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CAS: Fusing DNN Optimization & Adaptive
Sensing for Energy-Efficient Multi-Modal Inference

Dulanga Weerakoon!, Vigneshwaran Subbaraju?, Joo Hwee Lim? and Archan Misra*

Abstract—Intelligent virtual agents are used to accomplish
complex multi-modal tasks such as human instruction compre-
hension in mixed-reality environments by increasingly adopting
richer, energy-intensive sensors and processing pipelines. In such
applications, the context for activating sensors and processing
blocks required to accomplish a given task instance is usually
manifested via multiple sensing modes. Based on this observation,
we introduce a novel Commit-and-Switch (CAS) paradigm that
simultaneously seeks to reduce both sensing and processing
energy. In CAS, we first commit to a low-energy computational
pipeline with a subset of available sensors. Then, the task context
estimated by this pipeline is used to optionally switch to another
energy-intensive DNN pipeline and activate additional sensors.
We demonstrate how CAS’s paradigm of interweaving DNN
computation and sensor triggering can be instantiated principally
by constructing multi-head DNN models and jointly optimizing
the accuracy and sensing costs associated with different heads.
We exemplify CAS via the development of the RealGIN-MH
model for multi-modal target acquisition tasks, a core enabler of
immersive human-agent interaction. RealGIN-MH achieves 12.9x
reduction in energy overheads, while outperforming baseline
dynamic model optimization approaches.

Index Terms—Vision and Sensor-Based Control; Deep Learn-
ing for Visual Perception; Embedded Systems for Robotic and
Automation; Human-Robot Collaboration; RGB-D Perception

I. INTRODUCTION

HE progression of new sensing (e.g.LiDAR-based depth
sensing) and DNN-based advanced perception capabili-
ties in mobile and wearable devices enables more sophisticated
multi-modal, situated mixed-reality and spatial computing
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applications. Figure 1 illustrates a Shopping Assistant appli-
cation, where a customer with an Augmented Reality (AR)
smart-glass (e.g. Microsoft Hololens™, Apple VisionPro™)
gazes to a shelf in a supermarket aisle, points in the general
direction of a product of interest and asks “What’s the price
of that white soap bottle with a green cap?”. Using a multi-
modal DNN inference pipeline (e.g., [1]), the smart-glass fuses
verbal, visual and pointing cues (captured by an embedded
microphone, RGB camera and depth sensors) to extract the
target object and generate a real-time response. Such inference
pipelines are vital for emerging spatial computing applications
involving human-agent interaction, but they are computation-
ally complex and energy-intensive.
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Fig. 1: Motivating application- A virtual shopping assistant

In this paper, we study an exemplar multi-modal target
acquisition task of identifying the user’s referred object in
Figure 1 to highlight the following software and hardware
factors contributing to resource-consumption: (a) the compu-
tational footprint of the multi-modal inference pipeline and (b)
the energy-cost of energy-hungry sensors (especially LIDAR
sensors). To address the software factor, recent work has
optimized state-of-the-art single-stage multi-modal DNN per-
ception models (e.g., RealGIN [1], RCCF [2]) by employing
techniques such as (a) static model pruning ( ShuffleNet [3])
and (b) complexity-aware dynamic model selection [4]. The
core idea in such optimizations is to use some early fea-
ture representation to identify potential instance-dependent
redundancy among the cross-modal cues, thus simplifying
the overall computation. For example, in an uncluttered en-
vironment (Figure 2(b)), a rough estimation of pointing di-
rection together with RGB scene analysis may be sufficient
for identifying the target-object, whereas a more cluttered
environment (Figure 2(a)) may require RGB scene analysis
plus more complex parsing of the longer verbal command
as well as precise, depth sensor-based, estimation of pointing
coordinates. However, these approaches do not optimize the
hardware sensing energy overhead (even though the energy
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Fig. 2: Diversity in multi-modal instructions

overhead of sensing is comparable to that of DNN-based
inference—see Section VI-B), as all the sensors remain active
throughout irrespective of their eventual relevance for a spe-
cific task instance. More specifically, as illustrated in Figure 1,
the depth sensor needed for accurate pointing resolution is very
energy hungry, consuming ~10x the power of on-board RGB
and microphone sensors.

We thus, propose a new paradigm, called Commit-and-
Switch (CAS), designed to simultaneously reduce both hard-
ware sensing and software inference overheads associated with
the on-device execution of such multi-modal DNNs. The core
CAS concept involves the use of triggered sensor activation,
whereby more energy-hungry sensors are activated on demand,
only if deemed necessary, based on the complexity of the
current task instance. However, this is challenging for two
important reasons:

1) Determining the task complexity is non-trivial and may
need different sensing modalities and a distinct DNN
(e.g.,see [4]) for itself.

2) The “interval of relevance” of the data from each sensor
dynamically varies for different task instances, making
it challenging to trigger sensors on-the-fly. For example,
in Figure 1, the depth sensor’s ‘keyframe’ (when the
user’s hand/fingers point at the target) occurs before the
completion of the verbal command. So, using verbal in-
struction complexity to trigger the depth sensor may miss
the pointing gesture, although the microphone is the most
energy-efficient of the three sensors in Figure 1.

