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Abstract

Markov Decision Processes (MDPs) are a classi-
cal model for decision making in the presence of
uncertainty. Often they are viewed as state trans-
formers with planning objectives defined with re-
spect to paths over MDP states. An increasingly
popular alternative is to view them as distribution
transformers, giving rise to a sequence of proba-
bility distributions over MDP states. For instance,
reachability and safety properties in modeling robot
swarms or chemical reaction networks are naturally
defined in terms of probability distributions over
states. Verifying such distributional properties is
known to be hard and often beyond the reach of
classical state-based verification techniques.

In this work, we consider the problems of certified
policy (i.e. controller) verification and synthesis in
MDPs under distributional reach-avoidance spec-
ifications. By certified we mean that, along with
a policy, we also aim to synthesize a (checkable)
certificate ensuring that the MDP indeed satisfies
the property. Thus, given the target set of distribu-
tions and an unsafe set of distributions over MDP
states, our goal is to either synthesize a certificate
for a given policy or synthesize a policy along with
a certificate, proving that the target distribution can
be reached while avoiding unsafe distributions. To
solve this problem, we introduce the novel notion
of distributional reach-avoid certificates and present
automated procedures for (1) synthesizing a certifi-
cate for a given policy, and (2) synthesizing a policy
together with the certificate, both providing formal
guarantees on certificate correctness. Our exper-
imental evaluation demonstrates the ability of our
method to solve several non-trivial examples, includ-
ing a multi-agent robot-swarm model, to synthesize
certified policies and to certify existing policies.

1 Introduction

State transformer view of MDPs. Markov decision pro-
cesses (MDPs) are a classical model for decision making in
the presence of uncertainty. The prevalent view of MDPs de-

fines them as state transformers. Under a policy that resolves
non-determinism, an MDP defines a purely stochastic system
that performs probabilistic moves from a state to another. This
gives rise to a probability space over the set of all runs, i.e. infi-
nite sequences of states, in the MDP [Baier and Katoen, 2008].
MDPs are a central object of study within the Al, planning,
and formal methods communities. There is a rich body of
work on scalable techniques for reasoning about various prop-
erties in MDPs such as discounted-sum and long-run average
reward on one hand [Puterman, 1994] and the computation
of precise probabilities with which a qualitative objective is
satisfied on the other hand, including model checking over
expressive logics such as PCTL* [Kwiatkowska et al., 2007].

Distribution transformer view of MDPs. While there is
a lot of literature on analyzing MDPs as state transformers,
there are several application domains where these approaches
fall short. For instance, consider a path planning problem for
a robot swarm consisting of an arbitrary number of robots
distributed over a set of states. The states are arranged in a
topology that has obstacles that must be avoided and a target
set of states that must be reached. We want that at least 90% of
the robots must reach the target eventually, but at any interme-
diate step less than 10% must be stuck in an obstacle. In other
words, we want to synthesize a policy to control the robot
swarm such that a distributional reach-avoid property defined
with respect to distributions of robots is satisfied. To do this
under state-based view, we would need to take the product
of state spaces for each agent and define policies over this
product space, which would be highly inefficient for systems
with many agents.

An alternative to the state-based view is to view MDPs
as distribution transformers. In this view, starting from
some initial probability distribution over MDP states and
under a policy that resolves non-determinism, the MDP at
each time step induces a new distribution over states, giv-
ing rise to a sequence of distributions. Reasoning about this
sequence provides a much more natural framework for con-
trolling multi-agent systems under specifications defined in
terms of positions of each agent. This allows one to de-
fine distributional policies that prescribe actions to be per-
formed by each agent based on the current distribution of
positions of all other agents, thus providing an effective and
compact way for agents to “communicate” their positions to
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each other. Hence, in contrast to the state-based view, distri-
butional policies are more convenient for controlling multi-
agent systems with large number of agents where it suffices
to only reason about distributions of their positions and not
about positions of each individual agent. In addition to robot-
swarms [Baldoni et al., 2008], the distribution transformer
view of MDPs also naturally arises in other applications such
as bio-chemical reaction networks [Korthikanti et al., 2010;
Henzinger et al., 2009] where populations/concentration of
cells are distributed across states.

Certification of policies. In this work, we consider the prob-
lem of automated and formal certification of correctness of
policies with respect to distributional reach-avoidance proper-
ties in MDPs. This is important in safety-critical applications
including robot-swarms or bio-chemical reaction networks,
where it is imperative to provide guarantees on correctness
prior to policy deployment. In order to ensure safe and cor-
rect behavior of such systems, we are interested in computing
policies together with certificates that serve as formal proofs
of correctness of policies and allow for safe and trustworthy
policy deployment. We ask the following research questions:

1. Certificates for policies. What should be a certificate for
formally reasoning about distributional reach-avoidance
properties in MDPs? A good certificate should be an
object that simultaneously allows formal and automated
reasoning about its correctness.

2. Formal policy verification with certificates. Given an
MDP and a policy, how do we compute such a certificate
that formally proves correctness of the policy?

