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Decentralized Finance (DeFi) uses blockchain technologies to transform traditional
financial activities into decentralized platforms that run without intermediaries and
centralized institutions. Smart contracts are programs that run on the blockchain, and
by utilizing smart contracts, developers can more easily develop DeFi applications.
Some key features of smart contracts — self-executed and immutability — ensure the
trustworthiness, transparency and efficiency of DeFi applications, and have led to a
fast-growing DeFi market. However, misbehaving developers can add traps or backdoor
code snippets to a smart contract, which are hard for contract users to discover. We
call these code snippets in a DeFi smart contract as “DeFi Contract Traps” (DCTSs).
In this paper, we identify five DeFi contract traps and introduce their behaviors,
describe how attackers use them to make unfair profits, and analyse their prevalence
in the Ethereum platform. We propose a symbolic execution tool, DEFIDEFENDER,
to detect such traps and use a manually labeled small-scale dataset that consists of



700 smart contracts to evaluate it. Our results show that our tool is not only highly
effective but also highly efficient. DEFIDEFENDER only needs 0.48s to analyze one DeFi
smart contract and obtains a high average accuracy (98.17%), precision (99.74%), and
recall (89.24%).Among the five DeFi contract traps introduced in this paper, four of
them can be detected through contract bytecode without the need for source code. We
also apply DEFIDEFENDER to a large-scale dataset that consists of 20,679 real DeFi
related Ethereum smart contracts. We found that 52.13% of these DeFi smart contracts
contain at least one contract trap. Although a smart contract that contains contract
traps is not necessarily malicious,our finding suggests that DeFi related contracts have
many centralized issues in a zero-trust environment and in the absence of a trusted

party.

1 Introduction

In traditional financial systems, centralized institutions ensure the security of financial
activities. However, it is not easy to guarantee the reliability and trustworthiness of the
centralized node. For example, a peer-to-peer lending application claims high interest
for the investors, but investors may worry about whether the P2P application will pay
the interest as they promised, even return the principal. Thus, traditional financial
institutions will often encounter frictions in the fund raising process, especially for
some infamous enterprises / institutions, as they have no strong network ties to make
investors trust them [1].

Fortunately, the advent of Ethereum smart contracts [2] allows enterprises and
institutions to address the trust concern and also brings other new advantages. First,
smart contracts are self-executed — all of their execution depends on their code. If
there is no code related to a money transfer, even the contract owner cannot with-
draw the money. Second, smart contracts are immutable. Once the smart contracts
are deployed to the blockchain, it is very difficult to change their code or behav-
ior. These features help to ensure the trustworthiness of smart contracts. Third, all
smart contract transactions on Ethereum are visible to anyone [3], which ensures
their transparency. Applications based on smart contracts are able to replace some
trust requirements, which makes them more efficient than traditional financial sys-
tems. Specifically, money transfer between different countries or institutions may need
several hours even days in traditional financial systems because of security policies,
while token transfer in smart contract based applications usually only needs several
minutes [4].

The advent of smart contracts results in the derivation of a new term, so-called
“Decentralized Finance” [5], also known as “DeFi”. In DeFi, traditional financial activ-
ities are transformed into decentralized platforms by utilizing decentralized networks
or technologies, e.g., smart contracts. The features of smart contracts, i.e., trustworthi-
ness, transparency and efficiency, lead to the fast-growing of DeFi ecosystem. In this
paper, we refer to all financial activities rooted in smart contracts as “DeFi Contracts”.

As the most popular blockchain platform to run smart contracts [6], the number
of DeFi applications deployed on Ethereum has been growing rapidly in recent years.



More than 100 billion dollars of value is locked in the Ethereum in 2021 [7] with a
wide variety of DeFi applications, e.g., peer-to-peer lending [8], token exchanges [9].

However, it is inevitable that a new finance-oriented technology might be exploited
by misbehaving developers. A DeFi application usually has a front end to interact
with users, e.g., a website or mobile app. In the front end, users are informed that the
application is based on smart contracts to ensure its trustworthiness. This front end
usually provides links to smart contracts, which enable users to check the informa-
tion of contracts, e.g., transactions, balance. The immutable, self-executed and public
information of smart contracts might give users a false sense of security that the
DeFi applications cannot take advantage from their investments. It is true that smart
contracts are immutable and self-executed. However, misbehaving developers can add
some traps or backdoors in their smart contract code to unfairly profit from users.
Many smart contracts do not come with publicly available source code [10, 11], and
Ethereum itself only stores the bytecode of smart contracts. Without source code,
even professional smart contract developers find it difficult to spot DeFi traps from
contract bytecode. Some smart contract source code might be visible to the public.
However, many users may not have enough professional knowledge to see through the
DeFi traps added to the code. Thus, misbehaving developers can make unfair profit
from users by adding traps or backdoors in DeFi smart contract code.

In this paper, we introduce the concept of DeFi Contract Traps (DCTs); we define
aDCT as “A code snippet in a DeFi smart contract that can allow unscrupu-
lous contract owners to unfairly profit from unsuspecting contract users.”
There is a key difference between DCTs and vulnerabilities in traditional
software code: vulnerabilities are program “errors” that can lead to security issues.
Vulnerabilities can be activated by anyone and might lead to financial loss for both
contract owners and users. However, DCTs are more like “warnings” for contract
users and can only be executed by contract owners. That is to say, contracts with
DCTs are not necessarily malicious. DCTs give contract owners the ability to make
unfair profit from contract users. DCTs thus pose threats to contract users’ assets,
while potentially unfairly benefitting contract owners, but may not be used by the con-
tract owners. In some situations, vulnerabilities could transform to DCTs by adding
additional conditions (code snippets). These kinds of DCTs could be regarded as the
“transformation” of vulnerabilities (cf. Section 6.4).

To help readers better understand the concept of DCTs, we introduce five DCTs
as examples and introduce how attackers can use these traps to make unfair profits.
Two of them — Tricky Send and Selfdestruct Permission — are the “transformation”
of vulnerabilities. Super Storage Permission and Super Transfer Permission are sus-
picious code snippets that enable DeFi smart contract owners to transfer money or
change the states of the contracts. Forged Transfer cheats users by adding promised
functionalities to unexecuted parts of a contract.

To combat these DeFi contract traps, we propose a new tool, DEFIDEFENDER, to
detect defined DCTs. There are two parts to DEFIDEFENDER — a symbolic executor
and source analyzer. For Forged Transfer, we have to detect it from smart contract
source code by parsing its Abstract Syntax Tree (AST). For the other four DeFi traps,
DEFIDEFENDER is able to detect them through contract bytecode without the need



of their contracts’ source code. DEFIDEFENDER uses a symbolic execution model and
several predefined patterns to detect contract traps.

We use a manually labeled small-scale dataset, which consists of 700 smart
contracts to evaluate DEFIDEFENDER. Our experimental results show that DEFIDE-
FENDER is not only highly accurate (achieves an average accuracy and Fl-score of
98.17% and 93.85%, respectively), but is also highly efficient (only needs 0.48 sec-
onds to analyze one smart contract). We also use a large-scale dataset, which consists
of 20,679 real DeFi-related Ethereum smart contracts extracted from 117,926 verified
(open-sourced) smart contracts on Etherscan by February 2022. Our detection results
show that about 52.13% of DeFi smart contracts contain at least one DCT. Although
a smart contract that contains contract traps is not necessarily malicious, it still shows
that the contract owner has the ability to make unfair profit. The main contributions
of this paper include:

® We introduce the DCT warning concept and investigate the safety of DeFi contracts
on Ethereum. By understanding such DCTs, contract users might realize some DeF'i
contracts are not as safe as they are claimed to be.

® We propose a tool named DEFIDEFENDER to detect these DCTs. DEFIDEFENDER
obtains a high average accuracy (98.17%), precision (99.74%), and recall (89.24%),
and is highly efficient (0.48s) in analyzing one smart contract, which can be used
by contract users or institutions to find malicious DeFi apps.

® We have run DEFIDEFENDER on a large number of real Ethereum DeFi smart
contracts and confirm that our defined five DCTs are prevalent in Ethereum.

