. 4. The norm 3: incremental model update.

such as K-means requires the number of input clusters, and
DBSCAN does not handle uneven densities well. A more
crucial problem is they could be insensitive to subtle-feature
abnormal deviation since their distance and radius calculations
require based on a fixed-dimensional (e.g., feature dimension)
vector. This will cause subtle anomalies in one dimension or
several dimensions to be diluted by the overall vector during
computation. Given two feature vectors V =< v1, v2 · · · vd >,
V ′ =< v′1, v

′
2 · · · v′d >, if only vj ̸= v′j and vi = v′i for

i ∈ C[1,d](j), the dilution refers to D(V,V ′) ≪ D(vj , v
′
j)

where D represents ℓp distance. It means that these methods
are hard to perceive subtle-feature anomalies, thereby missing
potential attacks.

We propose to leverage isolation-based technology as a
distinct method from distance/density-based. The concept of
isolation refers to randomly selecting a dimension to isolate the
two sets for per-node split, initially to maximize the diversity
of the tree [26], [27]. Since the per-node split is based on
one dimension, when emerging subtle-feature anomalies, the
model is able to isolate these anomalies from other samples.
Readers could concern that when handling the high-dimension
feature vector, completely random selection cannot guarantee
that each feature will be selected, and some non-robust features
could affect the splitting results. We realize this problem
and carefully design delicate search algorithms to alleviate
these impacts, more details will be explained in § IV-A.
Furthermore, isolation-based schemes could facilitate local
anomaly detection, as we stated in § IV-B.

Norm 3: Advancing the incremental model update to cope
with variable legitimate traffic. In the problem space of
unknown class detection, we have to consider that legiti-
mate traffic may also ever change due to real-world business
scenario adjustments. Although we could not predict what
future legitimate traffic will look like, we still hope that the
model can flexibly adapt to upcoming scenarios when servers
provide some new benign traffic. Therefore, the third norm
is advancing the model growing in an incremental manner
to cope with variable legitimate traffic. Figure 4 provides an
illustrative explanation for this idea. Existing attack detectors
generally need to be retrained to suit the new dataset, just like
in Figure 4(a), it retrains from the initialized model state.

To fulfill the model growing process of Figure 4(b),
we choose the tree as the backbone architecture of FOSS.
When the increased legitimate traffic is input to the original
model, it will fall on some leaf nodes. If the leaf nodes
meet the splitting conditions, the model will directly execute
the growing process without having to train the existing
structure. This growing process is still applicable for attack
samples, which means that the detected fine-grained unknown
attacks could be used to update the model and expand the
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Fig. 5. The overview of FOSS, including model construction, outlier detection/classification, and model update.

TABLE II
THE 106-D FEATURE SET. “TTL”: “TIME TO LIVE”

attack library. However, endless growth could lead to model
oversized and path explosion. So we config model retiring
mechanism for FOSS (§ IV-C) to merge unnecessary branches
and reduce the model scale, as well as alleviate the risk from
exploitation of outdated samples.

IV. DESIGN DETAILS OF FOSS
In this section, we first elaborate on the design overview and

feature extraction of FOSS, followed by the technical details
(§ IV-A∼§ IV-C). Furthermore, we conduct a theoretical
analysis for its effectiveness in terms of the critical feature
perception and the complexity of time/space overhead, which
are summarized in § IV-D.

Overview. We start by introducing an overview of FOSS,
including feature extraction, model construction (§ IV-A),
outlier detection and classification (§ IV-B), and model update
(§ IV-C). As Figure 5 depicts the workflow of FOSS, we first
design a model building scheme for hyperplane partition with
the Monte Carlo method to realize Norm 1. Then we leverage
isolation-based anomaly following Norm 2 to improve the
local-abnormal perception and assign the fine-grained label.
Finally, to echo back Norm 3, we propose the model update
including the growing mechanism and retiring one.

Feature Extraction. Our proposal on feature extraction
is based on the traffic session with the 5-tuple index, i.e.,
{Source IP, Source Port, Destination IP, Destination
Port, Protocol}. Table II shows the feature generated for
each bi-directional flow, it characterizes the traffic in terms of
temporal, volumetric, and header-field distributions. Specifi-
cally, the feature vector roughly includes three parts. (i) the
protocol coding with one dimension. (ii) the count of a series of
flags from layers 1-4 (such as IP Fragment, TCP Flags) in three
situations (forward, backward, and bidirectional), which is
33 dimensions. (iii) the 72-dimensional statistical results (i.e.,

max, min, mean, and std) for several transport-functional
fields (i.e., TTL, window size) in three situations about
direction. In general, all features are either int or float types.

A. Model Construction (#Norm 1)
Single-Tree Building. Building a single tree in FOSS is

essentially an iterative binary partitioning process. Given a
training set Xn ∈ Rd (d refers to the feature dimension),
the subset S drawn from Xn, the single tree is recur-
sively built according to the Algorithms 1. During the tree
construction, each node splits solely based on one dimen-
sion feature q, with the randomly generated threshold p ∈
[min(S(q)),max(S(q))]. The recursion terminates until meet-
ing either of the following conditions: (i) the tree reaches
a height limit hmax, (ii) the subsample size |S| ⩽ Smin,
or (iii) all data in S have the same values. After generating,
each node in the FOSSTrees has exactly zero or two child
nodes.

In the dimension selection for each node splitting, the
previous methods are either completely random [26], [27],
[28] or determined processes [8]. Those schemes have some
drawbacks that could not cater to our demands. For one thing,
the former could not handle high-dimensional data well. If the
characteristics of the attack are subtle and most of the dimen-
sions are not so significant, completely random methods will
struggle under a large fraction of the inefficient features. This
will increase the model complexity, more importantly, it may
lose the accuracy of known attacks due to underfitting. For
another, the latter inevitably limits unknown attack perception
given its deterministic tree construction process based on a
prior dataset. Empirically, the unknown attacks may have quite
different traffic characterizations than known attacks, which
means the effective features in detecting existing attacks could
be unsuitable for future attacks.

