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Abstract11

This paper presents an Aggregate Matching and Pick-up (AMP) model to delineate the matching

and pick-up processes in mobility-on-demand (MoD) service markets by explicitly considering the

matching mechanisms in terms of matching intervals and matching radii. With passenger demand

rate, vehicle fleet size and matching strategies as inputs, the AMP model can well approximate

drivers’ idle time, passengers’ waiting time for matching and pick-up by considering batch matching

in a stationary state. Properties of the AMP model are then analyzed, including the relationship

between passengers’ waiting time and drivers’ idle time, and their changes with market thickness

which is measured in terms of the passenger arrival rate (demand rate) and the number of active

vehicles in service (supply). The model can also unify several prevailing inductive and deductive

matching models used in the literature and spell out their specific application scopes. In particular,

when the matching radius is sufficiently small, the model reduces to a Cobb-Douglas type matching

model proposed by Yang and Yang (2011) for street-hailing taxi markets, in which the matching

rate depends on the pool sizes of waiting passengers and idle vehicles. With a zero matching

interval and a large matching radius, the model reduces to Castillo model (Castillo et al., 2017)

based on an instant matching mechanism, or a bottleneck type queuing model, in which passengers’

matching time is derived from a deterministic queue at a bottleneck with the arrival rate of idle

vehicles as its capacity and waiting passengers as its customers. When both the matching interval

and matching radius are relatively large, the model also reduces to the bottleneck type queuing

model. The performance of the proposed AMP model is verified with simulation experiments.
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1. Introduction1

Mobility-on-demand (MoD) services offered by platforms such as Uber, Lyft, and DiDi have2

undergone rapid growth in recent years and attracted considerable attention from researchers in3

the fields of transportation, operations research, economics, and computer sciences. The mas-4

sive amount of real-time data collected from passengers and drivers through smartphones offer a5

plethora of novel instruments, such as surge pricing (Zha et al., 2016, Cachon et al., 2017, Yang6

et al., 2020b); ride-pooling (Ke et al., 2020a, Jacob and Roet-Green, 2021); driver relocation sub-7

sidies (Zhu et al., 2021); and on-demand order dispatching (Xu et al., 2018, Lyu et al., 2019),8

allowing MoD platforms to improve operational efficiency. Despite their success in business, MoD9

services have also raised some controversial issues, such as their negative impacts and unfair advan-10

tages with respect to conventional street-hailing taxi market (Nie, 2017) and public transit (Hall11

et al., 2018); congestion externalities caused by both in-service and idle vehicles (Erhardt et al.,12

2019, Ke et al., 2020b, Vignon et al., 2021, Diao et al., 2021); the pros and cons of competition13

between MoD platforms (Mo et al., 2020, Zhang and Nie, 2021); concerns on labor elasticities and14

driver’s welfare (Sun et al., 2019); and the necessity of appropriate government regulations (Zha15

et al., 2016, Parrott and Reich, 2018, Li et al., 2019, Yu et al., 2020, Ke et al., 2021a). Readers16

may refer to a recent review by Wang and Yang (2019).17

To address these issues, researchers have developed a variety of mathematical models to delin-18

eate the complex and intriguing relationships between platform decision variables (such as price19

and wage) and endogenous system variables (such as passenger waiting time and effective demand20

rate and supply). Typically, the core of these models includes a matching model to approximate the21

matching frictions between idle vehicles and waiting passengers, which also describes an essential22

feature that distinguishes MoD service markets from other transportation markets. Many of these23

models have their roots in the models developed for conventional street-hailing taxis, because the24

MoD service market and street-hailing taxi market share many common features. For example,25

Yang and Yang (2011) propose a Cobb-Douglas type matching model to describe the matching26

frictions between vacant taxis and unserved customers in street-hailing taxi market, and the model27

is later adopted by Zha et al. (2016) to model MoD service markets.28

However, unlike conventional street-hailing taxi market in which passengers and drivers search29

and meet each other physically on the streets, the MoD service market has two matching stages:30

online matching and physical matching. After making a request on a MoD digital platform, a31

passenger may be matched with an idle vehicle (i.e., online matching) after waiting for a certain32

amount of time in the virtual queue (hereinafter, the waiting time for online matching is termed as33

matching time). Afterward, the driver that is dispatched to the passenger moves to the passenger’s34

origin or a designated spot to pick up the passenger (i.e., physical matching, and hereinafter, the35

time for physical matching is termed as pick-up time), and then starts the delivery service. At36

any given moment, any active driver is in one of three states—idle, on the way to pick up a37

passenger (i.e., pick-up), or on the way to deliver a passenger to their destination (i.e., delivery).38

These features cannot be fully captured in legacy models developed for the taxi markets, and great39
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challenges have to be addressed for modeling both online and physical matching in MoD service1

markets.2

As reviewed later, in the context of MoD service markets, inductive or deductive approaches3

are typically used to approximate matching frictions in aggregate models. Inductive approaches di-4

rectly assume a type of hypothesized matching model (such as the Cobb-Douglas matching model)5

to characterize the matching frictions without using a specific matching mechanism or considering6

its micro foundations. In contrast, deductive approaches first assume a physical matching process7

as the micro foundations and then deduce the corresponding matching frictions. These inductive8

and deductive approaches have their own application scopes. For example, the Cobb-Douglas type9

matching model (Yang and Yang, 2011, Zha et al., 2016) is more suitable in the scenario in which10

the platform only matches a passenger with a driver who is in his/her proximity (like a street-11

hailing taxi market). In contrast, the model developed by Castillo et al. (2017) (hereinafter, it is12

called as Castillo model for convenience) relies on the assumption that the platform will immedi-13

ately dispatch the nearest idle vehicle to a passenger who generates a ride request, regardless of14

how far the driver is from the passenger.15

This study proposes an Aggregate Matching and Pick-up (AMP) model to describe a stationary16

matching process in the MoD service markets. In contrast to the existing matching models,17

our AMP model explicitly incorporates the platform matching strategy that can be generally18

articulated in terms of the matching interval (the time interval over which the waiting passengers19

and idle drivers are accumulated and then subjected to peer-to-peer matching) and the matching20

radius (the maximum allowable pick-up distance, within which waiting passengers and idle drivers21

can be matched). These two macro-parameters capture essentially the critical choice in matching22

mechanism implemented in actual MoD platforms. It is shown that some prevailing matching23

models in the literature can be viewed as special cases of our general AMP model. The properties24

of the AMP model are explored and the following intriguing findings are made:25

• Passengers’ matching time and drivers’ matching time are negatively correlated;26

• When passenger demand rate and vehicle fleet size increase proportionally, passengers’ match-27

ing time and the expected pick-up time become shorter while drivers’ matching time becomes28

longer;29

• The AMP model reduces to a Cobb-Douglas type matching model (Yang and Yang, 2011)30

when the platform sets a small matching radius to avoid distant matching between waiting31

passengers and idle vehicles;32

• The AMP model reduces to the Castillo model under a matching mechanism with a large33

matching radius and the density of idle drivers is much higher than that of waiting passengers;34

and35

• The AMP model reduces to a bottleneck type queuing model when the platform sets a36

large matching radius and the density of waiting passengers is much higher than that of idle37
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drivers. In this case, passengers’ matching time is determined from a deterministic queue at1

a bottleneck with the arrival rate of idle vehicles as its capacity and waiting passengers as2

its customers. In addition, passengers’ pick-up time is inversely proportional to the square3

root of the number of waiting passengers.4

Our study also reveals the application scopes of various existing matching models. This can5

help researchers choose appropriate matching models according to matching strategies and mar-6

ket conditions, assist the platforms in adjusting matching interval and radius to enhance system7

efficiency.8

The rest of the paper is organized as follows. Section 2 reviews the major matching models9

for MoD service markets in the literature. Section 3 develops the AMP model that describes10

passengers’ matching time, pick-up time and drivers’ idle time as functions of market inputs11

(demand rate and supply) and matching strategy (matching interval and matching radius). Section12

4 materializes the AMP model on the basis of a physical matching process. Section 5 examines the13

impacts of market thickness on matching frictions. Section 6 examines the model properties and14

discusses the situations in which the AMP model reduces to existing specific matching models.15

Section 7 conducts numerical experiments using an agent-based simulator to validate the theoretical16

findings and demonstrate the application scopes of the various existing matching models. Section17

8 concludes the paper with future directions of research.18

2. A review of matching models19

This section introduces some popular matching models for MoD services in the literature, which20

are derived through either inductive or deductive approaches.21

2.1. Inductive approaches22

The simplest inductive approach is a perfect matching model, which assumes that the number23

of matched driver-passenger pairs equals the minimum of passenger demand and participating24

driver capacity. When demand exceeds capacity, demand is randomly rationed: some demand25

is unserved and all participating drivers serve one unit of demand. In contrast, when capacity26

exceeds demand, capacity is randomly rationed: All demand is served, but participating drivers27

only use a proportion of their capacity. Due to its neat formulation and ease of derivation, this28

matching model has been adopted in several recent studies on surge pricing (Cachon et al., 2017,29

Hu et al., 2021); government regulation (Yu et al., 2020); and electric vehicle subsidies (Mo et al.,30

2020). However, this model fails to describe the spatial matching frictions between passengers and31

drivers, and is more suitable for a special point-meeting marketplace (such as taxi stations) in32

which arriving passengers and drivers either get immediate matching or exit the system.33

Another inductive approach is the Cobb-Douglas type matching model, which is a widely used34

model in economics (Varian, 1992) and is introduced to spell out the bilateral searching frictions in35

street-hailing taxi markets by Yang et al. (2010) and Yang and Yang (2011). This model assumes36
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that the matching rate (i.e., number of matched driver-passenger pairs per unit time) is given by1

a function of the number of waiting passengers (customers, mc) and the number of idle vehicles2

(mv) as follows:3

M(mc,mv) ∝ (mc)
α1(mv)

α2 (1)

where α1 and α2 represent the elasticity of the matching rate with respect to mc and mv, respec-4

tively. In a stationary state, mc equals the product of passengers’ arrival rate and their waiting5

time, and mv equals the product of idle vehicles’ arrival rate and their idle time. The meeting6

rate also equals passengers’ arrival rate and idle vehicles’ arrival rate in a stationary state. The7

market is said to exhibit increasing, constant, and decreasing returns to scale if α1 + α2 > 1,8

α1 + α2 = 1, and α1 + α2 < 1, respectively. Readers may refer to Yang and Yang (2011) for a9

detailed description.10

The Cobb-Douglas type matching model is widely adopted in the literature on MoD services.11

For example, Zha et al. (2016) use the model to analyze the MoD service market in both monopoly12

and duopoly scenarios. Wigand et al. (2020) use it to approximate the meeting between passengers13

and drivers to study how autonomous vehicles can revolutionize MoD service markets. Wang et al.14

(2019) formulate a stochastic model for an MoD service system in which the pick-up rate is a15

Cobb-Douglas type model of the pool sizes of requesting passengers and idle vehicles.16

2.2. Deductive approaches17

Deductive approaches derive the matching formulas based on some assumptions of passengers’18

and drivers’ arrivals as well as matching mechanisms. For example, Arnott (1996) studies a dis-19

patching taxi system in which the taxi firm dispatches the nearest idle taxi to a customer who has20

requested a ride. This study finds that the expected passengers’ waiting time is inversely propor-21

tional to the square root of the density of idle taxis in a dispatching taxi system, while under a22

cruising taxi system, waiting time is inversely proportional to the density of vacant taxis (Beesley23

and Glaister, 1983). Castillo et al. (2017) extend Arnott’s model (Arnott, 1996) to endogenize24

passenger requests, driver labor supply, and platform pricing to investigate an MoD service system25

based on a first-come-first-serve dispatch protocol. A wild-goose-chase (WGC) phenomenon is26

observed whereby drivers may spend substantial time traveling to pick up distant passengers and27

finds that surge pricing can help prevent the system from falling into the WGC. This deductive28

approach can well capture the pick-up phase of vehicles, which is one important characteristic29

that distinguishes MoD service systems (or e-hailing/dispatching taxi systems) from street-hailing30

taxi systems. Some follow-up studies further extend the aggregate model to examine geometric31

matching and spatial pricing (Zha et al., 2018b); ride-pooling services (Ke et al., 2020a,b); dy-32

namic waiting (Yan et al., 2019); government regulations (Vignon et al., 2021, Ke et al., 2021a);33

competition and substitution between MoD services and public transit services (Ke et al., 2021b);34

etc. By assuming that the distribution of passengers follows a spatial Poisson process, Xu et al.35

(2017) offer an analytical approximation for passengers’ matching time, drivers’ idle time and the36

expected pick-up time. Their model reduces to Castillo model under some extreme conditions.37
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Starting from a physical passenger–driver matching process model, Zhang et al. (2019) propose1

a unified cumulative distribution model of passengers’ expected pick-up time for both street-2

hailing and e-hailing taxi markets. Their model, as a deductive approach, can be reformulated as3

an analytical Cobb-Douglas production model with specific parameters. It shows that the street-4

hailing taxi market displays increasing returns to scale (i.e., α1 + α2 = 2) and the e-hailing taxi5

market has constant returns to scale (i.e., α1 +α2 = 1). They also report some empirical evidence6

in which the returns to scale are 1.6 for street-hailing taxis and close to 1 for e-hailing taxis.7

In addition, there is a rich body of literature on the use of queuing models to approximate8

customers’ queuing time in MoD service markets. Based on different assumptions regarding cus-9

tomers’ arrivals and service providers (drivers), researchers have used a variety of queuing models10

in MoD service markets, including the M/M/1 queue (Guo et al., 2018); M/M/k queue (Taylor,11

2018, Bai et al., 2019, Feng et al., 2020); M/G/k queue (Li et al., 2019); Erlang loss system (Hu and12

Zhou, 2020); G/G/k queue (Wang and Odoni, 2016, Chen and Wang, 2018b, Wang et al., 2019);13

Erlang C formula (Benjaafar et al., 2021); and double-ended queue (Chen and Wang, 2018a, Xu14

et al., 2020). In particular, Benjaafar et al. (2021) argue that passengers’ expected queuing time15

is a function of both the difference between supply and demand and the ratio of demand to sup-16

ply. By implementing a series of approximations for the M/G/k queue, Li et al. (2019) find that17

customers’ total waiting time (sum of queuing and pick-up time) is inversely proportional to the18

number of idle vehicles.19

It is noteworthy that Yang et al. (2020a) first study the joint impacts of matching interval and20

matching radius on the main system performance measures in MoD service markets. However, their21

model simply focuses on passengers’ waiting time and drivers’ idle time in one batch matching22

interval, with the number of waiting passengers and idle drivers at the start of the considered23

interval as given. By contrast, this paper focuses on a stationary process of matching in which the24

variables do not change over a certain time horizon, and passenger arrival rate and vehicle fleet size25

are treated as exogenous inputs of the matching model. Then, the AMP model can approximate26

passengers’ total expected waiting time and drivers’ total expected idle time over a sequence of27

intervals in a stationary process, and characterize the complex endogenous relationships between28

endogenous variables (such as passengers’ and drivers’ expected waiting time) and model inputs29

