
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2024

Hierarchical neural constructive solver for real-world TSP Hierarchical neural constructive solver for real-world TSP

scenarios scenarios

Yong Liang GOH

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Yining MA

Yanfei DONG

Mohammed Haroon DUPTY

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the OS and Networks Commons

Citation Citation
GOH, Yong Liang; CAO, Zhiguang; MA, Yining; DONG, Yanfei; DUPTY, Mohammed Haroon; and LEE, Wee
Sun. Hierarchical neural constructive solver for real-world TSP scenarios. (2024). KDD '24: Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, August
25-29. 884-895.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9334

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yong Liang GOH, Zhiguang CAO, Yining MA, Yanfei DONG, Mohammed Haroon DUPTY, and Wee Sun LEE

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9334

https://ink.library.smu.edu.sg/sis_research/9334

Hierarchical Neural Constructive Solver for Real-world TSP
Scenarios

Yong Liang Goh

Grabtaxi Holdings Pte Ltd &

National University of Singapore

Singapore

gyl@u.nus.edu

Zhiguang Cao

Singapore Management University

Singapore

zgcao@smu.edu.sg

Yining Ma

National University of Singapore

Singapore

yiningma@u.nus.edu

Yanfei Dong

National University of Singapore

Singapore

dyanfei@u.nus.edu

Mohammed Haroon Dupty

National University of Singapore

Singapore

haroon@nus.edu.sg

Wee Sun Lee

National University of Singapore

Singapore

leews@nus.edu.sg

ABSTRACT
Existing neural constructive solvers for routing problems have pre-

dominantly employed transformer architectures, conceptualizing

the route construction as a set-to-sequence learning task. However,

their efficacy has primarily been demonstrated on entirely random

problem instances that inadequately capture real-world scenarios.

In this paper, we introduce realistic Traveling Salesman Problem

(TSP) scenarios relevant to industrial settings and derive the fol-

lowing insights: (1) The optimal next node (or city) to visit often

lies within proximity to the current node, suggesting the potential

benefits of biasing choices based on current locations. (2) Effectively

solving the TSP requires robust tracking of unvisited nodes and

warrants succinct grouping strategies. Building upon these insights,

we propose integrating a learnable choice layer inspired by Hy-

pernetworks to prioritize choices based on the current location,

and a learnable approximate clustering algorithm inspired by the

Expectation-Maximization algorithm to facilitate grouping the un-

visited cities. Together, these two contributions form a hierarchical

approach towards solving the realistic TSP by considering both

immediate local neighbourhoods and learning an intermediate set

of node representations. Our hierarchical approach yields superior

performance compared to both classical and recent transformer

models, showcasing the efficacy of the key designs.

CCS CONCEPTS
• Computing methodologies → Machine learning; Neural
networks; Sequential decision making; Learning latent rep-
resentations.

KEYWORDS
neural constructive solver, traveling salesman problem, deep rein-

forcement learning

This work is licensed under a Creative Commons Attribution

International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3672053

ACM Reference Format:
Yong Liang Goh, Zhiguang Cao, Yining Ma, Yanfei Dong, Mohammed

Haroon Dupty, and Wee Sun Lee. 2024. Hierarchical Neural Construc-

tive Solver for Real-world TSP Scenarios. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24),
August 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3637528.3672053

1 INTRODUCTION
The Traveling Salesman Problem (TSP) is a classical combinatorial

optimization problem. Simply put, the TSP asks the following: given

a set of cities, what is the shortest route where a salesman can visit

every city only once and return back to his starting city? While

it is simple to state, the TSP is a very difficult problem known to

be NP-hard. Nevertheless, the TSP is a crucial problem to study, as

many parallel problems can be reduced to solving the TSP, such as

chip placement [20], the study of spin glass problems in physics

[17], DNA sequencing [4], and many others.

Given its prevalence across a multitude of domains, the TSP

has been extensively researched in the community. Particularly,

the main approaches can be broken down into exact methods and

approximate methods. Exact methods often materialize in the form

of mathematical programming. Some popular exact solvers, such

as Concorde [2], are developed based on linear programming and

cutting planes. Approximate methods tend to be in the form of ex-

pert heuristics. An example would be the Lin-Kernighan-Helsgaun

(LKH-3) algorithm, which utilizes heuristics and local search meth-

ods to update and improve initial solutions. As their names describe,

exact methods return the true optimal routes while approximate

ones return solutions often within some error bound of the op-

timal one. As the size of the problems grows, exact methods are

intractable due to the NP-hard nature of the problem.

More recently, the deep learning community has put much effort

into establishing practical neural solvers. These typically appear in

the form of deep reinforcement learning [3, 10, 15, 19, 21], which

presents a label-free approach to improve the models. This is pre-

ferred over supervised learning approaches (e.g, [14, 28]) since they

require large amounts of labelled data, which is often challenging

to obtain given the limited scalability of exact solvers.

It is important to note that learning-based solvers may perform

well on specific target distributions they are trained on, but often

suffer from poor generalization to other arbitrary instances. This

884

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637528.3672053
https://doi.org/10.1145/3637528.3672053
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3672053&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25–29, 2024, Barcelona, Spain Yong Liang Goh et al.

Figure 1: Comparing subset of TSP drawn from USA map
(first row) against a uniform distribution (second row). Left-
most plots show the base distribution. The subsets follow
certain underlying structures for the USA case compared to
completely random problems.

is acceptable if the target distributions reflect real-world cases.

However, prior works have mostly only been trained and tested

on problems derived from random synthetic distributions, which

may not accurately represent real-world applications. While some

learned solvers have been tested on realistic TSP instances, such as

those from the TSPLIB [27], a collection of TSP instances observed

in the real world, these realistic problem collections are typically

too small to train on. Therefore, there is a gap in studying the

performance of learning-based solvers in more realistic scenarios

from the real world.

In this paper, we propose and study a setup that closely mirrors

practical scenarios. Consider a logistic company with a large set

of 𝑀 fixed locations that it can deliver to. The company will do

many delivery trips to these locations but for each trip, only a small

subset𝑉 of the𝑀 locations, e.g., locations that placed orders for that

day, need to be visited. This observation motivates us to generate

realistic distributions as follows: select a set of 𝑀 fixed locations

from the real world to reflect real-world location distributions, and

build each problem instance by randomly sampling a subset of 𝑉

locations from the set of𝑀 locations.

We construct the locations using real-world datasets of cities

from the USA, Japan, and Burma. When state-of-the-art neural

solvers are trained in realistic settings, their performance may not

be satisfactory. To improve the neural solvers, we focus on exploit-

ing the nature of the node construction process. Existing neural

solvers typically construct TSP tours autoregressively, solving the

problem of visiting all unvisited cities starting from the current city

and returning to the starting city. This suggests learning more effec-

tive and generalizable representations of the decision information

regarding the current city and unvisited cities.