3. Formal policy synthesis with certificates. Given an MDP,
how do we compute a policy together with a certificate
that formally proves its correctness? Can we synthesize
not only memoryless but also distributional policies?

Prior work and challenges. Recent years have seen in-
creased interest in formal analysis of MDPs under the distri-
butional view. It was shown [Akshay er al., 2015] that the
problem of deciding whether a policy is correct with respect
to distributional reachability (and hence distributional reach-
avoidance) properties is extremely hard; in fact as hard as the
so-called Skolem problem, a long-standing number-theoretic
problem whose decidability is unknown [Lipton e al., 2022;
Ouaknine and Worrell, 2012]. Moreover, it was shown
in [Beauquier et al., 2006] that distributional properties such
as reachability and safety cannot be expressed in PCTL*,
hence classical model checking methods are not applica-
ble to them. Over the years, the verification community
has often studied MDPs under the distributional view, how-
ever existing works are either theoretical in nature and fo-
cus on decidability of the problem or its variants for differ-
ent subclasses of MDPs [Kwon and Agha, 2011; Agrawal
et al., 2015; Beauquier et al., 2006; Doyen et al., 2014;
Akshay er al., 2018] or study specialized logics for reason-
ing about distributional properties [Agrawal er al., 2015;
Beauquier et al., 2006]. Existing automated methods are
restricted to distributional safety [Akshay er al., 2023].

To the best of our knowledge, there exists no prior au-
tomated method for formal policy verification or synthesis
in MDPs with respect to distributional reachability or reach-

avoidance properties. Given the Skolem-hardness of the prob-
lem, a natural question to ask is how to address this problem in
a way which provides formal correctness guarantees while at
the same time being practically applicable. Motivated by the
success of termination and safety analysis in program verifica-
tion, we consider an over-approximative approach which may
not terminate in all cases but which works in practice while
preserving formal guarantees on the correctness of its outputs.

Contributions. Our contributions are as follows:

1. Certificate for distributional reach-avoidance. We intro-
duce the novel notion of distributional reach-avoid certifi-
cates, and show that they provide a sound and complete
proof rule for distributional reach-avoidance (Section 4).

2. Algorithms for formal verification and synthesis. We de-
velop novel template-based synthesis algorithms for the
formal synthesis and verification problems with respect
to distributional reach-avoidance properties in MDPs.

(a) First, we develop an algorithm for synthesizing
memoryless policies along with affine distributional
reach-avoid certificates. Memoryless policies can
be efficiently deployed and executed and are thus
preferred in practice. The algorithm is sound and
relatively complete for deciding the existence of and
for computing a memoryless policy and an affine
distributional reach-avoid certificate, whenever they
exist. While our notion of distributional reach-avoid
certificates in Section 4 applies in the general case
and provides a sound and complete proof rule for dis-
tributional reach-avoidance, our algorithm focuses
on the family of affine distributional reach-avoid
certificates for practical reasons, in order to allow
for their fully automated and efficient computation.
(Section 5).

(b) While memoryless policies are preferred in practice,
they are not always sufficient for solving distribu-
tional reach-avoid tasks and one may even require
unbounded memory. To that end, we show that
it suffices to restrict to the so-called distribution-
ally memoryless policies (Section 4) and develop
an algorithm for synthesizing them together with
affine distributional reach-avoid certificates. The
algorithm is sound but incomplete (Section 6).

(c) Finally, in both cases, we also develop a certifica-
tion algorithm that proves the correctness of a given
policy by computing an affine distributional reach-
avoidance certificate for it (Sections 5 and 6).

3. Experimental evaluation. We implement a prototype of
our approach and show that it is able to solve several
distributional reach-avoid tasks, including robot-swarms
in gridworld environments. Our prototype tool achieves
impressive results even when restricted to memoryless
strategies, thus showing the effectiveness of our approach
as well as the generality of the relative completeness
guarantees provided by our first algorithm (Section 7).

Related work. Unlike in the distributional case discussed
above, probabilistic reach-avoidance over MDP states is solv-
able in polynomial time [Baier and Katoen, 2008] and for-
mal policy synthesis for state properties in finite MDPs has
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been extensively studied. In addition, recent years have
seen increased interest in formal policy synthesis [Soudjani
et al., 2015; Lavaei et al., 2020; Cauchi and Abate, 2019;
Badings et al., 2022; Badings et al., 2023; Xue et al., 2021;
Zikelic et al., 2023a; Zikelic et al., 2023b; Grover et al.,
2022] and certification of policies [Alshiekh er al., 2018;
Jansen et al., 2020; Lechner et al., 2022] for continuous-state
MDPs. However, none of these methods are applicable to the
distributional reach-avoidance problem.

Of works considering distributional properties, the most
closely related is the recent work of [Akshay er al., 2023]
which considers distributional safety and also proposes a
template-based synthesis method. However, our work differs
in three important ways. First, our method supports distribu-
tional reachability and reach-avoidance. Formal analysis of
distributional reachability and reach-avoidance, and even the
very definition of a certificate, is significantly more involved
and as a result the proofs of our Theorems 1 and 2 are more
challenging than the distributional safety setting. Second, we
consider both universal and existential distributional problems
(see Section 3 for definition), whereas they only considered
the existential case, i.e. for a single initial distribution. Third,
our automated method allows target and safe sets to be speci-
fied both in terms of strict and non-strict inequalities. This is
one of the highlighted open problems in [Akshay et al., 2023,
Section 8].