To cope with the above problems, we propose a design
between completely random and deterministic for FOSS
to reconcile this seeming contradiction by introducing the
Monte Carlo method. Specifically, the Monte Carlo method
here refers to mimicking multiple times of feature selection
and determining the one we think is the more effective. As
described in Algorithm 2, we randomly generate a subset
Fsam which consists nsam candidate dimensions to assess.
This process can directly increase the probability that each
feature is considered, thereby alleviating the negative impact
induced by high-dimensional data. For multiple candidate
dimensions in each Monte Carlo process, we prefer the one
whose data has scattered values (far from the mean) and
presents no cluttered distribution (the small entropy value).
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Algorithm 1 Function FOSSTree(S, h, hmax)
Require: The subset S ∈ Xn, current node depth h, maximal

depth limit hmax, minimum sample for node splitting
Smin

Ensure: FOSSTree
1: if (h ⩾ hmax) or (|S| ⩽ Smin) or (s ∈ S are the same)

then
2: return leafNode(S)
3: else
4: Select a dimension q ← get_dimension(S) ∈ F
5: Randomly select a split value p ∈

[min(S(q)),max(S(q))]
6: Sl ← filter(S(q) < p)
7: Sr ← filter(S(q) ⩾ p)
8: return inNode(Left ← FOSSTree(Sl, h+ 1, hmax),

Right ← FOSSTree(Sr, h+ 1, hmax),
splitDim ← q, splitVal ← p)

9: end if

In this way, for the discrete data distribution, the hyperplane
division can separate them with fewer times of paths. Also
if the data in a specific dimension is cluttered, it indicates
this dimension tends to fewer-useful for detection, and is
susceptible to random noises [8]. Therefore, we define a
tailor-made weighted entropy and choose one dimension with
the smallest value.

The calculation for weighted entropy as the following
procedure: (i) Given a sample set S, S(q) denotes the values
of dimension q from S. Unify the value range with Max-Min
normalization3 in Eq. (1), where x ∈ S(q).

x =
x−min(S(q))

max(S(q))−min(S(q))
(1)

(ii) Generating the probability distribution of S(q), to get the
probability {p1, · · · , pk} corresponding to value {v1, · · · , vk},
where k represents the number of values. Meanwhile, com-
puting the mathematical expectation E(S(q)) =

∑k
i=1 vipi.

(iii) The weighted entropy Hq of dimension q is expressed as
the sum of all terms, and each term is calculated as the ratio of
the information entropy to the distance from the expectation
for each element, as Eq. (2) shows.

Hq =
∑k

i=1

−pi log2 pi

|xi − E(S(q))|
(2)

Overall, small Hq corresponds to the feature dimension that
presents a separable data manifold, and its probability distri-
bution histogram is just like “several isolated peaks tend to at
sides”. We provide theoretical analysis for feature perception
(§ IV-D) which explains why FOSS outperform existing
approaches, and demonstrates the effectiveness experimen-
tally in § V-D. Through the above process, we can get a
FOSSTree. Note that the tree construction does not require
any ground-truth label. In other words, the model building is
not classification-oriented but partitions the data hyperplane
space.

3If max(S(q)) = min(S(q)), skip these calculations and set Hq to
infinity.

Algorithm 2 Function get_dimension(S)
Require: The sample set S ∈ Xn of the current node and the

Monte Carlo sampling number nsam ⩽ d for dimensions
Ensure: A split dimension q ∈ F = {1, · · · , d} of the current

node
1: Randomly select dimensions Fsam = {d1, · · · , dnsam} ⊆

F
2: for all q ∈ Fsam do
3: Count [xi, ci]i∈{1,··· ,k}, where ci is the occurrence

number of xi and k represents the number of
unduplicated values in S(q)

4: Compute D = [xi, pi]i∈{1,··· ,k}, where pi =
ci/

∑k
i=1 ci

5: Normalize the values [xi ∈ [0, 1]]i∈{1,··· ,k} (c.f.,
Eq. 1)

6: E(S(q)) =
∑k

i=1 xipi

7: Hq = −
∑k

i=1 (pi log2 pi)/|xi − E(S(q))|
8: end for
9: return q ← argmin([Hq]q∈Fsam

)

Algorithm 3 Function FOSSForest(Xn, Ntree, ψ, hmax)
Require: The input data Xn, the number of trees Ntree, the

subset size ψ, and the maximal depth limit hmax

Ensure: FOSSForest
1: Initialize: FOSSForest ← ∅
2: for all i ∈ {1, · · · , Ntree} do
3: Si ← sample(Xn, ψ)
4: FOSSForest ← FOSSForest∪ FOSSTree(Si, 1, hmax)
5: end for
6: return FOSSForest

Multi-Tree Ensemble. To increase tree diversity and allevi-
ate the impact of random errors, we implement the multi-tree
ensemble to obtain a FOSSForest. As Algorithm 3 clarifies,
consider a training set Xn ∈ Rd (d refers the feature
dimention), it will generate in parallel Ntree FOSSTrees in
FOSSForest. For each tree, the subset Si (i ∈ {1, · · · , Ntree})
are randomly drawn from Xn based on the given subset size
ψ. These sampling processes are beneficial to increase the tree
diversity and could avoid the quality problems of the data itself
to improve the model robustness. Moreover, the maximum
height hmax can be empirically set as ⌈log2 ψ⌉. So far, the
trained FOSSForest is ready to be used for detection.

B. Outlier Detection/Classification (#Norm 2)
When performing detection, FOSSForest will offer whether

the test sample is an unknown (outlier) or a known class
based on multiple FOSSTree voting. The instances identified
as unknown classes will be dumped in a buffer to wait to be
assigned fine-grained labels. We first clarify how to determine
whether a test sample is an outlier. The proposed design
aims to be suitable for detecting local anomalies, and we
depict it with an illustration. Figure 6 (a) and (b) display two
example distributions of global anomalies, the unknown class
can be detected even using the typical distance/density-based
methods. While in Figure 6 (c), not all classes are evenly
distributed so they cannot be measured based on a uniform
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Fig. 6. Recognize outliers in local anomalies.

distance/density threshold. To tackle this task, we utilize fewer
paths to determine the isolation path anomalies (step 1) and far
from the data cloud centroid to determine instance deviation
anomalies (step 2). Overall, the instance will be considered
the unknown class if it is isolated by fewer paths and far from
the data cloud centroid of the leaf node.

Isolation Path Anomaly. So-called isolation path anomaly
refers to the instance with a short path length (traversed from
the root node) being more likely to be an outlier than the
long one. Therefore, the main problem is to determine the
abnormal path length threshold for each tree. As suggested
by Mu et al. [28], for an ordered leaf node length list,
it is the appropriate threshold that the breakpoint makes the
two sublists (corresponding to anomaly regions and normal
regions) of cumulative frequency most similar. Specifically,
we produce an ascending order list L which records all node
path lengths for each FOSSTree. The determined threshold L
will make the absolute value between the standard deviations
from the two sublists4 take the minimum value, as Eq. (3):

L = arg min
ℓ∈{1,··· ,max(L)}}

|σ(Ll)− σ(Lr)| (3)

where Ll and Lr denote the left sublist and the right sublist
respectively, and σ(·) represents standard deviation.