® We have released the DEFIDEFENDER tool and dataset at: https://doi.org/10.5281/
zenodo.8323465.

The organization of the rest of this paper is as follows. In Section 2, we present
the background knowledge of smart contracts and DeFi. Then, we introduce five DeFi
contract traps in Section 3, and describe the methodology of DEFIDEFENDER in
Section 4. After that, we present its evaluation in Section 5. We present a case study
and discuss the importance of DCTs in Section 6. Then, we introduce related works
in Section 6. In Section 7, we conclude the paper and present future directions.

2 Background

In this section, we briefly introduce key background information about DeFi, smart
contracts and EVM bytecode.

2.1 Decentralized Finance

Decentralized finance (DeF1i) refers to a financial application that is built at the
top of the blockchain system, which has increased rapidly in recent years [12]. The
blockchain system provides easy access with near-instant, permissionless, and trans-
parent financial services to developers and users. DeFi applications do not need any
intermediaries. The total value locked in the DeF1i system was only 600 million USD in
January 2020, while the number explodes to 160 billion in December 2021. [13]. The



explosive growth of the DeFi ecosystem is inseparable from some killer applications,
e.g., Automated Market Maker (AMM) [14], Flash Loan [15], and Non-Fungible Tokens
(NFTs) [16]. AMM uses predefined rules to enable on-chain decentralized exchanges to
replace traditional order book systems. Flash loan is a type of uncollateralized lending
based on smart contracts. NFTs can be associated with virtual or real-world items,
e.g., photos, videos. Thus, the ownership of a real-world item can be separated into
several tokens, which can be transferred or sold. There are many other applications of
DeFi e.g., P2P-lending, saving applications, etc.

2.2 Ethereum and Smart Contracts

The concept of smart contracts was first introduced by Nick Szabo in 1997 [17]. He
described smart contracts as trustless and self-executing programs that can facili-
tate digital verification. In 2015, the born of Ethereum made the concepts of smart
contracts become a reality.

There are two types of accounts in Ethereum, i.e., externally owned accounts
(EOA) and contract accounts. For an EOA, users use the private key to control the
contract. For a contract account, all the execution depends on its code; no one can
affect the running of the contract, even the owner. Ether (ETH) is the token in the
Ethereum platform. In August 2021, the value of a single Ether is equivalent to 3300
USD.

Smart contracts are usually developed in a high-level programming language, e.g.,
Vyper [18], Solidity [19], LLL [20]. Solidity is the most popular language in pro-
gramming Ethereum smart contracts [3, 21]. Thus, we only focus on Solidity smart
contracts on the Ethereum ecosystem in this paper. There are four methods to transfer
Ethers in Ethereum smart contracts. Three of them are address related functions, i.e.,
address.transfer(), address.send(), and address.call.value()(). For ease of reference, we
called them AT, AS, and ACV, respectively. AT and AS can only transfer Ethers to
an EOA, while ACV can transfer Ethers to both two types of accounts. AS and ACV
return a boolean value to identify whether the transfer is successful, while AT will
throw an exception if the transfer fails. Another method to transfer Ethers is by using
selfdestruct(address) function. This function is the only way to remove a smart con-
tract from Ethereum. Once this method is executed, all the Ethers on a contract will
be transferred to a specific address, and the contract will be destructed.

2.3 Ethereum Virtual Machine (EVM)

Ethereum blockchain is a decentralized network that consists of distributed nodes.
Each node stores the whole blockchain, which is called a distributed ledger. The node
allows users to create or invoke smart contracts by sending transactions. These trans-
actions will be processed on a node during the verification of blocks by using Ethereum
Virtual Machine (EVM).

When deploying a smart contract to Ethereum, the contract will be compiled into
the EVM bytecode. There are two kinds of EVM bytecode, i.e., runtime bytecode and
creation bytecode. The creation bytecode contains the constructor logic and construc-
tor parameters of a smart contract, while the runtime bytecode stores the execution



Table 1: Definitions of our Five Defi Contract Traps

Contract Defect Definition

Tricky Send (TS) Resetting users’ balance deliberately when Ether transfer
fails.

Super  Storage Permission | Adding backdoor code snippets to allow someone to

(SSP) change key storage variables freely.

Super Transfer Permission | Adding suspicious code snippets to allow someone to

(STP) transfer the Ethers freely.

Selfdestruct Permission (SP) | Adding a Selfdestruct function to allow someone to
destruct the contract and transfer all the Ethers.

Forged Transfer (FT) Transferring promised functionalities to the unexecuted
parts of source code to confuse users.

logic of a smart contract. Once a contract is deployed, Ethereum only stores the
runtime bytecode.

When a user submits a transaction to invoke a contract, EVM splits bytecode into
bytes and executes them one by one. Each byte represents a single EVM instruction.
There are 140 unique instructions of EVM by February 2022 [22]. EVM is a stack-
based machine, which is similar to JVM, but they have many differences. For example,
JVM bytecode has a clearly defined jump target, while the jump targets of EVM are
read from the EVM stack. This feature increases the difficulty of building a Control
Flow Graph (CFG) from a smart contract.

2.4 Verified Smart Contracts in Etherscan

Etherscan [23] is the most popular block explorer to search Ethereum blockchain
data. It facilitates users to check the information of the Ethereum blockchain, e.g.,
contract bytecode, contract balance, transactions. Ethereum only stores the bytecode
of smart contracts, and Etherscan provides a platform to allow developers to upload the
source code of contracts. To upload the source code on Etherscan, developers should
first inform the compiler version and give the contract name of a specific contract
address. Then, Etherscan will compile the uploaded source code to bytecode locally
and compare it with the bytecode stored on the blockchain. If they are the same,
the source code will be public on Etherscan and can be checked by anyone. However,
when compiling source code to bytecode, the compiler will remove unused parts, which
means even the bytecode of two contracts are the same, the source code may not be the
same. Since the Etherscan verification system of Etherscan cannot identify the unused
parts on the source code and remove them, the source code published on Etherscan
might contain unexecuted parts.

3 DeFi Contract Traps

From our analysis of DeFi smart contracts on Ethereum, we have identified five exam-
ples of DCTs. Table 1 shows a summary of their definitions, and we give detailed
descriptions in the following subsections. The five traps are divided into two groups,
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i.e., executed contract traps and non-executed contract traps. For each trap, we give
an example to introduce how misbehaving developers use it to make unfair profit.

pragma solidity 70.4.25;
contract P2PLending{
address owner;
uint baselnterest = 100;
mapping (address => uint) public bankAccount;
mapping (address => uint) public startTime;
modifier onlyOwner (){
require (msg.sender == owner) ;
-
}
constructor () public{
owner = msg.sender;

function invest () public payable {
bankAccount [msg.sender] 4= msg.value;
start Time [msg.sender] = block.number;

}
//Tricky Ether Transfer
function TrickyWithdraw () public payable {
require (bankAccount [msg.sender] > 0);
require (block .number — startTime [msg.sender] > 1000000);

uint bonus = bankAccount [msg.sender] * baselnterest / 1000;
msg.sender .send (bankAccount [msg.sender] + bonus);
bankAccount [msg.sender] = 0;

//Super Storage Permission
function changelnterest(uint newInterest) public onlyOwner{
baselnterest = newlnterest ;

//Selfdestruct Permission
function destructContract(address addr) public onlyOwner{
selfdestruct (addr);

//Super Transfer Permission
function withDrawEthersByOwner(address addr, uint amount) public payable
onlyOwner {
if (address(this).balance > amount)
addr. transfer (amount) ;
I8

Listing 1: Executed Contract Traps Example - A P2P Lending Contract

3.1 Executed Contract Traps

Executed contract traps refer to code snippets that are utilized by misbehaving devel-
opers to generate unfair profits, and the code snippets will be compiled into contract
bytecode. There are four kinds of executed contract traps introduced in this paper —
Tricky Send, Super Storage Permission, Super Transfer Permission, and Selfdestruct
Permission.

