
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2024

Low/no-code and traditional code integration in digital banking Low/no-code and traditional code integration in digital banking

Kim Siang YEO
Singapore Management University, ks.yeo.2021@mitb.smu.edu.sg

Alan @ Ali MADJELISI MEGARGEL
Singapore Management University, ALANMEGARGEL@SMU.EDU.SG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Finance and Financial

Management Commons

Citation Citation
YEO, Kim Siang and MEGARGEL, Alan @ Ali MADJELISI. Low/no-code and traditional code integration in
digital banking. (2024). Journal of Digital Banking. 9, (2), 172-188.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9361

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9361&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published in Journal of Digital Banking Vol. 9, 2 172–188 (2024) DOI: 10.69554/XLSZ2195

Low/no-code and traditional code
integration in digital banking
Received (in revised form): 12th February, 2024

Yeo Kim Siang
Postgraduate Student, School of Computing and Information Systems, Singapore Management

University, Singapore

Yeo Kim Siang is a postgraduate student, Master of IT in Business, at Singapore Management University.
Relatively new to the working world, Kim Siang has three years of experience in software development,
data engineering and data analytics, specifically in the banking and FinTech industries. Currently, he is
balancing management roles as a project manager and technical roles as a data analyst and engineer,
managing his company’s latest migration efforts from its legacy systems into a new PySpark-supported
system.

School of Computing and Information Systems, Singapore Management University, 80 Stamford Road, Singapore

178902

Mob: +65 97280011; E-mail: ks.yeo.2021@mitb.smu.edu.sg

Alan Megargel
Associate Professor of Information Systems (Practice), School of Computing and Information Systems,

Singapore Management University, Singapore

Alan Megargel, PhD, is Associate Professor of Information Systems (Practice) at Singapore Management
University, where he serves as Coordinator for the undergraduate Financial Technology Career Track. His
current areas of specialisation include enterprise architecture in banking, service-oriented architecture
(SOA), payments technology and nonbank FinTech alternative financial services. Alan has 30 years of
industry experience, having served as Chief Technology Officer at TIBCO Software Asia, Vice President
and Head of SOA at OCBC Bank and Senior Enterprise Architect at ANZ Bank. His banking technology
experience covers retail and corporate banking, Basel II, data warehouse, data centre operations and
technology infrastructure. Alan holds a Doctor of Innovation from Singapore Management University and
a Master of Science in Software, Systems and Information Engineering from the University of Sheffield.

School of Computing and Information Systems, Singapore Management University, 80 Stamford Road,

Singapore 178902

Tel: +65 6808 5276; Mob: +65 9669 0924; E-mail: alanmegargel@smu.edu.sg

Abstract  This paper seeks to combine the merits of low/no-code programming (LNCP)
with traditional programming (TP) systems for increased agility in digital banking software
development. While it is easy to fall prey to shiny object syndrome in today’s dynamic
banking technology landscape, it is not easy to select the right technology to suit the
current and future needs of the financial industry. Instead, LNCP makes it possible to
lower the technical entry barriers to technology development. Integrating TP with LNCP,
when needed, compensates for the shortcomings related to LNCP and provides digital
banks with a more comprehensive software development approach. The adoption of this
approach improves time-to-market of new innovative financial solutions. There has been
little progress in this direction, academically or in practice. This paper includes an empirical
study, interviews with banking professionals, on the merits of LNCP and TP, as well as an
experimental project implementation that integrates LNCP and TP in the development of a
retail Internet banking application. In the context of digital banking solution development,
the result of the experiment reveals the merits of LNCP/TP hybrid systems in terms of
agility, scalability, change management and cost-effectiveness.

Low/no-code and traditional code integration in digital banking

INTRODUCTION
Banks have played a historically, and at times
contentiously, critical role in the smooth
running of local and global economies.
A powerful institution, however, remains
relatively powerless in the face of the very
entity that empowered it — technology.
Technology, when propelled by the deep
pockets in the financial industry, progresses
rapidly. The same technology that banks use
to smoothen their processes and leave their
competitors behind is holding them back
and empowering their smaller and more
agile start-up counterparts today.

Change, however, is good. Banks form the
pillars that support local and global systems
for reasons that far surpass their technology
or surface functions. They do so because they
inspire trust everywhere and anywhere. The
connection with government, society and
commercial institutions makes banks a keystone
of our world today. Banking technology
has long taken a trial-and-error approach,
conducted by an array of large institutions to
establish, something that the everyday start-up
cannot guarantee it can replicate or achieve
quickly enough to replace banks.

This paper posits that a new paradigm of
software development that combines the best
of low/no-code programming (LNCP) and
traditional programming (TP), as a means to
revamp banking technology, will help banks to
improve their time-to-market deployment of
new innovative digital banking solutions. First,
we review the relevant academic literature
before introducing some essential concepts and
techniques. Secondly, we analyse the results of
an empirical study involving interviewees from
the banking industry. Finally, we report on the
results of an experimental project to develop
an LNCP/TP hybrid system, a retail Internet
banking application.

KEYWORDS:  low/no-code programming, LNCP, software development, agility, digital
banking, Internet banking

DOI: 10.69554/XLSZ2195

RELATED WORK
Much of the previous work covers LNCP as
a stand-alone system in the following ways.
Some papers describe specific LNCP and their
respective tools. In this context, researchers
discuss the LNCP Aurea BPM,1 RESTsec,2
Sagitec Software Studio3 and Smart Maker
Authoring,4 as well as the low-code
development tools Xatkit5 and vf-OS.6 Other
papers discuss programming languages for
LNCP, testing processes and usability problems.
Khorram et al. carried out an analysis of the
testing components of five LNCPs, and, based
on their analysis, they propose a feature list
with possible values for low-code testing.7
Ragusa and Henriques present the web-
based tool, VPLreviewer, which enables the
code review of visual programming languages
(VPL), as well as focusing on the domain-
specific language used in OutSystems to
develop web and mobile applications.8

Application-based LNCP research
papers, while fewer, remain quite
comprehensive, especially for the
banking sector. The application areas vary
between manufacturing,9,10 security11
and (web)-application development.12-14
Furthermore, Heffner and Mettrick
summarise the capabilities and benefits of a
potential LNCP for financial institutions.15
For the banking sector and its customers,
where security, compliance and quick
adaptation to the respective needs are of
great importance, an LNCP would fully
cover the requirements.16 Moreover, Sahay
et al. conducted a technical study on eight
LNCPs to enable potential customers to find
the most suitable platform for their specific
requirements.17 Researchers state that handing
over processes to business departments
with the help of LNCP can reduce costs
and implementation time and thus better