Template-based synthesis was also extensively used for con-
troller synthesis for state properties in deterministic [Jarvis-
Wiloszek et al., 2003; Ahmadi and Majumdar, 2016] and
stochastic systems [Prajna et al., 20071, as well as in program
analysis [Gulwani et al., 2008]. In particular, our distributional
reach-avoid certificate draws insights from ranking functions
for termination [Col6n and Sipma, 2001] and invariants for
safety analysis in programs [Col6n erf al., 2003].

2 Preliminaries

A probability distribution on a (countable) set X is a map-
ping ¢ : X — [0,1], such that )7\ pu(z) = 1. We write
supp(p) = {x € X | p(z) > 0} to denote its support, and
A(X) to denote the set of all probability distributions on X.

Markov decision processes. A Markov decision process
(MDP) is a tuple M = (S, Act, §), where S is a finite set of
states, Act is a finite set of actions, overloaded to yield for
each state s the set of available actions Act(s) C Act, and
§: S x Act — A(S) is a transition function that for each
state s and (available) action a € Act(s) yields a probability
distribution over successor states. A Markov chain is an MDP
where each state only has a single available action.

An infinite path in an MDP is a sequence p =
s1a1sgag -+ € (S x Act)® such that a; € Act(s;) and
0(si,as,8i41) > 0 for every i € N. A finite path is a fi-
nite prefix of an infinite path. We use p; and p; to refer to
the ¢-th state in the given (in)finite path, and IPaths;; and
FPathsy, for the set of all (in)finite paths of M.

Dynamics of MDPs are defined in terms of policies. A
policy in an MDP is a map 7 : FPathsg — A(Act), which
given a finite path ¢ = spagpsia; ... s, yields a probability
distribution 7(9) € A(Act(s,)) on the actions to be taken

I
S S

Figure 1: Gridworld example.

next. A policy is memoryless if the probability distribution
over actions only depends on the current state and not on the
whole history, i.e. if m(p) = 7(¢") whenever p and ¢’ end in
the same state. Fixing a policy 7 and initial distribution g
induces a unique probability measure Pr ¢~ ,, over infinite
paths of M [Puterman, 1994].

MDPs as distribution transformers. MDPs are tradition-
ally viewed as random generators of paths, and one investi-
gates the (expected) behaviour of a generated path, i.e. path
properties. However, in this work we treat probabilistic sys-
tems as (deterministic) transformers of distributions.

First, fix a Markov chain M. For a given initial distribution
o, we define the distribution at step ¢ by ;(s) = Pr,,[{p €
IPathsy | p; = s}], i.e. the probability to be in state s at step i.
We write i; = M(ug, ) for the i-th distribution and pq =
M(po) for the one-step application of this transformation.
Likewise, we obtain the same notion for an MDP M combined
with a policy 7, and write u; = M™(p0,1), p1 = M™(10)-
In summary, for a given initial distribution, a Markov chain
induces a unique stream of distributions, and an MDP provides
one for each policy. This naturally invites questions related
to this induced stream of distributions. In their path interpre-
tation, queries on MDPs such as reachability or safety, i.e.
asking the probability of reaching or avoiding a set of states,
allow for simple, polynomial time solutions [Puterman, 1994,
Baier and Katoen, 2008]. However, the corresponding prob-
lems in the space of distributions are surprisingly difficult.
Our goal is to enable efficient and automated reachability and
safety analyses under the distribution transformer interpreta-
tion of Markov chains and MDPs. We start with an example.

Example 1. Consider a 2 x 4 grid as depicted in Figure 1. Let
us say that a robot swarm starts at the initial cell marked I in
the top-left of the grid. From any cell any robot can move hori-
zontally or vertically to an adjacent cell via non-deterministic
moves, as long as the adjoining cell is not marked X. Cells
marked X are obstacles that cannot be moved to. Cells marked
S are stochastic where 10% of the robots remain in the cell
while remaining 90% can move to adjoining cell. Further,
orange cells are distributional obstacles, i.e. at any point only
10% of all robots in the swarm may be in the set of orange
cells. One could visualize this as a narrow path that ensures
that only few robots can go through it safely at any point. Fi-
nally, there is a goal cell G. The problem is then to go from
I to G (at least 90% of the swarm must reach G), while the
dynamics must follow the stochastic constraints in S cells, and
at the same time avoid obstacles X and satisfy distributional
constraints in orange cells.
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3 Distributional Reach-avoidance Problems