Instance Deviation Anomaly. The second step is to calcu-
late sample deviations from the corresponding leaf node for
those satisfying isolation path anomalies. On the one hand, this
process could cope with local anomalies in Figure 6. On the
other hand, validating sample deviation can effectively prevent
anomaly over-detection5 since some traffic mutations, thereby
reducing false positives and improving robustness. Inspired by
previous research on mass estimation [24], we construct a data
cloud for each leaf node. Particularly, given a leaf node with
n instances {x1, · · · , xn}, the centroid C = 1

n

∑n
i=1 xi, and

the radius r refers to the ℓp norm between C and the farthest
instance. Then, if xt makes Eq. (4) hold, we consider xt to
be an instance deviation anomaly in the data cloud,

∥xt − C∥p ≥ r (4)

where ∥·∥p denotes the ℓp norm.

4These two sublists correspond to anomaly regions and normal regions, the
part with shorter path lengths refers to anomaly regions. This is because an
instance having a short path length, which is the number of edges it traversed
from the root node to a leaf node, is more likely to be an anomaly than an
instance having a long path length [28].

5So-called “anomaly over-detection” refers to if only use isolation path
anomaly without instance deviation anomaly, the known-class samples may
also be identified as anomalies. In Figure 6(c), after step 1, the pink
pentagrams and blue circles are isolated, while the blue circles belong to
anomaly over-detection. After instance deviation calculation in step 2, this
problem could be mitigated and only the pink pentagrams are eventually
identified as anomalies.

Fig. 7. Isolation-based path binary coding.

Multi-Tree Voting. For a test sample x, it will fall into one
leaf node in each FOSSTree. If the isolation path anomaly and
instance deviation anomaly are satisfied simultaneously, the
corresponding tree will label UnknownClass for x, otherwise
give the label of this leaf node. Therefore, the voting result Y
is obtained by Eq. (5):

Y = arg max
y

F [y] (5)

where F [y] is the class frequency for class y, y ∈
{c1, · · · , cn,UnknownClass}. Among them, ci denotes the
currently known classes (& benign), and n represents the
number of existing known classes. For the samples identified
as known classes prepare to be outputted, while all Unknown-
Class instances will be further assigned fine-grained labels.

Assign Fine-Grained Unknown Class Labels. All samples
identified as UnknownClass will enter the buffer B to be
assigned the fine-grained labels. To distinguish various attack
categories based on their “isolation information” from the
hyperplane partition, we perform the path coding for each
instance. Figure 7 provides an illustrative explanation of path
coding, for a instance x, we record its node binary coding
in each FOSSTree. Thus the path coding of x in FOSSForest
refers to P =< C1, · · · , CNtree

>, where Ntree denotes the
number of FOSSTrees, and Ci (i ∈ {1, · · · , Ntree}) represents
the node coding in i-th FOSSTrees. We define the similarity
of two node codings (Ci and Cj) as Eq. (6).

S(Ci, Cj) = e
− 2×Lsub

max(Li,Lj) ∈ [e−1, 1] (6)

where Li and Lj denote the coding string length of Ci and Cj

respectively, and Lsub represents the common substring length
starting from the first char, i.e., Ci[0 : Lsub] = Cj [0 : Lsub]
and Ci[0 : Lsub + 1] ̸= Cj [0 : Lsub + 1]. Then the isolation
similarity of two samples (Pi,Pj) is defined in Eq. (7):

I(Pi,Pj) =
∑Ntree

k=1
S(Ck

i , C
k
j )/Ntree (7)

where Ck
i and Ck

j from the same tree. We next cluster those
samples of B based on their isolation similarity I to each
other. If the isolation similarity of two instances is less than
the threshold Ad, it will add 1 to the number of adjacent
samples for these two instances. For the instance whose
adjacent number more than Mc could be considered a center,
iteratively put samples adjacent to the center into a set to
perform clustering.6

After the isolation similarity clustering, we examine which
raw clusters need to be merged. This is for the consideration of

6This process (i.e., isolation similarity clustering) is detailed on
https://github.com/Secbrain/FOSS/tree/main/clustering.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Clusters merging after path coding clustering.

instances from one class that could fall into multiple scattered
leaf nodes in each tree, since the single-class sample diver-
sity. Furthermore, it could improve the error-resilient ability
of FOSS for clustering parameter selection. This merging
process also leverages the technology of instance deviation
anomaly in the aforementioned. The specific scheme is as
follows: consider n raw clusters {Cr

1 , · · · , Cr
n}, for any two

clusters Cr
i and Cr

j (i, j ∈ [1, n] and i ̸= j), if Eq. (8) holds,
Cr

i and Cr
j will be merged into a cluster.

∥C(Cr
i )− C(Cr

j )∥p ≤ |r(Cr
i )− r(Cr

j )| (8)

where ∥·∥p denotes the ℓp norm, C() and r() denote the
centroid and radius of the data cloud in the corresponding raw
cluster. Figure 8 provides an illustrative explanation for this
idea, the subfigure (b) meets the condition of Eq. (8) so the
two clusters can be merged while subfigure (a) cannot. Note
that the results of the above-mentioned merging process will
not be affected by the order of the merges. Finally, we can
get m merged clusters {Ce

1 , · · · , Ce
m} and each cluster Ce

i

(i ∈ [1,m]) corresponds to a fine-grained unknown class label.

C. Model Update (#Norm 3)
We introduce here the model adaptation scheme against

ever-changing legitimate traffic without retraining techniques.
It includes a growing mechanism and a retiring one.

Growing Mechanism. As mentioned in § II-C, the legiti-
mate traffic could change since the system service adjustment
and so on. Therefore, the growing mechanism benefits to
absorb new legitimate traffic into the model knowledge about
benign samples in an incremental manner. Naturally, it also
can be used to learn the emerging unknown attacks which are
already assigned fine-grained labels. So the model growing
mechanism can be triggered manually (added new training
data from outside the model) or automatically (fine-grained
unknown class detected inside the model).

