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ABSTRACT

The 3D printing cloud platform (3DPCP) plays a pivotal role in breaking down the information 
silos between supply and demand, effectively reducing waste through information integration and 
intelligent production. However, due to the complexity of 3DPCP scheduling in green scenes and the 
multidynamic information perturbations, unveils problems in traditional task scheduling methods in 
3DPCP. These issues manifest as incomplete considerations, subpar green performance, and weak 
adaptability to dynamic changes. There is an urgent need to design practical methods to realize the 
multidynamic information perturbations in green scenes within 3DPCP. Therefore, this article first 
defines the 3DPCP task scheduling problem for multidynamic information perturbation in green 
scenes. Second, the article proposes a task scheduling model and a heuristic task scheduling strategy 
to minimize both the average cost and carbon dioxide (CO2) emissions per unit of quality product. 
Finally, the article validates effectiveness and superiority of the proposed strategy through simulation 
experiments.

KEYWORDS 
Green Scene, Multidynamic Information, 3D Printing Cloud Platform (3DPCP), Task Scheduling, Heuristic 
Scheduling Strategy

TASK SCHEDULING STRATEGY FOR 3D PRINTING 
CLOUD PLATFORM CONSIDERING MULTI-DYNAMIC 
INFORMATION PERTURBATION IN GREEN SCENE

The three-dimensional printing cloud platform (3DPCP) is an online service platform based 
on 3D printing technology, facilitating efficient collaboration with multiple entities, including 
demand, production, and logistics (Cui et al., 2022). Among them, 3D printing (3DP) is a disruptive 
technology boasting not only production advantages such as high digitization, rapid prototyping, 
and print-on-demand but also environmental advantages like low energy consumption and minimal 
material waste (Karimi & Ning, 2021; Sgarbossa et al., 2021; Srinivasan et al., 2018). Moreover, 
cloud platforms serve as service platforms combining technologies like cloud computing and the 
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Internet, characterized by resource optimization and fostering green and sustainable manufacturing 
processes (Feng et al., 2022; Lin & Ma, 2022; Wu et al., 2022). With the rapid development of emerging 
technologies, the application of 3DPCP continues to grow (Zhong et al., 2022). Industry players like 
Xometry have established an extensive network of manufacturer partnerships, providing convenient 
3DP manufacturing services to various customers (Wu et al., 2022). Similarly, platforms like 3D 
Hubs, Shapeways, Sculpteo, and Quickparts provide cloud-based 3DP services (Darwish et al., 2021).

As the global market evolves and competition escalates, how manufacturing companies improve 
their competitiveness has become a critical issue (Zhang et al., 2024). Scheduling serves as a key means 
to achieve the goals of cloud platforms and promote sustainable manufacturing (Alvarez-Meaza et al., 
2021; Liu et al., 2019). Many scholars have researched 3DPCP scheduling. Still, various challenges 
persist in addressing multi-dynamic information perturbations in green scenes. Compared with 
traditional approaches, scheduling tasks in 3DPCP within green scenes has several characteristics:

1.  Resource and task distribution: Task scheduling in green scenes aims to coordinate 
customer-uploaded tasks with resources provided by suppliers, necessitating a resource and 
task-distributed 3DPCP model.

2.  Integration of 3DP and environmental material production: Deeper integration of the 3DP 
manufacturing industry with eco-friendly materials will lead to a diversity of materials. Therefore, 
attributes like material and accuracy must be considered in the scheduling process.

3.  Interconnection with the clean energy industry: The interconnection of the clean energy 
industry with the 3D printing manufacturing industry can respond to energy efficiency needs. 
However, clean energy availability varies geographically, requiring task scheduling adjustments 
based on the availability of clean energy (Tan & Lin, 2023).

4.  Integration with the logistics industry: Green scenes will drive the integration of the logistics 
industry with 3DPCP, necessitating closer coordination between production and transportation. 
This will require more efficient task-scheduling strategies.

5.  Autonomous handling of dynamic information: Traditional scheduling methods usually 
address task scheduling under the real-time arrival of order information. However, considering 
multi-dynamic information perturbations, 3DPCP should autonomously deal with dynamic 
information, such as order arrivals and cancellations, device additions and failures, and device 
time-window changes for intelligent manufacturing.

To clarify the relationship between multiple entities in green scenes, we constructed the 3DPCP 
task scheduling framework considering multi-dynamic information perturbations (see Figure 1). This 
framework involves customers uploading orders at random times, suppliers virtualizing resources on 
the cloud platform’s resource layer, and real-time adjustments through the platform and its services. 
Highlighting the 3DPCP task scheduling characteristics in green scenes and the multi-dynamic 
information perturbation in 3DPCP leads to incomplete considerations, poor green performance, and 
poor dynamics in the traditional 3DPCP task scheduling methods. Therefore, there is an urgent need 
to explore 3DPCP task scheduling methods considering multi-dynamic information perturbations 
in green scenes.

The article is organized as follows: The next section provides an overview of related work in the 
field. Section 3 defines the problem of 3DPCP task scheduling considering multi-dynamic information 
perturbations in green scenes. Sections 4 and 5 present the development of a task scheduling model 
and a heuristic task scheduling strategy, respectively. Section 6 outlines the design of simulation 
experiments and analyzes the experimental results. Finally, Section 7 encapsulates the findings, draws 
conclusions, and outlines future research directions.
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RELATED RESEARCH

This research explores 3DPCP task scheduling, specifically considering the complexities arising 
from multi-dynamic information perturbation in green scenes. In this section, we first decompose 
the 3DPCP task scheduling problem and then explore the current research progress in this area. On 
this basis, we analyze the difficulties encountered in 3DPCP task scheduling within green scenes. 
Finally, we summarize the deficiencies of the existing literature.