Specifically, we first observe that neural solvers often struggle to

select a proper next city in the neighbourhood of the current city

in our proposed realistic setup. This highlights the importance of

exploiting more effective decision information about the current

city. To this end, we propose to incorporate a customized hypernet-

work layer [11] that leverages the embedding of the current city to

modify the choice of the next city to visit.

Moreover, to obtain an improved representation of unvisited

cities, we design a hierarchical representation that divides the cities

into 𝐶 partitions and use an embedding to represent the unvisited

cities in each of the𝐶 partitions. We perform the partitioning using

a soft clustering method, inspired by the EM algorithm. Given

its differentiable property of EM, we can propagate the gradient

through the clustering to learn the encoder parameters effectively.

We showcase the effectiveness of the hypernetwork and the hier-

archical representation of unvisited cities in experiments with the

proposed realistic setting. We highlight the following contributions:

• We introduce a more realistic TSP setting using real-world

data to more convincingly demonstrate the effectiveness of

neural TSP solvers.

• We make the key observation that neural solvers often strug-

gle with node selection within a small locality, and we design

a hypernetwork layer to emphasize local choices.

• We further exploit the nature of solving structured TSPs by

representing the set of unvisited cities with multiple key

embeddings using a differentiable soft clustering algorithm

instead of conventional simplistic pooling methods.

2 RELATEDWORK
2.1 Constructive Neural Solvers
Deep reinforcement learning forms the hallmark of training con-

structive neural solvers. Early works from [3] proposed to use the

Pointer Network [32] based on the sequence-to-sequence architec-

ture in [29] to solve TSP and Knapsack problems. They employ

an actor-critic approach and achieved strong results on the TSP.

Follow-up works from [26] further improve the performance of the

Pointer Network.

Following on from this, the transformer network based on atten-

tion [31] was proposed by [19] to solve the TSP, Capacited Vehicle

Routing Problem (CVRP) and the Orienteering Problem (OP). Pri-

marily, the work showed that one can train a neural solver using the

REINFORCE algorithm [33] and a simple greedy rollout of the net-

work with a lagging baseline. Since then, multiple works based on

the same architecture have been proposed to improve the predictive

power of such solvers further [36]. POMO [21] was introduced and

observed that constructive solvers were limited by their starting

nodes. Hence, to effectively explore the search space of solutions,

one should use all nodes as starting nodes, effectively constructing

a simple beam search. Additionally, they showed that a stable base-

line can be found in the average of all solutions. Sym-NCO [15] was

proposed to exploit the symmetry of TSP by introducing symmetry

losses to regularize the transformer network. Recently, ELG was

introduced by [10] that defined a local learnable policy based on a

k-Nearest Neighbor graph. They exemplified the generalizability

of the network on large CVRP instances.

2.2 Improvement Neural Solvers
Apart from constructive methods, another approach to solving the

TSP looks at improvement solvers. This methodology is inspired

885

Hierarchical Neural Constructive Solver for Real-world TSP Scenarios KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 2: POMO model making a minor mistake with a poor
selection of a local node

by algorithms such as 2-opt, whereby the solver first starts with a

complete route, and a heuristic is then used to select edges to delete

or add so as to edit the solution. Such methods are measured based

on how quickly they can reach a strong solution. Work such as [7]

uses neural networks to learn the 2-opt heuristic for improvement,

while [34] uses the transformer to select node pairs for swaps for

the TSP. Ma et al. [24] then extended the transformer network to

learn node and edge embeddings separately, which is then upgraded

for pickup and delivery problems in [23] and flexible k-opt in [22],

pushing the iterative solver’s performance further.

2.3 Search-based techniques
The previous two approaches are based on some form of learning-

based search: constructive solvers try to perform a global search

by learning heuristics entirely from data, whereas iterative solvers

learn to guide local search techniques instead. Besides these, there

is a class of search-based techniques that involve applying search

during inference. Efficient Active Search (EAS) was proposed by

[12] to introduce lightweight learnable layers at inference that

could be tuned to improve the predictive power of a model on test

samples. Other works such as [9] showcase that one can leverage a

small pre-trained network and combine it with search techniques

such as Monte-Carlo Tree Search (MCTS) [5] so as to solve large-

scale TSPs. The work in [6] then combined both MCTS and EAS to

improve the search capabilities further. Lastly, another work [18]

showcased how one could combine dynamic programming with a

pre-trained neural network to scale the TSP to 10,000 nodes.

Previous works attempt to regularize the networks via symmetry

or scale the solver to larger problems. However, they essentially are

still based on transformer models trained on arbitrary distributions.

Apart from ELG, these works do not consider the impact of local

choices nor explore further how to represent unvisited cities better,

which are critical aspects of solving the TSP in our view.

3 OUR APPROACH
Generally, we find that neural solvers tend to make two classes of

errors in route construction compared to the optimal solution for

such practical scenarios. The first class often appears as a minor

error, where a poor decision is made in a local neighbourhood, as

shown in Figure 2. This results in a sub-optimal route because a

local choice is not picked first. The second class tends to appear

Figure 3: POMO model making a major mistake by not visit-
ing nodes that are near it, causing cross-cluster routes that
are inefficient

in problems with more structure, where the agent fails to visit all

reasonable nodes within a local cluster and has to backtrack to the

area, exemplified in Figure 3. This tends to give solutions that are

significantly poorer than optimal.

Our approach seeks to tackle these two errors more effectively.

We propose two main architectural improvements to the base trans-

former model to address these issues. Firstly, we propose a learnable

local choice decoder that accentuates certain choices based on the

agent’s current location (and hence locality). Secondly, we propose

a differentiable clustering algorithm to learn a set of representa-

tions to capture and summarize the set of remaining cities. Our full

approach is illustrated in Figure 4.

3.1 Recap: Constructive Neural Solvers
In this subsection, we review previous works in well-known con-

structive neural solvers such as the attention model [19] and the

POMO model [21]. The problem can be defined as an instance 𝑠 on

a fully connected graph of 𝑛 nodes, where each node represents

a city. Each node 𝑛𝑖 where 𝑖 ∈ {1, ..., 𝑛} has features 𝑥𝑖 , typically
the 2D coordinate. A solution is defined as a TSP tour, and is stated

as a permutation of the nodes given by 𝜏 = (𝜏1, ..., 𝜏𝑛), such that

𝜏𝑡 ∈ {1, ..., 𝑛}. Note that since the tour does not allow backtracking,

𝜏𝑡 ≠ 𝜏𝑡 ′ ,∀𝑡 ≠ 𝑡 ′. The formulation yields the following policy:

𝑝𝜃 (𝜏 |𝑠) =
𝑛∏
𝑡=1

𝑝𝜃 (𝜏𝑡 |𝑠, 𝜏1:𝑡−1) (1)

Since themodel is trained via reinforcement learning, the policy’s

action thus refers to the selection of the next node 𝜏𝑡 given the

current state. The entire policy 𝑝𝜃 is parameterized with a neural

networkwhich involves both an encoder and a decoder. The encoder

is a standard transformer model represented as such

h̃𝑖 = LN
𝑙 (h𝑙−1𝑖 +MHA

𝑙
𝑖 (ℎ

𝑙−1
1
, ..., ℎ𝑙−1𝑛)) (2)

h𝑙𝑖 = LN
𝑙 (h̃i + FF(h̃i)) (3)

where ℎ𝑙
𝑖
is the embedding of the 𝑖-th node at the 𝑙-th layer, 𝑑

the dimension size of the embeddings, MHA is the standard multi-

headed attention layer [31], LN is a layer normalization function,

and FF is a simple feed-forward multi-layer perceptron (MLP). Each

node’s embeddings go through a total of 𝐿-layers before being

passed into a decoder.