To overcome these challenges and leverage triggered sens-
ing, CAS unifies complexity determination and task inference
into a single DNN pipeline with multiple complexity-driven
processing branches (associated with dynamic sensor trigger-
ing) and heads, identified via a principled cost-benefit analysis
technique. Our main contributions are,

o We propose the CAS paradigm that simultaneously addresses
the issues of sensing (hardware) and processing energy
(software) overheads by dynamically switching between dif-
ferent processing piplelines and activating the corresponding
sensors on-the-fly.

« We demonstrate CAS by developing RealGIN-MH, a multi-
branch model for multi-modal target object acquisition
instruction comprehension. Given a set of three pos-
sible sensor combinations (RGB camera alone, <RGB
cam+audio> and <RGB cam+audio+depth>) RealGIN-MH
initially commits to a branch that uses RGB camera data
alone. It uses features from the committed branch to enable
the energy-intensive depth camera on-the-fly, only when
warranted. Real GIN-MH uses a new module to regenerate
past depth key-frame from the depth frames available after
sensor activation. This unified model utilizes ~12.9x lower

energy while achieving similar accuracy.

« We demonstrate the generalizability of CAS by using an
additional multi-modal task: semantic segmentation of si-
multaneously acquired RGB and thermal camera images.
For this, we apply CAS to develop a new multi-headed
PSTNet-Thermal-MH model, which activates the power-
hungry thermal camera only 36% of the time, achieving
> 50% energy savings over a baseline CNN-based embed-
ded PSTNet-Thermal [5] model.

Overall, CAS makes the case for tighter software coupling
between GPU-based inferencing and sensor hardware, thereby
allowing intermediate states of DNN pipelines to be used for
dynamic activation and control of sensors.

II. RELATED WORK

Various mobile/wearable sensing techniques have been pro-
posed to capture audio and gestural instructions to support
interactive AR applications. While [6] demonstrated the im-
portance of audio/speech interactions for natural MR inter-
actions, gestures such as pointing, grabbing, and stretching
have been shown to increase the immersiveness of MR
systems [7]. Researchers have also explored [8]-[10] the
joint use of gestural and audio cues to better capture human
intent. The task of real-time fusion of pointing gestures with
verbal instructions to interpret instructions referring to table-
top objects has been studied by several works on human-
robot interaction [11], [12]. The M2GESTIC [13] system cues
from pointing gestures could enhance performance, especially
by reducing the ambiguity in verbal instructions. Dogan et
al [14] have shown how the inclusion of depth features, in
addition to RGB camera sensing, can significantly increase
the accuracy of target acquisition tasks. These baseline multi-
modal DNN models are, however, too heavyweight and need
to be optimized for on-device execution on pervasive devices.

Both static optimization [15], [16] and runtime dynamic
optimization [17], [18] approaches have been proposed to sup-
port low-latency DNN-based inference on pervasive devices,
albeit principally using a single modality of sensor data. A
limited body of work has recently applied the concept of
dynamically switching between multiple different models to
optimize execution efficiency, applied almost exclusively for
vision tasks. For example, the MobiSR system [19] dispatches
different portions of an image to different models to support
complexity-aware generation (upscaling) of super-resolution
images, whereas Verelst et al., [20] utilize the concept of
dynamically sparsified processing to execute intensive convo-
lution operations only on important Regions of Interest (Rol)
in an image. While generic, these approaches consider a single
sensing modality and fail to account for the redundancy and/or
correlation across multiple sensor modalities. The recent
COSM2IC approach [4] extends the dynamic model switching
paradigm to a multi-modal instruction comprehension task.
COSM2IC loads up multiple DNN models, with differing
sensor inputs and accuracy, into an embedded device, and
then uses a lightweight complexity estimator as a preprocessor
to dynamically demultiplex inference execution across these
models, thereby reducing average latency and processing en-
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Fig. 3: Commit-and-Switch (CAS) paradigm.

ergy. However, it does not support on-demand sensor trigger-
ing and assumes all sensors remain active throughout, even
if unused. In contrast to these approaches, we aim to jointly
optimise both sensing and processing energy.

III. CAS: OVERVIEW

Our proposed CAS paradigm is illustrated in Figure 3, where
the sensors are denoted by S1, S2 etc. and their corresponding
font colors represent their power consumption (Green —
Low power, Orange — Medium power and Red — High
power). Similar color codes are used for branches representing
data processing. In this approach, the determination of the
sensing context is not a distinct step, but is integrated into
the DNN-based inference pipeline. This context detector can
conceptually utilize an intermediate state from any layer of
the DNN processing pipeline, chosen so as to exploit problem-
dependent trade-offs between efficiency and accuracy. In CAS,
we first commit to a processing branch (branch 1 in the
figure) that depends on a low/medium power sensor(s). The
energy-intensive sensors and their corresponding processing
pipelines are inactive at this point. Even as the processing
in the initially committed branch goes on, CAS piggy-backs
on the DNN features already generated in this branch to
make a classification of the task context; consequently, con-
text determination is considered to be relatively low energy
(Green). This context is then used to potentially switch to
other processing branches (e.g., branch 2), which may require
the activation of corresponding additional energy-intensive
sensors; else, the initially committed branch is executed in its
entirety without activating any additional sensors. CAS must
also accommodate the likelihood that even a modest triggering
latency can cause task-critical sensor data (say from S4) to
be missing. We note, however, that in multi-modal sensing,
the likely correlation across sensor observations raises the
possibility of estimating the missing data of a sensor from
the currently-available data stream of other sensor(s). This is
reflected by the processing block “Estimate past S4 data” in
branch 2. The reverse situation, illustrated by the block “Wait
for S2” in the figure, whereby some sensor data may not be
readily available is also possible. For example, if the user
issues a long verbal command, the inferencing task may need
to wait until the verbal instruction is complete.