Siang and Megargel

meet the respective needs.18,19 An efficiency
analysis shows that companies that use LNCP
have greater freedom to adapt their activities
to constantly changing market conditions.20
Nevertheless, important future challenges
of LNCP can be inoperability, extensibility,
steep learning curves and scalability21 but
also the integration of machine learning
(ML) and Internet of things (IoT),22 and
artificial intelligence (AI).23

Previous studies have been more
hypothetical and experimental, where much
of the practical uses of LNCP applications
have been explored without external research
and publication in mind, and the banking
context is missing. While discussing the
potential good that LNCP can bring to
banking is beneficial, it is difficult to propose
LNCP to management without any concrete
results. This paper strives to do just that by
reiterating the benefits of LNCP in banking
while empirically replicating a representative
banking system to demonstrate those benefits.

ESSENTIAL CONCEPTS AND
TECHNIQUES
Banking and economy
Cross-country empirical evidence over the
last few decades suggests that the development
of the financial system, principally banks,
stimulates economic growth, and this is known
as the finance-growth nexus.24-26 They act as
safe havens for depositors and are significant
sources of credit for households, small- and
medium-sized firms, corporations and
governments. Moreover, banks create liquidity
for the non-bank public by transforming
relatively illiquid assets such as loans to
informationally opaque businesses into
relatively liquid liabilities such as transaction
deposits that allow almost instantaneous
access to funds. Banks also create significant
liquidity by issuing off-balance-sheet
guarantees like loan commitments that allow
customers to draw funds under predetermined
conditions.27,28 Banks also manage credit,
solvency, interest rate, foreign exchange rate,

liquidity and other risks via diversification,
derivatives and other on- and off-balance sheet
activities. Without banks and other financial
services providers, entrepreneurs could only
start new businesses that drive innovation and
economic growth if they were born rich or
accumulated capital over time.

Banking and technology
The first core banking system appeared in
the 1970s.29 The legacy core banking systems
have a monolithic architecture, comprising
tightly coupled components relying on shared
resources such as a single code base, databases
and servers. While these systems provide a
robust and secure architecture for systems
transactions, they hurt modularity, scalability
and flexibility.30 To meet the increasing and
changing needs of the market, monolithic
core banking systems have been modified
excessively and deviated from the intended
architecture over time.

Two popular paradigms taking over
monolithic systems are SOA and, most recently,
microservice architecture.31 While both
paradigms are rooted in the principle of
modularity, various approaches have been
proposed in the literature for changing the
legacy.32,33 Reviewing these approaches,
however, indicates a certain degree of confusion
regarding conceptual overlap and change
outcomes. In particular, insufficient
consideration has been given to highlighting
organisational-level and strategic change-
related aspects of legacy systems modernisation.
For instance, with a few exceptions,34 previous
studies have overlooked modernisation of
nontechnical barriers to legacy systems,
primarily related to the banking industry.

Banking and FinTech
The Financial Stability Board (FSB)
defines financial technology (FinTech) as
‘technologically enabled financial innovation
that could result in new business models,
applications, processes, or products with an

Low/no-code and traditional code integration in digital banking

artefacts, such as the machine code of
computer programs.

INTERVIEWS WITH INDUSTRY
PROFESSIONALS
There is no lack of theoretical research
on LNCP and TP in the literature. It is
difficult, however, to find material on how
it can be applied to the financial industry by
professionals in the finance industry. While
an extensive empirical survey is beyond the
scope of this paper, a preliminary study has
been provided that involves interviews with
banking industry professionals. Banking
infrastructure is usually implemented by either
an in-house team or an external vendor. To
establish a comprehensive understanding
of the full suite of software used, software
developers employed by banks and employees
of popular vendor solution providers were
interviewed. Current or previous banking
professionals with experience in other facets
of the finance industry were also included on
the expectation that the broader professional
experience would provide insights that
banking-only professionals might not have.
Thus, three types of interviewees were
selected, namely vendors, banking-only
professionals and finance professionals. Table 1
lists the interview subjects.

The interview results are summarised in
Tables 2 and 3, grouped by advantages and
challenges of LNCP.

Despite the challenges, LNCP remains
a compelling option for banks. The need
for agility, cost-effectiveness and the
involvement of nontechnical stakeholders
in the development process is increasing.
Banks, however, need to approach LNCP
adoption strategically. LNCP can coexist
with TP approaches, allowing banks to
leverage the strengths of both methods. This
hybrid approach allows banks to harness the
advantages of LNCP while addressing their
specific limitations, ensuring a balanced and
pragmatic approach to technology adoption
in the banking sector.

associated material effect on financial markets
and institutions, and the provision of financial
services’.35 FinTech providers are developing
new services and products in the financial
services sector to aggregate the functions of
banks to their customers. If they succeed,
this will surely change the existing business
landscape of financial services. Traditional
banking institutions can do the same with
their significant capital resources. In contrast,
FinTech providers cannot replicate the
advantages of large banking institutions in
terms of trust and reputation, regulatory
compliance and range of services.36

Low/No-code programming
In 2014, Forrester Research introduced the
term low/no-code programming (LNCP),
which is described as software development
with minimal source code using interactive
graphical interfaces to simplify complexity.37
LNCPs, which are often ‘products and
cloud services’,38 follow a product-as-a-
service (PaaS) model.39 They encourage
visual development through declarative
techniques for defining an application’s user
interface, business logic and data model.40
LNCP significantly changes the way
applications are developed. It shifts from
a traditional IT-driven process involving
manual coding to a more business-focused
approach that uses visual drag-and-drop
functions.41 This makes it possible for
even nonprofessional developers to create
applications with minimal training time.

Traditional programming
TP involves tasks such as analysis, generating
algorithms, profiling algorithms’ accuracy and
resource consumption and implementing
algorithms (usually in a particular
programming language, commonly called
coding). Tasks accompanying and related to
programming include testing, debugging,
source code maintenance, implementation
of build systems and management of derived

Siang and Megargel

Table 1:  Interview subjects.

Category Occupation Description

Vendor Consultant Both individuals work closely with banking clients and actively imple-
ment IT projects for them. While they might not give an overarching
view of the types of systems a bank uses, they can give us a glimpse
into the types of projects a bank outsources, for what sort of software
and why.

