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ABSTRACT

Recent studies in using deep reinforcement learning (DRL) to solve Job-shop
scheduling problems (JSSP) focus on construction heuristics. However, their per-
formance is still far from optimality, mainly because the underlying graph repre-
sentation scheme is unsuitable for modelling partial solutions at each construction
step. This paper proposes a novel DRL-guided improvement heuristic for solving
JSSP, where graph representation is employed to encode complete solutions. We
design a Graph-Neural-Network-based representation scheme, consisting of two
modules to effectively capture the information of dynamic topology and different
types of nodes in graphs encountered during the improvement process. To speed
up solution evaluation during improvement, we present a novel message-passing
mechanism that can evaluate multiple solutions simultaneously. We prove that the
computational complexity of our method scales linearly with problem size. Ex-
periments on classic benchmarks show that the improvement policy learned by
our method outperforms state-of-the-art DRL-based methods by a large margin.

1 INTRODUCTION

Recently, there has been a growing trend towards applying deep (reinforcement) learning (DRL)
to solve combinatorial optimization problems (Bengio et al., 2020). Unlike routing problems that
are vastly studied (Kool et al., 2018; Xin et al., 2021a; Hottung et al., 2022; Kwon et al., 2020;
Ma et al., 2023; Zhou et al., 2023; Xin et al., 2021b), the Job-shop scheduling problem (JSSP), a
well-known problem in operations research ubiquitous in many industries such as manufacturing
and transportation, received relatively less attention.

Compared to routing problems, the performance of existing learning-based solvers for scheduling
problems is still quite far from optimality due to the lack of an effective learning framework and neu-
ral representation scheme. For JSSP, most existing learning-based approaches follow a dispatching
procedure that constructs schedules by extending partial solutions to complete ones. To represent the
constructive states, i.e. partial solutions, they usually employ disjunctive graph (Zhang et al., 2020;
Park et al., 2021b) or augment the graph with artificial machine nodes (Park et al., 2021a). Then,
a Graph Neural Network (GNN) based agent learns a latent embedding of the graphs and outputs
construction actions. However, such representation may not be suitable for learning construction
heuristics. Specifically, while the agent requires proper work-in-progress information of the partial
solution during each construction step (e.g. the current machine load and job status), it is hard to
incorporate them into a disjunctive graph, given that the topological relationships could be more
naturally modelled among operations1 (Balas, 1969). Consequently, with the important components
being ignored due to the solution incompleteness, such as the disjunctive arcs among undispatched
operations (Zhang et al., 2020) and the orientations of disjunctive arcs among operations within
a machine clique (Park et al., 2021b), the partial solution representation by disjunctive graphs in

∗corresponding author
1Please refer to Appendix K for a detailed discussion
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current works may suffer from severe biases. Therefore, one question that comes to mind is: Can
we transform the learning-to-schedule problem into a learning-to-search-graph-structures problem
to circumvent the issue of partial solution representation and significantly improve performance?

Compared to construction ones, improvement heuristics perform iterative search in the neighbour-
hood for better solutions. For JSSP, a neighbour is a complete solution, which is naturally repre-
sented as a disjunctive graph with all the necessary information. Since searching over the space
of disjunctive graphs is more effective and efficient, it motivates a series of breakthroughs in tra-
ditional heuristic methods (Nowicki & Smutnicki, 2005; Zhang et al., 2007). In traditional JSSP
improvement heuristics, local moves in the neighbourhood are guided by hand-crafted rules, e.g.
picking the one with the largest improvement. This inevitably brings two major limitations. Firstly,
at each improvement step, solutions in the whole neighbourhood need to be evaluated, which is com-
putationally heavy, especially for large-scale problems. Secondly, the hand-crafted rules are often
short-sighted and may not take future effects into account, therefore could limit the improvement
performance.

In this paper, we propose a novel DRL-based improvement heuristic for JSSP that addresses the
above limitations, based on a simple yet effective improvement framework. The local moves are
generated by a deep policy network, which circumvents the need to evaluate the entire neighbour-
hood. More importantly, through reinforcement learning, the agent is able to automatically learn
search policies that are longer-sighted, leading to superior performance. While a similar paradigm
has been explored for routing problems (Chen & Tian, 2019; Lu et al., 2019; Wu et al., 2021), it
is rarely touched in the scheduling domain. Based on the properties of JSSP, we propose a novel
GNN-based representation scheme to capture the complex dynamics of disjunctive graphs in the
improvement process, which is equipped with two embedding modules. One module is responsible
for extracting topological information of disjunctive graph, while the other extracts embeddings by
incorporating the heterogeneity of nodes’ neighbours in the graph. The resulting policy has linear
computational complexity with respect to the number of jobs and machines when embedding dis-
junctive graphs. To further speed up solution evaluation, especially for batch processing, we design
a novel message-passing mechanism that can evaluate multiple solutions simultaneously.

We verify our method on seven classic benchmarks. Extensive results show that our method gen-
erally outperforms state-of-the-art DRL-based methods by a large margin while maintaining a low
computational cost. On large-scale instances, our method even outperforms Or-tools CP-SAT, a
highly efficient constraint programming solver. Our aim is to showcase the effectiveness of Deep
Reinforcement Learning (DRL) in learning superior search control policies compared to traditional
methods. Our computationally efficient DRL-based heuristic narrows the performance gap with ex-
isting techniques and outperforms a tabu search algorithm in experiments. Furthermore, our method
can potentially be combined with more complicated improvement frameworks, however it is out of
the scope of this paper and will be investigated in the future.

2 RELATED WORK

Most existing DRL-based methods for JSSP focus on learning dispatching rules, or construction
heuristics. Among them, L2D (Zhang et al., 2020) encodes partial solutions as disjunctive graphs
and a GNN-based agent is trained via DRL to dispatch jobs to machines to construct tight schedules.
Despite the superiority to traditional dispatching rules, its graph representation can only capture rela-
tions among dispatched operations, resulting in relatively large optimality gaps. A similar approach
is proposed in (Park et al., 2021b). By incorporating heterogeneity of neighbours (e.g. predecessor
or successor) in disjunctive graphs, a GNN model extracts separate embeddings and then aggregates
them accordingly. While delivering better solutions than L2D, this method suffers from static graph
representation, as the operations in each machine clique are always fully connected. Therefore, it
fails to capture structural differences among solutions, which we notice to be critical. For exam-
ple, given a JSSP instance, the processing order of jobs on each machine could be distinct for each
solution, which cannot be reflected correctly in the respective representation scheme. ScheduleNet
(Park et al., 2021a) introduces artificial machine nodes and edges in the disjunctive graph to encode
machine-job relations. The new graph enriches the expressiveness but is still static. A Markov de-
cision process formulation with a matrix state representation is proposed in (Tassel et al., 2021).
Though the performance is ameliorated, it is an online method that learns for each instance sepa-
rately, hence requiring much longer solving time. Moreover, unlike the aforementioned graph-based
ones, the matrix representation in this method is not size-agnostic, which cannot be generalised
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across different problem sizes. RASCL (Iklassov et al., 2022) learns generalized dispatching rules
for solving JSSP, where the solving process is modelled as MDPs. Tassel et al. (2023a) propose to
leverage existing Constraint Programming (CP) solvers to train a DRL-agent learning a Priority Dis-
patching Rule (PDR) that generalizes well to large instances. Despite substantial improvement, the
performance of these works is still far from optimality compared with our method. Other learning-
based construction heuristics for solving variants of JSSP include FFSP (Choo et al., 2022; Kwon
et al., 2021) and scheduling problems in semiconductor manufacturing (Tassel et al., 2023b). How-
ever, these methods are incompatible with JSSP due to their underlying assumption of independent
machine sets for each processing stage, which contradicts the shared machine configuration inherent
in JSSP.

A work similar to ours is MGRO (Ni et al., 2021), which learns a policy to aid Iterated Greedy (IG),
an improvement heuristic, to solve the hybrid flow shop scheduling problem. Our method differs
from it in two aspects. Firstly, unlike MGRO which learns to pick local operators from a pool of
manually designed ones, our policy does not require such manual work and directly outputs local
moves. Secondly, MGRO encodes the current solution as multiple independent subgraphs, which is
not applicable to JSSP since it cannot model precedence constraints.

