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Abstract

The introduction of derivatives on Bitcoin enables investors to hedge risk exposures in cryptocurrencies.

Because of volatility swings and jumps in cryptocurrency prices, the traditional variance-based approach to

obtain hedge ratios is infeasible. As a consequence, we consider two extensions of the traditional approach:

first, different dependence structures are modelled by different copulae, such as the Gaussian, Student-t,

Normal Inverse Gaussian and Archimedean copulae; second, different risk measures, such as value-at-risk,

expected shortfall and spectral risk measures are employed to find the optimal hedge ratio. Extensive

out-of-sample tests give insights in the practice of hedging various cryptos and crypto indices, including

Bitcoin, Ethereum, Cardano, the CRIX index and a number of crypto-portfolios in the time period Decem-

ber 2017 until May 2021. Evidences show that BTC futures can effectively hedge BTC and BTC-involved

indices. This promising result is consistent across different risk measures and copulae except for Frank. On

the other hand, we observe complex and diverse dependence structures between BTC-not-involved assets

and the futures. As a consequence, results of hedging other assets and indices are diverse and, in some

occasions, not ideal.
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1 Introduction

Cryptocurrency (CC) is a fast-growing asset class, Over 7,000 cryptos1 are now available on the

market since the first cryptocurrency Bitcoin (BTC) surfaced (Nakamoto, 2009). In response to

the rapid development of the CC market, the CME Group launched exchange-traded BTC futures

contracts in December 2017. At the time of writing, the CME BTC futures is the only regulated

cryptos futures in the market. The average daily volume and open interest of the CME BTC futures

are $2,518 million and $2,836 million respectively. The BTC futures is an attractive derivative for

investor to participate in the crypto market as it is legal, standardised and well-understood.

More individual and institutional investors are adding CCs and CC derivatives into their portfolios,

creating the need to understand downside risks and find suitable ways to hedge against extreme risks.

Fom a risk management perspective, the roller-coaster ride of crypto prices creates significant basis

risk, even when using simple hedges involving crypto portfolios and BTC futures. This requires

analysing the dependence structure of cryptos and futures beyond linear correlation.

In this paper, we analyse static hedges of crypto portfolios with Bitcoin futures. Owing to the

asymmetry of crypto returns as well as the occurrence of extreme events, we consider different depen-

dence structures via a variety of copula models and we optimise the hedge ratio using different risk

measures. A similar study was conducted by (Barbi and Romagnoli, 2014) for equity and FX portfo-

lios. Barbi and Romagnoli (2014)’s work is based on Cherubini et al. (2011) to derive the distribution

of linear combination of margins with copula as their dependence structure. We slightly amend their

lemma and come up with a formula for the linear combination of random variables for our purpose.

The hedge ratio is the appropriate amount of futures contracts to be held in order to eliminate

risk exposure in the underlying security. The determination of the optimal hedge ratio relies primarily

on the dependence between the underlying cryptos and futures prices. Copulae provide the flexibility

to model multivariate random variables separately by their margins and dependence structure. The

concept of copulae was originally developed (but not under this name) by Wassily Hoeffding (Hoeffding,

1940a) and later popularised by the work of Abe Sklar (Sklar, 1959).

Different risk measures account for investors’ risk attitudes. They serve as loss functions in the

searching process of the optimal hedge ratio. Of the vast literature discussed the relationship between

risk measures and investor’s risk attitude, we refer readers to Artzner et al. (1999) for an axiomatic,

economic reasoning approach of risk measure construction; Embrechts et al. (2002) for reasoning of

using Expected Shortfall (ES) and Spectral Risk Measures (SRM) in addition to VaR; Acerbi (2002)

for direct linkage between risk measures and investor’s risk attitude using the concept of a “risk

aversion function”.

Financial asset returns have long known to be non-Gaussian, see e.g. (Fama, 1963; Cont, 2001).

Specifically, Gaussian models cannot produce the heavy tails and the asymmetry observed in asset

returns, which in turn implies a consistent underestimation of financial risks. Therefore, to minimize

down risk, one cannot solely rely on second-order moment calculations. Moreover, variance as a risk

measure does not account for the variety of investors’ utility functions. In particular, it is known that

investors are tail-risk averse, see Menezes et al. (1980).

In order to capture a variety of risk preferences, in addition to variance, we include the risk measures

value-at-risk (VaR), expected shortfall (ES), and spectral risk measures (SRM). VaR is widely used

by the finance industry and easy to understand. ES and SRM are chosen because of their coherence

property, in particular, they recognize diversification benefits. SRM can also be directly related to

1Data from statista (https://bit.ly/3GADIxB).
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an individual’s utility function. Examples are the exponential SRM and power SRM introduced by

Dowd et al. (2008).

In the empirical part of this work, we study the hedging effectiveness of the Bitcoin futures to

various cryptos and crypto indices under different risk preferences. With an extensive back-test 2 ,

we find the ability of the BTC futures to hedge BTC and BTC-related indices promising regardless

of copula (except Frank copula) and risk measures. On the other hand, the results of BTC futures to

hedge other cryptos and indices are diverse.

This paper is organized as follows. Section 2 introduces the notion of optimal hedge ratio; section

3 decribes the method of estimation of copulae; section 4 provides the empirical result; section 5

concludes. All calculations in this work can be reproduced. The results are reproducible with data

and codes available on www.quantlet.com .

2 Optimal hedge ratio

2.1 Distribution of hedge portfolio

We form a portfolio with two assets, a spot asset and a futures contract, for example Bitcoin spot

and a CME Bitcoin futures contract. Our objective is to minimize the risk of the exposure in the spot.

To keep a simple portfolio setting, we go long one unit of the spot and short h units of the future,

h ≥ 0. Letting RS and RF be the (discrete) returns of the spot and futures price. The (discrete)

return of the portfolio is3

Rh = RS − hRF .

If the portfolio reduces the risk of the spot position, then we call this a hedge portfolio. To

measure risk, we define a risk measures ρ to be a mapping from a financial position, such as Rh, to a

real number, which is often interpreted as the amount of money to make the position acceptable (e.g.

to a regulator), see e.g. (Föllmer and Schied, 2002).

An optimal hedge ratio (OHR) h∗ is a parameter that minimizes the risk of the aforementioned

portfolio

h∗ = argmin
h

ρ(Rh).

For example, Value-at-Risk (VaR) at the confidence level α is the absolute value of the 1 − α-

quantile of Rh, i.e., VaR1−α = −F (−1)

Rh
(1 − α) = − inf{x ∈ R : 1 − α ≤ FRh(x)}, where FRh is the

distribution function of Rh.

Obviously the cdf of Rh and the risk measure depend on the joint distribution of RS and −hRF .

Optimising h according to fRS ,−hRF is unfavorable in the sense that one would need to calibrate

the joint pdf fRS ,−hRF whenever updating h. Another problem of using the joint pdf is that one lacks

the flexibility to model the margins separately from the dependence structure. To overcome both of

these problems, we use copulae.

The benefit of using copulae is two fold. First, copulae are invariant under strictly monotone

increasing function (Schweizer et al., 1981), see the Lemma below. Second, copulae allow us to model

the margins and dependence structure separately, see Sklar’s Theorem (Sklar, 1959). See also (Nelsen,

1999; Joe, 1997; McNeil et al., 2005) for Sklar’s Theorem.

2We apprepciate the data provider Tiingo (https://www.tiingo.com/) for the valuable crypto prices data.
3This is equivalent to stating that if both the spot price St−1 and the futures price Ft−1 are normalised to 1, then h

units of the future will hedge the value change ∆V = ∆S − h∆F , where ∆S = St − St−1, etc.
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Theorem 1 (Hoeffding Sklar Theorem) Let F be a joint distribution function with margins FX , FY .

Then, there exists a copula C : [0, 1]2 7→ [0, 1] such that, for all x, y ∈ R

F (x, y) = C{FX(x), FY (y)}. (1)

If the margins are continuous, then C is unique; otherwise C is unique on the range of the margins.

Conversely, if C is a copula and FX , FY are univariate distribution functions, then the function F

defined by (1) is a joint distribution function with margins FX , FY .

Indeed, many basic results about copulae can be traced back to early works of Wassily Hoeffding

(Hoeffding, 1940b, 1941). The works aimed to derive a measure of relationship of variables, which is

invariant under change of scale. See also Fisher and Sen (2012) for English translations of the original

papers written in German.

Lemma 1

CX,hY (FX(s), FhY (t)) = CX,Y (FX(s), FY (t/h)) . (2)

Proof. Since copulae are invariant under strictly monotone increasing function (Schweizer et al.,

1981, Theorem 3 (i)),

CX,hY (FX(s), FhY (t)) = CX,Y (FX(s), FhY (t)) .

We rewrite second argument of the copula

FhY (t) = P(hY ≤ t)

= P(Y ≤ t/h)

= FY (t/h),

and finish the proof.