3DPCP Task Scheduling Problem Decomposition
3DPCP task scheduling is complex research consisting of multiple subproblems. Initially, 

the challenge is to intelligently match multiple products with distributed printing resources. This 
requires considering various factors, such as the attributes of the product devices (Chergui et al., 
2018; Kucukkoc, 2019), the device time window (Wu et al., 2022), and the product delivery deadline 
(Darwish et al., 2021). Then, the combined batch problem arises, which entails reasonably arranging 
the products on the processing platform of the 3DP device to improve space utilization (Araújo et al., 
2019; Che et al., 2021; De Antón et al., 2022). Scholars have successively proposed two-dimensional 
irregular product layout methods based on a non-fitting polygon (Zhang et al., 2020), layout methods 
based on computer vision (Wang et al., 2019), and improved skyline-based heuristic algorithms (Wu 
et al., 2022). Among these, 3DP production characteristics, such as consistent product attributes in the 
same batch (Oh et al., 2020), production energy consumption (Karimi et al., 2021), and production 
carbon emissions (Jiang et al., 2022; Zhang et al., 2017), should be considered. Finally, the complex 
transportation logistics from suppliers to customers are pivotal. Since an order may contain multiple 
products and products within an order may be produced by numerous resource providers, factors 

Figure 1. 3DPCP task scheduling framework considering multi-dynamic information perturbation in green scene
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like carbon emissions (Wang et al., 2019) and coordinated transport (Wu et al., 2022; Zhang, 2021) 
should be considered in the logistics process.

Research Progress on 3DPCP Task Scheduling
The results of reviewing the existing literature on 3DPCP task scheduling are presented in Table 

1. The factors considered include authors (Au), heterogeneous devices (Des), multi-attribute tasks 
(Tas), arrival/delivery time constraints (Ts), task priority (Pr), device time windows (Wi), product 
mix (Ma), logistics optimization (Lo), green factors (Gr), dynamic scheduling (Dy), optimization 
objectives (Ob), and algorithms (Al). A comparison of these factors reveals the following areas for 
improvement in the current research:

1.  Although device time windows are crucial constraints in cloud manufacturing (Ton & Zhu, 2022), 
and factors such as suppliers’ self-use and device maintenance should be considered in 3DPCP 
(Wu et al., 2022), few scholars have addressed this in their research.

2.  Logistics, a key aspect of 3DPCP (Zhou et al., 2018), has only been covered by a few scholars, 
often with some simplifications noted (Wu et al., 2022).

3.  Despite the global push for green manufacturing (Cheng et al., 2022; Ren et al., 2023), few 
researchers have focused on low-carbon and energy-saving measures in the 3DPCP scheduling 
process. Darwish et al. (2021) preset energy thresholds for devices, achieving some energy 
savings.

4.  Dynamic information perturbation is a significant challenge in 3DPCP scheduling (Wu et al., 
2022). As shown in Table 1, this issue has not been adequately addressed. For instance, Wu et al. 
(2022) and Li et al. (2019) considered real-time order arrival during task scheduling, and Darwish 
et al. (2021) designed an “allocation+scheduling” approach to achieve dynamic scheduling, 
enhancing response rate and device load balancing.

Heuristic scheduling rule algorithms, known for their simplicity and effectiveness, offer a method 
for solving scheduling problems in 3DPCP (Li et al., 2023). Compared to more complex methods 
such as intelligent optimization algorithms (Liu & Li, 2022; Chu et al., 2023) and game theory (Tang 
& Zhong, 2022), heuristic rule algorithms offer faster response times and efficient problem-solving 
capabilities (Wang et al., 2022), particularly in complex situations like distributed resource tasks 
and dynamic scheduling. Darwish et al. (2021) proposed a robust online allocation algorithm and a 
priority-based adaptive real-time multitask scheduling algorithm to address the optimal allocation and 
real-time requirements of 3DP tasks. Their simulation experiments demonstrated that this method has 
superior response speed and processing capability under high-load environments. Wu et al. (2022) 
designed a heuristic scheduling method for random task arrival scenarios and tested its performance 
on various instance sizes. The simulation results showed that the algorithm effectively solves the 
3DPCP online scheduling problem. Li et al. (2019) proposed a policy-based heuristic decision-making 
method to solve the dynamic order acceptance and scheduling problem in the on-demand production 
of powder bed fusion systems. Experimental validation confirmed the method’s favorable outcomes.

3DPCP Scheduling Difficulties in Green Scenes
Scene-driven is a new paradigm that tailors services to specific needs within a given context, 

promoting deep business development and industry integration (Yin et al., 2022). In this framework, 
the green scene further delineates sustainability and environmental concerns, aiming to promote 
scenario development more sustainably by using ecological materials, energy savings, emission 
reduction, and industrial interconnection. Current research on scheduling in green scenes focuses on 
energy scheduling (Hirwa et al., 2023; Kang et al., 2023), production scheduling (Li & Zhou, 2023), 
and logistics scheduling (Liu et al., 2023). These studies aim to create more eco-friendly, sustainable, 
and efficient scheduling systems that reduce energy consumption and greenhouse gas emissions. For 
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instance, Darwish et al. (2021) proposed a real-time green-aware multitask scheduling architecture for 
personalized 3DP tasks in sustainable Industry 4.0 contexts, considering device energy consumption, 
high-load environments, task attributes, and real-time performance. Jin and Gao (2023) investigated the 
hybrid optimization problem of green supply chain networks with distributed 3D printing intelligent 
factory scheduling, considering carbon emissions and cost factors. However, these studies have not 
fully addressed the impact of the green scene on 3DPCP scheduling.

Research Review
Our systematic literature review shows that while many scholars have studied 3DPCP task 

scheduling, the research on 3DPCP task scheduling considering multi-dynamic information in green 
scenes is still insufficient. First, the impact of green scenes on 3DPCP scheduling has not been clarified, 
and the difficulties of 3DPCP task scheduling in green scenes remain unresolved. Second, although 
3DPCP task scheduling is inherently dynamic and complex, few studies comprehensively address the 
multi-dynamic information involved. The integration of multiple entities and sub-problems within 
3DPCP task scheduling needs further improvement and optimization. Finally, regarding research 
methodology, there is a lack of intelligent model algorithms to address the 3DPCP task scheduling 
problem considering multi-dynamic information in green scenes. Thus, there is an urgent need to 
explore methodologies for 3DPCP task scheduling that consider multi-dynamic information in green 
scenes. This exploration should be based on the correlation of 3DPCP task scheduling sub-problems, 
the shortcomings of current research, and the specific challenges of 3DPCP scheduling in green scenes.