Presales data
scientist

Banking-only
professionals

Data analyst All individuals directly interface with the bank’s IT infrastructure. Using
their interviews, we can extrapolate the types of systems and languag-
es used in most banks.

Software developer
(frontend)

Full stack developer

Finance
professionals

Information security
analyst

The people interviewed have served extensively in the banking indus-
try. They can provide a new perspective that relates to banking. Their
experience can also be used to extrapolate the types of systems and
languages used most in a bank.

Cloud DevOps
engineer

Cloud and DevOps
lead

Risk infrastructure

Software engineer

AI/ML specialist While not an obvious pick for a study related to banking, this individ-
ual’s experience working closely with the company’s finance depart-
ment implementing AI solutions gives us a sneak peek into how tech-
nology in a bustling start-up is structured. This can inform us of gaps
in a bank’s technology infrastructure and provide ways to improve the
newly suggested paradigm.

Table 2:  LNCP advantages.

LNCP advantage Description

Efficiency and
speed

LNCPs enable rapid application development, allowing banks to respond quickly to
changing market demands and regulatory requirements. This agility can be a competitive
advantage in the fast-paced banking industry.

Customisation
and control

LNCPs offer a balance between customisation and control. Banks can tailor solutions to
their needs while maintaining governance and compliance standards.

User-friendly
interface

The user-friendly nature of LNCPs empowers nontechnical professionals within the bank
to actively participate in software development. Bridging the gap between business and
technology teams can improve collaboration and understanding.

Integration
capabilities

LNCPs often come with pre-built connectors and application programming interface (API)
s, simplifying the integration of banking systems with other applications and services, and
enhancing interoperability.

Overcoming resis-
tance to change

LNCPs can help banks overcome resistance to technological change by involving a
broader spectrum of employees in the development process, including those who may
not have traditional coding skills.

Table 3:  LNCP challenges.

LNCP challenge Description

Compliance
and security

Banking operations are highly regulated, and LNCPs must meet stringent compliance and security
requirements. Banks need to assess whether LNCPs can adhere to these standards carefully.

Complexity and
scalability

While LNCPs excel in rapid development, they may face challenges in handling complex,
large-scale banking systems. Banks with intricate operations may find LNCPs unsuitable for
specific mission-critical applications.

Vendor lock-in Banks should be cautious of potential vendor lock-in when adopting LNCPs. The choice of
an LNCP provider should consider long-term strategies and the ability to migrate to other
systems if necessary.

Low/no-code and traditional code integration in digital banking

LOW/NO-CODE PROGRAMMING
VERSUS TP
Comparison
LNCP represents a paradigm shift in software
development, offering a user-friendly and
visually intuitive approach to creating
applications.42 In contrast to traditional
software development, which relies heavily
on manual coding, LNCP empowers
citizen developers to build applications
using drag-and-drop modellers and pre-
built components. While both LNCP and
traditional development have their merits,
understanding the important differences in
various aspects is crucial for organisations
and developers when choosing the right
approach for their needs. These differences
are closely examined in what follows
to get a clearer view of how LNCP
compares with TP across a range of crucial
criteria.

Development approach
LNCP relies on a visual and user-friendly
approach, allowing citizen developers to
create applications using drag-and-drop
modellers and intuitive tools. In contrast,
it relies on manual coding, utilising web
frameworks and programming languages,
often requiring advanced coding skills.
This fundamental difference in approach
makes LNCP accessible to a broader range
of users.

Speed of development
LNCP excels in rapid application
development, enabling the creation of
functional applications in less than two months.
This agility is highly beneficial for quick
experimentation and deployment, making
LNCP a popular choice for start-ups. In
contrast, TP typically takes a minimum of
six months to one year to fully develop
an application, depending on project
complexity, which can result in a longer
time-to-market.

Customisation
While LNCP tools offer a user-friendly
environment for application creation,
they may come with limitations in
terms of customisation. Some LNCP
solutions, however, provide the flexibility
to incorporate custom user interface
components. In contrast, TP offers extensive
customisation capabilities, allowing
applications to be finely tailored to specific
requirements.

Agility
LNCP platforms offer exceptional agility,
allowing quick changes, rapid app releases,
easy feature additions and efficient error
corrections. This agility is a significant
advantage, particularly in dynamic business
environments. In TP, agility depends more
on the team’s size and processes, potentially
resulting in time-consuming modifications
and project scope adjustments.

Deployment
LNCP expedites deployment, as applications
can be created with minimal coding, and
many platforms include built-in DevOps
and hosting infrastructure. This simplifies
the deployment process and reduces the
time to make applications accessible to
users. In contrast, traditional development
requires building applications from the
ground up, which can lead to longer
deployment times, especially if DevOps and
hosting infrastructure must be assembled
separately.

Quality
LNCP platforms maintain application
quality through extensive integration,
standard performance and live-debugging
options. This ensures that applications
remain error-free and perform optimally.
Traditional development offers scalability and
outstanding performance but may require

Siang and Megargel

more time for rigorous testing and debugging
to achieve the same level of quality assurance.

Maintenance
Maintenance is simplified in LNCP, as the
platform often handles crucial tasks such as
security, maintenance and upgrades. This
reduces the burden on development teams and
ensures that applications remain up-to-date
and secure. In traditional development, a
dedicated team is typically required to manage
regular updates and maintenance tasks, which
can be resource intensive.

Template availability
LNCP offers many pre-built templates and
components, expediting the application
development process. These templates serve
as building blocks, making it easier for
users to create applications with specific
functionalities. In traditional development,
applications are built from scratch without
the availability of pre-made templates, which
can extend the development timeline.

Scalability
LNCP platforms excel in scalability,
accommodating variable workloads and
organisational growth with ease. They are
designed to handle increased user demands
and can scale applications without significant
development effort. In traditional development,
achieving scalability can be challenging without
the expertise of experienced software
developers, potentially leading to performance
issues during periods of growth.

Security
LNCP solutions often comply with ISO
2007 and SOC2, ensuring data security and
adherence to essential data protection
regulations. This built-in security is a significant
advantage. In traditional development, security
measures must be implemented by the software

development team, which can take time and
potentially compromise the software’s quality
during implementation.

Multiplatform capability
LNCP applications are versatile and
capable of running on mobile, web and
cloud platforms, providing a seamless user
experience across various devices. This
multiplatform compatibility is a valuable
feature. In traditional development, developers
often choose between native or cross-
platform development methods to ensure
their applications work on multiple
platforms, which can involve additional
development effort.