Leveraging these two features of copulae, Barbi and Romagnoli (2014) introduce the distribution

of linear combinations of random variables using copulae. We slightly edit the Corollary 2.1 of their

work and yield the following expression of the distribution.

Proposition 2 Let X and Y be two real-valued continuous random variables on a probability space

(Ω,F ,P) with absolutely continuous copula CX,Y and marginal distribution functions FX and FY .

Then, the distribution function of Z is given by

FZ(z) = 1−
∫ 1

0
D1CX,Y

[
u, FY

{
F

(−1)
X (u)− z

h

}]
du. (3)

Here, F (−1) denotes the inverse of F , i.e., the quantile function.

Here D1C(u, v) =
∂

∂u
C(u, v) and, see e.g. Equation (5.15) of (McNeil et al., 2005),

D1CX,Y {FX(x), FY (y)} = P(Y ≤ y|X = x). (4)
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Proof. Using the identity (4) gives

FZ(z) = P(X − hY ≤ z) = E
{

P

(
Y ≥ X − z

h

∣∣∣X)}

= 1− E
{

P

(
Y ≤ X − z

h

∣∣∣X)} = 1−
∫ 1

0
D1CX,Y

[
u, FY

{
F

(−1)
X (u)− z

h

}]
du.

Corollary 1 Given the formulation of random variables, the pdf of Z can be written as

fZ(z) =

∣∣∣∣1h
∣∣∣∣ ∫ 1

0
cX,Y

[
FY

{
F

(−1)
X (u)− z

h

}
, u

]
· fY

{
F

(−1)
X (u)− z

h

}
du, (5)

or

fZ(z) =

∫ 1

0
cX,Y

[
FX

{
z + hF

(−1)
Y (u)

}
, u
]
· fX

{
z + hF

(−1)
Y (u)

}
du. (6)

The two expressions are equivalent. Note that the pdf of Z in the above proposition can be assessed

via numerical integration as long as we have the copula density and the marginal densities. A generic

expression and proof can be found in the appendix.

2.2 Procedure to determine optimal hedge ratio

We introduce the empirical procedure to obtain the optimal hedge ratio (OHR) being used in this

work. First, we split the time series of spot and futures into sets of training and testing data. The

training data makes up the first 300 observations and its corresponding testing data consists of the

consecutive 5 observations. We then roll 5 observations forward (step size of 5) to obtain the next

training and test data sets and repeat this until the end of the time series. Note that the testing data

are non-overlapping since the step size and equal to test size.

Next, we obtain the OHR as follows:

1. Construct Univariate Kernel Density Function (KDE). From the training data we cal-

ibrate the spot and futures’ univariate kernel density functions using the Gaussian kernel with

bandwidth determined by the refined plug-in method (Härdle et al., 2004, section 3.3.3).

2. Calibrate Copulae. We then calibrate the copulae outlined in section 3.1 via the method of

moments described in section 3.2.1.

3. Select Copula. We compute the Akaike Information Criterion. The copula with the best (i.e.,

lowest) AIC is used for the next step. A discussion of this step is found in 3.2.3.

4. Determine OHR. We determine the OHRs numerically using different risk measures as the

loss function by drawing samples from the selected copula and KDEs. The risk measures used

as risk reduction objectives are outlined in 3.3

5. Obtain testing log-return of hedged portfolio. Finally, we apply the OHRs to the test

data Rh = Rs − h∗Rf .

5



3 Copulae and risk measures

3.1 Copulae

To capture different aspects of the dependence structure, we consider a number of different copulas,

which are layed out in details below Gaussian-, t-, Frank-, Gumbel-, Clayton-, mixture, NIG factor,

and Plackett-copula.

As this hedging exercise concerns only portfolios with two assets, we focus on the bivariate version

of copulae and some important features of a copula, including Kendall’s τK and Spearman’s ρS .

Kendall’s τ and Spearman’s ρ are measures of association in terms of concordance, see Kruskal

(1958) Let (xi, yi) and (xj , yj) denote two observations from a vector (X,Y ) of continuous random

variables. A pair of observations is concordant if xi < xj and yi < yj , discordant if xi > xj and yi < yj

or if xi < xj and yi > yj . For a bivariate random variable of n observations, there are
(
n
2

)
distinct

pairs.

Let c denote the number of concordant pairs, and d the number of discordant pairs, Kendall’s tau

is defined as follows (Nelsen, 1999)

τK
def
=

c− d
c+ d

=
c− d(
n
2

) ;

Let FX and FY be cdfs of X and Y respectively, Spearman’s ρ is

ρS
def
= 12E(FX(X)FY (Y ))− 3;

Upper tail dependence is defined as

λU
def
= lim

q→1−
P{X > F

(−1)
X (q)|Y > F

(−1)
Y (q)};

Lower tail dependence is defined as

λL
def
= lim

q→0+
P{X ≤ F (−1)

X (q)|Y ≤ F (−1)
Y (q)}.

Furthermore, we denote the Fréchet-Hoeffding lower bound by W , the product copula by Π, and

the Fréchet-Hoeffding upper bound by M . They represent cases of perfect negative dependence,

independence, and perfect positive dependence, respectively. For further details, we refer readers to

Joe (1997) and Nelsen (1999); see also Härdle and Okhrin (2010).

The symmetry property of copulae is also important for modelling financial data. In particular,

we are interested in the radially symmetric among other symmetry definitions, see Nelsen (1999).

Definition 3 Let (U1, ..., Ud) be random variables. The random variables is radially symmetric if the

joint cdf of (U1, ..., Ud) is same as the joint cdf of (1− U1, ..., 1− Ud)

To illustrate the difference among copulae, we plot random samples drawn from copulae listed

below in figure 1.

6



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Student t

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Clayton

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Frank

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Gumbel

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Plackett

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

NIG Factor

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Mixture of Gaussian and Product

Figure 1: Scatterplots of samples drawn from copulae. All copulae are calibrated to Spearman’s ρ of 0.75

before sampling.

3.1.1 Gaussian and t Copulae

Gaussian and t copulae are dervived from Gaussian and t distributions. Since Gaussian and t

distributions are elliptical distributions, Gaussian and t copulae are called elliptical copulae.

Gaussian copula (bivariate) is defined as

C(u, v) = Φ2,ρ{Φ(−1)(u),Φ(−1)(v)}

=

∫ Φ(−1)(u)

−∞

∫ Φ(−1)(v)

−∞

1

2π
√

1− ρ2
exp

{
s2 − 2ρst+ t2

2(1− ρ2)

}
ds dt,

where Φ2,ρ is the cdf of bivariate Normal distribution with zero mean, unit variance, and correlation

coefficient ρ, and Φ(−1) is the quantile function univariate standard normal distribution.

Note that we use ρ to denote the correlation parameter as well as a ρ(·) to denote a risk measure.

The Gaussian copula is fully specified by the correlation parameter ρ. Like all elliptical copulas, it is

symmetric. It has no tail dependence, which, in a finance context, implies that it often underestimates

tail risk.

The Gaussian copula density is

cρ(u, v) =
ϕ2,ρ{Φ(−1)(u),Φ(−1)(v)}
ϕ{Φ(−1)(u)} · ϕ{Φ(−1)(v)}

=
1

2π
√

1− ρ2
exp

{
−u

2 − 2ρuv + v2

2(1− ρ2)

}
,

where ϕ2,ρ(·) is the pdf corresponding to Φ2,ρ, and ϕ(·) the standard normal distribution pdf.
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Kendall’s τK and Spearman’s ρS of a bivariate Gaussian copula are

τK(ρ) =
2

π
arcsin ρ

ρS(ρ) =
6

π
arcsin

ρ

2
.

The t-copula has the form

C(u, v) = T2,ρ,ν{T (−1)
ν (u), T (−1)

ν (v)}

=

∫ T
(−1)
ν (u)

−∞

∫ T
(−1)
ν (v)

−∞

Γ
(
ν+2

2

)
Γ
(
ν
2

)
πν
√

1− ρ2

(
1 +

s2 − 2stρ+ t2

ν

)− ν+2
2

dsdt,

where T2,ρ,ν denotes the cdf of bivariate t distribution with dependence parameter ρ and degrees of

freedom parameter ν, and where T
(−1)
ν (·) is the quantile function of a standard t distribution with

degree of freedom ν.

Contrary to the Gaussian copula, the t-copula has a non-zero tail dependence coefficient, which

makes it more appropriate for dependence modelling in finance. The Gaussian copula arises as ν →∞.

The copula density is

c(u, v) =
t2,ρ,ν{T (−1)

ν (u), T
(−1)
ν (v)}

tν{T (−1)
ν (u)} · tν{T (−1)

ν (v)}
,

where t2,ρ,ν is the pdf of T2,ρ,ν and tν the density of standard t distribution.

Like all the other elliptical copulae, the t-copula’s Kendall’s τ is identical to that of the Gaussian

copula (see Demarta and McNeil, 2005, and references therein).