3.1.1 Contract Example

Listing 1 shows a P2P Lending contract, which claims users can invest Ethers to the
contracts, and they can get 10% interest after a certain period. L11 is the constructor




function of the contract. It is only executed once when the contract is deployed to the
blockchain. msg.sender is the address of the transaction sender. Thus, the variable
owner in L3 stores the address of the contract owner (the person who deploys the
contract). A function can only be executed when it passes the logic check of modifier
(L7). Thus,the function changelnterest() (L27), destructContract() (L31), and with-
DrawFEthersByOuwner()(L35) can only be executed by the contract owner. Users can
call invest() (L14) to invest Ethers. Their address, investment amounts, and time of
the investment will be stored (L5 and L6). After a time of period (L21), the users are
able to withdraw their Ethers with 10% of interests(L23). After that, their balance
will be reset (L24).

3.1.2 Tricky Send (TS)

As introduced in Section 2, Ethereum allows three methods to transfer Ethers
without destructing the contracts, i.e., address.transfer(), address.send() and
address.call.value()(). Unlike address.transfer() which will throw an exception
and stop the transaction when the FEther transfer failed, address.send() and
address.call.value()() will only return a boolean value false. Misbehaving develop-
ers might not check the return value deliberately and reset users’ balance
to make unfair profit. It is difficult for users to find the risk, if they do not have
enough knowledge in developing smart contracts.

Attack Example: The Ether transfer failure can frequently happen if the contract
does not have enough balance to send. In Listing 1, the contract promises to give
users 10% interest. However, there is no initial balance on the contract, which means
the first user who withdraws money will definitely fail. Specifically, a user transfers 1
Ether to the contract, and the contract promises to return 1.1 Ethers. However, the
insufficient balance will lead to the failure of transfer, and the users’ balance
will be cleared.

3.1.3 Super Storage Permission (SSP)

Immutability is an important feature for smart contract applications. Many DeFi
contracts claim their safety and trustworthiness because smart contracts cannot be
modified once deployed. However, the states of storage variables can be changed to
allow the contract owner to control the contract. Although all the data of a smart
contract is publicly viewable, it does not imply that checking the data is easy for
everyone. To check the storage values, users need to use RPC interfaces, e.g., interfaces
provided by web3 [24], or find the transaction that modifies the storage variables.
However, both of them might not easy to be operated by smart contract users who
may not be an expert in reading smart contract code. Users may not easily realize
that they are cheated by the contracts when the contract owner changes the
storage values.

Attack Example: Listing 1 uses a high interest (10%) to lure users to invest in the
contracts. However, in Line 27, the contract owner can easily change the interest.
Many users may not be aware that the interest has been changed until they
withdraw Ethers.
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3.1.4 Super Transfer Permission (STP)

With this DCT, misbehaving developers can embed suspicious code in a con-
tract. This enables them to transfer Ethers freely, which threatens the DeF'i contract
users’ assets.

Attack Example: The withDrawEthersByOwner() in L35 of Listing 1 is the sus-
picious code added by the owner. By using this function, the contract owner can
transfer Ethers which are stored by the contract users.

3.1.5 Selfdestruct Permission (SP)

Selfdestruct function is the only way to disable a smart contract in Ethereum. Once
this function is executed, the contract cannot be visited anymore, and all the Ethers
on the contract will be transfered to another account. Usually, this function is used to
prevent unexpected situations. For example, when a bug is found, the contract owner
can destruct the contract and deploy a new version after fixing the bug. However,
some misbehaving developers might add a Selfdestruct function to destruct
the contract and take all of the Ethers on its balance.

Attack Example: L32 of Listing 1 contains a Selfdestruct function, which can only
be executed by the contract owner. Thus, the contract owner has the ability to
destroy the contract and transfer all the Ethers to their own account.

3.2 Non-Executed Contract Traps

Non-executed contract traps correspond to cases where the code snippets that are
used by misbehaving developers to make unfair profit will not be executed, and the
code snippets cannot be found in the contract bytecode.

3.2.1 Contract Example.

Listing 2 is a contract with unexecuted subcontracts. The main contract is named
“Maincontract”; Subcontract! is inherited by Maincontract, while Subcontract? is
never executed.

contract Maincontract is subcontractl { .

}

contract Subcontractl {
function invest () {...}
}

contract Subcontract2 {
function withDrawEthers() {...}}

Listing 2: Non-Executed Contract Trap Example - A Contract with Unexecuted
Subcontracts.
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3.2.2 Forged Transfer (FT)

The Etherscan verification system will not check the unexecuted parts of a smart
contract (See Section 2.4). Misbehaving developers can promise some func-
tionalities to contract users to gain their trust, such as Ether transfer or pay
interest. However, they can move the promised functions to unexecuted parts to
mislead users.

Attack Example: Listing 2 is an example of a contract with forged transfer. There is
one main contract and two subcontracts in the contract. The invest() (14) allows users
to invest the contracts, and withDrawFEthers (L7) allows users to withdraw Ethers. All
the subcontracts are benign, and there is no special permissions for the contract owner.
However, the main contract only inherits Subcontract1, which means Subcontract2 can
never be executed. Thus, the users can never withdraw the Ethers stored on
the contract.

4 The DeFiDefender Approach

We introduce a new approach packaged in our DEFIDEFENDER tool to detect the
five DCT's shown above. We first explain the workflow of our DEFIDEFENDER tool in
Section 4.1. Then, we describe the technical details in the following parts.

4.1 Design Overview

Figure 1 shows an overview of the architecture of DEFIDEFENDER. The tool consists
of two parts: the top half of the figure is used to detect four DCTs, i.e., TS, SSP,
STP, and SP. DEFIDEFENDER is able to detect these four DCTs through contract
bytecode without the need for source code. If the input is source code, DEFIDEFENDER
will compile the source code to bytecode by using Solidity compiler. After that, the
bytecode is disassembled to opcode by using a method provided by Geth [25]. Next,
the opcode will be split into creation bytecode and runtime bytecode according to the
positions of two consecutive instructions, i.e., RETURN STOP. Then, we symbolically
execute the creation bytecode and runtime bytecode, respectively. During symbolic
execution, we record the storage slots and contract permission owners from the creation

10



bytecode. The control flow graph (CFG), state events, and several target instructions
are the by-products of the symbolic execution of runtime bytecode (see Section 4.3
for details). Finally, we design four patterns to detect the four DCTs based on the
obtained information.

The bottom half of the figure is used to detect Forged Transfer. Since all the
contracts with F'T must have source code, DEFIDEFENDER only supports feeding
source code as input to detect it.

4.2 Symbolic Execution for Smart Contracts

Using a bytecode snippet 0x6040600102 as an example. The bytecode is first split into
several bytes, i.e., 0x60, 0x40, 0x60, 0x01, 0x02, and EVM executes them sequentially.
Each byte is a hexadecimal value that represents a single instruction, and all of them
can be found at Ethereum yellow paper [26]. The first byte 0x60 represents the instruc-
tion “PUSH1”, which pushes the next one byte item into the EVM stack. Thus, 0x40
is pushed into the EVM stack. Similarly, 0x01 is also pushed into the stack. After that,
0x02, which represents the instruction “MUL” is executed. “MUL” reads two values
from the stack and pushes their multiplication (0x40) back to the stack. Finally, only
a value 0x40 remains on the stack.

In DEFIDEFENDER we reused and updated the symbolic execution engine pro-
posed by our previous work named DEFECTCHECKER [11]. The reason why we
choose DEFECTCHECKER and not others, e.g., Oyente [27], Securify [28], is that
DEFECTCHECKER is much faster and more accurate than them [11]. The time to
analyze one smart contract by DEFECTCHECKER is only 0.15s, while the runtime of
Oyente and Securify is 18.48s and 21.55s based on our previous dataset, respectively.