Impact of generative AI
Generative AI (Gen-AI) tools can assist
in TP by generating code fragments, or
even entire code modules, given a set of
well-defined requirements expressed as
engineered prompts. Gen-AI can reduce the
need for manual coding, allowing developers
to focus more on higher-level creativity and
problem-solving, ultimately enhancing the
software development process.

By definition, LNCP achieves some of
the same objectives as Gen-AI in this context,
in that manual coding is reduced or
eliminated altogether. Leading LNCP
such as OutSystems feature AI-enabled
‘mentors’, which act as ‘experts throughout
the software development lifecycle, guiding,
automating, and validating the work of
developers’, increasing the productivity of
developers (https://www.outsystems.com/
evaluation-guide/ai/).

Current issues with LNCP
It seems LNCP can do almost everything
TP can and, at times, more. It is largely
unknown, however, and has not been widely
adopted in any industry, including banking.
The principal reasons why some organisations

Low/no-code and traditional code integration in digital banking

do not adopt low-code development include
a lack of knowledge of LNCP (47 per cent),
apprehensions about vendor lock-in with
LNCP (37 per cent), apprehensions about
the scalability of LNCP (28 per cent) and
apprehensions about the security of LNCP
(25 per cent).43

Limited customisability/flexibility
The visualised building blocks in low-code
platforms are pre-implemented and fixed
in most cases.44 Such inflexibility makes the
applications less customisable than those
developed by traditional coding development.45
It will be difficult and time-consuming to
develop complicated or customised features
or functionalities not provided on the low-
code platforms.46 Implementing these desired
features using codes and integrating them into
low/no-code applications is an approach
that lacks consistency and efficiency.47
Low/no-code platforms usually outperform
the traditional development process in
implementing simple applications where the
predefined components address everyday
needs or processes well.48 When it comes to
projects such as highly customised applications,
data science models or data science workflows,
however, low/no-code platforms are not
customisable enough for these tasks.49

Limited scalability
Most current low/no-code platforms
are mainly used to develop small-scale
applications. In contrast, they are seldom used
for large-scale, complex or crucial business
applications owing to their limited scalability.50
According to Rymer and Richardson, the
average runtime scale of applications reported
by low-code platform providers was between
200 and 2,000 concurrent users.51

Security concerns
Since most low/no-code platform
users hardly do or cannot customise the
applications, they must completely trust that

the services do not generate vulnerabilities
that cause bugs or data leaks.52 For example,
Mobincube, a paid low-code service, tracked
users silently through Bluetooth low-energy
beacon without clearly declaring this in the
terms and conditions.53 Suppose organisations
are dependent on their low/no-code
platform vendors. In that case, their data
might be vulnerable to data breaches since
organisations do not fully control data
security and source code.54,55 Moreover, if
the platform vendors wind up, there will not
be further security updates, and organisations
cannot fix new security flaws later.56

Vendor lock-in
LNCP platforms come with a degree of
vendor lock-in as users commit to a specific
platform for application development.
The extent of this lock-in depends on
the level of integration and reliance on
the chosen LNCP. In contrast, traditional
development experiences minimal lock-in,
primarily because it often involves using
open-source programming languages and
software, providing greater flexibility and
independence.

TECHNOLOGY IN BANKING
Most banks divide themselves into
departments and pillars based on clientele,
namely institutional and consumer banking;
they unite in each entity’s functions.
Since banking operations are complicated,
extensive and often opaque, it would help to
use a relatively more straightforward aspect
of a bank to run our experiments since the
lessons learned there can be applied to other
parts of the bank too.

Retail banking has been chosen as our
context. Operations in retail banking tend
to be more straightforward, given how the
clientele are consumers with less funding
and professional requirements compared
with larger institutions. Specifically, we
are looking at digital banking, rather than

Siang and Megargel

brick-and-mortar banking, given the new age
of digitalisation. More importantly, a study
of a new software paradigm would not be
possible without software. Hence, retail Internet
banking software has been chosen for our
experimental test bed. A high-level view
of digital banking functions, and software
development tools used, is shown in Table 4.

Digital banking functions
There are four large factions in the types
of banking functions. Credit, Deposit and
Capital-Raising Services provide loans, accept
deposits and help businesses raise capital
through stock offerings and bonds. Payments,
Clearing and Settlement Services enable
transactions, clear payments and ensure the
secure settlement of financial agreements.
This can be done on a retail level, on a
customer-by-customer basis, at bulk or on
a wholesale level. Investment Management
Services assist individuals and institutions in
managing their investments and offer digital
platforms for portfolio management.

Software development tools
A large part of any bank’s infrastructure remains
with TP. Given the massive amount of code,
most software developers inherit instead of
creating code. This means that banks are

forced to maintain legacy code written
using TP. Many core banking functions
tend to be written in pre-Internet-era TP,
but some banks have moved to modern
languages such as C#, Java and Python. These
languages provide additional features, such as
integrations with a more extensive array of
software or a more stable compiling system
with the same stability needed for enterprise
code. Internet-era languages, such as HTML,
CSS and JavaScript, are used for web design
interfaces. The main difference lies in the type
of framework used and the design principles
implemented.

Emergence of LNCP as an alternative to TP
Alluding to the reasons for the lack of
LNCP use, IT departments today tend to
be TP-heavy. IT places more weight on
the benefits of customisability, scalability
and security and less on the costs of a slow
deployment period. That cost-benefit scale,
however, might tip against TP and towards
LNCP with the incoming cloud-heavy world.

Cloud-native application development is
one of the fastest-growing trends. According
to Gartner, 95 per cent of applications will
become cloud-native by 2025, and more
than 85 per cent of organisations will need
to use cloud-native technologies to execute
their digital strategies fully.57 The decisive

Table 4:  Digital banking functions and software development tools.