We next clarify the model growing process with a case that
updates previously detected fine-grained unknown classes in
Figure 9. In the buffer, a series of instances that be identified as
“New Class 1” (the yellow triangle) will be fed to the original
model to perform the growing mechanism. These instances
could fall into several leaf nodes and cause nodes to split
further as described in § IV-A. Then, the original leaf node
will be replaced with the newly created subtree to complete
the model update. As a result, the new tree after updating
can detect “New Class 1” with the way for known class
identification. This growing process is carried out locally and
doesn’t need to retrain the existing backbone of the tree body.
Particularly, the multiple FOSSTrees in the FOSSForest are
independent and can be parallelly updated.

Retiring Mechanism. In addition, we consider the cus-
tomers could offline some system services, thereby some
old legitimate traffic will not be present in future business.

Fig. 9. Model growing in an incremental manner.

Maintaining the knowledge of outdated legitimate traffic may
overcomplicate the model and cause extra overhead. More
importantly, the adversaries could exploit those branches of
outdated benign samples to launch attacks. A typical example
from our real-world test is the DDoS attacks based on down-
graded versions of SSL/TLS in § VI. Therefore, we design
the retiring mechanism for FOSS to adapt to the legitimate
traffic reduction.

For each FOSSTree, if no test sample falls on the specific
leaf node of this tree in a period of time and this leaf node
corresponds to the benign label, we could remove this leaf
node and its instances. For a parent node that has two child
leaf nodes, if one child node is removed, another child node
will be merged with the parent node. And if all the two
child nodes are removed, this parent node is directly removed.
This process is performed recursively to complete the retiring
mechanism for one tree, each independent in the FOSSForest.
Noteworthy, some previous studies [17], [29] present to adjust
the model prediction probability to forget some samples by
their unlearning methods. Our design is not opposed to these
technologies, their scheme can be combined in FOSS.

D. Theoretical Analysis

In this section, we conduct a theoretical analysis to prove
that FOSS achieves a more effective feature selection than
the completely random methods, and it is more adaptive
for unknown class perception compared to the deterministic
model. Moreover, we analyze its algorithmic complexity.

Feature Perception of Node Split in FOSS. We will
analyze the feature perception of the Monte Carlo method
in FOSS in terms of feature selection effectiveness and loss
of insensitive dimensions. (i) Effectiveness analysis of the
feature selection. Considering d-dimension feature set, its
weighted entropy H = {Hq(1), · · · , Hq(d)} can be calculated
by Eq. (2). If the weighted entropy value is large, it means
that this dimension has great randomness, which could be
inefficient for hyperplane partition. Through formula deriva-
tion, we find that for the probability of performing effective
node partitioning, FOSS is always greater than completely
random methods, whatever the number of candidate dimen-
sions in the Monte Carlo method nsam is set to. The feature
selection design of FOSS alleviates the struggle under the
high-dimensional feature space of completely random model
construction.
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(ii) Loss measure of the insensitive feature dimensions.
So-called insensitive features refer to those dimensions that
produce little effect for hyperplane partition based on the
current data. To adapt to detect the unknown classes that
could present completely different distributions from existing
samples, these insensitive dimensions cannot be discarded
directly. So we quantify the loss of the insensitive feature
dimensions for the deterministic model and FOSS. Through
formula derivation, we obtain the consideration probability
for insensitive features in the deterministic model (that cal-
culates the entropy of all dimensions for each selection)
is much smaller than that of FOSS. Thus, FOSS facili-
tates feature-aware generalization to isolate emerging attacks
when running model inference. The specific derivation details
can be found in the online repository.7 Overall, FOSS
reconciles the completely random and deterministic by intro-
ducing the Monte Carlo method, which advances the trade-off
between the existing-sample perception and future-instance
generalization.

Time and Space Complexity. FOSS mainly consists of
five parts: feature extraction, model construction, detection
& classification, fine-grained labels assignment, and model
update. We summarize the corresponding time and space
complexity in Table III. The notations refer to: the number
of trees Ntree, the subset size ψ, feature dimensions d, buffer
size s, number of flow |Xn|, number of packets M . Overall,
the computational complexity of FOSS is proportional to the
number of flows and packets (explanations of each part are in
the online repository). Since it has no operation with high time
or space complexity higher than quadratic terms, the whole
process of FOSS introduces affordable low overhead.

V. EVALUATION

In this section, we comprehensively evaluate FOSS, with
code available online.8 Specifically, the experiments are
designed to answer the following research questions.
RQ1. How FOSS’s detection effect compared with SOTA?
RQ2. How does FOSS perform in dynamic scenarios?
RQ3. How to interpret FOSS from feature perception?
RQ4. How FOSS presents when suffer adversarial attacks?

A. Dataset and Metric
Datasets. The experiments are based on two public datasets:

IDS2017 [30] and VPN2016 [31]. The IDS2017 includes
51GB of traffic traces generated based on the B-Profile system
involving more than seven types of OS. The VPN2016 cap-
tured a total amount of 28GB of traffic data from common
applications with Wireshark and Tcpdump. We summarize
them in Table IV, which consists of 8 types of attacks and
7 classes of legitimate traffic. If not otherwise stated, the
dataset division ratio is train:test = 6:4, and the per-group
division and experiment will be randomly performed 10 times.
Note that sampling ψ will produce a smaller data subset in
FOSS.

Baselines. Some state-of-the-art (SOTA) methods are briefly
introduced as follows: (i) Binary-classification models. Whis-
per [1] utilizes sequential information based on the frequency

7https://github.com/Secbrain/FOSS/tree/main/theory
8See repository https://github.com/Secbrain/FOSS.

TABLE III
THE COMPLEXITY OF THE FOSS

TABLE IV
DATASETS USED IN OUR EVALUATION

domain features to detect malicious traffic. Diff-RF [8] takes
into the frequencies of visits in the leaves on the iso-
lated forest [27] basis to detect point-by-point and collective
anomalies. Kitsune [7] discovers abnormal behavior by using
AutoEncoder to examination on each packet.

(ii) Multi-classification models. DBSCAN [25] and K-means
[19] are typical density-based and distance-based unsuper-
vised clustering algorithms respectively. FARE [10] is a
semi-supervised clustering method for classification under
low-quality labels. Note that it needs to specify the number of
classes for FARE, we set it as ground truth. Cls-Anomaly [9]
employs Conditioned Variational AutoEncoder and extreme
value theory to devote multi-classification for known attacks.
SENC [28] completes the semi-supervised classification based
on isolation forest, yet it assumes only to emerge one unknown
class at one time.