PROBLEM STATEMENT

The scheduling process of 3DPCP considering multi-dynamic information perturbation in 
green scenes is complex and dynamic. To clearly illustrate the process, Figure 2 provides a visual 
representation. The specific steps are as follows:

First, the service demander (D = {1, 2, …, dn}) can send order information to the cloud platform 
at any time, and the number of products in the order is   n  d  

pro  . The order information includes not only 
product information (P = {1, 2, …, in}), such as the length, width, height, quality (li, wi, hi, qi), printing 
material (Mai), and precision (Aci), but also information including the order release time (  T  i  

release  ) and 

Table 1. Related literature

Au Des Tas Ts Pr Wi Ma Gr Dy Ob Al

Darwish et al. 
(2021)

√ √ √ √ × √ √ Energy 
saving

√ / Online 
allocation 
& ARMPS

Wu et al. 
(2022)

√ × √ × √ √ √ × Order 
changes

Min(  C _ V   ) Heuristic

Zhou et al. 
(2018)

√ √ √ √ × √ √ × × Min   
_

 F   3DPSS 
(Genetic 

algorithm)

Li et al. 
(2019)

√ × √ × × √ × × Order 
changes

Max   (  APT )    Heuristic

Liu et al. 
(2021)

√ √ × × × × √ × × Min   
_

 T   &   
_

 C    
Max   

_
 Q   

Genetic 
algorithm

Wang et al. 
(2019)

× √ × √ × √ × × × Min   (  PD )    Computer 
vision 

algorithm

Note. ARMPS = adaptive real-time multitask scheduling algorithm.
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the expected delivery time (  T  i  
expect  ). The platform transfers all product information to the product pool 

(P_pool) and divides it into groups (  G  ma  
ac   ) based on the product print material and print accuracy.

Then, the scheduling mechanism is triggered when the resource supplier (S = {1, 2, …, sn}) 
possesses devices (  M  s   =  {1, 2, ⋯ ,  m  s  

n }  ) in a producible state, indicated by the nonempty set of 
producible devices (MF). Each device within MF is polled, and the products within the   G  ma  

ac    corresponding 
to the device are categorized into multiple optional batches based on attributes such as the device’s 
power of the preparation, scanning, recoating, and post-processing phases (  J  s,m  pre ,  J  s,m  scan ,  J  s,m  recoat ,  J  s,m  post  ), carbon 
emissions per unit of electricity (  M  s,m  e/p  ), cost of printing per unit of weight (  M  s,m  c/q  ), cost of renting the 
device per unit of time (  M  s,m  R   ), the length, width, and height of the device’s processing platform (  L  s,m  
,  W  s,m  ,  H  s,m   ), and the time window of the device (  M  s,m  W   =  {1�2�⋯,  M  s,m  W, n  t   } ,  M  s,m  W, n  t    = [w  s  s,m   n  t    , w  e  s,m   n  t    ] ). The 
best batch (bbest) pairing is selected from the polling results for production. The actual production 
batch sequence of the device is recorded as   B  s,m   =  {1, 2, ⋯ ,  b  s,m  n  }  . The scanning and recoating time 
required to produce the ith product are denoted as   T  i  

scan  and   T  i  
recoat  . Similarly, the scanning and recoating 

time needed for producing batch b on device m under supplier s are denoted as   T  b (s,m)   
scan    and   T  b (s,m)   

recoat  . The 
pre-production preparation time and post-production processing time for the production of batch b 
on machine m under supplier s are denoted as   T  b (s,m)   

pre    and   T  b (s,m)   
post   . The time at which batch b is finished 

and the time required to produce batch b on device m under supplier s are denoted as   T  b (s,m)   
p    and   T  b (s,m)    .

Finally, the ordered products are delivered to the service demander. The actual delivery time is 
denoted as   T  i  

arrive  . The geographic coordinates of the supplier are (  X  s  
loc ,  Y  s  

loc  ), the geographic coordinates 
of the demander are (  x  d  

loc ,  y  d  
loc  ), and the time, cost, and carbon dioxide (CO2) emissions per unit of 

transport distance are  τ, σ, θ . Moreover, the penalty cost per unit of the delayed delivery time of the 
products (  η  i   ) in the order is much higher than the logistics cost. Thus, the completed products must 
be dispatched earlier if the order includes products that do not meet the expected delivery time. 
Furthermore, not all products for service demander d are produced by the same resource supplier. 
Therefore, the distance and the number of transports between the supplier and the demander are 
denoted as disss,d and   n  s,d  

log  .

Figure 2. Flowchart of 3DPCP task scheduling considering multi-dynamic information perturbation in green scene
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MATHEMATICAL MODEL

Assumptions Setting

1.  To meet the product printing quality requirements, the product printing direction is pre-determined 
(Taufik & Jain, 2013). To save the algorithm running time, each product is arranged based on 
the two-dimensional minimum bounding rectangle projection in the layer direction (Wu et al., 
2022).

2.  Orders arrive randomly and will be returned if they contain products that do not meet the 
production requirements. Moreover, a 5-mm spacing is set during the product layout process to 
prevent damage caused by contact between products (Zhang et al., 2020).

3.  A machine can only produce one batch at a time, and a batch can cover multiple products 
simultaneously. However, new products cannot be added during the batch production process.

4.  All devices are available during the device time window. After completing a printing batch, they 
quickly enter the next batch production by replacing the printing tray (Wu et al., 2022).