Credit, deposit and capital-raising
services

Payments, clearing and settlement
services

Investment management
services

Retail Wholesale

Lending marketplaces Mobile wallets Value transfer
networks

Copy trading

Mobile banking Peer-to-peer
transfers

FX wholesale E-trading

Credit-scoring Digital currencies Digital exchange
platforms

Robo-advice

Crowdfunding High-frequency trading

Software development tools

LNCP Frontend and backend: OutSystems, Mendix, Microsoft Power Apps,
Bubble.io

TP Frontend: HTML, CSS, JavaScript
Backend: Java (Spring Boot), Python

Low/no-code and traditional code integration in digital banking

push towards cloud implementation is
undeniable. Cloud-native technologies
also come with built-in scale and security,
traits that are shared with TP. Ease of use of
cloud infrastructure will make organisations,
including banks, more competitive. The
new cloud-driven IT world aids in, and
will eventually mandate, more reactive
applications and faster deployment times,
traits that TP lacks and LNCP excels in.58

A complete conversion from TP to
LNCP would involve a total overhaul
on many levels — technical, personal and
infrastructural — rendering obsolete the
traditional skills built by institutions and
people over time. Instead, we should look for
ways in which the adoption of LNCP will
exponentially enhance an institution’s offering.
Most LNCPs allow additional TP integrations,
allowing new and current users to have the
best of both worlds. This allows institutions,
including banks, to pull forward by leveraging
on LNCP in a manner that allows them to
retain their previous TP advantages.

EXPERIMENT: LNCP AND TP
INTEGRATION IN A RETAIL INTERNET
BANKING APPLICATION
This section documents our experience
replicating a relatively more manageable
Singapore Management University (SMU)
banking system, SMU Teaching Bank (a.k.a.
SMU tBank), comprising all retail Internet
banking core functions implemented within
an integrated LNCP/TP system.

First, we identified a domain-relevant case
already built, the SMU tBank Retail Internet
Banking (RIB) application, developed by
SMU faculty and students. RIB has seven
main features, each with its corresponding
sub-sections: Home, View Accounts, Fund
Transfer, Loan, Wealth Management, Book
Appointment and Profile/Logout. Figure 1
shows the SMU tBank RIB loan repayment
page, which serves as the landing page for
any customer after login.

Secondly, to be named the SMU tBank
OutSystems Experiment, this experiment
aimed to determine whether an LNCP/TP

Figure 1  SMU tBank RIB loan repayment page

Siang and Megargel

hybrid approach would provide the same
flexibility, stability and customisability as a TP
approach while reducing development time.
A regular software development cycle was
followed, changing only how software
is written. In the original software
development cycle, Java was used as the
backend language to build the logical
processes, JavaScript was used to build
the frontend and GitHub was used for
versioning control. In our experimental
build, versioning and coding were entirely
covered by the OutSystems LNCP.

Lastly, we compared the labour,
maintenance effort, time and skill set required
between the original TP implementation and
the experimental LNCP implementation.
We also determined the degree of visuals
and functions replicated by the LNCP
implementation to determine the effectiveness
of the new LNCP/TP hybrid system.

LNCP candidates
There are many platforms for LNCP-driven
software development, the market leaders
being OutSystems, Mendix, Microsoft Power
Apps and Bubble.io. We compared them
to find the most appropriate LNCP for an
enterprise application.

OutSystems
OutSystems allows you to develop and
deploy applications quickly and efficiently. It
provides a visual development environment,
comprehensive features and capabilities and
a large community of users and developers.

OutSystems is used by many organisations,
including Fortune 500 companies,
government agencies and start-ups.

Mendix
Mendix allows you to develop and deploy
applications quickly and efficiently. It is
similar to OutSystems regarding features
and capabilities but is generally more
straightforward. Mendix is also used by
many organisations, including Fortune 500
companies, government agencies and start-ups.

Microsoft Power Apps
Microsoft Power Apps is a part of the Microsoft
Power Platform. It allows you to develop
and deploy simple to medium-complexity
applications quickly and efficiently. Microsoft
Power Apps is a good choice for businesses
and organisations already using Microsoft
products and services.

Bubble.io
Bubble.io allows you to develop and deploy
applications of simple to medium complexity
quickly and efficiently. It is the most affordable
low-code platform and also the easiest to use.
Bubble.io is a good choice for businesses and
organisations that are on a tight budget or that
do not have much technical expertise.

LNCP candidate feature comparison
Table 5 provides a comparison of LNCP
candidate features.

Table 5:  Comparison of LNCP candidate features.

Feature OutSystems Mendix Microsoft Power Apps Bubble.io

Performance and scalability High Medium Medium Low

Flexibility and extensibility High High Medium Low

Ease of use Easy Medium Easy Easy

Large community and ecosystem Yes Yes Yes Yes

Pricing Expensive Medium Medium Affordable

Low/no-code and traditional code integration in digital banking

Performance and scalability
OutSystems and Mendix use model-driven
software engineering to generate native
code for the target platform. This means
that OutSystems and Mendix applications
are typically faster and more scalable than
applications developed using other low-code
platforms.

Flexibility and extensibility
OutSystems and Mendix provide
several features that make them flexible
and extensible platforms. For example,
OutSystems and Mendix allow you to create
custom components, extend the platform
using Java and C# and integrate with
third-party systems.

Ease of use
OutSystems, Mendix and Microsoft Power
Apps provide visual development environments
that make creating and managing applications
easy. Bubble.io, however, is the most accessible
platform because it does not require any
coding knowledge.

Large community and ecosystem
OutSystems, Mendix and Microsoft Power
Apps all have large and active communities
of users and developers. There are also several
third-party tools and integrations available
for these platforms. Bubble.io also has a
growing community, but it is not as large as
those for the other platforms.

Pricing
OutSystems is the most expensive platform
because it offers the most features and
capabilities. Mendix and Microsoft Power
Apps are less expensive but offer fewer
features and capabilities. Bubble.io is the
most affordable platform because it is newer
with smaller features.

LNCP candidate selection
OutSystems was the ideal choice for our
experiment; it excels in performance,
scalability, flexibility and extensibility.
According to our interviews with industrial
professionals, OutSystems is highly
prized within the software development
community. While it is the most expensive,
the system can be adopted by a large bank
for an extended period, making it a prime
candidate for benefitting from economies
of scale and bulk pricing. OutSystems is the
only LNCP evaluated here that can provide
access to its core code through TP, precisely
what we are testing for and promoting in this
experiment. Most importantly, OutSystems
is the leader in the low-code market. It has
been around for over 20 years and has a
proven track record of success with some
leading financial institutions, including
KeyBank, BBVA, Western Union, Santander
Bank and CorporateOne.

SMU tBank OutSystems experiment
LNCP and TP are implemented as per the
infrastructural design shown in Figure 2.
The existing JavaScript user interface and
business logic is replaced by an OutSystems
implementation. The backend TP system
remains and is supported by existing
Representational State Transfer (REST) APIs
called from the frontend user interface.