3 PRELIMINARIES

Job-shop Scheduling. A JSSP instance of size |J | × |M| consists of |J | jobs and |M| machines.
Each job j ∈ J is required to be processed by each machine m ∈M in a predefined order Omj1

j1 →
· · · → O

mji

ji → · · · → O
mj|M|
j|M| with O

mji

ji denoting the ith operation of job j, which should be
processed by the machine mji with processing time pji ∈ N. Let Oj be the collections of all
operations for job j. Only can the operation O

mji

ji be processed when all its precedent operations
{Omjz

jz |z < i} ⊂ Oj are processed, which is the so-called precedence constraint. The objective is
to find a schedule η : {Omji

ji |∀j, i} → N, i.e., the starting time for each operation, such that the
makespan Cmax = max(η(O

mji

ji ) + pji) is minimum without violating the precedence constraints.
To enhance succinctness, the notation mji indicating the machine allocation for operation Oji will
be disregarded as machine assignments for operations remain constant throughout any given JSSP
instance. This notation will be reinstated only if its specification is critical.

Disjunctive Graph. The disjunctive graph (Balas, 1969) is a directed graph G = (O, C ∪ D),
where O = {Oji|∀j, i} ∪ {OS , OT } is the set of all operations, with OS and OT being the dummy
ones denoting the beginning and end of processing. C consists of directed arcs (conjunctions) rep-
resenting the precedence constraints connecting every two consecutive operations of the same job.
Undirected arcs (disjunctions) in set D connect operations requiring the same machine, forming
a clique for each machine. Each arc is labelled with a weight, which is the processing time of
the operation that the arc points from (two opposite-directed arcs can represent a disjunctive arc).
Consequently, finding a solution s to a JSSP instance is equivalent to fixing the direction of each
disjunction, such that the resulting graph G(s) is a DAG (Balas, 1969). The longest path from OS

to OT in a solution is called the critical path (CP), whose length is the makespan of the solution.
An example of disjunctive graph for a JSSP instance and its solution are depicted in Figure 1.

Critical
blocks

Figure 1: Disjunctive graph representation.
Left: a 3×3 JSSP instance. Black arrows are con-
junctions. Dotted lines of different colors are dis-
junctions, grouping operations on each machine
into machine cliques. Right: a complete solution,
where a critical path and a critical block are high-
lighted. Arc weights are omitted for clarity.

The N5 neighbourhood Structure. Various
neighbourhood structures have been proposed
for JSSP (Zhang et al., 2007). Here we employ
the well-known N5 designed based on the con-
cept of critical block (CB), i.e. a group of con-
secutive operations processed by the same ma-
chine on the critical path (refer to Figure 1 for
an example). Given a solution s, N5 constructs
the neighbourhood N5(s) as follows. First, it
finds the critical path CP(s) of G(s) (randomly
selects one if more than one exist). Then for
each CBm = Om

1 → Om
2 → · · · → Om

l →
· · · → Om

L−1 → Om
L with ml and 1 ≤ l ≤ L

denoting the processing machine and the index
of operation Ol along the critical path CP(s), at
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Initial Solution

Graph
Representation 

Select
Operation Pairs

Make Changes to
Current Solution Terminal Criterion

Best Solution

Yes

No

Start

(a) The overall framework of our method.

Input

Output

(b) State transition example.

Figure 2: Our local search framework and an example of state transition. In Figure (b), the state
st is transited to st+1 by swapping operation O22 and O31. A new critical path with its two critical
blocks is generated and highlighted in st+1.

most two neighbours are obtained by swapping the first (Om1
1 , Om2

2 ) or last pair (OmL−1

L−1 , OmL

L ) of
operations. Only one neighbour exists if a CB has only two operations. For the first and last CB,
only the last and first operation pair are swapped. Consequently, the neighbourhood size |N5(s)| is
at most 2N(s)− 2 with N(s) being the number of CBs in G(s).

4 METHODOLOGY

The overall framework of our improvement method is shown in Figure 2(a). The initial solution is
generated by basic dispatching rules. During the improvement process, solutions are proxied by their
graphical counterpart, i.e. disjunctive graphs. Different from traditional improvement heuristics
which need to evaluate all neighbours at each step, our method directly outputs an operation pair,
which is used to update the current solution according to N5. The process terminates if certain
condition is met. Here we set it as reaching a searching horizon of T steps.

Below we present our DRL-based method for learning the pair picking policy. We first formulate the
learning task as a Markov decision process (MDP). Then we show how to parameterize the policy
based on GNN, and design a customized REINFORCE (Williams, 1992) algorithm to train the
policy network. Finally, we design a message-passing mechanism to quickly calculate the schedule,
which significantly improves efficiency especially for batch training. Note that, the proposed policy
possesses linear computational complexity w.r.t. the number of jobs |J | and machines |M|.

4.1 THE SEARCHING PROCEDURE AS AN MDP

States. A state st ∈ S is the complete solution at step t, with s0 being the initial one. Each
state is represented as its disjunctive graph. Features of each node Oji is collected in a vector
xji = (pji, estji, lstji) ∈ R3, where estji and lstji are the earliest and latest starting time of Oji,
respectively. For a complete solution, est(Oji) is the actual start time of Oji in the schedule. If Oji

is located on a critical path, then estji = lstji (Jungnickel & Jungnickel, 2005). This should be able
to help the agent distinguish whether a node is on the critical path.

Actions. Since we aim at selecting a solution within the neighbourhood, an action at is one of the
operation pairs (Oji, Okl) in the set of all candidate pairs defined by N5. Note that the action space
At is dynamic w.r.t each state.

Transition. The next state st+1 is derived deterministically from st by swapping the two operations
of action at = (Oji, Okl) in the graph. An example is illustrated in Figure 2(b), where features est
and lst are recalculated for each node in st+1. If there is no feasible action at for some t, e.g. there
is only one critical block in st, then the episode enters an absorbing state and stays within it. We
present a example in Appendix J to facilitate better understanding the state transition mechanism.

Rewards. Our ultimate goal is to improve the initial solution as much as possible. To this end, we
design the reward function as follows:

r(st, at) = max (Cmax(s
∗
t )− Cmax(st+1), 0) , (1)

where s∗t is the best solution found until step t (the incumbent), which is updated only if st+1

is better, i.e. Cmax(st+1) < Cmax(s
∗
t ). Initially, s∗0 = s0. The cumulative reward until t is

Rt =
∑t

t′=0 r(st′ , at′) = Cmax(s0)− Cmax(s
∗
t ), which is exactly the improvement against initial
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Figure 3: The architecture of our policy network.

solution s0. When the episode enters the absorbing state, by definition, the reward is always 0 since
there is no possibility of improving the incumbent from then on.

Policy. For state st, a stochastic policy π(at|st) outputs a distribution over the actions in At. If the
episode enters the absorbing state, the policy will output a dummy action which has no effect.

4.2 POLICY MODULE

We parameterize the stochastic policy πθ(at|st) as a GNN-based architecture with parameter set θ.
A GNN maps the graph to a continuous vector space. The embeddings of nodes could be deemed
as feature vectors containing sufficient information to be readily used for various downstream tasks,
such as selecting operation pairs for local moves in our case. Moreover, a GNN-based policy is able
to generalize to instances of various sizes that are unseen during training, due to its size-agnostic
property. The architecture of our policy network is shown in Figure 3.

4.2.1 GRAPH EMBEDDING

For the disjunctive graph, we define a node U as a neighbour of node V if an arc points from U to
V . Therefore, the dummy operation OS has no neighbours (since there are no nodes pointing to it),
and OT has |J | neighbours (since every job’s last operation is pointing to it). There are two no-
table characteristics of this graph. First, the topology is dynamically changing due to the MDP state
transitions. Such topological difference provides rich information for distinguishing two solutions
from the structural perspective. Second, most operations in the graph have two different types of
neighbours, i.e. its job predecessor and machine predecessor. These two types of neighbours hold
respective semantics. The former is closely related to the precedence constraints, while the latter
reflects the processing sequence of jobs on each machine. Based on this observation, we propose
a novel GNN with two independent modules to embed disjunctive graphs effectively. We will ex-
perimentally prove by an ablation study (Appendix M) that the combination of the two modules are
indeed more effective.

Topological Embedding Module. For two different solutions, there must exist a machine on which
jobs are processed in different orders, i.e. the disjunctive graphs are topologically different. The
first module, which we call topological embedding module (TPM), is expected to capture such
structural differences, so as to help the policy network distinguish different states. To this end,
we exploit Graph Isomorphism Network (GIN) (Xu et al., 2019), a well-known GNN variant with
strong discriminative power for non-isomorphic graphs as the basis of TPM. Given a disjunctive
graph G, TPM performs K iterations of updates to compute a p-dimensional embeddings for each
node V ∈ O, and the update at iteration k is expressed as follows:

µk
V = MLPk

T ((1 + ϵk)µk−1
V +

∑
U∈N (V )

µk−1
U ), (2)

where µk
V is the topological embedding of node V at iteration k and µ0

V = xji is its raw features,
MLPk

T is a Multi-Layer Perceptron (MLP) for iteration k, ϵk is an arbitrary number that can be
learned, and N (V ) is the neighbourhood of V in G. For each k, we attain a graph-level embedding
µk
G ∈ Rp by an average pooling function L with embeddings of all nodes as input as follows:

µk
G = L({µk

V : V ∈ O}) = 1

|O|
∑
V ∈O

µk
V . (3)
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Figure 4: Example of GJ and GM .