Consider a target set of distributions 7" and a safe set of distri-
butions H, i.e. complement of the set of unsafe distributions.
We consider a safe set rather than its complement for the sim-
plicity of the presentation. Distributional reach-avoidance is
concerned with verifying or computing an MDP policy under
which the induced stream of distributions stays in H until it
reaches 1T'. There are several natural variants of the problem,
depending on whether policy and initial distribution are given.
Consider an MDP M = (S, Act, ), a set of initial distri-
butions Init C A(S),T C A(S),and H C A(S). Letrbe a
(memoryless/general) policy for M. Then:
* For py € Init, we say that the MDP M satisfies (T, H)-
reach-avoidance from iy under policy m, if there exists
1 > 0 such that M™(pug,i) € T and if forall 0 < j < ¢
we have M™(uo,j) € H. When py is fixed, we also say
that M satisfies unit-(T, H)-reach-avoidance under 7.
* We say M satisfies existential-(T, H)-reach-avoidance
under 7 if there exists a distribution po € Init such that
M satisfies (T, H)-reach-avoidance from po under 7.
* We say MDP M satisfies universal-(T, H)-reach -
avoidance under w if for all pg € Init, M satisfies
(T, U)-reach-avoidance from p under 7.
Existential and universal reach-avoidance are relevant when
the input distribution is not precise. While universal reach-
avoidance is more restrictive than existential, it is motivated
by robustness questions, where we do not precisely know the
initial distribution so we ask that all distributions belonging
to some uncertainty set behave in a certain way. We are now
ready to formally define the problems that we consider:

Distributional Reach-avoidance

Given an MDP M = (S, Act, ), a set of initial distribu-
tions Init C A(S), po € Init, a target set T C A(S), and
a safe set H C A(S):

(i) The (unit/existential/universal) Policy Certification
problem asks if, given a policy 7, there exists a certificate
C which ensures that M satisfies (unit/existential/universal)
(T, H)-reach-avoidance under 7 and allows automated rea-
soning about certificate correctness. We refer to the pair
(m,C) as a certified policy.

(i) The (unit/existential/universal) Policy Verification
problem asks to, given a policy m, compute a certificate C
such that (, C) as a certified policy.

(iii)) The (unit/existential/universal) Policy Synthesis
problem asks to compute a policy 7 together with a certifi-
cate C such that (, C) as a certified policy.

We note that these problems are not yet fully well defined:
Since A(S) is an uncountably infinite space, we need to
describe how the sets Init, T, and H are represented. As
common for continuous scenarios, we restrict to affine sets.
Concretely, we assume that these sets are specified via a finite
number of affine inequalities and are of the form

T={ueas) I\ h+ 3 Huts)) o},
H={ueas) I\ Wh+3 hlals) =0},

Init = {u € A(S) | /\j\]:; (a) + Zj: al

1

(i) 20},

where S = {s1,...,s,} are MDP states, t; hf and ag are
real-valued constants, >t € {>, >}, and N, Ng, Ny, are

resp. numbers of affine inequalities defining 7', H, and Init.

Hardness. Note that Policy Verification and Synthesis prob-
lems ask only to compute a certificate for a given policy (or
policy and certificate), and not to decide their existence. The
reason is that, as it turns out, both decision problems are
computationally hard even in the setting of affine sets. This
hardness emerges already in the case of (memoryless) pol-
icy verification for distributional reachability: Even if M is a
Markov chain, |Init| = 1,7 = {u | u(s1) = 1}, H = A(9),
the problem is SKOLEM-hard! [Akshay et al., 2015].

Proposition 1. The decision problem variants of the
unit/existential/universal Policy Verification and Synthesis
problems for MDPs with respect to distributional reach-
avoidance are as hard as the Skolem problem.

As aresult, we cannot expect to obtain an efficient, sound
and complete decision procedure for our problem. To over-
come this, we focus on asking for certificates and policies of a
certain special form, and come up with a sound and relatively
complete procedure to synthesize them, as explained below.

4 Proving Distributional Reach-avoidance

We now consider the Policy Certification problem discussed in
Section 3. First, we show that in order to reason about distri-
butional reach-avoidance, it suffices to restrict to the so-called
distributionally memoryless policies. Second, we introduce
our novel certificate for formally proving distributional reach-
avoidance, which we call distributional reach-avoid certificate.
We show that distributional reach-avoid certificates provide
a sound and complete proof rule for proving distributional
reach-avoidance under distributionally memoryless policies.

Distributionally memoryless policies. Let M =
(S, Act,d) be an MDP, 7 : FPathsy — A(Act) a policy
and po € A(S) an initial distribution. Let 1, 1, ... be the
stream of distributions induced by 7 from 1. We say that ©
is distributionally memoryless, if for any initial distribution
to € A(S) and for any two finite paths ¢ = spapsias . .. sy,
and o = sjaysial...s), with p, = pum, we have
7w(0) = mw(0"). Thus, probability distribution over actions
only depends on the current distribution over states and not
on the whole history. The following theorem shows that,
in order to reason about distributional reach-avoidance, it
suffices to restrict to distributionally memoryless policies. The
proof of the following theorem can be found in the extended
version [Akshay et al., 2024].

