
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2024

Efficient neural collaborative search for pickup and delivery Efficient neural collaborative search for pickup and delivery

problems problems

Detian KONG

Yining MA

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Tianshu YU

Jianhua XIAO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons

Citation Citation
KONG, Detian; MA, Yining; CAO, Zhiguang; YU, Tianshu; and XIAO, Jianhua. Efficient neural collaborative
search for pickup and delivery problems. (2024). IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1-15.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9326

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Efficient Neural Collaborative Search for
Pickup and Delivery Problems

Detian Kong*, Yining Ma*, Zhiguang Cao, Tianshu Yu, and Jianhua Xiao†.

Abstract—In this paper, we introduce Neural Collaborative Search (NCS), a novel learning-based framework for efficiently solving
pickup and delivery problems (PDPs). NCS pioneers the collaboration between the latest prevalent neural construction and neural
improvement models, establishing a collaborative framework where an improvement model iteratively refines solutions initiated by a
construction model. Our NCS collaboratively trains the two models via reinforcement learning with an effective shared-critic
mechanism. In addition, the construction model enhances the improvement model with high-quality initial solutions via curriculum
learning, while the improvement model accelerates the convergence of the construction model through imitation learning. Besides the
new framework design, we also propose the efficient Neural Neighborhood Search (N2S), an efficient improvement model employed
within the NCS framework. N2S exploits a tailored Markov decision process formulation and two customized decoders for removing
and then reinserting a pair of pickup-delivery nodes, thereby learning a ruin-repair search process for addressing the precedence
constraints in PDPs efficiently. To balance the computation cost between encoders and decoders, N2S streamlines the existing
encoder design through a light Synthesis Attention mechanism that allows the vanilla self-attention to synthesize various features
regarding a route solution. Moreover, a diversity enhancement scheme is further leveraged to ameliorate the performance during the
inference of N2S. Our NCS and N2S are both generic, and extensive experiments on two canonical PDP variants show that they can
produce state-of-the-art results among existing neural methods. Remarkably, our NCS and N2S could surpass the well-known LKH3
solver especially on the more constrained PDP variant. Our code is available at: https://github.com/dtkon/PDP-NCS.

Index Terms—Learning to optimize, deep reinforcement learning, attention mechanism, pickup and delivery, neighborhood search

✦

1 INTRODUCTION

T HE pickup and delivery problem (PDP) involves finding the
shortest route to fulfil a set of pickup and delivery orders,

and is relevant to applications such as logistics, robotics, and food
delivery [1]. Unlike other routing problems, such as the travelling
salesman problem (TSP) or the capacitated vehicle routing prob-
lem (CVRP), PDPs are featured by the precedence constraints that
require each pickup to undergo before its ego delivery, which in-
troduces distinct challenges and complexities to the optimization.
For decades, numerous neighborhood search heuristics, which
consider iteratively transforming a solution into its neighboring
solution, have been proposed for PDPs [2], [3]. Typically, their
efficiency hinges on the design of the neighborhood and search
rules. However, they are often manually engineered and problem-
specific, which need to be redesigned when changes occur in
constraints or objectives. For instance, introducing a Last-In-First-
Out (LIFO) constraint on loading/unloading may render basic PDP
heuristic solvers inefficient, necessitating new neighborhoods or
rules particularly tailored for the LIFO variant [4]. This limitation

• † Corresponding Author
• * Detian Kong and Yining Ma are equally contributed
• Detian Kong and Jianhua Xiao are with The Research Center of Logistics,

Nankai University, China; Jianhua Xiao is also with the Laboratory for
Economic Behaviors and Policy Simulation, Nankai University, China. (E-
mails: kdt@mail.nankai.edu.cn, jhxiao@nankai.edu.cn)

• Yining Ma is with the Department of Industrial Systems Engineering
and Management, National University of Singapore, Singapore. (E-mail:
yiningma@u.nus.edu)

• Zhiguang Cao is with the School of Computing and Information Sys-
tems, Singapore Management University, Singapore. (E-mail: zhiguang-
cao@outlook.com)

• Tianshu Yu is with the School of Data Science, The Chinese University of
Hong Kong, Shenzhen. (E-mail: yutianshu@cuhk.edu.cn)

hinders their applications to the rapidly evolving industry.
Recently, significant progress has been made in leveraging

deep reinforcement learning (DRL) for solving vehicle routing
problems (VRP) (e.g., [5], [6]). These solvers are usually faster
and could automate the design of heuristics for various VRP
variants by recognizing useful patterns from a distribution of VRP
instances [6]. Their adaptable nature facilitates the development
of solvers for different variants with minimal human intervention,
i.e., we can leverage a single learning framework to train respec-
tive models for different VRP variants [7]. In general, DRL-based
solvers are classified into construction and improvement ones.
However, in our view, each of the two lines of methods exhibits
advantages while still suffering drawbacks. Construction methods
(e.g., [6], [7]) are faster in terms of solution construction but
may require longer training time and face challenges in escaping
local optima. Improvement methods (e.g., [5], [8]) are designed to
learn the search process, but their efficiency could be hindered by
exploring the entire large search space. Meanwhile, existing neural
methods mainly focus on TSP or CVRP only, where efficient
neural solvers for PDPs are not extensively studied. Despite the
early attempt in [9], which learns a construction model to build
a PDP solution (route) in seconds, it leaves a considerable gap to
traditional heuristics in solution quality.

To address the above limitations and reduce the gap, we
propose Neural Collaborative Search (NCS), a hybrid frame-
work that pioneers the collaboration between neural construction
and neural improvement models for efficiently solving PDPs.
Essentially, NCS operates as a collaborative system, where an
improvement model iteratively refines solutions generated by a
construction model. Consequently, NCS seeks to harness the rapid
solution generation capability of construction methods to reduce

2

Construction
Model

Improvement
Model
(N2S)

𝛿𝛿0

Iterative Improvement

Final Solution

Initial SolutionProblem Instance

Shared Critic

Curriculum Learning

Imitation Learning

𝛿𝛿𝑛𝑛

𝛿𝛿𝑁𝑁

Fig. 1: The overall framework of NCS. Particularly, the imitation learning, curriculum learning and shared critic are elements of the training
algorithm. Meanwhile, δ0 denotes the initial solution constructed by the construction model, δn denotes the set of solutions that are being
improved iteratively by the improvement model, and δN denotes the final best solution.

search space and exploit the search capabilities of improvement
methods to efficiently escape local optima. As shown in Fig. 1, the
two models are trained simultaneously and collaboratively through
the actor-critic-based reinforcement learning [5] via a shared-critic
mechanism, where the critic network of improvement model is
shared to derive the critic of the construction model, saving much
computation overhead. In addition, the construction model could
enhance the improvement model through a curriculum learning
(CL) strategy that yields suitable initial solutions as the starting
point of the improvement model, thus facilitating search efficiency
and better search scope towards more optimal regions. On the
other hand, the improvement model enhances the construction
model through an imitation learning (IL) loss to accelerate its
training convergence. Our NCS demonstrates that the collabora-
tion of two models could yield superior performance compared to
the independent training or inference of individual models.

Besides the NCS framework, we also present Neural Neigh-
borhood Search (N2S)1, an efficient improvement model em-
ployed within the NCS framework. Our preliminary analysis finds
that current transformer-styled improvement models [5], [8] face
challenges in direct application to PDPs (details discussed in
Appendix A). Their action space designs, such as 2-opt, insert,
or swap often fail to properly tackle the precedence constraints
in PDPs. This leads to inefficient searches for solving large-
scale or highly-constrained PDPs and often complicates DRL
training by making a significant portion of the action space invalid.
Conversely, our N2S tackles the precedence constraint efficiently
by allowing a pair of pickup-delivery nodes to be simultaneously
operated in the neighborhood search through two customized
removal and reinsertion decoders as shown in Fig. 3. Moreover, as
decoders become more sophisticated, achieving a computational
balance between encoders and decoders is crucial. Meanwhile, it
was revealed in [5] that the vanilla Transformer encoder [11] failed
to correctly encode route solutions since the embeddings of node
features (i.e., coordinates) and node positional features (i.e., node
positions in a solution sequence) involve two different aspects of a
route solution which are not directly compatible during encoding.
They thus proposed the dual-aspect collaborative attention (DAC-
Att) to learn dual representations for each feature aspect. In our
N2S, we propose a simple yet powerful Synthesis Attention (Synth-
Att) where the attention scores from various types of node feature
embeddings can be synthesized to attain a comprehensive and
informative representation. It not only has the potential to encode

1. This article expands upon our previously published work presented at the
31st international joint conference on artificial intelligence (IJCAI), 2022 [10].

more aspects than DAC-Att, but also reduces the computation
costs while reserving competitive performance.

Additionally, we design a diversity enhancement scheme to
further ameliorate the performance. We evaluate the performance
of our proposed NCS and N2S on two canonical problems in
the PDP family, i.e., the pickup and delivery travelling sales-
man problem (PDTSP) and its variant with the LIFO constraint
(PDTSP-LIFO). Experimental results show that our N2S, when
used alone, could already outperform the state-of-the-art learning-
based baselines, and become the first neural method to surpass the
well-known LKH3 solver [12] on PDPs. Leveraging our proposed
NCS collaborative framework further strengthens this superiority.
More importantly, both N2S and NCS can use the same framework
to tackle both PSTDP and PDTSP-LIFO without any human
intervention, which is a significant improvement over existing
hand-crafted heuristics requiring manual redesign.

The key contributions of this paper are threefold:

1) We introduce the NCS framework, pioneering the collabora-
tion between neural construction and improvement models.
Through the shared-critic mechanism, curriculum learning,
and imitation learning designs, the collaboratively trained
model achieves better results than when trained separately.
NCS also holds potential applicability to other VRP variants.

2) We introduce the improvement model, N2S, marking the
first instance of a neural ruin-repair search method tailored
for PDPs. We also propose Synth-Att in N2S, allowing
vanilla self-attention to synthesize attention relationships
from various feature embeddings efficiently with superior
expressiveness compared to the DAC-Attention.

3) We propose a diversity enhancement scheme, resulting in our
NCS and N2S models achieving state-of-the-art performance.
Notably, they are the first neural approaches with almost no
domain knowledge to surpass the LKH3 solver on synthe-
sized PDP instances, especially for the PDTSP-LIFO variant.

The reminders of this paper are as follows. Section 2 reviews
various types of neural methods for VRPs including PDPs. Section
3 introduces the preliminaries. Section 4 details the architectures
of the improvement model (N2S) and the construction model
within NCS, alongside the methodologies for collaboratively train-
ing them and the inference algorithm. The experimental results and
analysis are given in Section 5. Finally, Section 6 summarizes our
work and points out the future work direction.

3

TABLE 1: Main features of the baseline neural methods.

Method Type &
Problem Network Design Algorithm Design

Heter-AM Construction
PDTSP

Heterogeneous
Attention

REINFORCE with
rollout baseline

POMO Construction
TSP & CVRP

Attention
Model (AM)

REINFORCE with
diverse rollouts

DACT
Improvement

(2-opt)
TSP & CVRP

Dual-Aspect
Collaborative
Transformer

n-step PPO
actor-critic with CL

N2S
Improvement

(remove & reinsert)
PDTSP, PDTSP-LIFO

Two decoders +
Synth-Att

n-step PPO
actor-critic with CL

NCS
Construction +
Improvement

PDTSP, PDTSP-LIFO

Modified AM +
N2S

n-step PPO
actor-critic with

shared-critic and
CL and IL

2 RELATED WORK

2.1 Neural Methods for VRPs

We classify recent neural methods into construction and im-
provement ones. The construction methods, e.g., [13], [14] and
Attention Model (AM) [7], learn a distribution of selecting nodes
to autoregressively build solutions from scratch. Despite being
fast, they lack abilities to search (near-)optimal solutions, even
if armed with sampling (e.g., [7]), local search (e.g., [15]), or
Monte-Carlo tree search (e.g., [16]). Among them, POMO [6]
which explored diverse rollouts and data augments is recognized
as the best construction method. In addition to classical VRPs, the
study on different variants and scales of VRPs has also aroused
the interest of researchers. NHDE [17] constructs Pareto solutions
for multi-objective VRPs with diversity enhancement. TAM [18]
features a two-stage divide method to generate sub-route sequence
to solve large-scale VRPs in real-time. Differently, improvement
methods often hinge on a neighborhood search procedure such
as node swap in [19], ruin-and-repair in [20], and 2-opt in [8],
and often rely on longer run time than construction methods. The
work in [5] extended the Transformer styled model of [8] to Dual-
Aspect Collaborative Transformer (DACT), and achieved state-
of-the-art performance, which was also competitive to the hybrid
neural methods, e.g., the ones combined with differential evolution
[21] and dynamic programming [22]. NeuOpt [23] circumvents
the pure feasibility masking scheme and learns to perform flexible
k-opt exchanges, becomes the first work to enable the autonomous
exploration of both feasible and infeasible regions. Different from
construction and improvement methods, Difusco [24] incorporates
a diffusion model that generates heatmaps for edge selection,
yielding significant outcomes on the TSP.

Despite the success of the above methods for CVRP or TSP,
they are not verified on the precedence-constrained PDPs. Though
the first attempt was made in Heter-AM [9] to learn a construction
solver for PDPs by introducing the heterogeneous attention to
AM [7], the solution qualities are still far from the optimality. In
this work, we take the representative construction methods POMO
and Heter-AM, and improvement model DACT as our baselines.
Table 1 lists the main differences between our methods and them.

2.2 Collaborative Neural Methods for VRPs

Recent studies highlight the potential of learning collaborative
methods for VRPs, which integrate multiple independent methods

0 1+ 2+ 2- 3+ 3- 1- 0

1+ 1+
2+

1+ 1+
3+

1+

0 1+ 2+ 1- 3+ 3- 2- 0

1+ 1+
2+

(a) δ1 (feasible to both PDPs)

0 1+ 2+ 2- 3+ 3- 1- 0

1+ 1+
2+

1+ 1+
3+

1+

0 1+ 2+ 1- 3+ 3- 2- 0

1+ 1+
2+

(b) δ2 (only feasible to PDTSP)

Fig. 2: Two PDP solutions. (a) all goods are on top of the stack at the
delivery node; (b) goods from 1+ is blocked by 2+ at 1−.

to form a unified approach. The work in [25] proposed to combine
the neural construction method with a traditional neighborhood
search, which takes the output of the construction model as the
initial solution for local search to yield the final VRP solution. The
learning collaborative policies (LCP) in [15] considered dividing
the search process into seed stage and revise stage for VRPs.
Two different construction networks were employed to perform
the respective tasks, with the initial solution constructed in the
seed phase and (re)-constructed in the revised phase. Nevertheless,
this method is still much less efficient than POMO aforemen-
tioned. In [26], a neural constructor and a neural perturbator were
independently designed, which were directly stacked together
during the inference. However, the above works failed to train
the respective methods in an integrated and collaborative way,
thus preventing effective information sharing and holding back
the eventual performance. Furthermore, none of them is designed
to tackle the pickup and delivery problems as studied in this paper.