886

KDD ’24, August 25–29, 2024, Barcelona, Spain Yong Liang Goh et al.

Figure 4: Overview of our proposed architecture. Given a TSP instance, we learn contextual embeddings of the cities in a set of
cluster representations with an EM-inspired differentiable technique. In addition, our policy is dynamically adapted with a
local hypernetwork which emphasises the completion of local cluster before moving on to new distant cities.

For the decoder, the solution is produced in an autoregressive

fashion. In this case, at time step 𝑡 , the decoder receives the follow-

ing

h(𝑐) = h𝐿
last
+ h𝐿

start
(4)

where h(𝑐) is known as a contextual embedding. In this instance, the

context given is the sum of the 𝐿-th encoder layer’s representation

of the current node and the starting node. This is then first passed

through a multi-headed attention layer where visited nodes are

masked, followed by a single-headed attention layer for decision-

making. In this decision layer, we obtain the following

𝑄 =𝑊𝑄 (𝐻), 𝐾 =𝑊𝐾 (𝐻),𝑉 =𝑊𝑉 (𝐻) (5)

where 𝐻 is the set of all node embedding after the decoder’s multi-

headed attention layer. With this, we compute the compatibility

of the query with all nodes together with a mask, where the mask

indicates previously visited nodes. This ensures that the decoder

cannot pick an already visited node. Mathematically, we use the

following attention mechanism

𝑎 𝑗 =

{
𝑈 · tanh(𝑄𝐾

⊤
√
𝑑
) 𝑗 ≠ 𝜏𝑡 ′ ,∀𝑡 ′ < 𝑡

−∞ otherwise

(6)

where we clip the values between [−𝑈 ,𝑈] using a tanh function

as with works in [3, 19, 21]. These values are then normalized with

a simple softmax function, giving us the following decision-making

policy:

𝑝𝑖 = 𝑝𝜃 (𝜏𝑡 = 𝑖 |𝑠, 𝜏1:𝑡−1) =
𝑒𝑎 𝑗∑
𝑗 𝑒
𝑎 𝑗

(7)

Finally, to train the model, the REINFORCE algorithm [33] is

used, where works such as POMO [21] and Sym-NCO [15] use

a shared baseline of all starting points. Concretely, the expected

return 𝐽 is maximized with gradient ascent and is approximated by

∇𝜃 𝐽 (𝜃) ≈
1

𝑁

𝑁∑︁
𝑖=1

(𝑅(𝜏𝑖) − 𝑏𝑖 (𝑠))∇𝜃 log𝑝𝜃 (𝜏𝑖 |𝑠) (8)

where𝑅(𝜏𝑖) is the reward of permutation𝜏𝑖 , the tour length. 𝑝𝜃 (𝜏𝑖 |𝑠)
=
∏𝑇
𝑡=1 𝑝𝜃 (𝑎𝑖𝑡 |𝑠, 𝑎𝑖1:𝑡−1) is the product of action probabilities for the

trajectory, where actions refer to the selection of the next node to

move to, 𝑠 refers to the state of the problem, the set of all nodes,

current node, and starting node. The baseline is calculated as the

average return of all starting points, given by

𝑏𝑖 (𝑠) = 𝑏
shared

(𝑠) = 1

𝑁

𝑁∑︁
𝑗=𝑖

𝑅(𝜏 𝑗)∀𝑖 (9)

3.2 Improving local decision making with the
Choice Decoder

More often than not, good selections for the TSP tend to lie within

the locality of the current position. In the standard transformer

architecture, the decoder attempts to capture this by using the

current node’s representation in a single-headed attention layer, as

shown in Equations 6 and 7. In fact, Equation 6 is essentially a kernel

function between the current querying node and the candidate

nodes, an observation made in [30]. Effectively, we can view the

compatibility score as

𝜙 (𝑄,𝐾) = 𝑈 · tanh(𝑄𝐾
⊤
√
𝑑
) (10)

Given that we aim to focus more on the current node’s vicin-

ity and features, we propose to generate a set of attention weights
based on the current embeddings. This aims to amplify or nullify

the compatibility scores further by conditioning it on the current

node. Hypernetworks [11] are small neural networks designed to

generate a set of weights for a main network. Its goal is to serve as

a form of relaxed weight sharing. This approach allows the hyper-

network to take as input some information about the problem, such

as its structure, and adapt the main network’s weights towards

the problem. Inspired by this approach, we construct the set of

attention weights using an MLP as a hypernetwork, with the input

being the current node’s embedding. Concretely, we modify the

compatibility function as follows:

𝑎 𝑗 = 𝑈 · tanh(
(𝑄𝑊choice)𝐾⊤√

𝑑
) (11)

such that

𝑊choice = MLP(𝑄),𝑊choice ∈ R𝑑𝑥𝑑 (12)

Effectively,𝑊choice serves as a set of learnable conditional pa-

rameters that serve to alter the compatibility scores based on cur-

rent embeddings. However, implementing this as a full matrix is

887

Hierarchical Neural Constructive Solver for Real-world TSP Scenarios KDD ’24, August 25–29, 2024, Barcelona, Spain

extremely expensive. Instead, we realize𝑊choice as a diagonal ma-

trix, effectively reducing the compatibility score function to

𝜙 (𝑄,𝐾 |𝑄) = 𝑎 𝑗 = 𝑈 · tanh(
(𝑄 ∗𝑊choice)𝐾⊤√

𝑑
) (13)

where ∗ is the element-wise product. Inherently,𝑊choice now re-

duces to a set of learnable scalars which serve to modify the compat-

ibility scores between𝑄 and𝐾 . Additionally, these learnable scalars

are now conditioned upon𝑄 , the current node, since it is generated

via the MLP. The complexity of the MLP also now reduces from

producing an output of R
𝑑×𝑑

to R
𝑑
.

3.3 Exploiting structure with Hierarchical
Decoder

In its current state, the decoder models the TSP as a set-to-sequence

function. A key aspect of the input is the contextual embedding,

h(𝑐) . This embedding serves to represent the current state the

model is in and is often a combination of the starting node, current

node, and some global representation of the problem. For the global

representation, works such as [19] and [21] use an average of all

node embeddings, while others such as [13], maintain an average of

all visited nodes so far. Essentially, all of these approaches attempt

to capture various nuances of the TSP.