(including passenger arrival rate, vehicle fleet size, matching interval and matching radius) in both30

the online and physical matching stages.31

3. A general AMP model32

This section presents the AMP model to delineate how to approximate passengers’ and drivers’33

total expected waiting time with a given matching strategy and market condition in a stationary34

process. To avoid confusion, we define a passenger’s total waiting time as the sum of the passenger’s35

matching time (passenger waiting time for matching or order confirmation after order placement)36

and pick-up time (passenger waiting time for pick-up upon order confirmation), and define a37

driver’s total waiting time as the sum of the driver’s matching time (driver idle time waiting for an38
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order assignment after completion of the last ride) and pick-up time. It is worth mentioning that1

our AMP model can be incorporated into a large number of demand-supply equilibrium models,2

for almost all of them involve some types of matching process. In this case, the demand rate can3

be given as a function of the trip fare set by the platform and passengers’ waiting time in both4

virtual and physical stages of matching. The driver supply can be given as a function of the wage5

per ride paid by the platform and the vehicles’ utilization rate, which is related to drivers’ waiting6

time. Passengers’ and drivers’ waiting times are, in turn, affected by passenger demand rate and7

driver supply, as characterized by the AMP model. In other words, the AMP model proposed8

in this study can be used as a backbone of models built for equilibrium analyses of MoD service9

markets.10

3.1. General model setup11

Let Q denote the passenger demand rate of MoD services (measured in arrival rate) and N12

the number of active vehicles/drivers in service in the examined area. Both Q and N are treated13

as exogenous inputs of the AMP model and their combination measures the market thickness.14

Note that the inputs of the AMP model also include the matching strategy defined below. In15

general, passengers and drivers can be matched in two ways: instantly or in batch. The former16

matches a passenger with the closest idle vehicle within a certain pick-up distance (termed the17

matching radius, r), immediately as the passenger raises his/her order. The latter waits for a18

certain time interval (termed the matching interval, τ) to accumulate more driver-passenger pairs19

for better matching through, for example, a bipartite graph matching algorithm. Clearly, if τ = 0,20

we have instant matching; in other words, instant matching can be viewed as a special case of21

batch matching. We thus use the pair (r, τ) to denote a platform’s matching strategy. It is worth22

noting that, different from some existing studies (Li and Netessine, 2020, Qin et al., 2021) allowing23

dynamic adjustment of matching time interval, we assume a stationary equilibrium state in which24

the platform’s matching strategy (r, τ) remains constant within a certain time horizon spanned25

over a few batch matching intervals.26

We consider a stationary process in which all randomly arriving passengers will eventually27

receive ride services with a ride time t, measured as a fraction of an hour. Let mc and mv denote28

the masses of the two pools of waiting passengers and idle vehicles, respectively, at the end of29

each matching interval and right before the next matching decision. Here and in what follows, the30

subscript “c” stands for passengers (customers) and the subscript “v” stands for vehicles (drivers).31

Then the expected number of successfully matched driver-passenger pairs and the expected pick-32

up distance, denoted by M (mc,mv, r) and L (mc,mv, r), can be expressed as a function of these33

two masses and the matching radius. The expected number of passengers left after execution of34

one batch matching is given by mc −M (mc,mv, r), and the expected number of new passengers35

arriving in the next interval is τQ. Then the expected number of passengers for the next batch36

matching is m′
c = mc − M (mc,mv, r) + τQ. In a stationary process, we have m′

c = mc, giving37
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rise to1

M(mc,mv, r) = τQ (2)

Note that we are considering batch matching by assuming M (mc,mv, r) (termed as pairing func-2

tion) as a function of the two masses of waiting passengers and idle vehicles at the instant of3

matching, both masses depend on the matching interval over which they are accumulated. This4

also implies that the matching rate M (mc,mv, r) /τ is equal to the arrival rate of passengers Q,5

which is consistent with the stationary condition in Yang and Yang (2011). The pairing function6

M (mc,mv, r) is a key component in our AMP model to derive the total passenger waiting time7

for given demand rate Q and supply N .8

Denote by pc and pv the matching probability of passengers and drivers, respectively. pc is the9

proportion of passengers matched with idle vehicles in the mass of waiting passengers and pv is10

the proportion of idle vehicles matched with waiting passengers in the mass of idle vehicles. At11

the execution of each batch matching, pc = M (mc,mv, r) /mc and pv = M (mc,mv, r) /mv. In a12

stationary process, the matching times of passengers and drivers are denoted by wc and wv and13

can be estimated by14

wc =
τ

2
pc +

3

2
τpc(1− pc) +

5

2
τpc(1− pc)

2 + ... (3)
15

wv =
τ

2
pv +

3

2
τpv(1− pv) +

5

2
τpv(1− pv)

2 + ... (4)

where τ
2
indicates the expected matching time of passengers/drivers who arrive in one interval and16

get matched at the execution time of that interval (i.e., the end of the interval); 3
2
τ refers to the17

expected waiting of passengers/drivers who arrive in one interval and get matched at the end of18

the next interval, so on and so forth. In view of pc ∈ [0, 1] and pv ∈ [0, 1], by using the summation19

of the series formula, we can obtain20

wc =

(
1

pc
− 1

2

)
τ =

[
mc

M(mc,mv, r)
− 1

2

]
τ (5)

21

wv =

(
1

pv
− 1

2

)
τ =

[
mv

M(mc,mv, r)
− 1

2

]
τ (6)

Clearly, wc ≥ τ
2
, wv ≥ τ

2
. We can also find that wc → τ

2
as pc → 1 and wv → τ

2
as pv → 122

(all arriving passengers/drivers can be successfully matched in the arrival interval without being23

carried over to the next batch); wc → ∞ as pc → 0 and wv → ∞ as pv → 0 (passengers/drivers can24

hardly be matched, so they wait for an extremely long matching time or idle time). By combining25

Eq. (2), Eq. (5), and Eq. (6) we can further obtain the following relationship between the masses26

of waiting passengers and drivers (mc, mv) and their matching time (wc, wv ) and arrival rate Q:27

mc =
(
wc +

τ

2

)
Q (7)

28

mv =
(
wv +

τ

2

)
Q (8)

At the beginning of a matching interval, mc − τQ passengers remain waiting in the system29

because M (mc,mv, r) = τQ passenger-driver pairs are matched. At the end of a matching interval30

8



and before the next matching decision, the mass of waiting passengers is mc because τQ passengers1

have steadily arrived during the matching interval. Therefore, the queuing length of passengers2

is 1
2
(mc +mc − τQ) = mc − τ

2
Q in a matching interval; similarly, the queue length of drivers is3

mv − τ
2
Q. By reformulating Eqs. (7) and (8), we have mc − τ

2
Q = wcQ and mv − τ

2
Q = wvQ. It is4

consistent with Little’s law, in which the average mass of waiting passengers mc − τ
2
Q (or drivers5

mv − τ
2
Q) equals the product of the matching time wc (or wv) and the arrival rate of passengers Q6

(which is also equal to the arrival rate of idle vehicles). The term − τ
2
Q at the left-hand side (LHS)7

in mc − τ
2
Q = wcQ (or mv − τ

2
Q = wvQ) formula is due to the discrete batch matching setting;8

that is, the batch matching is only executed at the end of each matching interval.9

Combining Eqs. (7) and (8), yields10

wv =
mv

mc

(
wc +

τ

2

)
− τ

2
(9)

In addition, in a stationary state, given the vehicle conservation condition whereby fleet size equals11

the sum of the average idle vehicles, picking-up vehicles and occupied vehicles in the delivery phase,12

we have13

N =
1

2
(mv − τQ+mv) +Qwp + tQ = mv +Q

[
L(mc,mv, r)

v
+ t− τ

2

]
(10)

where ride time t of passengers is assumed to be constant, wp = L (mc,mv, r) /v is the expected14

pick-up time, and v is the vehicle moving speed, which is generally assumed to be constant. The15

term 1
2
(mv − τQ+mv) represents the average mass of idle vehicles, wherein the number of waiting16

vehicles at the start of each matching interval is mv−τQ, and at the end of each matching interval,17

it reaches mv. By summing the passengers’ matching time wc and the expected pick-up time wp,18

we obtain the total waiting time of passengers, denoted by W , as follows:19

W =

[
mc

M(mc,mv, r)
− 1

2

]
τ +

L(mc,mv, r)

v
(11)

For given constants t and v, from Eq. (2) and Eq. (10) we can obtain mc and mv as functions of20

market inputs (Q,N) and matching strategy (r, τ). Consequently, by substituting the expressions21

mc and mv into Eq. (11), we can obtain the total waiting time of passengers as a function of (Q,N)22

and (r, τ), which is given below after omitting the constants t and v:23

W = W (Q,N, r, τ) (12)

It is noteworthy that Eq. (12) does not necessarily have an explicit formula; instead, the two24

intermediate variables mc and mv are given as the implicit solutions of a system of equations25

consisting of Eq. (2) and Eq. (10), and thus W is given by a function of these two intermediate26

variables.27
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To summarize, the AMP model for a stationary MoD service market is1 

M(mc,mv, r) = τQ

N = mv +Q
(
wp + t− τ

2

)
mc =

(
wc +

τ

2

)
Q

mv =
(
wv +

τ

2

)
Q

wp =
L(mc,mv, r)

v

(13a)

(13b)

(13c)

(13d)

(13e)

All the variables related to the matching process, i.e., M , mc, mv, wc, wv and wp, can be obtained2

with given market inputs (Q,N) and matching strategy (r, τ). Namely, this matching model3

delineates the intricate relationships between endogenous variables and model inputs (Q,N, r, τ)4

in both virtual and physical matching stages. Moreover, by integrating this matching model into5

a specific demand-supply equilibrium framework and constructing a bi-level optimization model,6

we can also derive the state-dependent optimal matching strategy. For example, as the supply7

and demand states vary across peak and off-peak hours within a day, we can use the bi-level8

optimization model to determine the optimal matching intervals from hour to hour.9

3.2. General model properties10

Since mv = M
pv

= τQ
pv

≥ τQ, based on the AMP model, the average mass of idle vehicles is at11

least τ
2
Q. To guarantee the system stability and obtain valuable insights of the AMP model, the12

following two common assumptions are introduced and used henceforth.13

Assumption 1. The vehicle fleet size N is larger than the minimum consumed supply tQ + τ
2
Q,14

i.e., N > tQ+ τ
2
Q.15

Assumption 2. Given a matching strategy (τ, r), the pairing function M (mc,mv, r) increases16

with the mass of waiting passengers mc (with given mv) and idle drivers mv (with given mc) and17

M (mc,mv, r) ≤ min {mc,mv}.18

Assumption 1 is a widely used assumption in the literature, which assumes a supply slack19

(difference between the total supply N and the minimum consumed supply tQ + τ
2
Q. Then the20

feasible range of mv is
[
τQ,N − tQ+ τ

2
Q
]
). Assumption 2 is also intuitive: the larger the mass21

of waiting passengers and idle drivers, the larger the number of matched driver-passenger pairs in22

each time interval. Based on these assumptions, the relationships between mc and mv and between23

wc and wv are established below.24

Proposition 1. Given any matching strategy (τ, r) and passenger arrival rate Q,25

1. the mass of waiting passengers mc decreases with the mass of idle drivers mv, and vice versa;26

2. passengers’ matching time wc decreases with drivers’ matching time wv, and vice versa.27

10



Since at the stationary state, mc and mv satisfy M (mc,mv, r) = τQ, then, mc can be regarded1

as a function of mv for given r, τ and Q, i.e., mc := mc (mv). Define2

wp (mc (mv) ,mv, r) =
L(mc (mv) ,mv, r)

v
(14)

when mv approaches its minimum at τQ, pv = M
mv

= τQ
mv

should approach 1, which implies mc3

should be extremely large. In this situation, an idle vehicle is surrounded by lots of waiting4

passengers, and if it is matched with the nearest waiting passenger, the expected pick-up distance5

is nearly zero. Then the following mild Assumption 3 about the pick-up time function in Eq. (14)6

is introduced.7

Assumption 3. With a given matching strategy (r, τ) and passenger arrival rate Q,8

wp (mc (mv) ,mv, r) in Eq. (14) is a continuous function of mv and satisfies wp (mc (mv) ,mv, r) → 09

when mv → τQ.10

With Assumptions 1-3, the existence of solutions for the AMP model (13) is guaranteed as11

follows:12

Proposition 2. For any given (Q,N, r, τ), there exists a solution (m∗
c ,m

∗
v) of the AMP model (13).13

4. A physical process for model realization and properties14

This section substantializes the AMP model by considering a realistic physical matching pro-15

cess, under which the assumptions of the AMP model in Section 3 are satisfied.16

4.1. Physical process17

Denote by A the total area of the service region. Then the densities of waiting passengers18

and idle vehicles in the service region are given by ρc = mc/A and ρv = mv/A, respectively. We19

assume that waiting passengers are uniformly located in the service region and the stochasticity20

of passengers’ location is not considered for simplicity. The spatial distribution of idle vehicles is21

assumed following a spatial Poisson point process (Chiu et al., 2013). For analytical tractability,22

we consider a simplified matching procedure in which the platform matches a waiting passenger23

to his/her closest idle vehicle within the matching radius.24

For any waiting passenger, the probability of getting matched with a nearby idle vehicle and25

the expected distance to the closest idle vehicle depend on the densities of waiting passengers and26

idle vehicles and the matching radius. To estimate the pick-up distance between the matched27

pairs of waiting passengers and idle vehicles, Xu et al. (2017) introduce the notion of dominant28

zone, which is inspired by the well-known Voronoi Diagram (Voronoi, 1908). The dominant zone29

of each waiting passenger refers to a neighboring area within which the distance from any point30

to this passenger is shorter than that to any other waiting passenger. Then each passenger will be31

matched with the closest idle vehicle within the dominant zone of that passenger. This assumption32

of the matching mechanism successfully reflects the competition between waiting passengers in33

11



“catching” idle vehicles. However, it fails to capture the influences of the matching radius within1

which only a passenger and an idle vehicle can be paired. Specifically, when the matching radius2

is small, some idle vehicles in the dominant zone of a passenger may not be feasible for matching3

since they are out of the matching radius. To address this issue, Yang et al. (2020a) extend the4

concept of dominant zone to matching area, which is the intersection of the dominant zone and5

the matchable area constrained by the matching radius. In this work, we adopt the assumption of6

Yang et al. (2020a). Since the area of each passenger’s dominant zone equals (ρc)
−1 = A/mc, we7

further assume that the shape of the dominant zone of each passenger is approximated by a circle8

with a radius of
√
(ρc)

−1/π. Then the matching area AM—the area around a waiting passenger9

in which they can be matched with an idle vehicle—is given by10

AM = min{(ρc)−1, πr2} (15)

where πr2 is the area of the circle centered at each waiting passenger with a radius equal to the11

matching radius r (as illustrated in Figure 1).12

(a) Matching area governed by the density of waiting

passengers.

(b) Matching area governed by the the matching ra-

dius.

Figure 1: Illustrations of the matching area.