Thus, CAS based optimization of a complex multi-DNN in-
ference pipeline (Eg. Real GIN-lite [4]) involves — (a) determi-
nation of efficient processing branches and (b) determination
of precise intermediate processing step where the task context

is estimated. In step (a), we consider the entire inference
pipeline and examine potential early-exit opportunities (known
as output-heads). The key objective in this step is to carefully
identify energy-efficient paths within the pipeline that can
be used to perform reliable inference, at least under certain
task contexts. For step (b), the decision point for task context
should ideally be as late as possible to ensure the highest
accuracy and minimal activation of unnecessary sensors, but
not too late as to miss task-critical segments of sensor data. In
CAS, we identify suitable points for such context switching
from the energy-efficient processing branches identified in
step (a) and then utilize their accuracy-vs.-energy trade-off
characteristics to choose an optimal candidate.

IV. MULTI-MODAL INSTRUCTIONS SETUP

The problem of target acquisition from naturalistic multi-

modal instructions has been studied in detail by several earlier
works such as [4], [11]-[13]. Recent work by Weerakoon et
al. builds upon the earlier works to introduce a comprehensive
corpus of multi-modal instructions (known as the COSM2IC
dataset) involving different levels of ambiguity, clutter etc.
Figure 2 illustrates a typical multi-modal instruction. As shown
in the figure, the instructions involve a pointing gesture as well
as a verbal description of the target object that needs to be
selected. The dataset comprises a total of ~200 unique <block
arrangement, target block> tuples, corresponding to different
levels of scene complexity, with 28 unique individuals gener-
ating a total of ~3000 instructions across these tuples. There-
fore, the COSM2IC dataset, which includes approximately
3,000 instructions from 28 unique users, effectively captures
a broad range of human behavior in issuing instructions. For
each instruction, we use (a) the data from the RGB camera
(from the view-point shown in the figure), (b) the transcribed
text of the verbal instruction, and (c) depth camera data (from
the same view-point as the RGB camera).
Sensor Energy Profiles: To determine judicious choices for
different inference branches, we also need to quantify the
relative energy overheads of the different sensors. We used
RealSense L515 [21] as our representative depth sensor in
our evaluations. Measurements performed using a Monsoon
power monitor revealed that RealSense consumes ~2.5W of
power for capturing depth frames, which was nearly 10x
higher than the operating power of a typical RGB camera.
As we shall later see (Section VI), this implies an energy
consumption of about 388 mJ (nearly half of the inference
energy of the RealG(2)In-Lite model) if the depth sensor is
active for a duration equal to the average execution latency
of the RealG(2)In-Lite model on the COSM2IC dataset, when
evaluated on a Jetson TX2 device. An analysis of the dataset
reveals the following characteristics that will influence the
choice of different branches and triggering sensors:

o Possible Sensing Redundancy: The location indicated by
the pointing gesture can be sensed either via the RGB
camera or via the depth camera. While depth data provides
higher pointing resolution, under low scene clutter, the RGB
camera alone may suffice. Hence, the energy-intensive depth
camera should be activated only when needed. Also, given
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Fig. 4: Real GIN-MH Architecture

this redundancy, it may be possible to regenerate past values
of depth camera data using a combination of concurrent
RGB data and depth frames acquired with a modest delay.

o Optimizing Audio Sensing: The RGB camera sensor data is
indispensable for target acquisition, as object detection typ-
ically relies on it. While in some cases, target identification
may be possible using only RGB and pointing data (without
verbal input), especially in uncluttered scenes. However,
on-demand, delayed activation of the audio sensor is not
feasible, as there is simply no alternate way to reconstruct
past verbal instructions.

V. REALGIN-MH: CAS-BASED INFERENCING

We now detail the design of RealGIN-MH, which employs
the CAS to perform on-device multi-modal instruction com-
prehension. Figure 4 shows the exact sensors used in each of
the three main processing branches involved in RealGIN-MH.
The low complexity branch (enclosed by green dotted lines)
performs the comprehension task using only the RGB data.
This branch involves a key-frame detector that identifies a key-
frame and a Shufflenet [3] visual backbone to extract features
from the detected key-frame. Further processing blocks in this
branch use these features to directly output the location of
the target block (based solely on the pointed location from
the key-frame) via output head H1. The features from the
Shufflenet backbone are also used by the context detector
(represented as the green demultiplexer box) to output a 3-
element binary vector representing the branch chosen for
subsequent execution.