Finally, the topological embeddings of each
node and the disjunctive graph after the K it-
erations are {µV =

∑
k µ

k
V : ∀V ∈ O} and

µG =
∑

k µ
k
G, respectively. For representation

learning with GIN, layers of different depths
learn different structural information (Xu et al.,
2019). The representations acquired by the shallow layers sometimes generalize better, while the
deeper layers are more oriented for the target task. To consider all the discrepant structural infor-
mation of the disjunctive graph and align the hidden dimension, we sum the embeddings from all
layers.

Context-aware Embedding Module. Now we present the second module to capture information
from the two types of neighbouring nodes, which we call context-aware embedding module (CAM).
Specifically, we separate a disjunctive graph G into two subgraphs GJ and GM , i.e. contexts, as
shown in Figure 4. Both subgraphs contain all nodes of G, but have different sets of edges to reflect
respective information. GJ contains only conjunctive arcs which represent precedence constraints,
while GM contains only (directed) disjunctive arcs to represent the job processing order on each
machine. Note that the two dummy nodes OS and OT are isolated in GM , since they are not
involved in any machine.

Similar to TPM, CAM also updates the embeddings for K iterations by explicitly considering the
two contexts during message passing and aggregation. Particularly, the update of node embeddings
at CAM iteration k is given as follows:

νJ,kV = GATk
J

(
νk−1
V , {νk−1

U |U ∈NJ(V )}
)
, (4)

νM,k
V = GATk

M

(
νk−1
V , {νk−1

U |U ∈NM (V )}
)
, (5)

νkV =
1

2

(
νJ,kV + νM,k

V

)
, (6)

where GATk
J and GATk

M are two graph attention layers (Veličković et al., 2018) with nh attention
heads, νkV ∈ Rp is the context-aware embedding for V at layer k, νJ,kV ∈ Rp and νM,k

V ∈ Rp are V ’s
embedding for precedence constraints and job processing sequence, andNJ(V ) andNM (V ) are V ’s
neighbourhood in GJ and GM , respectively. For the first iteration, we initialize ν0V = xji,∀V ∈O.
Finally, we compute the graph-level context-aware embedding νG using average pooling as follows:

νG =
1

|O|
∑
V ∈O

νKV . (7)

To generate a global representation for the whole graph, we merge the topological and context-aware
embeddings by concatenating them and yield:

{hV = (µK
V : νKV )|∀V ∈ O}, hG = (µG : νG). (8)

Remark. We choose GIN as the building block for TPM mainly because it is one of the strongest
GNN architectures with proven power to discriminate graphs from a topological point of view. It
may benefit identifying topological discrepancies between solutions. As for GAT, it is an equivalent
counterpart of Transformers (Vaswani et al., 2017) for graphs, which is a dominant architecture for
learning representations from element attributes. Therefore we adopt GAT as the building block of
our CAM module to extract node embeddings for the heterogeneous contexts.

4.2.2 ACTION SELECTION

Given the node embeddings {hV } and graph embedding hG, we compute the “score” of selecting
each operation pair as follows. First, we concatenate hG to each hV , and feed it into a network
MLPA, to obtain a latent vector denoted as h′

V with dimension q, which is collected as a matrix
h′ with dimension |O| × q. Then we multiply h′ with its transpose h

′T to get a matrix SC with
dimension |O|× |O| as the score of picking the corresponding operation pair. Next, for all pairs that
are not included in the current action space, we mask them by setting their scores to −∞. Finally,
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we flatten the score matrix and apply a softmax function to obtain the probability of selecting each
feasible action.

We present the theoretical computational complexity of the proposed policy network. Specifically,
for a JSSP instance of size |J | × |M|, we can show that:

Theorem 4.1. The proposed policy network has linear time complexity w.r.t both |J | and |M|.

The detailed proof is presented in Appendix C. In the experiments, we will also provide empirical
analysis and comparison with other baselines.

4.3 THE n-STEP REINFORCE ALGORITHM

We propose an n-step REINFORCE algorithm for training the policy network. The motivation,
benefits, and details of this algorithm are presented in Appendix A.

4.4 MESSAGE-PASSING FOR CALCULATING SCHEDULE

The improvement process requires evaluating the quality of neighbouring solutions by calculating
their schedules. In traditional scheduling methods, this is usually done by using the critical path
method (CPM) (Jungnickel & Jungnickel, 2005), which calculates the start time for each node re-
cursively. However, it can only process a single graph and cannot make full use of the parallel
computing power of GPU. Therefore, traditional CPM is time-costly in processing a batch of in-
stances. To alleviate this issue, we propose an equivalent variant of this algorithm using a message-
passing mechanism motivated by the computation of GNN, which enables batch processing and is
compatible with GPU.

Our message-passing mechanism works as follows. Given a directed disjunctive graph G repre-
senting a solution s, we maintain a message msV = (dV , cV ) for each node V ∈ O, with initial
values dV = 0 and cV = 1, except cV = 0 for V = OS . Let mpmax(·) denote a message-
passing operator with max-pooling as the neighbourhood aggregation function, based on which we
perform a series of message updates. During each of them, for V ∈ O, we update its message by
dV = mpmax({pU + (1 − cU ) · dU |∀U ∈ N (V )}) and cV = mpmax({cU |∀U ∈ N (V )}) with
pV and N (V ) being the processing time and the neighbourhood of V , respectively. Let H be the
number of nodes on the path from OS to OT containing the most nodes. Then we can show that:

Theorem 4.2. After at most H times of message passing, dV = estV ,∀V ∈ O, and dT = Cmax(s).

The proof is presented in Appendix D.1. This proposition indicates that our message-passing eval-
uator is equivalent to CPM. It is easy to prove that this proposition also holds for a batch of graphs.
Thus the practical run time for calculating the schedule using our evaluator is significantly reduced
due to computation in parallel across the batch. We empirically verify the effectiveness by compar-
ing it with CPM (Appendix D.3).

Similarly, lstV can be calculated by a backward version of our message-passing evaluator where the
message is passed from node OT to OS in a graph G with all edges reversed. Each node V maintains
a message msV = (d̄V , c̄V ). The initial values are d̄V =−1 and c̄V =1, except d̄T =−Cmax(s) and
c̄T =0 for V =OT . The message of V is updated as d̄V = mpmax({pU+(1−c̄U )·d̄U |∀U ∈N (V )})
and c̄V = mpmax({c̄U |∀U ∈N (V )}). We can show that:

Corollary 4.3. After at most H times of message passing, d̄V = −lstV ,∀V ∈ O , and d̄S = 0.

The proof is presented in Appendix D.2. Please refer to an example in D.4 for the procedure of
computing est using the proposed message-passing operator.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We perform training on synthetic instances generated following the widely used conven-
tion in (Taillard, 1993). We consider five problem sizes, including 10×10, 15×10, 15×15, 20×10,
and 20×15. For evaluation, we perform testing on seven widely used classic benchmarks unseen
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Table 1: Performance on classic benchmarks. “Gap”: the average gap to the best solutions in the
literature. “Time”: the average time of solving a single instance (“s”, “m”, and “h” means seconds,
minutes, and hours, respectively.). For each problem size, results in bold and bold blue represent the
local and overall best results, respectively.

