
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2024

Certified quantization strategy synthesis for neural networks Certified quantization strategy synthesis for neural networks

Yedi ZHANG

Guangke CHEN

Jun SUN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
ZHANG, Yedi; CHEN, Guangke; SUN, Jun; and SUN, Jun. Certified quantization strategy synthesis for
neural networks. (2024). Formal Methods: 26th International Symposium FM 2024, Milan, September
9-13: Proceedings. 14933, 343-362.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9325

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Certified Quantization Strategy Synthesis
for Neural Networks

Yedi Zhang1, Guangke Chen2, Fu Song3,4, Jun Sun5(B), and Jin Song Dong1

1 National University of Singapore, Singapore 117417, Singapore
2 ShanghaiTech University, Shanghai 201210, China

3 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
4 Nanjing Institute of Software Technology, Nanjing 211135, China
5 Singapore Management University, Singapore 178902, Singapore

junsun@smu.edu.sg

Abstract. Quantization plays an important role in deploying neural
networks on embedded, real-time systems with limited computing and
storage resources (e.g., edge devices). It significantly reduces the model
storage cost and improves inference efficiency by using fewer bits to repre-
sent the parameters. However, it was recently shown that critical proper-
ties may be broken after quantization, such as robustness and backdoor-
freeness. In this work, we introduce the first method for synthesizing
quantization strategies that verifiably maintain desired properties after
quantization, leveraging a key insight that quantization leads to a data
distribution shift in each layer. We propose to compute the preimage for
each layer based on which the preceding layer is quantized, ensuring that
the quantized reachable region of the preceding layer remains within the
preimage. To tackle the challenge of computing the exact preimage, we
propose an MILP-based method to compute its under-approximation.
We implement our method into a tool Quadapter and demonstrate its
effectiveness and efficiency by providing certified quantization that suc-
cessfully preserves model robustness and backdoor-freeness.

1 Introduction

While deep neural networks (DNNs) have achieved notable success in var-
ious application domains [5,31], their deployment on resource-constrained,

This study was funded by the National Natural Science Foundation of China
(62072309), CAS Project for Young Scientists in Basic Research (YSBR-040), ISCAS
New Cultivation Project (ISCAS-PYFX-202201), ISCAS Fundamental Research
Project (ISCAS-JCZD-202302), the Ministry of Education, Singapore under its Aca-
demic Research Fund Tier 3 (Award ID: MOET32020-0004), and the Ministry of
Education, Singapore under its Academic Research Fund Tier 3 (Award ID: MOE-
MOET32020-0003). Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not reflect the views of the Ministry
of Education, Singapore.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 343–362, 2025.
https://doi.org/10.1007/978-3-031-71162-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_18

344 Y. Zhang et al.

Fig. 1. Visualized data distribution shift using 400 random samples centered around an
input image. These inputs are processed through both a DNN (trained on MNIST [20])
and its counterparts quantized with bit-width Q ∈ {4, 6, 8, 10}. The resulting high-
dimensional convex shapes are visualized in 2D. The blue and brown scatters demon-
strate the distribution of output values of each affine layer of the DNN and QNNs.
(Color figure online)

embedded, real-time systems is currently impeded by their substantial demand
for computing and storage resources [27]. Quantization is one of the most pop-
ular and promising techniques to address this issue [8,39]. By storing the full-
precision values in a DNN (such as parameters and/or activation values) into
low bit-width fixed-point numbers, quantization facilitates the compression of a
DNN and leads to a quantized neural network (QNN), making the network more
efficient.

While a lot of techniques have been proposed to minimize the loss of accuracy
induced by quantization [8,15,21,22,32,33,42,44,48], an important side-effect of
quantization is overlooked, that is the risk of breaking desired critical proper-
ties, e.g., robustness [24,41] and backdoor-freeness [13,26,34,55], thereby raising
great concerns, especially when they are deployed in safety-critical applications.
While quantization-aware training techniques have been proposed to improve the
robustness for a given fixed quantization strategy [23,24,41,43], they fail to pro-
vide robustness guarantees. Therefore, it becomes imperative to devise a quan-
tization strategy synthesis technique, ensuring that the resulting QNNs retain
specific desired properties. Noting that although various verification methods
for QNNs have been proposed [3,9,12,52–54], they exclusively focus on post-hoc
analyses rather than synthesis, namely, these methods merely verify or falsify
the properties but offer no solutions for those that are falsified.
Contributions. In this work, we propose the first quantization strategy syn-
thesis method, named Quadapter, such that the desired properties are verifiably
maintained by the quantization. Given a DNN N and a property 〈I,O〉 where I
and O are the pre- and post-condition for the input and output, our general idea
is first to compute the preimage of each layer w.r.t. the output region formed by
O. Then, considering the typical data distribution shift caused by quantization
in each layer (cf. Fig. 1), we identify the minimal bit-width for each layer such
that the shifted quantized reachable region w.r.t. I always remains within the

Certified Quantization Strategy Synthesis for Neural Networks 345

corresponding preimage. This method allows us to derive a quantization strategy
for the entire network, preserving the desired property 〈I,O〉 after quantization.