An example of a business logic
implementation using OutSystems is shown
in Figure 3, which implements the opening
of a Dual Currency Deposit (DCD) account,
a product offered under Wealth Management.

OutSystems allowed us to quickly build
the business logic for each process by
representing important entities or actions
in the system with visual blocks and using
arrows to design the business logic flow
between blocks. Each flow can then be saved
into a representative program. Each program
can then be used across different web pages
and even assimilated into other programs,

Siang and Megargel

Figure 2  Infrastructural design of SMU tBank OutSystems experiment

Key: API, application programming interface; LNCP, low/no-code programming; TP, traditional programming.

Figure 3  Example business logic implemented in OutSystems

Low/no-code and traditional code integration in digital banking

dispensing with the need to create the same
program repeatedly whenever we utilise it.

OutSystems allowed us to build web pages
using the same drag-and-drop mechanism.
To enforce abstraction, preset web design
components were used for constructing web
pages. We can choose web features available
out-of-the-box from OutSystems, or we can
customise our own. While the web features
might seem limited, we can continually
expand from the out-of-the-box features
while complying with the organisation’s
web design standards. These new features can
then be made available and reused by other
software development projects.

Results and observations
Table 6 summarises our observations
after replicating the SMU tBank RIB
user interface and business logic using
OutSystems, replacing the original TP
implementation.

Implementation labour required
The original SMU tBank RIB development
team comprised six students having four
years of computer science education and
was completed as a part of their final year
project at SMU. Each student was allocated
a particular role. The roles available were
frontend software developer, backend
software developer and project manager.
In contrast, the SMU tBank OutSystems
Experiment was run by just one person,
having only two years of backend
software development experience with no

frontend software development or project
management training.

Maintenance effort required
The original SMU tBank RIB project was
written using open-source JavaScript libraries,
which are susceptible to versioning changes
done by external communities, changes that
the team had little control over. In addition,
any changes proposed required the correct
individual with the appropriate skill set.
Changes or bugs that happened to the
user interface required a frontend software
developer, while modifications to the business
logic required the help of the backend software
developer. In contrast, OutSystems provides a
unified designer studio that makes it possible
to edit web pages as well as the underlying
business logic. One who understands
OutSystems can make any changes, cutting
down the required labour by at least half.

Time required
The original SMU tBank RIB project
team took 10 months to complete the
development of the user interface and
business logic. In contrast, for the SMU
tBank OutSystems Experiment, the user
interface and business logic were replicated in
exactly two months, for a time saving of eight
months (ie it took one-fifth of the time).

Skill set required
Experience and expertise in JavaScript,
HTML, CSS and web hosting were needed

Table 6:  Observed performance of LNCP versus TP.

Feature
TP
(Original implementation)

OutSystems
(This experiment)

Implementation labour required High Low

Maintenance effort required Medium Low

Time required High Low

Skillset required High Low

Degree of visuals and functions replicated Complete 80%–90% of original replicated

Siang and Megargel

to develop the original SMU tBank RIB. In
contrast, only basic knowledge of OutSystems
was sufficient to replicate the SMU tBank
RIB application in our experiment.

Degree of visuals replicated
Beyond minor colour scheming and
layout issues, most of the important visuals
and functions were replicated. The only
difference between the original SMU tBank
RIB and the SMU tBank OutSystems
Experiment would be the stock historical
price chart. The API to get any stock’s
information returned a string that looked
like a JSON time series. Using JavaScript
in this case, TP would have easily cleaned
and converted it into an actual JSON time
series object that could be parsed and used to
replicate the visual. OutSystems did not have
such a built-in function, making replicating
this visual more complicated.

CONCLUSION
In conclusion, the research presented in
this paper underscores the transformative
potential of LNCP/TP hybrids as a new
paradigm for software development within
the banking industry. By carefully examining
the capabilities, advantages and empirical
evidence, we have demonstrated that these
systems represent a compelling solution for
addressing the dynamic and evolving needs
of the sector. The important findings of this
study emphasise several crucial points as
follows:

Agility
LNCP/TP hybrid systems enable rapid
development and customisation of software
solutions, facilitating a more agile response
to changing market demands. Banking
institutions can leverage these platforms to
deploy new features, products and services
at an accelerated pace, enhancing their
competitiveness.

Scalability
The scalability of LNCP/TP hybrid systems
ensures that banking organisations can grow
their operations efficiently without the
traditional constraints associated with
code-intensive development. This scalability
is essential in an industry where expansion
and adaptation are constant imperatives.

Change management
The flexibility inherent in LNCP/TP hybrid
systems enables banks to adapt swiftly to
regulatory changes, ensuring compliance
while minimising disruption to operations.
This adaptability is particularly crucial in
an industry subject to evolving compliance
requirements.

Cost-effectiveness
By streamlining the development process
and reducing the need for extensive coding
and software developers, LNCP/TP hybrid
systems can save costs in the long run,
making them a cost-effective solution for
banks of all sizes.

Final thoughts
It is evident that LNCP/TP hybrid systems
promise to revolutionise how software is
developed and maintained in the banking
sector. These systems empower financial
institutions to meet customer demands,
navigate industry challenges and maintain
a competitive edge in an ever-evolving
landscape.

It is essential to acknowledge, however,
that the successful implementation of LNCP/
TP hybrid solutions requires careful planning,
effective governance and ongoing
collaboration among various stakeholders.
Furthermore, the technology landscape
continues to evolve, and staying current with
advancements in low/no-code platforms
and their integration with TP is essential for
long-term success.

Low/no-code and traditional code integration in digital banking

This research underscores the compelling
case for adopting LNCP/TP hybrid systems
in the banking industry. By embracing
this new paradigm, financial institutions
can position themselves as leaders in
innovation, ensuring they are well equipped
to meet the demands of the modern banking
landscape while maintaining code security
and cleanliness. This approach accelerates
development and enables banks to remain
agile, adaptable and customer-centric in an
era of rapid technological change.

References
(1) Waszkowski, R. (2019) ‘A Low-Code Platform

for Automating Line Processes in Manufacturing’,
IFAC-PapersOnLine, Vol. 52, No. 10, pp. 376–81.

(2) Zolotas, C., Chatzidimitriou, K. C. and Symeonidis,
A. L. (2018) ‘RESTsec: A Low-Code Platform for
Generating Secure By-Design Enterprise Services’,
Enterprise Information Systems, Vol. 12, No. 8-9,
pp. 1007–33.