2.3 Neighbourhood Search for PDPs

Various heuristics based on neighborhood search have been pro-
posed for PDPs. For PDTSP, the k-interchange neighborhood
was studied in [27]. A ruin-and-repair neighborhood was later
proposed in [28], and further extended in [29] with multiple pertur-
bation methods. Aside from PDTSP, other PDP variants were also
investigated, normally solved by designing new problem-specific
neighborhoods [1], e.g., five neighborhoods were proposed in
[30] to tackle the PDTSP with handling costs. Among them, the
PDTSP-LIFO attracts much attention due to its largely constrained
search space. To solve it, additional neighborhoods such as double-
bridge and shake were introduced in [31]. Neighborhoods with
tree structures were further proposed in [4]. Different from the
above PDP solvers, the well-known LKH3 solver [12] combines
neighborhood restriction strategies to achieve a more effective
local search, which could solve various VRPs with superior
performance. Recently, LKH3 was extended to tackle several
PDP variants including PDTSP and PDTSP-LIFO, and delivered
comparable performance to [29] and [4] on PDTSP and PDTSP-
LIFO, respectively. Also given the open-sourced nature2, we use
LKH3 as the benchmark heuristic.

3 PRELIMINARY

Existing neural solvers mainly focus on TSP and CVRP. TSP
involves finding the shortest possible route that visits a set of
given nodes exactly once and returns to the starting node. CVRP
is an extension of the TSP where a (fleet of) vehicle(s) departs
from a central depot and must serve a set of customers while
respecting vehicle capacity constraints and minimizing total travel
distance (or cost). In contrast, despite sharing some characteristics
with the TSP and CVRP, the PDP is significantly different from

2. http://webhotel4.ruc.dk/∼keld/research/LKH-3/

4

them due to the presence of pickup and delivery nodes. As we
have verified in Appendix A, such precedence constraints would
introduce significant challenges for existing neural solvers. We
define the studied PDPs over a graph G = (V,E), where nodes
in V = P ∪D ∪ 0 represent locations and edges in E represent
connections between locations. Each node possesses a coordinate
attribute and can be represented using the two-dimensional Eu-
clidean coordinates. With n one-to-one pickup-delivery requests,
an PDP instance contains |V | = 2n+1 different locations, where
node 0 is depot, node set P = {1+, 2+, ..., n+} is referred to as
pickup nodes, and node set D = {1−, 2−, ..., n−} is referred to
as delivery nodes3. Each pickup node i+ has a number of goods
to be transported to its pairing delivery node i−. The objective is
to find the shortest Hamiltonian cycle to fulfil all requests. In this
paper, we consider two representative PDP variants, i.e., PDTSP
and PDTSP-LIFO. The solution δ is defined as a cyclic sequence
(x0, ..., x2n+1), where x0 and x2n+1 are the depot, and the rest is
a permutation of nodes in P ∪D. The objective value of a solution
is the total Euclidean length of the cyclical sequence of nodes. For
PDTSP, such permutation is under the precedence constraint that
requires each pickup i+ to be visited before its pairing delivery
i−. For PDTSP-LIFO, the last-in-first-out constraint is further
imposed which requires loading and unloading to be executed in
the corresponding order. This implies that unloading at a delivery
node is allowed if and only if the goods is at the top of the stack. In
Fig. 2, we present two example solutions with n=3 and |V |=7.
The two solutions are both feasible to PDTSP, however, solution
δ2 in Fig. 2(b) is infeasible to PDTSP-LIFO as the goods from 1+

is NOT at the top of the stack when it needs to be delivered at 1−.
The mathematical formulations of PDTSP and PDTSP-LIFO are
presented in Appendix B.

4 METHODOLOGY

Our Neural Collaborative Search (NCS) approach considers the
collaboration of the two policy network, i.e., the improvement
model and the construction model, respectively. The improvement
model, referred to as the Neural Neighborhood Search (N2S) [10],
and the construction model, a modified version of the Attention
Model [7], named m-AM. These two models work collaboratively
to solve the PDPs, with the construction model yielding the initial
solution that the improvement model iteratively refines.

To achieve such collaboration, an intuitive way is to directly
connect the two models that are trained independently. However,
it would be far from optimal. On the one hand, the improvement
model, typically initiating its search from a random solution, may
perform less efficiently than starting from a solution generated
by the construction model. On the other hand, the high-quality
solutions produced by the improvement model, which could be
beneficial for training the construction model, are often over-
looked. In our NCS, we build a bridge between the construction
model and improvement model to achieve collaborative training
through a shared-critic mechanism, where they could naturally
further promote each other with a curriculum learning strategy
and an imitation learning loss function, respectively.

To better present our method, we first introduce the Markov
Decision Process (MDP) formulation of N2S and m-AM (section
4.1). Following this, we detail the design of the policy network of
N2S (section 4.2) and m-AM (section 4.3). Finally, we elaborate

3. We also refer to x0 as the depot, {x1, ..., xn} as the pickup nodes, and
{xn+1, ..., x2n} as the delivery nodes from here on.

on how to train the construction model and the improvement
model collaboratively in NCS (section 4.4). To simplify notation,
some symbols used for m-AM may be identical to those used for
N2S. For example, s denotes the state in the N2S model and is
also used to represent the state in the m-AM model.

4.1 MDP Formulation
4.1.1 MDP Formulation of N2S
The input of N2S policy network is a problem instance and a
solution to be improved, and the output is an action to improve
the solution. Given the input and output of the policy network,
we define the process of solving PDPs by our N2S as a Markov
Decision ProcessM=(S,A, T ,R, γ) as follows.
State S . At time step t, the state is defined to include, 1) features
of the current solution δt, 2) action history, and 3) objective value
of the best incumbent solution, i.e.,

st = {{l(x)}x∈V , {pt(x)}x∈V ,H(t,K), f(δ∗t)} , (1)

where δt is described from two aspects following [5]: l(x)
contains 2-dim coordinates of node x (i.e., node features) and
pt(x) indicates the index position of x in δt (i.e., node po-
sitional feature); H(t,K) stores the most recent K actions at
time step t if any; and f(·) denotes the objective function and
δ∗t = argminδτ∈{δ0,...,δt} f(δτ).
Action A. With action at = {(i+, i−), (j, k)} where j, k ∈
V \{i+, i−}, the agent removes node pair (i+, i−), and then
reinserts node i+ and i− after node j and k, respectively.
State Transition T . Performing action at on a solution will occur
a deterministic transition and form a new solution. The action
history and f(δ∗t) will also be updated deterministically.
Reward R. The reward function is defined as rt = f(δ*

t)−
min

[
f(δt+1), f(δ

*
t)
]

which is the immediate reduced cost w.r.t.
f(δ*

t). The N2S agent aims to maximize the expected total reduced
cost w.r.t. δ0 with a discount factor γ < 1.

4.1.2 MDP Formulation of m-AM
The input of m-AM policy network is a problem instance and a
partially constructed solution, and the output is an action to further
construct the partial solution. Based on this, the MDP formulation
of m-AM is defined as follows.
State S . The state st represents the instance information and the
partial solution constructed up to time step t. The former includes
the coordinates of the depot and all customer nodes, denoted as
l(x) with x ∈ V , and the latter includes the set of nodes visited
till time step t-1 and the one visited exactly at time step t-1. At
time step 0, there is no last visited node, so s0 = {l(x)}x∈V .
Action A. The action at of the construction model represents the
next node to visit where the infeasible nodes will be filtered out.
State Transition T . Based on at, the partial solution will append
the newly visited node and lead to the next state st+1. The
transition will be terminated when all nodes have been visited
once, and the vehicle will return to the depot.
Reward R. The goal is to construct a route with minimal travel
length. Therefore, the reward of the whole action trajectory is set
to the negative of the route length after the route is completed.
Policy P . The stochastic policy πθ′ selects one node to visit (i.e.,
at) at each time step t. This process will be repeated until all
customer nodes are served before returning to the depot. The
final solution δ = (a0, a1, . . . , a|V |−1, a0) can be described as
a permutation of actions. Note that for PDPs, a0 = x0 is always

5

1+
2+

3+

1-

3-

2-

Synth-Att

Node-Pair
Removal Decoder

Node-Pair
Reinsertion Decoder

Action: { (1+, 1-) , (0, 3+) }

𝑳 ×

NFEs

PFEs

Node Positional Features

0 2+ 3+ 3-
2- 1+ 1- 0

Node Features

Compatibility Layer

EncoderProblem Instance &
Current Solution
(State at time T)

auxiliary
attention scores

Enhanced Node Embeddings

(1+, 1-) (0, 3+)

Problem Instance &
Next Solution

(State at time T+1)

decoding

state transitionencoding

1+
2+

3-

1-

3-

2-

Input / Output
Passing

Identify /
Reference

Update
1+

2+

3+

1-

3-

2-
0

1+
2+

3+

1-

3-

2-
0

1+
2+

3+

1-

3-

2-
0

Fig. 3: N2S policy network (from the left to the right: encoding, decoding and state transition process)

the depot. The stochastic policy πθ′ for constructing a solution
δ given a problem instance {l(x)}x∈V can be factorized and
parameterized by θ′ as

πθ′(δ|{l(x)}x∈V) = πθ′(δ|s0) =
|V |−1∏
τ=0

πθ′(aτ |sτ). (2)

4.2 Policy Network of N2S

N2S network is designed based on the encoder-decoder architec-
ture, in which the encoder elegantly embeds the problem instance
and current solution in sequence, and then the decoder adopts
the compatibility computation to produce probability matrices of
selecting node pairs to remove and reinsert. An example of a
PDTSP-7 instance is shown in Fig. 3 to illustrate our N2S net-
work. The encoder processes raw features of the current solution
to produce node embeddings, which are then fed into the two
decoders to sample an action. In the state transition, the node pair
(1+, 1−) is removed and then reinserted after depot 0 and node
3+, respectively.

4.2.1 Encoder and Synth-Att

Given state s = {{l(x)}x∈V , {p(x)}x∈V ,H(t,K), f(δ∗)}, the
N2S encoder takes {l(x)}x∈V and {p(x)}x∈V as inputs4 to
learn embeddings for representing the current solution. Follow-
ing DACT, we first project these raw features into two sets of
embeddings, i.e., node feature embeddings (NFEs) {hi}|V |

i=0 and
positional feature embeddings (PFEs) {gi}|V |

i=0. Different from [5],
we treat NFEs as the primary set of embeddings whereas PFEs as
auxiliary ones.
NFEs. We define hi as the linear projection of its node features
l(xi) for any xi ∈ V with output dimension dh = 128.
PFEs. By extending the absolute positional encoding in the
vanilla Transformer [11], the cyclic positional encoding (CPE)
was proposed in [5], which enables Transformer to encode cyclic
sequences (as our PDP solutions) more accurately. The PFE gi
with output dimension dg = 128 is initialized by CPE as follows,

gi
(d) =

sin(ωd ·
∣∣∣(z(i) mod 4π

ωd
)− 2π

ωd

∣∣∣), if d is even

cos(ωd ·
∣∣∣(z(i) mod 4π

ωd
)− 2π

ωd

∣∣∣), if d is odd
(3)

4. H(t,K) is the input to decoder and f(δ∗) is the input to critic network
(introduced later). Here we omit time step t for better readability.

MatMul

Scale

Element-wise MLP

SoftMax

MatMul

Qh Kh Vh

MatMul

Scale

SoftMax

Qh Kh VhVhref

Concat & Linear

MatMul

Scale

SoftMax

MatMul

Kg Qg VgrefVg

MatMul MatMulMatMul

Concat & Linear

(a) The DAC-Att [5]

MatMul

Scale

Element-wise MLP

SoftMax

MatMul

Qh Kh Vh

MatMul

Scale

SoftMax

Qh Kh VhVhref

Concat & Linear

MatMul

Scale

SoftMax

MatMul

Kg Qg VgrefVg

MatMul MatMulMatMul

Concat & Linear

(b) Our Synth-Att

Fig. 4: Comparison of attention modules for VRPs. The blue and
orange squares are used to represent self-attention score matrices.

where superscript d of gi
(d) refers to the d-th dimension of gi,

and the scalar z(i) as well as the angular frequency ωd = 2π
Td

are
defined accorting to Eq. (4) and Eq. (5), respectively.

z(i) =
i

|V |
2π

ωd

⌈ |V |
2π/ωd

⌉
, (4)

Td=

{
3⌊d/3⌋+1

dg
(|V |−|V |

1

⌊dg/2⌋)+|V |
1

⌊dg/2⌋, ifd<⌊dg

2 ⌋
|V |. otherwise

(5)

According to [5], directly fusing the two sets of embeddings
(i.e., hi + gi) may cause undesired noises to the vanilla self-
attention. As shown in Fig. 4(a), they thus proposed the DAC-Att
in a way that each embedding set independently computes atten-
tion scores and shares them with the other one to learn dual-aspect
representations. Different from it, we propose a simple and generic
mechanism by incorporating a multilayer perception (MLP). As
shown in Fig. 4(b), besides the original self-attention scores (the
orange squares), multiple auxiliary attention scores learned from
other feature embeddings (the blue squares) are leveraged and
fed into an element-wise MLP, which allows it to synthesize
heterogeneous attention relationships into comprehensive ones.
We call it Synthesis Attention (Synth-Att). It is able to not only
leverage more attention scores from various feature embeddings,
but also achieve competitive performance to DAC-Att with less
computation costs. Below, we present more details.