Theorem 1. Let T, H C A(S) be target and safe sets. MDP
M satisfies unit/existential/universal-(T, H )-reach-avoidance

Intuitively, the SKOLEM problem asks for a given rational (or
integer or real) matrix M, whether there exists n € N, such that
(M"™)1,1 = 0 [Ouaknine and Worrell, 2012]. This problem (and its
variants) has been the subject of intense research over the last 40
years, see e.g. [Lipton et al., 2022]. Yet, quite surprisingly, it still
remains open, even for matrices of size 5 and above.
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under some policy if and only if there exists a distribution-
ally memoryless policy ™ such that M satisfies satisfies
unit/existential/universal-(T, H)-reach-avoidance under .

Sound and complete certificate. Intuitively, given a target
set of distributions 7' and a safe set of distributions H, a
distributional (T, H)-reach-avoid certificate under policy 7 is
apair C = (R, I) of a distributional ranking function R and a
distributional invariant 1. The distributional invariant [ is a
set of distributions that is required to contain all distributions
that are reachable under policy 7 and also to be contained in
H, while the distributional ranking function R is a function
that maps distributions over MDP states to reals, which is
required to be nonnegative at all distributions contained in 1
and to decrease by at least 1 after every one-step evolution
of the MDP until the target T is reached. We formalize this
intuition.

Definition 1 (Distributional reach-avoid certificate). Let M
be an MDP, o € Init be an initial distribution and 7 be a
policy. A distributional (T, H)-reach-avoid certificate for M
from po under w is a pair (R, I), comprising of a function
R : A(S) — R and a set of distributions I C A(S) such that
the following conditions hold:

1. Initial distribution in I. We have g € I.

2. Inductiveness of I until T'. The set I is closed under ap-
plication of M™ to any non-target distribution contained
inl,i.e. M™(u) € I holds for every p € I\T.

3. Safety. I is a subset of the safe set H, i.e. I C H.

4. Nonnegativity of R. For every i € I, we have R(u) > 0.

5. Strict decrease of R until T'. For every i € I\T, we have
R(1) > RM™ (1)) + 1.

Furthermore, a distributional (T, U)-reach-avoid certificate
Jor M under 7 is said to be universal, if it satisfies con-
ditions 2-5 and in addition condition 1 is strengthened to
Init C I, i.e. the set I must contain all distributions in Init.

The following theorem establishes that distributional reach-
avoid certificates provide a sound and complete proof rule for
proving distributional reach-avoidance in MDPs under distri-
butionally memoryless policies. The intuition behind the proof
is as follows. Take the distribution transformer view of MDPs
and consider the stream p, 61, f42, - . . of distributions over
MDP states induced by starting in yy and repeatedly applying
policy 7. Then conditions 1-3 in Definition 1 together ensure
that distributions in the stream stay in [ at least until T’ is
reached. On the other hand, conditions 4 and 5 in Definition 1
together ensure that a distribution in 7" must be eventually
reached since I cannot be decreased by 1 indefinitely while
remaining non-negative. Hence, T is eventually reached while
H is not left in the process, and distributional reach-avoid
certificates provide a sound proof rule. To prove completeness,
we simply let I = {po, pi1, pt2, - . . } be the stream of induced
distributions, k be the smallest index such that p;, € T" and de-
fine R(u;) = max{0, k — i}. One can then verify that (R, I)
is indeed a correct distributional reach-avoid certificate. The
formal proof can be found in [Akshay et al., 2024].

Theorem 2 (Sound and complete certificates). Let M be an
MDP, 1y € Init and 7 be a distributionally memoryless policy.
Then M satisfies

1. unit-(T, H)-reach-avoidance under w iff there exists a
distributional (T, H)-reach-avoid certificate for M from
Lo under .

2. existential-(T, H)-reach-avoidance under 7 iff there ex-
ists a po € Init and distributional (T, H )-reach-avoid
certificate for M from py under .

3. universal-(T, H)-reach-avoidance under 7 iff there ex-
ists a universal distributional (T, H)-reach-avoid certifi-
cate for M under .

From Proposition 1, it follows that giving a complete pro-
cedure for synthesizing (or indeed even checking existence
of) distributional certificates is Skolem-hard. Hence in what
follows, we provide an automated template-based overapprox-
imation approach that exploits the advances in SMT-solvers
to give as an implementable procedure. First, we restrict to
memoryless policies in Section 5, then we address the general
case of distributionally memoryless policies in Section 6.

5 Algorithm for Memoryless Policies

We now consider the (unit/existential/universal) Policy Syn-
thesis and Verification problems defined in Section 3 under
memoryless policies and present our algorithms for solving
these problems. Due to space restrictions, in what follows
we directly present our algorithm for solving the existential
Policy Synthesis problem under memoryless policies. We then
explain how this algorithm can be straightforwardly extended
to solve the other problems under the memoryless restriction.

Our algorithm simultaneously synthesizes an initial distri-
bution (for the existential problem), a memoryless policy and
an affine distributional reach-avoid certificate. Restricting to
affine distributional reach-avoid certificates (formalized be-
low) ensures efficient and automated computation. While we
cannot provide completeness guarantees due to this restriction,
we show that the algorithm is sound and relatively complete,
i.e. it is guaranteed to compute a memoryless policy and an
affine distributional reach-avoid certificate when they exist.