If the context detector detects a low complexity context
([1,0,0]), the inferencing process continues along the low com-
plexity branch. The medium complexity branch is activated
for a context vector value of [0,1,0]) and is enclosed by the
orange dotted lines in Figure 4. This block uses sensor data
from both the RGB camera and audio sensor. The processing
blocks involved in this branch are the speech-to-text module,
the Bidirectional LSTM to extract features from the text, the
Adaptive Feature Selection (AFS) module and the language-
guided global attention L-GARAN (all explained shortly),
which outputs the target object (head H4). Similarly, the high
complexity branch is enclosed by the red-dotted lines in the
figure. This branch uses all three sensors (RGB camera, audio
and depth camera). This branch has significant overlap with
the blocks in the medium processing pipeline as it also uses the
text-to-speech module, Bi-LSTM and the AFS. Additionally,
when processing the depth data, it first tries to reconstruct an

estimate of the past depth-frame that is in sync with the RGB
keyframe. The features from this depth image are provided to a
pointing model. Finally, a gesture-guided G-GARAN module
(instead of the L-GARAN used in the medium complexity
pipeline) is used to output the target object location via
head HS. Across all pipelines, the RGB and audio sensor
(capturing verbal inputs) are always active (even though the
low complexity branch does not utilize verbal cues), with
RealGIN-MH focusing on dynamic activation of the energy-
hungry depth sensor.

A. Keyframe extraction and Shufflenet backbone

Empirical observation shows that the most informative seg-
ment (which we call the “keyframe”) in a pointing gesture
corresponds to one where the hand is momentarily stationary,
steadily indicating the target. Keyframe detection is done
via a 4-layer CNN network with ReLLU [22] activation for
intermediate layers and Softmax activation for the final layer.
This model, trained for 10 epochs using a balanced set of
COSM2IC ground truth data, accepts an incoming RGB frame
as an input and outputs its probability of being a key frame
(class O="not key’, class 1="key’). During inferencing, an RGB
frame is identified as a keyframe if class 1 probability is >0.8;
the Shufflenet visual backbone then extracts the visual features
used by subsequent processing blocks.

B. AFS & Language-guided Global Attentive Reasoning (L-
GARAN)

We follow the same approach as explained in [1] for calcu-
lating AFS & L-GARAN features. The visual backbone com-
putes features at different feature scales. Let us assume that
these features are F,; € R™*"™Xs1 F ., ¢ RM2xXm2xsz
F,3 € R™MsX™MsX33 my > my > mg refer to the resolutions
of feature maps and s, s and sg refers to the feature channels.
Let language feature embedding computed with an LSTM be
ft. AFS features are calculated as follows,

(81, B2, B3] = Fars(ft)
Fy = B1xFy1 + Ba* Fyo + P x Fiy3

01, B2, B3 are determined from the f; language embedding.

L-GARAN is a multi-modal attention component that uses
language features as a pivot to compute a language attentional
feature map F_,4 that identifies important regions in the
visual feature map. This module is activated when wy = 1,
and takes the AFS features as an input.

(D

C. DDPM: Delayed Depth Backpropagation

RealGIN-MH employs on-demand triggering for the energy-
hungry depth sensor: once this module is activated, a trigger
signal is sent to the depth camera to capture and stream N = 5
depth frames. After streaming, the depth sensor reverts to
its low-power ‘sleep” mode. The power overhead in ‘sleep’
and ‘streaming’ state is 1.5W and 2.5W, respectively. We
experimentally observed an activation delay of ~400 msec
across 3 different commercial depth sensors (Leapmotion,
Kinect DK and RealSense. This delay can cause the captured
depth image frame to be significantly delayed from the key
RGB frame, thereby resulting in incorrect pointing resolution.
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Therefore, we have developed the DDPM model to regenerate,
using the 5 delayed depth frames captured on activation, the
depth frame corresponding to the RGB keyframe. As shown
in figure 5(a), we use a Convolutional-LSTM Encoder and
Decoder model to perform this regeneration. Let D; be the
depth frame at the key frame, D, be the first depth frame
after the startup delay, D,y - D4 be the subsequent 4
depth frames and D; be the regenerated depth frame. Then, our
encoder-decoder Conv-LSTM model is calculated as follows.

Fg = Conv — LSTMEncoder({D(t’-i-i)}?:o)

, ()
D, = Conv — LST Mpecoder(Fy)

D. Gesture-guided Global Attentive Reasoning (G-GARAN)

The computation of this component is identical to L-
GARAN except, instead of f; language features, we use Fy,
(encoder output of DDPM) as a pivot. Intuitively, the model
focuses greater visual attention around the pointed location.

E. CAS - Selection of output heads

As previously discussed, the instruction comprehension
pipeline consists of multiple modules that accept different
modalities as inputs. The baseline RealG(2)IN-lite contains
only one output-head (corresponding to HS in Fig 4) that
utilizes all of these sensor inputs and modules for every single
input instruction. So as a first step in the CAS paradigm,
we identify potential exit-paths that constitute the branches
of processing pipelines, each offering varying accuracy and
energy trade-offs. To determine the optimal branch points and
compute heads, we propose an iterative training approach.