6

Auxiliary Attention Scores. In our N2S, PFEs are used to
generate multi-head auxiliary attention scores as follows,

αaux
i,j,m =

(
giW

Qaux
m

)(
gjW

Kaux
m

)T
, (6)

where WQaux
m ∈ Rdg×dq ,WKaux

m ∈ Rdg×dk are trainable matrices
for each head m. We set m = 4 and dq = dk = dg/m.
Syn-Att. The Syn-Att is defined as follows,

h̃i = Syn-Att(WQ,WK ,WV ,WO,MLP). (7)

In specific, it first computes the multi-head self-attention scores
αself
i,j,m for NFEs based on the trainable matrices WQ

m ∈ Rdh×dq

and WK
m ∈ Rdh×dk for head m using Eq. (8) as

αself
i,j,m =

(
hiW

Q
m

)(
hjW

K
m

)T
. (8)

Thereafter, the attention scores αaux and αself are fed into a
three-layer MLP with structure (2m × 2m ×m) to compute the
synthesized multi-head attention scores as follows,

αSynth
i,j,1 , ..., α

Synth
i,j,m=MLP

(
αself
i,j,1, ..., α

self
i,j,m, αaux

i,j,1, ..., α
aux
i,j,m

)
. (9)

The scores are then normalized to α̃i,j,m through Softmax, which
are further used to calculate the attention values for each head as
Eq. (10). Finally, the outputs are given by Eq. (11) with trainable
matrix WO ∈ Rmdv×dh (dv = dh/m).

headi,m =

|V |∑
j=1

α̃i,j,m

(
hjW

V
m

)
, (10)

h̃i = Concat [headi,1, ..., headi,m]WO. (11)

N2S Encoder. We stack L (L=3) encoders, each of which is the
same as the Transformer encoder, except that the vanilla multi-
head self-attention is replaced with our multi-head Synth-Att and
we use the same instance normalization layer as [5]. Note that
the auxiliary attention scores αaux

i,j,m are only computed once and
shared among all stacked encoders to reduce computation costs.

4.2.2 Decoder
The N2S decoder adopts the output from the encoder, which
contains the embedding of the problem instance and the current
solution, and generates action at={(i+, i−), (j, k)} as described
in section 4.1.1 for removal and reinsertion. Thus the N2S decoder
has two sub-decoders and each is responsible for deciding which
node pair to remove (node-pair removal decoder) and where to
reinsert (node-pair reinsertion decoder).

The N2S decoder first adopts the max-pooling layer in [8] to
aggregate the global representation of all embeddings into each
individual one as follows,

ĥi = h̃
(L)
i W Local

h +max
[
{h̃(L)

i }
|V |
i=1

]
WGlobal

h . (12)

Node-Pair Removal Decoder. Given the enhanced embeddings
{ĥi}|V |

i=1 and the set H(t,K), the removal decoder outputs a
categorical distribution over n requests for removal action. It first
computes a Node Closeness Score λi (for each xi ∈ V), indicating
the closeness between node xi and its neighbors as

λi = (ĥpred(xi)W
Q
λ)(ĥiW

K
λ)T + (ĥiW

Q
λ)(ĥsucc(xi)W

K
λ)T

−(ĥpred(xi)W
Q
λ)(ĥsucc(xi)W

K
λ)T ,

(13)

where pred(xi) and succ(xi) refer to the first predecessor and the
second successor nodes of xi, respectively, and WQ

λ ∈ Rdh×dh ,
WK

λ ∈ Rdh×dh . The mixed use of the first and second neighbors
is a balance between myopia (only first neighbors) and hyperopia
(only second neighbors). We use multi-head technique to obtain
λi,1 to λi,m. Then the decoder aggregates the scores for each
pickup-delivery pair (i+, i−) based on a three-layer MLPλ,

Λ̃(i+,i−) = MLPλ(λi+,1, ..., λi+,m, λi−,1, ..., λi−,m,

c(i),1last(1)=i,1last(2)=i,1last(3)=i),
(14)

where the MLP structure is (2m+4, 32, 32, 1), scalar c(i) counts
the frequency of request (i+, i−) being selected for removal in the
past K steps, and 1last(t)=i′ is a binary variable indicating whether
request i′ was selected at the t-th last step. Inspired by tabu search
[32], we argue that taking into account the history of actions
should be able to improve the decision making. The removal
operation determines which pair of nodes to be removed, and the
history information can effectively facilitate, e.g., by learning to
avoid repetitive operations. An activation layer Λ̂ =C · Tanh(Λ̃)
is then applied (C = 6), followed by Softmax to normalize the
distribution which is then used to sample a node pair (i+, i−) as
the removal action.
Node-Pair Reinsertion Decoder. Given a request (i+, i−) for
removal, the reinsertion decoder outputs the joint distribution that
reinserts the two nodes back to the solution. We first define two
Node Reunite Scores µp(xα, xβ) and µs(xα, xβ) for a node xα,
indicating the degree of preference of accepting a node xβ as its
new predecessor and successor nodes, respectively,

µp [xα, xβ] = (ĥαW
Qp
µ)(ĥβW

Kp
µ)T ,

µs [xα, xβ] = (ĥαW
Qs
µ)(ĥβW

Ks
µ)T ,

(15)

where W
Qp
µ ,WQs

µ ∈Rdh×dh , and W
Kp
µ ,WKs

µ ∈Rdh×dh . Again,
we use multiple heads. Based on the scores, the decoder predicts
the distribution of reinserting node i+ after node j, and reinserting
node i− after node k using MLPµ,

µ̃[j, k] = MLPµ(µ
p
1[i

+, succ(j)], ..., µp
m[i+, succ(j)],

µp
1[i

−, succ(k)], ..., µp
m[i−, succ(k)],

µs
1[i

+, j], ..., µs
m[i+, j], µs

1[i
−, k], ..., µs

m[i−, k]),

(16)

where the MLP structure is (4m, 32, 32, 1). Note that here
pred(·) and succ(·) should be considered in the new solution
where nodes i+, i− have already been removed. Afterwards,
µ̂ = C · Tanh(µ̃) is applied and infeasible choices are masked as
−∞ before normalizing by Softmax. Finally, a node pair (j, k),
as the reinsertion action, is sampled according to the resulting
distribution to indicate the positions of reinserting the node-pair
(i−, i+) back to the solution.

4.3 Policy Network of m-AM
Compared to the improvement policy in N2S, the network for the
construction policy is less complicated since it mainly constructs
a route as the initial solution to be improved by the N2S. In this
sense, we leverage an encoder-decoder structured policy network
for PDPs (as illustrated in Fig. 5) following the Attention Model
(AM) [7]. The input to the construction policy includes all nodes
in a PDP instance and the partially constructed solution, and it
outputs a probability distribution for the action which is used
to select the next node to visit. Note that our policy network
is identical to the Heter-AM [9] except that the attention layer

7

𝑥𝑥0 𝑥𝑥1 𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛+1 𝑥𝑥2𝑛𝑛… …

𝑥𝑥0 𝑥𝑥1, 𝑥𝑥𝑛𝑛+1 𝑥𝑥𝑛𝑛, 𝑥𝑥2𝑛𝑛… 𝑥𝑥𝑛𝑛+1 𝑥𝑥2𝑛𝑛…

Linear

ℎ0
(0) …ℎ1

(0) ℎ2𝑛𝑛
(0)

MHA

Normalization

�ℎ0 �ℎ1 �ℎ2𝑛𝑛…

Feed Forward

Normalization

ℎ0
(𝑁𝑁) …ℎ1

(𝑁𝑁) ℎ2𝑛𝑛
(𝑁𝑁) �ℎ(𝑁𝑁) ℎ𝑎𝑎𝑡𝑡−1

(𝑁𝑁)

MHA

MHA

ℎ𝑐𝑐𝑁𝑁+1

𝑢𝑢0 𝑢𝑢1 𝑢𝑢2𝑛𝑛…

𝑝𝑝0 𝑝𝑝1 𝑝𝑝2𝑛𝑛…

Mask & Softmax

𝑞𝑞

𝑎𝑎𝑡𝑡

𝑞𝑞𝑘𝑘 𝑣𝑣

𝑘𝑘𝑁𝑁 ×

𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚

Fig. 5: m-AM policy network (left: encoder; right: decoder)

in our encoder adopts the one in AM [7] which is simpler, so
our m-AM can be considered as a lightweight Heter-AM. Three
main differences are hold between m-AM and AM, including the
input in the encoder, context embedding and mask scheme in
the decoder. In this section, we will give a brief introduction to
network design and highlight these three differences.

4.3.1 Encoder
The input to the encoder network is the coordinates of the 2n+1
nodes in the Euclidean space. Given the property of the PDP, a
representation enhancement is adopted, where each pickup node
is concatenated with its paring delivery node [9], so the pickup
node will be represented as a 4-dimension vector rather than 2-
dimension. Three linear projection layers are used for the depot
node, concatenated pickup nodes, and delivery nodes, respectively.
Each linear projection layer encodes a 2-dimension (4-dimension
for the concatenated pickup node) coordinate vector l(xi) to a d-
dimension embedding h

(0)
i with d = 128. This is where the first

main difference lies.
Given the embeddings from the linear projection, they will be

updated and promoted through N (N=3) attention layers. After
passing through the N attention layers, the representation for each
node will be transformed into a d-dimension embedding h

(N)
i .

Then the graph embedding will be calculated as the mean of these
node embeddings as

h̄(N) =
1

2n+ 1

2n∑
i=0

h
(N)
i . (17)

4.3.2 Decoder
Decoder aims to derive a probability distribution, based on which
the action (or node) could be sequentially determined. It has
three primary inputs, including 1) a (2 ∗ d)-dimension context
embedding h

(N)
c , which contains the graph embedding h̄(N) as

well as the embedding h
(N)
at−1 of the last node at−1 visited at

time step t, i.e., h(N)
c = Concat(h̄(N), h

(N)
at−1). Note that since

a0 is always the depot x0, the real decoding will start at t=1; 2)

Algorithm 1 n-step PPO (shared-critic) with CL and IL strategy
Input: improvement policy πθ , construction policy πθ′ , critic vϕ,
shared-critic parameter ζ , PPO clipping threshold ε, learning rate
ηθ , ηθ′ , ηϕ, ηζ , learning rate decay β, epochs E, batches B, mini-
batch κ, training steps Ttrain

1: for e = 1 to E do
2: for b = 1 to B do
3: Generate training data Db on the fly;
4: δ0 ← CurriculumLearning(Db, πθ, πθ′ , e);
5: Set initial state s0 based on δ0 and Eq. (1); t←0;
6: while t < Ttrain do
7: D′

b ← InvariantTransform(Db);
8: Get (δ′, f(δ′)) using πθ′ on D′

b;
9: Get {(sτ ,aτ ,rτ), f(δτ)}t+n−1

τ=t using πθ on Db;
10: t← t+ n;
11: Perform PPO with shared-critic to update θ, θ′, ϕ, ζ;
12: end while
13: θ′ ← ImitationLearning(πθ′ , δ∗t−1, δ

′,Db, e)
14: end for
15: ηθ ← βηθ , ηϕ ← βηϕ;
16: end for

the node embeddings {h(N)
0 , h

(N)
1 , . . . , h

(N)
2n } from the encoder,

which serves as the key and value for the attention computation
in decoder; 3) a (2n + 1)-dimension mask vector, which ensures
no duplicate nodes in a complete route and no violation of the
precedence constraint of the pickup and delivery node pairs. As
the context embedding and mask vector vary at each construction
step, the partially constructed route is captured by masking the
node from the context embedding at different steps. Note that
the first and third inputs are related to the remaining two main
differences.

These inputs will pass through two attention layers and then
the final probability for action selection is calculated. According
to the yielded probability vector, we sample the next node to visit.
If the route has not yet been completely constructed, the sampled
node will be used to update the context embedding h

(N)
c and mask

vector, based on which a new node to be visited next will be
determined successively. This process is repeated until a complete
route is constructed.

4.4 Training Algorithm

The overall architecture of our NCS approach is illustrated in
Fig. 6, while the training flow is summarized in Algorithm 1,
which is essentially a collaborative proximal policy optimization
(PPO) [33] using the proposed shared-critic mechanism with
curriculum learning (CL) and imitation learning (IL). It jointly
learns an improvement policy πθ (N2S) and a construction policy
πθ′ (m-AM) with the help of a critic network vϕ for N2S, where
the critic value for m-AM is attained based on vϕ.
Critic Network. Given the embeddings {h̃(L)

i }
|V |
i=0 from N2S

policy network πθ , the critic network first enhances them by a
vanilla multi-head attention layer (with m = 4 heads) to get
{yi}|V |

i=0. The enhanced embeddings are then fed into a mean-
pooling layer [8] to aggregate the global representation of all
embeddings into each individual one as

ŷi = yiW
Local
v + mean

[
{yi}|V |

i=1

]
WGlobal

v , (18)

8

Construction
Actor

Improvement
Actor
(N2S)

Improvement
Critic
(N2S)

RL
Advantage

Construction
Critic

RL
Advantage

Curriculum
Learning

Invariant
Transform
& Sample

Imitation Learning

𝛿𝛿0 𝛿𝛿𝑡𝑡

𝛿𝛿′

𝑎𝑎𝑡𝑡 …
𝑎𝑎𝑡𝑡+𝑛𝑛−1

𝛿𝛿𝑡𝑡+1 … 𝛿𝛿𝑡𝑡+𝑛𝑛

𝑟𝑟𝑡𝑡 … 𝑟𝑟𝑡𝑡+𝑛𝑛−1

�̂�𝐴𝑡𝑡 … �̂�𝐴𝑡𝑡+𝑛𝑛−1𝐴𝐴′

𝑓𝑓(𝛿𝛿′)

𝑓𝑓 𝛿𝛿𝑡𝑡 …𝑓𝑓(𝛿𝛿𝑡𝑡+𝑛𝑛−1) 𝑠𝑠𝑡𝑡 …
𝑠𝑠𝑡𝑡+𝑛𝑛

𝛿𝛿𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1
∗

𝑉𝑉ϕ 𝑠𝑠𝑡𝑡 …𝑉𝑉ϕ 𝑠𝑠𝑡𝑡+𝑛𝑛−1

𝑉𝑉′(𝜍𝜍)

𝑉𝑉ϕ 𝑠𝑠𝑡𝑡 … 𝑉𝑉ϕ 𝑠𝑠𝑡𝑡+𝑛𝑛−1

�𝑅𝑅𝑡𝑡 … �𝑅𝑅𝑡𝑡+𝑛𝑛−1

Fig. 6: The illustration of NCS training algorithm which exhibits the computation flow in a batch, all symbols are aligned with Algorithm 1.

where we use trainable matrices W Local
v ,WGlobal

v ∈ Rdh×
dh
2 .