Parameter Settings. The hyperparameters are set as fol-
lows: the number of Monte Carlo searches nsam = 10, tree
number t = 200, sampling ratio ψ = 60%, minimum value
of node split Smin = 10, clustering parameters Ad = 30 and
Mc = 300.

Metrics. Two popular benchmarks are used to evaluate the
performance for identifying emerging classes [10], including
the clustering accuracy (ACC) and adjusted mutual informa-
tion (AMI). Their upper bounds are all 1 and the larger values
mean the better effect. Specially, we additionally calculate the
False positive rate (FPR), False negative rate (FNR), Preci-
sion (Pre), Recall (Rec), and F1-score in binary classification
experiments.

B. Compare With SOTA (RQ1)
Compare Binary-Classification SOTA. We first compare

the detection effect of FOSS with binary classification mod-
els. Given all these schemes are solely using benign samples
to train models, this experiment puts only legitimate instances
into the training set and computes the metrics in binary
classification (“benign” or “attack”). The results are summa-
rized in Table V, and the identification accuracy of the four
models achieves more than 92%. Also, FOSS and Whisper
outweigh Diff-RF and Kitsune. Among them, the performance
of Diff-RF could be limited due to the deterministic feature
selection process, while Kitsune and Whisper may not be
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TABLE V
THE BINARY-CLASSIFICATION RESULTS

TABLE VI
THE MULTI-CLASSIFICATION EVALUATION

sensitive enough to subtle-feature anomalies. FOSS is rela-
tively better, it realizes >98% ACC, <1.2% FPR, and >98%
F1.

Compare Multi-Classification SOTA. Then we evalu-
ate the multi-classification effect for FOSS and baselines.
We conduct five groups (denoted as gi, i ∈ [1, 5]) of exper-
iments by varying the known/unknown attack proportion
(denoted as Nk:Nu). In g1 and g5, Nk:Nu are set as 8:0 and
0:8 respectively, i.e., all known and all unknown. For g2∼g4,
Nk:Nu = 4:4 and the attack types in each group are randomly
selected.

The experimental results of five groups are shown in
Table VI. We find that FOSS always achieves better detection
results (ACC > 92% and AMI > 91%) than others. And
K-means performs similar performance in different groups
due to minor dependencies on the training process. Likewise,
DBSCAN requires no training and its detection results are
the same in five groups, i.e., ACC = 63.01% and AMI =
62.78%. For SENC, Cls-Anomaly, and FARE, Cls-Anomaly
stands out in g1 and FARE is more prominent in other settings.
We continue to discuss these models and FOSS in different
Nk:Nu.

Different Known/Unknown Proportion. In this section,
we evaluate the capability of FOSS by varying Nk:Nu. Nk

is set from 8 to 0, and Nu is from 0 to 8. Figure 10 reveals
how model ACC and AMI change in four models (each
group conducts 10 experiments with randomly selected attack
types). The overall detection performance is FOSS > FARE
> Cls-Anomaly > SENC. The completely random feature
selection makes SENC unable to handle known classes well,
and the assumption of identifying one unknown class at a
time causes a significant accuracy drop when Nu increases.
For Cls-Anomaly, it can obtain a good effect when all are
known attacks, but the accuracy drops rapidly with larger Nu.
Except for the group of Nu = 0, FARE is more prominent
than Cls-Anomaly and SENC. Overall, FOSS fulfills the
remarkable detection effect regardless of the known/unknown
class proportion. Even if all attacks are unknown, FOSS can
present more than 86% ACC and AMI . Meanwhile, the
standard deviation of FOSS is relatively small (∼1%) which
means FOSS could not be susceptible to randomness.

C. Multi-Stage Dynamic Evaluation (RQ2)
In this section, we design a case that mimics the net-

work traffic dynamics of real-world scenarios with 7 stages
according to the IDS2017 dataset timeline (as shown in

Fig. 10. Evaluation in different known/unknown proportion.

Fig. 11. Dynamic evaluation case refers to the IDS2017 dataset timeline.

Figure 11). Specifically, in Stage 1 (corresponding to Monday
in IDS2017), it only provides legitimate traffic from IDS2017
to train FOSS. In stages 2, 3, 5, and 6 (corresponding to Tues-
day, Wednesday, Thursday, and Friday in IDS2017), it emerges
2, 1, 3, and 2 different types of attacks respectively (refers to
IDS2017 timeline), and the model will automatically update
in these stages. Stages 4 and 7 represent increasing legitimate
traffic from VPN2016 and reductions, thereby triggering the
model growth and retirement mechanisms, respectively. Such a
multi-stage process simulates emerging new unknown attacks
(i.e., no prior knowledge in the previous training set) and
ever-changing legitimate traffic in the real world. Figure 11
displays the model performance in this dynamic process,
and the detection effect of FOSS could generally achieve
more than 92%. The overall accuracy may drop slightly
with the class number increases. In stages 2-6, we find the
effects will improve after updating the unknown classes than
when outlier detection. It can be attributed to the known
classification could be not so difficult as unknown detection.
From stage 7, we observe that the retiring mechanism could
facilitate improving the ACC and AMI due to removing the
outdated nodes. By recording the runtime, FOSS spends 296s
for training in stage 1; 27s, 17s, 75s, 43s, and 46s for growing
in stages 2-6, respectively; as well as 25s for retiring in stage 7.
It indicates that incremental model updates are better than
model retraining in terms of time overhead.

D. Deep Insights to Interpretability (RQ3)
Feature Selection in Model Building. We design the

Monte Carlo method for FOSS in § IV-A, and this section
will provide the experimental observation of feature selection
when model building. During FOSS training, we examine
the tree node splitting processes and record the candidate
feature dimension with its calculated Hq from the correspond-
ing subset. Figure 12 shows two node-split instances with
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Fig. 12. The feature selection process in the model building of FOSS. The
data in the two nodes are different.

nsam = 5, we see a data group that exhibits separability tends
to hold a smaller entropy value Hq . In Figure 12(a) and (b),
Hq = 1.86 in dim = 9 and Hq = 3.64 in dim = 12 get
the minimum entropy value respectively. And they tend to
be distributed at both ends with clear separability. Note the
data of the two nodes are different and cannot enforce a
horizontal comparison. It demonstrates experimentally the
effectiveness of our design that uses the weighted entropy to
guide dimension selection with the Monte Carlo method.