A distributional reach-avoid certificate C = (R, I) is affine
if it can be specified via affine expressions and inequalities
over the distribution space A(S). That is, the distributional
ranking function R is of the form R = ro + >, r; - pu(s;)
and the distributional invariant [ is of the form

1= {uea® I\ 04+ 3 H - u(s)) 2 0}

where S = {s1,...,s,} are MDP states, b’ are real-valued
constants and N7 is the number affine inequalities that define
I. While the values of variables r; and b} will be computed
by our algorithm, N7 is an algorithm parameter which we
refer to as the template size. Note that we require all affine
inequalities that specify I to be non-strict. This is the technical
requirement for our method to provide relative completeness.

Input. The algorithm takes as input an MDP M =
(S, Act, §) together with affine sets of initial distributions Init,
target distributions 7" and safe distributions H. It also takes as
input the template size parameter ;.

Algorithm outline. The algorithm employs a template-
based synthesis approach and proceeds in three steps. First, it
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fixes symbolic templates for an initial distribution o € Init, a
memoryless policy 7, and an affine distributional reach-avoid
certificate C = (R,I). Symbolic variables that define the
templates are at this stage of unknown value. Second, the
algorithm collects a system of constraints over the symbolic
template variables that encode that pg € Init, 7 is a mem-
oryless policy, and C is a correct distributional reach-avoid
certificate. Third, it solves the resulting system of constraints,
to get concrete instances of fig, 7, and C. We detail these steps.

Step 1 — Fixing templates.
for g, mand C = (R, I):

e Template for 1. For each MDP state s;, 1 < i < n, the
algorithm introduces a symbolic template variable m; to
encode the probability of initially being in s;.

e Template for 7. Since the algorithm searches for a mem-
oryless policy, for each state action pair s; € S and
aj € Act we fix a symbolic template variable p;, 4; to
encode the probability of taking action a; in state s;. If
aj & Act(s;), we set ps, o, = 0.

e Template for R. The template for R is defined by intro-
ducing n + 1 real-valued symbolic template variables
T0,...,Ty and letting R = ro 4+ Y iy ri - pu(s;).

e Template for I. The template for R is defined by intro-
ducing real-valued symbolic template variables b for
each1l < j < Nyand 0 <7 < n, with

1={uea®) I\ @+ ¥ uls) = 0},

Step 2 — Constraint collection. The algorithm now collects
constraints over the template variables that together encode
that o € Init, w is a memoryless policy and C is a distribu-
tional reach avoid certificate. The constraint ®;,;; encodes that
o € Init, @, encodes that 7 is a memoryless policy, whereas

The algorithm fixes templates

®q,...,P5 encode the 5 defining conditions in Dgﬁnition 1:
o Dyt = (o € Init) = /\;y:’"f”(a% + 3 al -my) <0,

where recall a{ ’s are real constants defining Init.

c b =AL, (Z‘ji‘f'psi,aj =1 AN (9,0, 2 0))
o &y =Vx € R™. Init(x) = I(x).
e Py = Vx € R™I(x) = I(step(x)), where
step(x) (xl) = Zsk €S,a;€Act(sy) Psy,a; - 6(Sk7 aj, Sl) :
x; yields the distribution after applying one step of policy
.
o o3 =Vx € R". I(x) = H(x).
s oy =Vx e R". I(x) = R(x) > 0.
o §5 =Vx € R". I(x)\T'(x) = R(x) > R(step(x))—1,
where step(x) is defined as above.
Step 3 — Constraint solving. The initial constraint ®;,; and
the policy constraint ®. are purely existentially quantified over
template variables. However, @1, ..., ®5 all contain alterna-
tion of an existential quantifier over the symbolic template
variables followed by a universal quantifier over the distri-
bution x € R™ over the MDP state probabilities. Quantifier
alternation over real-valued arithmetic is in general hard to
handle directly and can lead to inefficiency in solvers. To that
end, our algorithm first translates these constraints into equi-
satisfiable purely existentially quantified constraints, before
feeding the resulting constraints to an off-the-shelf solver.

We begin by noting that &, 5, &4, P5 can all be expressed
as conjunctions of finitely many constraints of the form

Vx € R"™. (affexp, (x) b1 0) A - - - A (affexp y (x) > 0)

= (affexp(x) > 0), M

with each affexp, (x) and affexp(x) being an affine expression
over x whose affine coefficients are either concrete real values
or symbolic template variables, and each <<€ {>,>}. The
inequalities on the left-hand-side of the implication may be
both strict and non-strict, however the inequalities on the right-
hand-side of each of ®;, ®5, &4, P5 are always non-strict,
since we assumed that the template for I is specified via non-
strict affine inequalities. Now, to remove quantifier alternation,
we apply the translation of [Asadi et al., 2021, Corollary 1]
which is an extension of Farkas’ lemma [Farkas, 1902] that
allows strict inequalities on the left-hand-side of the implica-
tion (we provide this translation in the extended version of
the paper [Akshay et al., 2024]). This allows us to translate
each constraint of the form as in Eq. (1) into an equisatisfiable
purely existentially quantified system of quadratic constraints
with real-valued variables, where variables are either symbolic
template variables or fresh symbolic variables introduced in
translation.