There are two main updates of DEFIDEFENDER in the usage of the symbolic
execution engine of DEFECTCHECKER. First, DEFECTCHECKER does not support
analyzing creation bytecode and contract storage, while all the four DCTs, i.e., TS,
SSP, STP, and SP, need to analyze the storage. Thus, DEFECTCHECKER cannot be
used to analyze them. Second, DEFECTCHECKER only supports the Solidity compiler
version 0.4.25. However, when deploying smart contracts on Ethereum, developers
have the option to select from various Solidity compiler versions, such as v0.4.25 or
v0.8.1. These different compiler versions lead to significant variations in the bytecode
and AST of the smart contracts.

To address this limitation, we introduced support for opcodes that were previ-
ously unrecognized by DEFIDEFENDER. For example, “CREATE2” was introduced
at the end of 2019 and was not supported by DefectChecker. This addition allows
DeFiDefender to support a wider range of compiler versions. Furthermore, while
DefectChecker was limited to utilizing Solidity Compiler v0.4.25 to compile source
code into bytecode, DeFiDefender boasts a more flexible approach. It can automat-
ically select from a spectrum of solc versions, supporting up from version 0.4.11 to
0.8.17 (64 compiler versions in total). This adaptability is achieved by integrating 64
Solidity compilers in our tool. In addition, we also optimize the detection rules to be

specifically tailored for each Solidity compiler version, e.g., new instructions, swarm
hash [29].
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DEFIDEFENDER is optimized for all the versions from v0.4.25 to v0.8.17, which
is the latest version at the time this paper is written. The previous dataset used in
the DEFECTCHECKER was consisted of smart contracts written in lower versions of
Solidity(v0.4.25). In order to provide a more realistic representation of real-world smart
contracts, the dataset used in the previous study has been updated to include a wide
range of higher versions of Solidity. DEFIDEFENDER uses text analysis techniques to
match each smart contract with the corresponding compiler for further analysis.

4.3 Extracted Information

The patterns we used to detect DCTs are based on several pieces of extracted
information during the symbolic execution. Below we explain how we obtain them.
(1) Creation Bytecode and Runtime Bytecode. DEFIDEFENDER symbolically
executes the creation bytecode and runtime bytecode, respectively. Runtime bytecode
is stored on Ethereum directly and can be easily obtained from Etherscan. There
are two methods to get the creation bytecode of a smart contract. The first method
is synchronizing the whole Ethereum blockchain and storing the creation bytecode
during the synchronization. This method needs to instrument the Ethereum clients,
e.g., Parity [30] or Geth [25]. Specifically, the first parameter of opCreate() in the
core/vm/instructions.go of Geth contains the creation bytecode. We can add code to
store this parameter in our local machine. However, it is time-consuming to synchronize
the whole blockchain.The second method is compiling the source code manually by
using solc [31]. This method is faster but needs the source code of smart contracts.
To prove DEFIDEFENDER can detect the DCTs through bytecode, we choose the first
method to get the creation bytecode.

(2) Storage Slots and Contract Permission Owners. All the contract storage
variables will be stored on the storage persistently when a smart contract is cre-
ated. A storage variable is a key-value store, and its key is named storage slot. In
Ethereum, “SSTORE ” instruction reads two values from the EVM stack, which repre-
sents the storage slot and values respectively. Thus, the storage slots can be identified
by “SSTORE ” on the creation bytecode. A smart contract sometimes needs admin-
istrators (also named contract owners) to control the permission of a contract. The
administrators’ addresses have to be recorded when creating a smart contract, and
the addresses will also be stored by instruction “SSTORE”. An Ethereum address is a
40-bit hexadecimal value and matches the rule of EIP-55 standard [32], which can be
utilized by DEFIDEFENDER to identify the addresses stored on the creation bytecode.
In summary, all the storage slots and administrators’ addresses are recorded during
the execution of the creation bytecode.

(8) Control flow graph (CFG). A control flow graph (CFG) records all the
execution paths of a smart contract. Each node within the CFG represents a single
block, which contains a sequence of instructions with no branches in except to the
entry and no branches out except at the exit [11]. While Java bytecode provides
explicit jump targets, EVM bytecode necessitates that jump positions be derived from
the EVM stack. Through symbolic execution of EVM instructions, we determine the
jump positions for each basic block, facilitating CFG construction. Hence, we regard
the CFG as a by-product of symbolic execution derived from runtime bytecode.
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The CFG (Control Flow Graph) is a graphical tool used in program analysis to
represent the control flow structure of a program. It is useful for visualizing program
structure, performing program slicing, analyzing data flow, optimizing code, and con-
ducting security analysis.In this paper, the CFG is utilized to capture information
about blocks and edges, enabling the quick identification of adjacent blocks when locat-
ing critical instructions. This facilitates further detection of whether they conform to
the defined patterns without the need for costly symbolic execution.

(4) Stack Events. We record all the values in the EVM stack and call them as
“Stack Events”. Each stack event is a key-value store; its key is the ID of instruction,
and its value is the values in the EVM stack when executing this instruction.

(5) Target Instructions. To detect DCTs, several target instructions need to
be identified during the symbolic execution. The first target instruction is SLOAD.
SLOAD reads one value from the EVM stack, which represents the slot ID of a storage
variable. Thus, by detecting this instruction, DEFIDEFENDER can identify whether
a function reads the storage. The second target instruction is CALL. In Ethereum,
the CALL instructions are generated by the message calls into an account. For exam-
ple, calling a function from another contract or library; transferring Ethers between
accounts. DEFIDEFENDER aims to identify the CALL instruction related to Ether
transfer. The CALL instruction reads seven values from the EVM stack. The third
value represents the transfer amount. Thus, if the value is larger than 0, the CALL
instruction is related to Ether transfer. We called this kind of CALL as a Money-CALL.
The third target instruction is SELFDESTRUCT, which is generated by selfdestruct
function. This function can transfer all the Ethers on balance to another account and
destruct the smart contract.

4.4 Patterns to Detect DeFi Contract Traps

Below we introduce the patterns that we used to detect four DCTs through EVM
bytecode and to detect Forged Transfer via source code AST analysis. The patterns
are presented as several symbolic expressions, and the words in expression of symbolic
patterns are described in Table 2. Besides, we also provide Figures 2-4 to help with
understanding of the symbolic expressions. Note our tool can be extended with new
DCT patterns for both EVM bytecode and AST source code analysis as they are
discovered in the future.

IJMCALL,ISZERO € Path; N ~Flows(MCALL,ISZERO),
MCALL € Blockp,
ISZERO € Block;,

3Blocky,, Block;, Block; € Path; — Storages € Blockj, (1)
Blocky, > Block; > Blockj,
Storages.rewrite == TRUE.

(1) Tricky Send (TS). Contracts with TS have a address.call.value()() or
address.send() in the contracts. These two methods only return a boolean value false
without affecting the normal running of the contract when Ether transfer fails. A con-
tract with T'S should satisfy the following conditions, which was shown in Figure 2 and
Equation 1. First, a Money-CALL (MCALL) can be found in the path; (Blocky, in the
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Table 2: Words in Expression of Symbolic Patterns

Words Description
Path; The " path on the CFG
Storages A storage variable on Slot ID s
Flows(a,b) | Instruction a is poped from the top of the EVM stack, which then
is read by the instruction b
MCALL The CALL instruction that used to transfer Ethers
Block; The i*" block on the CFG
ISZERO The ISZEROQO instruction
Addr.i The address of ¢
Constr(expr)| The constraint of a branch on CFG that checks whether the
conditional expression expr is satifying assignment (SAT) or not
(UNSAT)
node; The i'" node on the CCG.

Q conditional expression

dBlock;, Block; € Path; —

A 4
\ Block;

Storages.rewritd

Fig. 2: Tricky Send in DCT

Path;
Blocky,
% MCALL |-... \
é/ —\Flows(M.\é’ALL, ISZERO)
; Bl;ck,» '
/T [ 1szERO P
@5\ :

Figure 2). Second, the contract will not check the return value of the CALL instruction,
which means the boolean value generated by MCALL will not be read by ISZERO
instruction (There are no flows from MCALL to ISZERO in Figure 2).Third, the
users’ balance will be reset. Thus, the subsequent Block; in the same execution path
will change the value of a storage variable Storages.