In this iterative training approach, we initially introduce
N = 6 compute heads into the RealG(2)IN-Lite comprehen-
sion pipeline, as depicted in Figure 4. H1 — HS represent
various potential exit points from different processing blocks
of the RealG(2)IN-Lite model, utilizing different sensor com-
binations. We also introduced a hybrid-branch H21, which
concatenates the features for H2 and H1 and thereby uses
both audio and RGB camera sensor data streams. Note that
the context detector is disabled at this step. These compute
heads are strategically selected to cover different endpoints of
the comprehension pipeline, and each head is associated with
an energy cost C;. Here, C; represents the sum of processing
and sensing energy required for executing the i compute
head. Subsequently, we iteratively train each compute head,

TABLE I: Accuracy, cost and efficiency for various compute
heads on COSM2IC dataset

H1 H2 H21 | H3 H4 HS
Cost 0.3 0.3 0.5 0.5 0.5 10.9
Accuracy | 0.67 | 0.01 | 0.7 0.73 | 0.74 | 0.78
Efficiency | 2.23 | 0.03 | 1.40 | 1.46 | 1.48 | 0.07

following the forward computation order for each batch of
data samples from the training set. This training process helps
determine the ToU A; = IoU(pred, gt), where A; quantifies
the intersection over union (IoU) value between the predicted
and ground truth bounding boxes. To select the optimal K = 3
heads from the initial set of N heads, we follow the following
principles:

1) We always choose the head with the highest A; to limit
the drop in accuracy resulting from dynamic switching
among different heads. Usually, this tends to be the head
that involves the most energy-intensive and high-fidelity
sensing and processing.

We compute the Efficiency, E; = ‘é— The remaining K —1
branches are then selected based on the highest efficiencies,
achieving a balance between accuracy and energy cost.
Usually, these are heads that can do the job far more
efficiently than the most accurate head, for a significant
proportion of the inputs, but fail when encountered with
complicated inputs.

2)

Table I provides the accuracy, cost and efficiency of each
compute head. Heads that are marked in bold are the chosen
K heads. Based on the CAS principle, we first chose H5 which
yields the highest accuracy. We then chose H1 and H4 as the
two highest-efficiency compute heads.

F. CAS - Determining the timing of context detection and
initial branch

Next, we explored how the choice of placing the context
detector at the early exit-points of the energy-efficient compute
heads (H1 and H4) impacts RealGIN-MH performance.

As shown in Table II, the configuration ‘Context @ Shuf-
flenet’ (Real GIN-MH) achieves the highest accuracy, latency,
and energy efficiency. This indicates that Shufflenet features
are effective in making an accurate enough context determi-
nation, in-time. On the other hand, the configuration ‘Context
@ LSTM’, which relies solely on LSTM features from the
audio data, achieves significantly lower accuracy, primarily
for task instances where pointing input is important. This
is expected since it is very likely that the verbal instruction
ends much later than the corresponding pointing gesture, at
which point it is too late to trigger the RGB and depth
sensor to capture the pointing hand. This suggests that even
though the audio sensor consumes the least energy, it is not
suitable as a detector of task context. This example also
illustrates that blindly relying on the lowest-energy sensor to
determine the context to trigger the high-energy sensors is
not appropriate for our multi-modal instruction comprehension
task, due to asynchronous input. The configuration ‘Context
@ LSTM+Shufflenet’, which combines language and visual
features, offers a potentially better feature representation for
context determination. However, it comes at the cost of higher
overall latency and energy consumption, with a lower accuracy
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TABLE II: Performance variations with context detectors
added at various branch points

Context Acc. | Lat. Energy (mJ)
@ (%) (ms) | Proc. | Sens. | Total
Shufflenet (H1) 76.46 | 130 710 130 840
LSTM (H2) 59.23 | 138 740 145 885
LSTM + Shufflenet (H21) | 7529 | 145 775 145 920
AFS (H3) 74.19 | 147 800 140 940
L-GARAN (H4) 73.56 | 150 820 135 955

compared to ‘Context @ Shufflenet’. This loss in performance
can be attributed to the increased delay in the decision to
activate the depth camera, leading to higher pixel errors
according to Figure 6(a). Thus, from Table II, we can decide
that our initial committed processing branch would be HI,
which uses the RGB camera data.

G. RealGIN-MH - Multiple output heads

As depicted in figure 4, H2, H21 and H3 marked in purple
are the redundant compute heads based on CAS -based optimal
head selection approach. Thus, we remove these redundant
heads and only activate H1, H4 and H5 for this step to
subsequently train the context detector. Each output head
provides a bounding box of the target object via Feature
Pyramid Network (FPN) and regression. Let us assume, I;
as the key frame (RGB), L as the text instruction and G as
the depth frames captured after the sensor is triggered. Let
F,,: be the final feature map for bounding box regression.
At runtime, we dynamically choose a specific compute head
based on the context estimated by the context detector module.

To predict the task context, we use the visual features
generated by the Shufflenet backbone. We add a 2-layer CNN
network followed by a fully connected layer to compute the
feature embedding necessary to predict the visual complexity.
This feature embedding is then sent to 3-neuron fully con-
nected layer with Gumbel-Softmax activation function [23] to
compute the discrete task context triple:

wy, wa, w3 = G(F(fy)); where wy,ws,ws € {0,1} (3)
As depicted in equation 3, we compute wi,ws,ws repre-
senting 3 distinct complexity levels, and the corresponding
branches. When wy; = 1 RealGIN-MH only uses a Shufflenet
backbone for comprehension; when we = 1, Shufflenet
backbone for vision, Bi-LSTM for language and AFS gets
activated, while ws = 1 implies the activation of all the
modules (including the depth camera and the DDPM module).