A key technical question is how to represent and compute the preimage for
each layer effectively and efficiently. In this work, we propose to compute an
under-approximation of the preimage for each layer and represent it by adapting
the abstract domain of DeepPoly [40]. Specifically, we devise a novel Mixed Inte-
ger Linear Programming (MILP) based method to propagate the (approximate)
preimage layer-by-layer in a backward fashion, where we encode the affine trans-
formation and activation function precisely as linear constraints and compute
under-approximate preimage via MILP solving.

We implement our methods as an end-to-end tool Quadapter and extensively
evaluate our tool on a large set of synthesis tasks for DNNs trained using two
widely used datasets MNIST [20] and Fashion-MNIST [46], where the number
of hidden layers varies from 2 to 6 and the number of neurons in each hid-
den layer varies from 100 to 512. The experimental results demonstrate the
effectiveness and efficiency of Quadapter in synthesizing certified quantization
strategies to preserve robustness and backdoor-freeness. The quantization strat-
egy synthesized by Quadapter generally preserves the accuracy of the original
DNNs (with only minor degradation). We also show that by slightly relaxing
the under-approximate preimages of the hidden layers (without sacrificing the
overall soundness), Quadapter can synthesize quantization strategies with much
smaller bit-widths while preserving the desired properties and accuracy.

The remainder of this paper is organized as follows. Section 2 gives the pre-
liminaries and formulates the problem. Section 3 presents the details of our app-
roach and Sect. 4 demonstrates its applications. Section 5 reports our experimen-
tal results. We discuss related work in Sect. 6 and finally, Sect. 7 concludes. The
source code for our tool, along with the benchmarks, is available in [50], which
also includes a long version of the paper containing all missing proofs, design
choices, implementation details, and additional experimental results.

2 Preliminaries

We denote by R the set of real numbers. Given an integer n, let [n] := {1, . . . , n}
and R

n be the set of the n-tuples of real numbers. We use bold lowercase
letters (e.g., x) and BOLD UPPERCASE (e.g., W) to denote vectors and
matrices. We denote by Wi,: (resp. W:,i) the i-th row (resp. column) vector of
the matrix W, and by xj (resp. Wi,j) the j-th entry of the vector x (resp. Wi,:).
M denotes an extremely large number.

A Deep Neural Network (DNN) with 2d layers is a function N : Rn0 → R
n2d

such that N = f2d ◦ · · · ◦ f1, where f1 : Rn0 → R
n1 is the input layer, f2d :

R
n2d−1 → R

n2d is the output layer, and the others are hidden layers. The hidden
layers alternate between affine layers f2i : Rn2i−1 → R

n2i and activation layers
f2i+1 : Rn2i → R

n2i+1 for i ∈ [d − 1]. The semantics of each layer is defined as
follows: x1 = f1(x) = x, x2i = f2i(x2i−1) = W2ix2i−1 + b2i for i ∈ [d] and
x2i+1 = f2i+1(x2i) = ReLU(x2i) for i ∈ [d − 1], where W2i and b2i are the

346 Y. Zhang et al.

weight matrix and the bias vector of the 2i-th layer, n0 = n1 and n2i = n2i+1 for
i ∈ [d−1]. Note that for the sake of presentation, we regard affine and activation
layers separately as hidden layers, some prior work regards the composition of
an affine layer and an activation layer as one hidden layer, e.g., [4,25,38]. Given
a DNN N with 2d layers, we use N[i:j] : Rni−1 → R

nj to denote the composed
function fj ◦ · · · ◦ fi. By N (I) (resp. N (I)g), we refer to the output region of
the network N (resp. neuron x2d

g) w.r.t. the input region I.
A Quantized Neural Network (QNN) is structurally identical to a DNN but

uses fixed-point values for its parameters and/or layer outputs. In this work, we
focus on QNNs where only parameters are quantized using the most hardware-
efficient quantization scheme, i.e., signed power-of-two quantization [33].