Method
Taillard ABZ FT

15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20 10× 10 20× 15 6× 6 10× 10 20× 5
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

CP-SAT 0.1% 7.7m 0.2% 0.8h 0.7% 1.0h 2.1% 1.0h 2.8% 1.0h 0.0% 0.4h 2.8% 0.9h 3.9% 1.0h 0.0% 0.8s 1.0% 1.0h 0.0% 0.1s 0.0% 4.1s 0.0% 4.8s

L2D 24.7% 0.4s30.0% 0.6s28.8% 1.1s30.5% 1.3s32.9% 1.5s20.0% 2.2s23.9% 3.6s12.9% 28.2s14.8% 0.1s24.9% 0.6s14.5% 0.1s21.0% 0.2s36.3% 0.2s
RL-GNN 20.1% 3.0s24.9% 7.0s29.2% 12.0s24.7% 24.7s32.0% 38.0s15.9% 1.9m21.3% 3.2m 9.2%28.2m10.1% 0.5s29.0% 7.3s29.1% 0.1s22.8% 0.5s14.8% 1.3s

ScheduleNet15.3% 3.5s19.4% 6.6s17.2% 11.0s19.1% 17.1s23.7% 28.3s13.9% 52.5s13.5% 1.6m 6.7% 7.4m 6.1% 0.7s20.5% 6.6s 7.3% 0.2s19.5% 0.8s28.6% 1.6s
GD-500 11.9% 48.2s14.4% 75.2s15.7% 1.7m17.9% 91.3s20.1% 1.7m12.5% 2.1m13.7% 2.6m 7.3% 4.6m 6.2% 26.8s16.5% 58.8s 3.6% 15.8s10.1%33.2s 9.8% 37.0s
FI-500 12.3% 70.6s15.7% 87.4s14.5% 2.2m18.4% 1.9m22.0% 3.0m14.2% 2.5m15.6% 4.3m 9.3% 7.4m 3.5% 33.8s16.7% 85.4s 0.0% 18.2s10.1%42.4s16.1% 40.7s
BI-500 11.7% 65.4s14.5% 83.5s14.3% 2.3m18.3% 1.9m20.7% 2.9m13.1% 2.7m14.2% 4.0m 8.1% 7.0m 4.1% 31.2s16.8% 84.9s 0.0% 18.0s12.9%41.3s22.0% 40.6s

Ours-500 9.3% 9.3s11.6% 10.1s12.4% 10.9s14.7% 12.7s17.5% 14.0s11.0% 16.2s13.0% 22.8s 7.9% 50.2s 2.8% 7.4s11.9% 10.2s 0.0% 6.8s 9.9% 7.5s 6.1% 7.4s

GD-5000 11.9% 7.7m14.4%12.3m15.7%17.3m17.9%15.3m20.1%16.6m12.5%20.0m13.7%23.1m 7.3%39.2m 6.2% 4.5m16.5% 9.7m 3.6% 2.6m10.1% 5.5m 9.8% 6.1m
FI-5000 9.8%12.6m13.0%15.8m13.3%24.2m15.0%20.2m17.5%30.6m10.5%27.4m11.8%44.5m 6.4%76.2m 2.7% 5.9m13.3%15.3m 0.0% 3.0m 5.6% 7.3m 6.9% 6.9m
BI-5000 10.5%11.9m11.8%15.6m12.0%23.6m14.4%19.6m16.9%28.8m 9.2%27.5m10.9%43.4m 5.4%76.4m 2.1% 5.7m10.9%15.0m 0.0% 3.1m 6.2% 7.1m 6.6% 7.0m

Ours-1000 8.6% 18.7s10.4% 20.3s11.4% 22.2s12.9% 24.7s15.7% 28.4s 9.0% 32.9s11.4% 45.4s 6.6% 1.7m 2.8% 15.0s11.2% 19.9s 0.0% 13.5s 8.0%15.1s 3.9% 15.0s
Ours-2000 7.1% 37.7s 9.4% 41.5s10.2% 44.7s11.0% 49.1s14.0% 56.8s 6.9% 65.7s 9.3% 90.9s 5.1% 3.4m 2.8% 30.1s 9.5% 39.3s 0.0% 27.2s 5.7%30.0s 1.5% 29.9s
Ours-5000 6.2% 92.2s 8.3% 1.7m 9.0% 1.9m 9.0% 2.0m12.6% 2.4m 4.6% 2.8m 6.5% 3.8m 3.0% 8.4m 1.4% 75.2s 8.6% 99.6s 0.0% 67.7s 5.6%74.8s 1.1% 73.3s

Method
LA SWV ORB YN

10× 5 15× 5 20× 5 10× 10 15× 10 20× 10 30× 10 15× 15 20× 10 20× 15 50× 10 10× 10 20× 20
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

CP-SAT 0.0% 0.1s 0.0% 0.2s 0.0% 0.5s 0.0% 0.4s 0.0% 21.0s 0.0%12.9m 0.0% 13.7s 0.0% 30.1s 0.1% 0.8h 2.5% 1.0h 1.6% 0.5h 0.0% 4.8s 0.5% 1.0h

L2D 14.3% 0.1s 5.5% 0.1s 4.2% 0.2s21.9% 0.1s24.6% 0.2s24.7% 0.4s 8.4% 0.7s27.1% 0.4s41.4% 0.3s40.6% 0.6s30.8% 1.2s31.8% 0.1s22.1% 0.9s
RL-GNN 16.1% 0.2s 1.1% 0.5s 2.1% 1.2s17.1% 0.5s22.0% 1.5s27.3% 3.3s 6.3% 11.3s21.4% 2.8s28.4% 3.4s29.4% 7.2s16.8% 51.5s21.8% 0.5s24.8% 11.0s

ScheduleNet12.1% 0.6s 2.7% 1.2s 3.6% 1.9s11.9% 0.8s14.6% 2.0s15.7% 4.1s 3.1% 9.3s16.1% 3.5s34.4% 3.9s30.5% 6.7s25.3% 25.1s20.0% 0.8s18.4% 11.2s
GD-500 4.8% 16.1s 0.6% 23.2s 0.3% 31.4s 5.8% 26.5s10.4% 39.3s11.2% 46.9s 2.4% 58.8s 9.5% 49.7s33.7% 61.7s29.1% 78.3s22.0% 2.1m11.6%36.6s14.5% 86.3s
FI-500 4.5% 17.5s 0.1% 22.8s 0.5% 30.9s 5.9% 35.3s 8.4% 49.9s13.7% 59.0s 2.9% 74.9s10.3% 63.4s32.3% 75.3s31.0% 1.7m23.3% 2.4m10.7%46.0s18.8% 2.4m
BI-500 4.2% 19.8s 0.0% 22.8s 0.5% 30.9s 5.1% 34.3s 8.9% 47.3s10.9% 60.5s 2.7% 73.1s10.1% 62.5s33.5% 75.2s29.7% 1.7m22.2% 2.5m11.3%42.5s15.1% 2.1m

Ours-500 2.1% 6.9s 0.0% 6.8s 0.0% 7.1s 4.4% 7.5s 6.4% 8.0s 7.0% 8.9s 0.2% 10.2s 7.3% 9.0s29.6% 8.8s25.5% 9.7s21.4% 12.5s 8.2% 7.4s12.4% 11.7s

GD-5000 4.8% 2.7m 0.6% 3.9m 0.3% 5.2m 5.8% 4.4m10.4% 6.5m11.2% 7.8m 2.4% 9.7m 9.5% 8.3m33.7%10.2m29.1%13.0m22.0%20.7m11.6% 6.1m14.5%14.1m
FI-5000 2.9% 2.8m 0.0% 3.8m 0.0% 5.1m 3.6% 6.2m 6.1% 8.3m 8.3% 9.8m 0.3% 9.8m 8.4%12.0m25.9%11.9m25.8%18.0m21.3%24.4m 8.2% 7.7m13.7%24.9m
BI-5000 1.9% 2.8m 0.0% 3.8m 0.1% 5.1m 5.0% 6.2m 6.0% 8.6m 6.1%10.1m 0.2% 9.6m 9.0%11.8m25.5%11.8m25.2%17.8m20.6%24.6m 8.0% 7.7m12.0%22.1m

Ours-1000 1.8% 14.0s 0.0% 13.9s 0.0% 14.5s 2.3% 15.0s 5.1% 16.0s 5.7% 17.5s 0.0% 20.4s 6.6% 18.2s24.5% 17.6s23.5% 19.0s20.1% 25.4s 6.6%15.0s10.5% 23.4s
Ours-2000 1.8% 27.9s 0.0% 28.3s 0.0% 28.7s 1.8% 30.1s 4.0% 32.2s 3.4% 34.2s 0.0% 40.4s 6.3% 35.9s21.8% 34.7s21.7% 38.8s19.0% 49.5s 5.7%29.9s 9.6% 47.0s
Ours-5000 1.8% 70.0s 0.0% 71.0s 0.0% 73.7s 0.9% 75.1s 3.4% 80.9s 2.6% 85.4s 0.0% 99.3s 5.9% 88.8s17.8% 86.9s17.0% 99.8s17.1% 2.1m 3.8%75.9s 8.7% 1.9m

in training2, including Taillard (Taillard, 1993), ABZ (Adams et al., 1988), FT (Fisher, 1963), LA
(Lawrence, 1984), SWV (Storer et al., 1992), ORB (Applegate & Cook, 1991), and YN (Yamada
& Nakano, 1992). Since the upper bound found in these datasets is usually obtained with different
SOTA metaheuristic methods (e.g., (Constantino & Segura, 2022)), we have implicitly compared
with them although we did not explicitly list those metaheuristic methods. It is also worth noting
that the training instances are generated by following distributions different from these benchmark-
ing datasets. Therefore, we have also implicitly tested the zero-shot generalization performance of
our method. Moreover, we consider three extremely large datasets (up to 1000 jobs), where our
method outperforms CP-SAT by a large margin. The detailed results are presented in Appendix L.