However, for realistic problem settings, it is important to exploit

the structure of the distribution of the cities. A single global rep-

resentation would not be effective enough to capture the intricate

correlations present between the cities. One notable and ubiqui-

tous case is the presence of cluster patterns wherein certain cities

are located near to each other while being distant to others. This

clustering pattern, if captured within the global and contextual

representation, can potentially provide the model with important

clues to determine the next city to visit. Thus, for such problems,

we propose to maintain a set of 𝐶 representations that are able to

summarize the set of unvisited cities left, instead of a simple single

representation. We postulate that this is meaningful as structured

problems have frequent cities in fixed areas of the map, and being

able to identify if a node belongs to a certain area could be beneficial

to the decision-making process.

Prior works in other domains have shown the efficacy of cluster

construction in applications such as node classification [8]. In this

work, we wish to group all cities into 𝐶 representations. To this

end, we design the following layer inspired by the Expectation-

Maximization (EM) algorithm [25]. We first briefly review the EM

algorithm for the Gaussian Mixture Model (GMM). Let 𝜃 = {𝜋𝑘 , 𝜇𝑘 }
denote the set of parameters, the coefficients of Gaussians 𝜋 and

its associated means 𝜇 (covariance Σ𝑘 is assumed to be known),

X = {x(𝑖) } denote the set of data points, and Z = {𝑧 (𝑖) } denote
the set of latent variables associated with the data. The maximum-

likelihood objective is given by

log 𝑝 (X|𝜋, 𝜇) =
𝑁∑︁
𝑖=1

log

𝐾∑︁
𝑧 (𝑖)=1

𝑝 (x(𝑛) |𝑧 (𝑛) ; 𝜇)𝑝 (𝑧 (𝑛) |𝜋) (14)

In general, Equation 14 yields no closed-form solution. Additionally,

it is non-convex, and its derivatives are expensive to compute. Since

latent variable 𝑧 (𝑖) exists for every observation and we have a sum

inside a log, we look at the EM algorithm to solve this. Typically, the

EM algorithm involves two steps: the E-step computes the posterior

probability over 𝑧 given the current parameters, and the M-step,

which assumes that given that the data was generated with 𝑧 (𝑖) = 𝑘 ,
finds the set of parameters that maximizes this. Effectively, for a

standard GMM, this yields the following E-step, given an initial set

of parameters 𝜃 :

𝛾𝑘 = 𝑝 (𝑧 (𝑖) = 𝑘 |x(𝑖) ;𝜃old) = 𝜋𝑘N(x|𝜇𝑘)∑𝐾
𝑗=1 𝜋 𝑗N(x|𝜇 𝑗)

(15)

where 𝛾𝑘 can be viewed as the responsibility of cluster 𝑘 towards

data point x(𝑖) . Then, for GMMs, the following update equations

can be applied in the M-step:

𝜇𝑘 =
1

𝑁𝑘

𝑁∑︁
𝑖=1

𝛾
(𝑖)
𝑘

x(𝑖) (16)

𝜋𝑘 =
𝑁𝑘

𝑁
,where

𝑁∑︁
𝑖=𝑖

𝛾
(𝑖)
𝑘

(17)

Essentially, Equation 15 estimates the contribution of each Gauss-

ian model given the current set of parameters. While Equations 16

and 17, highlight closed-form update equations for the Gaussian

parameters.

Now, suppose a TSP instance drawn from a fixed map can be

represented efficiently with 𝐶 latent representations. Since we are

dealing with subsets of problems from the same space, these 𝐶

representations can be fixed and learnable. Let C ∈ R𝑁𝑐×𝑑
denote

this set of representations, where we have 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑁𝑐
}. We

propose to learn and update these representations by considering a

mixture model, where the latent variables are modelled by these

latent embeddings. Similar to the EM algorithm, we produce a set

of mixing coefficients using an attention layer and its attention

weights. Concretely, our soft clustering algorithm estimates its

mixing coefficients via the attention mechanism, and using these

scores, the clusters are then updated with a weighted sum of the

embeddings. This can be shown as

ˆℎ𝑖 =𝑊𝐻ℎ𝑖 (18)

𝑐 𝑗 =𝑊𝐶𝑐 𝑗 (19)

𝜋𝑖, 𝑗 = softmax(
ˆℎ𝑖𝑐 𝑗
⊤

√
𝑑
) (20)

𝑐 𝑗 =
∑︁
𝑖

𝜋𝑖, 𝑗ℎ𝑖 (21)

whereΠ is thematrix containing all coefficients 𝜋𝑖, 𝑗 ,𝑊𝐻 and𝑊𝐶 are

parameters for the attentional scores, and 𝐶 is the set of learnable

embeddings for the distribution. Given a single set of parameters

in the attention layer, the embeddings 𝐻 and 𝐶 are passed through

this same layer a total of 𝐵 times iteratively, mimicking a "rollout"

of a soft clustering algorithm of E-steps and M-steps within each

iteration. Loosely, we can see that Equation 20 resembles a similar

calculation of the E-step, wherein we use a set of parameters to

estimate the coefficients instead of minimizing for the Euclidean

distance in the GMM case. Equation 21 is similar to the M-step of

GMMs, where we update the centers (in our case the embeddings

are the latent variables) with a weighted sum of the data.

888

KDD ’24, August 25–29, 2024, Barcelona, Spain Yong Liang Goh et al.

Once we have the set of 𝐶 embeddings, we update the represen-

tation at every step of decoding by subtracting a weighted sum of

the current node’s embedding; this computes the weighted sum of

embeddings of unvisited cities, instead of all cities. Thus, at time

step 𝑇 , if the agent is current at node 𝑖 , we update 𝐶 via

𝑐′𝑗 = 𝑐 𝑗 − (𝜋𝑖, 𝑗 ∗ ℎ𝑖),∀𝑗 ∈ 𝑁𝑐 (22)

Then, we now construct a new context embedding such that

h(𝑐) =𝑊combine [ℎ𝐿last, 𝑐1, 𝑐2, ..., 𝑐𝑁𝑐
] + h𝐿

first
(23)

where [·] is the concatenation operation, and𝑊combine is a simple

linear layer to combine the embeddings. We keep h𝐿
first

separate so

as to preserve the importance of the starting node. As the decoder

constructs the solutions, the 𝐶 embeddings get updated along the

way, maintaining a small set of unvisited cities so as to keep track

of the solution.