For spatial Poisson distribution, the probability that there are n idle vehicles within the match-13

ing area of each waiting passenger can be written as P{n} = 1
n!
exp(−AMρv) · (−AMρv)

n. During14

each matching interval, a waiting passenger is matched with an idle vehicle if at least one idle15

vehicle is within the passenger’s matching area. Then the probability of each passenger being16

12



successfully matched, i.e., the matching probability pc, is given as follows1:1

pc = 1− P{0} = 1− exp(−AMρv) (16)

The pairing function M (mc,mv, r) is given by2

M(mc,mv, r) = mc [1− exp(−AMρv)] (17)

It is worth mentioning that, when (ρc)
−1 ≤ πr2, we have M (mc,mv, r) = mc [1− exp (−mv/mc)],3

this pairing function is consistent with the widely used matching function in the economic liter-4

ature, such as Petrongolo and Pissarides (2001) and Buchholz (2022), which is derived from the5

well-known urn-ball matching problem first formulated in Butters (1977) and Hall (1979).6

Eqs. (5)–(6) and (17) yield the following specific form of the matching time of passengers and7

drivers:8

wc =

[
1

1− exp(−AMρv)
− 1

2

]
τ (18)

9

wv =

{
ρv

ρc [1− exp(−AMρv)]
− 1

2

}
τ (19)

The expected pick-up time can also be deduced based on the above-stated assumptions regard-10

ing uniformly located waiting passengers and spatial Poisson distributed idle vehicles. We denote11

by x the distance of the unmatched passenger to his/her closest idle vehicle with a cumulative12

distribution function H(·) and density function h(·). When the distribution of idle vehicles follows13

a spatial Poisson distribution, we obtain H(·) and h(·) as follows ((Chiu et al., 2013)):14

H(x) = 1− exp(−πx2ρv), 0 ≤ x ≤
√

AM

π
(20)

15

h(x) = 2πxρv exp(−πx2ρv) (21)

where
√

AM

π
is the approximated radius of the matching area AM . Then the expected pick-up time16

wp can be approximated as17

wp(mc,mv, r) =
L(mc,mv, r)

v
∼=

ζ
∫√

AM
π

0 xh (x) dx

vH

(√
AM

π

)

=

ζ

[
erf(

√
AMρv)

2
√
ρv

−
√

AM

π
· exp(−AMρv)

]
v [1− exp(−AMρv)]

(22)

1We do not take into account the “secondary effects” that may actually underestimate the matching probability

when the matching area is governed by the density of waiting passengers. It happens when no idle vehicle is in one

passenger’s dominant zone while two (or more) idle vehicles are located in his/her adjacent passenger’s dominant

zone, so that these two passengers can all be matched if the matching radius is sufficiently large.

13



where erf (x) = 2√
π

∫ x

0
e−t2dt is a Gaussian error function, ζ is a detour ratio (Yang et al., 2018),1

i.e., the distance of actual road distance to straight line distance, and v is the speed of the vehicle.2

Clearly, wp in Eq. (22) depends on the densities of waiting passengers ρc = mc/A and idle vehicles3

ρv = mv/A and matching radius r, which can also be written as wp (ρc, ρv, r) when the area of the4

service region A is given. This form of pick-up time function and its variants were also used by5

Arnott (1996), Xu et al. (2017), Zha et al. (2018b) and Yang et al. (2020a).6

The densities of waiting passengers and idle vehicles are given by7

ρc =
mc

A
=

M

pcA
=

τQ

[1− exp (−AMρv)]A
(23)

8

ρv =
mv

A
=

N − wp(ρc, ρv, r)Q− tQ+ τ
2
Q

A
(24)

Therefore, when the market inputs (Q,N) and matching strategy (r, τ) are given, ρc and ρv can9

be determined by Eq. (23) and (24). Then ρc, ρv, wc, wv and wp of the AMP model under this10

model realization is11 

ρc =
τQ

[1− exp (−AMρv)]A

ρv =
N − wp(ρc, ρv, r)Q− tQ+ τ

2
Q

A

wc =

[
1

1− exp(−AMρv)
− 1

2

]
τ

wv =

{
ρv

ρc [1− exp(−AMρv)]
− 1

2

}
τ

wp =

ζ

[
erf(

√
AMρv)

2
√
ρv

−
√

AM

π
· exp(−AMρv)

]
v [1− exp(−AMρv)]

(25a)

(25b)

(25c)

(25d)

(25e)

4.2. Specific model properties12

We now examine the specific properties of the AMP model under the physical process intro-13

duced above. From Eq. (17), it is easy to see that the matched driver-passenger pairs in a matching14

interval M (mc,mv, r) increases with mc and mv, i.e.,
∂M(mc,mv ,r)

∂mc
> 0 and ∂M(mc,mv ,r)

∂mv
> 0, which15

satisfies Assumption 2. Then, we have the following Corollary 1 to show the relationship between16

mc and mv, and between wc and wv.17

Corollary 1. Given any matching strategy (τ, r) and passenger arrival rate Q,18

1. The mass of waiting passengers mc is a monotonically decreasing and convex function of the19

mass of idle drivers mv, and vice versa.20

2. Drivers’ matching time wv is a monotonically decreasing and convex function of passengers’21

matching time wc, and vice versa.22

14



Corollary 1 indicates that wc is not only negatively correlated with wv, but also a convex1

function of wv in the entire feasible domain. This corollary is consistent with the findings made2

without considering a matching radius in Xu et al. (2017). In this sense, the proposed model3

verifies their findings in a more general setting with a matching radius.4

Before analyzing the existence of solutions of Eqs. (25), we provide the following lemma on wp.5

Lemma 1. Let mc (mv) be the mass of waiting passengers that satisfies M (mc,mv, r) =6

mc [1− exp (−AMρv)] = τQ, then wp (mc (mv) ,mv, r) is a continuous function of mv and7

wp (mc (mv) ,mv, r) → 0 when mv → τQ.8

Lemma 1 shows that this model realization satisfies Assumption 3, then according to Propo-9

sition 2 the existence of solutions of Eq. (25) is guaranteed as shown in the following Corollary10

2.11

Corollary 2. For any given (Q,N, r, τ), there exists a solution (ρ∗c , ρ
∗
v) to the system of Eqs. (25).12

Let ϕ denote πr2τQ
A

to simplify the expression, which represents the number of new arrival13

passengers density within the maximum matching radius in each matching interval. Given that14

ρc ≥ τQ
A
, the condition ϕ < 1 indicates that πr2 < A

τQ
≤ 1

ρc
, which implies that the matching area15

AM = πr2. When 1
ρc

= πr2, from Eqs. (25a)–(25b), we have ϕ < 1 and16

N −Q

ζ

[
erf

(√
− ln(1−ϕ)

)
2
√

− ln(1−ϕ)

πr2

− r · (1− ϕ)

]
v · ϕ

− tQ+
τ

2
Q =

−A · ln(1− ϕ)

πr2
(26)

Therefore, given N and Q, the matching strategy (r, τ) satisfying Eq. (26) will divide the plane of17

(r, τ) into two subareas: one is a matching area governed by the matching radius, and the other is18

governed by the density of waiting passengers. Furthermore, as shown in Corollary 3 below, the19

range of the solutions of passenger and driver densities can be further determined by comparing20

the values on the left and right hand sides of Eq. (26).21

Corollary 3. For any given (Q,N, r, τ),22

1. when ϕ < 1 and23

N −Q

ζ

[
erf

(√
− ln(1−ϕ)

)
2
√

− ln(1−ϕ)

πr2

− r · (1− ϕ)

]
v · ϕ

− tQ+
τ

2
Q ≥ −A · ln(1− ϕ)

πr2
(27)

there exists at least one solution (ρ∗c , ρ
∗
v) such that ρ∗c ≤ 1

πr2
to the system of Eqs. (25a)–(25b);24

2. when ϕ ≥ 1 or when ϕ < 1 and25

N −Q

ζ

[
erf

(√
− ln(1−ϕ)

)
2
√

− ln(1−ϕ)

πr2

− r · (1− ϕ)

]
v · ϕ

− tQ+
τ

2
Q <

−A · ln(1− ϕ)

πr2
(28)

there exists at least one solution (ρ∗c , ρ
∗
v) such that ρ∗c >

1
πr2

to the system of Eqs. (25a)–(25b).26
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Corollary 3 indicates that under condition ϕ < 1 and Condition (27), there exists a solution1

such that the matching area is governed by the matching radius, i.e., AM = πr2; under condition2

ϕ < 1 and Condition (28) or ϕ ≥ 1 there exists a solution such that the matching area is governed3

by the density of waiting passengers, i.e., AM = (ρc)
−1.4

We are now ready to present the following monotonicity results to show the impacts of the5

matching strategy (r, τ).6

Proposition 3. With any given market inputs (Q,N):7

1. If the matching area is governed by the matching radius, i.e., AM = πr2,8

1) for given τ , when r increases, then wp increases, ρv decreases, wv decreases, but ρc, wc9

and pc are not necessarily monotonic.10

2) for given r, when τ increases, then ρv increases, wv decreases, pc increase, but ρc, wc11

and wv are not necessarily monotonic.12

2. If the matching area is governed by the density of waiting passengers, i.e., AM = (ρc)
−1,13

1) for given τ , then ρc, ρv, pc, wp, wc and wv are independent of r;14

2) for given r, when τ increases, then wp decreases, ρv increases, but wv, wc and pc are15

not necessarily monotonic.16

This proposition implies that when the matching radius is smaller than a threshold, it influences17

the outputs of matching models, including passengers’ matching time and pick-up time, densities of18

waiting passengers and idle vehicles, and drivers’ matching time. As the matching radius increases,19

the pick-up time will increase while drivers’ matching time will decrease. However, when the20

matching radius is larger than the threshold, the outputs of matching models are irrelevant to it21

but only relevant to the matching interval. As the matching interval increases, the pick-up time22

will decrease.23

5. Impact of market thickness24

Market thickness in terms of the size of the two pools of demand and supply is an important25

factor that governs market frictions (Frechette et al., 2019). The above proposed AMP model26

explicitly captures market frictions by considering passenger and driver spatial distributions and27

thus contrasts with the conventional queuing models applied in MoD service markets, which give28

the same waiting time due to the same traffic intensity when the demand and supply are changed29

proportionally.30

To examine the impact of market thickness on market frictions, we now scale up or down both31

passenger demand rate Q and driver supplyN by the same factor κ in the AMP model. In this case,32

the utilization rate of vehicles tQ
N

does not change. However, passengers’ and drivers’ matching time33

and the expected pick-up time may change. With the above model realization, the returns to scale34

16



property of the driver-passenger pairing function (defined in Eq. (17)) together with the matching1

time function with respect to the scaling factor can be established in the following Proposition 4.2

Proposition 4. Given the matching strategy (τ, r), when scaling up passenger demand rate Q and3

driver supply N with the same scaling factor κ > 1, we have4

1. Given the matching radius r, the driver-passenger pairing function M (mc,mv, r) (defined in5

Eq. (17)) exhibits constant return to scale when 1
ρc

≤ πr2, and exhibits increasing return to6

scale when 1
ρc

> πr2. Moreover, M (mc,mv, r) satisfies M (mc, κmv, r) ≤ κM (mc,mv, r).7

2. The expected pick-up time wp and passgeners’ matching time wc decrease with κ.8

3. Drivers’ matching time wv increases with κ.9

Proposition 4 shows that when the number of waiting passengers mc and drivers mv in the pool10

increases proportionally, the number of matched driver–passenger pairs M (mc,mv, r) increases11

proportionally or more than proportionally. This is because the expected distance between a12

waiting passenger and his/her closest idle vehicle becomes shorter when mc and mv in the pool are13

increased. Then, when the maximum matching radius is not binding, the matched driver-passenger14

pairs M (mc,mv, r) has constant return to scale for the waiting passengers are assumed uniformly15

located and the spatial distribution of idle vehicles follows a spatial Poisson point process. When16

the maximum matching radius is binding, some waiting passengers who are unmatchable in the17

absence of idle vehicles within the matching radius can now be matched. In this case, the number18

of matched driver-passenger pairs or the pairing function has an increasing return to scale. This19

result is also supported by some relevant studies, such as Yang et al. (2014), Zhang et al. (2019)20

and Wei et al. (2022). When only the density of idle vehicles increases while the number of waiting21

passengers keeps unchanged, although the expected pick-up distance becomes shorter, the number22

of matched driver–passenger pairs satisfies M (mc, κmv, r) ≤ κM (mc,mv, r) for κ > 1, because23

not all increased drivers are matched.24

With these propositions of the pairing function M (mc,mv, r), we can find that, when passenger25

demand rate Q and driver supply N increase with the same scaling factor κ and κ > 1, the market26

will have more waiting passengers and idle vehicles, then the expected pick-up time will be shorter,27

or wp decreases with the scaling factor. Because the proportion of time spent by each driver in28

the delivery phase does not change, a shorter time spent in the pick-up phase also implies a larger29

proportion of time in the idle phase, or the matching time wv increases with the scaling factor.30

A larger wv indicates that the mass of idle vehicles mv increases by more than the matching rate31

M
τ
= Q. Also, because the pairing function M (mc,mv, r) has a constant/increasing return to the32

scale, the mass of waiting passengersmc should increase less than the matching rate. Therefore, the33

proportional increase in passenger demand rate Q and vehicle fleet size N will decrease passengers’34

matching time.35
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6. Special cases1

When the density of idle drivers is much higher than that of waiting passengers in the matching2

pools, i.e., ρv ≫ ρc, it is called the case that supply dominates the demand or ρv is regarded as a3

dominant supply. Otherwise, demand dominates supply or ρc is a dominant demand if ρc ≫ ρv.4

In this section, we investigate several special cases: (1) a matching mechanism with an extremely5

small matching radius, which resembles a street-hailing taxi market; (2) batch matching with a6

large matching radius and a dominant supply; and (3) batch matching with a large matching radius7

and a dominant demand. We analyze and present the properties of the AMP model under these8

special cases.9

6.1. Batch matching with a small matching radius10

When the matching radius is small, the matching area is dominated by the matching radius11

rather than the density of waiting passengers; i.e., AM = πr2.12

Proposition 5. When the matching radius r is extremely small, we have wc ≈ τ
ρvπr2

− τ
2
, wv ≈13

τ
ρcπr2

− τ
2
and wp ≈ ζr

v
. Besides that, the matching rate M

τ
≈ πr2

Aτ
mcmv.14

In view of Proposition 5, the matching rate can be rewritten as a Cobb-Douglas type matching15

model as follows:16

M

τ
= Q ≈ πr2

Aτ
(mc)

α1 (mv)
α2 (29)

with the return-to-scale factors α1 = α2 = 1, which indicates that the matching model exhibits17

increasing returns to scale (α1+α2 > 1). This is because when the matching radius r is extremely18

small, the market resembles a street-hailing taxi market, where a passenger and an idle vehicle can19

be matched only upon physical encounter. Since customers’ origins and destinations are uniformly20

located, the mass of idle vehicles mv is also uniformly located. With a given matching strategy21

and mc, if the mass of idle vehicles doubles, the matching rate M
τ

= Q (equivalent to the street-22

hailing market’s meeting rate) also doubles, hence α2 = 1. Similarly, treating idle vehicles as the23

main agents in the matching strategy, given mv, doubling the mass of passengers also doubles the24

matching rate M
τ
= Q, thus α1 = 1. This observation is also consistent with Zhang et al. (2019)’s25

findings of increasing returns to scale with α1 + α2 = 2 in the street-hailing market.26

In addition, Proposition 5 indicates that when the matching radius is extremely small, the27

expected pick-up time wp can be treated as an exogenous variable that is directly governed by the28

matching radius r; it is no longer endogenously related to the arrival rate of passengers, matching29

time of passengers and drivers.30

It turns out that this special case is a variant of the model proposed by Yang and Yang (2011)31

and Zha et al. (2016) with α1 = α2 = 1, except that the ride time t in their model is replaced by32

the summation of t and the expected pick-up time ζr
v
. From Eq. (11), we can obtain an explicit33

formula for the total waiting time of passengers W as follows:34

W (Q,N, rs, τ) =
Aτ[

N −Q
(
t+ ζrs

v
− τ

2

)]
πr2s

− τ

2
+

ζrs
v

(30)
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where the third argument rs refers to an extremely small matching radius.1