Model and configuration. Please refer to Appendix B for the hardware and training
(and testing) configurations of our method. Our code and data are publicly available at
https://github.com/zcaicaros/L2S.

Baselines. We compare our method with three state-of-the-art DRL-based methods, namely L2D
(Zhang et al., 2020), RL-GNN (Park et al., 2021b), and ScheduleNet (Park et al., 2021a). The online
DRL method in (Tassel et al., 2021) is only compared on Taillard 30×20 instances for which they re-
port results. We also compare with three hand-crafted rules widely used in improvement heuristics,
i.e. greedy (GD), best-improvement (BI) and first-improvement (FI), to verify the effectiveness of
automatically learning improvement policy. For a fair comparison, we let them start from the same
initial solutions as ours, and allow BI and FI to restart so as to escape local minimum. Also, we
equip them with the message-passing evaluator, which can significantly speed up their calculation
since they need to evaluate the whole neighbourhood at each step. More details are presented in
Appendix E. The last major baseline is the highly efficient constraint programming solver CP-SAT
(Perron & Furnon, 2019) in Google OR-Tools, which has strong capability in solving scheduling
problems (Da Col & Teppan, 2019), with 3600 seconds time limit. We also compare our method
with an advanced tabu search algorithm (Zhang et al., 2007). The results demonstrate the advanta-
geous efficiency of our approach in selecting moves and achieving better solutions within the same
computational time (see Section H for details).

2The best-known results for these public benchmarks are available in http://optimizizer.com/TA.php and
http://jobshop.jjvh.nl/.
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5.2 PERFORMANCE ON CLASSIC BENCHMARKS

We first evaluate our method on the seven classic benchmarks, by running 500 improvement steps as
in training. Here, we solve each instance using the model trained with the closest size. In Appendix I,
we will show that the performance of our method can be further enhanced by simply assembling all
the trained models. For the hand-crafted rules, we also run them for 500 improvement steps. We
reproduce RL-GNN and ScheduleNet since their models and code are not publicly available. Note
that to have a fair comparison of the run time, for all methods, we report the average time of solving
a single instance without batching. Results are gathered in Table 1 (upper part in each of the two
major rows). We can observe that our method is computationally efficient, and almost consistently
outperforms the three DRL baselines with only 500 steps. RL-GNN and ScheduleNet are relatively
slower than L2D, especially for large problem sizes, because they adopt an event-driven based MDP
formulation. On most of the instances larger than 20×15, our method is even faster than the best
learning-based construction heuristic ScheduleNet, and meanwhile delivers much smaller gaps. In
Appendix C.2, we will provide a more detailed comparison on the efficiency with RL-GNN and
ScheduleNet. With the same 500 steps, our method also consistently outperforms the conventional
hand-crafted improvement rules. This shows that the learned policies are indeed better in terms of
guiding the improvement process. Moreover, our method is much faster than the conventional ones,
which verifies the advantage of our method in that the neighbour selection is directly attained by a
neural network, rather than evaluating the whole neighbourhood.

5.3 GENERALIZATION TO LARGER IMPROVEMENT STEPS

We further evaluate the capability of our method in generalizing to larger improvement steps (up
to 5000). Results are also gathered in Table 1 (lower part in each major row), where we report
the results for hand-crafted rules after 5000 steps. We can observe that the improvement policies
learned by our agent for 500 steps generalize fairly well to a larger number of steps. Although restart
is allowed, the greedy rule (GD) stops improving after 500 steps due to the appearance of “cycling”
as it could be trapped by repeatedly selecting among several moves (Nowicki & Smutnicki, 1996).
This is a notorious issue that causes the failure to hand-craft rules for JSSP. However, our agent
could automatically learn to escape the cycle even without restart, by maximizing the long-term
return. In addition, it is worth noticing that our method with 5000 steps is the only one that exceeds
CP-SAT on Taillard 100×20 instances, the largest ones in these benchmarks. Besides the results in
Table 1, our method also outperforms the online DRL-based method (Tassel et al., 2021) on Taillard
30×20 instances, which reports a gap of 13.08% with 600s run time, while our method with 5000
steps produces a gap of 12.6% in 144s. The detailed results are presented in Appendix F. It is also
apparent from Table 1 that the run time of our model is linear w.r.t the number of improvement steps
T for any problem size.

5.4 COMPARISON WITH TABU SEARCH

Due to the page limit, we refer readers to Appendix H for details. In a nutshell, the performance
of our method is comparable to that of tabu search when using the same number of improvement
steps but with a significant speed advantage. On the other hand, our method outperforms tabu search
when the computational time (wall clock time) is the same.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a DRL-based method to learn high-quality improvement heuristics for solving
JSSP. By leveraging the advantage of disjunctive graph in representing complete solutions, we pro-
pose a novel graph embedding scheme by fusing information from the graph topology and hetero-
geneity of neighbouring nodes. We also design a novel message-passing evaluator to speed up batch
solution evaluation. Extensive experiments on classic benchmark instances well confirm the superi-
ority of our method to the state-of-the-art DRL baselines and hand-crafted improvement rules. Our
methods reduce the optimality gaps on seven classic benchmarks by a large margin while maintain-
ing a reasonable computational cost. In the future, we plan to investigate the potential of applying
our method to more powerful improvement frameworks to further boost their performance.
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A THE n-STEP REINFORCE ALGORITHM

We adopt the REINFORCE algorithm (Williams, 1992) for training. However, here the vanilla
REINFORCE may bring undesired challenges in training for two reasons. First, the reward is sparse
in our case, especially when the improvement process becomes longer. This is a notorious reason
causing various DRL algorithms to fail (Nair et al., 2018; Riedmiller et al., 2018). Second, it will
easily cause out-of-memory issue if we employ a large step limit T , which is often required for
desirable improvement performance. To tackle these challenges, we design an n-step version of
REINFORCE, which trains the policy every n steps along the trajectory (the pseudo-code is given
below). Since the n-step REINFORCE only requires storing every n steps of transitions, the agent
can explore a much longer episode. This training mechanism also helps deal with sparse reward, as
the agent will be trained first on the data at the beginning where the reward is denser, such that it is
ready for the harder part when the episode goes longer.

We present the pseudo-code of the n-step REINFORCE algorithm in Algorithm 1.

Algorithm 1 n-step REINFORCE
Input: Policy πθ(at|st), step limit T , step size n, learning rate α, training problem size |J | × |M|,
batch size B, total number of training instances I
Output: Trained policy πθ∗(at|st)

1: for i = 0 to i < I do
2: Randomly generate B instances of size |J | × |M|, and compute their initial solutions

{s10, ..., sB0 } by using the dispatching rule FDD/MWKR
3: Initialize a training data buffer Db with size 0 for each sb0 ∈ {s10, ..., sB0 };
4: for t = 0 to T do
5: for sbt ∈ {s1t , ..., sBt } do
6: Compute a local move abt ∼ πθ(a

b
t |sbt)

7: Update sbt w.r.t abt and receive a reward r(abt , s
b
t)

8: if t mod n = 0 then
9: lossbθ = 0

10: for j = n to 0 do
11: lossbθ+ = − log πθ(a

b
t−j |sbt−j) ·Rb

t−j , where Rb
t−j is the return for step t− j

12: end for
13: θ = θ + α∇θ

(
lossbθ

)
;

14: end if
15: end for
16: end for
17: i = i+B
18: end for
19: return πθ′(at|st)

B HARDWARE AND CONFIGURATIONS

We use fixed hyperparameters empirically tuned on small problems. We adopt K = 4 iterations of
TPM and CAM updates. In each TPM iteration, MLPk

T has 2 hidden layers with dimension 128,
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and ϵk is set to 0 following (Xu et al., 2019). For CAM, both GATk
J and GATk

M have one attention
head. For action selection, MLPA has 4 hidden layers with dimension 64. All raw features are
normalized by dividing a large number, where pji is divided by 99, and estji and lstji are divided
by 1000. For each training problem size, we train the policy network with 128000 instances, which
are generated on the fly in batches of size 64. We use n = 10 and step limit T = 500 in our n-
step REINFORCE (refer to Appendix A for the pseudo-code), with Adam optimizer and constant
learning rate α = 5 × 10−5. Another set of 100 instances is generated for validation, which is
performed every 10 batches of training. Throughout our experiments, we sample actions from the
policy. All initial solutions are computed by a widely used dispatching rule, i.e. the minimum ratio
of Flow Due Date to Most Work Remaining (FDD/MWKR) (Sels et al., 2012). During testing,
we let our method run for longer improvement steps by setting T to 500, 1000, 2000, and 5000,
respectively. Our model is implemented using Pytorch-Geometric (PyG) (Fey & Lenssen, 2019).
Other parameters follow the default settings in PyTorch (Paszke et al., 2019). We use a machine
with AMD Ryzen 3600 CPU and a single Nvidia GeForce 2070S GPU. We will make our code and
data publicly available.