Algorithm 1 Psuedo code of soft clustering algorithm

1: procedure CLUSTER(encoder embeddings 𝐻 , number of cen-

ters 𝑁𝑐 , number of iterations 𝐵, initial embeddings 𝐶 , embed-

ding size 𝑑)

2: for 𝑏 ← 1 to 𝐵 do
3: 𝐻̂ ←𝑊𝐻 (𝐻)
4: 𝐶 ←𝑊𝐶 (𝐶)
5: 𝜋 = softmax(𝐻̂𝐶⊤√

𝑑
) ⊲ Compute attention scores

6: 𝐶 =
∑
𝑖 𝜋𝑖ℎ𝑖 ⊲ Update the centers with data

7: 𝐶out = 𝐶 +𝐶 ⊲ Residual connection

8: 𝐶 = Norm(𝐶out) ⊲ Layer normalization

9: end for
10: return 𝐶
11: end procedure

Algorithm 2 Psuedo code of one step of decoding in the hierarchi-

cal neural constructive solver

1: function UPDATE(current node embedding ℎ𝑖 , cluster centers

𝐶 , cluster weights 𝜋)

2: 𝑐′
𝑗
= 𝑐 𝑗 − (𝜋𝑖, 𝑗 ∗ ℎ𝑖),∀𝑐 𝑗 ∈ 𝐶

3: return 𝐶′

4: end function
5: procedure DECODE(encoder embeddings 𝐻 , cluster centers

𝐶 , cluster weights 𝜋 , starting points 𝑃)

6: 𝐶′ ← update(ℎlast,𝐶, 𝜋) ⊲ Remove visited embedding

7: h(𝑐) ←𝑊combine [ℎlast, 𝑐1, 𝑐2, ..., 𝑐𝑁𝑐
] + h𝐿

first

8: 𝑊𝑐ℎ𝑜𝑖𝑐𝑒 ← MLP(ℎlast) ⊲ Hypernetwork

9: h′ (𝑐) ← MHA(h(𝑐) , 𝐾,𝑉)
10: 𝑎 𝑗 = 𝐶 · tanh((𝑄𝑊choice)𝐾⊤√

𝑑
)

11: 𝑢 𝑗 ← softmax(𝑎 𝑗) ⊲ Create action probabilities

12: 𝑝𝑖 ← sample(𝑢)
13: return 𝑖, 𝑝𝑖 ⊲ Return the selected node and its probability

14: end procedure

In totality, our approach forms a hierarchy in the decision-making

process; an intermediate level of 𝐶 embeddings represent the set of

Table 1: List of augmentations suggested by [21]

𝑓 (𝑥,𝑦)
(𝑥,𝑦) (𝑦, 𝑥)
(𝑥, 1 − 𝑦) (𝑦, 1 − 𝑥)
(1 − 𝑥,𝑦) (1 − 𝑦, 𝑥)
(1 − 𝑥, 1 − 𝑦) (1 − 𝑦, 1 − 𝑥)

Figure 5: World maps used for experiments

unvisited cities and their groupings, and immediate local decision-

making is learnt and skewed by𝑊choice to favour decisions based

on current positions. Algorithms 1 and 2 highlights the overall flow

of our approach.

4 EXPERIMENTAL SETUP
4.1 Data Generation
We present three different benchmarks for comparison. For all sce-

narios, we look at TSP-100 problems. Firstly, we generate random

uniform data on a [0, 1] square and a fixed test set of 10, 000 in-

stances. This is done to show if the addition of other layers interferes

with the base performance of the transformer model.

To generate realistic data, we sample instances from 3 different

countries, available at [1] and shown in Figure 5. Namely, they are

• USA13509 - 13,509 cities across the United States of America,

each with a population >500

• BM33708 - 33,708 cities across the country of Burma

• JA9847 - 9,847 cities across the country of Japan

Each country is first normalized to a [0, 1] square. Then, at every
training epoch, we randomly sample problems of size 100 from the

map. Naturally, clusters that are denser across the country will be

sampled more frequently. A test set size of 10, 000 samples is also

drawn and held aside for evaluation. Each test set is fully solved

via Concorde [2] to get the optimal length of each tour. We define

1 epoch to be 100, 000 samples, and the models are trained for 200

epochs to prevent overfitting. In totality, the model sees 20, 000, 000

different samples. Thirdly, we define a limited data setting. This

mimics a typical practical problem where the company does not

have unlimited access to data. We first define a small dataset of

50, 000 samples for such a setting. Based on the experiment size,

we sample the necessary amount of data. Likewise, the models are

tested on the same test set of 10, 000 samples.

Additionally, to show the generality of our approach beyond

the logistics domain, we include the PCB3038 dataset from TSPLib,

where the goal is to find the shortest path across a circuit board

layout. Here, we can view the problem as such: from all possible

889

Hierarchical Neural Constructive Solver for Real-world TSP Scenarios KDD ’24, August 25–29, 2024, Barcelona, Spain

holes the board can have, and given a subset of these holes, what

is the optimal path of traversal? Solving such problems with high

degrees of accuracy leads to cost savings in manufacturing and

improved yields.

4.2 Benchmark Models
We compare our approach to the following constructive neural

solvers: POMO [21] the classical transformer that forms the basis

for many follow-up works, Sym-NCO [15] a follow-up work from

POMO that improves neural solvers by exploiting problem sym-

metry, and ELG [10] a recent work that also focuses on locality

by defining a separate local policy based on its k-Nearest Neigh-

bors. All models are trained based on the POMO shared baseline.

It should be noted that in ELG, the authors introduced a different

training algorithm. Since we wish to compare the efficacy of the

architectural contributions, we train the ELG model using POMO.

We reimplement all models and ran on the proposed dataset for our

experimental results.

4.3 Hyperparameters
Since the neural models all share the same underlying backbone

POMO transformer model, we retain the same set of hyperparame-

ters across them to ensure the contributions are purely architectural.

We utilize 6 layers of the transformer encoder and 2 layers of the

transformer decoder. All models are trained for 200 epochs, with

100,000 episodes per epoch and a 1𝑒−4 learning rate using the Adam
optimizer [16]. Gradient clipping is set to [−10, 10] for all models.

For ELG, we used their recommended 50-nearest neighbours. As

for our approach, we set 𝑁𝑐 = 5 embeddings and 𝐵 = 5 iterations

for the hierarchical approach by using a validation set of 1,000

samples for verification. Additional details for hyperparameters

can be found in Appendix A.1.

4.4 Performance Metric
All models are measured by the optimality gap, the percentage gap

between the neural model’s tour length and the optimal tour length.

This is given by

𝑂 = (
1

𝑁

∑𝑁
𝑖 𝑅𝑖

1

𝑁

∑𝑁
𝑖 𝐿𝑖

− 1) ∗ 100 (24)

where 𝐿𝑖 is the tour length of test instance 𝑖 computed by Concorde.

Also, we perform instance augmentation, just like in POMO, which

involves various translations and reflections across the 𝑥 and𝑦 axes

[21], as shown in Table 1.