6.2. Batch matching with a large matching radius and a dominant supply2

With a large matching radius, the matching area is governed by the density of wait-3

ing passengers; i.e., AM = ρc
−1 and the driver-passenger pairing function M (mc,mv, r) =4

mc [1− exp (−ρv/ρc)]. Based on Eq. (23) and Eq. (24), the endogenous variables of ρc and ρv5

can be solved by the following implicit equation:6

−ρc ln

(
1− τQ

ρcA

)
=

N

A
−

ζ

[
erf

(√
− ln(1− τQ

ρcA
)
)

2
√

− ln(1− τQ
ρcA

)
−
√

1
π

(
1− τQ

ρcA

)]√
ρc

vτ
− tQ

A
+

τQ

2A
(31)

and7

ρv = −ρc ln

(
1− τQ

ρcA

)
(32)

which are independent of the maximum matching radius r as indicated in Proposition 3.8

Proposition 6. When the matching area is governed by the density of waiting passengers and for9

a dominant supply with ρv ≫ ρc, we have wc ≈ τ
2
, wv ≈ ρv

ρc
τ − τ

2
and wp = ζ/

(
2v
√
ρv
)
.10

Proposition 6 indicates that, with a dominant supply, the competition among waiting passengers11

over an idle vehicle is negligible and almost all waiting passengers can be successfully matched in12

their arrival interval. However, the competition among idle vehicles is tough, they must wait13

for several batches before being matched with a waiting passenger. The expected pick-up time14

wp = ζ/
(
2v
√
ρv
)
only depends on the density of idle vehicles and this result is consistent with the15

meeting distance formula proposed by Daganzo (1978), Arnott (1996) and Chen et al. (2019) for16

the transit, taxi and ride-hailing markets, respectively.17

When ρv ≫ ρc, pc ≈ 1, we have τ = M
Q

= pcmc

Q
≈ ρcA

Q
. The total waiting time of passengers can18

thus be written as19

W

(
Q,N, rl,

ρcA

Q

)
=

τ

2
+

ζ

2v
√
ρv

(33)

where the third and fourth arguments refer to a large matching radius and a matching interval20

approaching ρcA
Q
, respectively. Clearly, in this special case, W reduces to Castillo model with an21

additional term τ
2
, which is due to discrete batch matching. From Eq. (10), we find that W can22

be solved by the following implicit equation with given (Q,N, r, τ):23

N =
Aζ2

4v2
1(

W − τ
2

)2 +
(
W − τ

2

)
Q+ tQ− τQ

2
(34)

6.3. Batch matching with a large matching radius and a dominant demand24

In this special case, the matching area is also governed by the density of waiting passengers;25

i.e., AM = ρc
−1 and ρc, ρv can be solved by Eqs. (31)–(32).26
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Proposition 7. When the matching area is governed by the density of waiting passengers and for1

a dominant demand with ρc ≫ ρv, we have wc ≈
(

mc

mv
− 1

2

)
τ , wv ≈ τ

2
and wp ≈ ζ

v
√
πρc

.2

Proposition 7 indicates that the pick-up time mostly relies on the denser side and is inversely3

proportional to the square root of its density (Xu et al., 2017). The coefficients of these two4

formulas differ, because the waiting passengers and idle vehicles are assumed to follow different5

distributions. In addition, with a dominant demand, idle vehicles can be successfully matched in6

the first matching interval. Then, the total waiting time of passengers W is given by7

W

(
Q,N, rl,

ρcA

Q

)
= wc + wp =

ρcA

Q
− τ

2
+

ζ

v
√
πρc

(35)

where the fourth arguments refer to a matching interval approaching ρvA
Q

.8

To summarize, the matching model in this special case has a few interesting features. First,9

the effective arrival rate of passengers Q (or matching rate) can be expressed as 1
τ
(mc)

0(mv)
1,10

which is a Cobb-Douglas type matching function with α1 = 0 (for waiting passengers) and α2 = 111

(for idle vehicles), and implies that the sensitivity of matching rate to the number of waiting12

passengers is zero in the market scenarios with dominant demand. Second, since wc ≈ mc

mv/τ
− τ

2
,13

passengers’ matching time is linearly proportional to the ratio of the number of waiting passengers14

to the arrival rate of idle vehicles when the matching interval is very short. This is analogous to15

the bottleneck model, such that the mean waiting time at the bottleneck (i.e., matching time of16

passengers) is equal to the queue lengths (i.e., number of waiting passengers in the pool) divided17

by the capacity of the bottleneck (i.e., arrival rate of idle vehicles in the pool). Third, the pick-up18

time is inversely proportional to the square root of the number of waiting passengers, which is19

contrasted to the assumption of Castillo model that the pick-up time is inversely proportional to20

the square root of the number of idle vehicles. This is because this bottleneck type queuing model21

is appropriate for the market scenarios with a large quantity of demand and limited supply, while22

Castillo model is suitable for cases with a larger number of idle vehicles and only one waiting23

passenger at any instant of matching.24

6.4. Summary of the specific results25

Passengers’ and drivers’ matching time and pick-up time in each special case are summarized26

in the following Table 1. Special cases 1-3 in Table 1 represent the matching scenarios analyzed27

in Subsections 6.1-6.3, respectively. The Cobb-Douglas type matching model in Table 1 is defined28

as Q = a(mc)
α1(mv)

α2 .29

Waiting times for both passengers and drivers are solvable with given (Q,N, r, τ), then we30

analyze under what matching strategies (r, τ) or market conditions (Q,N), these special cases will31

occur. The service rate of the MoD system is N
t
and the service intensity of these N drivers is32

tQ
N
, which is a measure of vehicle utilization. Under the assumption N >

(
t+ τ

2

)
Q, the vehicle33

utilization tQ
N

∈
(
0, 1

1+ τ
2t

)
. As demonstrated in Table 1, three batch-matching special cases are34

analyzed, and the conditions of occurrence are summarized below (see the Appendix for a detailed35

expression):36
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Table 1: Summary of passengers’ and drivers matching time and pick-up time under these three special cases.

Special

cases
r

Relationship

between ρv and ρc

AM wc wv wp Matching model

1 → 0 undetermined πr2 τ
ρvπr2

− τ
2

τ
ρcπr2

− τ
2

ζr
v

A Cobb-Douglas type matching

model with α1 = 1, α2 = 1

2 → ∞ ρv ≫ ρc
1
ρc

τ
2

ρv
ρc
τ − τ

2
ζ

2v
√
ρv

Castillo model:

W = τ
2 + ζ

2v
√
ρv

3 → ∞ ρc ≫ ρv
1
ρc

ρc
ρv
τ − τ

2
τ
2

ζ
v
√
πρc

A bottleneck type queuing model:

W = ρc
ρv
τ + ζ

v
√
πρc

− τ
2

• When the platform sets a small matching radius, the AMP model reduces to Special case 1,1

which is the Cobb-Douglas type matching model developed by Yang and Yang (2011).2

• When the platform sets a large matching radius 1) with an extremely small matching interval3

and sufficient supply; or 2) with the vehicle utilization approaching 0, the AMPmodel reduces4

to Special case 2, which is Castillo model.5

• When the platform sets a large matching radius 1) with an extremely small matching interval6

and limited supply; or 2) with the vehicle utilization approaching 1
1+ τ

2t
, the AMP model7

reduces to Special case 3. This bottleneck type queuing model has not been discussed in8

the literature but has intuitive assumptions and settings. As mentioned in Section 6.3, this9

model assumes the pick-up time is inversely proportional to the square root of the number10

of waiting passengers, and the matching time of passengers is derived from a deterministic11

queue at a bottleneck with a capacity equal to the arrival rate of idle vehicles and queue12

length equal to the number of waiting passengers.13

In addition, as analyzed in Subsections 6.2 and 6.3, we have M (mc,mv, r) =14

mc [1− exp (−ρv/ρc)] ≈ min (mc,mv) when ρv ≫ ρc or ρc ≫ ρv and (ρc)
−1 < πr2. This indi-15

cates that Special cases 2 and 3 can also be reduced to the perfect matching model, in which the16

matching rate is given by the minimum of the arrival rate of waiting passengers and idle vehicles17

(Cachon et al., 2017, Yu et al., 2020).18

7. Numerical studies and model validation19

In this section, we conduct numerical experiments to investigate how the matching strategy20

(τ, r) and the exogenous variables (Q,N) affect system performance measures to illustrate the21

properties of the AMP model. A set of simulation studies are designed in Subsections 7.2-??22

to validate the AMP model and investigate its application scope. Specifically, we examine how23

well specific matching models, including the Cobb-Douglas type model, Castillo model and the24

21



bottleneck type queuing model, approximate the proposed AMP model in diverse scenarios of1

demand and supply and matching strategies.2

7.1. Sensitivity analyses of matching strategies and market thickness3

7.1.1. Relationships between passengers’ and drivers’ matching time4

Figure 2 examines the relationship between passengers’ matching time wc and drivers’ matching5

time wv with passengers’ demand rate Q = 10, 000 person/h and the area is A = 500 km2. In6

Figure 2a, the matching radius is fixed to 1 km. In the area on the left of the dashed red line,7

AM = πr2; in the area on the right, AM = 1
ρc
. Figure 2a shows that drivers’ matching time wv8

is a monotonically decreasing convex function of passengers’ matching time wc regardless of the9

matching interval τ . In addition, wc and wv are always greater than
τ
2
. In Figure 2b, the matching10

interval is 20 sec, wc and wv are always greater than τ
2
, i.e., 10 sec. Below the dashed red line,11

AM = 1
ρc
. From Eq. (25), when πr2 > 1

ρc
, we have, wv =

(
wc +

τ
2

)
ln
(

wc+
τ
2

wc− τ
2

)
− τ

2
, which overlaps12

with the dashed red line, and wc and wv are independent of the matching radius as stated in13

Proposition 3. Above the dashed red line, AM = πr2, and we can see that wv is a monotonically14

decreasing convex function of passengers’ matching time wc regardless of the matching radius r.15

Therefore, Figure 2 demonstrates that, given the matching strategy (τ, r), drivers’ matching time16

wv is a monotonically decreasing convex function of passengers’ matching time wc and vice versa,17

which is consistent with Proposition 1. Besides that, if the matching interval is relatively large18

(as shown in Figure 2a) or if the matching radius is relatively large (as shown in Figure 2b), the19

matching area is governed by the density of waiting passengers, i.e., AM = 1
ρc
. Otherwise, the20

matching area is governed by the matching radius, i.e., AM = πr2.21

(a) Relationships between wc and wv under different

τ(sec) (Note: the value of τ is displayed on curves).

(b) Relationships between wc and wv under different

r (km)(Note: the value of r is displayed on curves).

Figure 2: Relationships between wc and wv.

In the experiments illustrated in Figure 3-Figure 4, we study an area of 100 km2 with a vehicle22

speed equal to 40 km/h and passenger ride time equal to 1
6
h. Passengers’ demand rate Q = 3, 60023

person/h, the fleet size N = 1, 000 veh and detour ratio ζ = 4
π
.24

22



Figure 3 depicts the influence of matching strategy (τ, r) on system performance. The blue line1

is obtained by solving Eqs. (23)–(24). The two-dimensional space of the matching interval and2

matching radius is divided into two areas by the blue line: above it, the matching area is governed3

by the density of waiting passengers; i.e., AM = 1
ρc
; below it, the matching area is governed by the4

matching radius, i.e., AM = πr2.5

We first examine the influences of the matching interval τ . Figures 3a-3b indicate that given6

a matching radius r, the densities of waiting passengers and drivers increase with the matching7

interval τ , since a larger matching interval leads to an accumulation of more waiting passengers8

and drivers. Higher densities of passengers and drivers also result in a shorter pick-up time, as9

shown in Figure 3g. Figure 3e and Figure 3f show that passengers’ matching time wc and drivers’10

matching time increases with the matching interval τ for the length of each batch matching interval11

is longer. Then from Eq. (5) and Eq. (6), we can find that mc and mv increases faster than τ
2
Q.12

Figure 3c indicates ρv/ρc decreases with the matching interval τ , which implies ρc increases faster13

than ρv with the matching interval τ . Interestingly, the matching interval τ has different impacts14

on the matching probability of passenger pc in different matching area scenarios as displayed in15

Figure 3d. When AM = πr2, a passenger’s matching area is governed by the matching radius,16

then, given the matching radius, he/she can be matched is only determined by the density of idle17

vehicles. Since ρv increases with τ , the matching probability of passengers also increases with18

τ . In contrast, if AM = 1
ρc
, the matching probability of passengers is determined by the ratio19

of the density of idle drivers to the density of waiting passengers ρv/ρc. Since ρc increases faster20

than ρv, the matching probability of passengers decreases with the matching interval τ . We also21

investigate the influence of the matching radius r. In Figure 3, we find that the density of waiting22

passengers ρc, the density of idle drivers ρv, passengers’ matching time wc and drivers’ matching23

time wv decrease with the matching radius r. Conversely, the ratio of the density of idle drivers to24

the density of waiting passengers ρv/ρc, the matching probability of passengers pc, and expected25

pick-up time wp increase with matching radius r.26

We next examine the impacts of the exogenous inputs Q and N on system performance in27

Figure 4. In this experiment, the matching interval and matching radius are fixed as τ = 1028

sec and r = 1 km, respectively. Given Q, when N is in the shaded area with the color as the29

legend color of Q, the matching area is governed by the density of waiting passengers (e.g., the30

shaded green area shows that when Q = 9.0×103 person/h and N is in the shaded green area, the31

matching area is governed by the density of waiting passengers). The left border of the shaded area32

is the lower bound of the fleet size; i.e., N = Q
(
t+ τ

2

)
. Along the right border of the shaded area,33

fleet size N satisfies 1
ρc

= πr2, which is the upper bound of the fleet size that makes AM = 1
ρc
. As34

shown in Figure 4a and 4b, passengers’ matching time wc increases with passengers’ demand rate35

Q and decreases with vehicle fleet size N , while drivers’ matching time wv exhibits the opposite36

trend. Since a larger Q or a smaller N (a larger N or a smaller Q) implies more competition37

among passengers (drivers), this causes a longer passengers’ (drivers’) matching time. However,38

the expected pick-up time wp is not monotonic with passengers’ demand rate Q or drivers’ supply39

23



N , as shown in Figure 4c. The reason is that the density of waiting passengers ρc and idle vehicles1

ρv have the opposite monotonicity with respect to N or Q.2

(a) Density of waiting passengers ρc

(person/km2).

(b) Density of idle drivers ρv

(veh/km2).

(c) Ratio of the density of idle drivers

to the density of waiting passengers

ρv/ρc.

(d) Matching probability of passen-

gers pc.

(e) Passengers’ matching time wc

(sec).

(f) Drivers’ matching time wv (sec).

(g) Expected pick-up time wp (sec).