Lastly, the state value v(st) is output by a four-layer MLP in
Eq. (19) with structure (129, 128, 64, 1). Here, f(δ∗) is added as
an additional input to MLPv .

vϕ(st) = MLPv

(
max

[
{ŷi}|V |

i=1

]
,mean

[
{ŷi}|V |

i=1

]
, f(δ∗)

)
. (19)

We train NCS for E epochs and B batches per epoch, where
the training dataset Db is randomly generated on the fly with
the uniform distribution (line 3). While the improvement policy
performs the gradient update for multiple times on the same
PDP instance, the construction policy only needs to perform
the gradient update once. Therefore, each time the improvement
policy samples an action on the same instance, the construction
policy will sample a solution on an invariant transformation (line
7) of the same instance to strengthen its exploration capability.
The procedure of the invariant transformation is summarized
in Algorithm 3 of Appendix C. The backbone of the whole
algorithm basically follows the PPO equipped with our shared-
critic mechanism, the detailed procedure is given in Algorithm 6
of Appendix C and we introduce shared-critic mechanism next.
Shared-Critic Mechanism. The critic network for the improve-
ment model (N2S) takes its state st as the input, and fits the
loss function in Eq. (24). We deduce that this critic network is
trained to output a good estimation of the cumulative expected
future rewards from the given state st, which is also the gap
of objective value (i.e., route length) between solution δt and
the optimal one. It means that the optimal objective for instance
{l(x)}x∈V approximately equals f(δt)− vϕ(st). In practice, we
may not need a rigorously precise estimation during training,
so we introduce a trainable parameter ζ , and thus the estimated
optimal objective of the instance could become f(δt)− ζvϕ(st).
This can be potentially used as the critic of the construction
model (m-AM), termed as the shared-critic mechanism, since
it is derived directly from the improvement model. In practice,
we use the n-step f(δt) and vϕ(st) to estimate this value,
also known as the baseline of the construction model, i.e.,
V ′(ζ)←mean({f(δτ)−ζvϕ(sτ)}t+n−1

τ=t), thus the construction
advantage could be calculated as A′ ← f(δ′) − V ′(ζ) (line
9, 10 in Algorithm 6). Naturally, this shared-critic mechanism
acts as a bridge to enable collaborative training with one critic
network for two models. Compared with the traditional critic
(i.e., a separate concrete network) [34] and rollout baseline (i.e.,

a backup of policy network) [7], our shared-critic has only one
trainable parameter for the construction model, so the computation
cost is greatly reduced.

Curriculum Learning. Following [5] and [35], we leverage the
curriculum learning (CL) strategy (lines 4) to ameliorate the
training further. In specific, a solution δ0 is yielded from the
current construction policy πθ′ and then the improvement policy
πθ uses it to set its initial state s0. The quality of solution δ0
will be improved as the epoch e increases. In such a way, the
hardness level of neighborhood search is gradually increased per
epoch because initiating searches from higher-quality solutions
can make obtaining further improvements (rewards) more chal-
lenging. This follows the rationale of curriculum learning, which
progressively increases task difficulty, thereby strengthening the
capability of the policy to find improvements (rewards) even from
near-optimal solutions, eventually aiming to discover the optimal
solution. Meanwhile, such a CL strategy also narrows the search
focus of the policy towards more refined regions around near-
optimal solutions rather than broad, coarse searches on low-quality
solutions, which is unnecessary given that the construction model
can efficiently produce high-quality solutions without extensive
search efforts. The input of CL includes the training data Db,
both policies πθ and πθ′ , and current epoch e. It will output a
solution as the initial state. The detailed procedure of CL is shown
in Algorithm 4 of Appendix C.

Imitation learning. Inspired by [36], an imitation learning (IL)
strategy is applied at the end of each batch. Curriculum learning
enables the construction model to help the improvement model
during collaborative training, while imitation learning enables
the other way around. After the complete training with a small
batch, we could obtain the best incumbent solution δ∗t−1 which
is first yielded using curriculum learning and then improved for
Ttrain steps by the improvement model. For the best incumbent
solution δ∗t−1, i.e., f(δ∗t−1) ≤ f(δ0), its quality will get better
and better as the training iterations go on. As the training process
for both models converges, δ0 itself will also be of good quality.
Given that δ∗t−1 has been improved for Ttrain steps from δ0,
it should approach the optimal solution. Hence δ∗t−1 could be
used as a positive imitation sample. Thus, the construction policy
could further update itself by imitating this sample (line 13). In
particular, the loss function for imitating learning is expressed as

9

Algorithm 2 NCS(-A) Inference
Input: Instance I with size |V |, policy πθ and πθ′ , sample times
S, maximum step T

1: if augment enabled then
2: for i = 1, ..., ⌊ 12 |V |⌋ do
3: Ii ← InvariantTransform(I);
4: end for
5: end if
6: Sample S solutions for all instances Ii in parallel with πθ′ ;
7: Keep the best solution among these S solutions as the initial

solution δ0;
8: Solve all instances Ii with πθ in parallel for T steps;
9: return the best solution found among all Ii;

follows,

J ′
IL = − 1

|Db|
∑
Db

(ξ · πθ′(δ∗|s′0)), (20)

where ξ is a tunable parameter to regulate the importance of
imitation for the construction model. The input of IL includes the
construction policy πθ′ , the best incumbent solution δ∗t−1, initial
constructed solution δ′, training data Db and current epoch e. It
outputs an updated construction policy πθ′ after imitation. The
procedure of IL is summarized in Algorithm 5 of Apendix C.

4.5 Diversity Enhancement during Inference
Regarding the inference, NCS first yields the initial solution by
sampling with the construction policy, and then passes it to the
improvement policy as the starting solution for iterative updates.
In the end, the best solution yielded by the improvement policy is
retrieved as the final output.

To be more resistant to local minima, we further equip our
NCS with an augmentation-based inference scheme, which leads
to NCS-A in Algorithm 2. Such idea was originally explored
in [6] for a neural construction method, and we extend it to
an improvement one. The rationale is that an instance I can be
transformed into different ones for searching while reserving the
same optimal solution, e.g., rotating all locations of nodes by
π/2 radian. For an instance of size |V |, our NCS-A performs
⌊ 12 |V |⌋ augments, each of which is generated by invariant trans-
formation (Algorithm 3 of Appendix C). Note that although the
mentioned transformations are conducted on instances defined in
the Euclidean space, we believe that such an idea has favourable
potential to be also exploited in non-Euclidean space, as long
as there are proper invariant transformations for coordinates in
the target space. Meanwhile, we use K = |V | for training and
K = ⌊ 12 |V |⌋ for inference. This is because we found that when
a specific K in H(t,K) is used for training, a smaller K during
inference can improve the diversity of the solutions, thus better
eventual performance (Section 5.3).

4.6 Standalone N2S Approach
Removing the construction policy πθ′ from NCS, yields the
standalone N2S approach [10], i.e., the improvement policy πθ

and critic network vϕ. This configuration serves as an independent
neural improvement method for PDPs, facilitating a focused evalu-
ation of the performance of the N2S policy network and supporting
various experiments detailed in section 5. Meanwhile, since the
construction model is removed, the IL strategy and shared-critic

mechanism will not hold, and the CL strategy is degenerated as
follows: it improves the randomly generated solution δ−1 to δ0
by running the current policy πθ for T = e/ρ steps (e is current
epoch number and ρ is a fixed hyperparameter) as proposed in
[5], which means that we exploit the evolved policy itself to yield
better and better initial solution as the training progresses. The
improved solution δ0 with higher quality (thus harder to improve)
is used to initialize the first state s0. For inference, the N2S
approach will start from a randomly generated solution δ0.

5 EVALUATION

We design experiments to answer the following questions:
1) How good are the proposed NCS and N2S against the

baselines, including the state-of-the-art neural methods and
the strong LKH3 solver? (see Table 3 and Table 4)

2) Can N2S Synth-Att reduce computation costs while achiev-
ing competitive performance to DAC-Att and how crucial
are the proposed learnable node-pair removal and node-pair
reinsertion decoders for achieving an efficient search in N2S?
(see Table 5 and Table 6)

3) How does the curriculum learning in NCS help the improve-
ment model compared to the one trained individually and
how does the imitation learning in NCS help the construction
model? (see Table 9, Fig. 7 and Fig. 8)

4) How do variations in designs such as the action history
length K and the MLP layer number in Synth-Att affect the
performance of the N2S network? (see Table 7 and 8)

5) Can our NCS and N2S generalize well to benchmark in-
stances that are different from training ones? (see Table 10)

5.1 Setup
We evaluate N2S and NCS on PDTSP and PDTSP-LIFO with
three sizes |V | = 21, 51, 101 following the conventions in [5],
[6], where the node coordinates of instances are randomly and
uniformly generated in the unit square [0, 1]× [0, 1]. For N2S, the
initial solution δ0 is sequentially constructed in a random fashion.
Our experiments were conducted on a server equipped with 8
RTX 2080 Ti GPU cards and Intel E5-2680 CPU @ 2.4GHz. The
training time of N2S varies with problem sizes, i.e., around 1 day
for |V |=21, 3 days for |V |=51, and 7 days for |V |=101. As for
NCS, it is 1 day, 7 days and 10 days, respectively, both of which
are shorter than all the neural baselines in Table 2. Regarding the
memory cost, on PDTSP instance with |V | = 51, NCS training
memory cost is 19918MB and N2S is 14786MB, the inference
memory cost of NCS is 6136MB and N2S is 5758MB. We can
see that NCS occupies about 34% more memory than N2S during
training and only 6.5% more memory than N2S during inference.
Our code is publicly available online5.
Hyper-parameters. Our N2S and NCS are trained with E=200
epochs and B = 20 batches per epoch using batch size 600. We
set n = 5, Ttrain = 250 for the n-step PPO with κ = 3 mini-
batch updates and a clip threshold ϵ = 0.1. Adam optimizer is
used with learning rate ηθ=8×10−5 for πθ , ηϕ=2×10−5 for vϕ
(decayed β=0.985 per epoch), and η′θ′ =10−4 for π′

θ′ , ηζ=0.01,
both without decay. The reward discount factor γ is set to 0.999

5. https://github.com/dtkon/PDP-NCS.
6. https://github.com/Demon0312/Heterogeneous-Attentions-PDP-DRL
7. https://github.com/yd-kwon/POMO
8. https://github.com/yining043/VRP-DACT

10

TABLE 2: Training details of the adopted neural baselines.

Method Code Training Time Hyper-parameters

Heter-AM online6 ∼ 20 days train 800 epochs as per
the original setting.

Heter-POMO online7 ∼ 14 days train 2,000 epochs as per
the original setting.

DACT online8 ∼ 10 days

ξCL = 0.25, 1, 4 for sizes
|v| = 21, 51, 101, respectively;

n=5, Ttrain =250 (same as ours);
train 200 epochs (same as ours).

for both PDPs. We clip the gradient norm of N2S network to be
within 0.05, 0.15, 0.3, and set the curriculum learning ρ to 2, 1.5,
1 for the three problem sizes, respectively. As for the construction
model, its gradient norm is clipped to 1. Although ξ in Eq. (20)
can regulate the strength of imitation learning, we actually use
gradient clip to control this. We set ξ = 1 and clip the gradient
norm of imitation learning to 0.1, 0.1, 0.01 for the three problem
sizes. Particularly, the used hyperparameters regarding curriculum
learning and imitation learning in NCS are shown in Table 12 of
Appendix C.

5.2 Comparison Evaluation
We compare our N2S and NCS with the state-of-the-art (SOTA)
neural methods and the highly-optimized LKH3 solver.

Regarding the former baseline, we consider the SOTA im-
provement method DACT [5]9 and the SOTA construction method
Heter-AM [9] (specially designed for PDPs). To make a fair
comparison with our N2S-A and NCS-A (with the diversity
enhancement), we upgrade Heter-AM to Heter-POMO, also given
the known superiority of POMO to AM. In specific, we reserve
the policy network in Heter-AM as the backbone while adopt-
ing the diverse rollouts and the data augmentation techniques
in POMO [6] to leverage the advantages of them for the best
performance. Each neural baseline is trained using the respective
implementation code that is publicly available. For the upgraded
Heter-POMO, we adapt and combine the model architecture from
the original Heter-AM and the original POMO. The links to their
original implementations, approximate training time for the size
|V |=101 , and the used hyper-parameters are presented in Table
2. For other hyper-parameters, we follow the recommendations
in their papers. Regarding the latter baseline, LKH3 is a strong
heuristic (as reviewed in Section 2) which is widely used as a
baseline to benchmark neural methods in recent studies (e.g., [5],
[8], [21], [37]). We report its results with two settings of iterations,
i.e., LKH (5k) and LKH (10k).

All baselines are evaluated on a test dataset with 2,000 in-
stances, and we report the metrics of averaged objective values,
standard deviation of objective values, averaged gaps to LKH
(10K) and the total solving time in Table 3 and 4. The averaged
gap is equal to (Obj− ObjLKH)/ObjLKH × 100, where Obj is the
average objective value of the target method and ObjLKH is the
average objective value of LKH (10k). In the above two tables,
bold gaps indicate that our methods significantly outperform the
best neural method (i.e., Heter-POMO-A), and underlined gaps
indicate that our methods significantly outperform LKH (10k),
according to a paired t-test (α = 5%), on 2,000 test instances. The
detailed results of t-tests are shown in Table 13 of Appendix D.