5 RESULTS
5.1 Performance on Uniform Random

Distribution
Table 2 highlights the overall performance of the models on the

classic uniform random sampling dataset. Most models have solid

performance, with augmentation playing a prominent role in boost-

ing the predictive power. Our model and ELG also show the impor-

tance of having some form of local feature to improve the decision-

making process. The addition of our unvisited city tracking via

soft clustering provides additional boost to the model’s predictive

power since we can identify locations on the square.

5.2 Performance on Structured Distributions
Table 3 showcases the different model’s performance on TSP100

instances drawn from various countries. Our model has a clear

advantage in the USA and Japan, with a narrow margin in Burma.

Interestingly, we also see that augmentation has minimal effect on

increasing the solver’s performance, except for the case of Sym-

NCO. It is likely because the maps are no longer symmetric in

nature, and simple transformations do not improve the chances

of finding a very different route. For Sym-NCO, we see that since

it’s specifically trained to exploit augmentations by considering all

symmetries during training, its strong performance only appears

when it can perform those transformations.

5.3 Performance on Varied Sizes
Figure 6 compares the model’s performance between the complete

set of training, 50,000 fixed samples, and 10,000 fixed samples. We

can see that the model performance degrades as expected once data

is limited. However, the ranking of the models is still similar at

the 50,000 sample mark. Interestingly, reducing the dataset further

to 10,000 samples sees ELG becoming the top neural constructive

solver. We attribute ELG’s strong performance on limited data to

its local policy scheme. ELG uses well-crafted local features in the

form of polar coordinates to create their local policy. The direct use

of these features allows their local policy to learn valuable features

to alter the action probabilities easily with less data. It should be

noted that our choice hypernetwork is possibly a larger function

class that also encompasses this approach. Hence, our model can

learn a better overall function when more data is present.

5.4 Performance on PCB3038
Table 5 showcases the performance of the models on the PCB3038

TSPLib dataset. Evidently, the dataset is no longer as symmetric as

before, since Sym-NCO struggles to greatly improve upon POMO.

Instead, some local features are important to have, as displayed by

ELG and our model’s improvement over POMO. Since our approach

is a superset function of ELG, it can learn a better-performing solver,

significantly improving upon POMO.

5.5 Evolution of Embeddings
Soft clustering the nodes in the embedding space is a crucial part of

our overall approach. Therefore, we evaluate if our algorithm indeed

is able to cluster the nodes into a set of meaningful clusters as the

training progresses. Specifically, we conduct a 2D t-SNE plot of the

node and cluster embeddings during the training process. Figure 7

evidently shows that as the training progresses, the cluster centroid

embeddings are better able to separate the node embeddings in the

latent space. This plausibly leads to a better representation of the

unvisited embeddings and hence the problem space, allowing the

model to identify the groups of nodes so as to select similar ones

first.

890

KDD ’24, August 25–29, 2024, Barcelona, Spain Yong Liang Goh et al.

Table 2: Model performance on 10,000 generated samples from the uniform random distribution. Best model in bold.

Model Tour Length Opt. Gap (%) Aug. Tour Length Aug. Opt Gap (%)

Concorde 7.7649 - 7.7649 -

POMO 7.8824 1.5134% 7.8114 0.5997%

Sym-NCO 7.9106 1.8772% 7.8148 0.6425%

ELG 7.8223 0.7393% 7.7861 0.2734%

Ours 7.8145 0.6397% 7.7809 0.2063%

Table 3: Performance of various models on realistic TSP100 instances from 3 different countries. Best models are in bold.

Dataset Model Tour Length Opt. Gap (%) Aug. Tour Length Aug. Opt. Gap (%) Inference Time (10k samples)

Concorde 5.6209 - 5.6209 - 56 min 37 sec

POMO 5.6958 1.3334% 5.6922 1.2677% 2 min 46 sec

USA13509 Sym-NCO 5.7022 1.4650% 5.6604 0.7219% 2 min 49 sec

ELG 5.6660 0.8022% 5.6641 0.7691% 2 min 58 sec

Ours 5.6548 0.6024% 5.6533 0.5762% 3 min 03 sec

Concorde 3.5341 - 3.5341 - 52 min 55 sec

POMO 3.5621 0.7926% 3.5620 0.7893% 2 min 38 sec

JA9857 Sym-NCO 3.5670 0.9315% 3.5497 0.4421% 2 min 40 sec

ELG 3.5576 0.6659% 3.5574 0.6596% 2 min 49 sec

Ours 3.5438 0.2741% 3.5435 0.2670% 2 min 51 sec

Concorde 5.0019 - 5.0019 - 59 min 22 sec

POMO 5.0823 1.6060% 5.0746 1.4540% 2 min 55 sec

BM33708 Sym-NCO 5.0561 1.0828% 5.0354 0.6683% 2 min 58 sec

ELG 5.0587 1.1343% 5.0528 1.0162% 3 min 02 sec

Ours 5.0383 0.7261% 5.0328 0.6166% 3 min 06 sec

Table 4: Ablation study on the USA13509 map

Dataset Model Tour Length Opt. Gap (%) Aug. Tour Length Aug. Opt. Gap (%)

POMO only 5.6958 1.3334% 5.6922 1.2677%

POMO + Choice 5.6676 0.8300% 5.6659 0.7997%

USA13509 POMO + Choice Free 5.7381 2.1038% 5.7311 1.9791%

POMO + Choice + Average Tracking 5.6648 0.7807% 5.6638 0.7633%

POMO + Choice + Soft Clustering Tracking 5.6548 0.6024% 5.6533 0.5762%

Table 5: Model performance on 10,000 on the PCB3038 dataset to show efficacy of models on problems from domains beyond
logistics.

Dataset Model Tour Length Opt. Gap (%) Aug. Tour Length Aug. Opt. Gap (%)

Concorde 7.5866 - 7.5866 -

POMO 7.7952 2.7494% 7.6984 1.4743%

PCB3038 Sym-NCO 7.7702 2.4201% 7.6776 1.1996%

ELG 7.6882 1.3393% 7.6387 0.6876%

Ours 7.6417 0.7236% 7.6074 0.2746%

5.6 Ablation Studies
As shown in Table 4, we perform ablation studies for our network

and consider three different variations. Firstly, POMO + Choice

adds only the local choice layer based on the hypernetwork. Sec-

ondly, POMO + Choice Free replaces the local choice hypernetwork

layer with free parameters, meaning that the weights are no longer

conditioned on the current node’s embedding but rather allowed to

891

Hierarchical Neural Constructive Solver for Real-world TSP Scenarios KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 6: Optimality gaps across various dataset sizes (lower is better). The x-axis dictates themodel types, and the y-axis denotes
the optimality gap. The first row showcases standard data input, and the second shows data after augmentation. Countries are
USA, Japan, and Burma, from left to right. Numerical details can be found in Appendix A.2.