A quantization configuration ξ is a pair 〈Q,F 〉, where Q denotes the total
bit-width and F denotes the bit-width for the fractional part of the value. Given
a quantization configuration ξ and a real-valued number u, its fixed-point coun-
terpart û is defined as û = min(max(�u·2F �

2F ,−2Q−1), 2Q−1 − 1), where �·� is the
round-to-nearest operator. Given a DNN N : Rn0 → R

n2d with 2d layers and a
set of quantization configurations for affine and output layers Ξ = {ξ1, . . . , ξd},
its quantized version ̂N : Rn0 → R

n2d is a composed function as ̂N = f̂2d◦· · ·◦f̂1,
where each layer is defined the same as that in the DNN N except that the
parameters W2i and b2i for i ∈ [d] from the DNN N are quantized into fixed-
point values ̂W2i and ̂b2i in the QNN ̂N according to the quantization con-
figuration ξi. In this work, we call the set Ξ a quantization strategy of the
DNN N .

Definition 1. Given a DNN N : Rn0 → R
n2d , a property of N is a pair 〈φ, ψ〉

where φ is a pre-condition over the input x ∈ R
n0 and ψ is a post-condition

over the output y = N (x) ∈ R
n2d . N satisfies the property 〈φ, ψ〉, denoted by

N |= 〈φ, ψ〉, if φ(x) ⇒ ψ(N (x)) holds for any input x ∈ R
n0 .

Following prior work [49], we assume that the pre-condition φ and post-
condition ψ are expressible by polyhedra, namely, I and O, respectively. It is
reasonable since, for typical properties such as robustness, both conditions can
be effectively represented by a set of linear constraints. For simplicity, we will use
〈I,O〉 to denote the property directly. We are now ready to define our problem.

Definition 2. Given a DNN N and a property 〈I,O〉 such that N |= 〈I,O〉,
the problem of certified quantization strategy synthesis is to find a quantization
strategy Ξ such that ̂N |= 〈I,O〉, where ̂N is the QNN obtained from N under
the quantization strategy Ξ.

Review of DeepPoly. The core idea of DeepPoly is to (approximately) represent
the transformation of each layer using an abstract transformer, and compute
lower/upper bounds for the output of each neuron. Fix a neuron xi

j , its abstract
element Ai,�

j is given by a tuple 〈ai,≤
j ,ai,≥

j , lij , u
i
j〉, where ai,≤

j (resp. ai,≥
j) is a

symbolic lower (resp. upper) bound in the form of a linear combination of vari-
ables from its preceding layers, lij (resp. ui

j) is the concrete lower (resp. upper)
bound of xi

j . We denote by ai,≤ (resp. ai,≥) the vector of symbolic bounds ai,≤
j

Certified Quantization Strategy Synthesis for Neural Networks 347

(resp. ai,≥
j) of the neurons xi

j ’s in the i-th layer. The concretization of Ai,�
j is

defined as γ(Ai,�
j) = {xi

j ∈ R | ai,≤
j ≤ xi

j ≤ ai,≥
j }. By repeatedly substituting

each variable xi′
j′ in ai,≤

j (resp. ai,≥
j) using ai′,≤

j′ or ai′,≥
j′ according to the coef-

ficient of xi′
j′ , until no further substitution is possible, ai,≤

j (resp. ai,≥
j) will be

a linear combination over the input variables of the DNN. We denote by f i,≤
j

and f i,≥
j the resulting linear combinations of ai,≤

j and ai,≥
j . Then, the concrete

lower bound lij (resp. concrete upper bound ui
j) of the neuron xi

j can be derived
using the input region I and f i,≤

j (resp. f i,≥
j). All the abstract elements Ai,�

j

are required to satisfy the domain invariant: γ(Ai,�
j) ⊆ [lij , u

i
j]. We denote by Ai

j

the abstract element 〈f i,≤
j , f i,≥

j , lij , u
i
j〉. For an affine function xi = Wixi−1+bi,

the abstract affine transformer sets ai,≤ = ai,≥ = Wixi−1 + bi. Given the
abstract element Ai,�

j = 〈ai,≤
j ,ai,≥

j , lij , u
i
j〉 of the neuron xi

j , Ai+1,�
j of the neu-

ron xi+1
j = ReLU(xi

j) have three cases as follows, where λi
j = ui

j

ui
j−lij

: i) if

lij ≥ 0, then ai+1,≤
j = ai+1,≥

j = xi
j , li+1

j = lij , ui+1
j = ui

j ; ii) if ui
j ≤ 0, then

ai+1,≤
j = ai+1,≥

j = li+1
j = ui+1

j = 0; iii) if liju
i
j < 0, then ai+1,≥

j = λi
j(x

i
j − lij),

ai+1,≤
j = κ · xi

j where κ ∈ {0, 1} such that the area of resulting shape by ai+1,≤
j

and ai+1,≥
j is minimal, li+1

j = κ · lij and ui+1
j = ui

j .

3 Our Approach

In the following, we fix a DNN N with 2d layers and a property 〈I,O〉.