JConstr.(Addr.i == Addr.owner) € Path; — SAT,
Constr. € Block;,

Storages € Block;,

Block; > Block;,
Storages.rewrite == TRUE.

14



)
Q

~
>

)

CFG

Block;
Constr, |= Addr.i == Addr.owner

v
Block;
Storages.rewrite |= SSP
5> MCALL = STP
SELFDESTRUCT|= SP

() conditional expression

OncacNcacac)

Fig. 3: Super Storage Permission,Super Transfer Permission and Selfdestruct Permis-
sion in DCT

(2) Super Storage Permission (SSP). Contracts with SSP have permission
checks for some functions, as the contract should only allow the contract owners to
change the storage values. For example, in Listing 1, the modifier onlyOwner (L7)
is used to ensure only the contract permission owner can change the storage. In
Ethereum, all functions of a contract are fused in one stream of instructions [33]; intra-
contract function calls are all realized by jumps [19, 34] as the method to transfer
control. Thus, a path in the CFG can reflect the execution of a function call. DEFIDE-
FENDER traverses all the paths of the CFG. As shown in Figure 3 and Equation 2,
for each path, DEFIDEFENDER inspects the conditional expressions. If a constraint
of a branch on the CFG checks whether an address Addr.i is equal to the contract
Owner’s address (Addr.owner, See Section 4.3), it means that a permission check is
detected(Block; checks the constraint in Figure 3). Then, DEFIDEFENDER identifies
whether the storage variables Storage, are changed in the following block Block; on
the same path with Block;. If so, SSP is detected.

JConstr.(Addr.i == Addr.owner) € Path; — SAT,
Constr. € Block;,

dBlock;, Block; € Path; — {MCALL € Block;, (3)
Block; > Blockj,

(3) Super Transfer Permission (STP). Similarly, misbehaving developers also
need to check the permission when transferring Ethers. Thus, as shown in Figure 3
and Equation 3, DEFIDEFENDER first traverses all the paths on the CFG and then
checks whether an address is equal to the contract owner’s address in a constraint
Constr.(Block; checks the constraint in Figure 3). Finally, if Ether transfer(MCALL
in Block;) is found in the following block in the same path with Block;, an STP DCT
is detected.
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JConstr.(Addr.i == Addr.owner) € Path; — SAT,

Constr. € Block;,
3Block;, Block; € Path; — { SELFDESTRUCT € Block;, (4)
Block; > Blockj,

(4) Selfdestruct Permission (SP). Similar to the previous two traps (as shown
in Figure 3 and Equation 4), DEFIDEFENDER traverses all of the paths on the CFG
and detects the permission check in a constraint Constr.(Block; checks the constraint
in Figure 3). Then, if SELFDESTRUCT instruction is detected in the following block
Block; in the same path with Block;, a SP DCT is detected.

JMCALL € node; N Unexecuted(node;) == True, (5)
ast.Node
All Nodes
v
ast.Node ast.Node ast.Node
main contract subcontracts librarys
depzindcy
' ast.Node ast.Node

R excuted subcontracts| | unexcuted subcontracts

2
contract.Node

functions

Unexcuted(node;) == True

dAMCALL € node;

function.Node function.Node
MCALL functions non-MCALL functions

Fig. 4: Forged Transfer Pattern in DCT

(5) Forged Transfer (FT). As shown in Figure 4, DEFIDEFENDER first con-
structs the abstract syntax tree (AST) of the contract by using the command provided
by the solidity compiler [31]. Based on the AST, DEFIDEFENDER builds the con-
tract call graph (CCG). Each node in the CCG can be divided into a main contract,
subcontract, or library (The main contract can be obtained from Etherscan directly,
the library and the subcontract nodes can be identified by the NODETYPE field of
nodes in AST). Next, DEFIDEFENDER divided the subcontracts nodes into executed
subcontracts and unexecuted subcontracts by utilizing a breadth-first algorithm to
recursively traverse all dependencies originating from the main contract. By parsing
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the CCG that starts from the main contract, we can know the executed and unexe-
cuted subcontracts. If there are nodes of unexecuted subcontracts, DEFIDEFENDER
will check whether there are Ether transfers related functionalities (M CALL), e.g.,
address.send(), address.transfer(). If so, a F'T is detected.

5 Evaluation

In this section, we aim to conduct a comprehensive evaluation of DEFIDEFENDER by
answering the following two research questions (RQs):

RQ1: What is the efficacy of DEFIDEFENDER in detecting DCTs?

RQ2: What is the prevalence of the five defined DCTs in real-world Ethereum smart
contracts?

5.1 Experimental Setup

All experiments were performed on a PC running Mac OS 10.15.6 and equipped with
an Intel i7 6-core CPU and 16 GB of memory. Our tool supports the latest compiler
version (v0.8.9) of Ethereum smart contracts when the time of writing the paper and
is also backward compatible for the older versions, e.g., v0.4.25. We use EVM 1.11.3
to disassemble the bytecode to its opcode.

To evaluate our DEFIDEFENDER tool, we need to obtain real Ethereum smart
contract source code. The dataset we used contained 117,926 verified smart contracts
uploaded by Feb. 2022. Our dataset has two parts: a small-scale dataset to evaluate
the efficacy of DEFIDEFENDER, and a large-scale dataset to evaluate the prevalence
of the defined DCTs in the Ethereum. Both datasets only contain DeFi contracts,
and non-DeFi contracts are excluded from our evaluation. A key usage scenario of
DeFiDefender is where a user wants to check if there are any DCTs on contracts they
want to use/invest in. Thus, the users will know that the contract is a DeFi contract
even if the source code is not visible, and it is meaningless for users to use DefiDefender
to check non-DeFi contracts. To simulate this real usage scenario, we only selected
DeFi-related contracts.

5.2 Evaluation Methods and Metrics

We use eight measurements to evaluate DEFIDEFENDER, i.e., true positive (TP), true
negative (TN), false positive (FP), false negative (FN), precision (P), recall (R), F-
measure (F), and accuracy. TP and TN indicate DEFIDEFENDER correctly detects
that a DCT exists or does not exist in a smart contract, respectively. FP and FN indi-
cate the results which incorrectly predict that a smart contract contains and does not
contain a contract defect. Precision, Recall, F-measure, and accuracy can be calculated
as:

#TP + #TN

A —
CCUTAY = UTP L TN + #FN + #FP

x 100% (6)
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Table 3: Some key Information of Smart

Contracts in the small dataset.

Key Information Numbers
Awverage Lines of Code 514.19

Awverage Functions 18.76
Average Subcontracts 7.60
Compiler Version 0.4+ 484
Compiler Version 0.5+ 30
Compiler Version 0.6+ 58
Compiler Version 0.7+ 25
Compiler Version 0.8+ 103

Table 4: Experimental Results for DEFIDEFENDER.

Trap Type || # # |# |# |# |[A%P |R |F1
Traps | TP TN | FP FN (%) | (%) | (%)
Tricky Send 19 15 681 0 4 99.43 | 100.00| 78.95 | 88.24
Super Storage 658 631 41 1 27 96.00 | 99.84 | 95.90 | 97.83
Permission
Super Transfer || 524 518 170 6 6 98.29 | 98.85 | 98.85 | 98.85
Permission
Selfdestruct 74 55 626 0 19 97.29 | 100.00] 74.32 | 85.27
Permission
Forged Trans- 55 54 645 0 1 99.86 | 100.00] 98.18 | 99.08
fer
Average 266 254.6 | 432.6 | 1.4 11.4 98.17 | 99.74 | 89.24 | 93.85
. #TP
Precision = ——————— x 100% 7
#TP + #FP ’ (™)
#TP
Recall = —————— x 100% 8
#TP + #FN 0 8)
2 X Precision x Recall
F — Measure = x 100% (9)

Precision + Recall

5.3 RQ1:The Efficacy of the DeFiDefender

Dataset: This datset consists of 700 smart contracts with an average of 514.19 lines of
code. To prepare this dataset, we engaged two independent developers, not affiliated
with the authors of this paper, who have three years of experience in smart contract
development. To get the dataset, they first randomly chose 700 smart contracts from
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Table 5: The Distribution of DCTs in 20,679 Ethereum
DeFi related smart contracts.