3.1.2 Archimedean copulae

The family of Archimedean copulae forms a large class of copulae with many convenient features.

Contrary to elliptical copulas, which are derived from elliptical distributions. Archimedean copulas

are determined via a simple parametric form of the dependence structure. A prominent feature is the

ability to model asymmetric dependence structures.

In general, they take a form

C(u, v) = ψ(−1){ψ(u), ψ(v)},

where ψ : [0, 1] → [0,∞) is a continuous, strictly decreasing and convex function such that ψ(1) = 0

for any permissible dependence parameter θ. ψ is also called generator. ψ(−1) is the inverse of the

generator.

The Frank copula (B3 in Joe (1997)) is a radial symmetric copula and cannot produce any tail

8



dependence. It takes the form

Cθ(u, v) =
1

θ
log

{
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

}
where θ ∈ [0,∞] is the dependency parameter. C−∞ = M , C1 = Π, and C∞ = W .

The Copula density is

cθ(u, v) =
θeθ(u+v)(eθ−1){

eθ − eθu − eθv + eθ(u+v)
}2

Frank copula has Kendall’s τ and Spearman’s ρ as follow:

τK(θ) = 1− 4
D1{− log(θ)}

log(θ)
,

and

ρS(θ) = 1− 12
D2{− log(θ)} −D1{log(θ)}

log(θ)
,

where D1 and D2 are the Debye function of order 1 and 2. Debye function is Dn = n
xn

∫ x
0

tn

et−1dt.

The Gumbel copula (B6 in Joe (1997)) has upper tail dependence with the dependence parameter

λU = 2− 2
1
θ and displays no lower tail dependence.

Cθ(u, v) = exp−{(− log(u))θ + (− log(v))θ}
1
θ ,

where θ ∈ [1,∞) is the dependence parameter.

While the Gumbel copula cannot model perfect counter-dependence (Nelsen, 2002), C1 = Π

models the independence, and lim∞θ Cθ = W models the perfect dependence. The copula density

takes the form

τK(θ) =
θ − 1

θ
.

The Clayton copula, by contrast to Gumbel copula, generates lower tail dependence of the form

λL = 2−
1
θ , but cannot generate upper tail dependence. The Clayton copula takes the form

Cθ(u, v) =
{

max(u−θ + v−θ − 1, 0)
}− 1

θ
,

where θ ∈ (−∞,∞) is the dependence parameter. Moreover, lim−∞θ Cθ = M , C0 = Π, and lim∞θ Cθ =

W . Kendall’s τ of the Clayton copula is given by

τK(θ) =
θ

θ + 2
.

3.1.3 Mixture Copula

The mixture copula is a linear combination of copulae. For a 2-dimensional random variable

X = (X1, X2)>, its distribution can be written as linear combination of K copulae

C(u, v) =

K∑
k=1

p(k) ·C(k){F (−1)
X1

(u), F
(−1)
X2

(v);θ(k)}.
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The copula density is again a linear combination of copula densities

c(u, v) =

K∑
k=1

p(k) · c(k){F (−1)
X1

(u), F
(−1)
X2

(v);θ(k)}.

While Kendall’s τ of mixture copula is not known in closed form, Spearman’s ρ is specified by the

following statement.

Proposition 4 Let ρ
(k)
S be Spearman’s ρ of the k-th component Spearman’s ρ of the mixture copula

is given by

ρS =
K∑
k=1

p(k) · ρ(k)
S

Proof. Since Spearman’s ρ is defined as (Nelsen, 1999)

ρS = 12

∫
I2
C(s, t)dsdt− 3,

Spearman’s ρ of the the mixture copula is given by summation of the components

ρS = 12

∫
I2

K∑
k=1

p(k) ·C(k)(s, t)dsdt− 3.

An example of a mixture copula is the Fr’echet class of copulas, which are given by convex com-

binations of W , Π, and M (Nelsen, 1999).

We use a mixture of Gaussian and independent copulas in our analysis, i.e.,

C(u, v) = p ·CGaussian(u, v) + (1− p)(uv),

with corresponding density is

c(u, v) = p · cGaussian(u, v) + (1− p).

This mixture models the amount of “random noise” that appears in the dependence structure. In

the hedging exercise, the “random noise” adds an unhedgable component to the two-asset portfolio,

whose weight (1− p) is calibrated from market data.

3.1.4 NIG factor copula

The normal inverse Gaussian (NIG) distribution, introduced by (Barndorff-Nielsen, 1997), has

density function

g(x;α, β, µ, δ) =
α

π
eδ
√
α2−β2−βµ 1

q((x− µ)/δ)
K1

[
δαq

(
x− µ
δ

)]
eβx, x > 0,

where q(x) =
√

1 + x2 and where K1 is the modified Bessel function of third order and index 1. The

parameters satisfy 0 ≤ |β| ≤ α, µ ∈ R and δ > 0. The parameters have the following interpretation:

µ and δ are location and scale parameters, respectively, α determines the heaviness of the tails and β
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determines the degree of asymmetry. If β = 0, then the distribution is symmetric around µ.

The moment-generating function of the NIG distribution is given by

M(u;α, β, µ, δ) = exp
(
δ
(√

α2 − β2 −
√
α2 − (β + u)2

)
+ µu

)
.

As a direct consequence, moments are easily calculated with the expectation and variance of the NIG

distribution being

EX = µ+
δβ√
α2 − β2

Var(X) =
α2δ

(α2 − β2)3/2
. (7)

The NIG(α, β, µ δ) distribution belongs to the class of so-called normal variance-mean mixture,

(see Section 3.2 of (McNeil et al., 2005)): X follows an NIG(α, β, µ, δ) distribution if X conditional

on W follows a normal distribution with mean µ+ βW and variance W , i.e.,

X|W L∼ N(µ+ βW,W ),

where W follows an inverse Gaussian distribution, denoted by IG(δ,
√
α2 − β2).

It is easily seen from the moment-generating function that the NIG distribution is preserved under

linear combinations, provided the variables share the parameters α and β. For this and other reasons,

the NIG distribution is popular in many areas of financial modelling; for example, it gives rise to the

normal inverse Gaussian Lévy process, which may be represented as a Brownian motion with a time

change.

In the setting here, we consider the NIG factor copula. This is not directly derived from the

multivariate NIG distribution, but determined through a factor structure instead. The factor structure,

which was applied e.g. in (Kalemanova et al., 2007) for calibrating CDO’s, gives additionaly flexibility

as it does not force the components to have a mixing variable W . The following proposition introduces

the NIG factor model and some of its properties.

Proposition 5 Let Z ∼ NIG(α, β, µ, δ) and Zi ∼ NIG(α, β, µi, δi), i = 1, . . . , n be independent NIG-

distributed random variables. Then:

1. Xi = Z + Zi ∼ NIG(α, β, µ+ µi, δ + δi),

2. and

Cov(Xi, Xj) = Var(Z),

Corr(Xi, Xj) =
δ√

(δ + δi)(δ + δj)
. (8)

Proof.

1. This follows directly from the moment-generating function.
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2. For the covariance,

Cov(Xi, Xj) = E[(Z + Zi)(Z + Zj)]− E[Z + Zi]E[Z + Zj ]

= E[Z2]− (EZ)2.

The correlation is determined directly from 7.

The NIG factor copula is obtained by transforming the margins to uniforms (see Sklar’s Theorem),

giving (e.g. (Krupskii and Joe, 2013)):

CrS ,rF (FrS (rS), FrF (rF )) =

∫
R
FZ1(F

(−1)
X1

◦ FrS (rS)− z) · FZ2(F
(−1)
X2

◦ FrF (rF )− z) · fZ(z)dz

If the margins are continuous, then Spearman’s rho of NIG factor copula is

ρS = 12

∫ ∫ ∫
R3

FX1(x1) · FX2(x2) · fZ1(x1 − z) · fZ2(x2 − z) · fZ(z)dx1dx2dz −
1

48
.

3.1.5 Plackett copula

The Plackett copula has an expression

Cθ(u, v) =
1 + (θ − 1)(u+ v)

2(θ − 1)
−
√
{1 + (θ − 1)(u+ v)}2 − 4uvθ(θ − 1)

2(θ − 1)

ρS(θ) =
θ + 1

θ − 1
− 2θ log θ

(θ − 1)2

We include Placket copula in our analysis as it possesses a special property, the cross-product ratio

is equal to the dependence parameter

.
P(U ≤ u, V ≤ v) ·P(U > u, V > v)

P(U ≤ u, V > v) ·P(U > u, V ≤ v)

=
Cθ(u, v){1− u− v +Cθ(u, v)}
{u−Cθ(u, v)}{v −Cθ(u, v)

= θ. (9)

That is, the dependence parameter is equal to the ratio between number of concordence pairs and

number of discordence pairs of a bivariate random variable.