3.1 Foundation of Quadapter

Consider a function f and an output set Y , the preimage f−1(Y) of the output
set Y for f is the set {x | f(x) ∈ Y }. An under-approximation of f−1(Y) is a
set P such that P ⊆ f−1(Y).

Definition 3. A set P = {P2i | i ∈ [d−1]} is an under-approximate preimage of
the output region O for the DNN N if for every i ∈ [d− 1], P2i ⊆ N −1

[2i+1:2d](O).

Intuitively, P2i (resp. P2i
j) is the preimage of the activation layer f2i+1 (resp.

neuron x2i+1
j) w.r.t. the output region O. Since it suffices to consider preimages

of the activation layers in the set P for computing bit-widths of affine layers,
the preimages of the affine layers are excluded.

Proposition 1. Let ̂N 2i be a network obtained from N by quantizing the first
2i layers. If P = {P2i | i ∈ [d − 1]} is an under-approximate preimage of the
output region O for the DNN N , then ̂N 2i

[1:2i](I) ⊆ P2i ⇒ ̂N 2i |= 〈I,O〉.
�

Intuitively, Proposition 1 states that regardless of the quantization configura-
tions of the first 2i layers, the property 〈I,O〉 is always preserved in the resulting
QNN, as long as the reachable region of the quantized layer f̂2i w.r.t. the input

348 Y. Zhang et al.

Fig. 2. An overview of our method.

region I remains within the preimage P2i. This proposition allows us to repeat-
edly compute a quantization configuration ξi for each layer f2i (i ∈ [d]), from
the first affine layer to the output layer, that guarantees the reachable region of
each quantized layer f̂2i remains within its respective preimage P2i. Putting all
the quantization configurations of the affine layers and the output layer together
yields a quantization strategy Ξ that preserves the desired property 〈I,O〉.

However, it is non-trivial to compute the preimages N −1
[2i+1:2d](O) from the

functions N −1
[2i+1:2d] for i ∈ [d−1]. To resolve this issue, we propose to repeatedly

compute a preimage P2i of each activation layer f2i+1 starting from the output
layer to the first activation layer by analyzing the function N −1

[2i+1:2i+2] instead
of the function N −1

[2i+1:2d], according to the following proposition.

Proposition 2. Let P = {P2i | i ∈ [d−1]} be a set such that for every i ∈ [d−1],
i) if i = d − 1, P2i ⊆ N −1

[2i+1:2i+2](O); ii) if i ≤ d − 2, P2i ⊆ N −1
[2i+1:2i+2](P2i+2).

P is an under-approximate preimage of the output region O for the DNN N .
�

3.2 Overview of Quadapter

Let P2d = O. The overall workflow of Quadapter is depicted in Fig. 2 which
consists of the following two steps:

– Step 1: Preimage Computation. We first compute an under-approximate
preimage P2d−2 for the output layer s.t. P2d−2 ⊆ N −1

[2d−1:2d](O), and then
propagate it through the network until reaching the first affine layer. Finally,
we obtain the under-approximate preimage P = {P2i | i ∈ [d − 1]} for the
DNN N (the yellow part);

– Step 2: Forward Quantization. We then conduct a forward quantization
procedure layer-by-layer to find a quantization configuration ξi = 〈Qi, Fi〉
with minimal bit-width Qi for each layer f2i, ensuring that the reachable
region characterized by the quantized abstract element ̂A2i (the blue part) is
included in the preimage P2i, i.e., γ(̂A2i) ⊆ P2i for 1 ≤ i ≤ d.

The overall algorithm is given in Algorithm 1. Given a DNN N , a property
〈I,O〉, and the minimum (resp. maximum) fractional bit-width Bl (resp. Bu) for
each layer, we first apply DeepPoly on the DNN N w.r.t. input region I to obtain
the abstract elements A2i for i ∈ [d]. Then, the first for-loop computes the preim-
age by invoking the function UnderPreImage(N ,A2i,P2i+2) which propagates

Certified Quantization Strategy Synthesis for Neural Networks 349

Algorithm 1: Certified_Quantization(N , I,O,Bl,Bu)
1 Apply DeepPoly on the DNN N w.r.t. I to obtain abstract elements {A2i | 1 ≤ i ≤ d};
2 Let P2d = O and ̂N = N ;
3 for i = d − 1 to 1 do
4 P2i = UnderPreImage(N , A2i, P2i+2); //get P2i s.t. P2i ⊆ N −1

[2i+1:2i+2](P
2i+2)

5 for i = 1 to d do
6 ξi = ⊥;
7 I = the minimal bit-width to encode integer parts of W2i and b2i without overflow;
8 for F = Bl to Bu do
9 Quantize W2i, b2i w.r.t. ξ̌i = 〈F + I, F 〉 on ̂N to obtain ̂N 2i;