On the other hand, &3 = Vx € R™. I(x) = H(x) is a
conjunction of constraints of the form

Vx € R"™. (affexp,(x) > 0) A --- A (affexp (x) > 0)

= (affexp(x) > 0), @

since I is specified in terms of non-strict inequalities but H can
be specified in terms of both strict and non-strict inequalities.
However, since the set of distributions contained in [ is topo-
logically closed and bounded as I C A(S), Eq. (2) is equiv-
alent to the constraint obtained by replacing affexp(x) < 0
above by affexp(x) > ¢, with € > 0 being a newly introduced
symbolic variable. The latter constraint is of the form as in
Eq. (1), hence we may again apply the above translation.

Finally, the algorithm feeds the resulting system to an off-
the-shelf SMT solver, and any solution gives a concrete in-
stance of initial distribution o € Init, memoryless policy 7
and affine distributional reach-avoid certificate C.

The following theorem (proved in [Akshay et al., 2024]) es-
tablishes soundness, relative completeness and an upper bound
on the computational complexity of our algorithm. Soundness
and relative completeness follow from the fact that the quan-
tifier removal procedure yields an equisatisfiable system of
constraints. The PSPACE upper bound follows since the quan-
tifier removal procedure reduces the problem to solving a
sentence in the existential first-order theory of the reals.

Theorem 3. Soundness: If the algorithm returns initial distri-
bution py € Init, memoryless policy w, and affine inductive
distributional reach-avoid certificate C, then the MDP M
satisfies existential (T, H )-reach-avoidance under .

Relative completeness. If there exists jio € Init, a memory-
less policy 7, and an affine distributional (T, H )-reach-avoid
certificate C from g under w, then there exists a template size
N; € N such that o, 7, and C are computed by the algorithm.

Complexity: The runtime of the algorithm is in PSPACE
in the size of the encoding of the MDP, Init, T, H, and the
template size parameter Ny € N.
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Extension to unit/universal policy synthesis. We now show
how the above algorithm can be extended to solve unit and
universal Policy Synthesis problems as well. For unit Policy
Synthesis, the initial distribution 1 is given, hence in Step 1
of the algorithm we do not need to fix a template for it and
in Step 2 we remove the constraint ®;,;,. For universal Policy
Synthesis, we now need distributional reach-avoidance to hold
from all initial distributions in Init. Hence, in Step 1 we again
do not need to fix a template for py whereas in Step 2 we set
®; =Vx € R™. (Init(x) = I(x)). In both cases, the rest of
the algorithm proceeds analogously as above. Moreover, as
in Theorem 3, both algorithms are sound, relatively complete
and of PSPACE runtime in the size of the problem.

Extension to policy verification. The above algorithm is
also easily extended to solve the unit/existential/universal Pol-
icy Verification problems. In particular, in these problems
the memoryless policy 7 is given and need not be computed.
Thus, in Step 1 above we need not fix the templates ps, o, for
the policy as these are given concrete values, and in Step 2 we
remove the constraint ® . The rest of the algorithms proceed
analogously as in the Policy Synthesis case, and as a corollary
of Theorem 3 we can show that they are sound, relatively
complete and of PSPACE runtime in the size of the problem.

6 Extension to General Policies

We also extend the algorithms for memoryless policies in
Section 5 to sound but incomplete procedures for solving
unit/existential/universal Policy Synthesis and Verification
problems under distributionally memoryless policies. While
memoryless policies are preferred in practice since they can
be efficiently deployed and executed, it was shown in [Akshay
et al., 2023] that there exist MDPs for which memoryless
or even bounded memory policies are insufficient for ensur-
ing distributional safety, and the same example shows that
bounded memory strategies are insufficient for distributional
reach-avoidance. However, by Theorem 1, it always suffices
to restrict to distributionally memoryless policies.

The key challenge in extending our algorithms in Section 5
is the design of an appropriate policy template, since now it is
insufficient to introduce one template variable ps, o, for each
state-action pair as these probabilities may depend on history.
However, it turns out that distributionally memoryless policies
do admit a sufficiently simple template specified in terms of
quotients of symbolic affine expressions over x. In [Akshay et
al., 2024], we show how to extend our algorithm for existen-
tial Policy Synthesis to compute distributionally memoryless
policies. We also provide extensions to unit/universal Policy
Synthesis and to Policy Verification. Finally, we prove that
the algorithm is sound and runs in PSPACE. However, the
algorithm does not provide relative completeness guarantees,
since our policy templates are not general and only allow affine
expressions over distribution probabilities.

7 Experimental Evaluation

We implemented a prototype of our method in Python 3, using
SymPy [Meurer et al., 2017] for symbolic expressions and
PySMT [Gario and Micheli, 2015] to manage SMT solvers.

We employ Yices 2.6 [Dutertre, 2014] as solving back-
end. We also evaluated z3 [de Moura and Bjgrner, 2008]
and mathsat [Cimatti et al., 2013], but Yices seemed
to consistently perform best. Our experiments were exe-
cuted on consumer hardware (AMD Ryzen 3600 CPU with
16 GB RAM). Our implementation is publicly available at
https://zenodo.org/records/11082466.