5.  Stereolithography (SLA) technology has significant advantages in large-scale production and 
precision manufacturing (Jung et al., 2023). Moreover, among many additive manufacturing 
technologies, SLA technology has the advantage of low carbon emissions and energy consumption 
both in standby and working conditions (Elbadawi et al., 2023). Therefore, this research is based 
on SLA technology.

6.  The power consumed by each device at different stages of the production process is constant 
and unaffected by factors such as device aging and ambient temperature. Moreover, the carbon 
emissions and time consumed in the transport process are only related to the distance. They are 
not affected by factors such as traffic conditions and transport means.

Objective Function Setting
Given that cost is a vital control issue for companies (Nestorenko et al., 2022) and given the 

need for CO2 reduction in green scenes (Wang & Lin, 2023), two objective functions are established:

1.  Minimize average cost per unit of product quality: Cost is a primary concern for 3DPCP. 
The average cost per unit of product quality (C) is shown in Equation 1, which includes printing 
materials cost (Cprint), device rental cost (Crent), delay penalty cost (Cpunish), and logistics cost (Clog).

 C =  ( C   print  +  C   rent  +  C   punish  +  C   log )  /  ∑ 
i∈P

    q  i     (1)

2.  Minimize average CO2 emissions per unit of product quality: Low carbon emissions and 
energy-saving efforts are important indicators in green scenes. The average CO2 emissions per unit 
of product quality (E) is shown in Equation 2, which includes CO2 emissions in the production 
phase (Epro) and CO2 emissions in the logistics phase (Elog).

 E =  ( E   pro  +  E   log )  /  ∑ 
i∈P

    q  i     (2)
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Constraint Function Setting
Dynamic Constraints

 P (t)  = P (t − 1)  + ΔP (t)   (3)

 S (t)  = S (t − 1)  + ΔS (t)   (4)

  M  s   (t)  =  M  s   (t − 1)  + Δ  M  s   (t) ; ∀ s ∈ S  (5)

  M  s,m  W   (t)  =  M  s,m  W   (t − 1)  + Δ  M  s,m  W   (t) ; ∀ s ∈ S, ∀ m ∈  M  s    (6)

Multi-dynamic information in 3DPCP within green scenes refers to the real-time changes in 
task and resource information during the scheduling process, which can be classified into task and 
resource changes. Task changes include the loaded and canceled orders (Equation 3), while resource 
changes include additions or deletions of suppliers (Equation 4), additions or deletions of devices 
supplied by suppliers (Equation 5), and device time window changes (Equation 6).

Production Constraints

  ∑ 
s∈S

     ∑ 
m∈ M  s  

   ∑ 
b∈B

    X  ib (s,m)    = 1   ; ∀ i ∈ P  (7)

  ∑ 
i∈P

    Y  id   =  n  d  
pro  ≥ 1 ; ∀ d ∈ D  (8)

  ∑ 
s∈S

     ∑ 
m∈ M  s  

   ∑ 
b∈B

    Z  b (s,m)    = 0     (9)

Based on the SLA machining process characteristics, the following production constraints 
are established: Equation 7 ensures that each product can only be assigned to one batch, and each 
batch can only be assigned to one device from one supplier. Equation 8 guarantees that each order a 
service requester provides contains at least one printed product. Equation 9 ensures that the material 
and accuracy of the product are consistent within each batch in each device of each supplier. In the 
equations, Xib(s,m), Yid, and Zb(s,m) are selection variables, where Xib(s,m) equals 1 if the ith product is 
produced in the bth batch on the ms device, and 0 otherwise; Yid equals 1 if the ith product is in the 
dth service requester order, and 0 otherwise; and Zb(s,m) equals 0 if the material and accuracy of the 
products within the bth batch on the ms device are consistent and 1 otherwise.

 M  a  i   = M  a  s,m  ; ∀ i is produced on   m  s    (10)

 A  c  i   = A  c  s,m  ; ∀ i is produced on   m  s    (11)
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Next, the multiple types of eco-friendly materials for printing in the green scene prompt a wide 
range of printing task types, and different tasks have specific printing materials and accuracies. 
Changing device materials requires tedious steps such as emptying, cleaning, and parameter 
adjustment; thus, it is assumed that the print material of the 3DP device remains unchanged. The 
print material required for the product must match the device (Equation 10), and accuracy adjustments 
will have some effect on print quality. Thus, it is assumed that the print accuracy of the 3DP device 
is constant. The print accuracy required for the product must match the device Equation 11.

  M  s,m  min,xyz  ≤  P  i  
dot,xyz  ≤  M  s,m  max,xyz ; ∀ dot ∈ i; ∀ i is produced on   m  s    (12)

  i  1   ∩  i  2   = ∅ , ∀  i  1  ,  i  2   ∈ P,  i  1   ≠  i  2    (13)

Equation 12 indicates that the coordinates of any dot on product i produced by machine ms must 
be in the machine processing space. This ensures that all products must be arranged in the processing 
plane of the 3DP device. Equation (13) ensures that the projections of the products on the processing 
plane do not overlap to prevent damage caused by products contacting each other during production.

Logistics Constraints

  n  s,d  
pro  =  ∑ 

i∈P
     ∑ 
m∈ M  s  

   ∑ 
b∈B

    X  ib (s,m)     Y  id       (14)

  Pun  i   =IF ( T  i  
arrive  <  T  i  

expect , 0, 1)   (15)

  n  s,d  
pp   =  ∑ 

i∈P
     ∑ 
m∈ M  s  

   ∑ 
b∈B

    X  ib (s,m)     Y  id    Pun  i       (16)

  n  s,d  
log  =  {  

 n  s,d  
pro 

  
 n  s,d  

pro  = 0/1 /  n  s,d  
pp  

   1 +  n  s,d  
pp    others     (17)

 dis  s  s,d   =  √ 
__________________

    ( X  s   −  x  d  )    2  +   ( Y  s   −  y  d  )    2     (18)