Figure 3: Influences of the matching strategy (τ, r)

7.1.2. Effects of the scaling factor3

The impacts of the scaling factor of passenger demand rate and vehicle fleet size are examined4

in Figure 5 and Figure 6. In this experiment, the matching interval is fixed as τ = 10 sec, the5

initial vehicle fleet size N and the initial passenger demand rate Q are 200 veh and 1000 person/h,6

respectively. The matching radius is r = 1 km in Figure 5a and is r = 3 km in Figure 5b. Then,7
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(a) Passengers’ matching time wc. (b) Drivers’ matching time wv. (c) Expected pick-up time wp.

Figure 4: Influences of the market condition (Q,N).

as demonstrated in Figure 3, the matching area is governed by the matching radius in Figure 5a1

and governed by the density of waiting passengers in Figure 5b. Figure 5 shows that the pairing2

function has an increasing return to scale when AM = πr2, while has a constant return to scale3

when AM = 1
ρc
. It indicates that when the number of waiting passengers and idle drivers increases4

proportionally, the number of matched driver-passenger pairs increases more than proportionally5

due to the matching restrictions caused by the maximum matching radius r. However, when only6

the number of idle drivers increases, the number of matched driver-passenger pairs increases less7

than proportionally. Therefore, Proposition 4.1 is verified.8

In Figure 6 the vehicle fleet size N and the passenger demand rate Q are scaled proportionally.9

The matching radius is fixed as r = 1 km. As shown in Figure 6a, the expected pick-up time wp10

and passengers’ matching time wc decrease with the scaling factor while drivers’ matching time wv11

increases with the scaling factor. Besides that, when the scaling factor is relatively large, e.g., when12

κ > 16, passengers’ matching time will reach its minimum value, i.e., half of the matching interval.13

These findings are consistent with Proposition 4. Furthermore, Figure 6b indicates when scaling14

up passenger demand rate Q and driver supply N with the same scaling factor κ > 1, wc, wp, W15

cannot reduce proportionally to 1
κ
of their initial values (represented by w1

c , w
1
p, W

1, respectively,16

in Figure 6b). Even though this result is difficult to prove theoretically, we have verified this result17

with different (Q,N, r, τ) settings.18

7.2. Model validation with a simulation study19

In this subsection, a set of simulation studies based on a comprehensive agent-based simulator20

is conducted to evaluate how well the AMP model fits the matching outcomes, which are treated21

as a proxy for the real markets. Vehicles move at a speed equivalent to 1 cell edge length per22

second, corresponding to 40km/h. Passenger request times follow a uniform distribution, and both23

the origin and destination locations of the requests are uniformly distributed within the service24
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(a) Increasing return to scale of M (mc,mv, r) when

AM = πr2.

(b) Constant return to scale of M (mc,mv, r) when

AM = 1
ρc
.

Figure 5: Return to scale of M (mc,mv, r).

(a) Changes in wc, wv and wp with the scaling factor

of the market.
(b) Compare wc, wp and W with

w1
c

κ ,
w1

p

κ and W 1

κ .

Figure 6: Influences of the scaling factor κ of the market condition (Q,N).
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area. The trip length for passengers is uniformly distributed, with a mean of 1
6
h 2. To enhance1

the realism of our simulations, passengers’ cancellation behavior is incorporated and passengers’2

maximum endurable matching time is set as 300 sec. The matching process of the simulator is3

summarized as the following Algorithm 1 and the simulation length is 5 h. The drivers’ average4

matching time is used as a condition for judging whether a stationary state is reached, and it5

will be calculated at the end of each batch matching interval. Take the market condition where6

Q = 3, 600 person/h, N = 1, 000 veh and the matching strategy as τ = 5 sec, r = 2 km for an7

example, Figure 7 illustrates the evolution of drivers’ matching times and the progression towards8

the stable state. Given that customers’ trip time is a stochastic variable, drivers’ matching time9

also exhibits stochastic behavior, illustrated by the blue line. However, we observe that the rolling10

mean of wv, utilizing a rolling window of 250, stabilizes around 9, 000 seconds, equivalent to 2.511

hours, as indicated by the red line. Therefore, to ensure the simulation reaches a stationary state,12

we only take the average matching time of passengers and drivers in the last, i.e., the 5th simulated13

hour for subsequent analysis.14

By implementing various matching strategies (as shown in Figure 8) and adjusting for different

Figure 7: The process of reaching stable state of drivers’ matching time (wv).

15

market conditions (as illustrated in Figure 9), we are able to simulate and analyze the market16

performance under diverse scenarios. The mean absolute percentage error (MAPE) is used to17

evaluate and investigate the AMP model discussed in Section 4. MAPE is calculated by18

MAPE =

∣∣∣∣ x̂− x

x

∣∣∣∣ · 100% (36)

where x̂ is the estimated label, which is generated by the AMP model (18)–(22), and x is the19

true label outputted by the simulator. In Figure 8b-8d and Figure 9b-9d, the size of the points20

represents the value of MAPE of the estimated labels.21

With Q = 3, 600 person/h and N = 1, 000 veh, Figure 8 shows the performance when the22

matching radius r > 0.1 km and the matching interval τ < 50 sec, MAPE of passengers’ matching23

2The mean value of the Manhattan distance between two uniformly distributed points in a square is 2
3 grid edge

length, then the mean trip time is 2
3 × 10/40h = 1

6h
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Algorithm 1 Simulator for an MoD services market with batch matching

Input: Information of the passenger requests (request time, coordinates of the trip’s origin and

destination), drivers’ initial coordinates, distributions of passengers’ maximum endurable

matching time

Output: wc, wv, wp and passengers’ cancellation rate

1: Initialize: Set all drivers are available

2: for simulation time h < simulation length T do

3: Request generation: The new requests are added to the list of unserved requests

4: Queue abandonment: Passengers whose accumulated matching time exceeds their maxi-

mum endurable matching time abandon the queue and are removed from the waiting list

5: Completed trips update: Update the status of drivers who completes their trips from

“occupied” to “idle” and add them to the list of idle vehicles

6: Idle vehicle cruise: For drivers in an ’idle’ status, they will cruise along their current

direction until they reach the boundary of the area, at which point they will randomly select

a new direction from the available options for cruising

7: for h = n · τ , n = 1, 2, 3 . . . do

8: Batch matching: Conduct batch matching between the lists of unserved requests and

idle vehicles with pick-up distance within the matching radius, following the total pick-up

minimization rule

9: end for

10: Update matching outcomes: The matched requests are removed from the list of unserved

passenger requests; the status of the matched drivers is updated from “idle” to “occupied”

11: Update occupied drivers’ state: A matched driver will remain in the ’occupied’ state

for a duration equal to the sum of the Manhattan distances between its initial position

(xv
o, y

v
o) and the matched passenger’s position (xc

o, y
c
o), the matched passenger’s position and

the destination position (xc
d, y

c
d)

a. After this duration, the driver’s position is updated to

(xc
d, y

c
d).

12: end for

aSince the driver’s speed is one cell edge length per second.
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time wc, drivers’ matching time wv and expected pick-up time wp is less than 10%. While when1

the matching radius is very small (e.g., r < 0.5 km) or the matching interval is very long (τ > 3002

sec), passengers’ cancellation rate and MAPE of each estimated label are relatively large. Since3

passengers’ abandonment is not considered in our theoretical model, it may result in a large MAPE4

of the estimated label when some passengers cancel orders in the simulation. Considering that the5

MoD platforms usually set r > 1 km and τ < 10 sec, we can justify that the AMP model is a good6

estimation of passengers’ and drivers’ matching time and expected pick-up time in MoD services.7

Figure 9 shows the performance when the matching radius r = 3 km and matching interval8

τ = 2 sec. Each point above the red line (which is the line of N = Q
(
t+ τ

2

)
) in Figure 9 is a feasible9

combination of (Q, N). When the points are around the red line, the vehicle supply is limited10

and the market is under-supply; when the points are close to the upper left corner, the demand is11

limited and the market is over-supply; in other cases, the market can be regarded as a balanced12

market. From Figure 9, we can find that the AMP model can estimate the matching process of13

MoD services well with MAPE less than 10% in a balanced market. In an under-supply market,14

the cancellation rate of passengers increases due to a long passenger matching time, resulting in15

an increase of MAPE of the estimated labels. In an over-supply market, drivers’ matching time16

wv estimated by the AMP model can be extremely long (longer than 10, 000 sec), which is not17

acceptable in reality, and its MAPE in these scenarios is also large.18

Figure 8 and Figure 9 indicate that even passengers’ cancellation is not explicitly incorporated19

into the AMP model, it is suitable for portraying the matching process of MoD services under20

commonly used matching strategies and balanced supply-demand conditions.21

Figure 10-Figure 12 illustrate how well the specific matching models in different special cases22

discussed in Section 6 approximate the AMP model and the best-fit matching model under different23

matching strategies and market conditions3. The blue line represents results obtained from the24

AMP model by Eq. (25) under various matching conditions (Q,N) and matching strategies (τ, r).25

The green, yellow, and brown lines, respectively, represent results obtained by substituting wc, wv26

and wp in Eq. (25) with the corresponding parameters in Table 1 under the Cobb-Douglas type,27

Castillo, and bottleneck type queuing models. In the case with an extremely small matching radius28

(r = 0.1 km) that governs the matching area, Figure 10 reveals that the Cobb-Douglas matching29

model is closest to the AMP model, which is consistent with the analysis in Subsection 6.1. It is30

established in Figure 10a-10c under different matching strategies with a given market condition,31

and established in Figure 10d-10f under different market conditions with a given matching strategy.32

In addition, the Cobb-Douglas matching model is the best-fit model with the simulation among33

these specific models (Cobb-Douglas type matching model, Castillo model and the bottleneck type34

queuing model).35

Figure 11 and Figure 12 depict the results in the case with a large matching radius (10 km)36

3The results of the Cobb-Douglas type matching model in Figure 11f, 12c, 12f, and the results of the bottleneck

type queuing model is not depicted in Figure 10b-10c, 10f, 11f for its huge deviation from the real data.
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(a) Cancellation rate of the simulation. (b) MAPE of passengers’ matching time (wc).

(c) MAPE of drivers’ matching time (wv). (d) MAPE of expected pick-up time (wp).

Figure 8: Evaluation of the general matching model under different matching strategies (τ, r) (Note: the size of the

points represents the value of cancellation rate or MAPE of the estimated labels).
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(a) Cancellation rate of the simulation. (b) MAPE of passengers’ matching time (wc).

(c) MAPE of drivers’ matching time (wv). (d) MAPE of expected pick-up time (wp).

Figure 9: Evaluation of the general matching model under different market conditions (Q,N) (Note: the size of the

points represents the value of cancellation rate or MAPE of the estimated labels).
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(a) wc under different matching

strategies with Q = 3600 person/h,

N = 1000 veh and r = 0.1 km.

(b) wv under different matching

strategies with Q = 3600 person/h,

N = 1000 veh and r = 0.1 km.

(c) wp under different matching

strategies with Q = 3600 person/h,

N = 1000 veh and r = 0.1 km.

(d) wc under different demand rate

with N = 500 veh, τ = 5 sec and

r = 0.1 km.

(e) wv under different demand rate

with N = 500 veh, τ = 5 sec and

r = 0.1 km.

(f) wp under different demand rate

with N = 500 veh, τ = 5 sec and

r = 0.1 km.

Figure 10: Batch matching with a small matching radius.
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and the matching area governed by the density of waiting passengers. In Figure 11a-11c, the ratio1

of the density of idle drivers to the density of waiting passengers (ρv/ρc) is greater than 20 as2

indicated in Figure 3c. In Figure 11d-11f, the service intensity tQ
N

< 1
3
, which implies a dominate3

supply. Therefore, in the scenario with a large matching radius and a dominant supply displayed4

in Figure 11, the Castillo model is very close to the AMP model and is the best-fit model among5

these specific models.

(a) wc under different matching

strategies with Q = 3600 person/h,

N = 1000 veh and r = 10 km.

(b) wv under different matching

strategies with Q = 3600 person/h,

N = 1000 veh and r = 10 km.

(c) wp under different matching

strategies with Q = 3600 person/h,

N = 1000 veh and r = 10 km.

(d) wc under insufficient demand rate

with N = 500 veh, τ = 5 sec and

r = 10 km.

(e) wv under insufficient demand rate

with N = 500 veh, τ = 5 sec and

r = 10 km.

(f) wp under insufficient demand rate

with N = 500 veh, τ = 5 sec and

r = 10 km.

Figure 11: Batch matching with a large matching radius and a dominant supply.

6

In contrast, the vehicle supply is insufficient in Figure 12. The value
N−tQ+ τ

2
Q

Q
approaches the7

matching interval τ in Figure 12a-12c, and the market intensity tQ
N

is close to 1
1+ τ

2t
in Figure 12d-8

12f, which all indicate ρc ≫ ρv as discussed in Subsection 6.4. Therefore, in the scenario with a9

large matching radius and a dominant demand revealed in Figure 12, the bottleneck type queuing10

model comes close to the AMP model and is the best-fit model among these specific models.11

8. Conclusions12

This study introduces an AMP model to characterize the matching process of MoD service13

markets under different supply and demand conditions and matching strategies in terms of match-14

ing interval and matching radius. The existence and uniqueness of the solution of the AMP model,15
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(a) wc under different matching

strategies with Q = 3600 person/h,

N = 620 veh and r = 10 km.

(b) wv under different matching

strategies with Q = 3600 person/h,

N = 620 veh and r = 10 km.

(c) wp under different matching

strategies with Q = 3600 person/h,

N = 620 veh and r = 10 km.

(d) wc under insufficient supply with

N = 500 veh, τ = 5 sec and r = 10

km.

(e) wv under sufficient supply with

N = 500 veh, τ = 5 sec and r = 10

km.

(f) wp under sufficient supply with

N = 500 veh, τ = 5 sec and r = 10

km.