Once the context is determined, we then define two forward
computations in training and inference mode.

o Training Mode - In the training mode, to achieve dif-
ferentiability during the backpropagation stage, we com-
pute all three branches (regardless of the computed values
w1, Wa, W3) as:

FHl = Hl([t),FH4 = H4(FH1,L),FH5 = H5(FH4,G)

Fout = w1 * Frry +wg * Frg + w3 x Fs

“4)

Furthermore, we modify the original loss function of
RealG(2)In-Lite l,.;; as follows to add the policy for
selecting the optimal compute head:

N
1 , A .
loss:lorig—i-ﬁ* E (e1 *w] + eg xwy + eg x wy) (5)

Here, e1, e and ej arleighe relative energy costs for respec-
tive branch point and NN is the batch size. Based on our
energy profiling on Jetson TX2, we identified that the total
energy for H1is 561 mJ, H41is 775 mJ and H5 is 10,915 mJ
(~20x higher than H1). Thus we choose, e; = 561/(561 +
775+ 10915) = 0.046, ex = 775/(561 + 775 + 10915) =
0.063 and ez = 10915/(561 + 775 + 10915) = 0.89.

« Inference Mode - In the inference mode, to achieve savings
in latency we compute only the relevant branch based on the
task complexity.

Zf wp = 1— Fout = Hl([t)
if wo=1— Fou=H4(H1(I),L) (6)
if wy =1 Fyy = H5(HA(H1(L,), L), G)

VI. RESULTS

We evaluated RealGIN-MH and various baselines using
the COSM2IC multi-modal instruction dataset. Since the Mi-
crosoft Hololens lacked computational resources for baseline
models and could not measure energy consumption when
toggling the depth sensor, we used an NVIDIA Jetson TX2
device to execute our models interfaced with a RealSense
L515 depth sensor that can be easily toggled On/Off (via
software commands). Power consumption was accurately mea-
sured using a Monsoon power monitor. The Jetson TX2 also
ran a real-time speech-to-text model, Picovoice cheetah [24],
converting audio into text. Thus, in our experimental setup,
audio and RGB camera data corresponding to COSM2IC’s
environmental setup and verbal instructions, are captured on
the HoloLens and then streamed to the nearby Jetson TX2 for
executing RealGIN-MH and baselines.

A. Evaluation Metrics

Similar to COSM2IC, we assume that the comprehension
task is successful if the mid-point of the predicted bounding
box lies within the ground-truth target object boundary. We
measure the depth sensing energy separately, as the other
sensors are always on and thus have a constant energy con-
sumption across all approaches. Since we observed that the
L515 sensor consumes 1.5W of static power, we only measure
the additional dynamic power consumed when the sensor is
triggered to stream depth frames. For a comparison of energy
consumption (Tables III & IV), we use the average energy
consumed over all the instructions in the COSM2IC dataset—
i.e., total energy consumed for the entire set of instructions,
divided by the total instructions in the dataset.

B. RealGIN-MH Performance against other baselines

Table III summarizes the performance of RealGIN-MH
against other baselines. For both RealG(2)In-Lite (end-to-
end DNN) and COSM2IC (branch switching approach), the
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TABLE III: RealGIN-MH performance against baselines

Model Acc. Lat. Energy (mJ)

(%) (ms) | Proc. Sens. Total
RealG(2)In-Lite 78.51 155 853 10000 | 10853
COSM2IC 76.13 110 590 10000 | 10590
Real GIN-MH-noDDPM 73.97 115 630 135 745
RealGIN-MH 76.46 130 710 130 840
RealG(2)In-MobViT 80.14 250 1410 | 10000 | 11410
RealGIN-MH-MobViT 78.28 210 1100 140 1240

depth sensor is assumed to be always-on, thereby consuming
~10,000mJ energy/instruction. While COSM2IC optimizes
the inferencing overhead, this translates to only 5.5% savings
in the total energy cost. In contrast, CAS-based RealGIN-MH
jointly reduces both processing energy and sensing energy
significantly. In total, RealGIN-MH achieves ~12.9x savings
in total energy in comparison to RealG(2)In-Lite while main-
taining a similar latency and suffering < 2% loss in task
accuracy. We also evaluated the performance without the
DDPM module (RealGIN-MH-noDDPM). This incurs ~10%
lower latency and consumes ~10% (80mJ) lower energy
than RealGIN-MH. However, the task accuracy drops by an
additional ~2.5%. We also studied the performance after
replacing the Shufflenet backbone in both RealG(2)In-Lite and
Real GIN-MH with a Mobile-VIT transformer [25]. We observe
similar savings in latency and energy. Furthermore, Figure 7
shows the distribution of latency and total energy RealGIN-
MH for the COSM2IC dataset. Given the adaptive nature of
RealGIN-MH, latency varies between 90msec - 170msec and
total energy between 550mJ - 1200mlJ
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Fig. 6: Average pixel error with DDPM