C COMPUTATIONAL COMPLEXITY ANALYSIS

C.1 PROOF OF PROPOSITION 4.1

We first prove that the computational complexity for TMP and CAM is linear for the number of jobs
|J | and the number of machines |M|, respectively. Throughout the proofs, we let |O| = |J |·|M|+2
and |E| = |C ∪D| = |C|+ |D| = 2|J | · |M|+ |J | − |M| denote the total number of nodes and the
total number of edges in G, respectively.

Lemma C.1. Any layer k of TPM possesses linear computational complexity w.r.t. both |J | and
|M| when calculating node embedding µk

V and graph level embedding µk
G.

Proof. For the k-th TPM layer, the matrix form of each MLP layer ζ can be written as:

Mk = BN (ζ)
(
σ(ζ)

(
((A + (1 + ϵk) · I) ·Mk−1) ·W(ζ)

k

))
, for ζ = 1, · · · , Z (9)

where Mk−1, Mk ∈ R|O|×p are the node embeddings from layer k − 1 and k, respectively, ϵk ∈ R
and W(ζ)

k ∈ Rp×p are learnable parameters, σ is an element-wise activation function (e.g. relu
or tanh), BN is a layer of batch normalization (Ioffe & Szegedy, 2015), and the operator “·”
denoting the matrix multiplication. Then, the computational time of equation (9) can be bounded by
O(|E|p2 + Z|O|p2 + Z|O| · (p2 + p)). Specifically, O(|E|p2) is the total cost for message passing
and aggregation. Note that since we adopt the sparse matrix representation for A, the complexity of
message passing and aggregation will be further reduced to O(|E|p) in practice. The term Z|O|p2 is
the total cost for feature transformation by applying W(ζ)

k , and Z|O| · (p2 + p) is the cost for batch
normalization. This analysis shows that the complexity of TPM layer for embedding a disjunctive
graph G is linear w.r.t. both |J | and |M|. Finally, since we read out the graph level embedding
by averaging the node embeddings, µk

G = 1
|O|

∑
V ∈O µk

V , and the final graph-level embedding is
just the sum of all that of each layer, i.e. µG =

∑
k µ

k
G, we can conclude that the layer k of TPM

possesses linear computational complexity. □

Next, we show that the computational complexity of each CAM layer is also linear w.r.t. both the
number of jobs |J | and the number of machines |M|.
Lemma C.2. Any layer k of CAM possesses linear computational complexity w.r.t both |J | and
|M| when calculating node embedding νkV .

Proof. Since we employ GAT as the building block for embedding GJ and GM , the computational
complexity of the k-th layer of CAM is bounded by that of the GAT layer. By referring to the
complexity analysis in the original GAT paper (Veličković et al., 2018), it is easy to show that the
computational complexity of any layer k of CAM equipped with a single GAT attention head com-
puting p features is bounded by O(2|O|p2+ |E|p), since GJ and GM both contain all nodes in G but
disjoint subsets of edges in G (see Figure 4). Similar to TPM, we employ average read-out function
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Figure 5: The computational complexity of RL-GNN, ScheduleNet, and our method (500 im-
provement steps). In the left figure, we fix |J | = 40 and test on various number of machines |M|.
While in the right figure, we fix |M| = 10 and test on various number of jobs |J |.

for the final graph level embedding νG = 1
|O|

∑
V ∈O νKV , where νKV is the node embeddings from

the last layer K. Thus, the overall complexity of CAM is linear w.r.t. both |J | and |M|. □

Finally, the Theorem 4.1 is proved by the fact that our action selection network is just another MLP
whose complexity is linear to the input batch size, which is the total number of nodes in G. □

C.2 COMPUTATIONAL COMPLEXITY COMPARED WITH DRL BASELINES

In this part, we empirically compare the computational complexity with the two best-performing
DRL baselines RL-GNN (Park et al., 2021b) and ScheduleNet (Park et al., 2021a). While L2D
(Zhang et al., 2020) is very fast, here we do not compare with it due to its relatively poor perfor-
mance. We conduct two sets of experiments, where we fix one element in the number of jobs |J |
and machines |M|, and change the other to examine the trend of time increase. For each pair of |J |
and |M|, we randomly generate 10 instances and record the average run time.

In Figure 5, we plot the average run time of RL-GNN, ScheduleNet and our method (500 steps) in
these two experiments. We can tell that the computational complexity of our method is linear w.r.t.
|J | and |M|, which is in line with our theoretical analysis in Proposition 4.1. In Figure 5(a) where
|J | is fixed, the run time of RL-GNN and ScheduleNet appears to be linearly and quadratically
increasing w.r.t |M|, respectively. This is because the number of edges in the graph representations
of RL-GNN and ScheduleNet are bounded by O(|M|) and O(|M|2), respectively. While in Figure
5(b) where |M| is fixed, the run time of RL-GNN and ScheduleNet are quadratically and linearly
increasing w.r.t |J |, because the number of edges are now bounded by O(|J |2) and O(|J |), respec-
tively. In Figure 5(b), the reason why our method takes longer time when the problem size is small,
e.g. 10×10, is that our method performs 500 improvement steps regardless of the problem size.
In contrast, RL-GNN and ScheduleNet are construction methods, for which the construction step
closely depends on the problem size. For smaller problems, they usually take less steps to construct
a solution, hence are faster. However, when the problem becomes larger, their run time increase
rapidly and surpass ours, as shown in the right part of Figure 5(b).

D MESSAGE-PASSING FOR CALCULATING SCHEDULE

D.1 PROOF OF THEOREM 4.2

We first show how to compute estV by the critical path method (CPM) (Jungnickel & Jungnickel,
2005). For any given disjunctive graph G = (O, C∪D) of a solution s, there must exist a topological
order among nodes of G ϕ : O → {1, 2, · · · , |O|}, where a node V is said to have the higher order
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Table 2: Run time of our evaluator (MP) versus CPM. “Speedup” is the ratio of CPM (CPU) to
MP (GPU).

Batch size 1 32 64 128 256 512

MP (CPU) 0.051s 0.674s 1.216s 2.569s 5.219s 10.258s
MP (GPU) 0.058s 0.094s 0.264s 0.325s 0.393s 0.453s

CPM (CPU) 0.009s 0.320s 0.634s 1.269s 2.515s 5.183s

Speedup 0.16× 3.40× 2.40× 3.90× 6.42× 11.4×

than node U if ϕ(V ) < ϕ(U). Let estS = 0 for node OS . Then for any node V ∈ O\{OS}, estV
can be calculated recursively by following the topological order ϕ, i.e. estV = maxU (pU + estU )
where U ∈ NV is a neighbour of V .

Proof. Now we show that the message passing is equivalent to this calculation. Specifically, for
any node V , if ∀U ∈ NV , cU = 0 then dV = mpmax({pU + (1 − cU ) · dU |∀U ∈ N (V )}) =
maxU∈NV

(pU + dU ). Then it is easy to show that the message cV = 0 if and only if cW = 0 for
all W ∈ {W |ϕ(W ) < ϕ(V )} and there is a path from W to V . This is because of two reasons.
First, the message always passes from the higher rank nodes to the lower rank nodes following the
topological order in the disjunctive graph G. Second, cV = 0 otherwise message c(W ) = 1 will be
recursively passed to node V via the message passing calculation cV = mpmax({cU |∀U ∈N (V )).
Hence, dU = estU for all U ∈ NV when all cU = 0. Therefore, dV = maxU∈NV

(pU + dU ) =
maxU∈NV

(pU +estU ) = estV . Finally, dT = estT = Cmax as the message will take up to H steps
to reach OT from OS and the processing time of OT is 0. □

D.2 PROOF OF COROLLARY 4.3

Computing lstV by CPM follows a similar logic. We define ϕ̄ : O → {1, 2, · · · , |O|} as the
reversed topological order of V ∈ O, i.e. ϕ̄(V ) < ϕ̄(U) if and only if ϕ(V ) > ϕ(U) (in this case,
node OT will rank the first according to ϕ̄). Let lstT = Cmax for node OT . Then for any node
V ∈ O\{OT }, lstV can be calculated recursively by following the reversed topological order ϕ̄, i.e.
lstV = minU (−pU + lstU ) where V ∈ NU is a neighbour of U in G.