(3) Arora, R., Ghosh, N. and Mondal, T. (2020) ‘Sagitec
Software Studio (S3) — A Low Code Application
Development Platform’, in ‘2020 International Con-
ference on Industry 4.0 Technology (I4Tech)’, IEEE,
Pune, India, pp. 13–17.

(4) Chang, Y.-H. and Ko, C.-B. (2017) ‘A Study on the
Design of Low-Code and No-Code Platforms for
Mobile Application Development’, International
Journal of Advanced Smart Convergence, Vol. 6, No. 4,
pp. 50–5.

(5) Daniel, G., Cabot, J., Deruelle, L. and Derras, M.
(2020) ‘Xatkit: A Multimodal Low-Code Chatbot
Development Framework’, IEEE Access, Vol. 8,
pp. 15332–46.

(6) Sanchis, R., García-Perale, Ó., Fraile, F. and Poler, R.
(2019) ‘Low-Code as Enabler of Digital Transforma-
tion in Manufacturing Industry’, Applied Sciences,
Vol. 10, No. 1, p. 12.

(7) Khorram, F., Mottu, J.-M. and Sunyé, G. (October
2020) ‘Challenges & Opportunities in Low-Code
Testing’, in ‘Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engi-
neering Languages and Systems: Companion Pro-
ceedings’, IEEE, Pune, India, pp. 1–10.

(8) Ragusa, G. and Henriques, H. (October 2018) ‘Code
Review Tool for Visual Programming Languages’, in
‘2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC)’, IEEE,
Pune, India, pp. 287–8.

(9) Heffner and Mettrick, ref 1 above.
	(10) Sanchis, García-Perale, Fraile and Poler, ref 6 above.
	(11) Zolotas, Chatzidimitriou and Symeonidis, ref 2

above.
	(12) Arora, Ghosh and Mondal, ref 3 above.
	(13) Chang and Ko, ref 4 above.

	(14) Daniel, Cabot, Deruelle and Derras, ref 5 above.
	(15) Heffner, M. and Mettrick, G. (2020) ‘Innovation,

Insight, and Trust: Customer Experience Excellence
Delivered Responsibly in a Digital World’, Journal of
Digital Banking, Vol. 4, No. 4, pp. 351–63.

	(16) Ibid.
	(17) Sahay, A., Indamatti, A., Di Ruscio, D. and Pieranto-

nio, A. (August 2020) ‘Supporting the Understand-
ing and Comparison of Low-Code Development
Platforms’, in ‘2020 46th Euromicro Conference on
Software Engineering and Advanced Applications
(SEAA)’, IEEE, Pune, India, pp. 171–8.

	(18) Waszkowski, ref 1 above.
	(19) Sahay, Indamatti, Di Ruscio and Pierantonio, ref 17

above.
	(20) Waszkowski, R. and Nowicki, T. (2020) ‘Efficiency

Investigation and Optimization of Contract Manage-
ment Business Processes in a Workwear Rental and
Laundry Service Company’, Procedia Manufacturing,
Vol. 44, pp. 551–8.

	(21) Sahay, Indamatti, Di Ruscio and Pierantonio, ref 17
above.

	(22) Arora, Ghosh and Mondal, ref 3 above.
	(23) Chang and Ko, ref 4 above.
	(24) Levine, R. (2005) ‘Finance and Growth: Theory and

Evidence’, in Aghion, P. and Durlauf, S. (eds), ‘Hand-
book of Economic Growth’, Volume 1, Elsevier,
North Holland, pp. 865–934.

	(25) Demirgüç-Kunt, A. and Maksimovic, V. (2002) ‘Funding
Growth in Bank-based and Market-based Financial
Systems: Evidence from Firm-Level Data’, Journal of
Financial Economics, Vol. 65, No. 3, pp. 337–63.

	(26) Berger, A. N., Hasan, I. and Klapper, L. F. (2004)
‘Further Evidence on the Link between Finance
and Growth: An International Analysis of Community
Banking and Economic Performance’, Journal
of Financial Services Research,  Vol. 25, No. 2-3,
pp. 169–202.

	(27) Berger, A. N., and Bouwman, C. H. S. (2016) ‘Bank
Liquidity Creation and Financial Crises’, Academic
Press.

	(28) Bouwman, C. H. S. (October 7, 2018) ‘Creation and
Regulation of Bank Liquidity’, available at https://
ssrn.com/abstract=3266406 (accessed 9th April,
2024).

	(29) Hariharan, N. and Reeshma, K. (2015) ‘Challenges of
Core Banking Systems’, Mediterranean Journal of Social
Sciences, Vol. 6, No. 5, p. 24.

	(30) Ibid.
	(31) Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,

M., Montesi, F., Mustafin, R., et al. (2017) ‘Microser-
vices: Yesterday, Today, and Tomorrow’, in Mazzara, M.
and Meyer, B. (eds), ‘Present and Ulterior Software
Engineering’, Springer, Cham, pp. 195–216.

	(32) Baghdadi, Y. and Al-Bulushi, W. (2015) ‘A Guidance
Process to Modernize Legacy Applications for SOA’,
Service Oriented Computing and Applications, Vol. 9,
No. 1, pp. 41–58.

	(33) Gholami, M. F., Daneshgar, F., Beydoun, G. and
Rabhi, F. (2017) ‘Challenges in Migrating Legacy
Software Systems to the Cloud — An Empirical
Study’, Information Systems, Vol. 67, pp. 100–113.

Siang and Megargel

	(34) Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S.
and Hage, J. (2014) ‘How Do Professionals Perceive
Legacy Systems and Software Modernization?’, in
Proceedings of the 36th International Conference
on Software Engineering, ACM, Hyderabad, India,
pp. 36–47.

	(35) Financial Stability Board (2023) ‘FinTech’, Financial
Stability Board, available at https://www.fsb.org/
work-of-the-fsb/financial-innovation-and-structural-​
change/fintech/ (accessed 9th April, 2024).

	(36) Feyen, E., Frost, J., Gambacorta, L., Natarajan, H., and
Saal, M. (2021) ‘Fintech and the Digital Transforma-
tion of Financial Services: Implications for Market
Structure and Public Policy’, Bank for International
Settlements (BIS) Papers, No. 117.