Print products within an order have multi-attribute characteristics; thus, the same supplier may 
not produce all products in an order. Therefore, the demander may have logistics relationships with 
multiple suppliers. Next, because delay penalties are much more expensive than transport costs, when 
some of the products within an order cannot be delivered on time, the completed products within the 
order should be dispatched in advance. The number of transports required between the demander d 
and the supplier s is calculated using Equation 17, where   n  s,d  

pro   denotes the number of products within 
the order produced by supplier s (Equation 14) and   n  s,d  

pp    denotes the number of products of demander 
d produced by resource supplier s that will be delivered late (Equation 16). Puni equals 1 if product 
i is delivered late and 0 otherwise (Equation 15). The distance between demander d and supplier s 
is calculated using Equation 18.
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Time Constraints

  T  b (s,m)   
recoat  = max ( X  ib (s,m)     T  i  

recoat ) , ∀ i ∈ P  (19)

  T  b (s,m)   
scan   =  ∑ 

i∈P
    X  ib (s,m)     T  i  

scan    (20)

  T  b (s,m)    =  T  s,m  pre  +  T  b (s,m)   
scan   +  T  b (s,m)   

recoat  +  T  s,m  post   (21)

  T  b (s,m)   
p   =  {  

 T  b (s,m)   
idle   +  T  b (s,m)     

b = 1
    

 T   (b−1)  (s,m)   
p   +  T  b (s,m)   

idle   +  T  b (s,m)   
  

b > 1
    (22)

  T  i  
arrive  =  ∑ 

s∈S
     ∑ 
m∈ M  s  

   ∑ 
b∈B

    X  ib (s,m)    ( T  b (s,m)   
p   +  ∑ 

d∈D
    Y  id   dis  s  s,d   τ )      (23)

  r  i   =  ( T  i  
expect  −  T  i  

release )  /  ( T  i  
arrive  −  T  i  

release )   (24)

As a critical factor in the 3DPCP task scheduling process, time should be fully considered. 
Since SLA involves layer-by-layer recoating and one-by-one scanning, the recoating is performed 
only once, even if each layer contains multiple products. In contrast, the scanning needs to process 
each product within each layer. The total recoating time for batch b on machine ms is determined 
based on the maximum recoating time of all products in the batch (Equation 19). The total scanning 
time is the sum of the scanning times of all products within the batch (Equation 20). Equation 21 
estimates the total processing time of batch b on machine ms based on the SLA process. Among them, 
preprocessing and postprocessing mainly include processes like material filling, device heating and 
cooling, de-supporting, and cleaning (Zhang et al., 2020). Equation 22 denotes the time point when 
the production of batch b on device ms ends, where   T  b (s,m)   

idle    denotes the idle time before the production 
of batch b on device ms. Equation 23 represents the actual delivery time of product i, which consists 
of the completion time point of the batch in which product i is located and the time spent on transport. 
Equation 24 represents the priority coefficient of product i, which is divided by 1. When the value 
is greater than 1, there is no penalty; when the value is less than 1, the smaller the value, the longer 
the delayed delivery time.

Cost Constraints

  C   print  =  ∑ 
i∈P

    ∑ 
s∈S

     ∑ 
m∈ M  s  

   ∑ 
b∈B

    X  ib (s,m)     q  i    M  s,m  c/q       (25)

  C   rent  =  ∑ 
s∈S

     ∑ 
m∈ M  s  

   ∑ 
b∈B

    M  s,m  R    T  b (s,m)        (26)



11

Journal of Global Information Management
Volume 32 • Issue 1 • January-December 2024

  C   punish  =  ∑ 
i∈P

   max ( T  i  
arrive  −  T  i  

expected , 0) η   (27)

  C   log  =  ∑ 
s∈S

    ∑ 
d∈D

    n  s,d  
log  dis  s  s,d   σ    (28)

The total cost has four components. The printing cost is calculated from the product quality and 
the printing cost per unit quality of material of the production device (Equation 25). Rental costs 
are calculated from the rental cost per unit of time of the device and the total production time of the 
device (Equation 26). The delay penalty cost is calculated from the excess time and the unit delay 
time penalty cost (Equation 27). Logistics costs are calculated from the number of transports, the 
distance, and the transport cost per unit distance (Equation 28).

CO2 Emissions Constraints

  E  b (s,m)    =  ( T  b (s,m)   
pre    J  s,m  pre  +  T  b (s,m)   

recoat   J  s,m  recoat  +  T  b (s,m)   
scan    J  s,m  scan  +  T  b (s,m)   

post    J  s,m  post )   M  s,m  e/p   (29)

  E   pro  =  ∑ 
s∈S

     ∑ 
m∈ M  s  

   ∑ 
b∈B

    ( E  b (s,m)   )      (30)

  E   log  =  ∑ 
s∈S

    ∑ 
d∈D

    n  s,d  
log  dis  s  s,d   θ    (31)

To visualize the CO2 emissions of the 3DPCP task scheduling process, the scheduling process is 
divided into the production and logistics phases. Converting the energy required for production into 
CO2 emissions during the production process is a recognized method of CO2 emissions quantification 
and has been widely used in 3DP CO2 emissions quantification research (Di & Yang, 2022; Jiang et 
al., 2022; Zhang et al., 2017). Numerous 3DP processes exist; thus, processes like fused deposition 
manufacturing (Karimi et al., 2021; Zhang et al., 2017) and laser additive manufacturing (Jiang et 
al., 2022; Yang et al., 2017) have different production subphases and varying power requirements 
for each phase. Therefore, based on the SLA process, each batch is divided into four substages: (1) 
preprocessing, (2) scanning, (3) recoating, and (4) postprocessing. The CO2 emissions of each batch 
are calculated using Equation 29, and the total CO2 emissions of the production stages are calculated 
using Equation 30. Moreover, CO2 emissions in the logistics phase are determined by the distance 
and number of transports between the supplier and the client, as calculated using Equation 31.

HEURISTIC TASK SCHEDULING STRATEGY

In this section, we design a heuristic task scheduling strategy (HOS), as shown in Figure 3. 
This strategy consists of three nested algorithms: dynamic response, scheduling mechanism, and 
arrangement strategy.