10 Apply DeepPoly on ̂N 2i
[1:2i] w.r.t. I to obtain ̂A2i;

11 if γ(̂A2i) ⊆ P2i then
12 ξi = ξ̌i; ̂N = ̂N 2i; //accept ξ̌i and update quantized parameters
13 break

14 if ξi == ⊥ then return UNKNOWN

15 return Ξ = {ξ1, . . . , ξd};

P2i+2 to the preceding activation layer and returns the approximate preimage
P2i with P2i ⊆ N −1

[2i+1:2i+2](P2i+2). The second for-loop performs a forward
quantization procedure, where the i-th iteration is used to compute the quan-
tization configuration ξi for layer f2i. First, we obtain the minimal bit-width I
for the integer part of weights and biases to prevent overflow. Then, we iterate
through all the possible configurations ξ̌i = 〈F + I, F 〉 by varying the frac-
tional bit-width F from the smallest one Bl to the largest one Bu. For each
F ∈ [Bl,Bu], we compute a partially quantized DNN ̂N 2i, where only the first
i affine layers (and the output layer) are quantized using ξ1, · · · , ξi−1, ξ̌i. Next,
we apply DeepPoly on ̂N 2i

[1:2i] w.r.t. the input region I to obtain the abstract
element ̂A2i of the quantized layer f̂2i, resulting in reachable region as the blue
part in Fig. 2. We then check whether this reachable region is strictly contained
in the preimage P2i, i.e., γ(̂A2i) ⊆ P2i. If this is the case, we update ξi as ξ̌i,
stop the iteration, and proceed to find the quantization configuration ξi+1 for
the next layer f2i+2. If there is no such quantization configuration, we return
UNKNOWN.

Below, we present the details of function UnderPreImage(N ,A2i,P2i+2) and
the method of checking the condition γ(̂A2i) ⊆ P2i. We first introduce the
template of preimage P2i utilized in this work.

3.3 Template T 2i of Preimage P2i

Given the abstract elements A2i = {A2i
j | j ∈ [n2i]} of the neurons in the

layer f2i, where A2i
j = 〈f2i,≤

j , f2i,≥
j , l2i

j , u2i
j 〉, we define the template T 2i of the

preimage P2i as
∧

j∈[n2i]
T 2i

j , where T 2i
j = {x2i

j ∈ R | f2i,≤
j − α2i

j ≤ x2i
j ≤

f2i,≥
j + β2i

j }, α2i
j = β2i

j = (u2i
j −l2i

j

2)χ2i, and χ2i is an additional variable over
the domain R. Intuitively, T 2i

j is a scaling of A2i
j using the scaling variable χ2i

and step u2i
j −l2i

j

2 . Thus, T 2i
j is A2i

j when χ2i = 0, and is super-region (resp.
sub-region) of A2i

j when χ2i > 0 (resp. χ2i < 0).

350 Y. Zhang et al.

3.4 Details of Function UnderPreImage

We present an MILP-based method to implement UnderPreImage(N ,A2i,
P2i+2). Given the abstract element A2i and preimage P2i+2, we construct a
maximization problem with objective function χ2i subject to the constraints
T 2i ⊆ N −1

[2i+1:2i+2](P2i+2), where T 2i is the template of P2i with the scaling vari-
able χ2i. The solution, i.e., the value of χ2i, yields the tightest under-approximate
preimage P2i such that P2i ⊆ N −1

[2i+1:2i+2](P2i+2). Hence, the key is addressing
T 2i ⊆ N −1

[2i+1:2i+2](P2i+2), for which we present an MILP-based method. We
first express T 2i ⊆ N −1

[2i+1:2i+2](P2i+2) as the following maximization problem:

maximize χ2i s.t. N[2i+1:2i+2](T 2i) ⊆ P2i+2. (1)

However, Problem (1) is not an MILP, due to the “forall”-type of constraints.
To address this issue, we construct the following minimization problem:

minimize χ2i s.t. x2i+2 ∈ N[2i+1:2i+2](T 2i) ∧ x2i+2 /∈ P2i+2. (2)

Intuitively, given the solution to Problem (2), e.g., χ2i,∗
min, we can always get a

value for χ2i by subtracting an extremely small value from χ2i,∗
min. The resulting

value of χ2i is close to the optimal solution of Problem (1), within a negligible
margin of error. Such a transformation to an “existential” constraint provides an
alternative way for handling T 2i ⊆ N −1

[2i+1:2i+2](P2i+2), allowing the problem to
be effectively tackled within the MILP framework.