9. We use the insert decoder which is the best for PDPs.

Note that it is hard to perform an absolutely fair time comparison
between running Python codes on GPUs (neural methods) and
running ANSI C codes on CPUs (LKH solver). Thus we follow
the guidelines in [38] to perform the facilitate comparison that lets
each method make full use of the best settings on our machine. In
particular, we report the time of LKH3 when running in parallel
with 16 CPU cores and the time of each neural method when all 8
GPU cards are available (but do not need to be fully used).
Results on PDTSP. Table 3 shows the results on PDTSP. In the
first group, we compare N2S and NCS with Heter-AM (greedy
and sampling), and DACT. Compared to Heter-AM (5k), our N2S
with only 1k steps attains lower gaps with less time for all sizes.
Although DACT offers the best gap on PDTSP-21, its performance
drops significantly as the problem size increases, partly because its
decoder is less efficient than our node-pair removal and reinser-
tion ones when tackling larger-scale problems. Instead, our N2S
achieves higher performance and consistently dominates DACT in
terms of both the gaps and the time on PDTSP-51 and PDTSP-101.
As for NCS, the performance is further boosted compared to N2S,
with better results for all three different total steps. Even NCS
with 1k steps has surpassed N2S with 3k steps, without incurring
much extra consumption time. In the second group, our augmented
N2S-A and NCS-A is compared to the upgraded Heter-POMO
method with three variants10. It is shown that even with only 1k
steps, our N2S-A attains a significantly smaller gap than all three
Heter-POMO variants, by almost an order of magnitude. Although
Heter-POMO-A (gr.) tends to be competitive with fast speed, the
gap is hard to be further reduced by increasing inference time
if we refer to Heter-POMO-A (3k). Moreover, our N2S-A (2k)
keeps abreast of, or even slightly exceeds the strong LKH3 solver,
achieving gaps of -0.03% and -0.01% with less time on PDTSP-
51 and PDTSP-101, respectively. Those gaps are further reduced
to -0.04% and -0.20% with more steps, i.e., 3k. And NCS-A can
further extend the advantage to -0.06% and -0.22%. Although our
N2S-A and NCS-A fail to significantly outperform LKH3 at 2k
steps, they have lower standard deviations, implying more stable
solving power. With more run time, both our N2S-A and NCS-A
significantly exceed LKH3 on PDTSP-101 with 3k steps. Notice
that we observe that there is no significant difference between
N2S-A and NCS-A, which implies that the results of the two
approaches may be fairly close to the real optimum, with the help
of diversity enhancement.
Results on PDTSP-LIFO. In Table 4, we report the results on
PDTSP-LIFO. Due to the more constrained search space, DACT
failed to work well (see Table 6). Therefore, we mainly compare
our approaches with Heter-POMO (the best neural baseline in
Table 3) and the LKH3 solver. As exhibited, the advantages of
neural methods over LKH3 have been further enhanced on this
harder problem, where our approach consistently outperforms
Heter-POMO for all sizes. Compared to LKH3, our N2S-A with
3k steps presents superior performance again, and attains gaps of
-0.64% and -1.47% on PDTSP-LIFO-51 and PDTSP-LIFO-101,
respectively. And our NCS-A achieves even better results than
that of N2S-A, with gaps of -0.65% and -1.68%, respectively. The
advantages of our approaches on PDTSP-LIFO are more obvious,
both N2S-A and NCS-A significantly outperform LKH3 with 1k
steps on PDTSP-LIFO-51 and PDTSP-LIFO-101.

10. Heter-POMO (gr.), Heter-POMO-A (gr.), Heter-POMO-A (3k) refer
to: greedily generate |V | solution; greedily generate |V | solutions with 8
augments; sample |V |×3k solutions with 8 augments.

11

TABLE 3: Results for PDTSP with sizes |V | = 21, 51, 101. The “+” in “Total Time” means construction time plus improvement time.

Methods PDTSP-21 PDTSP-51 PDTSP-101
Obj. Value ↓ (±SD) Gap to LKH ↓ Total Time Obj. Value ↓ (±SD) Gap to LKH ↓ Total Time Obj. Value ↓ (±SD) Gap to LKH ↓ Total Time

LKH (5k) 4.563 ± 0.3806 0.00% 3m 6.866 ± 0.3151 0.06% 10m 9.443 ± 0.3010 0.16% 49m
LKH (10k) 4.563 ± 0.3806 0.00% 5m 6.862 ± 0.3132 0.00% 19m 9.428 ± 0.2971 0.00% 98m

Heter-AM (gr.) 4.655 ± 0.4128 2.02% (0s) 7.333 ± 0.4113 6.86% (1s) 10.348 ± 0.4127 9.76% (2s)
Heter-AM (5k) 4.578 ± 0.3877 0.33% (33s) 7.108 ± 0.3591 3.58% (1.5m) 10.051 ± 0.3644 6.61% (5m)
DACT (1k) 4.572 ± 0.3866 0.20% (18s) 7.245 ± 0.4077 5.57% (29s) 10.551 ± 0.4877 11.91% (51s)
DACT (2k) 4.566 ± 0.3823 0.07% (37s) 7.118 ± 0.3834 3.72% (1m) 10.312 ± 0.4480 9.38% (1.5m)
DACT (3k) 4.564 ± 0.3817 0.03% (1m) 7.057 ± 0.3718 2.83% (1.5m) 10.195 ± 0.4317 8.13% (2.5m)
N2S (1k) 4.573 ± 0.3842 0.21% (21s) 7.103 ± 0.3791 3.51% (31s) 10.030 ± 0.4001 6.38% (1m)
N2S (2k) 4.567 ± 0.3823 0.09% (42s) 7.053 ± 0.3684 2.77% (1m) 9.905 ± 0.3784 5.06% (2m)
N2S (3k) 4.565 ± 0.3817 0.05% (1m) 7.027 ± 0.3621 2.40% (1.5m) 9.846 ± 0.3663 4.44% (3m)
NCS (0) 4.654 ± 0.4159 1.99% (1s) 7.422 ± 0.3968 8.16% (7s) 11.039 ± 0.3811 17.09% (46s)
NCS (1k) 4.570 ± 0.3833 0.15% (1s+21s) 6.974 ± 0.3471 1.63% (7s+31s) 9.808 ± 0.3537 4.03% (46s+1m)
NCS (2k) 4.567 ± 0.3818 0.09% (1s+42s) 6.957 ± 0.3415 1.38% (7s+1m) 9.757 ± 0.3456 3.49% (46s+2m)
NCS (3k) 4.565 ± 0.3814 0.05% (1s+1m) 6.948 ± 0.3394 1.25% (7s+1.5m) 9.730 ± 0.3395 3.20% (46s+3m)

Heter-POMO (gr.) 4.634 ± 0.4046 1.56% (0s) 7.168 ± 0.3763 4.45% (1s) 10.060 ± 0.3739 6.70% (2s)
Heter-POMO-A (gr.) 4.584 ± 0.3886 0.46% (1s) 6.995 ± 0.3331 1.93% (5s) 9.681 ± 0.3013 2.68% (11s)
Heter-POMO-A (3k) 4.564 ± 0.3822 0.03% (7m) 6.916 ± 0.3215 0.77% (32m) 9.567 ± 0.2891 1.47% (135m)
N2S-A (1k) 4.563 ± 0.3807 0.01% (1m) 6.865 ± 0.3130 0.03% (8m) 9.475 ± 0.2816 0.50% (40m)
N2S-A (2k) 4.563 ± 0.3807 0.00% (2m) 6.860 ± 0.3116 -0.03% (16m) 9.427 ± 0.2783 -0.01% (80m)
N2S-A (3k) 4.563 ± 0.3807 0.00% (3m) 6.860 ± 0.3110 -0.04% (24m) 9.409 ± 0.2770 -0.20% (121m)
NCS-A (0) 4.595 ± 0.3931 0.70% (6s) 7.192 ± 0.3618 4.81% (35s) 10.640 ± 0.3461 12.86% (9m)
NCS-A (1k) 4.563 ± 0.3806 0.00% (6s+1m) 6.864 ± 0.3129 0.03% (35s+8m) 9.471 ± 0.2811 0.46% (9m+40m)
NCS-A (2k) 4.563 ± 0.3806 0.00% (6s+2m) 6.860 ± 0.3114 -0.03% (35s+16m) 9.424 ± 0.2791 -0.04% (9m+80m)
NCS-A (3k) 4.563 ± 0.3806 0.00% (6s+3m) 6.858 ± 0.3107 -0.06% (35s+24m) 9.407 ± 0.2749 -0.22% (9m+121m)

TABLE 4: Results for PDTSP-LIFO with sizes |V | = 21, 51, 101. The “+” in “Total Time” means construction time plus improvement time.

Methods PDTSP-LIFO-21 PDTSP-LIFO-51 PDTSP-LIFO-101
Obj. Value ↓ (±SD) Gap to LKH ↓ Total Time Obj. Value ↓ (±SD) Gap to LKH ↓ Total Time Obj. Value ↓ (±SD) Gap to LKH ↓ Total Time

LKH (5k) 5.539 ± 0.5255 0.00% (1m) 10.218 ± 0.6047 0.17% (8m) 17.115 ± 0.7573 0.34% (33m)
LKH (10k) 5.539 ± 0.5255 0.00% (3m) 10.200 ± 0.5995 0.00% (16m) 17.057 ± 0.7406 0.00% (67m)

N2S (1k) 5.541 ± 0.5261 0.04% (2m) 10.365 ± 0.6189 1.61% (2.5m) 17.660 ± 0.7594 3.54% (3.5m)
N2S (2k) 5.540 ± 0.5257 0.02% (4m) 10.301 ± 0.6065 0.99% (5.5m) 17.471 ± 0.7364 2.43% (6.5m)
N2S (3k) 5.539 ± 0.5256 0.01% (6m) 10.265 ± 0.6009 0.64% (8m) 17.373 ± 0.7256 1.85% (10m)
NCS (0) 5.674 ± 0.5578 2.44% (1s) 10.993 ± 0.6703 7.77% (7s) 19.274 ± 0.7967 13.00% (46s)
NCS (1k) 5.540 ± 0.5262 0.02% (1s+2m) 10.299 ± 0.6071 0.97% (7s+2.5m) 17.466 ± 0.7618 2.40% (46s+3.5m)
NCS (2k) 5.539 ± 0.5257 0.01% (1s+4m) 10.260 ± 0.6004 0.59% (7s+5.5m) 17.343 ± 0.7457 1.68% (46s+6.5m)
NCS (3k) 5.539 ± 0.5257 0.01% (1s+6m) 10.242 ± 0.5973 0.41% (7s+8m) 17.276 ± 0.7422 1.29% (46s+10m)

Heter-POMO (gr.) 5.636 ± 0.5477 1.75% (0s) 10.540 ± 0.6429 3.33% (1s) 17.583 ± 0.7537 3.08% (2s)
Heter-POMO-A (gr.) 5.567 ± 0.5310 0.51% (1s) 10.353 ± 0.6090 1.50% (5s) 17.276 ± 0.7210 1.29% (10s)
Heter-POMO-A (4k) 5.545 ± 0.5278 0.12% (10m) 10.209 ± 0.5908 0.09% (48m) 16.890 ± 0.6908 -0.98% (180m)
N2S-A (1k) 5.539 ± 0.5256 0.00% (3m) 10.144 ± 0.5822 -0.55% (13m) 16.976 ± 0.7019 -0.47% (54m)
N2S-A (2k) 5.539 ± 0.5256 0.00% (6m) 10.137 ± 0.5805 -0.62% (27m) 16.859 ± 0.6955 -1.16% (107m)
N2S-A (3k) 5.539 ± 0.5256 0.00% (9m) 10.135 ± 0.5800 -0.64% (40m) 16.806 ± 0.6934 -1.47% (161m)
NCS-A (0) 5.588 ± 0.5385 0.88% (6s) 10.644 ± 0.6353 4.35% (35s) 18.672 ± 0.7695 9.47% (9m)
NCS-A (1k) 5.539 ± 0.5255 0.00% (6s+3m) 10.142 ± 0.5821 -0.57% (35s+13m) 16.894 ± 0.7090 -0.96% (9m+54m)
NCS-A (2k) 5.539 ± 0.5255 0.00% (6s+6m) 10.136 ± 0.5808 -0.63% (35s+27m) 16.815 ± 0.7027 -1.42% (9m+107m)
NCS-A (3k) 5.539 ± 0.5255 0.00% (6s+9m) 10.134 ± 0.5801 -0.65% (35s+40m) 16.771 ± 0.6965 -1.68% (9m+161m)

The NCS (0) and NCS-A (0) in Table 3 and 4 represent
the initial objective value for starting the improvement, that
is, the standalone performance of the construction model (m-
AM). Compared with Heter-AM, such performance is reasonable,
considering that m-AM is a simplified version of Heter-AM with
less intensive training (Heter-AM undergoes 800 epochs with
1,280,000 instances per epoch, whereas m-AM in NCS trains for
only 200 epochs with 12,000 instances per epoch). Note that we
are not trying to train an m-AM to work independently, but to
train an m-AM to get the best results from cooperation with N2S
in NCS, so we focus more on NCS (3k) rather than NCS (0).
In subsequent ablation studies, we will highlight the key role of
collaborative training in enhancing cooperative performance com-
pared to when models are trained separately and then combined.

5.3 Ablation Evaluation

Effects of Different Encoding Methods in N2S. We replace the
proposed Synth-Att in our N2S encoder with vanilla-Att and DAC-
Att, respectively. Using only one GPU card, we report the number
of model parameters, time, and gaps for solving 2,000 PDTSP-51
instances with 3k steps in Table 5. As exhibited, Synth-Att attains

TABLE 5: Effects of different encoding methods.

Att. in Encoders Dim. # Param.(M) Time(s) Gap(%) ↓

Vanilla-Att
64

0.18 (1.00×) 239 (1.00×) 4.66
DAC-Att 0.31 (1.72×) 285 (1.19×) 2.89

Synth-Att 0.19 (1.06×) 255 (1.07×) 2.88

Vanilla-Att
128

0.72 (1.00×) 322 (1.00×) 3.92
DAC-Att 1.25 (1.73×) 400 (1.24×) 2.43

Synth-Att 0.76 (1.06×) 340 (1.06×) 2.40

slightly smaller gaps than DAC-Att with much fewer computation
costs, and considerably lower gaps than vanilla-Att with slight
extra computation costs.
Effects of Different Decoding Methods in N2S. To highlight the
desirability of our two decoders, we replace the trainable decoders
with hand-crafted ones (i.e., random and the ϵ-greedy with ϵ=0.1)
while ensuring feasibility. We gather the results on PDTSP-51 and
PDTSP-LIFO-51 with 3k steps in Table 6 where mark ‘✓’ means
our proposed decoder is used (the one without augments) and
mark ‘✗’ means the decoder in the parentheses is used instead. As
revealed, the methods of retaining at least one trainable decoder
always attain much lower gaps than the ones equipped with only

12

TABLE 6: Effects of different decoding methods.

Removal
Decoder

Reinsertion
Decoder

Gap(%) on
PDTSP ↓

Gap(%) on
PDTSP-LIFO ↓

✗(random) ✗(random) 210.82 112.37
✗(random) ✗(ϵ-greedy) 18.03 17.87
✗(ϵ-greedy) ✗(random) 86.31 47.57
✗(ϵ-greedy) ✗(ϵ-greedy) 15.62 12.64

✓ ✗(random) 43.12 17.75
✓ ✗(ϵ-greedy) 3.54 3.88

✗(random) ✓ 6.38 4.38
✗(ϵ-greedy) ✓ 8.42 6.28

✗(DACT) ✗(DACT) 2.83 11.73
✓ ✓ 2.40 0.64

TABLE 7: Effects of different action history length.