Algorithm 1: Dynamic Response
The primary role of Algorithm 1 (dynamic response) is to receive and process the multi-dynamic 

information in the 3DPCP green scene. At the start of the cycle, the first step is to query the resource 
and task information base, followed by real-time responses to resource or task changes. If dynamic 
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information is received, the product pool (P_pool) and resource pool (M_pool) are updated accordingly. 
If a breakdown occurs in the device under production, the unfinished products should be returned 
to the P_pool. In case of an order cancellation, whether the ordered product has entered production 
should be queried. If so, it cannot be cancelled; otherwise, the ordered product is removed from the 
P_pool. Next, it is checked whether the P_pool is empty. If not, Algorithm 2 (scheduling mechanism) 
is executed. If it is empty, further assessment is needed to judge whether the current moment (Tnow) 
exceeds the maximum simulation time (Tmax). If it does, the scheduling process ends; otherwise, Tnow 
and the device time window pool (W_pool) are updated, and the algorithm returns to the first step 
of Algorithm 1.

Algorithm 2: Scheduling Mechanism
Algorithm 2 (scheduling mechanism) optimizes the matching of devices within the idle device 

set (MF) to batches, where MF denotes an idle device and corresponds to   G  ma  
ac    nonempty. The first 

step is to update MF, calculate the number of idle devices (NF), and initialize the idle device index (f 
= 1). Then, it is judged whether MF is empty. If so, the algorithm returns to Algorithm 1 (dynamic 
response). Otherwise, Algorithm 3 (arrangement strategy) is executed. For each index f within MF, 
the corresponding Ms,m is polled to get the optimal device–batch pair and its target value for each 
device within MF. The optimal device–batch pair is selected for production through a meritocracy 
mechanism. Then, the time window of the corresponding device is updated according to Equation 

Figure 3. Heuristic task scheduling strategy
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32, and any products entering production are canceled. Finally, the algorithm returns to the first step 
of Algorithm 2.

  M  s,m  W, n  t    = [ T  b (s,m)   
p  , w  e  s,m   n  t    ]  (32)

Algorithm 3: Arrangement Strategy
Algorithm 3 (arrangement strategy) addresses the product mix problem in 3DPCP task scheduling, 

achieving excellent optimization results. Its input parameters are   G  ma  
ac   , Ls,m, and Ws,m. The process begins 

by initializing the population using a hybrid initialization population strategy that considers transport 
distance, delivery time, and height. The population under this strategy consists of four components:

1.  Transport distance sorting: Products within a single individual are ordered according to the 
transport distance from nearest to farthest. The distance between the supplier and the demander 
significantly affects scheduling costs and CO2 emissions.

2.  Delivery time sorting: Products are prioritized based on their proximity to the delivery time, 
reducing penalty costs. Products within an individual are ordered according to delivery time 
from closest to furthest.

3.  Height sorting: Based on Equation 19, the product with the longest recoating time in the batch 
determines the recoating time of the batch. Recoating time is directly proportional to the product’s 
height, and the device’s working time affects its energy consumption and rental costs. Therefore, 
products are sorted within an individual according to their height.

4.  Hybrid sorting: Instead of random sorting, hybrid sorting is used. This involves individuals 
produced by precedence operation crossover (Zheng et al., 2014) of the individual’s transport 
distance, delivery time, and height.

Then, the lowest horizontal line set (L) is initialized, and each individual is polled. The best batch 
and its target value are selected for storage through a meritocracy mechanism based on calculating 
the target value in the overall production environment. A modified lowest horizontal line algorithm 
is used to arrange the products during the individual polling process. This algorithm sequentially 
visits each product within an individual, making decisions based on the height and width of the lowest 
horizontal line, time window judgments, and a rotation mechanism. The process ends when the sum 
of the width of the lowest horizontal line and the smallest width/length of the non-discharged product 
is greater than the width of the device’s processing platform. Finally, the algorithm outputs the best 
device–batch pairing when each individual is polled.

Meritocracy Mechanism
3DPCP task scheduling considering multi-dynamic information in the green scene is a 

multi-objective optimization problem, making it impossible to select the optimal solution directly from 
the solution set. Therefore, a meritocracy mechanism is designed to identify the dominant relationship 
between the solutions in the multi-objective problem by fast nondominated sorting. Subsequently, 
the optimal solution is selected from the set of nondominated solutions using the technique of order 
preference similarity to the ideal solution (TOPSIS) method. Fast nondominated sorting means that 
when the objective values Uu(p1) and Uu(p2) of individuals p1 and p2 satisfy Equation 33, then p1 is 
considered to dominate p2. If no individual dominates after polling each individual p1, then p1 is 
called the optimal individual, and the set of all optimal individuals is called the set of nondominated 
solutions (NS). After obtaining NS, the optimal solution is obtained using Equation 34. The technique 
of order preference similarity to the ideal solution TOPSIS method is a multi-attribute decision analysis 
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method that aims to select the best solution close to the ideal solution and far from the negative ideal 
solution for each attribute (Behzadian et al., 2012).

  { 
 U  u   ( p  1  )  ≤  U  u   ( p  2  ) ,  

∀ u ∈  {1, 2} 
    

 U  u   ( p  1  )  <  U  u   ( p  2  ) ,
  

∃ u ∈  {1, 2} 
    (33)

 opt =  {  NS  numel (NS)  = 1    Topsis (NS)   numel (NS)  ≥ 2    (34)

EXPERIMENTAL DESIGN

Given the current existence of multiple 3DP processes, obtaining directly comparable experimental 
results is difficult. Moreover, 3DP production is slow, and conducting various comparative experiments 
is time-consuming and costly. Therefore, numerical simulation experiments are employed to test the 
effectiveness of the proposed algorithmic model.