Figure 12: Batch matching with a large maximum matching radius and a dominant demand.
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the relationship between passengers’ matching time and drivers’ matching time, and their changes1

with the scaling factor of passenger demand rate and vehicle fleet size are analyzed. We prove2

that, without assuming a specific form of the pick-up time function, passengers’ matching time3

and drivers’ matching time are always negatively correlated. It is also interesting to find that4

the expected pick-up time and passengers’ matching time decreases but drivers’ matching time5

increases when passenger demand rate and vehicle fleet size are scaled up proportionally.6

We show that the AMP model can reduce to some specific matching models which are widely7

used in the literature. Specifically, if the matching radius is small, the AMP reduces to a form8

similar to the Cobb-Douglas type matching model developed by Yang and Yang (2011) for street-9

hailing taxi market. This is reasonable, since an MoD services system with a small matching radius10

resembles a street-hailing taxi system in which a passenger can hail a taxi in view. If the matching11

radius is large and the supply is sufficient, the AMP model reduces to the model developed by12

Castillo et al. (2017), which assumes that a passenger will be immediately matched to the nearest13

idle vehicle no matter how far the driver is from the passenger. If the matching radius is large14

and the demand is sufficient, the AMP model reduces to a bottleneck type queuing model, in15

which passengers’ matching time can be approximated by a deterministic queuing model at the16

bottleneck and their pick-up time is inversely proportional to the square root of the number of17

waiting passengers. Numerical studies and an agent-based simulation are conducted to demonstrate18

the application scope of these matching models (namely, how well the models approximate the19

simulated reality) under different supply-demand conditions and matching strategies.20

The AMP model for MoD service markets unifies some existing matching models developed21

under specific assumptions and thus helps to discern their application scopes. It has potential22

applications to capture the effects of market fragmentation and thickness on matching frictions23

in the situation with multiple MoD platforms competing with each other, and the situation with24

competitive platforms and a third-party integrator that allows passengers to hail rides from multiple25

platforms through one single integrator (Zhou et al., 2022). Moreover, the AMP model with given26

demand rate and supply as input can also be applied to study time-of-day MoD services with27

period-specific demand rate and supply updated using a rolling horizon approach (Yang et al.,28

2005, Zha et al., 2018a).29

Acknowledgments30

This work is supported by grants from NSFC of China under Project No. 72001014, grants31

from Hong Kong Research Grants Council under projects HKUST16208619 and HKU15209121,32

a grant from NSFC/RGC Joint Research Scheme under project N HKUST627/18 (NSFC-RGC33

71861167001), and Lee Kong Chian Fellowship awarded to the fourth author by Singapore Man-34

agement University.35

35



References1

R. Arnott. Taxi travel should be subsidized. Journal of Urban Economics, 40(3):316–333, 1996.2

J. Bai, K. C. So, C. S. Tang, X. Chen, and H. Wang. Coordinating supply and demand on an3

on-demand service platform with impatient customers. Manufacturing & Service Operations4

Management, 21(3):556–570, 2019.5

M. E. Beesley and S. Glaister. Information for regulating: the case of taxis. The economic journal,6

93(371):594–615, 1983.7

S. Benjaafar, J.-Y. Ding, G. Kong, and T. Taylor. Labor welfare in on-demand service platforms.8

Manufacturing & Service Operations Management, 2021.9

N. Buchholz. Spatial equilibrium, search frictions, and dynamic efficiency in the taxi industry. The10

Review of Economic Studies, 89(2):556–591, 2022.11

G. R. Butters. Equilibrium distributions of sales and advertising prices. The Review of Economic12

Studies, 44(3):465–491, 1977.13

G. P. Cachon, K. M. Daniels, and R. Lobel. The role of surge pricing on a service platform14

with self-scheduling capacity. Manufacturing & Service Operations Management, 19(3):368–384,15

2017.16

J. C. Castillo, D. Knoepfle, and G. Weyl. Surge pricing solves the wild goose chase. In Proceedings17

of the 2017 ACM Conference on Economics and Computation, pages 241–242, 2017.18

H. Chen, K. Zhang, M. Nie, and X. Liu. A physical model of street ride-hail. Available at SSRN19

3318557, 2019.20

Y. Chen and H. Wang. Why are fairness concerns so important? lessons from a shared last-mile21

transportation system. Lessons from a Shared Last-Mile Transportation System (April 25, 2018),22

2018a.23

Y. Chen and H. Wang. Pricing for a last-mile transportation system. Transportation Research24

Part B: Methodological, 107:57–69, 2018b.25

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and its applications.26

John Wiley & Sons, 2013.27

C. F. Daganzo. An approximate analytic model of many-to-many demand responsive transporta-28

tion systems. Transportation Research, 12(5):325–333, 1978.29

M. Diao, H. Kong, and J. Zhao. Impacts of transportation network companies on urban mobility.30

Nature Sustainability, pages 1–7, 2021.31

36



G. D. Erhardt, S. Roy, D. Cooper, B. Sana, M. Chen, and J. Castiglione. Do transportation1

network companies decrease or increase congestion? Science advances, 5(5):eaau2670, 2019.2

G. Feng, G. Kong, and Z. Wang. We are on the way: Analysis of on-demand ride-hailing systems.3

Manufacturing & Service Operations Management, 2020.4

G. R. Frechette, A. Lizzeri, and T. Salz. Frictions in a competitive, regulated market: Evidence5

from taxis. American Economic Review, 109(8):2954–92, 2019.6

P. Guo, C. S. Tang, Y. Tang, and Y. Wang. Gender-based operational issues arising from on-7

demand ride-hailing platforms: Safety concerns, service systems, and pricing and wage policy.8

Service Systems, and Pricing and Wage Policy (September 28, 2018), 2018.9

J. D. Hall, C. Palsson, and J. Price. Is uber a substitute or complement for public transit? Journal10

of Urban Economics, 108:36–50, 2018.11

R. E. Hall. A theory of the natural unemployment rate and the duration of employment. Journal12

of monetary economics, 5(2):153–169, 1979.13

B. Hu, M. Hu, and H. Zhu. Surge pricing and two-sided temporal responses in ride hailing.14

Manufacturing & Service Operations Management, 2021.15

M. Hu and Y. Zhou. Price, wage, and fixed commission in on-demand matching. Available at16

SSRN 2949513, 2020.17

J. Jacob and R. Roet-Green. Ride solo or pool: Designing price-service menus for a ride-sharing18

platform. European Journal of Operational Research, 2021.19

J. Ke, H. Yang, X. Li, H. Wang, and J. Ye. Pricing and equilibrium in on-demand ride-pooling20

markets. Transportation Research Part B: Methodological, 139:411–431, 2020a.21

J. Ke, H. Yang, and Z. Zheng. On ride-pooling and traffic congestion. Transportation Research22

Part B: Methodological, 142:213–231, 2020b.23

J. Ke, X. Li, H. Yang, and Y. Yin. Pareto-efficient solutions and regulations of congested ride-24

sourcing markets with heterogeneous demand and supply. Available at SSRN 3773481, 2021a.25

J. Ke, Z. Zhu, H. Yang, and Q. He. Equilibrium analyses and operational designs of a coupled26

market with substitutive and complementary ride-sourcing services to public transits. Trans-27

portation Research Part E: Logistics and Transportation Review, 148:102236, 2021b.28

J. Li and S. Netessine. Higher market thickness reduces matching rate in online platforms: Evidence29

from a quasiexperiment. Management Science, 66(1):271–289, 2020.30

S. Li, H. Tavafoghi, K. Poolla, and P. Varaiya. Regulating tncs: Should uber and lyft set their31

own rules? Transportation Research Part B: Methodological, 129:193–225, 2019.32

37



G. Lyu, W. C. Cheung, C.-P. Teo, and H. Wang. Multi-objective online ride-matching. Available1

at SSRN 3356823, 2019.2

D. Mo, J. Yu, and X. M. Chen. Modeling and managing heterogeneous ride-sourcing platforms3

with government subsidies on electric vehicles. Transportation Research Part B: Methodological,4

139:447–472, 2020.5

Y. M. Nie. How can the taxi industry survive the tide of ridesourcing? evidence from shenzhen,6

china. Transportation Research Part C: Emerging Technologies, 79:242–256, 2017.7

J. A. Parrott and M. Reich. An earnings standard for new york city’s app-based drivers. New8

York: The New School: Center for New York City Affairs, 2018.9

B. Petrongolo and C. A. Pissarides. Looking into the black box: A survey of the matching function.10

Journal of Economic literature, 39(2):390–431, 2001.11

G. Qin, Q. Luo, Y. Yin, J. Sun, and J. Ye. Optimizing matching time intervals for ride-hailing12

services using reinforcement learning. Transportation Research Part C: Emerging Technologies,13

129:103239, 2021.14

H. Sun, H. Wang, and Z. Wan. Model and analysis of labor supply for ride-sharing platforms in15

the presence of sample self-selection and endogeneity. Transportation Research Part B: Method-16

ological, 125:76–93, 2019.17

T. A. Taylor. On-demand service platforms. Manufacturing & Service Operations Management,18

20(4):704–720, 2018.19

H. R. Varian. Microeconomic analysis. Number 338.5 V299m 1992. WW Norton, 1992.20

D. A. Vignon, Y. Yin, and J. Ke. Regulating ridesourcing services with product differentiation21

and congestion externality. Transportation Research Part C: Emerging Technologies, 127:103088,22

2021.23

G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques.24
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Appendix A. Mathematical proofs16

Proof for Proposition 117

Suppose (mc,1,mv,1), (mc,2,mv,2) satisfy M(mc,1,mv,1, r) = τQ, M(mc,2,mv,2, r) = τQ and18

mc,1 > mc,2. Then, we have M (mc,2,mv,2, r) = M (mc,1,mv,1, r) > M (mc,2,mv,1, r). Therefore,19

mv,2 > mv,1. This indicates that mc decreases with mv and vice versa.20

From Eq. (7) and Eq. (8), wc and mc are positively correlated, wv and mv are positively21

correlated, then wc decreases with wv and vice versa.22

This completes the proof. ■23

Proof for Proposition 224

Define h (mv) = mv +
[
wp (mc (mv) ,mv, r) + t− τ

2

]
Q −N . Then there exists a mv satisfying25

Eq.(13), which is equivalent to that there existing amv ∈
[
τQ,N − tQ+ τ

2
Q
]
such that h (mv) = 0.26

With the assumption of lim
mv→τQ

wp (mc (mv) ,mv, r) = 0, we have27

lim
mv→τQ

h (mv) =
τ

2
Q+ tQ−N + lim

mv→τQ
wp (mc (mv) ,mv, r)Q =

τ

2
Q+ tQ−N ≤ 0

and28

h
(
N − tQ+

τ

2
Q
)
= wp

(
mc

(
N − tQ+

τ

2
Q
)
, N − tQ+

τ

2
Q, r

)
Q ≥ 0
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Since wp (mc (mv) ,mv, r) is continuous in mv, h (mv) is also continuous in mv, based on the1

intermediate value theorem, there exists at least one m∗
v ∈

[
τQ,N − tQ+ τ

2
Q
]
such that h (m∗

v) =2

0, which means that there exists at least one solution (mc (m
∗
v) ,m

∗
v) of the general matching model3

that satisfies Eq. (13).4

This completes the proof. ■5

Proof for Corollary 16

First, we prove the relationship between mv and mc. Based on the relationship between (ρc)
−1

7

and πr2, we have the following two cases.8

1) When (ρc)
−1 ≤ πr2, we have mc ≥ A

πr2
, and AM = (ρc)

−1 = A
mc

, based on Eq.(17), we present9

the mass of idle drivers mv as a function of the mass of waiting passengers mc, i.e.,10

mv = −mc ln

(
1− τQ

mc

)
(A.1)

The first- and second-order derivatives of mv with respect to mc can be derived as11

dmv

dmc

= ln

(
1 +

τQ

mc − τQ

)
− τQ

mc − τQ

12

d2mv

(dmc)
2 =

(τQ)2

mc(mc − τQ)2

Since ln (1 + x) − x < 0 when x > 0, we have dmv

dmc
≤ 0 and d2mv

(dmc)
2 ≥ 0 and the equal sign13

holds if and only if mc = τQ. This indicates that mv is a monotonically decreasing convex14

function of mc, and vice versa.15

2) When (ρc)
−1 > πr2, we have mc <

A
πr2

and AM = πr2, based on Eq. (17), we can get16

mv = − A

πr2
ln

(
1− τQ

mc

)
(A.2)

The first- and second-order derivatives of mv with respect to mc can be derived as17

dmv

dmc

= − A

πr2
τQ

mc (mc − τQ)
18

d2mv

(dmc)
2 =

A

πr2

[
1

(mc − τQ)2
− 1

mc
2

]
> 0

This indicates that mv is a monotonically decreasing convex function of mc, and vice versa.19

Then we prove mv is a monotonically decreasing convex function of mc, and vice versa over the20

entire feasible domain.21
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3) Since AM is a continuous function of mc, in the two cases above, we can see mv can1

also be regarded as a continuous function of mc. Define g1 (mc) = − A
πr2

ln
(
1− τQ

mc

)
and2

g2 (mc) = −mc ln
(
1− τQ

mc

)
, from the proof in 1) and 2), we have that g1 (mc) and g2 (mc)3

are monotonically decreasing convex functions of mc. In addition, g1 (mc) > g2 (mc) when4

mc <
A
πr2

; g2 (mc) > g1 (mc) when mc >
A
πr2

. Then mv can be represented by the following5

g (mc)6

mv := g (mc) =

{
g1 (mc) , mc <

A
πr2

g2 (mc) , mc ≥ A
πr2

. (A.3)

Suppose mc,1 <
A
πr2

and mc,2 ≥ A
πr2

, 0 < λ < 1. If λmc,1 + (1− λ)mc,2 <
A
πr2

, we have7

g (λmc,1 + (1− λ)mc,2) = g1 (λmc,1 + (1− λ)mc,2) < λg1 (mc,1) + (1− λ) g1 (mc,1)

< λg1 (mc,1) + (1− λ) g2 (mc,2) = λg (mc,1) + (1− λ) g (mc,2)

If λmc,1 + (1− λ)mc,2 ≥ A
πr2

, we have8

g (λmc,1 + (1− λ)mc,2) = g2 (λmc,1 + (1− λ)mc,2) < λg2 (mc,1) + (1− λ) g2 (mc,2)

< λg1 (mc,1) + (1− λ) g2 (mc,2) = λg (mc,1) + (1− λ) g (mc,2)

Therefore, g (mc) is a monotonically decreasing convex function of mc.9

Combining the proofs above, we can conclude that mv is a monotonically decreasing convex10

function of mc, and vice versa.11

Second, we prove the relationship between wc and wv. Since12

dwv

dwc

=
d
(

mv

Q
− τ

2

)
d
(

mc

Q
− τ

2

) =
dmv

dmc

13

d2wv

(dwc)
2 =

d2
(

mv

Q
− τ

2

)
[
d
(

mc

Q
− τ

2

)]2 =
d2mv

(dmc)
2

It can be concluded that wv is a monotonically decreasing and convex function of wc, and vice14

versa.15

This completes the proof. ■16

Proof for Lemma 117

When mv = τQ, if mc < A
πr2

, from Eq. (17) we have τQ = mc

[
1− exp

(
− τQπr2

A

)]
<18

mc

[
1− exp

(
− τQ

mc

)]
, then exp

(
− τQ

mc

)
+ τQ

mc
< 1. Since exp (−x) + x > 1, when x > 0, which19

is contradicted with exp
(
− τQ

mc

)
+ τQ

mc
< 1, we can get mc cannot be less than A

πr2
and mc ≥ A

πr2
.20
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Then we have τQ = mc

[
1− exp

(
− τQ

mc

)]
, which is equivalent to exp

(
− τQ

mc

)
+ τQ

mc
= 1. This1

equation holds if and only if mc approaches +∞.2

When mv = τQ and mc → +∞, based on Taylor expansion, we thus conclude that3

erf
(√

ρvAM

)
= erf

(√
mv/mc

)
≈ 2√

π

√
mv/mc, exp (−ρvAM) = exp (−mv/mc) ≈ 1 − mv/mc.4

From Eq. (22) we conclude that wp =
ζ
v

√
A

πmc
, which approaches 0.5

This completes the proof. ■6

Proof for Corollary 37

Based on the values on the left and right sides of Eq. (26), we have the following two cases.8

1) When πr2 ≤ (ρc)
−1, Eq. (23) and Eq. (24) can be reduced to9

ρc =
τQ

[1− exp (−πr2ρv)]A
(A.4)

10

ρv =

N −Q

ζ
[
erf

(√
πr2ρv

)
2
√
ρv

− r · exp (−πr2ρv)

]
v [1− exp (−πr2ρv)]

+ t− τ

2


 /A (A.5)

The condition πr2 ≤ (ρc)
−1 requires ρc = τQ

[1−exp(−πr2ρv)]A
≤ 1

πr2
⇔ ρv ≥ − ln(1−ϕ)