Figure 7: 2D t-SNE plot of cluster centroids (in blue) and a set
of node embeddings (in orange) as the training progresses.
Over time, the centroids surround and segregate the embed-
dings better.

learn freely. Thirdly, POMO + Choice + Average Tracking removes

the soft clustering layer, instead averaging all unvisited nodes into

a single embedding. From the table, we first see that the local choice

layer is essential. Additionally, if we were to remove the ability to

condition on the current node’s position instead, the model would

perform exceptionally poorly - even worse than the original trans-

former network. Finally, if we adopt the simplistic approach of

averaging all unvisited cities, the model performance also suffers,

showcasing the importance of our soft clustering layer.

6 CONCLUSION
In this work, we propose a more realistic approach to representing

and generating Traveling Salesman Problems (TSPs) in real-world

contexts. Our investigation reveals that previous state-of-the-art

neural constructive solvers do not fully exploit the problem’s in-

tricacies to enhance predictive capability. To address this gap, we

present a dual strategy to deal with the problem from two fronts.

Firstly, we emphasize the importance of considering current agent

positions, leading us to introduce a hypernetwork, which enables

dynamic fine-tuning to the decision-making process based on the

agent’s current node position. Secondly, we recognize that realistic

TSP scenarios are often structured, and therefore, improving so-

lutions in such scenarios necessitates a deeper understanding of

the structure of the set of unvisited nodes. Instead of treating all

unvisited nodes uniformly, we propose a soft clustering algorithm
inspired by the EM algorithm. This approach enhances the neu-

ral solver’s performance by grouping nodes based on similarities,

thereby increasing the likelihood of selecting nodes from the same

cluster for early resolution. We illustrate the effectiveness of these

methods across diverse geographical structures. Importantly, our

methods are complementary and can be integrated with existing

models like ELG or Sym-NCO to create more robust solutions.

ACKNOWLEDGMENTS
This work was funded by the Grab-NUS AI Lab, a joint collabo-

ration between GrabTaxi Holdings Pte. Ltd. and National Univer-

sity of Singapore, and the Industrial Postgraduate Program (Grant:

S18-1198-IPP-II) funded by the Economic Development Board of

Singapore. This research is also supported by the National Research

Foundation, Singapore under its AI Singapore Programme (AISG

Award No: AISG3-RP-2022-031).

892

KDD ’24, August 25–29, 2024, Barcelona, Spain Yong Liang Goh et al.

REFERENCES
[1] [n. d.]. https://www.math.uwaterloo.ca/tsp/world/countries.html

[2] David Applegate. 2003. Concorde: A code for solving traveling salesman problems.

http://www. tsp. gatech. edu/concorde. html (2003).
[3] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[4] Marco Caserta and Stefan Voß. 2014. A hybrid algorithm for the DNA sequencing

problem. Discrete Applied Mathematics 163 (2014), 87–99.
[5] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. 2008. Monte-

carlo tree search: A new framework for game ai. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, Vol. 4.
216–217.

[6] Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin

Tierney, and Youngjune Gwon. 2022. Simulation-guided beam search for neural

combinatorial optimization. Advances in Neural Information Processing Systems
35 (2022), 8760–8772.

[7] Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. 2020.

Learning 2-opt heuristics for the traveling salesman problem via deep reinforce-

ment learning. In Asian conference on machine learning. PMLR, 465–480.

[8] Yanfei Dong, Mohammed Haroon Dupty, Lambert Deng, Zhuanghua Liu,

Yong Liang Goh, and Wee Sun Lee. 2024. Differentiable Cluster Graph Neu-

ral Network. arXiv:2405.16185 [cs.LG]

[9] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. 2021. Generalize a small pre-

trained model to arbitrarily large TSP instances. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 35. 7474–7482.

[10] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. 2023. Towards

generalizable neural solvers for vehicle routing problems via ensemble with

transferrable local policy. arXiv preprint arXiv:2308.14104 (2023).
[11] David Ha, Andrew Dai, and Quoc V. Le. 2016. HyperNetworks.

arXiv:1609.09106 [cs.LG]

[12] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. 2021. Efficient active

search for combinatorial optimization problems. arXiv preprint arXiv:2106.05126
(2021).

[13] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and

Jiang Bian. 2023. Pointerformer: Deep Reinforced Multi-Pointer Transformer for

the Traveling Salesman Problem. arXiv preprint arXiv:2304.09407 (2023).

[14] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. 2019. An efficient graph

convolutional network technique for the travelling salesman problem. arXiv
preprint arXiv:1906.01227 (2019).

[15] Minsu Kim, Junyoung Park, and Jinkyoo Park. 2022. Sym-nco: Leveraging sym-

metricity for neural combinatorial optimization. Advances in Neural Information
Processing Systems 35 (2022), 1936–1949.

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[17] Scott Kirkpatrick and Gérard Toulouse. 1985. Configuration space analysis of

travelling salesman problems. Journal de Physique 46, 8 (1985), 1277–1292.
[18] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. 2022. Deep

policy dynamic programming for vehicle routing problems. In International
conference on integration of constraint programming, artificial intelligence, and
operations research. Springer, 190–213.

[19] Wouter Kool, Herke Van Hoof, and Max Welling. 2018. Attention, learn to solve

routing problems! arXiv preprint arXiv:1803.08475 (2018).
[20] Ratnesh Kumar and Zhonghui Luo. 2003. Optimizing the operation sequence

of a chip placement machine using TSP model. IEEE Transactions on Electronics
Packaging Manufacturing 26, 1 (2003), 14–21.

[21] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon,

and Seungjai Min. 2020. Pomo: Policy optimization with multiple optima for

reinforcement learning. Advances in Neural Information Processing Systems 33
(2020), 21188–21198.

[22] Yining Ma, Zhiguang Cao, and Yeow Meng Chee. 2023. Learning to Search

Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt.

In Thirty-seventh Conference on Neural Information Processing Systems.
[23] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Hongliang Guo, Yuejiao Gong,

and YeowMeng Chee. 2022. Efficient Neural Neighborhood Search for Pickup and

Delivery Problems. In Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence. 4776–4784.

[24] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and

Jing Tang. 2021. Learning to iteratively solve routing problems with dual-aspect

collaborative transformer. Advances in Neural Information Processing Systems 34
(2021), 11096–11107.

[25] Todd K Moon. 1996. The expectation-maximization algorithm. IEEE Signal
processing magazine 13, 6 (1996), 47–60.

[26] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác.

2018. Reinforcement learning for solving the vehicle routing problem. Advances
in neural information processing systems 31 (2018).

[27] Gerhard Reinelt. [n. d.]. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[28] Zhiqing Sun and Yiming Yang. 2023. Difusco: Graph-based diffusion solvers for

combinatorial optimization. arXiv preprint arXiv:2302.08224 (2023).
[29] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. Advances in neural information processing systems 27
(2014).

[30] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency,

and Ruslan Salakhutdinov. 2019. Transformer dissection: a unified understanding

of transformer’s attention via the lens of kernel. arXiv preprint arXiv:1908.11775
(2019).

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[32] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks.

Advances in neural information processing systems 28 (2015).
[33] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8 (1992), 229–256.