First, to ensure the universality and credibility of the experiment, a product information base and 
a machine information base are established. Product models with specific printing materials, accuracy, 
and size are randomly downloaded from major model websites, mainly automotive parts, industrial 
equipment, and artistic sculptures. From a device selection perspective, different types of SLA devices 
are randomly selected, which differ in processing platform size, printing cost per unit quality, rental 
cost, accuracy, speed, and power. Support structures are generated for each product via Materialise 
Magics 26.01 software, and scanning and recoating times for each product are estimated (Campbell 
et al., 2008). Based on this, the demander’s order comprises   n  d  

pro   products randomly selected from 
the product information base. Each order has different characteristics, such as release time, expected 
delivery time, dispatch location, and delay penalty cost. The supplier’s device set consists of   n  s  

mac   
devices randomly selected from the machine information base. Each supplier has a different geographic 
location, CO2 emissions per unit of electricity, device time window, and other relevant parameters.

Second, to highlight the multi-dynamic information in the 3DPCP and ensure the experiment’s 
reliability, random ranges for simulation parameters are determined (see Table 2), and multiple sets 
of comparable instances are designed (see Table 3). In Table 2, the random ranges of the simulation 
parameters are set according to reality and references (Elbadawi et al., 2023; Jiang et al., 2022; Kellner 
& Igl, 2015; Wu et al., 2022), with parameters randomized within the ranges in steps. In Table 3, 
each instance has a different maximum simulation time (Tmax), order quantity, supplier quantity, and 
dynamic information perturbation quantity. Within Tmax, orders are released to the cloud platform 
at random time points, allowing multiple orders to be uploaded simultaneously. Supplier quantity 
indicates the number of suppliers at the initial moment. During Tmax, resource changes will occur 
at randomly selected time points, including additions or deletions of supplier devices and changes 
in device time windows. If the device being produced withdraws its supply, the unfinished product 
must be returned to the P_pool to await reallocation, with this cost being covered by the supplier. The 
algorithm’s scheduling effect in different scenarios, such as time length, order size, resource size, and 
dynamic information frequency, can be effectively tested by comparing 12 sets of instances, and the 
experiment is repeated 15 times for each set of instances, which makes the experiment highly reliable. 
The test data sets and all results have been uploaded to https:// pan .baidu .com/ s/ 1 _ _ yLYn6QqY5B 
go8uI5MJGg ?pwd = vx1v .

Finally, to verify the effectiveness and superiority of the proposed algorithm, we analyzed 
it and compared it with the state-of-the-art scheduling method in the field, Heuristic (Wu et al., 
2022). However, because Heuristic does not consider machine changes, comparisons are made only 
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in instances 1–6. Such comparisons can effectively test the overall scheduling effectiveness of the 
algorithms designed in this paper. In addition, genetic algorithms have shown better optimization 
results than other intelligent optimization algorithms in the field of 3DP scheduling (Kapadia et al., 
2022; Zhang et al., 2020). Thus, the population design in Section 5.3 is replaced with a multi-objective 
genetic algorithm (GAOS) to test the optimization of the transport distance–delivery time–height 
hybrid initialization population strategy designed in Algorithm 3 (arrangement strategy). We 
implemented all instances of this experiment using MATLAB R2022b and ran them on a computer 
with an Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz and 12GB RAM.

In sum, the order release time, order information, device information, and dynamic information 
in this experiment are unpredictable and consistent with reality. Moreover, this experiment has good 
representativeness and reliability through the comparison of multiple instances and the comparison 
of algorithms.

RESULTS AND DISCUSSION

Optimization Target Comparison
The simulation results for instances 1–6 are shown in Figure 4, where each set of instance results 

are plotted as a three-dimensional scatterplot consisting of three axes: (1) number of trials (num); (2) 

Table 2. Simulation parameters

Parameters Random range, step Parameters Random range, step

Tmax (h) [48,432],48   M  s,m  R   [20,50],1

(Xs,Yx),(xd,yd) [1,500],1  ω (h/km)  0.06

  M  s,m  e/p  ( gCO  2   /kwh)  [200,500],1  θ ( gCO  2   /km)  10

  T  i  
expect  (h)  [  T  i  

release  +24,   T  i  
release  +72],1  σ (�/km)  0.6

  n  s  
mac  [1,3],1  η (�/h)  [20,50],1

  n  d  
pro  [1,3],1 Mai,Mas,m [1,4],1

nt [1,9],1 Aci,Acs,m (mm) [0.1,0.3],0.1
Table 3. Information for test instances

Test instances   T  max   Range of orders Range of supplies Range of change

1 48 [123,178] [20,40] 0

2 96 [151,201] [22,43] 0

3 144 [198,253] [25,45] 0

4 192 [241,288] [28,45] 0

5 240 [278,341] [29,46] 0

6 288 [328,398] [31,48] 0

7 192 [248,298] [25,44] [2,18]

8 240 [281,350] [27,45] [3,20]

9 288 [334,400] [32,50] [5,21]

10 336 [381,443] [33,52] [8,23]

11 384 [431,481] [36,58] [11,24]

12 432 [478,541] [40,67] [12,31]
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average cost per unit quality product (Obj1); and (3) average CO2 emissions per unit quality product 
(Obj2). The optimization results of each algorithm are distinguished by the color of the scatter points 
and their projection on each plane. The scatter point size is determined according to the superiority 
of the optimization objective value of each strategy under each trial. Throughout instances 1–6, it can 
be seen that Heuristic only has better optimization results than HOS and GAOS in instance 1. With 
the extension of time and scale, its optimization results gradually deteriorate because Heuristic is the 
selection of the optimal device by the product. This can lead to the concentration of the product on 
the optimal device while wasting the production resources of the sub-optimal device, thus aggravating 
the low-supply situation when large-scale production occurs. HOS and GAOS are a combination of 
products that are selected by idle devices to produce the optimal device-batch pairing sequentially. 
The idea can prioritize the use of optimal production resources and make full use of suboptimal 
resources in large-scale production. Moreover, the embedded arrangement strategy in HOS and the 
random sorting in GAOS have a larger optimization space than the ascending order based on delivery 
time in Heuristic and show better optimization results in large-scale production.