3.2 Calibration and selection of copulae

We introduce the method to calibrate copulae to our data in this section. In general, there are

two types of calibration procedures to calibrate copulae: maximum likelihood (MLE) and method of

moments (MM). We decide to deploy the latter since it calibrates according to the moments desired.

In the following subsection, we present the configuration of the method of moments procedures in

this work. In the subsection after, we argue that MM is more suitable to this work by comparing MM

with MLE.
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3.2.1 Method of moments

We trace back the usage of MM to calibrate copulae to Genest (1987); Genest and Rivest (1993).

The moments mainly refer to Kendall’s τ or Spearman’s ρ. We extend MM to quantile dependence

measures denoted by λq for quantile level q.

Spearman’s ρ, Kendall’s τ , and quantile dependence of the copula C are defined as

ρS = 12

∫ ∫
I2
Cθ(u, v) du dv − 3

τK = 4E[Cθ{FX(x), FY (y)}]− 1,

λq =


P(FX(X) ≤ q|FY (Y ) ≤ q) =

Cθ(q, q)

q
, if q ∈ (0, 0.5],

P(FX(X) > q|FY (Y ) > q) =
1− 2q + Cθ(q, q)

1− q
, if q ∈ (0.5, 1).

The empirical counterparts are

ρ̂S =
12

n

n∑
k=1

F̂X(xk)F̂Y (yk)− 3,

τ̂K =
4

n

n∑
k=1

Ĉ{F̂X(xi), F̂X(yi)} − 1,

λ̂q =


1

n

n∑
k=1

1{F̂X(xk)≤q,F̂Y (yk)≤q}

q
, if q ∈ (0, 0.5],

1

n

n∑
k=1

1{F̂X(xk)>q,F̂Y (yk)>q}

1− q
, if q ∈ (0.5, 1),

where F̂ (x) =
1

n

n∑
k=1

1{xi≤x} and Ĉ(u, v) =
1

n

n∑
k=1

1{ui≤u,vi≤v}.

Denote by m(θ) the m-dimensional vector of dependence measures according the dependence pa-

rameters θ,and let m̂ be the corresponding empirical counterpart. The difference between dependence

measures and their counterpart is denoted by

g(θ) = m̂−m(θ).

The MM estimator is

θ̂ = argmin
θ∈Θ

g(θ)>Ŵg(θ),

where Ŵ is some positive definite weight matrix. In this work, we usem(θ) = (ρS , λ0.05, λ0.1, λ0.9, λ0.95)>

for calibration. Ŵ is set to identity matrix.

3.2.2 Comparison between method of moments and maximum likelihood

By the Hoeffding-Sklar theorem, the joint density of a d-dimensional random variable X with

sample size n can be written as

fX(x1, ..., xd) = c{FX1(x1), ..., FXd(xd)}
d∏
j=1

fXi(xi).
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We follow the treatment of MLE documented in section 10.1 of Joe (1997), namely the inference

functions for margins (IFM) method. The log-likelihood
∑n

i=1 fX(Xi,1, ..., Xi,d) can be decomposed

into a dependence part and a marginal part,

L(θ) =
n∑
i=1

c{FX1(xi,1; δ1), ..., FXd(xi,d; δd);γ}+
n∑
i=1

d∑
j=1

fXj (xi,j ; δj)

= LC(δ1, ..., δd,γ) +
d∑
j=1

Lj(δj)

where δj are the parameters of the j-th margin, γ is the parameter of the parametric copula, and

θ = (δ1, ..., δd,γ). Instead of searching the θ in a high dimensional space, Joe (1997) suggests to search

for δ̂1, ..., δ̂d that maximize L1(δ1), ..., Ld(δd), then search for γ̂ that maximize LC(δ̂1, ..., δ̂d,γ).

We follow Genest et al. (1995) who suggest to replace the estimation of marginals parameters

estimation by non-parameteric estimation. Given non-parametric estimator F̂i of the margins Fi, the

estimator of the dependence parameters γ is

γ̂ = argmax
γ

n∑
i=1

c{F̂X1(xi,1), ..., F̂Xd(xi,d);γ}.

Both the simulated method of moments and the maximum likelihood estimation are unbiased. The

question though which procedure is more suitable for hedging.

Figure 2 shows the empirical quantile dependence of Bitcoin and CME future and the copula

implied quantile dependence of the MLE and MM calibration procedures. Although the MLE is a

better fit to a range of quantile dependence in the middle, it fails to address the situation in the tails.

We find that our data empirically has low quantile dependence in the lower ends (q < 10%). We argue

that MM is preferred as it produces a better fit to the dependence structure in the tail behaviour,

contrary to MLE.

Therefore, we deploy the method of moments throughout the analysis. We choose the 5th-, 10th-,

90th-, 95th-quantile, and Spearman’s ρ as the moments.

3.2.3 Copula selection

The dependence structure of price data changes across time, in which both the dependency pa-

rameters and the type of dependence. For this reason, we allow for a flexible choice of the best-fitting

copula, by re-calibrating periodically and re-evaluating performance of the various copulas. We select

the best-fitting copula, characterised by the lowest Akaike Information Criterion (AIC),

AIC = 2k − 2 log(L),

where k is the number of estimated parameteres and L is the likelihood (Akaike, 1973).

Other model selection criteria, such as the TIC (Takeuchi, 1976) or likelihood ratio test could

be used instead. For a survey of model selection and inference, see Anderson et al. (1998). Among

various copula selection procedures, AIC is a popular choice for its applicability, see e.g. Breymann

et al. (2003). In our case, the AICs are calculated only with dependency likelihood since the marginals

are modelled via kernel density estimators. The selected copula will then be enter the calculation of

the optimal hedge ratio.
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Figure 2: Quantile dependences of Gumbel, and Clayton Copula. The blue circle dots are the quantile

dependence estimates of Bitcoin and CME future, blue dotted lines are the estimates’ 90% confidence interval.

Orange dotted line is the copula implied quantile dependence by MM estimation. Light blue dotted line is the

copula implied quantile dependence by MLE estimation.

3.3 Risk measures

The optimal hedge ratio is determined for the following variety of risk measures: variance, Value-

at-Risk (VaR), Expected Shortfall (ES), and Exponential Risk Measure (ERM). A summary of risk

measures being used in portfolio selection problem can be found in Härdle et al. (2008). The risk

measures here serve as risk minimization objectives, i.e. loss functions for searching the optimal hedge

ratio.

The risk measures are defined as follows. Let Z be a random variable with distribution function

FZ .

1. Variance: Var(Z) = E[(Z − EZ)2].

2. VaR at confidence level α: VaRα(Z) = −F (−1)
Z (1− α)

3. ES at confidence level α: ES(FZ) = − 1
1−α

∫ 1−α
0 F

(−1)
Z (p)dp
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4. ERM with Arrow-Pratt coefficient of absolute risk aversion k:

ERMk(FZ) =

∫ 1−α

0
φ(p)F

(−1)
Z (p)dp,

where φ is a weight function described in (3.3) below.

VaR, ES, and ERM fall into the class of spectral risk measures (SRM), which have the from

(Acerbi, 2002)

ρφ(rh) = −
∫ 1

0
φ(p)F

(−1)
Z (p)dp,

where p is the loss quantile and φ(p) is a user-defined weighting function defined on [0, 1]. We consider

only so-called admissible risk spectra φ(p), i.e., fulfilling

(i) φ is positive,

(ii) φ is decreasing,

(iii) and
∫
φ = 1.

The VaR’s φ(p) gives all its weight on the 1−α quantile of Z and zero elsewhere, i.e. the weighting

function is a Dirac delta function, and hence it violates the (ii) property of admissible risk spectra. The

ES’ φ(p) gives all tail quantiles the same weight of
1

1− α
and non-tail quantiles zero weight. The ERM

assumes investors’ risk preference are in the form of an exponential utility function U(x) = 1 − ekx,

so its corresponding risk spectrum is defined as

φ(p) =
ke−k(1−p)

1− e−k
,

where k is the Arrow-Pratt coefficient of absolute risk aversion. The parameter k has an economic

interpretation as being the ratio between the second derivative and first derivative of investor’s utility

function on an risky asset,

k = −U
′′(x)

U ′(x)
,

for x in all possible outcomes. In case of the exponential utility, k is the the constant absolute risk

aversion (CARA).

4 Empirical Results

4.1 Data

In the empirical analysis, we consider the risk reduction capability of CME Bitcoin Futures (BTCF)

on five cryptos, namely Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Litecoin (LTC) and Ripple

(XRP), as well as five crypto indexes, namely BITX, BITW100, CRIX, BITW20, and BITW70.