Now, we can show that d̄V = mpmax({pU +(1− c̄U ) · d̄U}) = mpmax({pU + d̄U}) = maxU (pU −
d̄U ) = maxU (pU − lstU ) = −lstV when c̄U = 0 for all U ∈ NV by following the same procedure
in the above proof for Proposition 4.2. Finally, d̄S = lstS = 0 as the message will take up to H
steps to reach OS from OT , since the lengths of the longest path in G and Ḡ are equal. □

D.3 EFFICIENCY OF THE MESSAGE-PASSING EVALUATOR

We compare the computational efficiency of our message-passing evaluator with traditional CPM
on problems of size 100×20, which are the largest in our experiments. We implement CPM in
Python, following the procedure in Section 3.6 of (Jungnickel & Jungnickel, 2005). We randomly
generate batches of instances with size 1, 32, 64, 128, 256 and 512, and randomly create a directed
disjunctive graph (i.e. a solution) for each instance. We gather the total run time of the two methods
in Table 2, where we report results of both the CPU and GPU versions of our evaluator. We can
observe that although our message-passing evaluator does not present any advantage on a single
graph, the performance drastically improves along with the increase of batch size. For a batch of 512
graphs, our evaluator runs on GPU is more than 11 times faster than CPM. We can conclude that our
message-passing evaluator with GPU is superior in processing large graph batches, confirming its
effectiveness in utilizing the parallel computational power of GPU. This offers significant advantage
for deep (reinforcement) learning based scheduling methods, in terms of both the training and testing
phase (for example, solving a batch of instances, or solving multiple copies of a single instance in
parallel and retrieving the best solution).
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D.4 AN EXAMPLE OF CALCULATING est BY USING THE PROPOSED MESSAGE-PASSING
EVALUATOR.

In Figure 6 we present an example of calculating the earliest starting time for each operation in a
disjunctive graph using our proposed message-passing operator.
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Figure 6: An example of the forward message passing for calculating est. The pair of numbers
(dV , cV ) in the open bracket and the number in the square bracket [pV ] denote the messages and
the processing time for each vertex V , respectively. In each graph, we highlight the nodes V with
cV = 0. After eight times of message passing, cV for any node V equals 0, which can be utilized
as a signal for termination. Then, the message dV equals the earliest starting time estV for each V .
It is clear that the frequency of message passing (8) is less than H , the length of the longest path
containing the most nodes, which is 9 (OS , O11, O12, O13, O21, O22, O23, O33, OT ).

E HAND-CRAFTED IMPROVEMENT RULES

Here we present details of the three hand-crafted rule baselines, i.e. greedy (GD), best-improvement
(BI), and first-improvement (FI). The greedy rule is widely used in the tabu search framework
for JSSP (Zhang et al., 2007). The best-improvement and the first-improvement rules are widely
used in solving combinatorial optimization algorithms (Hansen & Mladenović, 2006). Specifically,
the greedy rule selects the solution with the smallest makespan in the neighbourhood, while the
best-improvement and the first-improvement rules select the best makespan-reducing and the first
makespan-reducing solution in the neighbourhood, respectively. If there is no solution in the neigh-
bourhood with a makespan lower than the current one, the best-improvement and first-improvement
rules cannot pick any solutions. However, the greedy rule will always have solutions to pick.

It is unfair to directly compare with BI and FI since they may stuck in the local minimum when they
cannot pick any solutions. Thus we augment them with restart, a simple but effective strategy widely
used in combinatorial optimization, to pick a new starting point when reaching local minimum
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(Lourenço et al., 2019). While random restart is a simple and direct choice, it performs poorly
probably because the solution space is too large (Lourenço et al., 2019). Hence, we use a more
advanced restart by adopting a memory mechanism similar to the one in tabu search (Zhang et al.,
2007). Specifically, we maintain a long-term memory Ω which keeps tracking the ω latest solutions
in the search process, from which a random solution is sampled for restart when reaching local
minimum. The memory capacity ω controls the exploitation and exploration of the algorithm. If
ω is too large, it could harm the performance since bad solutions may be stored and selected. On
the contrary, too small ω could be too greedy to explore solutions that are promising. Here we set
ω = 100 for a balanced trade-off. We do not equip GD with restart since it always has solutions to
select unless reaching the absorbing state.

F COMPARISON WITH THE ONLINE DRL-BASED METHOD

The makespan of our method (trained on size 20×15) with 5000 improvement steps and the online
DRL-based method (Tassel et al., 2021) in solving the Taillard 30×20 instances are shown in Table
3. Note that this method performs training for each instance individually, while our method learns
only one policy offline without specific tuning for each instance.

Table 3: Detailed makespan values compared with the online DRL method
Method Tai41 Tai42 Tai43 Tai44 Tai45 Tai46 Tai47 Tai48 Tai49 Tai50

(Tassel et al., 2021) 2208 2168 2086 2261 2227 2349 2101 2267 2154 2216
Ours-5000 2248 2186 2144 2202 2180 2291 2123 2167 2167 2188
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Figure 7: Training curves.
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H COMPARISON WITH TABU SEARCH

We compare our method with a Tabu search-based metaheuristic algorithm with the dynamic tabu
size proposed in (Zhang et al., 2007). Since the neighbourhood structure in (Zhang et al., 2007)
is different from N5, to make the comparison fair, we replace it with N5 (TSN5). We also equip
the tabu search method with our message-passing evaluator to boost speed. We test on all seven
public datasets, where we conduct two experiments. In the first experiment, we fix the search steps
to 5000. In the second one, we adopt the same amount of computational time of 90 seconds (already
sufficient for our method to generate competitive results) for both methods. The results for these
two experiments are presented in Table 4 and Table 5, respectively.

Table 4 indicates that our method closely trails Tabu search with a 1.9% relative gap. This is due to
the simplicity of our approach as a local search method without complex specialized mechanisms
(Figure 2), making direct comparison less equitable. However, our method is significantly faster
than Tabu search since it avoids evaluating the entire neighbourhood for move selection. Conversely,
Table 5 reveals that our method outperforms Tabu search under the same time constraint. This is
attributed to the desirable ability of our method to explore the solution space more efficiently within
the allotted time, as it does not require a full neighbourhood evaluation for move selection.

Table 4: Performance compared with Tabu search for 5000 improvement steps. For each prob-
lem size, we compute the average relative gap of the makespan of our method to the tabu search
algorithm, and we report the time (in seconds) for each method for solving a single instance.

Method
Taillard ABZ FT

15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20 10× 10 20× 15 6× 6 10× 10 20× 5
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

TSN5 0.0% 271.5s 0.0% 311.4s 0.0% 369.4s 0.0% 378.6s 0.0% 422.5s 0.0% 547.9s 0.0% 573.0s 0.0% 1045.8s 0.0% 177.8s 0.0% 283.8s 0.0% 124.0s 0.0% 213.1s 0.0% 235.4s
Ours 2.8% 92.2s 3.8% 102.1s 3.2% 114.3s 2.8% 120.7s 4.1% 144.4s 3.5% 168.7s 2.7% 228.1s 1.5% 504.6s -0.1% 75.2s 3.1% 99.6s 0.0% 67.7s 1.7% 74.8s 0.4% 73.3s

Method
LA SWV ORB YN

10× 5 15× 5 20× 5 10× 10 15× 10 20× 10 30× 10 15× 15 20× 10 20× 15 50× 10 10× 10 20× 20
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

TSN5 0.0% 56.5s 0.0% 81.9s 0.0% 116.8s 0.0% 192.4s 0.0% 225.1s 0.0% 233.4s 0.0% 149.5s 0.0% 263.1s 0.0% 343.1s 0.0% 383.4s 0.0% 719.9s 0.0% 225.0s 0.0% 318.2s
Ours 1.4% 70.0s 0.0% 71.0s 0.0% 73.7s -0.3% 75.1s 0.5% 80.9s 0.8% 85.4s 0.0% 99.3s 3.1% 88.8s 2.7% 86.9s 3.9% 99.8s 4.1% 126.3s 1.1% 75.9s 3.6% 113.2s

Table 5: Performance compared with Tabu search for two minutes. We report the average gap
to the upper bound solution.

Method Taillard ABZ FT

15×15 20×15 20×20 30×15 30×20 50×15 50×20 100×20 10×10 20×15 6×6 10×10 20×5

Ours 5.9% 7.9% 8.8% 9.0% 12.9% 4.9% 7.3% 6.2% 1.2% 8.1% 0.0% 5.3% 0.7%
TSN5 6.1% 8.0% 8.8% 9.3% 12.4% 5.0% 7.4% 6.5% 1.6% 8.3% 0.0% 5.6% 1.2%

Method LA SWV ORB YN

10×5 15×5 20×5 10×10 15×10 20×10 30×10 15×15 20×10 20×15 50×10 10×10 20×20

Ours 0.4% 0.0% 0.0% 0.4% 2.7% 2.1% 0.0% 5.3% 13.4% 14.7% 17.1% 2.7% 8.5%
TSN5 0.0% 0.0% 0.0% 0.9% 3.0% 2.3% 0.0% 5.4% 13.4% 14.8% 17.3% 3.0% 8.8%

I ENSEMBLE PERFORMANCE

The ensemble results for testing and generalization on the seven benchmarks are presented in Table
6. For each instance, we simply run all the five trained policies and retrieve the best solution. We
can observe that for most of the cases, with the same improvement steps, the ensemble strategy can
further improve the performance.