πr2
and11

ϕ ≤ τQ
ρcA

= M
mc

≤ 1. Therefore, when there exists a ρv ≥ − ln(1−ϕ)
πr2

satisfying Eq. (A.5), we can12

also get the corresponding solution ρc satisfies ρc <
1

πr2
by Eq. (A.4).13

Define h1 (ρv) = ρv −

N −Q

 ζ

[
erf(

√
πr2ρv)

2
√
ρv

−r·exp(−πr2ρv)
]

v[1−exp(−πr2ρv)]
+ t− τ

2


 /A. Then there ex-14

ists a ρv satisfying Eq. (A.5), which is equivalent to that there existing a ρv ≥ − ln(1−ϕ)
πr2

15

such that h (ρv) = 0. Condition (27) implies h1(− ln(1−ϕ)
πr2

) ≤ 0. In addition, when16

ρv → N−tQ+ τ
2
Q

A
, h1

(
N−tQ+ τ

2
Q

A

)
= Qwp/A ≥ 0. Since h1 (ρv) is continuous with respect17

to ρv ∈
[
− ln(1−ϕ)

πr2
,
N−tQ+ τ

2
Q

A

]
, based on the intermediate value theorem, there exists at least18

one ρv ≥ − ln(1−ϕ)
πr2

such that h1 (ρv) = 0, which means that there exists at least one solution19

(ρ∗c , ρ
∗
v) such that ρc ≤ 1

πr2
and AM = πr2 that satisfies Eqs. (23)–(24) simultaneously.20

2) When πr2 > (ρc)
−1, Eq. (23) and Eq. (24) can be reduced to21

ρv = −ρc ln

(
1− τQ

ρcA

)
(A.6)

22

−ρc ln

(
1− τQ

ρcA

)
=

N

A
−

ζ

[
erf

(√
− ln(1− τQ

ρcA
)
)

2
√

− ln(1− τQ
ρcA

)
−
√

1
π

(
1− τQ

ρcA

)]√
ρc

vτ
− tQ

A
+

τQ

2A
(A.7)

When ϕ ≥ 1, since τQ
ρcA

= M
mc

≤ 1, we can get that 1
ρc

= A
mc

≤ A
τQ

≤ πr2 and AM = 1
ρc
.23
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Let1

h2 (ρc) = −ρc ln

(
1− τQ

ρcA

)
−


N

A
−

ζ

[
erf

(√
− ln(1− τQ

ρcA
)
)

2
√

− ln(1− τQ
ρcA

)
−
√

1
π

(
1− τQ

ρcA

)]√
ρc

vτ
− tQ

A
+

τQ

2A

 ,

then there exists a ρc satisfying Eq. (A.7), which is equivalent to that there exists a2

ρc > max
(

1
πr2

, τQ
A

)
such that h2 (ρc) = 0. When ρc → τQ

A
, we have h2 (ρc) = +∞, and3

Condition (28) implies h2

(
1

πr2

)
> 0, thus h2

(
max

(
1

πr2
, τQ

A

))
> 0. When ρc → +∞, we4

have h2 (+∞) = −
(
N − tQ+ τQ

2

)
/A < 0. Since h2 (ρc) is continuous with respect to5

ρc ∈
(
max

(
1

πr2
, τQ

A

)
,+∞

)
, based on the intermediate value theorem, there exists at least6

one ρc ∈
(
max

(
1

πr2
, τQ

A

)
,+∞

)
such that h2 (ρc) = 0, which means that there exists at7

least one solution (ρc, ρv) such that ρc >
1

πr2
and AM = (ρc)

−1 that satisfies Eqs. (23)–(24)8

simultaneously.9

This completes the proof. ■10

Before proving Proposition 3 and 4, we provide the following Lemma 2 on the pick-up function11

in Eq. (22).12

Lemma 2. The pick-up time function wp in Eq. (22) has the following properties:13

1. wp is continuous and decreasing in mc (in mv) with given mv(with given mc), i.e.,
∂wp

∂mc
≤ 014

and ∂wp

∂mv
≤ 0.15

2. Let mc (mv) be the mass of waiting passengers that satisfies M (mc,mv, r) =16

mc [1− exp (−AMρv)] = τQ, then wp (mc (mv) ,mv, r) is a continuous function that first17

increases and then decreases in mv.18

Proof for Lemma 219

1) Define ρvAM = x,20

f (x) =

[
erf(

√
x)

2
√
x

−
√

1
π
· exp (−x)

]
1− exp (−x)

(A.8)

and21

g (x) =
√
xf (x) =

√
x

[
erf(

√
x)

2
√
x

−
√

1
π
· exp (−x)

]
1− exp (−x)

(A.9)

we can get wp =
ζ

[
erf(

√
ρvAM )

2
√
ρv

−
√

AM
π

·exp(−ρvAM )

]
v[1−exp(−ρvAM )]

= ζ
v

√
AM

[
erf(

√
ρvAM )

2
√

ρvAM
−
√

1
π
·exp(−ρvAM )

]
1−exp(−ρvAM )

=22

ζ
v

√
AMf (x) = ζ

v
1√
ρv
g (x). We obtain that f (x) is a decreasing and g (x) is an increasing23

function for x > 0 as shown in the following Figure A.1a–A.1b. Since ∂x
∂mc

= ρv
∂AM

∂mc
= 0 when24

AM = πr2, and = − mv

(mc)2
when AM = A

mc
, we have ∂x

∂mc
≤ 0. Besides that ∂x

∂mv
= AM

A
> 0,25

then we can obtain ∂wp

∂mc
= ζ

v
1√
ρv

∂g(x)
∂x

∂x
∂mc

≤ 0 and ∂wp

∂mv
= ζ

v

√
AM

∂f(x)
∂x

∂x
∂mv

< 0.26
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2) First, we have1

dwp (mc (mv) ,mv, r)

dmv

=
∂wp

∂mc

dmc

dmv

+
∂wp

∂mv

(A.10)

Based on the relationship between (ρc)
−1 and πr2, we have the following two cases.2

i. When ϕ < 1 and (ρc)
−1 ≤ πr2, we have τQ ≤ mv ≤ − A

πr2
ln (1− ϕ), AM = (ρc)

−1 = A
mc

3

and x = ρvAM = mv

mc
. From the proof in Corollary 1 and Eq. (17), we have4

dmc

dmv

=
1

− ln
(
1− τQ

mc

)
− τQ

mc−τQ

=
1

mv

mc
+ 1− exp

(
mv

mc

) =
1

x+ 1− exp (x)

Then5

dwp(mc(mv),mv ,r)

dmv
= ζ

v
1√
ρv

∂g(x)
∂x

∂x
∂mc

dmc

dmv
+ ζ

v

√
A
mc

∂f(x)
∂x

∂x
∂mv

= ζ
v

√
A 1

mv
√
mv

x
√
x
(
−
√
x∂g(x)

∂x
1

x+1−exp(x)
+ ∂f(x)

∂x

)
Define h (x) = x

√
x
(
−
√
x∂g(x)

∂x
1

x+1−exp(x)
+ ∂f(x)

∂x

)
, as shown in Figure A.1c-A.1d, there6

is only one solution x∗ = 1.683 such that h (x∗) = 0 and when 0 < x < x∗, h (x) > 0,7

when x > x∗, h (x) < 0. Since dmc

dmv
< 0, we can get x = mv

mc
increases with mv. Let8

m∗
v is the mass of idle vehicles such that m∗

v

mc(m∗
v)

= x∗, then we have, when mv < m∗
v,9

dwp(mc(mv),mv ,r)

dmv
> 0 and when mv > m∗

v,
dwp(mc(mv),mv ,r)

dmv
< 0.10

ii. When ϕ < 1 and (ρc)
−1 ≥ πr2, we have mv ≥ − A

πr2
ln (1− ϕ), and AM = πr2. Then11

from Eq. (A.10) we can get ∂wp

∂mc
= ζ

v
1√
ρv

∂g(x)
∂x

∂x
∂mc

= 0 and dwp(mc(mv),mv ,r)

dmv
= ∂wp

∂mv
< 0.12

Therefore, when mv ≥ − A
πr2

ln
(
1− τQπr2

A

)
, wp (mc (mv) ,mv, r) decreases in mv.13

iii. When ϕ ≥ 1, from the proof in Corollary 1, we have AM = (ρc)
−1 = A

mc
and x =14

ρvAM = mv

mc
. Based on the proof in i we can get wp (mc (mv) ,mv, r) first increases then15

decreases in mv.16

From the above proof, we have wp (mc (mv) ,mv, r) first increases then decreases in mv.17

(a) f (x). (b) g (x). (c) h (x) when 0 < x ≤ 1. (d) h (x) when x > 1.

Figure A.1: The curve of f (x), g (x) and h (x).

This completes the proof. ■18
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Proof for Proposition 31

1) When the matching area is governed by the matching radius, i.e., AM = πr2 ≤ (ρc)
−1, we2

have the solution of Eqs. (25a)–(25b), ρc and ρv are solved by Eq. (A.4) and Eq. (A.5) and3

ρv ≥ − 1
πr2

ln (1− ϕ) with ϕ = πr2τQ
A

.4

When τ is given, define wp (r, ρv) =
ζ

[
erf(

√
πr2ρv)

2
√
ρv

−r·exp(−πr2ρv)
]

v[1−exp(−πr2ρv)]
. We have wp (r, ρv) =5

ζ
v

1√
ρv
g (πr2ρv) where g (x) is defined in Eq. (A.9) is an increasing function as shown6

in Figure A.1b. Therefore, for a given ρv, when r increases, wp (r, ρv) increases, i.e.,7

wp (r1, ρv) > wp (r2, ρv) for ∀r1 > r2. Besides that wp (r, ρv) = ζ
v
rf (πr2ρv) with f (x) is8

defined in Eq. (A.8) is a decreasing and convex function as shown in Figure A.1a, we have9

wp (r, ρv) is also a decreasing and convex function with rhov for any given r. Since the so-10

lution of the aggregate matching model (25) (ρ∗v, ρ
∗
c) satisfies wp (r, ρ

∗
v) =

N
Q
− t + τ

2
− ρ∗vA

Q
,11

i.e., ρ∗v is the intersection of line y = N
Q
− t + τ

2
− ρ∗vA

Q
and the curve wp (r, ρv), therefore,12

when r increases, ρ∗v decreases and wp increases, which is shown in Figure A.2a. Based on13

Eq. (19), we have wv =
(

ρv
τQ

− 1
2

)
τ , then given τ , we can also have that wv decreases with14

r. However, the monotonicity of πr2ρv with r is undetermined, thus the monotonicity of15

pc = 1− exp (−πr2ρv), ρc =
τQ
pc

and wc =
(

1
pc
− 1

2

)
τ with r are undetermined, either.16

When r is given, then wp is only related to ρv and can be defined as wp (ρv) =
ζ
v

√
πrf(πr2ρv),17

which is a decreasing and convex function of ρv. Since the solution of the aggregate matching18

model (25) (ρ∗v, ρ
∗
c) satisfies wp (ρ

∗
v) = N

Q
− t + τ

2
− ρ∗vA

Q
, i.e., ρ∗v is the intersection of line19

y = N
Q
− t + τ

2
− ρ∗vA

Q
and the curve wp (ρ

∗
v). Therefore, when τ increases, ρ∗v increases and20

wp decreases, which is shown in Figure A.2b. Since pc = 1 − exp (−πr2ρv), we have pc21

increase with τ . However, the monotonicity of ρc = τQ
A(1−exp(−πr2ρv))

, wc =
(

1
pc
− 1

2

)
τ and22

wv =
(

ρv
τQ

− 1
2

)
τ with τ is undetermined.23

2) When the matching area is governed by the density of waiting passengers, i.e., AM = (ρc)
−1 ≤24

πr2, the solution of Eqs. (25a)–(25b), ρc and ρv are solved by Eq. (A.6) and Eq. (A.7) and and25

ρv ≤ − 1
πr2

ln (1− ϕ). Eq. (A.7) shows that ρc is only determined by τ and independent of r.26

In addition, based on Eq. (A.6), ρv is also only determined by τ . Since pc = 1−exp(−ρv/ρc),27

wp =
ζ

[
erf(

√
ρv/ρc)

2
√
ρv

− 1√
πρc

·exp(−ρv/ρc)

]
v[1−exp(−ρv/ρc)]

, wc =
(

1
pc
− 1

2

)
τ =

(
mc

M
− 1

2

)
τ = ρcA

Q
− τ

2
and wv =28 (

wc +
τ
2

)
ln
(

wc+
τ
2

wc− τ
2

)
− τ

2
, we have that pc, wp, wc and wv are determined by τ and independent29

of r.30

Based on the above analysis, we define wp (τ, ρv) =
ζ

[
erf(

√
ρv/ρc)

2
√
ρv

− 1√
πρc

·exp(−ρv/ρc)

]
v[1−exp(−ρv/ρc)]

=31

ζ
v

1√
ρv
g
(

ρv
ρc

)
, where ρc is determined by Eq. (A.6). Since when ρv is given, the function32

of M (ρc, ρv, r) = ρcA
[
1− exp

(
−ρv

ρc

) ]
increases with ρc. Therefore, given ρv, when τ in-33

crease, we have that ρc also increases. Since g (x) is an increasing and function, and when τ34
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increase and ρv is given, we have ρv
ρc

decreases, then we can get wp (τ1, ρv) > wp (τ2, ρv)1

for ∀τ1 < τ2. Since the solution of the general matching model (25) (ρ∗v, ρ
∗
c) satisfies2

wp (τ, ρ
∗
v) =

N
Q
− t + τ

2
− ρ∗vA

Q
, i.e., ρ∗v is the intersection of line y = N

Q
− t + τ

2
− ρ∗vA

Q
and the3

curve wp (τ, ρ
∗
v), therefore, when τ increases, ρ∗v increases and wp decreases, which is shown4

in Figure A.2c. However, the monotonicity of ρc, pc, wc and wv are undertermined.5

(a) wp (r, ρv) . (b) wp (ρv) . (c) wp (τ, ρv) .

Figure A.2: An illustration of the proof for Proposition 3.