Case Study: SSH Patator. We continue in-depth compre-
hending the attack recognition in FOSS, based on the case of
the SSH Patator. To understand how FOSS identifies specific
attacks based on features, we traverse all the decision paths
from the trained model to record the splitting features used for
each class (may correspond to multiple leaves). It will generate
106-dimensional buckets for each attack, and each bucket
counts the times of this dimension used for node splitting.
In general, the feature used at high frequency is more helpful
to classify a specific attack than the one used at low frequency.
After normalization for per-class buckets, the corresponding
results of the SSH Patator attack are shown in Figure 13(a),
it exhibits the top-10 and bottom-10 feature dimensions.
Among them, a large fraction of the top-10 is about time delta
such as dim87, dim16, dim51, dim86, dim19, and dim18.9 We
examine the original packets of the attack traffic and find that
universally exists a ∼2s time interval before disconnecting.
After this gap, the victim will send an encrypted SSH packet
to the attacker, followed by server-induced TCP waves, and
finally disconnecting. We think this phenomenon is incurred
from the attack implementation of SSH Patator. To maximize
each-flow effect as possible, the crack tool does not intend to
actively disconnect whether the attack is successful or the test
sample library is used up, yet waiting for the server to send a
termination request. Therefore, this particular representation is
embodied in the relevant dimension, e.g., dim16 : delta_max,
dim19 : delta_std. On the contrary, the bottom-10 mainly
contains dimensions that are not very relevant to this attack:
such as dim10 : flag_mf is about IP fragment, dim46 :
offset_for is about IP offset, dim66 : factor_std_for is
about window size scaling factor.

Figure 13(b) and (c) display the 2D distribution after
dimensionality reduction with t-SNE [32] based on the top-
10 features and bottom-10 features respectively. It is clear
that subfigure (b) which uses the last 10 dimensions cannot
portray SSH Patator well given the blue dots are highly
coincident with other attacks. While in subfigure (c), the SSH
Patator presents better separability compared to the instances
of other types. Particularly, dimensionality reduction may not
be intuitive enough since each node split in FOSS refers to

9The details of the feature vector refer to https://github.com/Secbrain/
FOSS/tree/main/features.

Fig. 13. Feature analysis and visualization for SSH Patator.

only one dimension. So we plot the sample scatterplot for
each dimension of the top-10 feature,10 it shows that SSH
Patator can indeed be distinguished from the vast majority of
other-categories samples on these key features.

E. Robustness and Adversarial Attack (RQ4)
We evaluate here the robustness of FOSS against adversar-

ial attacks in terms of train-time data pollution and test-time
evasion attacks.

Train-Time Data Pollution. Data pollution (poisoning
attack) refers to some potential attackers deliberately mixing
malicious traffic into the routine operations, allowing FOSS
to learn impure legitimate traffic. We develop this scenario by
randomly selecting some attack samples and mixing them into
the benign training set. Among them, we set the proportion
of polluted benign data Pd ∈ {5%, 10%, 20%} for model
with Nk:Nu = {8:0, 4:4, 0:8}, and perform 10 experiments
per setting group. From Figure 14, we observe that FOSS
inevitably exhibits performance loss for ACC and AMI .
The overall trend is basically similar and the unknown class
number Nu has a greater impact than the pollution ratio
Pd. For instance, the AMI loss from ∼1% to ∼3% for
<Nk:Nu>_Pd = <8:0>_5 and <Nk:Nu>_Pd = <8:0>_20,
while AMI reduces from ∼1% to ∼11% for <Nk:Nu>_Pd =
<8:0>_5 and <Nk:Nu>_Pd = <0:8>_5. This can be attributed
to the training sampling ψ in our design § IV-A, which can
alleviate the impacts of poisoned samples to a certain extent.
However, this mitigation is gradually weakened when there
are fewer known classes, since the remaining contaminated
samples may also guide a wrong learning direction for the
unknown class detection. At the worst, the data pollution
causes ∼14% performance loss when possesses zero known
class in <Nk:Nu>_Pd = <0:8>_20. We admit that data poi-
soning is indeed a tricky problem, yet we would like to argue
this issue could be alleviated when the polluted instances are
disclosed. Given the retiring mechanism for the model update
mentioned in § IV-C, we could artificially or automatically
trigger instance forgetting and node deletion to rectify the
wrong branches.

Test-Time Evasion Attack. Another adversarial attack we
consider is test-time crafting traffic samples to evade detection.
Due to the complexity of network interactions, attackers can-
not arbitrarily change traffic content like other tasks such as

10https://github.com/Secbrain/FOSS/tree/main/evaluation
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Fig. 14. Data pollution evaluation. Setting: <Nk:Nu>_Pd.

TABLE VII
EVASION ATTACK RESULTS. Re /Ri : EVASION/INSERTION RATIOS

image classification. For example, the attackers need to guar-
antee the tampered sample could pass the flow check (i.e., IP
Checksum) and can preserve the original malicious functions.
The most recent research [33] presents that using Selective
Symbolic Execution (S2E) to analyze the TCP implementation
of OS kernel enables producing insertion and evasion packets
to elude inspection. Therefore, we construct the insertion and
evasion packets with various ratios in the test-input instances
and examine the detection effect.

The results are shown in Table VII, we conduct 9 groups of
experiments with the diverse ratios of insertion and evasion,
i.e., Ri, Re ∈ {5%, 10%, 20%}. The observation is a little
different from the above results, and the loss of detection
effect presents similarly in different Nk:Nu settings. When
only exist one type of attack, the impact of evasion is greater
than insertion, e.g., the AMI reduces to 90.42% and 92.17%
when Re = 20% and Ri = 20% for model with Nk:Nu =
8:0. The worst results occur when both Re = 20% and Ri =
20%, cause less than 7% performance drop for ACC and
AMI . Particularly, the influences of both evasion and insertion
together are less than the sum of two individual impacts.
We suspect the impacts from the two types of attacks have
a few counteracting effects.

VI. REAL-WORLD TEST: DDOS DETECTION

To further explore the detection effect of FOSS in the real
world, we deploy FOSS on the datacenter of the local Internet
Service Provider (ISP) to analyze mirrored egress traffic.11

Particularly, the ISP purchases intrusion detection services
from 17 different security vendors. The final label for each
traffic session will be voted on based on the detection results

11All traffic data is anonymized before mirroring, and sensitive payloads
that may involve privacy are zero-replaced.