Trap Type # Traps # Frequency
Tricky Send 259 1.25%
Super Storage 10,456 50.56%
Permission
Super Transfer 2,164 10.46%
Permission
Selfdestruct Permission 759 3.67%
Forged Transfer 122 0.59%

all the 117,926 verified Ethereum smart contracts. Then, they manually check whether
the contracts are related to decentralized finance. If not, we remove them from the
dataset. After that, they randomly choose smart contracts again and identify DeF'i
related contracts. This process continued until we got 700 DeF'i related contracts. Next,
they read each smart contract carefully and identified whether the contracts contain
each of the five defined DCTs. The two developers conducted the manual process
independently. Then, they compared their results and discussed any differences until a
consensus was reached, to ensure the manual labeled dataset was correct. The process
of building the dataset cost around 1.5 months. Table 3 shows the detailed information
of this dataset. Among the 700 contracts, 484, 30, 58, 25, 103 of them were compiled
with version 0.4+ to 0.8+, respectively.

Result overview: Table 4 summarizes the results of applying DEFIDEFENDER to
the small-scale dataset. The first column is the DCTs that need to be detected. The
second column is the number of DCTs in our dataset. The remaining eight columns
are used to evaluate the efficacy of DEFIDEFENDER. Below we discuss the analysis of
each DCT, and the reasons for the error cases.

1. Tricky Send: There are 19 Tricky Send traps in our dataset. DEFIDEFENDER
correctly detects 15 of them, but also has 4 false negatives. To construct the CFG,
DEFIDEFENDER needs to calculate the jump positions from the EVM stack. However,
some jump positions are represented by complicated expressions, and DEFIDEFENDER
fails to estimate their values. Thus, some jumps are missing, which leads to the false
negative. In some contracts, developers use a variable to store the return value of
address.send() or address.call.value()(). The variable is the input of another function,
and the return value of Ether transfer is checked in that function. DEFIDEFENDER
fails to identify this situation, which leads to the false positives.

if (msg.sender == owner)
dosomething;
change_storage () ;

Listing 3: False Positive Example for Super Storage Permission

2. Super Storage Permission: Super Storage Permission is the most frequent
contract trap in our dataset. 658 contracts add backdoors to allow their contract
owners to change the storage states of smart contracts. DEFIDEFENDER correctly
detects 631 of them. It also has 1 false positives and 27 false negatives. To detect this
trap, DEFIDEFENDER needs to calculate the storage slot read from the EVM stack.
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However, the slots sometimes are represented by complicated expressions. For these,
DEFIDEFENDER fails to calculate their values and this leads to the false negatives. In
some situations, there is a permission check and storage changes in the same path on
CFG. However, the permission check does not directly relate to the storage changes.
Thus, it leads to the false positives. Listing 3 is an example; the three lines of code are
in the same paths on CFG. However, changing storage is not limited by the contract
owner.

3. Super Transfer Permission: There are 524 Super Transfer Permission in our
dataset. DEFIDEFENDER correctly identifies 518 of them, with 6 false positives
and 6 false negatives. The reasons for these error cases are similar to the Super Storage
Permission. In addition to these reasons, we find that some contracts use a white list
to identify who can transfer Ethers. However, the contract owners can add or remove
users in the white list. DEFIDEFENDER fails to identify this situation, which leads to
some false negatives.

4. Selfdestruct Permission: We found 74 contracts that contain Selfdestruct
Permission. DEFIDEFENDER correctly identifies 55 of them, with no false posi-
tives and 19 false negatives. DEFIDEFENDER fails to identify some jumps in the CFG.
Thus, when traveling the CFG, DEFIDEFENDER misses to identify some cases. There
are some functions that have a constraint with two levels of nesting instead of directly
checking if it is the contract owner. In such cases, the pattern becomes ineffective.
Listing 4 is an example.

constructor () public{

deployer = msg.sender;
modifier deployerOnly { require(msg.sender == deployer); _; }
modifier whenlInitialized { require(withdrawalAddress != 0x0); _; }

function initializeVestingFor (address account) deployerOnly{

withdrawalAddress = account;

}

function withdrawTokens () private whenInitialized {

selfdestruct (withdrawalAddress);

Listing 4: False Negative Example for SP

5. Forged Transfer: 55 contracts contain Forged Transfer. DEFIDEFENDER
identifies 54 of them through contract source code analysis, with one false
negatives. The reason for this error case is that the independent transfer function
which transfer ether do not have the payable modifier, that means the function can not
receive or transfer ether.It violates the fundamental principle.Listing 5 is an example.

function withdrawEther (uint _amount) public
onlyEscrow

{
require (namiMultiSigWallet != 0x0);
if (address(this).balance > 0) {
namiMultiSigWallet . transfer (_amount) ;
}
}
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Listing 5: False Negative Example for FT

Answer to RQ1: DEFIDEFENDER is not only highly effective but also highly efficient.
DeFiDefender only needs 0.48s to analyze one DeFi smart contract and obtains a high
average accuracy (98.17%), precision (99.74%), and recall (89.24%).

5.4 RQ2: The Prevalence of DCTs in Real-World

Dataset: This dataset consists of 20,679 DeFi related Ethereum smart contracts
with an average of 667.5 lines of code, which are extracted from all 117,926 verified
contracts. We first tokenized the Ethereum smart contracts into lists of words by punc-
tuation and space that usually do not contain any information. Then, we separate the
words according to the rules of Camel Casing [35]. For example, the word “moneyLend-
ing” is separated into "money” and ”Lending”. After that, we converted words into
their stemmed form by using Porter’s stemmer [36]. For instance, “lending” is replaced
by “lend”. Finally, if a smart contract contains one of the finance-related keywords, we
regard the contract as a DeFi related contract. The finance-related keywords consist
of two parts. First, we use the thesaurus provided by Merriam-Webster', which con-
tains 12 synonyms for finances and 75 words related to finances. Then, we add other
7 keywords, i.e., interest, lend, p2p, loan, credit, reward, bonus, which are prevalent
in the 700 small-scale dataset but not included in the Merriam-Webster. We found
that all the 700 Ethereum smart contracts in the small-scale dataset are included in
the large-scale dataset. Thus, the small-scale dataset could be considered as samples
of the large-scale dataset, and its evaluation result can also prove the efficacy of our
tool in the large-scale dataset.

Result overview:In the analysis above, we used a manually labeled small-scale
dataset to prove the efficacy of DEFIDEFENDER in detecting defined DCTs. However,
this does not show the prevalence of our 5 defined DCTs in real world Ethereum smart
contracts. Thus, we ran DEFIDEFENDER on 20,679 DeF'i related Ethereum smart con-
tracts selected from all the verified Ethereum smart contracts on Etherscan. Table 5
shows the frequency of each contract traps on the Ethereum DeFi related contracts.
The second column is the number of contract traps we detected, and the third column
is the percentage of the contract traps in our dataset. Notice that DEFIDEFENDER
only identifies whether a contract contains a contract trap. Thus, we only count once
even if the same kind of contract trap appears several times in the contract.

50.56% and 10.46% of real Ethereum DeFi related Ethereum smart con-
tracts contain Super Storage Permission and Super Transfer Permission,
respectively, which are the top two most frequent DCTs in Ethereum.
By utilizing these DeFi contract traps, the contract owners can make unscrupulous
profit by changing the storage variables or transferring Ethers directly. About 3.67%
of DeFi contracts contain Selfdestruct Permission trap. The contract owners are able
to destruct the contracts and transfer all the balance on the contracts if they want.
Tricky Send and Forged Transfer traps are the least frequent DCTs in Ethereum; only
around 1.25% and 0.59% of DeFi contracts contain these traps, respectively.

"https://www.merriam-webster.com/thesaurus/finances
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Fig. 5: An Attack Example of Selfdestruct Permission.