ETH, ADA, LTC, and XRP are popular cryptos tradable in various exchanges and have large market

capitalization. BITX, BITW100, and CRIX are market-cap weighted crypto indexes with BTC as

constituent. BITX and BITW100 track the total return of the 10 and 100 cryptos with largest

market-cap, respectively. CRIX decides the number of constituents by AIC and tracks that number

of cryptos with largest market-cap. In our case, the number of constituents in CRIX is 5. BITW20

is also a market-cap weighted crypto index but with the 20 largest market-cap cryptos outside the
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constituents of BITX. BITW70 has the same construction as BITW20 but with the 70 largest market-

cap cryptos outside BITX and BITW20. Therefore, BTC is excluded as a constituent in BITW20 and

BITW70.

For each of the 10 hedging portfolios, a crypto or index is considered as the spot and held in a

unit size long position, while the front BTCF is held in a short position with units corresponding to

the OHR in order to reduce the risk of the spot. Except for the hedge of BTC, all hedging portfolios

are considered to be cross-asset hedges.

We collect the spots’ and BTCF’s daily prices at 15:00 US Central Time (CT). The reason for

choosing this particular time is that the CME group determines the daily settlements for BTCF’s based

on the trading activities on CME Globex between 14:59 and 15:00 CT. This is also the reporting time

of the daily closing price by Bloomberg. The crypto spot data is collected from the data provider called

Tiingo (https://www.tiingo.com/). Tiingo aggregates crypto OHLC (open, high, low, and close) prices

fed by APIs from various exchanges. It covers major exchanges, such as Binance, Gemini, Poloniex

etc., so Tiingo’s aggregated OHLC price is a good representation a tradable market price. For each

crypto, we match the opening price at 15:00 CT from Tiingo with the daily BTCF closing price

from Bloomberg. Since CRIX is not available at 15:00 CT, we recalculated an hourly CRIX using the

monthly constituents weights and the hourly OHLC price data collected from Tiingo. BITX, BITW20,

BITW70, and BITW100 are collected from the official website of their publisher Bitwise.com. The

daily reporting time of the Bitwise indexes is 15:00 CT.

At the time of writing, the CRIX is undergoing the listing process on the S&P Dow Jones Indices,

the official CRIX data will then be calculated with Lukka Prime Data and available to the public via

S&P.

4.2 Overview of the out-of-sample data

For every asset and hedge portfolio, we concatenate the out-of-sample data to form a time series

for analysis. The date range of the out-of-sample time series is from 2019-10-21 to 2021-05-27, in

total of 405 data points in each time series. We analyse these time series throughout the whole result

section.

We introduce the out-of-sample data in this subsection before we proceed to analysing the hedged

portfolio results. Figure 3 presents the BTC and BTCF price in USD in the first panel and the

arithmetic difference between the daily return of BTC and BTCF, i.e. Rs −Rf , in the second panel.

In the first panel, the black vertical lines with capital letter labels indicate the days of the five most

negative daily return of BTC during out-pf-sample period. Table 1 summarizes the relevant news

headlines and events of those days.

Figures 4 and 5 are the cumulative returns of the indices and individual cryptos respectively.

The black vertical lines labeled by assets name are the largest daily price drop of the assets in the

out-of-sample data.

The out-of-sample data covers the pre-COVID19 period, 2019-10-21 to 2020-03-09, as well as the

COVID19 period, 2019-03-19 onwards. We can observe an overall upward trend of crypto prices in

both periods. Nonetheless, the volatilities of assets are high (annualized around 100%) regardless of

COVID19.

4.3 An overview of the hedged portfolios without the copula selection step
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Figure 3: Out-of-sample BTC and BTCF price. The first panel presents the price of BTC in blue line and

that of BTCF in orange line. The black vertical lines with capital letter labels indicate the five most negative

daily return of BTC in the out-of-sample data. The second panel presents the difference between the % return

of BTC and BTCF. The black vertical lines indicate the five most negative returns. The crosses locate the level

the returns.

Label Date % Drop in Price Summary

A 2020-03-09 13.83 Coronavirus outbreak that affect the
global markets; BTC as potential safe-
haven was questioned.1

B 2020-03-12 22.89 Continuation of the 2020-03-09 drop.
C 2020-05-11 12.11 Price correction (from $10,000 to

$8,100) after BTC price surge because
of the third supply halving.2,3

D 2021-01-11 14.41 Short term correction of BTC hits the
$40,000 mark.4

E 2021-05-17 11.86 Tesla stopped taking BTC as payment
due to environmental concerns about
energy use to process transaction.5

Table 1: Summary of events that associated with the five most negative daily price drops in out-of-sample

BTC price data. The capital letter labels in the first column are the labels in the first panel of figure 3. 1

is reported by the CNBC news https://cnb.cx/3HZ2x7K; 2 is from Forbes https://bit.ly/3rdJPmP; 3 is

from livemint.com https://bit.ly/3FRi6Na; 4 is from CNBC https://cnb.cx/3nU0ppO; 5 is from Reuters

https://reut.rs/3leCiAv.
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Figure 4: Out-of-sample cumulative return of crypto indices. The black vertical lines indicate largest price

drop of indices indicated by the labels. The colouring is as follows: Blue line is CRIX; Orange line is BITX;

Green line is BITW100; Red line is BITW20; Purple line is BITW70.
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Figure 5: Out-of-sample cumulative return of individual cyptos. The black vertical lines indicate largest price

drop of cryptos indicated by the labels. Blue line is ADA; Orange line is ETH; Green line is LTC; Red line is

XRP.

Label Date % Drop in Price Summary

CRIX 2020-03-09 23.77 Coronavirus outbreak that affect
the global markets including the
crpyto market.

BITX 23.68
BITW100 23.87
BITW20 26.66

ADA 23.55
ETH 27.40

BITW70 2021-05-19 27.64 The spillover of the BTC shock on
2021-05-17 (label A in figure 3 and
table 1)

XRP 2020-12-23 41.00 Top executives were sued by the
SEC of misleading investors1.

Table 2: Summary of events that associated with largest price drops in out-of-sample data. The labels in the

first column are the labels in figure 4 and figure 5. CRIX, BITX, BITW100, BITW20, ADA and ETH have the

same date the reason of the largest drop. 1 is reported by Bloomberg https://bloom.bg/3cWdita.
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Figure 6: Out-of-sample mean square errors of indices’ hedge portfolios. Plots

in a row share the same colour scale for comparison.

Figure 7: Out-of-sample mean square errors of cryptos’ hedge portfolios. Each

plot has its own colour scale.

Figure 8: Out-of-sample lower semi variance of indices’ hedge portfolios. Plots

in a row share the same colour scale for comparison.

Figure 9: Out-of-sample lower semi variance of cryptos’ hedge portfolios. Each

plot has its own colour scale.
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Figure 10: Out-of-sample mean square errors

of BTC-BTCF portfolios constructed with different

copula and risk minimization objectives. The Frank

copula is inferior in the BTC-involved portfolios.
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Figure 11: Out-of-sample lower semivariance of

BTC-BTCF portfolios constructed with different

copula and risk minimization objectives. The Frank

copula is obviously inferior.

First, we analyse the results of hedged portfolios without the copula selection step in order to get

a better understanding of how a copula affects the hedged portfolio with various risk minimization

objectives. To do so, we inspect the hedge performance of copulas by the mean square error and lower

semi-variance. The mean square error is the distance between a perfect hedge and the hedged portfolio

returns MSE = E(R2). The lower semi-variance is defined as LSV = E
(
(R− E(R))21{R≤E(R)}

)
. All

results presentedd here are out-of-sample results obtained without the copula selection step in order

to compare the performances across copulae.

Figure 10 and 11 are the mean square error and lower semivariance of BTC-BTCF. We can see

that the Frank copula is the worst performing copula: the resulting hedged portfolio returns is far

away from a perfect hedge. In Figures 6 and 8, the phenomenom of Frank copula being inferior to its

counterparts can be observed from the results of the CRIX, BITX, BITW100, and BITW20-BTCF

portfolios. Interestingly, the spot in those portfolios usually have a strong dependence with the BTCF.

In contrast, the inferiority of the Frank copula is less prominent in the BITW70, ADA, ETH, LTC

and XRP-BTCF portfolios. We suspect that the Frank copula is not a choice to model assets with

strong dependence.

We can also observe from Figures 7 and 9 that the Gumbel copula is not performing as well as

other copulas in the ETH, LTC, and XRP-BTCF portfolios. The reason is the Gumbel copula has

only upper tail dependence, while the ETH, LTC, and XRP exhibit lower tail dependence with BTCF.

We will discuss this in the following section.

4.4 Copula Selection Results

Next, we inspect the copula selection result by the AIC procedure described in section 3.2.3.

Although the copula selection is only an intermediate step to obtain the OHRs, the result of this step

can help us better understand the dependence feature between BTCF and the assets we study in this

work. This gives us valuable information to model the assets in the future. Decisions of the AIC

procedure are summarised in Table 3.