C. Branch-specific performance of Real GIN-MH

Table IV provides the performance of RealGIN-MH when
all the instructions were forced to pass through a particular
head. We see that while H1 (RGB only) or H4 (RGB + Audio)
do not consume any depth-sensing energy, they both suffer
from a significant degradation in accuracy. In comparison,
solely using the branch H5 with always-on depth sensing
results in a superior accuracy of 78.20% while consuming a
higher sensing energy consumption of 10000 mJ. RealGIN-
MH dynamically chooses these branch points based on a
complexity assessment, executing heads H1, H4 and HS for
25.75%, 23.16% and 51.08% of the total instructions, re-
spectively. Consequently, Real GIN-MH achieves task accuracy
(76.43%) which is comparable to HS, but with a much lower
sensing energy of 130mJ.

D. Pointing sensitivity analysis
In Figure 6(a), we plot and observe how the average pointing
error (in pixel distance) increases as the sensor activation

delay increases. Thus, equipping future pervasive devices with
faster sensor triggering capabilities may enable more accurate

TABLE 1V: Head-based Perf. of RealGIN-MH

Head | Acc. | Lat. Energy (mJ)
(%) (ms) | Proc. Sens.

H1 68.51 102 561 0

H4 73.18 141 775 0

H5 78.20 165 915 10000

MH 76.46 130 710 130
—g 1200 E-
wv
E 150 1000 §
> 125 “ s8oo &
= (¥
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Fig. 7: RealGIN-MH Latency and Energy

pointing resolution and higher task accuracy. By varying the
number of frames (V) used as an input to the DDPM, we
observe (Figure 6(b)) that using a larger number of frames
results in a lower pointing error, but increases the sensing
energy overhead. We empirically chose N = 5 frames, as
additional frames provide only a negligible reduction in the
pointing error. Figure 5(b) & 5(c) visually illustrate (a) the
‘keyframe’ depth image—i.e., the depth image that we would
have ideally used if the sensor was always on, and (b) the depth
image regenerated using DDPM N = 5 frames. While the
regeneration is not perfect, the pointing resolution is evidently
adequate for the G-GARAN module in RealGIN-MH.

E. Generalizability of CAS

To evaluate the generalizability of CAS to other tasks, we
applied it to a multi-modal segmentation task proposed in [5],
where a DNN (PSTNet-Thermal) takes an RGB image and a
thermal image as inputs and produces a segmentation output
with 5 different classes.

TABLE V: Head-based accuracy on PST900 dataset

Branch Cost Accuracy Efficiency
HO 0.03 0.46 15.33
H1 0.04 0.67 16.75
H2 0.23 0.69 3

Following the CAS principle, we added N = 3 heads to the
PSTNet-Thermal, as illustrated in Figure 8. Through iterative
training, we determined the accuracies and efficiencies of these
heads, which are summarized in Table V. Based on our first
principles, we then selected HI and H2 for our dynamic, multi-
head model called PSTNet-Thermal-MH, which was trained
using the dynamic triggering approach.

PSTNet-Thermal-MH seeks to intelligently trigger the
power-hungry thermal camera, which consumes 2.5W as per

Stream
. Out

Thermal

CONCATENATE

Fig. 8: Architecture of PSTNet-Thermal-MH
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its technical specs) using a context detector placed at the
encoder as shown in Figure 8. Table VI plots the resulting
accuracy and energy overheads, using spec-based power values
(thermal= 2.5W, RGB=0.5W), of PSTNet-Thermal-MH vs.
alternative baselines. We observed that PSTNet-Thermal-MH
activates the thermal camera only 36% of the time, and
achieves a 2x reduction in total energy consumption, compared
to PSTNet-Thermal, without any accuracy loss.

TABLE VI: PSTNet-Therm-MH performance Vs baselines

Acc. Lat. Energy (mJ)
Model (mIoU) | (ms) | Proc. Sens. Total
PSTNet 0.6765 20 50 5 55
PSTNet-Thermal 0.6837 45 121.50 123775 24525
PSTNet-Therm-MH | 0.6822 31 83.7 32.86 116.46

VII. DISCUSSION
A. Hardware triggering

RealGIN-MH only utilized software-based activation of the
depth sensor. We observed a static power consumption of
~1.5W even when the depth sensor is presumably in a low-
power standby state. Additional energy savings can clearly
be realized by introducing a hardware switch and supporting
much faster (<100 msecs) sensor activation.

B. Improving DDPM Energy Efficiency

DDPM module, where a past depth frame is estimated
using only a series of other depth frames, currently consumes
non-trivial energy. For further energy optimization, it may be
possible to perform depth image synthesis, using approaches
such as Wofk et al. [26], from the already-available RGB
frames sharing the same viewpoint. We could also consider
stereo vision cameras (where CAS is used to selectively invoke
the second camera) to replace expensive depth sensors.

VIII. CONCLUSION

We have introduced the CAS paradigm, which simultane-
ously reduces sensing and inferencing energy by dynamically
switching between computational branches. Our RealGIN-
MH model, which uses CAS optimization paradigm, for the
task of multi-modal instruction comprehension, achieves a
12.9x reduction in energy overheads compared to baseline
while achieving higher accuracy. Additionally, we demonstrate
the generalizability of the CAS paradigm in a multi-modal
segmentation task, where the CAS-based PSTNet-Thermal-
MH model consumes approximately 2x less energy.