K (training)
K (inference)

Obj. Value ↓ Gap to LKH ↓

0 25 50 100 0 25 50 100

0 7.087 7.091 7.091 7.09 3.28% 3.34% 3.34% 3.32%
50 7.111 7.027 7.036 7.054 3.63% 2.40% 2.54% 2.80%
100 7.102 7.035 7.038 7.043 3.50% 2.52% 2.56% 2.64%

hand-crafted decoders. The method with both trainable decoders
(i.e., N2S) achieves the best performance. We also notice that
DACT fails to solve PDTSP-LIFO well. This might be because its
decoder considers removing and reinserting only one node instead
of a pickup-delivery node pair in each action, which is a serious
limitation for more constrained PDPs. For example, on PDTSP-
LIFO, over 92% of the action space needs to be masked for DACT,
which leads to extremely low efficiency.
Effects of Different Action History Length in N2S. In section
4.1.1, we mentioned that the state to N2S includes an action
history H(t,K) that stores the most recent K actions at time
step t. And in section 4.5 we recommend to use K = |V |
for training and K = ⌊ 12 |V |⌋ for inference. In order to justify
our suggestion, we set different K for training and inference on
PDTSP-51, and observe their experimental results of N2S with 3k
steps in Table 7. It can be seen that when K = 50 in training,
the best result is obtained by using K = 25 in inference. And
if K = 100 for training, K = 50 or 25 for inference can get
relatively good results. Training with K = 0 does not incur the
ability to gain experience from historical steps, so using any K
during inference gives similar results. It can be found that when
a specific K is used for training, a smaller K during inference
can improve the performance. This might be due to that a smaller
K during inference corresponds to a lower degree of confidence
in the prediction of the model, which in turn can increase the
degree of exploration of the action, thus enhancing the diversity
of solutions and eventually better inference performance.
Effects of MLP layer number in N2S Syn-Att. In Eq. (9) of
section 4.2.1, we adopt a three-layer MLP with structure (2m ×

TABLE 8: Effects of MLP layer number.

Structure
Step

Obj. Value ↓ Gap to LKH ↓

1k 2k 3k 1k 2k 3k

MLP-2 7.126 7.072 7.052 3.85% 3.06% 2.77%
MLP-3 7.103 7.053 7.027 3.51% 2.78% 2.40%
MLP-4 7.106 7.056 7.034 3.56% 2.83% 2.51%

Fig. 7: Convergence curve of NCS, and N2S with Construction

Fig. 8: Convergence curve of NCS, and NCS without IL

2m×m) to compute the synthesized multi-head attention scores.
In Table 8, we present experimental results of N2S using different
numbers of MLP layer on PDTSP-51. MLP-2 is a two-layer MLP
with structure (2m × m) and MLP-4 is a four-layer MLP with
structure (2m×2m×2m×m). It can be seen that the difference
between the three structures is very small. Among them, MLP-
2 yields the worst performance due to its simplistic architecture.
Conversely, the performance difference between MLP-3 and MLP-
4 is negligible. Overall, the variation in the number of MLP layers
exerts minimal influence on the effectiveness of N2S. Given that
MLP-3 achieves the best balance of complexity and performance,
we choose it in our N2S implementation.
Effects of Curriculum Learning in NCS. To assess the effects
of the CL in NCS, we compare the improvement policy trained
collaboratively with the construction policy using NCS (with CL)
and the one trained independently using N2S (with degenerated
CL). Meanwhile, we use the construction policy trained in NCS
to also generate initial solutions to boost the latter improvement
model during the inference for a fair comparison, named N2S-
w-construction. The comparison results on PDTSP-51 instances,
with and without the diversity enhancement, are gathered in Table
9. As can be seen, our NCS consistently outperforms N2S-w-
construction regardless of the diversity enhancement. In Fig. 7,

13

(a) N201P3 (b) N201P6 (c) N201P7

Fig. 9: Example instances from [29].

(a) brd14051 101 (b) pr1002 101 (c) fnl4461 101

Fig. 10: Example instances from [31].

TABLE 9: Effects of curriculum learning and imitation learning.

Method
Step

Obj. Value ↓ Gap to LKH ↓

1k 2k 3k 1k 2k 3k

NCS 6.974 6.957 6.948 1.63% 1.38% 1.25%
N2S-w-construction 6.982 6.963 6.953 1.75% 1.47% 1.33%
NCS-w/o-imitation 7.043 7.012 6.996 2.64% 2.19% 1.95%

NCS-A 6.864 6.860 6.858 0.03% -0.03% -0.06%
N2S-A-w-construction 6.865 6.861 6.860 0.04% -0.01% -0.03%
NCS-A-w/o-imitation 6.866 6.861 6.859 0.06% -0.01% -0.04%

we further depict the averaged search curves of the best-so-far
and current solutions during inference for both methods, where
we observe that although both improvement policies start with
identical initial solutions, their iterative trajectories differ a lot.
Our NCS explores regions of lower objective values earlier and
converges to better solutions faster. This may be attributed to the
distinct CL strategies that result in different scopes of the initial
solutions during training for the improvement policies, where the
initial solutions yielded by the construction model with the CL
strategy often lead to more desirable areas that are closer to the
optimal solutions.
Effects of Imitation Learning in NCS. As shown in Table 9,
the absence of imitation learning in NCS would greatly affect
the performance of the construction model and thus the eventual
results. The construction model in NCS is lightweight and uses
considerably fewer computational resources compared to individ-
ually learned models (e.g., Heter-AM samples 426.67 times more
instances during training than our construction model). Conse-
quently, relying solely on reinforcement learning (i.e., without
imitation learning) leads to underfitting for the construction model,
resulting in poor initial solutions as illustrated in Fig. 8. This
hinders the effectiveness of collaborative training, as the scope
of initial solutions provided by the construction model is not
adequately desirable, thus undermining the overall performance.

5.4 Generalization Evaluation

We further evaluate our N2S and NCS on benchmark instances,
including all the ones from [29] for PDTSP and the ones with size
|V |≤201 from [31] for PDTSP-LIFO, which are largely different
from our training ones, e.g., different sizes (i.e., 200 nodes) as
shown in Fig. 9 and different node distributions as shown in Fig.
10. In Table 10, we report the best and the average gaps (with 10
independent runs) achieved by N2S-A, NCS-A and neural baseline
Heter-POMO-A w.r.t. optimal solutions for PDTSP, or heuristic
baseline B1 [31] and B2 [4] for PDTSP-LIFO. It can be seen
that our N2S and NCS significantly outstrip Heter-POMO in all
cases, with NCS further strengthening the advantage over N2S.
Without re-training or leveraging other techniques, this is fairly

TABLE 10: Generalization performance on benchmark instances.

Problem |V | Gaps to Heter-POMO-A N2S-A NCS-A

Avg. ↓ Best ↓ Avg. ↓ Best ↓ Avg. ↓ Best ↓

PDTSP 101 Opt. 1.64% 1.46% 0.08% 0.00% 0.03% 0.00%
201 9.71% 8.66% 2.82% 2.19% 2.24% 1.93%

PDTSP ≤101 B1 9.63% 8.80% 0.81% -0.17% 0.42% -0.04%
-LIFO B2 10.98% 10.14% 2.02% 1.02% 1.62% 1.15%

hard to achieve because machine learning often suffers from a
mediocre out-of-distribution zero-shot generalization [39], [40].
The results also imply slight inferiority of our N2S and NCS to
the LKH3 solver, given that LHK3 reports similar performance
to the B2 baseline on those instances [12]. Accordingly, we will
focus on further improving the out-of-distribution generalization
performance for our N2S and NCS in the future.

6 CONCLUSION AND DISCUSSION

We present the neural collaborative search (NCS) approach for
PDPs, illustrating the substantial potential for collaboration be-
tween the latest prevalent neural construction and neural im-
provement models. Our NCS employs a construction model to
augment the improvement model, integrating both within a unified
reinforcement learning paradigm via a shared-critic mechanism.
Meanwhile, they also enhance each other through upgraded cur-
riculum learning and imitation learning during the collaborative
training, respectively. On the other hand, the improvement model
in NCS is an efficient neural neighborhood search (N2S) approach
for PDPs. It utilizes a novel Synth-Att to synthesize node relation-
ships from various types of solution features and exploits the node-
pair removal and reinsertion decoders to tackle the precedence
constraint. Extensive experiments on PDTSP and PDTSP-LIFO
verified our design, where NCS and N2S achieve state-of-the-
art performance among existing neural methods. Further equipped
with a diversity enhancement scheme, they even become the first
neural methods to surpass LKH3 on synthesized PDP instances.

Despite the promising results, we believe that it is still not
the time to conclude that learned solvers like our NCS and N2S
can fully replace traditional solvers like LKH3, especially for
the out-of-distribution performance. Nevertheless, our proposed
methods have exhibited distinct benefits: 1) Our NCS and N2S
models, through a unified training framework, automatically learn
to specialize in two PDP variants, which reduces the need for ex-
tensive problem-specific knowledge and time-consuming heuristic
designs through trials and errors; 2) They could leverage GPU
parallelism to concurrently solve thousands of PDP instances,
desirable for industrial use; and 3) Our N2S and NCS are the first
to surpass LKH3 on PDPs, which demonstrates that, in merely
five years, neural methods including NCS and N2S have matched
or even outperformed well-established hand-crafted solvers, e.g.,

14

LKH3, which have evolved for several decades, thereby showing
significant rapid progress and potential for future advancements.

For future works, we will 1) deploy NCS or N2S as a low-
level agent in the hierarchical framework of [41] for dynamic
PDPs, 2) combine NCS or N2S with a similar divide-and-conquer
strategy in [37] for much larger-scale instances, 3) enhance the
out-of-distribution generalization for NCS and N2S so as to
exceed LKH3 on instances of arbitrary distributions, 4) inves-
tigate different types of construction and improvement models
to be trained collaboratively in NCS and solve more other VRP
variants (e.g., employing the construction model POMO [6] and
improvement model NeuOpt [23] within the NCS framework for
TSP or CVRP).

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-
tion of China (62072258); the Special Foundation for Philosophy
and Social Science Laboratories of Ministry of Education of China
[grant number H0123702]; the Asia Research Center in Nankai
University [grant number AS2405]. It was also supported by the
National Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG3-RP-2022-031), and the
Singapore Ministry of Education (MOE) Academic Research Fund
(AcRF) Tier 1 grant.

REFERENCES

[1] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “A survey on pickup and
delivery problems,” Journal für Betriebswirtschaft, vol. 58, no. 2, pp.
81–117, 2008.

[2] S. Ropke and D. Pisinger, “A unified heuristic for a large class of vehicle
routing problems with backhauls,” European Journal of Operational
Research, vol. 171, no. 3, pp. 750–775, 2006.

[3] V. Ghilas, E. Demir, and T. Van Woensel, “An adaptive large neigh-
borhood search heuristic for the pickup and delivery problem with
time windows and scheduled lines,” Computers & Operations Research,
vol. 72, pp. 12–30, 2016.

[4] Y. Li, A. Lim, W.-C. Oon, H. Qin, and D. Tu, “The tree representation for
the pickup and delivery traveling salesman problem with LIFO loading,”
European Journal of Operational Research, vol. 212, no. 3, pp. 482–496,
2011.

[5] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learn-
ing to iteratively solve routing problems with dual-aspect collaborative
Transformer,” in Advances in Neural Information Processing Systems,
vol. 34, 2021, pp. 11 096–11 107.

[6] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “POMO:
Policy optimization with multiple optima for reinforcement learning,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
21 188–21 198.

[7] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in International Conference on Learning Representations,
2018.

[8] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[9] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang, “Heterogeneous
attentions for solving pickup and delivery problem via deep reinforce-
ment learning,” IEEE Transactions on Intelligent Transportation Systems,
2021.

[10] Y. Ma, J. Li, Z. Cao, W. Song, H. Guo, Y. Gong, and Y. M. Chee,
“Efficient neural neighborhood search for pickup and delivery problems,”
in Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, 2022, pp. 4776–4784.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, vol. 30, 2017, pp. 6000–6010.

[12] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems,” Roskilde:
Roskilde University, 2017.

[13] M. Nazari, A. Oroojlooy, M. Takáč, and L. V. Snyder, “Reinforcement
learning for solving the vehicle routing problem,” in Advances in Neural
Information Processing Systems, 2018, pp. 9861–9871.

[14] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolutional
network technique for the travelling salesman problem,” arXiv preprint
arXiv: 1906.01227, 2019.

[15] M. Kim, J. Park, and j. kim, “Learning collaborative policies to solve NP-
hard routing problems,” in Advances in Neural Information Processing
Systems, vol. 34, 2021, pp. 10 418–10 430.

[16] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model
to arbitrarily large TSP instances,” in AAAI Conference on Artificial
Intelligence, 2021.

[17] J. Chen, Z. Zhang, Z. Cao, Y. Wu, Y. Ma, T. Ye, and J. Wang, “Neural
multi-objective combinatorial optimization with diversity enhancement,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[18] Q. Hou, J. Yang, Y. Su, X. Wang, and Y. Deng, “Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time,”
in The Eleventh International Conference on Learning Representations,
2023.

[19] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” in Advances in Neural Information Processing
Systems, vol. 32, 2019, pp. 6281–6292.

[20] A. Hottung and K. Tierney, “Neural large neighborhood search for
the capacitated vehicle routing problem,” in European Conference on
Artificial Intelligence, 2020.

[21] A. Hottung, B. Bhandari, and K. Tierney, “Learning a latent search space
for routing problems using variational autoencoders,” in International
Conference on Learning Representations, 2021.

[22] W. Kool, H. van Hoof, J. Gromicho, and M. Welling, “Deep policy
dynamic programming for vehicle routing problems,” ArXiv, arXiv
preprint arXiv:2102.11756, 2021.

[23] Y. Ma, Z. Cao, and Y. M. Chee, “Learning to search feasible and
infeasible regions of routing problems with flexible neural k-opt,” in
Advances in Neural Information Processing Systems, vol. 36, 2023, pp.
49 555–49 578.

[24] Z. Sun and Y. Yang, “Difusco: Graph-based diffusion solvers for com-
binatorial optimization,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[25] J. Zhao, M. Mao, X. Zhao, and J. Zou, “A hybrid of deep reinforcement
learning and local search for the vehicle routing problems,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp.
7208–7218, 2020.

[26] R. Garcı́a-Torres, A. A. Macias-Infante, S. E. Conant-Pablos, J. C.
Ortiz-Bayliss, and H. Terashima-Marı́n, “Combining constructive and
perturbative deep learning algorithms for the capacitated vehicle routing
problem,” arXiv preprint arXiv:2211.13922, 2022.