	(37) Sanchis, García-Perale, Fraile and Poler, ref 6 above.
	(38) Al Alamin, M. A., Malakar, S., Uddin, G., Afroz, S.,

Haider, T. B. and Iqbal, A. (May 2021) ‘An Empirical
Study of Developer Discussions on Low-Code Soft-
ware Development Challenges’, in ‘2021 IEEE/ACM
18th International Conference on Mining Software
Repositories (MSR)’, IEEE, Pune, India, pp. 46–57.

	(39) Rymer, J. and Appian, K. (2017) ‘The Forrester
Wave™: Low-Code Development Platforms
for AD&D Pros, q4 2017’, Forrester Research,
Cambridge, MA.

	(40) Prinz, N., Rentrop, C. and Huber, M. (2021).
‘Low-Code Development Platforms: A Literature
Review’, in ‘AMCIS 2021 Proceedings’, AMCIS,
Pune, India.

	(41) Beranic, T., Rek, P. and Hericˇko, M. (2020)
‘Adoption and Usability of Low-Code/No-Code
Development Tools’, in ‘Central European Con
ference on Information and Intelligent Systems’,
Faculty of Organization and Informatics, Varazdin,
pp. 97-103.

	(42) Russo, D., Visaggio, F. and Lanza, M. (2023)
‘Low-Code/No-Code Platforms: A Paradigm Shift
in Software Development’, IEEE Software.

	(43) OutSystems (2019) ‘The State of Application
Development: Is IT Ready for Disruption?’, available
at https://www.outsystems.com/-/media/E0A6E​7121​
AAD4A4C975828265B3639ED​.ashx?​mkt_tok=​ey-
JpIjoiT1RsbU56azNNa​kJs​WV​RaaiIsInQiOiIyNlBC-
dGlrRnVH​clVEY​2c3​TWtSSEUwNWtTU3FBVVE0​
M2​gw​K0xo​SW0xaktSZ3dWS2t6amQxOFU2​
WlF​CRllw​R256a​UhMTHVWa0ROSnZr​
U2tRUlZ4cTV5​RFJX​b2o5Wlphc21jaFR-
4bXY4ZmU3U3BrTkFNMm1​BZm9MWkNsRH-
g0YjlzayJ9 (accessed 22nd March, 2024).

	(44) Woo, M. (2020) ‘The Rise of No/Low Code Soft-
ware Development — No Experience Needed?’,
Engineering, Vol. 6, No. 9, pp. 960–1, https://doi.org/
10.1016/j.eng.2020.07.007.

	(45) Tay, N. (5th April, 2021) ‘7 Pros and Cons of
Low-Code/No-Code’, Major Online Business and
Marketing, available at https://blog.hslu.ch/majorob-
m/2021/04/05/7-pros-and-cons-of-low-codeno-​
code-​ntsy-​2-ua-192667621-1/ (accessed 11th
December, 2021).

	(46) Ibid.
	(47) Brocoders Company (6th March, 2021) ‘The Pros

and Cons of Low-Code Development’, Hacker
Noon, available at https://hackernoon.com/the-
pros-and-cons-of-low-code-development-4y2p33g9
(accessed 11th December, 2021).

	(48) Sarabyn, K. (2021) ‘What is Wrong with Low and No
Code Platforms?’, Pandium, available at https://www
.pandium.com/blogs/whats-wrong-with-low-and-
no-codeplatforms (accessed 11th December, 2021).

	(49) Ibid.
	(50) Sanchis, García-Perale, Fraile and Poler, ref 6 above.
	(51) Rymer, J. R. and Richardson, C. (August 2015)

‘Low-Code Platforms Deliver Customer-Facing Apps
Fast, But Will They Scale Up?’, Forrester, available
at https://www.forrester.com/report/LowCode-
Platforms-Deliver-CustomerFacing-Apps-Fast-But-
Will-They-Scale-Up/RES122546 (accessed 22nd
March, 2024).

	(52) Oltrogge, M., Derr, E., Stransky, C., Acar, Y., Fahl, S.,
Rossow, C., et al. (2018) ‘The Rise of the Citizen
Developer: Assessing the Security Impact of Online
App Generators’, in ‘2018 IEEE Symposium on
Security and Privacy (SP)’, pp. 634–47, https://doi
.org/​10.1109/sp.2018.00005.

	(53) Ibid.
	(54) Tay, ref 45 above.
	(55) Oltrogge, Derr, Stransky, Acar, Fahl, Rossow, et al., ref

52 above.
	(56) Ibid.
	(57) Gartner (2021) ‘Gartner Says Cloud Will Be the

Centerpiece of New Digital Experiences’, available
at https://www.gartner.com/en/newsroom/press-
releases/2021-11-10-gartner-says-cloud-will-be-the-
centerpiece-of-new-digital-experiences (accessed
22nd March, 2024).

	(58) OutSystems (13th January, 2023) ‘How Low-code Helps
Banks Stay Competitive’, https://www.outsystems.
com/blog/posts/low-code-banks-stay-competitive/
(accessed 22nd March, 2024).

	Low/no-code and traditional code integration in digital banking
	Citation

	Low/no-code and traditional code integration in digital banking
	Introduction
	Related Work
	Essential Concepts and Techniques
	Banking and economy
	Banking and technology
	Banking and FinTech
	Low/No-code programming
	Traditional programming

	Interviews with Industry Professionals
	Low/No-Code Programming Versus TP
	Comparison
	Development approach
	Speed of development
	Customisation
	Agility
	Deployment
	Quality
	Maintenance
	Template availability
	Scalability
	Security
	Multiplatform capability
	Impact of generative AI

	Current issues with LNCP
	Limited customisability/flexibility
	Limited scalability
	Security concerns
	Vendor lock-in

	Technology in Banking
	Digital banking functions
	Software development tools
	Emergence of LNCP as an alternative to TP

	Experiment: LNCP and TP Integration in a Retail Internet Banking Application
	LNCP candidates
	OutSystems
	Mendix
	Microsoft Power Apps
	Bubble.io

	LNCP candidate feature comparison
	Performance and scalability
	Flexibility and extensibility
	Ease of use
	Large community and ecosystem
	Pricing

	LNCP candidate selection
	SMU tBank OutSystems experiment
	Results and observations
	Implementation labour required
	Maintenance effort required
	Time required
	Skill set required
	Degree of visuals replicated

	Conclusion
	Agility
	Scalability
	Change management
	Cost-effectiveness
	Final thoughts

	References