Suppose T 2i
j = {x2i

j ∈ R | f2i,≤
j − α2i

j ≤ x2i
j ≤ f2i,≥

j + β2i
j } for j ∈ [n2i] and

P2i+2
k = {x2i+2

k ∈ R | f2i+2,≤
k − a2i+2

k ≤ x2i+2
k ≤ f2i+2,≥

k + b2i+2
k } for k ∈ [n2i+2]

and i ≤ d − 2. We reformulate Problem (2) as the following MILP problem:

minimize χ2i s.t. Ψ∈I ∪ ΨT 2i ∪ ΨT 2i+1 ∪ ΨT 2i+2 ∪ Ψ/∈P2i+2 , (3)

where Ψ∈I and Ψ/∈P2d will be given in Sect. 4 which entail x ∈ I and x2d /∈ P2d

respectively, as they depend on the property 〈I,O〉. ΨT 2i , ΨT 2i+1 , ΨT 2i+2 , and
Ψ/∈P2i+2 are defined as follows ({η2i+1

j , η2i+2
j , ζ2i+2

j } are Boolean variables):

– ΨT 2i = {f2i,≤
j − α2i

j ≤ x2i
j ≤ f2i,≥

j + β2i
j | j ∈ [n2i]} expressing template T 2i;

– ΨT 2i+1 = {x2i+1 ≥ 0,x2i+1 ≥ x2i,x2i+1 ≤ M · η2i+1
j ,x2i+1 ≤ x2i +M · (1 −

η2i+1
j) | j ∈ [n2i+1]} encoding the activation layer f2i+1 (cf. [54]);

– ΨT 2i+2 = {x2i+2
j = W2i+2

j,: x2i+1 + b2i+2
j | j ∈ [n2i+2]} encoding the affine

layer f2i+2 (cf. [54]). Note that ΨT 2i , ΨT 2i+1 and ΨT 2i+2 together express the
condition x2i+2 ∈ N[2i+1:2i+2](T 2i).

– Ψ/∈P2i+2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x2i+2
j > f2i+2,≥

j + b2i+2
j +M · (η2i+2

j − 1),
x2i+2

j ≤ f2i+2,≥
j + b2i+2

j +M · η2i+2
j ,

x2i+2
j ≥ f2i+2,≤

j − a2i+2
j − M · ζ2i+2

j ,

x2i+2
j < f2i+2,≤

j − a2i+2
j − M · (ζ2i+2

j − 1),
j ∈ [n2i+2] ∧

∑n2i+2
k=1

(

η2i+2
k + ζ2i+2

k

)

≥ 1

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

expressing the

condition x2i+2 /∈ P2i+2.

Theorem 1. Problems (2) and (3) are equivalent.
�

Certified Quantization Strategy Synthesis for Neural Networks 351

3.5 Checking γ(̂A2i) ⊆ P2i

Fix the abstract elements ̂A2i = { ̂A2i
j | j ∈ [n2i]} for the quantized layer f̂2i with

̂A2i
j = 〈f̂2i,≤

j , f̂2i,≥
j , l̂2i

j , û2i
j 〉, we have γ(̂A2i

j) = {x2i
j ∈ R | f̂2i,≤

j ≤ x2i
j ≤ f̂2i,≥

j }.
Let P2i

j = {x2i
j ∈ R | f2i,≤

j − a2i
j ≤ x2i

j ≤ f2i,≥
j + b2i

j } for j ∈ [n2i] be the
preimage obtained by the function UnderPreImage for i ≤ d − 1, where a2i

j and
b2i
j are real-valued numbers.

Since reformulating the problem of checking γ(̂A2i) ⊆ P2i into an MILP
problem directly is infeasible due to its inherent nature of “forall”-type constraint,
we instead check the negation of this statement.

Let Φ/∈P2i be the following set of the linear constraints:

Φ/∈P2i = Ψ∈I ∪

⎧

⎨

⎩

f2i,≥
j + b2i

j +M · (η2i
j − 1) < f̂2i,≥

j ≤ f2i,≥ + b2i
j +M · η2i

j ,

f2i,≤ − a2i
j − M · ζ2i

j ≤ f̂2i,≤
j < f2i,≤ − a2i

j − M · (ζ2i
j − 1),

j ∈ [n2i],
∑n2i

k=1

(

η2i
k + ζ2i

k

)

≥ 1

⎫

⎬

⎭

where η2i
j and ζ2i

j are two additional Boolean variables, and Ψ∈I and Φ/∈P2d will
be given in Sect. 4 such that Ψ∈I entails x ∈ I and ¬Φ/∈P2d entails γ(̂A2d) ⊆ P2d

respectively, as they depend on the property 〈I,O〉.