Overall, the t-copula, rotated Gumbel (rotGumbel), and the NIG factor copula are the most

frequently chosen copulae by the AIC procedure.
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Spot/ Copula t Plackett GMI rotGumbel NIG

Individual Cryptos

BTC 73 4 2 1 31

ETH 3 6 8 94 1

ADA 0 0 0 0 112

LTC 13 0 3 32 64

XRP 0 31 3 78 0

Crypto Indices with BTC Constituent

BITX 39 0 14 16 12

CRIX 47 0 11 3 27

BITW100 42 0 8 29 2

Crypto Indices without BTC Constituent

BITW20 0 0 0 78 3

BITW70 0 0 0 80 1

Table 3: Copula selection results (shortened). The values are the counts of a copula chosen by the AIC

procedure during the out-of-sample period. Each count represents five trading days since the each testing data

consists of five trading days. The table shows only the frequently chosen copula, i.e. t, Plackett, Gaussian Mix

Independent (GMI), rotated Gumbel (rotGumbel), and Normal Inverse Gaussian factor copula (NIG).

The t-copula is frequently chosen to model the dependence between the BTC and BTC-involving-

indices, CRIX, BITX, BITW100, and the BTC future. BTC and BTC-involving-indices exhibit strong

(upper and lower) tail dependence with BTCF. We interpret tail dependence as a strong tendency for

one asset to be extreme when another is extreme and vice versa (McNeil et al., 2015). In fact, the t

copula has been recommended in various empirical studies to model financial data, such as Zeevi and

Mashal (2002) and Breymann et al. (2003). Those studies suggest that the t-copula is a better model

compared to the Gaussian copula as financial data typically exhibit heavy tails and tail dependence.

On the other hand, the radial symmetry of the t-copula appears to be a poor choice to model the

remaining hedging pairs. Demarta and McNeil (2005) describe the radial symmetry feature of the

t-copula “strong” as it is a radially symmetric distribution. To be specific, if (U1, ..., Ud) is a vector

distributed in t-copula, then (U1, ..., Ud)
L
= (1− U1, ..., 1− Ud). This symmetry can be justified in the

dependence structure between a futures and its underlying by the theory of futures pricing, which

suggests the price of a futures is a function of the underlying price (Hull, 2003). However, there is no

such relationship between a futures and an asset which is not the underlying. Besides, asset prices

tend to crash simultaneously whereas positive development tends to be idiosyncratic.

Among the three popular copulae, rotGumbel copula shows its ability to model the dependence

between ETH and BTCF. rotGumbel also performs well when modelling dependence between XRP,

BITW20, BITW70, and the BTCF. In particular, the whole time series of the two indices, BITW20

and BITW70, are best fitted solely with the rotated Gumbel copula.

In fact, Clayton’s AIC in many of the training sets is the second lowest, just higher than that of

rotated Gumbel. This is because the Clayton copula has the same ability to model the lower quantile

dependence. However, Clayton’s radial like feature does not match the behaviour of the financial data.

It is worth to mention that although the NIG factor copula is penalised heavily due to its three

parameters setup, it is frequently chosen to be the best copula to model the dependence between
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individual cryptos and the BTC future. An extreme case would be ADA, where only NIG factor is

chosen in our dataset. Another dependence structure being best described by the NIG factor copula is

the pair of LTC-BTCF, with 64 out of 112 training sets best fitted by the NIG factor copula. Indices

like BITX and CRIX are sometimes best fitted with the NIG factor copula as well, accounting for

modelling 12 and 27 training sets respectively. The popularity of the NIG factor copula reflects the

ability of the copula to model very complex dependence structure: the NIG factor copula is able to

model the tail, radial asymmetry.

The Frank copula is generally not a good choice to model financial data (as also reported by Barbi

and Romagnoli (2014)). Plackett is characterised by its dependence parameter being equal to the

cross-product ratio, see eq. 9. However, apparently, this property does not capture the dependence

structure of cryptos and BTCF.

4.5 Hedged portfolios with the copula selection step

Table 4 presents the first two moments, maximum drawdown (MD) and the date of MD of the

hedge portfolios. We observe that the statistics of the portfolios with different objectives are similar

to each other. We provide the detail in Tables 6 to 11 in the appendix.

Unsurprisingly, the BTC-involved spots, i.e. BTC, CRIX, BITX, and BITW100, are well hedged

by the BTCF regardless of risk minimization objective. Contrarily, BTC-not-involved spots’ portfolios

are less promising. Those hedge portfolios’ returns are as volatile as the assets, see for example ADA

and XRP. We will further discuss the effectiveness of hedge in the next section.

4.6 Hedging Effectiveness Results

In this section, we analyse the out-of-sample hedging effectiveness (HE) of BTCF as hedging. HE

is defined as

HE = 1− ρh
ρs
,

a measure of the percentage reduction of portfolio risk attribute, in our case the spot ρs, to hedged

portfolio risk attribute ρh. A higher HE indicates a greater risk reduction and thus the hedge is more

effective.

The HE above is a generalisation of how Ederington (1979) evaluate hedging performance. In

addition to variance, we include the risk measures which act as loss function while searching for OHR:

ES 95% and 99%, VaR 95% and 99% and ERM.

The formulation above gives a point estimate per testing data. However, each of our test data

contain only 5 data points, the length is not sufficient to draw meaningful risk measure results.

To address this issue, we apply bootstrapping method on the concatenated test data time series as

described in the beginning of the result section.

The bootstrapping method is known to be a powerful nonparametric tool for approximating com-

plicated statistics (Efron and Tibshirani, 1994; Davison and Hinkley, 1997). We apply stationary

block bootstrapping to the time series introduced by Politis and Romano (1994) in our analysis in

order to preserve the temporal structure of the data while sampling. The configuration of station-

ary bootstrapping procedure in this work is as follows. Assume a time series with N observations

{Xt}t∈[1,N ] is a strong stationary, weakly dependence time series of interest, we form blocks of samples

B = {Xi, ..., Xi+j−1}. Index i is a random variable uniformly distributed over [1, 2, ..., N ] and j is

geometric distributed random variable with parameter p. The block index i and block length j are
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Figure 12: Hedging effectiveness (HE) of portfolios with different risk minimization objectives evaluated by

the corresponding risk minimization objectives. The boxplots indicate the the median, upper quartile, lower

quartile, minimium and maximum of the bootstrapped HE. The HE of BTC-involved spots are significantly

higher than that of BTC-not-involved spots.

independent. For any index k which is greater than N , the sample Xk is defined to be Xk( mod N).

For each block, we calculate the hedging effectiveness with different risk measures mentioned above.

We choose p = 1/250, implying the average block length is 250. This average block length is chosen to

reasonably calculate ES and VaR. 100 blocks are drawn for each risk minimising objective and spot.

Figure 12 report the bootstrapped HE samples from the concatenated out-of-sample hedge portfolio

return. As expected, the BTC involving spots, the BTC, CRIX, BITX and BITW100, are well hedged

by the BTCF. The HEs of BTCF to other cryptos and indices are substantially lower than to the

BTC involving spots, but the consistency the performances across different risk reduction objectives

and HE evaluation remains.

Some HE bootstrapping samples are negative, it means that it is possible that introducing the

BTC futures increases risk of the portfolios. This is an unfavorable situation for investors if they want

to hedge cryptos with BTC futures. We do not recommend BTC futures being used to cross hedge

cryptos.
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BTC ETH ADA LTC XRP BITX CRIX BITW100 BITW20 BITW70

Assets
Mean % 0.3915 0.6819 0.9467 0.3227 0.2987 0.4308 0.4602 0.4683 0.6249 0.6353
Std % 4.4023 6.0103 6.699 6.4781 7.9843 4.5676 4.542 4.6174 5.5021 5.8155
MD % -25.9965 -32.0144 -26.8528 -37.5913 -52.7652 -27.022 -27.1385 -27.2694 -31.0092 -32.3453
MD date 2020-03-12 2020-03-12 2020-03-12 2021-05-19 2020-12-23 2020-03-12 2020-03-12 2020-03-12 2020-03-12 2021-05-19

Variance minimizing portfolios
Mean % 0.0215 0.2823 0.5617 -0.0871 -0.0123 0.0561 0.0812 0.0855 0.2429 0.2706
Std % 0.3221 3.8741 5.2722 3.9052 7.1537 0.9954 0.9183 1.1986 3.5846 3.8838
MD % -1.4393 -17.7421 -13.8687 -28.3029 -52.5236 -7.7567 -7.1025 -11.3866 -21.468 -23.9984
MD date 2020-11-30 2021-05-19 2021-01-08 2021-05-19 2020-12-23 2021-05-19 2021-05-19 2021-05-19 2021-05-19 2021-05-19

VaR 95% minimizing portfolios
Mean % 0.0253 0.3084 0.5726 -0.0742 0.0208 0.0562 0.0863 0.0846 0.2728 0.2847
Std % 0.3294 3.8944 5.2204 3.9145 7.152 0.993 0.9151 1.198 3.594 3.9133
MD % -1.5347 -19.175 -14.6974 -28.3672 -52.5667 -7.5639 -6.9744 -11.2582 -22.0733 -24.6513
MD date 2020-11-30 2021-05-19 2021-05-19 2021-05-19 2020-12-23 2021-05-19 2021-05-19 2021-05-19 2021-05-19 2021-05-19