Proof for Proposition 4.16

1) Based on the value of ρc, we have the following three cases.7

i. When ρc ≥ 1
πr2

, we have 1
κρc

< 1
ρc

≤ πr2. Then M (κmc, κmv, r) =8

κmc

[
1− exp

(
−κρv

κρc

)]
= κmc

[
1− exp

(
−ρv

ρc

)]
= κM (mc,mv, r).9

ii. When 1
κπr2

< ρc < 1
πr2

, we have 1
κρc

< πr2 < 1
ρc
. Then M (κmc, κmv, r) =10

κmc

[
1− exp

(
−κρv

κρc

)]
= κmc

[
1− exp

(
−ρv

ρc

)]
> κmc [1− exp (−πr2ρv)] =11

κM (mc,mv, r).12

iii. When ρc ≤ 1
κπr2

, we have πr2 ≤ 1
κρc

< 1
ρc
. Then M (κmc, κmv, r) =13

κmc [1− exp (−πr2κρv)] > κmc [1− exp (−πr2ρv)] = κM (mc,mv, r).14

Combining the three cases, we can conclude that M (mc,mv, r) has a constant/increasing15

return to scale.16

2) Since κM (mc,mv, r) −M (mc, κmv, r) = κmc [1− exp (−ρvAM)] −mc [1− exp (−κρvAM)].17

Let f (κ) = κ [1− exp (−a)]− [1− exp (−κa)], a > 0, κ > 1. We have f
′
(κ) = 1−exp (−a)−18

a exp (−κa) and f
′′
(κ) = a2 exp (−κa) > 0. Therefore, f

′
(κ) is an increasing function and19

reaches its minimum at κ = 1, i.e., f
′
(κ) ≥ f

′
(1) = 1 − exp (−a) − a exp (−a). Define20
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g (a) = 1 − exp (−a) − a exp (−a), we can get g
′
(a) = a2 exp (−a) > 0, which indicates1

g (a) ≥ g (0) = 0. Hence, f
′
(κ) ≥ f

′
(1) = g (a) ≥ g (0) = 0 and f (κ) is an increasing2

function. Then we can get f (κ) ≥ f (1) = 0 and κM (mc,mv, r) ≥ M (mc, κmv, r).3

This completes the proof. ■4

Proof for Proposition 4.2 and 4.35

From the proof of Corollary 1, it is easy to get that with a given matching strategy (τ, r)6

and passenger arrival rate κQ, for any mκ
v ∈ [κτQ, κN − κtQ + κ τ

2
Q] there is a unique mκ

c7

such that M(mκ
c ,m

κ
v , r) = κτQ, and we define this unique mκ

c as mκ
c (m

κ
v). When the vehicle8

fleet size is κN , we have mκ
v ∈

[
κτQ, κN − κtQ+ κτ

2
Q
]
and mκ

v

κ
∈
[
τQ,N − tQ+ τ

2
Q
]
. Also9

define wκ
p (x) = wp(m

κ
c (κx) , κx, r), where x = mκ

v

κ
∈
[
τQ,N − tQ+ τ

2
Q
]
and wp(m

κ
c (κx) , κx, r) is10

defined in Eq. (22). Based on Lemma 2, we have wκ
p (x) is a continuous and first increasing and11

then decreasing function in x.12

Let 0 < κ1 < κ2, we have M (mκ2
c (κ2x) , κ2x, r) = κ2τQ = κ2

κ1
κ1τQ =13

κ2

κ1
M (mκ1

c (κ1x) , κ1x, r) ≥ M (mκ1
c (κ1x) , κ2x, r), the last inequality is due to κM (mc,mv, r) ≥14

M(mc, κmv, r) for ∀κ > 1. Therefore, mκ2
c (κ2x) ≥ mκ1

c (κ1x). Since κ1x < κ2x, we can obtain15

wκ1
p (x) = wp (m

κ1
c (κ1x) , κ1x, r) > wp (m

κ1
c (κ1x) , κ2x, r) ≥ wp (m

κ2
c (κ2x) , κ2x, r) = wκ2

p (x). It16

indicates wκ1
p (x) > wκ2

p (x) for ∀ x ∈
[
τQ,N − tQ+ τ

2
Q
]
and 0 < κ1 < κ2.17

The solution of the aggregate matching model in Eq. (25) with passengers’ demand rate18

being κQ and the vehicle supply being κN is defined as mκ,∗
v , then mκ,∗

v satisfies κN =19

κQ
[
wp (m

κ
c (m

κ,∗
v ) ,mκ,∗

v , r) + t− τ
2

]
+mκ,∗

v . Define f (x) = N
Q
− t+ τ

2
− x

Q
, we have that mκ,∗

v

κ
= xκ,∗

20

is the intersection of f (x) and wκ
p (x), i.e., f (xκ,∗) = wκ

p (x
κ,∗). Then for any 0 < κ1 < κ2, we21

obtain that f (xκ2,∗) = wκ2
p (xκ2,∗) < wκ1

p (xκ1,∗), as shown in Figure A.3. Besides that, we can get22

xκ2,∗ > xκ1,∗, which implies mκ2,∗
v > κ2

κ1
mκ1,∗

v . Therefore, the expected pick-up time wp decreases23

with the scaling factor 4. This completes the proof. ■ Since wc, and wv can be regarded as func-24

tions of (Q,N, τ, r), for ease of notation, we define wκ
c = wc (κQ, κN, τ, r), wκ

v = wv (κQ, κN, τ, r).25

Since wv =
mv

Q
− τ

2
, we have wκ2

v = m
κ2,∗
v

κ2Q
− τ

2
>

κ2
κ1

m
κ1,∗
v

κ2Q
− τ

2
= m

κ1,∗
v

κ1Q
− τ

2
= wκ1

v . Therefore, drivers’26

matching time wv increases with the scaling factor.27

Since M(mc,mv, r) has constant/increasing return to scale, and according to Proposition28

4.1, we have M
(

κ2

κ1
mκ1

c (mκ1,∗
v ) , κ2

κ1
mκ1,∗

v , r
)

≥ κ2

κ1
M (mκ1

c (mκ1,∗
v ) ,mκ1,∗

v , r) = κ2

κ1
κ1τQ = κ2τQ =29

M (mκ2
c (mκ2,∗

v ) ,mκ2,∗
v , r) > M

(
mκ2

c (mκ2,∗
v ) , κ2

κ1
mκ1,∗

v , r
)
. It indicates mκ2

c (mκ2,∗
v ) < κ2

κ1
mκ1

c (mκ1,∗
v ).30

Then wκ2
c =

m
κ2
c (mκ2,∗

v )
κ2Q

− τ
2
<

κ2
κ1

m
κ1
c (mκ1,∗

v )
κ2Q

− τ
2
=

m
κ1
c (mκ1,∗

v )
κ1Q

− τ
2
= wκ1

c . Therefore, passengers’31

matching time wc decreases with the scaling factor.32

This completes the proof. ■33

4Since the unstable solutions are not considered, this proof is still valid when the general matching model has

multiple solutions.
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Figure A.3: An illustration for the proof of Proposition 4 with 0 < κ1 < κ2.

Proof for Proposition 51

When AM = πr2, the expected number of matched driver-passenger pairs and pick-up time is2

given by3

M(mc,mv, r) = mc

[
1− exp

(
−ρvπr

2
)]

(A.11)
4

wp(mc,mv, r) =

ζ

[
erf

(√
ρvπr2

)
2
√
ρv

− r · exp (−ρvπr
2)

]
v [1− exp (−ρvπr2)]

(A.12)

Specifically, if r is extremely small, the two terms erf (·) and exp (·) can be Taylor expanded as5

the following series (since ρv < N
A
, there must be an extremely small r such that ρvπr

2 is also6

extremely small):7

erf(
√
ρvπr2) ≈ 2

√
ρvr (A.13)

8

exp(−ρvπr
2) ≈ 1− ρvπr

2 (A.14)

In this case, the matching time of passengers can be approximated by9

wc ≈
τ

ρvπr2
− τ

2
(A.15)

and10

wv =
mv

mc

(
wc +

τ

2

)
− τ

2
≈ τ

ρcπr2
− τ

2
(A.16)

Since ρv = mv/A, we further have11

mv

(
wc +

τ

2

)
≈ Aτ

πr2
(A.17)

In view of Eqs. (7) and (A.17), the matching rate can be rewritten as a Cobb-Douglas type matching12

model as follows:13

Q =
mc

wc +
τ
2

≈ πr2

Aτ
mcmv (A.18)
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In addition, by substituting Eq.(A.13) and Eq. (A.14) into Eq. (A.12), we have1

wp =
ζr

v
(A.19)

This completes the proof. ■2

Proof for Proposition 63

When AM = ρc
−1 we can get4

wc (ρc, ρv) =

[
1

1− exp (−ρv/ρc)
− 1

2

]
τ (A.20)

and5

wp (ρc, ρv) =
ζ[

erf(
√

ρv/ρc)

2
√
ρv

−
√

1
πρc

· exp(−ρv/ρc)]

v[1− exp(−ρv/ρc)]
(A.21)

For a dominant supply with ρv ≫ ρc, we have6 √
ρv
ρc

=

√
− ln

(
1− τQ

ρcA

)
≈ +∞; erf(

√
ρv
ρc
) ≈ 1; exp(−ρv

ρc
) ≈ 0 (A.22)

Then the matching time for passengers and drivers can be obtained as follows:7

wc ≈
τ

2
(A.23)

8

wv ≈
ρv
ρc
τ − τ

2
(A.24)

Based on Eq. (A.21), the expected pick-up time only depends on the density of idle vehicles as9

follows:10

wp = ζ/ (2v
√
ρv) (A.25)

This completes the proof. ■11

Proof for Proposition 712

When AM = ρc
−1 and the density of waiting passengers dominates the density of idle vehicles,13

i.e., ρc ≫ ρv, the two terms ln (·) and erf (·) in Eqs. (31)–(32) can be Taylor expanded as:14

ln

(
1− τQ

ρcA

)
≈ − τQ

ρcA
(A.26)

15

erf

(√
− ln

(
1− τQ

ρcA

))
≈ 2√

π

√
τQ

ρcA
(A.27)

From Eq. (32), we can obtain the density of idle vehicles, which is approximated by16

ρv ≈ τQ/A (A.28)
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The matching time of passengers can be approximated by1

wc =

[
1

1− exp (−ρv/ρc)
− 1

2

]
τ ≈

(
ρcA

τQ
− 1

2

)
τ ≈

(
mc

mv

− 1

2

)
τ (A.29)

In addition, by substituting Eqs. (A.27) and (A.28) into Eq.(A.21), we can get2

wp ≈
ζ

v
√
πρc

(A.30)

Based on Eqs. (9), (A.28), and (A.29), we can get3

wv =
ρv
ρc

(
wc +

τ

2

)
− τ

2
≈ τQ

ρcA

(
ρcA

Q

)
− τ

2
=

τ

2
(A.31)

Occurrence condition for Special case 2 and Special case 34

When the platform sets a large matching radius so that the matching area is governed by the5

density of waiting passengers, i.e., AM = 1
ρc
.6

1) First we prove that when adopts an instant matching, then the following relationship between7

the density of idle vehicles and the density of waiting passengers emerges: ρv ≫ ρc or ρc ≫ ρv.8

Based on Eq. (32), ρv ≫ ρc is equivalent to τQ
ρcA

= M
mc

→ 1 and ρc ≫ ρv is equivalent to9

τQ
ρcA

= M
mc

→ 0. Then it is to prove that when τ → 0, we can get τQ
ρcA

= pc → 0 or 1.10

Obviously, pc ∈ [0, 1]. Eq. (31) can be rewritten as11

−τQ

A

ln (1− pc)

pc
=

N

A
−

ζ
√

Q
A

[
erf

(√
− ln(1−pc)

)
2
√

− ln(1−pc)
−
√

1
π
(1− pc)

]
v
√
τpc

− tQ

A
+

τQ

2A
(A.32)

pc can be solved by Eq. (A.32) and regarded as a function of τ .12

Then we prove limτ→0 pc /∈ (0, 1). Suppose limτ→0 pc ∈ [ε1, ε2], ε1 and ε2 can be any positive13

number satisfying 0 < ε1 < ε2 < 1. Then limτ→0 ln (1− pc) is a finite number. When τ → 0,14

from Eq. (A.32) we can get that 0 = −∞, which is incorrect. Therefore, when τ → 0, we15

have pc = 0 or pc = 1. Furthermore, when limτ→0 pc = 0, we can get − ln (1− pc) ≈ pc ≈ 016

and
erf

(√
− ln(1−pc)

)
2
√

− ln(1−pc)
≈
√

1
π
. From Eq. (A.32) we have that τQ

A
= N

A
− ζ

v

√
Q
Aπ

√
pc
τ
− tQ

A
+ τQ

2A
and17

pc =
πτ
AQ

[
v
ζ

(
N −

(
t+ τ

2

)
Q
)]2

. Then ρc =
1
π

[
ζQ

v(N−tQ− τ
2
Q)

]2
and ρv ≈ τQ/A. When pc = 1,18

Eq. (31) and Eq. (32) indicate that ρv =
N
A
−

ζ 1
2
√
ρv

ρc

vτ
− tQ

A
+ τQ

2A
= N

A
−

ζ 1
2
√
ρv

· ρcA
τQ

vA
Q− tQ

A
+ τ

2Q
=19

N
A
− ζQ√

ρvvA
− tQ

A
+ τQ

2A
. From this equation, we can get ρv. In the following Figure A.4, we20

set N = 5, 000 veh, Q = 10, 000 person/h, v = 70 km/h, and t = 0.4 h; Figures A.4a-A.4c21

shows that when τ → 0, it must be ρv ≫ ρc or ρc ≫ ρv.22
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(a) Trend of ρv/ρc when

A = 500km2.

(b) Trend of ρv/ρc when

A = 2, 000km2.

(c) Trend of ρv/ρc when

τ = 1 sec.

(d) Trend of ρv/ρc when

τ = 359 sec.

Figure A.4: Trends of ρv/ρc under different conditions.

2) Second, we prove when the vehicle utilization tQ
N

→ 0, the density of idle vehicles must1

dominate the density of waiting passengers, i.e., ρv ≫ ρc2

Based on Eq. (A.32) we have pc → 1 ⇐⇒ ρv ≫ ρc, then it is to prove when N
t
≫ Q, we3

have pc → 1.4

When N
t
≫ Q, from Eq. (A.32) we can obtain − τQ

A
ln(1−pc)

pc
+

ζ
√

Q
A

[
erf(

√
− ln(1−pc))

2
√

− ln(1−pc)
−
√

1
π
(1−pc)

]
v
√
τpc

→5

∞. Define g (pc) =
ζ
√

Q
A

[
erf(

√
− ln(1−pc))

2
√

− ln(1−pc)
−
√

1
π
(1−pc)

]
v
√
τpc

, we have that g (pc) is a continuous function6

and g (0) = g (1) = 0, therefore, there is a p∗c ∈ (0, 1) such that g (pc) gets its maximum value7

and g (p∗c) is finite.8

Furthermore, − τQ
A

ln(1−pc)
pc

+
ζ
√

Q
A

[
erf(

√
− ln(1−pc))

2
√

− ln(1−pc)
−
√

1
π
(1−pc)

]
v
√
τpc

≤ − τQ
A

ln(1−pc)
pc

+ g (p∗c) for any pc ∈9

[0, 1]. Since − ln(1−pc)
pc

is strictly increasing in pc ∈ [0, 1] and limpc→1− ln(1−pc)
pc

→ ∞, we can10

obtain that only when pc → 1, we have − τQ
A

ln(1−pc)
pc

+
ζ
√

Q
A

[
erf(

√
− ln(1−pc))

2
√

− ln(1−pc)
−
√

1
π
(1−pc)

]
v
√
τpc

→ ∞,11

which indicates when N
t
≫ Q, we have ρv ≫ ρc.12

3) Third, we prove when τ ≈ N−tQ+ τ
2
Q

Q
or equivalent to when the utilization tQ

N
→ 1

1+ τ
2t

we have13

ρc ≥ ρv.14

When tQ
N

→ 1
1+ τ

2t
, from Eq. (A.32) we have − τQ

A
ln(1−pc)

pc
+ g (pc) → τQ

A
. Since g (pc) ≥ 0, and15

− ln(1−pc)
pc

is strictly increasing in pc ∈ [0, 1], we can get − τQ
A

ln(1−pc)
pc

+ g (pc) ≥ − τQ
A

ln(1−pc)
pc

≥16

− τQ
A

and the equality sign holds only when pc = 0. Therefore, when tQ
N

→ 1
1+ τ

2t
, we have17

pc = 0 and ρc ≫ ρv.18

This completes the proof. ■19
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