Theorem 2. If Φ/∈P2i does not hold, then γ(̂A2i) ⊆ P2i.
�

4 Applications: Robustness and Backdoor-Freeness

4.1 Certified Quantization for Robustness

We use Algorithm 1 to synthesize quantization strategies for preserving robust-
ness.

Definition 4. Let N : Rn0 → R
n2d be a DNN, Ir

u = {x ∈ R
n0 | ||x−u||∞ ≤ r}

be a perturbation region around an input u ∈ R
n0 , and Og = {x2d ∈ R

n2d |
argmax(x2d) = g} be the output region corresponding to a specific class g. Then,
〈Ir

u,Og〉 is a (local) robustness property of the DNN N .

We now give the encoding details that are not covered in Sect. 3, i.e., Ψ∈I
and Ψ/∈P2d in Problem (3), and Φ/∈P2d in Sect. 3.5 for the property 〈Ir

u,Og〉1:

– Ψ∈I = {max(uj −r, 0) ≤ xj ≤ min(uj+r, 1) | j ∈ [n0]} specifying the feasible
input range Ir

u;

– Ψ/∈P2d =
{

x2d
g +M · (η2d

j − 1) ≤ x2d
j ≤ x2d

g +M · η2d
j ,

j ∈ [n2d] \ g,
∑

k∈[n2d]\g η2d
k ≥ 1

}

stating x2d /∈ Og,

i.e., argmax(x2d) �= g, where η2d
j is a Boolean variable;

1 For simplicity, we assume that the output layer of N has a unique maximum value
for any given input. This assumption can be avoided by adapting Ψ/∈P2d and Φ/∈P2d .

352 Y. Zhang et al.

– Φ/∈P2d =

{

f̂2d,≤
g +M · (η2d

j − 1) ≤ f̂2d,≥
j ≤ f̂2d,≤

g +M · η2d
j ,

j ∈ [n2d]\g,
∑

k∈[n2d]\g η2d
k ≥ 1

}

whose unsat-

isfiability ensuring γ(̂A2d) ⊆ Og, where η2d
j is a Boolean variable.

The soundness of the algorithm is captured by the theorem below.

Theorem 3. Ψ∈I ⇔ x ∈ Ir
u, Ψ/∈P2d ⇔ x2d /∈ Og, ¬Φ/∈P2d ⇒ γ(̂A2d) ⊆ Og.
�

4.2 Certified Quantization for Backdoor-Freeness

Given a DNN N : Rn0 → R
n2d and an input u ∈ R

n0 , assume that the 2D-
shape of u is a rectangle (hu, wu) (i.e., n0 = hu × wu). A backdoor trigger is
any 2D input s ∈ R

hs×ws with a shape of rectangle (hs, ws) such that hs ≤ hu

and ws ≤ wu. We use u[x, y] to denote the element located in the x-th row and
y-th column within the 2D-input u. Let (hp, wp) denote the position of (i.e., the
top-left corner of) the trigger s such that hp + hs ≤ hu and wp + ws ≤ wu.
Then, us is the stamped input where us[x, y] = s[x − hp, y − wp] if hp ≤ x ≤
hp + hs ∧ wp ≤ y ≤ wp + ws, and us[x, y] = u[x, y] otherwise.

Definition 5. Let N : Rn0 → R
n2d be a DNN, (hs, ws), (hp, wp), t, and θ be

the shape, position, target class, and attack success rate of potential triggers.
Then, the DNN N satisfies the backdoor-freeness property if there does not exist
a backdoor trigger s which has an attack success rate of at least θ, i.e., the
probability of N (us) = t for any u ∈ R

n0 is at least θ [37].

Given an input u ∈ R
n0 , let 〈IB

u ,OB
t 〉 be a property such that IB

u = {us ∈
R

n0 | s ∈ R
hs×ws is any trigger at position (hp, wp)} and OB

t = {x2d ∈ R
n2d |

argmax(x2d) �= t}. Intuitively, 〈IB
u ,OB

t 〉 entails that no trigger exists whereby
the input u, once stamped, would be classified as class t.

The overall algorithm is given in Algorithm 2 by applying a hypothesis testing
(a type I/II error σ/� and a half-width of the indifference region δ), i.e., the
SPRT algorithm [1]. The while loop first keeps randomly selecting a set of K
properties and collects the preimage with the highest value of the scaling variable
of the first affine layer, along with the property, until one of the hypotheses is
accepted. When the null hypothesis H0 is accepted (line 9), we try to find a
shared quantization strategy for all the properties collected before, following
Algorithm 1, with the innermost for-loop to traverse all properties. Due to space
limitations, details of the hypothesis testing and input parameters are explained
in [50].

Table 1. Benchmarks of DNNs on MNIST and Fashion-MNIST.