Fig. 15. The main timeline—major attack (red), FOSS (blue), and events
(black) in this real-world DDoS detection.

of these vendors.12 This egress traffic involves >200k active
hosts and we monitored it across 2020 and 2021. Figure 15
displays the main timeline of a series of activities. In the
beginning, we deploy FOSS and conduct the legitimate traffic
adaptation for about two months. Among them, we create
one FOSS instance by training with traffic from each week,
eight models in total. This is beneficial to capture diverse
benign samples and reduce random errors. While FOSS
shows a good detection effect on the public dataset, we still
want to stay conservative in this real-world testing to avoid
massive false positives. Therefore, we identify the example as
an unknown attack when all eight models report anomalies,
instead of results voting. Meanwhile, the ISP purchases the
filtering service of the security manufacturers, and we refer to
these results for analysis. Our report mainly revolves around
two representative attacks (red mark in Figure 15) from a
similar source, launched in 12/2020 and 10/2021 respectively.
Noteworthy, the retiring mechanism is triggered in 05/2020.
We examine the corresponding traffic and find it is due to the
new TLS protocol replacing the outdated SSL3.0 version from
the previous business.

Detection Results and Observations. For the first attack,
we plot the number (after log10-transformed) of detected
attacks from the filter and FOSS in Figure 16. In this attack
event, the filter found 27 types of attack and FOSS detected
49 categories. After manual analysis, we find 25 types of
attacks are coincident (blue mark) between the filter and
FOSS, the top-5 are “SYN Flood”, “UDP Flood”, “ACK
Flood”, “NTP Reflection”, “SSDP Reflection”. The yellow
mark refers to different labels in the filter and FOSS, i.e.,
it is reported as “HTTP Post Flood” and “HTTP Get Flood”
in the filter while FOSS regards them as one attack. This
is because our feature extraction does not involve the detailed
fields of the application layer protocol (e.g., HTTP), and could
not distinguish them. The discovered attacks only in FOSS
include 21 TCP-based (green mark) and 2 SSL/TLS-based
(red mark). These TCP-based attacks are mainly flooding
by combining various flags, some typical representatives are
“ACK-PSH”, “URG-ACK”, “SYN-FIN”, “ACK-RET-FIN”,
“URG-SYN” and so on. The samples of these types are not
very large compared to the previous attack types but do cause
certain bandwidth consumption. The other is the SSL/TLS-
based attack, the detected two attacks are very similar to “SSL
Renegotiation” and “THC-SSL Attack” by artificial compar-
ison. They continue to establish handshakes and negotiate
keys to achieve the effect of DDoS, with different SSL/TLS
versions (e.g., SSL3.0 and TLS1.2). We examine and find that
the reason why FOSS can distinguish these two types is not
based on the SSL/TLS versions (lacking corresponding feature
fields), but the characteristics of the two attacks are different,

12Such a labeling strategy is a common approach in the real world. For
example, previous research [34] on malware detection usually labels the
instance based on the reporting results/engines of VirusTotal [35].
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Fig. 16. The detection results in traffic filters and FOSS.

Fig. 17. The quantitative analysis of Figure 16.

especially in the number of packets and byte length. Moreover,
thanks to the retiring mechanism of FOSS in 05/2020 remove
the nodes corresponding to the outdated benign samples of
SSL/TLS, thereby FOSS could detect these SSL/TLS-based
attacks. Some quantitative analyses of this attack event are
shown in Figure 17, the traffic filters match 2,932,426 DDoS
flows, and FOSS reports 2,956,238 attack flows. Among
them, 2,905,689 flows from FOSS’s alarm results are verified
to be correct by the filter report, this means that FOSS at least
missed 26,737 attack flows (attributed to we mark malicious
when all 8 models report anomalies). In addition to those
verified by the filter results, the remaining 50,549 flows are
analyzed manually. The results show that 50,456 sessions are
attacks and only 93 are false positives. This indicates that the
scheme of multiple model validation indeed achieves low false
alarms, with false positives accounting for only 0.003146%
(i.e., 93÷2,956,238) of all alarms. Overall, FOSS realizes pre-
dominant outcomes in fine-grained unknown attack detection,
which can be beneficial to strengthen filtering services and
coping strategies in practice.

Attack Source Analysis. Based on the detection results of
FOSS, the manufacturer has updated the filter configuration
to improve the traffic scrubbing abilities. In the second attack,
it emerges 19 consistent types (blue), 15 TCP-based types
(green, only from FOSS), 2 SSL/TLS types (red), and 2 HTTP
types (yellow, refers to different labels). The high consistency
of attack types implies the detection results in the first attack
event are mostly correct since they could exploit similar attack
methods given the similar attack source. Then, we plot the
local network topology diagram for the second event in the
online repository,13 the “red node” denotes the victims and
the “black node” represents the attackers. We can see that
the victim whose IP is “X.X.21.X” has been attacked in
a concentrated manner, and the attackers are well-targeted.
While some other servers (e.g., “X.X.76.X”, “X.X.69.X”,
“X.X.241.X”) were attacked indiscriminately and the topolog-
ical relationships are relatively scattered. Under-identification
of DDoS attack traffic may cause bandwidth congestion and
missing some damaged nodes, and the detection results of
FOSS provide significant help to a certain extent. In addition,
profiling the used attack techniques and the compromised
source address could benefit in characterizing the portrait of

13https://github.com/Secbrain/FOSS/blob/main/evaluation/realworld/
tuopu.png

Fig. 18. The detection results (action intent and FP) for the APT scenario.

attacking organizations. We have started to utilize FOSS to
support and enhance the corresponding research about attack
organization portrays.

VII. DISCUSSION

Feature Extraction. In the real-world test, we observe that
FOSS could not distinguish different HTTP Flood attacks
due to lacking the feature about fields of application layer
protocols. A very recent art nPrint [38] proposes a unified
expression for the common protocols and automated extraction
selection methods. FOSS could leverage it to improve the
feature extraction to capture more protocol details and build a
more comprehensive feature vector.

Attack Category Recovery. When identifying fine-grained
labels for unknown classes, it could occur to overestimate
or underestimate the attack categories. We attribute it to
two main reasons: (i) The extracted protocol features have
different granularities. For example, some customers may need
to distinguish between different HTTP flooding and some may
not. Therefore, building a customized classification scheme in
the output layer according to different needs may be beneficial
to promoting FOSS to widespread use. (ii) The isolation
clustering can be affected by the parameters more or less,
some solutions might be effective, e.g., sampling techniques
for extremely unbalanced data. We will investigate these to
advance the practicality of FOSS.