VaR 99% minimizing portfolios
Mean % 0.0176 0.2977 0.5562 -0.0852 0.0352 0.0593 0.0738 0.0823 0.2499 0.2788
Std % 0.3270 3.9132 5.3466 4.1503 7.1658 1.0178 0.9695 1.2338 3.621 3.9257
MD % -1.5689 -18.6061 -15.4795 -29.0915 -52.5727 -8.0299 -7.0185 -11.8752 -21.6634 -24.5294
MD date 2020-11-30 2021-05-19 2021-05-19 2021-05-19 2020-12-23 2021-05-19 2021-05-19 2021-05-19 2021-05-19 2021-05-19

ES 95% minimizing portfolios
Mean % 0.0204 0.3082 0.5525 -0.0808 0.0176 0.0591 0.0777 0.0848 0.2608 0.2785
Std % 0.3234 3.889 5.2673 3.9829 7.1533 1.0065 0.9207 1.2125 3.6115 3.9157
MD % -1.5629 -18.7819 -14.9647 -28.4608 -52.5698 -7.6211 -6.9894 -11.1357 -21.543 -24.3474
MD date 2020-11-30 2021-05-19 2021-05-19 2021-05-19 2020-12-23 2021-05-19 2021-05-19 2021-05-19 2021-05-19 2021-05-19

ES 99% minimizing portfolios
Mean % 0.0148 0.308 0.5016 -0.1029 -0.02 0.0598 0.0835 0.0781 0.2538 0.266
Std % 0.3476 3.8954 5.404 4.1581 7.2887 1.0312 0.9461 1.264 3.6323 3.932
MD % -1.6225 -18.7625 -15.4481 -29.1727 -52.57 -7.7424 -7.0203 -11.9263 -21.9866 -24.4764
MD date 2020-11-30 2021-05-19 2021-05-19 2021-05-19 2020-12-23 2021-05-19 2021-05-19 2021-05-19 2021-05-19 2021-05-19

ERM k = 10 minimizing portfolios
Mean % 0.0223 0.3117 0.5722 -0.0512 0.0155 0.059 0.084 0.0853 0.2564 0.2818
Std % 0.3221 3.8679 5.359 3.8812 7.1579 1.0078 0.9087 1.2032 3.6009 3.9074
MD % -1.5242 -18.8729 -14.3885 -28.0879 -52.5689 -7.8581 -7.053 -11.1846 -21.592 -24.525
MD date 2020-11-30 2021-05-19 2021-01-08 2021-05-19 2020-12-23 2021-05-19 2021-05-19 2021-05-19 2021-05-19 2021-05-19

Table 4: First two moments, maximum downdown (MD) and date fo MD of assets and hedge portfolios out-of-sample return.
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5 Data Availability Statement

The data and codes that support the findings of this study are available in a github repository

https://bit.ly/3IVsMMK.

6 Conclusion and Outlook

We study the effectiveness of hedging cryptos and crypto indices with Bitcoin futures. To accomo-

date different risk appetites and scenarios, a variety of commonly used risk measures are considered

to determine the optimal hedge ratio. The risk measures comprise variance, value-at-risk at the con-

fidence levels 95% and 99%, expected shortfall 95% and 99%, and the exponential risk measure with

parameter k = 10.

At the time of writing, the crypto market is a vibrant and fast-developing market, causing cryptos

to have complex and time-changing dependence structures with the Bitcoin futures. As a consequence,

the dependence between the cryptos and the futures contract plays an important role in hedging as it

determines the distribution of the portfolio returns. We therefore consider various copulae, a flexible

statistical tool that separates modelling of the marginals and the dependence structure of multivariate

random vectors. To address the potential time-changing dependence, we periodically re-calibrate the

copula models and determine the best-fitting copula via AIC.

An extensive out-of-sample backtest suggests that the Bitcoin futures are consistently capable

of hedging BTC and BTC-involved indices, i.e., BITX, CRIX, and BITW100, under different risk

minimisation objectives and copula models. The mean-square errors (MSEs) and lower semi-variances

(LSVs) of the resulting portfolios are indistinguishably at a low level except for the Frank copula. On

the other hand, the AIC procedure favours the t-copula because it captures the tail dependence feature

of the data. Compared to the unhedged cases, the portfolios’ out-of-sample maximum drawdowns are

significantly reduced.

Contrarily, we observe diverse results of the capability of BTC futures to hedge other cryptos and

crypto indices that exclude Bitcoin. In general, ES 95% and VaR 95% perform better than their 99%

counterparts. In particular, minimising ES 99% leads to relatively high MSEs and LSVs regardless

of the copula in use. The ES 99% and VaR 99% even result in out-of-sample maximum drawdowns

that are higher than that of the 95% counterparts in some portfolios, for example in the ETH- and

LTC-BTCF portfolio. Therefore, we conclude that overly emphasising tail risks by choosing extreme

tail risk measures does not lead to a promising hedge in a cross-hedging setting.

The AIC procedure mainly favours the rotated Gumbel and the NIG factor copula in modelling

non-BTC relate cryptos and indices. This reflects the idiosyncratic nature of downward movements in

the crypto market. Interestingly, the best-fitting copula does not necessary lead to the best performing

portfolio in terms of MSE or LSV. For example, this is the case for ADA. We suspect this discrepancy

between the optimal copula selection and MSE-LSV results can be attributed to the static linear

nature of the hedge, as the sole hedge instrument is a futures contract.

Although copulae are flexible to model complex dependence structures by emphasising a number

of important features such as lower tail dependence and radial symmetry, the simple linear hedge is

very limited in its flexibility to address this complex dependence. Including liquidly traded derivatives

with non-linear payoffs, such as options, might be a possibility to improve the hedge quality for these

cryptos and portfolios.
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A Density of linear combination of random variables

Proposition 6 Let X = (X1, ..., Xd)
> be real-valued random variables with corresponding copula

density cX1,...,Xd, and continuous marginals FX1 , ..., FXd. Then, the pdf of the linear combination of

marginals Z = n1 ·X1 + ...+ nd ·Xd is

fZ(z) =
∣∣n−1

1

∣∣ ∫
[0,1]d−1

cX1,...,Xd (FX1(S(z)), u2, ..., ud) · fX1(S(z))du2...dud (10)

S(z) =
1

n1
· z − n2

n1
· F (−1)

X2
(u2)− ...− nd

n1
· F (−1)

Xd
(ud).

Proof. Let Z = n1 ·X1 + ...+ nd ·Xd and let A =


n1 n2 · · · nd

0 1 · · · 0
...

. . .
...

0 · · · 1

. Then,


Z

X2

...

Xd

 = A


X1

X2

...

Xd

 .

By transformation of the variables (Härdle and Simar, 2019)

fZ,X2,...,Xd(z, x2, ..., xd) = fX1,...,Xd

A−1


z

x2

...

xd


 · | detA−1|

=
∣∣n−1

1

∣∣fX1,...,Xd (S(z), x2, ..., xd) .

Let ui = FXi(xi) and by chain rule we have

fX1,...,Xd(x1, ..., xd) =
∂dFX1,...,Xd(x1, ..., xd)

∂x1...∂xd

= cX1,...,Xd(u1, ..., ud) ·
d∏
i=1

fXi(xi).

Therefore,

fZ,X2,...,Xd(z, x2, ..., xd) =∣∣n−1
1

∣∣ · cX1,...,Xd (FX1(S(z)), u2, ..., ud) · fX1{S(z)} ·
d∏
i=2

fXi(xi).