REFERENCES

[1] Y. Zhou, R. Ji, G. Luo, X. Sun, J. Su, X. Ding, C.-W. Lin, and Q. Tian,
“A real-time global inference network for one-stage referring expression
comprehension,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

Y. Liao, S. Liu, G. Li, FE. Wang, Y. Chen, C. Qian, and B. Li, “A real-
time cross-modality correlation filtering method for referring expression
comprehension,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020, pp. 10 880-10 889.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848-6856.

[4] D. Weerakoon , V. Subbaraju, T. Tran, and A. Misra, “COSM2IC:

[2

—

[3

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]
[25]

[26]

Optimizing real-time multi-modal instruction comprehension,” vol. 7,
no. 4, pp. 10697-10704, 2022.

S. S. Shivakumar, N. Rodrigues, A. Zhou, I. D. Miller, V. Kumar, and
C. J. Taylor, “Pst900: Rgb-thermal calibration, dataset and segmentation
network,” in 2020 IEEE international conference on robotics and
automation (ICRA). IEEE, 2020, pp. 9441-9447.

M. Cavazza, F. Charles, S. J. Mead, O. Martin, X. Marichal, and
A. Nandi, “Multimodal acting in mixed reality interactive storytelling,”
IEEE MultiMedia, vol. 11, no. 3, pp. 30-39, July 2004.

J. Y. Lee, G. W. Rhee, and D. W. Seo, “Hand gesture-based tan-
gible interactions for manipulating virtual objects in a mixed reality
environment,” The International Journal of Advanced Manufacturing
Technology, vol. 51, no. 9-12, pp. 1069-1082, 2010.

M. Sargin, O. Aran, A. Karpov, F. Ofli, Y. Yasinnik, S. Wilson, E. Erzin,
Y. Yemez, and A. Tekalp, “Combined gesture-speech analysis and
speech driven gesture synthesis,” 2012 IEEE International Conference
on Multimedia and Expo, vol. 0, pp. 893-896, 07 2006.

I. Hara, F. Asano, H. Asoh, J. Ogata, N. Ichimura, Y. Kawai, F. Kanehiro,
H. Hirukawa, and K. Yamamoto, “Robust speech interface based on
audio and video information fusion for humanoid hrp-2,” in 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 3, 2004, pp. 2404-2410 vol.3.

E. Wolf, S. Kliiber, C. Zimmerer, J.-L. Lugrin, and M. E. Latoschik, “”
paint that object yellow”: Multimodal interaction to enhance creativity
during design tasks in vr,” in 2019 International Conference on Multi-
modal Interaction, 2019, pp. 195-204.

D. Whitney, M. Eldon, J. Oberlin, and S. Tellex, “Interpreting multi-
modal referring expressions in real time,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
3331-3338.

R. Scalise, S. Li, H. Admoni, S. Rosenthal, and S. S. Srinivasa, “Natural
language instructions for human—robot collaborative manipulation,” The
International Journal of Robotics Research, vol. 37, no. 6, pp. 558-565,
2018.

D. Weerakoon, V. Subbaraju, N. Karumpulli, T. Tran, Q. Xu, U.-X.
Tan, J. H. Lim, and A. Misra, “Gesture enhanced comprehension of
ambiguous human-to-robot instructions,” in Proceedings of the 2020
International Conference on Multimodal Interaction, 2020, pp. 251-259.
F. I. Dogan and I. Leite, “Using depth for improving referring ex-
pression comprehension in real-world environments,” arXiv preprint
arXiv:2107.04658, 2021.

S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems, 2017, pp. 1-14.

S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep
learning layers for constrained resource inference on wearables,” in
Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems CD-ROM, 2016, pp. 176-189.

T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” in International Conference on Ma-
chine Learning, 2017, pp. 527-536.

J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances
in neural information processing systems, 2017, pp. 2181-2191.

R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,
“Mobisr: Efficient on-device super-resolution through heterogeneous
mobile processors,” in The 25th Annual International Conference on
Mobile Computing and Networking, ser. MobiCom *19. New York,
NY, USA: Association for Computing Machinery, 2019.

T. Verelst and T. Tuytelaars, “Dynamic convolutions: Exploiting spatial
sparsity for faster inference,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 2320-2329.
“Intel realsense lidar camera 1515,” https://www.intelrealsense.com/lidar-
camera-1515/, accessed: 2022-10-08.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in International Conference on Learning Represen-
tations, 2017.

“Picovoice,” https://picovoice.ai/, accessed: 2022-09-12.

S. Mehta and M. Rastegari, “Mobilevit: Light-weight, general-purpose,
and mobile-friendly vision transformer,” in International Conference on
Learning Representations, 2022.

D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “Fastdepth: Fast
monocular depth estimation on embedded systems,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). 1EEE, 2019,
pp. 6101-6108.



	CAS: Fusing DNN optimization & adaptive sensing for energy-efficient multi-modal inference
	Citation

	tmp.1730268265.pdf._mAi_