As mentioned in the Introduction, we are not aware of
any existing automated methods for solving this task in the
distributional reach-avoidance setting, thus we do not have a
reasonable baseline to compare against. The evaluation of our
prototype is aimed at showing that distributional certificates
can be found on reasonably sized systems, without heuristics
and optimization.

Benchmarks. We evaluate our method on several distribu-
tional reach-avoid tasks. Most are modelling a robot swarm in
different gridworld environments. Each model requires that at
some point in time at least 90% of the robots are in the target
set of states, while no more than 10% of robots may be in the
unsafe set of states at any intermediate step. Here, we present
the following five models: Running, i.e. the environment in
Example 1, Double, a 3x5 grid where the robots start in two
different locations and need to reach two goal states, and three
grids of size 5x4, 8x8, and 20x10, comprising various transi-
tion dynamics as well as limited and forbidden regions. For all
grid world models, we consider both (unit) Policy Verification
task in which a policy is fixed and needs to be verified, and
(unit) Policy Synthesis task where a policy together with a
certificate needs to be computed. For all examples, we find
the template size N; = 1 to be sufficient. We also present
results on Insulin, a pharmacokinetics system [Agrawal et al.,
2015, Ex. 2], based on [Chadha ef al., 2011], and PageRank
[Agrawal et al., 2015, Fig. 3]. As these two are Markov chains,
the verification and synthesis tasks coincide. A more detailed
description of models can be found in [Akshay er al., 2024].

Results. Our results are shown in Table 1. Our prototype
is able to solve 7/7 Policy Verification tasks with ease, and
3/5 Policy Synthesis tasks. A notable feature of this perfor-
mance is that it is applicable to robot swarms with arbitrarily
many agents, where the model size in the state-based view
of MDPs would be intractable for classical model checking
tools. This shows that our method is capable of solving highly
non-trivial distributional reach-avoidance tasks. Furthermore,
our results show that memoryless policies are sufficient in
many scenarios.

We believe that the reason behind better scalability of our
tool on Policy Verification compared to Policy Synthesis is that
the final SMT query in Policy Verification tasks is structurally
simpler. In particular, observe that the query for verification
of Grid 20x10 is larger than the synthesis query for Grid
8x8, yet it is solved much faster. To provide further insight,
we provide an example SMT query generated for the Grid
5x4 example in [Akshay et al., 2024]. Thus, improvements in
SMT solvers will improve the scalability of our approach.

Practical observations. Somewhat surprisingly, we often
observe that the computationally more expensive part of our
implementation is construction of constraints (Steps 1 and 2
in Section 5), especially for the larger certification examples.
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Model |S| Act. Inv. SMT Var. Con. Ops

Running 7 19 Is <ls 64 81 556
2s <ls 82 105 776

Double 11 30 3s <ls 8 113 795
7s <ls 115 148 1114

Grid 5x4 15 29 2s <ls 112 145 1018
6s Is 133 173 1395

Grid 8x8 32 99 8s Is 216 284 2086
19s  T/O 312 410 3144
Grid 20x10 88 280 68s 2s 642 910 6556
238s T/O 921 1276 9507

Insulin 5 - 2s 3s 74 88 790
PageRank 5 - 2s <ls 52 65 571

Table 1: Summary of our experiments. For each model we list, from
left to right, the number of (reachable) states, the number of actions,
the time used for invariant generation, the time spent by the SMT
solver, and the total number of variables, constraints, and operations
in the query sent to the solver. The first line for each model is the
policy verification query, the second line is the policy synthesis query,
where applicable. T/O denotes a timeout after 10 minutes.

We believe that this is due to our naive usage of SymPy to
extract constraints, since in theory this procedure should run
in polynomial time without any complicated data structures.
In our prototype implementation, we did not aim for efficient
extraction and manipulation of affine expressions. Improve-
ments on this end, e.g. by manually implementing a tailored
polynomial representation, would further decrease the runtime
of our tool.

We also observe that performance of SMT solvers is highly
volatile, with their runtimes sometimes increasing 10- or 100-
fold on the same instance, presumably due to running into a
bad randomized initialization. Implementing a tighter integra-
tion with such solvers and, in particular, providing them with
heuristical guidance could further improve performance.

8 Conclusion

We considered the distributional reach-avoidance problem in
MDPs, for which we introduced distributional reach-avoid
certificates and proposed fully automated template-based syn-
thesis algorithms for solving policy verification and synthesis
problems under distributional reach-avoidance. Our work
opens several avenues for future work. It would be interesting
to consider practical heuristics for template-based synthesis.
One could also consider more general distributional properties,
ultimately paving the way towards distributional LTL. Finally,
our template-based synthesis assumes that the structure of
the template, i.e. the number of conjunctive clauses in invari-
ants, is provided a priori. This is a known limitation of many
template-based synthesis methods, and exploring effective
heuristics for template search is an interesting direction.
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