[27] M. W. Savelsbergh, “An efficient implementation of local search algo-
rithms for constrained routing problems,” European Journal of Opera-
tional Research, vol. 47, no. 1, pp. 75–85, 1990.

[28] J. Renaud, F. F. Boctor, and J. Ouenniche, “A heuristic for the pickup
and delivery traveling salesman problem,” Computers & Operations
Research, vol. 27, no. 9, pp. 905–916, 2000.

[29] J. Renaud, F. F. Boctor, and G. Laporte, “Perturbation heuristics for
the pickup and delivery traveling salesman problem,” Computers &
Operations Research, vol. 29, no. 9, pp. 1129–1141, 2002.

[30] M. Veenstra, K. J. Roodbergen, I. F. Vis, and L. C. Coelho, “The pickup
and delivery traveling salesman problem with handling costs,” European
Journal of Operational Research, vol. 257, no. 1, pp. 118–132, 2017.

[31] F. Carrabs, J.-F. Cordeau, and G. Laporte, “Variable neighborhood search
for the pickup and delivery traveling salesman problem with LIFO
loading,” INFORMS Journal on Computing, vol. 19, no. 4, pp. 618–632,
2007.

[32] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” ArXiv, arXiv preprint
arXiv:1707.06347, 2017.

[34] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in International
Conference on Machine Learning (Workshop), 2017.

[35] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 9, pp. 4555–4576, 2021.

[36] A. Hottung, Y.-D. Kwon, and K. Tierney, “Efficient active search for
combinatorial optimization problems,” in International Conference on
Learning Representations, 2022.

15

[37] S. Li, Z. Yan, and C. Wu, “Learning to delegate for large-scale vehicle
routing,” in Advances in Neural Information Processing Systems, vol. 34,
2021, pp. 26 198–26 211.

[38] L. Accorsi, A. Lodi, and D. Vigo, “Guidelines for the computational
testing of machine learning approaches to vehicle routing problems,”
Operations Research Letters, vol. 50, no. 2, pp. 229–234, 2022.

[39] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generaliza-
tion: A survey,” ArXiv, arXiv preprint arXiv:2103.02503, 2021.

[40] J. Li, Y. Ma, R. Gao, Z. Cao, A. Lim, W. Song, and J. Zhang, “Deep
reinforcement learning for solving the heterogeneous capacitated vehicle
routing problem,” IEEE Transactions on Cybernetics, 2021.

[41] Y. Ma, X. Hao, J. Hao, J. Lu, X. Liu, T. Xialiang, M. Yuan, Z. Li, J. Tang,
and Z. Meng, “A hierarchical reinforcement learning based optimization
framework for large-scale dynamic pickup and delivery problems,” in
Advances in Neural Information Processing Systems, vol. 34, 2021, pp.
23 609–23 620.

[42] G. Erdoğan, J.-F. Cordeau, and G. Laporte, “The pickup and delivery
traveling salesman problem with first-in-first-out loading,” Computers &
Operations Research, vol. 36, no. 6, pp. 1800–1808, 2009.

16

0 2 3 1 4 0

0 1 3 2 4 0

2-𝑜𝑝𝑡

0 2 3 1 4 0

0 3 1 2 4 0

𝑖𝑛𝑠𝑒𝑟𝑡

0 2 3 1 4 0

0 1 3 2 4 0

𝑠𝑤𝑎𝑝

Fig. 11: Illustrative examples of three pairwise operators for routing
problems when node pair (i = 2, j = 1) is specified for operating.
From left to right: 2-opt, insert, and swap.

APPENDIX A
COMPARISON OF DACT OPERATORS FOR PDPS

As illustrated in Fig. 11, the prevalent neural improvement method
DACT [5] features three types of operators in its decoder: 2-opt,
swap, and insert, with the 2-opt operator demonstrating the best
performance. Though the 2-opt operator, considering reversing
a segment of the solution, excels in classic VRPs (e.g., TSP
and CVRP), it is not suitable for PDPs since the precedence
constraint can be easily violated by segment inversion, thereby
making DRL training difficult. The swap operator, focusing on
exchanging the position of two nodes, typically represents the
least effective option for both classic VRPs and PDPs. This is
partly due to its decomposability into two insert steps in general
(i.e., swapping node 1 with node 2 is equivalent to inserting
node 1 after node 2, followed by inserting node 2 after the
predecessor of node 1), resulting in less flexibility when compared
to the insert operator for fine-grained search. The insert operator,
which entails removing and reinserting a single node after another,
shows the best performance among the three operators in small-
scale PDPs. However, its effectiveness decreases in larger-scale or
highly constrained PDPs (as shown in section 5.3).

In Fig. 12, the convergence curves of three operators in DACT
are presented, demonstrating their performance during training on
TSP-50 and PDTSP-21, respectively. The 2-opt operator shows
the best results for TSP, but its effectiveness diminishes in han-
dling the precedence constraints in PDTSP. The insert operator
consistently outperforms the swap operator for both TSP and
PDTSP, making the insert operator the most preferred choice for
employing DACT in solving PDPs.

0 10 20 30 40 50
Training Epoch

5.5

6.0

6.5

7.0

O
bj

. V
al

ue

swap
insert
2-opt

(a) TSP

0 10 20 30 40 50
Training Epoch

4.5

4.6

4.7

4.8

O
bj

. V
al

ue

swap
insert
2-opt

(b) PDTSP

Fig. 12: Convergence curves of three operators in DACT for TSP and
PDTSP.

APPENDIX B
MATHEMATICAL FORMULATIONS OF PDTSP AND
PDTSP-LIFO
Following [42], we present the mathematical formulations of
PDTSP and PDTSP-LIFO as follows. Let V PD = P ∪ D,
EPD ⊂ E be the subset of edges with both endpoints in V PD,
ES := E \ EPD, and eij be the notation of edge (xi → xj) with
Euclidean length cij , K = {1, · · · , n} be the set of transportation
requests. The decision variables include xij , y1

ijk, y2
ijk and y3

ijk

defined as follows: the variable xij equals to one if and only if
edge eij ∈ E is in the current solution δ; the variable y1

ijk equals
to one if and only if edge eij ∈ E is on the partial path from
depot 0 to node k+; the variable y2

ijk equals to one if and only
if edge eij ∈ E is on the partial path from node k+ to node k−;
the variable y3

ijk equals to one if and only if edge eij ∈ E is on
the partial path from node k− to depot 0. Accordingly, the PDTSP
can be formulated as follows:

Minimize
∑
xi∈V

∑
xj∈V

cijxij (21a)

subject to∑
xi∈V

xiv = 1 (∀xv ∈ V) (21b)∑
xj∈V

xvj = 1 (∀xv ∈ V) (21c)

∑
j∈V

y1
ijk −

∑
j∈V

y1
jik =

1 if i = 0
−1 if i = k+

0 otherwise
(∀xi ∈ V, k ∈ K)

(21d)∑
j∈V

y2
ijk −

∑
j∈V

y2
jik =

1 if i = k+

−1 if i = k−

0 otherwise
(∀xi ∈ V PD, k ∈ K)

(21e)∑
j∈V

y3
ijk −

∑
j∈V

y3
jik =

1 if i = k−

−1 if i = 0
0 otherwise

(∀xi ∈ V, k ∈ K)

(21f)

y1
ijk + y3

ijk = xij (∀eij ∈ ES, k ∈ K) (21g)

y1
ijk + y2

ijk + y3
ijk = xij (∀eij ∈ EPD, k ∈ K) (21h)

xij ∈ {0, 1} (∀eij ∈ E) (21i)

y1
ijk,y

3
ijk ∈ {0, 1} (∀eij ∈ E, k ∈ K) (21j)

y2
ijk ∈ {0, 1} (∀eij ∈ EPD, k ∈ K) (21k)

The objective function (21a) minimizes the total route length.
The constraint (21b) and (21c) are standard degree constraints.
The constraint (21d) ensures that there is a partial path from the
depot to each pickup node. The constraint (21e) ensures that there
is a partial path from each pickup node to its pairing delivery node
and also ensures that the pickup node is visited before the delivery
node (the precedence constraint). The constraint (21f) ensures that
there is a partial path from each delivery node back to the depot.
The constraints (21d), (21e), and (21f) also eliminate sub-tours
of the graph. The constraints (21g) and (21h) build relationships
between individual decision variables for each partial path with
the overall routing plan. The remaining constraints (21i), (21j),
and (21k) describe the domain of each decision variable. The
formulation of PDTSP-LIFO can be obtained by further including

17

TABLE 11: Descriptions of the four invariant transformations.

Transformations Formulations Configurations

flip-x-y (x̂, ŷ) = (y, x) perform or skip
1-x (x̂, ŷ) = (1− x, y) perform or skip
1-y (x̂, ŷ) = (x, 1− y) perform or skip

rotate
(
x̂
ŷ

)
=

(
x cosϑ− y sinϑ
x sinϑ+ y cosϑ

)
ϑ ∈ {0, π/2, π, 3π/2}

constraint (22) which states that in the partial path from the pickup
node j+ to the delivery node j−, any additional goods collected
(for instance, from the pickup node k+) must be delivered before
arriving at the delivery node j−.

∑
ei,k+∈EPD

y2
i,k+,j =

∑
ei,k−∈EPD

y2
i,k−,j (∀j, k ∈ K : j ̸= k)

(22)

APPENDIX C
DETAILS OF ALGORITHMS AND HYPERPARAMETERS
IN NCS

The details of InvariantTransform, CurriculumLearning and Im-
itationLearning used as functions in Algorithm 1 (main paper)
are presented in Algorithm 3, 4 and 5, respectively. Algorithm
3 sequentially applies four preset invariant transformation opera-
tions with different orders and different configurations as listed
in Table 11. In Algorithm 4, Γi, Γd, Θm, Θi, Υm, Υi are
all hyperparameters which are used to regulate the curriculum
learning phase. In Algorithm 5, Ψm,Ψw,Ψb are hyperparameters
which are used to regulate the number of iterations. The setup of
hyperparameters in curriculum learning and imitation learning of
NCS are summarized in Table 12.

The detail of PPO with shared-critic used in Algorithm 1 is
given in Algorithm 6, where we present the reinforcement learning
loss function and the baseline loss function in Eq. (23) and
Eq. (24) for the improvement policy and in Eq. (25) and Eq. (26)
for the construction policy, respectively. We clip the estimated
value vϕ(sτ) and V ′(ζ) around the previous value estimates
using vclipϕ (sτ) = clip [vϕ(sτ), vold(sτ)− ε, vold(sτ) + ε] and
V ′
clip(ζ) = clip [V ′(ζ), V ′(ζold)− ε, V ′(ζold) + ε]. Here V ′(ζ)

is the critic value (i.e., it will be used for the m-AM), which is
calculated using the shared-critic mechanism.

TABLE 12: Setup of hyperparameters in NCS

NCS stage Hyper parameter Problem size |V |

21 51 101

High-temperature CL Γi 10 10 10
(e < ets) Γd 0.94 0.93 0.92

Multi-sample CL Θm 128 256 512
(e ≥ ets) Θi 1.1 1.2 1.3

Improvement CL Υm / / 25
(|V | > 100 and e ≥ eps) Υi / / 2

Imitation learning
Ψm 10 25 25
Ψw 1 1 1
Ψb 0 0 -2

JRL(θ) =
1

n|Db|
∑
Db

t+n∑
τ=t

min

(
πθ(aτ |sτ)
πold(aτ |sτ)

Âτ ,

clip

[
πθ(aτ |sτ)
πold(aτ |sτ)

, 1− ε, 1 + ε

]
Âτ

)
,

(23)

LBL(ϕ) =
1

n|Db|
∑
Db

t+n∑
τ=t

max
(∣∣∣vϕ(sτ)− R̂τ

∣∣∣ ,
∣∣∣vclipϕ (sτ)− R̂τ

∣∣∣)2
.

(24)

J ′
RL(θ

′) =
1

|Db|
∑
Db

max

(
πθ′(δ′|s′0)
πold′(δ′|s′0)

A′,

clip

[
πθ′(δ′|s′0)
πold′(δ′|s′0)

, 1− ε, 1 + ε

]
A′

)
,

(25)

L′
BL(ζ) =

1

|Db|
∑
Db

max (|V ′(ζ)− f(δ′)| ,

∣∣V ′
clip(ζ)− f(δ′)

∣∣)2 . (26)

Algorithm 3 Invariant Transform
Input: Instance I

1: Ai ← RandomShuffle([flip-x-y, 1-x, 1-y, rotate]);
2: for each augment method j ∈ Ai do
3: ϱj ← RandomConfig(j);
4: I ′ ← perform augment j on Ii with config ϱj ;
5: end for
6: return I ′;

Algorithm 4 Curriculum Learning
Input: Instance batch Db, improvement policy πθ , construction
policy πθ′ , epoch e

1: ets = ⌈logΓd
(1/Γi)⌉, eps = ets + ⌈logΘi

Θm⌉;
2: if e < ets then
3: Γ = Γi ∗ (Γd)

e;
4: Sample one solution δ0 on each instance of Db via πθ′ with

temperature softmax [34]:
πθ′(aτ = i|sτ) = softmax({ui/Γ}2n+1

i=0);
5: else
6: Θ = min(Θm, (Θi)

e−ets);
7: Sample Θ solutions and pick the shortest one as δ0 on each

instance of Db via πθ′ ;
8: if problem size > 100 and e ≥ eps then
9: Υ = min(Υm, (e− eps)/Υi);

10: Improve δ0 for Υ steps via πθ;
11: end if
12: end if
13: return δ0;

APPENDIX D
FULL RESULTS OF PAIRED T-TEST

In Table 3 and 4 of section 5.2, we use bold gaps to indicate that
our methods significantly outperform the best neural method (i.e.,
Heter-POMO-A), and underlined gaps indicate that our methods
significantly outperform LKH (10k). To prove our significance

18

Algorithm 5 Imitation Learning
Input: construction policy πθ′ , imitation solution δ∗, constructed
solution δ′, Instance batchDb, epoch e

1: Ψ = max(0,min(Ψm, ⌊Ψw · e+Ψb⌋));
2: ξ = 1 if f(δ∗) < f(δ′) else 0;
3: for i = 1, ...,Ψ do
4: D′

b ← InvariantTransform(Db);
5: Get πθ′(δ∗|s′0) on D′

b;
6: Compute imitation loss J ′

IL using Eq. (20);
7: θ′ ← θ′ − ηθ′∇J ′

IL;
8: end for
9: return updated policy πθ′

Algorithm 6 PPO with shared-critic
Input: improvement policy πθ , construction policy πθ′ , critic
vϕ, shared-critic parameter ζ , PPO clipping threshold ε, learning
rate ηθ , ηθ′ , ηϕ, ηζ , mini-batch κ, current step t, (δ′, f(δ′)),
{(sτ ,aτ ,rτ), f(δτ)}t−1

τ=t−n

1: πold ← πθ , vold ← vϕ;
2: πold′ ← πθ′ , ζold ← ζ;
3: for k = 1 to κ do
4: R̂t = vϕ(st);
5: for τ ∈ {t− 1, ..., t− n} do
6: R̂τ ← rτ + γR̂τ+1;
7: Âτ ← R̂τ − vϕ(sτ);
8: end for
9: V ′(ζ)← mean({f(δτ)− ζvϕ(sτ)}t−1

τ=t−n);
10: A′ ← f(δ′)− V ′(ζ);
11: Compute RL loss JRL(θ), J

′
RL(θ

′) using Eq. (23, 25) and
clipped critic loss LBL(ϕ), L

′
BL(ζ) using Eq. (24, 26);

12: θ ← θ + ηθ∇JRL(θ);
13: θ′ ← θ′ − ηθ′∇J ′

RL(θ
′);

14: ϕ← ϕ− ηϕ∇LBL(ϕ);
15: ζ ← ζ − ηζ∇L′

BL(ζ);
16: end for

claim, we perform two-sided paired t-tests on 2,000 test instances
and report p-values in Table 13. The alternative hypothesis is that
the distributions underlying the samples are unequal. If the p-
value is smaller than 5%, then we reject the null hypothesis of
equal averages and accept the alternative hypothesis. Specifically,
if the averaged objective value of our method is lower and the
corresponding p-value is less than 5%, then we will add bold or
underlined marks to the gap in Table 3 and 4.