J STATE TRANSITION

The state transition is highly related to the N5 neighbourhood structure. As we described in Prelim-
inaries (Section 3), once our DRL agent selects the operation pair, say (O13, O21) in the sub-figure
on the right of Figure 1, the N5 operator will swap the processing order of O13 and O21. Originally,
the processing order between O13 and O21 is O13 → O21. After swapping, the processing order will
become O13 ← O21. However, solely changing the orientation of arc O13 → O21 is not enough. In
this case, we must break the arc O21 → O32 and introduce a new disjunctive arc O13 → O32 since
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Table 6: Ensemble results on classic benchmarks. Values in the table are the average gap to the
best solutions in the literature. Bold means the ensemble strategy performs better with the same
improvement steps.

Method Taillard ABZ FT

15×15 20×15 20×20 30×15 30×20 50×15 50×20 100×20 10×10 20×15 6×6 10×10 20×5

Closest-500 9.3% 11.6% 12.4% 14.7% 17.5% 11.0% 13.0% 7.9% 2.8% 11.9% 0.0% 9.9% 6.1%
Closest-1000 8.6% 10.4% 11.4% 12.9% 15.7% 9.0% 11.4% 6.6% 2.8% 11.2% 0.0% 8.0% 3.9%
Closest-2000 7.1% 9.4% 10.2% 11.0% 14.0% 6.9% 9.3% 5.1% 2.8% 9.5% 0.0% 5.7% 1.5%
Closest-5000 6.2% 8.3% 9.0% 9.0% 12.6% 4.6% 6.5% 3.0% 1.4% 8.6% 0.0% 5.6% 1.1%

Ensemble-500 8.8% 11.6% 12.0% 14.4% 17.5% 10.4% 12.9% 7.6% 2.4% 11.5% 0.0% 8.5% 6.1%
Ensemble-1000 6.3% 10.4% 10.9% 12.2% 15.7% 8.5% 11.0% 6.2% 1.7% 10.6% 0.0% 8.0% 3.9%
Ensemble-2000 5.9% 9.1% 9.6% 10.6% 14.0% 6.5% 9.2% 4.3% 1.7% 9.4% 0.0% 5.7% 1.5%
Ensemble-5000 5.5% 8.0% 8.6% 8.5% 12.4% 4.1% 6.5% 2.3% 0.8% 8.5% 0.0% 4.7% 1.1%

Method LA SWV ORB YN

10×5 15×5 20×5 10×10 15×10 20×10 30×10 15×15 20×10 20×15 50×10 10×10 20×20

Closest-500 2.1% 0.0% 0.0% 4.4% 6.4% 7.0% 0.2% 7.3% 29.6% 25.5% 21.4% 8.2% 12.4%
Closest-1000 1.8% 0.0% 0.0% 2.3% 5.1% 5.7% 0.0% 6.6% 24.5% 23.5% 20.1% 6.6% 10.5%
Closest-2000 1.8% 0.0% 0.0% 1.8% 4.0% 3.4% 0.0% 6.3% 21.8% 21.7% 19.0% 5.7% 9.6%
Closest-5000 1.8% 0.0% 0.0% 0.9% 3.4% 2.6% 0.0% 5.9% 17.8% 17.0% 17.1% 3.8% 8.7%

Ensemble-500 2.1% 0.0% 0.0% 3.0% 4.7% 6.9% 0.1% 7.3% 27.2% 25.5% 21.4% 8.0% 12.4%
Ensemble-1000 1.6% 0.0% 0.0% 2.3% 3.9% 5.7% 0.0% 6.6% 24.5% 23.5% 19.9% 6.5% 10.5%
Ensemble-2000 1.6% 0.0% 0.0% 1.8% 3.9% 3.4% 0.0% 6.2% 21.7% 21.7% 18.9% 5.4% 9.4%
Ensemble-5000 1.6% 0.0% 0.0% 0.9% 3.4% 2.6% 0.0% 5.0% 17.8% 17.0% 17.1% 3.8% 7.4%
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Figure 8: An example of state transition using N5 neighbourhood structure.

the operation O32 is now the last operation to be processed on the blue machine. In some cases,
the state transition involves several steps. For example, in Figure 8 below, given a processing order
O2 → O3 → O4 → O5 on some machine, if we swap O2 and O3 (O2 and O3 are the first two
operations of some critical block), we need to break disjunctive arcs O1 → O2 and O3 → O4, flip
the orientation of arc O2 → O3 as O2 ← O3, finally, add new arcs O3 → O1 and O2 → O4. So,
the new processing order after the transition will be O1 → O3 → O2 → O4 (right figure).

In summary, after the transition, the new disjunctive graph (state) will have a different processing
order for the machine assigned to the selected operation pair, but other machines stay unaffected.

Then, the starting time (schedule) of every operation is re-calculated according to the proposed
message-passing evaluator (Theorem 4.2).

K THE TOPOLOGICAL RELATIONSHIPS COULD BE MORE NATURALLY
MODELLED AMONG OPERATIONS IN THE DISJUNCTIVE GRAPH.

A disjunctive graph effectively represents solutions by using directed arrows to indicate the order of
processing operations, with each arrow pointing from a preceding operation to its subsequent one.
The primary purpose of the disjunctive graph is to encapsulate the topological relationships among
the nodes, which are defined by these directional connections. Thus, the disjunctive graph excels
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in illustrating the inter-dependencies between operations, in contrast to other visualization methods,
such as Gantt charts, which are better suited for presenting explicit scheduling timelines.

In formulating partial solutions within a construction step, the agent must possess accurate work-in-
progress information, which encompasses specifics such as the extant load on each machine and the
current status of jobs in process. The challenge encountered in this scenario relates to the difficulty
in identifying suitable entities within the disjunctive graph that can store and convey such informa-
tion effectively. While it is conceivable to encode the load of a machine using numerical values,
no discrete node within the disjunctive graph explicitly embodies this information. Instead, a ma-
chine’s representation is implicit and discerned through the collective interpretation of the operations
it processes, effectively forming what is termed a ’machine clique.’ This indirect representation ne-
cessitates a more nuanced approach to ensuring that the agent obtains the necessary information to
construct viable partial solutions.

L RESULT FOR EXTREMELY LARGE INSTANCES

To comprehensively evaluate the generalization performance of our method, we consider another
three problem scales (up to 1000 jobs), namely 200 × 40 (8,000 operations), 500 × 60 (30,000
operations), and 1000 × 40 (40,000 operations). We randomly generate 100 instances for each
size and report the average gap to the CP-SAT. Hence, the negative gap indicates the magnitude in
percentage that our method outperforms CP-SAT. We use our model trained with size 20 × 15 for
comparison. The result is summarized in Table 7.

Table 7: Generalization performance on extremely large datasets.
200x40 500x60 1000x40

CP-SAT 0.0% (1h) 0.0% (1h) 0.0% (1h)
Ours-500 -24.31% (88.7s) -20.56% (3.4m) -15.99% (4.1m)

From the results in the table, our method shows its advantage against CP-SAT by outperforming
it for the extremely large-scale problem instances, with only 500 improvement steps. The number
in the bracket is the average time of solving a single instance, where “s”, “m”, and “h” denote
seconds, minutes, and hours, respectively. The computational time can be further reduced by batch
processing.

M ABLATION STUDIES

In Figure 7(a) and Figure 7(d) (Appendix G), we display the training curves of our method on
all five training problem sizes and for three random seeds on size 10×10, respectively. We can
confirm that our method is fairly reliable and stable for various problem sizes and different random
seeds. We further conduct an ablation study on the architecture of the policy network to verify
the effectiveness of combining TPM and CAM in learning embeddings of disjunctive graphs. In
Figure 7(b), we display the training curve of the original policy network, as well as the respective
ones with only TPM or CAM, on problem size 10×10. In terms of convergence, both TPM and
CAM are inferior to the combination, showing that they are both important in extracting useful state
features. Additionally, we also analyze the effect of different numbers of attention heads in CAM,
where we train policies with one and two heads while keeping the rest parts the same. The training
curves in Figure 7(c) show that the policy with two heads converges faster. However, the converged
objective values have no significant difference.
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