The claim (10) is obtained by integrating out x2, ...xd by substituting dxi = 1
fXi (xi)

dui.
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B Summary Statistics of Assets

Mean % Std % Skew Kurt MD % MD date ρ τ

Hedging Instrument
BTCF 0.3906 4.6312 -0.5060 4.4204 -26.9920 2020-03-12 1.0000 1.0000

Individual Cryptos
BTC 0.3915 4.4023 -0.5857 4.6565 -25.9965 2020-03-12 0.9975 0.9507
ETH 0.6819 6.0103 -0.2557 5.2646 -32.0144 2020-03-12 0.7712 0.5988
ADA 0.9467 6.6990 0.1661 2.3086 -26.8528 2020-03-12 0.6296 0.4825
LTC 0.3227 6.4781 -0.9935 5.3011 -37.5913 2021-05-19 0.8080 0.6113
XRP 0.2987 7.9843 0.5542 12.4882 -52.7652 2020-12-23 0.4510 0.4939

Crypto Indices with BTC Constituent
BITX 0.4308 4.5676 -0.8842 4.7222 -27.0220 2020-03-12 0.9769 0.8738
CRIX 0.4602 4.5420 -0.7952 4.7549 -27.1385 2020-03-12 0.9799 0.8769
BITW100 0.4683 4.6174 -0.9864 4.9381 -27.2694 2020-03-12 0.9674 0.8537

Crypto Indices without BTC Constituent
BITW20 0.6249 5.5021 -1.1518 5.2203 -31.0092 2020-03-12 0.7674 0.5883
BITW70 0.6353 5.8155 -1.1171 5.1926 -32.3453 2021-05-19 0.7525 0.5459

Table 5: Summary statistics of assets’ daily returns during the out-of-sample period, from 2019-10-21 to 2021-

05-27. The first four columns are the first four moments of assets’ daily returns. The fifth and sixth columns are

the maximum drawdown (MD) and the date of the MD. The last two columns are Pearson’s ρs and Kendall’s

τs between the assets and BTCF.
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C Summary Statistics of Hedged Portfolios

Mean % Std % Skew Kurt MD % MD date Variance

Individual Cryptos
BTC 0.0215 0.3221 -1.0119 3.1929 -1.4393 2020-11-30 0.0000
ETH 0.2823 3.8741 0.9469 7.1064 -17.7421 2021-05-19 0.0015
ADA 0.5617 5.2722 1.3634 4.4818 -13.8687 2021-01-08 0.0028
LTC -0.0871 3.9052 -0.3617 7.6239 -28.3029 2021-05-19 0.0018
XRP -0.0123 7.1537 1.1451 20.0236 -52.5236 2020-12-23 0.0043

Crypto Indices with BTC Constituent
BITX 0.0561 0.9954 -0.4204 13.2487 -7.7567 2021-05-19 0.0001
CRIX 0.0812 0.9183 -0.0027 14.3136 -7.1025 2021-05-19 0.0001
BITW100 0.0855 1.1986 -1.7440 22.2644 -11.3866 2021-05-19 0.0001

Crypto Indices without BTC Constituent
BITW20 0.2429 3.5846 -0.3063 4.1622 -21.4680 2021-05-19 0.0013
BITW70 0.2706 3.8838 -0.6490 4.6312 -23.9984 2021-05-19 0.0015

Table 6: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize variance.

Mean % Std % Skew Kurt MD % MD date VaR 5%

Individual Cryptos
BTC 0.0253 0.3294 -0.9725 3.4373 -1.5347 2020-11-30 0.0063
ETH 0.3084 3.8944 1.0243 7.4297 -19.1750 2021-05-19 0.0514
ADA 0.5726 5.2204 1.2981 4.2544 -14.6974 2021-05-19 0.0769
LTC -0.0742 3.9145 -0.3836 7.5384 -28.3672 2021-05-19 0.0622
XRP 0.0208 7.1520 1.1269 19.8930 -52.5667 2020-12-23 0.0683

Crypto Indices with BTC Constituent
BITX 0.0562 0.9930 -0.3117 12.4780 -7.5639 2021-05-19 0.0128
CRIX 0.0863 0.9151 0.0718 13.7915 -6.9744 2021-05-19 0.0092
BITW100 0.0846 1.1980 -1.6592 21.3725 -11.2582 2021-05-19 0.0164

Crypto Indices without BTC Constituent
BITW20 0.2728 3.5940 -0.3721 4.4896 -22.0733 2021-05-19 0.0546
BITW70 0.2847 3.9133 -0.6580 4.7874 -24.6513 2021-05-19 0.0626

Table 7: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize VaR 5%.
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Mean % Std % Skew Kurt MD % MD date VaR 1%

Individual Cryptos
BTC 0.0176 0.3270 -1.0405 3.3742 -1.5689 2020-11-30 0.0134
ETH 0.2977 3.9132 0.9547 7.2414 -18.6061 2021-05-19 0.1026
ADA 0.5562 5.3466 1.1362 3.9334 -15.4795 2021-05-19 0.1106
LTC -0.0852 4.1503 -0.7234 7.3208 -29.0915 2021-05-19 0.1030
XRP 0.0352 7.1658 1.1582 19.8506 -52.5727 2020-12-23 0.1387

Crypto Indices with BTC Constituent
BITX 0.0593 1.0178 -0.5331 13.3100 -8.0299 2021-05-19 0.0247
CRIX 0.0738 0.9695 -0.4729 13.6500 -7.0185 2021-05-19 0.0245
BITW100 0.0823 1.2338 -1.9365 23.1938 -11.8752 2021-05-19 0.0347

Crypto Indices without BTC Constituent
BITW20 0.2499 3.6210 -0.3866 4.3396 -21.6634 2021-05-19 0.0988
BITW70 0.2788 3.9257 -0.7635 5.1288 -24.5294 2021-05-19 0.1147

Table 8: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize VaR 1%.

Mean % Std % Skew Kurt MD % MD date ES 5%

Individual Cryptos
BTC 0.0204 0.3234 -1.0150 3.4423 -1.5629 2020-11-30 0.0101
ETH 0.3082 3.8890 1.0119 7.4077 -18.7819 2021-05-19 0.0782
ADA 0.5525 5.2673 1.2557 4.2423 -14.9647 2021-05-19 0.0984
LTC -0.0808 3.9829 -0.4957 7.2302 -28.4608 2021-05-19 0.0962
XRP 0.0176 7.1533 1.1411 19.9176 -52.5698 2020-12-23 0.1354

Crypto Indices with BTC Constituent
BITX 0.0591 1.0065 -0.3453 12.1335 -7.6211 2021-05-19 0.0215
CRIX 0.0777 0.9207 0.0164 13.5608 -6.9894 2021-05-19 0.0173
BITW100 0.0848 1.2125 -1.6397 19.7472 -11.1357 2021-05-19 0.0274

Crypto Indices without BTC Constituent
BITW20 0.2608 3.6115 -0.3555 4.2016 -21.5430 2021-05-19 0.0804
BITW70 0.2785 3.9157 -0.6949 4.8047 -24.3474 2021-05-19 0.0908

Table 9: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize ES 5%.
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Mean % Std % Skew Kurt MD % MD date ES 1%

Individual Cryptos
BTC 0.0148 0.3476 -0.8354 3.3054 -1.6225 2020-11-30 0.0234
ETH 0.3080 3.8954 0.9840 7.4947 -18.7625 2021-05-19 0.1299
ADA 0.5016 5.4040 1.1008 3.9607 -15.4481 2021-05-19 0.1463
LTC -0.1029 4.1581 -0.7757 7.4375 -29.1727 2021-05-19 0.1647
XRP -0.0200 7.2887 1.1121 18.8732 -52.5700 2020-12-23 0.2516

Crypto Indices with BTC Constituent
BITX 0.0598 1.0312 -0.4410 11.5863 -7.7424 2021-05-19 0.0411
CRIX 0.0835 0.9461 -0.0361 12.4047 -7.0203 2021-05-19 0.0350
BITW100 0.0781 1.2640 -1.9645 21.8836 -11.9263 2021-05-19 0.0593

Crypto Indices without BTC Constituent
BITW20 0.2538 3.6323 -0.4086 4.4462 -21.9866 2021-05-19 0.1282
BITW70 0.2660 3.9320 -0.7598 5.0050 -24.4764 2021-05-19 0.1535

Table 10: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize ES 1%.

Mean % Std % Skew Kurt MD % MD date ERM k=10

Individual Cryptos
BTC 0.0223 0.3221 -1.0008 3.4153 -1.5242 2020-11-30 0.0057
ETH 0.3117 3.8679 1.0345 7.5751 -18.8729 2021-05-19 0.0491
ADA 0.5722 5.3590 1.4203 4.6970 -14.3885 2021-01-08 0.0700
LTC -0.0512 3.8812 -0.2929 7.7022 -28.0879 2021-05-19 0.0616
XRP 0.0155 7.1579 1.1244 19.8583 -52.5689 2020-12-23 0.0787

Crypto Indices with BTC Constituent
BITX 0.0590 1.0078 -0.4427 13.0839 -7.8581 2021-05-19 0.0127
CRIX 0.0840 0.9087 0.0488 14.5501 -7.0530 2021-05-19 0.0100
BITW100 0.0853 1.2032 -1.6522 20.5562 -11.1846 2021-05-19 0.0153

Crypto Indices without BTC Constituent
BITW20 0.2564 3.6009 -0.3446 4.2152 -21.5920 2021-05-19 0.0503
BITW70 0.2818 3.9074 -0.6952 4.8745 -24.5250 2021-05-19 0.0557

Table 11: Summary statistics of out-of-sample daily returns of hedged portfolios that minimize ERM k = 10.
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Lu, Wolfgang Karl Härdle, January 2022.

IRTG 1792, Spandauer Strasse 1, D-10178 Berlin
http://irtg1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.


	Hedging cryptos with Bitcoin futures
	Citation

	tmp.1709003898.pdf.OVuiP