The simulation results for instances 7–12 are shown in Figure 5. As the complexity of the 
problem increases with the continuous expansion of supplier size, order numbers, and multi-dynamic 
information, Heuristic can no longer adapt to the complex NP-hard problem under device fluctuations. 
Moreover, from the optimization results of HOS and GAOS, it can be seen that the optimization results 
of HOS and GAOS are similar regardless of the dynamic information perturbation. This is because 
the algorithmic principles of HOS and GAOS are basically the same, and GAOS simply replaces the 
population design in HOS with a multi-objective genetic algorithm. This shows that Algorithm 3 
(arrangement strategy) has an excellent optimization effect. Among them, the initialization population 
strategy designed based on the 3DPCP task scheduling characteristics considering multi-dynamic 
information in green scenes can generate excellent populations. This can replace the population 
migration and iteration process of intelligent optimization algorithms to reduce the algorithm 
complexity. In addition, by analyzing instances 4–9 and 7–12, it can be seen that in the case with the 
same simulation time but with or without resource changes, and in the case with resource changes 

Figure 4. Simulation results of instances 1–6
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but with the gradual expansion of the experimental scale, the optimization results obtained by HOS 
is stable, which shows that the algorithms have a strong ability to deal with resource changes and 
large-scale production.

Key Indicators Comparison
A fast solving speed can instantly respond to dynamic information and make real-time decisions, 

and a shorter product delivery cycle can improve customer satisfaction. Therefore, solving speed and 
product delivery cycle are important indicators in this experiment. The average solving time ((1)   ‾  
T  run    (s)  ) and average product delivery cycle ((2)   ‾  T  cycle    (h)  ) for different algorithms under each instance 
are shown in Table 4.

  ‾  T  run    (s)   is the average solving time of the 15 trials of the algorithm in the instances. As shown in 
Table 4, HOS had the fastest solution speed, Heuristic was the second fastest, and GAOS was the 
slowest. This is because HOS polls for idle devices and selects the optimal device–batch pair to produce 
when there are idle devices. Additionally, the initialized population strategy in HOS replaces the 
population’s migration and iteration, saving solving time and improving the optimization capability. 
Moreover, the solving time allocation to each scheduling trigger in HOS will be smaller, which is 
acceptable in real production scenarios. Heuristic is a process that polls each unproduced product, 
puts it into the selectable devices, calculates the objective value, and then places the product in the 
optimal device by comparing the objective values. In this process, the objective value calculation 
is performed for each placement. On the other hand, GAOS consumes much time in the process of 
population iteration and target value calculation.   ‾  T  cycle    (h)   is the average of the product delivery cycles 
for the 15 algorithm trials in the instances. As shown in Table 4, HOS and GAOS had shorter average 
product delivery cycles, while Heuristic had the longest. This is because the scheduling rules of HOS 
and GAOS make the best use of resources, allowing products to be produced and delivered quickly. 
Heuristic can result in concentrating the production of products on the optimal device, thereby wasting 
suboptimal resources and leading to longer product delivery times.

Figure 5. Simulation results of instances 7–12
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CONCLUSIONS AND PROSPECTS

This article defined a 3DPCP task scheduling problem considering multi-dynamic information 
in green scenes. It constructed and designed the task scheduling model and strategy, respectively, and 
demonstrated the effectiveness and superiority of the proposed model and strategy through simulation 
experiments. The main contributions of this article are as follows:

1.  It defined a 3DPCP task scheduling problem considering multi-dynamic information in green 
scenes. This problem considers dynamic information such as order arrivals and cancellations, 
supplier device entries and cancellations, and device time window changes during the scheduling 
process. In addition, it considers the diversity of eco-friendly materials, the variability of clean 
energy in different regions, the synergy of production logistics, and the carbon footprints of each 
link in the green scene.

2.  It developed a task scheduling model to minimize the average cost and CO2 emissions per unit 
quality product. This model considers dynamic constraints associated with real-time changes in 
tasks and resources, as well as two-dimensional rectangular constraints in product mix batches, 
logistics constraints, and time, cost, and carbon emission constraints.

3.  It designed the HOS strategy. Comparative experiments demonstrated that the strategy could 
effectively solve the 3DPCP task scheduling problem considering multi-dynamic information 
perturbation in green scenes. The HOS demonstrated strong cost and CO2 emission optimization 
capabilities, a faster solution speed, and a shorter product delivery cycle.

Although this method can effectively solve this problem, future research should explore business 
model innovations brought by the industry interconnection to 3DPCP within green scenes. Moreover, 
the proposed model algorithm can be expanded from multiple perspectives as the model evolves. In 
the production stage, problems like the 3D combination method of irregular products, the optimization 
of product layering direction, and the support structure design are integrated into the model and 
algorithms. This helps to improve the space utilization rate. In the logistics stage, merging overlapping 
routes can save logistics transport distance.

Table 4. (1)   ‾  T  run     and (2)   ‾  T  cycle     for Each algorithm

Indicators (1) (2) (1) (2) (1) (2) (1) (2)

  T  max    
Algorithm

48 96 144 192

HOS 10.55 16.89 14.13 14.64 24.63 12.89 32.65 12.68

Heuristic 46.34 20.73 40.21 19.00 64.77 18.31 78.40 18.56

GAOS 93.19 17.02 121.39 14.67 203.28 12.89 265.12 12.68

  T  max    
Algorithm

240 288 192 240

HOS 35.56 12.64 57.36 12.71 30.00 12.94 42.84 13.38

Heuristic 98.73 18.78 166.85 19.16 / / / /

GAOS 390.69 12.66 563.61 12.73 230.87 12.95 347.17 13.39

  T  max    
Algorithm

288 336 384 432

HOS 55.93 12.73 82.23 12.31 89.48 12.48 144.8 11.98

GAOS 493.56 12.78 746.26 12.30 815.11 12.47 1350.75 12.02
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