[34] YaoxinWu,Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. 2021. Learning

improvement heuristics for solving routing problems. IEEE transactions on neural
networks and learning systems 33, 9 (2021), 5057–5069.

[35] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li.

2024. Glop: Learning global partition and local construction for solving large-

scale routing problems in real-time. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 38. 20284–20292.

[36] Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie

Zhang. 2023. A review on learning to solve combinatorial optimisation problems

in manufacturing. IET Collaborative Intelligent Manufacturing 5, 1 (2023), e12072.

893

https://www.math.uwaterloo.ca/tsp/world/countries.html
https://arxiv.org/abs/2405.16185
https://arxiv.org/abs/1609.09106
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Hierarchical Neural Constructive Solver for Real-world TSP Scenarios KDD ’24, August 25–29, 2024, Barcelona, Spain

A APPENDIX
A.1 Hyperparameters
As described in the main body, we retain all original settings of the

transformer. This yields the following:

• 6 encoder layers

• 2 decoder layers

• We removed global graph embedding as it was found to harm

performance

• Clipping value𝑈 is set to 10.0

• Batch size for training is 128 samples

• A total of 200 epochs were run, where each epoch consisted

of 100, 000 episodes

• Adam optimizer was used with a weight decay of 1𝑒 − 6
• Learning rate of 0.0001 was used

• Unique to our model:

– The soft clustering layer is applied 𝐵 = 5 times

– We use a total of 𝑁𝑐 = 5 embeddings for the clustering

A.2 Model performance across varying dataset
size

Table 6 showcases in detail the bar plot results from Figure 6. Here,

we compare the model’s performance across three different sizes: a

full training dataset of 20,000,000 samples, a small dataset of 50,000

samples repeated across 200 epochs, and an extremely small dataset

of 10,000 samples repeated across 200 epochs. In totality, we can

see that even though we reduced the dataset size significantly, the

performance at 50,000 samples is still remarkable. The models retain

the ranking in performance in this scenario. However, reducing

this dataset further sees ELG become the top performing model.

This is likely because ELG leverages distinct features in the form of

polar coordinates in a small k-Nearest Neighborhood. By having

these explicit features, the model requires less data to translate it to

a meaningful representation. Whereas for our model, we learn the

importance of the pairings entirely in the latent space, requiring

more data. It should also be noted that our representation of locality

is likely a superset of ELG’s approach.

A.3 Comparison with General Solvers
While our approach biases the solver towards the distribution, re-

cent works such as GLOP [35] proposed generic solvers that utilize

the attention model as a Hamiltonian path solver. Table 7 compares

our neural solver against GLOP. As GLOP’s main premise is to

break down a large problem and solve multiple sub-paths using

local solvers trained on smaller sizes. Since our test results are on

TSP100, we utilize the TSP25 and TSP50 solvers. Overall, we can see

that our approach is stronger than a generically trained solver in

both speed and performance. Nevertheless, since GLOP is based on

the transformer model, our contributions can easily be integrated.

894

KDD ’24, August 25–29, 2024, Barcelona, Spain Yong Liang Goh et al.

Table 6: Optimality gaps across various countries and dataset sizes. Best performing models in bold.

Dataset # of Samples Model Tour Length Opt. Gap (%) Aug. Tour Length Aug. Opt. Gap (%)

Concorde 5.6209 - 5.6209 -

POMO 5.7190 1.7458% 5.7166 1.7024%

USA13509 50,000 Sym-NCO 5.7345 2.0394% 5.6912 1.2691%

ELG 5.6848 1.1361% 5.6824 1.0936%

Ours 5.6769 0.9954% 5.6750 0.9617%

Concorde 5.6209 - 5.6209 -

POMO 5.8875 4.7433% 5.8848 4.6950%

USA13509 10,000 Sym-NCO 5.8598 4.2695% 5.8125 3.4282%

ELG 5.7849 2.9172% 5.7771 2.7782%
Ours 5.8152 3.4575% 5.8079 3.3265%

Concorde 3.5341 - 3.5341 -

POMO 3.5699 1.0141% 3.5697 1.0073%

JA9847 50,000 Sym-NCO 3.5724 1.0837% 3.5622 0.7960%

ELG 3.5508 0.4723% 3.5504 0.4627%
Ours 3.5506 0.4667% 3.5504 0.4629%

Concorde 3.5341 - 3.5341 -

POMO 3.6137 2.2514% 3.6136 2.2494%

JA9847 10,000 Sym-NCO 3.6037 1.9695% 3.5841 1.4154%
ELG 3.5868 1.4917% 3.5863 1.4779%

Ours 3.5943 1.7037% 3.5942 1.7016%

Concorde 5.0019 - 5.0019 -

POMO 5.1228 2.4158% 5.1164 2.2883%

BM33708 50,000 Sym-NCO 5.0878 1.7164% 5.0532 1.0242%

ELG 5.0648 1.2570% 5.0572 1.1055%

Ours 5.0566 1.0925% 5.0520 0.9833%

Concorde 5.0019 - 5.0019 -

POMO 5.1732 3.4248% 5.1659 3.2784%

BM33708 10,000 Sym-NCO 5.1666 3.2914% 5.1307 2.5740%

ELG 5.1173 2.3064% 5.1080 2.2109%
Ours 5.5157 2.9934% 5.1440 2.8393%

Table 7: Comparison of GLOP and our model on the various datasets.

Dataset Model Aug. Tour Length Aug. Opt. Gap (%) Run-time

Concorde 5.6209 -

USA13509 GLOP 5.6704 0.8799% 6 min 07 sec

Ours 5.6533 0.5762% 3 min 03 sec

Concorde 3.5341 -

JA9847 GLOP 3.5839 1.4094% 6 min 04 sec

Ours 3.5435 0.2670% 3 min 01 sec

Concorde 5.0019 -

BM33408 GLOP 5.0510 0.9822% 6 min 07 sec

Ours 5.0328 0.6166% 3 min 04 sec

895

	Hierarchical neural constructive solver for real-world TSP scenarios
	Citation
	Author

	Abstract
	1 Introduction
	2 Related Work
	2.1 Constructive Neural Solvers
	2.2 Improvement Neural Solvers
	2.3 Search-based techniques

	3 Our Approach
	3.1 Recap: Constructive Neural Solvers
	3.2 Improving local decision making with the Choice Decoder
	3.3 Exploiting structure with Hierarchical Decoder

	4 Experimental Setup
	4.1 Data Generation
	4.2 Benchmark Models
	4.3 Hyperparameters
	4.4 Performance Metric

	5 Results
	5.1 Performance on Uniform Random Distribution
	5.2 Performance on Structured Distributions
	5.3 Performance on Varied Sizes
	5.4 Performance on PCB3038
	5.5 Evolution of Embeddings
	5.6 Ablation Studies

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Hyperparameters
	A.2 Model performance across varying dataset size
	A.3 Comparison with General Solvers