APPENDIX E
FULL RESULTS OF GENERALIZATION

We present more details for our generalization evaluation on
benchmark datasets. For Heter-POMO-A, N2S-A and NCS-A, the
coordinates of instances are normalized to [0, 1] × [0, 1] as per
training, and we adopted the “closest” model learned in Section
5 to infer the instances, e.g., models trained on PDP-21 are used
to infer PDP-25 instances, and models trained on PDP-101 are
used to infer instances with |V | ≥ 101. We increase C to 10
in our N2S decoders during generalization since it boosts the
performance. Full results of Table 10 are gathered in Table 14
(PDTSP) and Table 15 (PDTSP-LIFO). The gaps in Table 14 are
computed w.r.t the optimal solutions and the gaps in Table 15

are computed w.r.t. heuristic baselines B1 [31] and B2 [4]. In
all cases, our N2S-A and NCS-A significantly outperform Heter-
POMO-A. In specific, our NCS-A achieves the best gaps of 0.00%
(|V | = 101), and 1.93% (|V | = 201) on PDTSP while the gaps
of Heter-POMO are 1.46% (|V |= 101) and 8.66% (|V |= 201);
our NCS-A achieves best average gaps of 0.42% (w.r.t. B1) and
1.62% (w.r.t. B2) on PDTSP-LIFO while the gaps of Heter-POMO
are 9.63% (w.r.t. B1) and 10.98% (w.r.t. B2). This further reveals
the favorable generalization of our N2S and NCS over others.

APPENDIX F
DEALING WITH CAPACITY CONSTRAINT

Our N2S is generic to the capacity constraint, similar to DACT
for handling capacity in CVRP [5]. Specifically, we can, 1) make
copies of depots (i.e., dummy depots) so that N2S can search
solutions with different numbers of vehicles automatically; 2) add
capacity/demand features to NFEs; 3) mask out infeasible choices
in the Reinsertion decoder; and 4) use diversity enhancement as
usual since it only affects the node coordinates. Those procedures
also hold for the improvement model in our NCS. Nevertheless,
the capacity in PDP might not be so crucial as the vehicle may
always alternatively load or unload the goods.

19

TABLE 13: P-values of two-sided paired t-test between our methods and LKH (10k), as well as our methods and Heter-POMO-A.

Method-1 Method-2 PDTSP PDTSP-LIFO

21 51 101 21 51 101

LKH (10k)

N2S-A (1k) 0.9727 0.7769 0.0000 0.9916 0.0041 0.0000
N2S-A (2k) 0.9756 0.9383 0.5317 0.9916 0.0019 0.0000
N2S-A (3k) 0.9791 0.8224 0.0059 0.9916 0.0012 0.0000
NCS-A (1k) 0.9773 0.7769 0.0000 0.9917 0.0041 0.0000
NCS-A (2k) 0.9783 0.8207 0.4254 0.9917 0.0015 0.0000
NCS-A (3k) 0.9785 0.7138 0.0067 0.9917 0.0010 0.0000

Heter-POMO-A
(3k or 4k)

N2S-A (1k) 0.7729 0.0000 0.0000 0.7032 0.0004 0.0000
N2S-A (2k) 0.7702 0.0000 0.0000 0.7031 0.0000 0.0008
N2S-A (3k) 0.7668 0.0000 0.0000 0.7032 0.0000 0.0002
NCS-A (1k) 0.7685 0.0000 0.0000 0.7031 0.0002 0.7518
NCS-A (2k) 0.7076 0.0000 0.0000 0.7031 0.0000 0.0008
NCS-A (3k) 0.7674 0.0000 0.0000 0.7031 0.0000 0.0000

TABLE 14: Generalization performance on benchmark instances from [29] for PDTSP using the trained model in Section 5.

Heter-POMO-A (3k) N2S-A (3k) NCS-A (3k) Heter-POMO-A (3k) N2S-A (3k) NCS-A (3k)
Instances |V | Optimal Avg. Cost ↓ Best Cost ↓ Avg. Cost ↓ Best Cost ↓ Avg. Cost ↓ Best Cost ↓ Avg. Gap(%) ↓ Best Gap(%) ↓ Avg. Gap(%) ↓ Best Gap(%) ↓ Avg. Gap(%) ↓ Best Gap(%) ↓

N101P1 101 799 824 820 800 799 800 799 3.13 2.63 0.13 0.00 0.13 0.00
N101P2 101 729 736 735 730 729 730 729 0.96 0.82 0.14 0.00 0.14 0.00
N101P3 101 748 751 751 748 748 748 748 0.40 0.40 0.00 0.00 0.00 0.00
N101P4 101 807 815 814 808 807 807 807 0.99 0.87 0.12 0.00 0.00 0.00
N101P5 101 783 794 791 783 783 783 783 1.40 1.02 0.00 0.00 0.00 0.00
N101P6 101 755 766 763 755 755 755 755 1.46 1.06 0.00 0.00 0.00 0.00
N101P7 101 767 787 787 768 767 767 767 2.61 2.61 0.13 0.00 0.00 0.00
N101P8 101 762 783 782 764 762 762 762 2.76 2.62 0.26 0.00 0.00 0.00
N101P9 101 766 766 766 766 766 766 766 0.00 0.00 0.00 0.00 0.00 0.00
N101P10 101 754 774 773 754 754 754 754 2.65 2.52 0.00 0.00 0.00 0.00

Average 767.0* 779.6 778.2 767.6 767.0* 767.2 767.0* 1.64 1.46 0.08 0.00 0.03 0.00

N201P1 201 1039 1109 1095 1068 1059 1054 1049 6.74 5.39 2.79 1.92 1.44 0.96
N201P2 201 1086 1117 1114 1102 1099 1103 1100 2.85 2.58 1.47 1.20 1.57 1.29
N201P3 201 1070 1198 1177 1112 1107 1110 1106 11.96 10.00 3.93 3.46 3.74 3.36
N201P4 201 1050 1114 1108 1073 1066 1069 1067 6.10 5.52 2.19 1.52 1.81 1.62
N201P5 201 1052 1187 1169 1094 1078 1066 1063 12.83 11.12 3.99 2.47 1.33 1.04
N201P6 201 1059 1120 1111 1077 1072 1085 1080 5.76 4.91 1.70 1.23 2.46 1.98
N201P7 201 1037 1170 1164 1076 1065 1055 1051 12.83 12.25 3.76 2.70 1.74 1.35
N201P8 201 1079 1215 1196 1112 1108 1100 1096 12.60 10.84 3.06 2.69 1.95 1.58
N201P9 201 1050 1208 1198 1076 1073 1094 1093 15.05 14.10 2.48 2.19 4.19 4.10
N201P10 201 1085 1198 1192 1116 1112 1109 1107 10.41 9.86 2.86 2.49 2.21 2.03

Average 1060.7* 1163.6 1152.4 1090.6 1083.9 1084.5 1081.2 9.71 8.66 2.82 2.19 2.24 1.93

TABLE 15: Generalization performance on benchmark instances from [4] for PDTSP-LIFO using the trained model in Section 5.

Instances |V | B1(2007) B2(2011)
Heter-POMO-A (3k) N2S-A (3k) NCS-A (3k) Heter-POMO-A (3k) N2S-A (3k) NCS-A (3k) Heter-POMO-A (3k) N2S-A (3k) NCS-A (3k)

Avg. Cost ↓ Best Cost ↓ Avg. Cost ↓ Best Cost ↓ Avg. Cost ↓ Best Cost ↓ Avg. Gap
to B1(%) ↓

Best Gap
to B1(%) ↓

Avg. Gap
to B1(%) ↓

Best Gap
to B1(%) ↓

Avg. Gap
to B1(%) ↓

Best Gap
to B1(%) ↓

Avg. Gap
to B2(%) ↓

Best Gap
to B2(%) ↓

Avg. Gap
to B2(%) ↓

Best Gap
to B2(%) ↓

Avg. Gap
to B2(%) ↓

Best Gap
to B2(%) ↓

brd14051 25 4682.2 4672.0 4705 4705 4680 4672 4672 4672 0.49 0.49 -0.05 -0.22 -0.22 -0.22 0.71 0.71 0.17 0.00 0.00 0.00
51 7763.2 7740.0 8276 8201 7948 7828 7845 7764 6.61 5.64 2.38 0.83 1.05 0.01 6.93 5.96 2.69 1.14 1.36 0.31
75 7309.1 7232.4 9059 8938 7775 7554 7738 7639 23.94 22.29 6.37 3.35 5.87 4.51 25.26 23.58 7.50 4.45 6.99 5.62

101 10005.2 9735.0 13315 13000 10539 10370 10458 10404 33.08 29.93 5.34 3.65 4.53 3.99 36.77 33.54 8.26 6.52 7.43 6.87

pr1002 25 16221.0 16221.0 16221 16221 16221 16221 16221 16221 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
51 31187.7 30936.0 30936 30936 30936 30936 30936 30936 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 0.00 0.00 0.00 0.00 0.00 0.00
75 46911.0 46673.0 47404 47202 47284 46923 47067 46700 1.05 0.62 0.80 0.03 0.33 -0.45 1.57 1.13 1.31 0.54 0.84 0.06

101 63611.1 61433.0 62569 62565 62787 62353 62292 62096 -1.64 -1.64 -1.30 -1.98 -2.07 -2.38 1.85 1.84 2.20 1.50 1.40 1.08

fnl4461 25 2168.0 2168.0 2168 2168 2168 2168 2168 2168 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
51 4020.0 4020.0 4038 4037 4020 4020 4020 4020 0.45 0.42 0.00 0.00 0.00 0.00 0.45 0.42 0.00 0.00 0.00 0.00
75 5865.0 5739.0 6118 6038 5905 5763 5775 5768 4.31 2.95 0.68 -1.74 -1.53 -1.65 6.60 5.21 2.89 0.42 0.63 0.51

101 8852.8 8562.0 9186 9065 8827 8702 8680 8575 3.76 2.40 -0.29 -1.70 -1.95 -3.14 7.29 5.87 3.10 1.64 1.38 0.15

d18512 25 4683.4 4672.0 4707 4705 4680 4672 4672 4672 0.50 0.46 -0.07 -0.24 -0.24 -0.24 0.75 0.71 0.17 0.00 0.00 0.00
51 7565.6 7502.0 8215 8126 7696 7519 7627 7532 8.58 7.41 1.72 -0.62 0.81 -0.44 9.50 8.32 2.59 0.23 1.67 0.40
75 8781.5 8629.0 10282 10215 8884 8802 8989 8946 17.09 16.32 1.17 0.23 2.36 1.87 19.16 18.38 2.96 2.00 4.17 3.67

101 10332.4 10256.4 13499 13218 10729 10555 10928 10776 30.65 27.93 3.84 2.15 5.76 4.29 31.62 28.88 4.61 2.91 6.55 5.07

d15112 25 93981.0 93981.0 93981 93981 93981 93981 93981 93981 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
51 143575.2 142113.0 144120 143716 142113 142113 142113 142113 0.38 0.10 -1.02 -1.02 -1.02 -1.02 1.41 1.13 0.00 0.00 0.00 0.00
75 201385.4 199047.8 206442 204944 200004 199076 200084 199076 2.51 1.77 -0.69 -1.15 -0.65 -1.15 3.71 2.96 0.48 0.01 0.52 0.01

101 276876.8 266925.3 272784 273693 269160 267305 269135 267001 -1.48 -1.15 -2.79 -3.46 -2.80 -3.57 2.19 2.54 0.84 0.14 0.83 0.03

nrw1379 25 3194.8 3192.0 3192 3192 3192 3192 3192 3192 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 0.00 0.00 0.00 0.00 0.00 0.00
51 5095.0 5055.0 6369 6517 5086 5056 5059 5055 25.00 27.91 -0.18 -0.77 -0.71 -0.79 25.99 28.92 0.61 0.02 0.08 0.00
75 6865.1 6831.0 9647 9272 7081 6960 7005 6928 40.52 35.06 3.14 1.38 2.04 0.92 41.22 35.73 3.66 1.89 2.55 1.42

101 10197.5 9889.4 13898 13592 10330 9996 10147 10124 36.29 33.29 1.30 -1.98 -0.50 -0.72 40.53 37.44 4.46 1.08 2.60 2.37

Average 40880.4 40134.4 41713.8 41593.6 40501.0 40280.7 40450.2 40265.0 9.63 8.80 0.81 -0.17 0.42 -0.04 10.98 10.14 2.02 1.02 1.62 1.15

View publication stats

	Efficient neural collaborative search for pickup and delivery problems
	Citation

	tmp.1727336661.pdf.hCSjv