Besides, we found that only 9,900 out of 20,679 (47.87%) Ethereum smart contracts
in our dataset do not contain any of the DCTs that we defined in this paper; this
means the remaining 10,779 (52.13%) DeFi smart contacts contain at least
one DCT. Among these 10,779 contracts, most of them only have exactly one or two
DCTs; the numbers are 8,077 (39.05%) and 2,435 (11.78%), respectively. Only 255
(1.23%) contracts have three DCTs, and 12 (0.06%) contracts have four DCTs. We
did not find any contracts that have all the five DCTs introduced in this paper.

Although more than half of the contracts contain DCTs, it does not mean that the
owners of these contracts are malicious. For example, contract owners of contracts with
Super Transfer Permission and Selfdestruct Permission have the ability to transfer
Ethers that belong to the contract user, but it does not mean they will definitely
transfer the Ethers in this way. Some owners add these codes in order to provide
a defense against other attacks. Specifically, once bugs are detected by attackers,
contracts with these traps give their contract owners the ability to protect the contract
users’ assets by transferring Ethers to another account. However, these “privileges” are
harmful to the decentralized DeF1i ecosystem. On the one hand, it poses “centralization
threats” for Ethereum smart contracts and obeys the decentralized intention, which
might raise trust concerns. As we introduced before, addressing trust concerns is a
key advantage for DeFi compared to traditional financial systems. On the other hand,
DCTs are still harmful because it still shows that the contract owner has the ability
to make unfair profit from the contract, and the users have risks of losing Ethers.
The high frequency of contract traps at least shows that the concept of
decentralized finance has inherent limitations, as these Ethereum smart
contracts cannot ensure the safety of contract users’ assets in a zero-trust
environment (or without a trusted intermediary) as often claimed.

Answer to RQ2: We observed that only 9,900 contracts (47.87%) did not include any
of the defined DCTs mentioned in our paper. This implies that the remaining 10,779
contracts (52.13%) belonging to the DeFi category contained at least one DCT. This
data underscores the significant prevalence of DCTs in the ecosystem.
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6 Discussion

6.1 Case Study

Figure 5 is a real-world example detected by DEFIDEFENDER, which shows how mis-
behaving developers utilize Selfdestruct Permission to make unfair profits. First, the
attacker? deployed a contract named SmartRoulette® on Ethereum. The SmartRoulette
contract claims that the users can invest some Ethers — the contract will choose one
user as the winner every 256 blocks (about one hour), and the winner can get a certain
amount of Ethers as reward. Second, to attract more users take part in the roulette,
the attacker develops a website? and advertise the website on some platforms / forums,
e.g., DApp store®. (The screenshots of the two websites are uploaded®” in case of the
shut down.) To gain the trust of users, the attacker publicises the contract address on
their website. In this case, users can check the contract source code and transactions
on Etherscan. Also, the attacker transfers 277 Ethers to the contract as a bonus pool
to show that the contract has the ability to pay the rewards.

When users check the smart contract on Etherscan, they find the smart contract
has enough balance to pay the reward; the contract code is open source; and previous
transactions can prove all the winners received the rewards as the contract claimed.
The only trap is that the attacker has added a Selfdestruct function in the contract.
However, this trap is not easy to be found by users through hundreds lines of code or
without enough professional knowledge about DeFi smart contract development.

From contract transactions, we found many users sent a small number of Ethers,
e.g., 0.01 Ether, to the contracts for the first time. When they find the contract can
work normally, they will send more Ethers to make more rewards. However, when
the contract receives a large amount of Ethers in one round, the attackers killed the
contract by utilizing the Selfdestruct function. All the balance in the contract will
then transfer to the attacker’s account. After that, the attacker will redeploy the same
SmartRoulette contract on Ethereum. The newly redeployed contract will obtain a
new contract address. The attackers will update the contract address in the website 4,
and use the same way to cheat other victims.

Up to Dec. 2020, the attacker has destructed four SmartRoulette contracts. They
earned 41 Ethers (about $ 136,300 in Aug, 2021) by utilizing the SP trap in the
contract. There are still some live SmartRoulette contracts created by the attackers.
These contracts also risk of being destructed by the attackers in the future.

6.2 Implications

For Smart Contract Developers. It is unavoidable for some contracts to add
super-permissions for contract owners, as they need to make profits from the contracts
and thus should have abilities to transfer Ethers. However, it might lead to crisis of
trust to the contract users. A good way to balance users’ trust concerns and owners’
permissions is building a Decentralized Autonomous Organization (DAO) [37]. In a

2 Address: 0x6d28515bf27529843f14dc75cc7ee95a4783e3al
3 Address: 0x460f5bf9f5ccfc99243aa4145e4e40c6a6fd9624
4https://smartroulette.io/blockchain
Shttps://dapp.review/dapp/12327/smartroulette.io
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DAO system, users are given voting rights by using digital tokens to control the DAO,
which controls the execution of the contracts. The users who have voting rights (hold
tokens) can submit a proposal, e.g., changing the contract storage, executing the
selfdestruct function, etc. Then, a group of volunteers called “curators” will check the
legality of the submitted proposal and the identity of the submitter. Finally, the users
who owned the DAO tokens vote to accept or reject the proposal.
For Platform Developers: As the example shown in Figure 5, misbehaving develop-
ers might introduce their DApp in their own website or publicize the contract addresses
on a DApp store (DappReview). The victim can check the contract code / transac-
tions on Etherscan through the given contract addresses. Usually, the misbehaving
developers will allow the contracts to work normally for a period of time to generate
some normal transactions. These transactions might mislead users that the contracts
are reliable and lead to financial loss when they invest a large amount Ethers. The tar-
get users of DEFIDEFENDER are contract users without professional knowledge about
smart contracts; although DEFIDEFENDER could warn the risk of DCTs, it might be
difficult for users to run DEFIDEFENDER to check the smart contracts before they use
them. It would be helpful for the platform developers, e.g., DappReview, Etherscan,
to merge our tool to check whether the smart contracts contain DCTs. If traps are
detected, they can add a warning label on the website to inform users of the risks.

It might be helpful for the platform developers, e.g., DappReview, Etherscan, to
merge our tool to check whether the smart contracts contain DCTs. If traps are
detected, they can add a warning label on the website to inform users of the risks.

6.3 Importance of DCTs

As we described in Section 5.4, although smart contracts with DCTs do not mean that
the contracts are definitely malicious, it still shows risks for contract users. DCTs act
more like “warnings” not definitive smart contract “errors” or “attacks”. In software
engineering, “warnings” are still important. An analogy is where Android requires
apps to show the permissions they use when users install Apps. It is common sense
that social media apps like WhatsApp need to read address books, but Android/IOS
still requires them to ask for the permissions that they want to use. It is users’ right
to know what permissions an app uses. Users will allow permission for some well-
respected organizations like WhatsApp, but will pay attention to some non-famous
organizations when using their apps. In this paper, we highlight five patterns that
inform users of their smart contract risks. They can be considered like the permission
“Reading Storage” in Android Apps; users may choose to believe in a well-respected
organization but pay more attention to contracts released by non-famous organizations
when transferring their money.

6.4 DCTs vs. Vulnerabilities

As we mentioned in Section 1, the key difference between DCTs and vulnerabilities is
that vulnerabilities are program “errors” that could lead to financial loss to contract
owners and users. In contrast, DCTs are “warnings” that only pose threats
to contract users but benefits for contract owners. In some situations, DCT
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can be an extension and exploitation of a vulnerability by adding additional condi-
tions (code snippets). Thus, some DCTs could be regarded as the “transformation” of
vulnerabilities. The “transformation” of vulnerabilities are harmless for the contract
owners but allows them to unfairly profit from an unsuspecting contract user.