Scenario Extension. In addition to DDoS and intrusion
detections, FOSS can be extended to more application scenar-
ios. Considering the advanced persistent threat (APT) dataset
usually includes unknown attacks, we conduct extended exper-
iments based on the Collegiate Cyber Defense Competition
(CCDC) dataset [39] (which involves multiple attack activ-
ities in the kill chain, the ground-truth labels reference the
results of rule alarms/logs [39], [40]). Among them, the
benign traffic of ten randomly selected PCAPs is used to
build 10 FOSS instances, and then another ten randomly
selected PCAPs are tested. The identification strategy is con-
sistent with § VI, i.e., identify attack when all ten models
report anomalies. The results are summarized in Figure 18.
We find that FOSS realizes different detection ratios for
various action intents. Particularly, FOSS detects 68.3% for
“Targeted Exploits” given current feature extraction lacks
application-level semantics (e.g., HTTP fields). While FOSS
identifies 95.1% “Disrupt” since it mainly involves network
DoS. Meanwhile, FOSS still maintains low false positives
(only ∼0.005%) via multiple-model verifications. Overall, it is
promising to use FOSS in more security scenarios.

Combination with Existing Works. There are some related
studies proposed by the community that can be combined with
FOSS. For example, Du et al. [17] propose the unlearning
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framework to explore lifelong anomaly detection problems.
This is similar to the retiring mechanism of FOSS, both
of which can effectively correct the model when false posi-
tives/negatives are revealed. Meanwhile, Unlearn [17] presents
a selection method for important sample sets to maintain low
storage overhead, which can be used into FOSS (e.g., when
legitimate traffic changes). Moreover, a series of research
directions focus on the problem of concept drift [41], [42],
[43], e.g., spatial and temporal biases [44].

As a representative work, OWAD [45] explores the nor-
mality shift detection, explanation, and adaption for anomaly
detection. We discuss some combining strategies for OWAD
with FOSS. (i) OWAD determines drifts through output
calibration and distribution comparison, which can also benefit
FOSS to detect distribution shifts. (ii) OWAD’s explanation
focuses on the normality shift (tracking the most influential
samples), our interpretability considers feature-level contribu-
tion for prediction results (§ V-D), and they can complement
each other. (iii) For the model update, OWAD and FOSS
follow different methods. OWAD adjusts the loss function to
implement shift adaptation, while FOSS is essentially the
tree-based architecture, which is pronely available to grow
and retire/prune. Overall, FOSS is not against the current
evolution trend (can be combined with existing works), and
provides some novel perspectives for the anomaly detection
landscape.

Limitations and Future Works. Our work has a few
limitations. First, although FOSS devises the Monte Carlo
method to search for feature selection, it will still suffer from
a large number of invalid dimensions. Some pre-processing
for dimensionality reduction and data cleaning should be con-
sidered in the improvement plans. Second, different customers
may require various detection granularity, the future work may
consider a customized scheme, e.g., change the output layer
of FOSS. Third, applying the automated feature extraction
and model parameters tuning into FOSS will lead in a good
direction. Fourth, to provide customers with more reliable
protection, the powerful adversary using a combination of
multiple attacks needs to be further studied. Finally, as part of
future work, we would explore which components could run
in parallel to maximize efficiency.

VIII. RELATED WORK

Besides SOTA baselines in § V-A, we list briefly some
related work.

NIDS with Known Attacks Classification. To classify
known attacks, some works [3], [4], [5], [6] design NIDSs
based on statistical features by supervised learning methods,
e.g., random forests, deep neural networks [22]. Some other
arts utilize Markov [46] or recurrent neural networks [20] to
portray the sequential features (e.g., packet length sequence)
for attacks. While these methods are less suitable for detecting
unknown attacks.

NIDS with Unknown Attacks Detection. These methods
mainly involve three types of technologies: unsupervised,
semi-supervised and zero-shot learning. (i) Unsupervised
learning methods such as clustering algorithms (e.g., K-means
[19] and DBSCAN [25]) have been applied to identify
outliers in network traffic. They are also known as “zero-
positive” learning [17], [18] due to solely using benign

samples for training. (ii) Semi-supervised learning methods
such as Cls-Anomaly [9], FARE [10], and SENC [28] are
usually composed of unsupervised and supervised learning.
(iii) Zero-shot learning methods such as ZSL and GZSL have
been used to classify unknown classes in NIDS [47]. With
the non-incremental learnability, and the need for rich “side
information” to construct the feature mapping, ZSL/GZSL
methods are not suitable for our problem. Overall, their focus
is different from ours, FOSS devotes to fine-grained detection
and ever-changing legitimate traffic adaption.

Sample/Distribution Drift in Anomaly Detection. Fur-
thermore, concept drift is also an important research problem
in this landscape [41], [42]. TESSERACT [44] reveals the
“spatial bias” and “temporal bias” in malware classifica-
tion. Meanwhile, TESSERACT introduces a new metric for
classifier robustness and presents an algorithm to tune its per-
formance. A recent work, QWAD [45], studies the normality
shift detection, explanation, and adaptation for anomaly detec-
tion. We discuss some combination strategies with existing
works in § VII.

Some Recent Advances for NIDS. Security communities
propose a series of advanced research directions for intrusion
detection including solutions based on DPDK [23] or pro-
grammable switches [14], [49], [50] to adapt to high-speed
bandwidth. Among them, deploying the tree-based model is
a common solution whether it is a software platform [23]
or a hardware primitive [50], so FOSS is promising to
advance the in-network traffic anomaly detection in high-
speed bandwidth. Leveraging formal verification to analyze
the security of NIDS [33]. And some research devoted the
automated characterization [38] and the interpretability for
NIDS [18]. It is potential to combine these related studies
with FOSS to explore aspects of robustness, feature selection
scalability, and model interpretability.

IX. CONCLUSION

This paper presents FOSS, a fine-grained NIDS towards
identifying both known/unknown attack types, as well as
supporting adapting to variable legitimate traffic in an incre-
mental manner. Based on our proposed three key norms,
we implement FOSS and extensively evaluate it on the
public dataset and real-world test. Moreover, we produce
a series of experiments for FOSS in terms of robustness,
adversarial attacks, interpretability and feature perception, etc.
We demonstrate the effects of FOSS outperforming existing
SOTA methods and its availability in practice.
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