The Tricky Send (TS) and Selfdestruct Permission (SP) introduced in this paper
could be regarded as the “transformation” of vulnerabilities. Specifically, Luu et al. [27]
introduced a vulnerability named Mishandled Exception (ME) which has a similar pat-
tern to the TS DCT. ME only identifies whether the return value of the send method
is checked. If not, it could lead to the logic errors of programs, which might cause
financial loss for contract owners and users. TS could be considered as a transforma-
tion of the ME, as it has one more condition, i.e., a user’s balance is cleared after
the unchecked send. Thus, the contract owner could benefit from the Ether trans-
fer failure. TeEther [38] introduced a selfdestruct-related vulnerability (SV) which is
similar to our SP DCT. The key difference is that the selfdestruct function could be
executed by anyone in the SV, while it could only be executed by contract owners
in SP. This difference leads to different consequences, i.e., all the balance on the SV
contracts could be stolen by attackers, while only the contract owner can transfer the
balance on the SP contracts. The detection methods for SV and SP are also different.
A common step to detect SV and SP is generating critical paths which contain the
SELFDESTRUCT instruction. The difference is that TeEther checks whether anyone
can execute the instruction by checking the constraints, while DeFiDefender has a
permission check in the conditional expression to ensure only the contract owners can
execute the instruction, which needs an additional analysis for checking the creation
bytecode and storage.

6.5 Threats to Validity

Internal Validity. Since this is the first work that introduces the five DeFi contract

traps to the public, there is no dataset for us to evaluate DEFIDEFENDER. Thus we
had to manually label a new dataset, which consists of 700 DeF1i related smart con-
tracts as our ground truth. The manually labeling process can make the developers of
DEFIDEFENDER familiar with the dataset, thus might lead to potential optimization
or omissions. To reduce the influence of the dataset, we hired two external collabo-
rators, both with three years of experience in smart contract development. They are
required to label the dataset independently and double-check the result. Besides, we
have made our dataset publicly accessible via our Zenodo repository.

Another key threat is we use key words to identify DeF1i related smart contracts in
Section 5.4. It is possible that some non-DeFi contracts are included, and some DeFi
contracts are excluded. Our small-scale dataset introduced in Section 77 is constructed
manually. Thus, we have a higher confidence that these smart contracts are all DeFi
related contracts without any errors. We find that these 700 smart contracts can all
be found by the keywords, which shows our method can effectively find DeFi related
smart contracts.

External Validity. DEFIDEFENDER traverses all the paths on the CFG to detect
DCTs. Due to the scalability of Ethereum, it currently cannot support a large-scale
project running on the blockchain [39]. Thus, the average lines of smart contracts in our
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dataset are about 600 lines, and the biggest contract only has 2,239 lines. The current
size of smart contracts will not affect the normal running of DEFIDEFENDER. However,
in the future as the supported size of smart contracts increases with advancement of
the Ethereum system, our solution may face a path explosion problem as it traverses
all the paths on the CFG.

7 Related Work

7.1 Ponzi Scheme Smart Contracts

A Ponzi scheme is a kind of fraud that pays profits to earn from more recent investors
to earlier investors [40]. Thus, the Ponzi schemes can make earlier investors believe
the products can help make money. Bartoletti et al. [41] found that many frauds use
Ethereum to design Ponzi schemes contracts and claim their products are trustworthy
as they are based on the blockchain platform. They manually analyzed 1,382 verified
smart contracts on Etherscan and found four kinds of Ponzi schemes smart contracts
according to the patterns used to make money, i.e., array-based pyramid schemes, tree-
based pyramid schemes, handover schemes, and waterfall schemes. After that, they
expand the collection of Ponzi schemes smart contracts they found by calculating the
similarity of bytecode. If the bytecode of a smart contract on the blockchain has a
high similarity with the Ponzi scheme contracts they found, the contract is considered
as a Ponzi scheme contract. Finally, they found 184 schemes and opened their dataset
to the public. Based on the dataset proposed by Bartoletti et al., Chen et al. [42]
design a machine learning-based method to identify whether a contract is a Ponzi
scheme without the need for contract source code. They first extracted seven features
from contract transactions, e.g., the number of investments and payments. Then, they
calculated the frequency of opcodes in smart contracts bytecode. After that, they
merged two kinds of features and used XGBoost [43] to train a model to predict the
result.

Differences to our work: Ponzi scheme smart contracts focus on luring victims
to pay money to the contract that claims to return high interest. The earlier investors
can make profits from more recent investors. These DeFi smart contracts are always
fraudulent. In contrast, DCTs focus on how to make money by cheating investors in
a different way by adding DCTs to otherwise acceptable DeFi smart contracts. For
example, by adding Super Transfer Permission, they can transfer the Ethers from
the contract balance or change interests by adding Super Storage Permission. The
DCTs can not only be added in Ponzi scheme smart contracts but also to otherwise
acceptable DeFi smart contracts to commit fraud.

7.2 Smart Contract Vulnerabilities

Previous works [44, 45] describe several security vulnerabilities of smart contracts.
Among them, a vulnerability named “Unchecked send” reports that some contracts
do not check the return value of address.send() or address.call.value()(), which might
lead to the errors. Chen et al. [46] investigated the reasons why smart contract devel-
opers destruct their contracts by using selfdestruct function. They found some verified
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smart contract on Etherscan might include some unused subcontracts, and this kind
of contracts were called as ”confusing contracts”. Since the functions of smart con-
tracts can be called by anyone, they claim that the unused subcontracts might confuse
users and reduce the readability of a smart contract. Thus, many developers choose to
destruct the contract and deploy a new contract which does not contain unused part.

Differences to our work: The differences, i.e., concepts, detecting methods,
have been discussed in Section 6.4.

7.3 Honeypot Attacks

Ferreira-Torres et al [47] introduced honeypot attacks based on Ethereum smart con-
tracts. They found some developers add an obvious flaw in their contracts. The flaw
can lead to Ether loss of a smart contract, and attackers can make unfair profit from
it. The attackers need to send a certain amount of Ethers to the flawed contract, and
they believe they can drain more Ethers from the contract balance. However, the obvi-
ous flaw is usually a trap made by the contract owner. Once attackers send Ethers
to the contract, the failure of Ether withdraw makes them realize they only focused
on a sole vulnerability that can lead to Ether loss of a contract, but they did aware
there is a second vulnerability hidden in the contract. These kinds of traps are called
honeypots. Ferreira-Torres et al [47] introduced eight kinds of honeypots from three
levels, i.e., Ethereum Virtual Machine, Solidity Compiler, and Etherscan Blockchain
Explorer. Besides, they developed a tool named HONEYBADGER to detect defined
honeypots. HONEYBADGER consists of three parts, i.e., symbolic analysis, cash flow
analysis, and honeypot analysis. They first use symbolic analysis to obtain the CFG.
After that, they use the result of symbolic analysis to detect whether the contract is
able to receive and transfer Ethers. Finally, HONEYBADGER use predefined patterns
to detect honeypots attacks.

Differences to our work: First, honeypots make money from other attackers
who have professional knowledge about smart contract programming. The DCTs aim
to make unfair profit from contract users who have no experience in programming.
Besides, honeypots are a type of attack, while DCTs are more like a “warning”, which
makes DCTs more frequent in Ethereum. Specifically, only 460 honeypots are detected
from 48,487 smart contracts, while more than half of smart contracts contain DCTs.

8 Conclusion and Future Work

In this paper, we provide the concept of a DeFi Contract Trap (DCT) to be a code
snippet in a DeFi smart contract that can allow unscrupulous contract owners to
unfairly profit from unsuspecting contract users. We provide five examples of DCTs
and present a symbolic execution based tool, DEFIDEFENDER, to identify such con-
tract traps. Four of them can be detected by DEFIDEFENDER in arbitrary contract
bytecode on Ethereum without the need for source code analysis. We use two datasets
to evaluate DEFIDEFENDER. The small-scale dataset shows that DEFIDEFENDER is
not only highly effective (achieves an average accuracy and Fl-score of 98.17% and
93.85% respectively) but also highly efficient (it only needs 0.48 seconds to analyze
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one smart contract). Our large-scale dataset analysis shows that the defined five con-
tract traps are prevalent in Ethereum — about 52.13% of DeFi smart contracts contain
at least one trap.

Our analysis currently focuses only on determining whether a smart contract con-

tains specific DCT patterns, without delving into the intentions of the contract owners.
In the future, we plan to assess the historical transactions associated with the contract.
This will allow us to determine whether the contract owner has engaged in malicious
activities to users.
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