Accuracy P1: 2 × 100P2: 4 × 100P3: 6 × 100P4: 4 × 512

MNIST 97.79% 97.63% 97.39% 98.17%
Fashion-MNIST 87.86% 88.45% 87.22% 88.7%

Certified Quantization Strategy Synthesis for Neural Networks 353

Algorithm 2: CQ_Backdoor(N ,Bl,Bu, (hs, ws), (hp, wp), t, θ,K, ε, σ, �, δ)
1 Let P2d = OB

t , ̂N = N , AllI = ∅, AllP = ∅, n = z = 0;
2 Let p0 = 1 − θK + δ, p1 = 1 − θK − δ;
3 while true do
4 n = n + 1;
5 Randomly select a set of K properties X = {〈N B

u1
, OB

t 〉, . . . , 〈N B
uK

, OB
t 〉};

6 Compute under-approximate preimage for each property in X (cf. Alg. 1), and let
〈IB

u∗ , OB
t 〉 be the property with the highest value of the scaling variable χ2∗ for layer f2

and P∗ be the corresponding under-approximate preimage;
7 if χ2∗ ≥ ε then
8 z = z + 1; AllI .append(IB

u∗); AllP.append(P∗);

9 if pz
1

pz
0

× (1−p1)n−z

(1−p0)n−z ≤ �
1−σ then

10 for i = 1 to d do
11 ξi = ⊥;
12 Let I be the minimal bit-width to encode integer parts of W2i and b2i

without overflow;
13 for F = Bl to Bu do
14 Quantize W2i, b2i w.r.t. ξ̌i = (F + I, F) on ̂N and obtain ̂N 2i;
15 for k = 1 to z do
16 Apply DeepPoly on ̂N 2i

[1:2i] w.r.t. AllI [k] and obtain ̂A2i,k;

17 if γ(̂A2i,k) ⊆ AllP[k][i] is UNSAT then
18 break //jump to line 13 for next iteration of F

19 ξi = ξ̌i; ̂N = ̂N 2i; //accept ξ̌i and update quantized parameters
20 break //jump to line 10 to quantize next layer f2i+2

21 if ξi == ⊥ then return UNKNOWN

22 return Ξ = {ξ1, . . . , ξd}
23 else if pz

1
pz
0

× (1−p1)n−z

(1−p0)n−z ≤ 1−�
σ then

24 return UNKNOWN;

We now give the encoding details that are not covered in Sect. 3, i.e., Ψ∈I
and Ψ/∈P2d in Problem (3), and Φ/∈P2d in Sect. 3.5 for the property 〈IB

u ,OB
t 〉:

– Ψ∈I =
{

0 ≤ x[a, b] ≤ 1 if hp ≤ a ≤ hp + hs ∧ wp ≤ b ≤ wp + ws,
x[a, b] = u[a, b] otherwise

}

;

– Ψ/∈P2d = {x2d
t ≥ x2d

j | j ∈ [n2d]};
– Φ/∈P2d = {f̂2d,≤

j ≤ f̂2d,≥
t | j ∈ [n2d] \ t}.

Theorem 4. (1) Ψ∈I ⇔ x ∈ IB
u , Ψ/∈P2d ⇔ x2d /∈ OB

t , ¬Φ/∈P2d ⇒ γ(̂A2d) ⊆
OB

t , and (2) there is sufficient evidence (subject to type 1 error σ and type 2
error �) that there are no backdoor attacks with the featured triggers within the
QNN obtained by Algorithm 2.
�

5 Evaluation

We have implemented our methods as a tool Quadapter with Gurobi [11] as
the back-end MILP solver. To address the numerical stability problem using
big-M, we use alternative formulations for the ReLU activation function and
tighter bounds for other big-M. Details refer to [50]. All experiments are run
on a machine with Intel(R) Xeon(R) Platinum 8375C CPU@2.90GHz, using 30
threads in total. The time limit for each task is 2 h.

354 Y. Zhang et al.

Benchmarks. We train 8 DNNs using the MNIST [20] and Fashion-MNIST [46]
datasets based on their popularity in previous verification studies with compara-
ble size [9,12,19,36,37]. To evaluate the performance of Quadapter, these DNNs
vary in architectures, whose details are given in Table 1, where x× y means that
the network has x hidden layers and y neurons per each hidden layer. Here-
after, we use MPx (resp. FPx) with x ∈ {1, 2, 3, 4} to denote the network of
architecture Px trained using MNIST (resp. Fashion-MNIST).

5.1 Performance of UnderPreImage Function

We evaluate the effectiveness and efficiency of the MILP-based method intro-
duced in Sect. 3.4 for computing the under-approximate preimage of DNNs MPx
with x ∈ {1, 2, 3, 4} for robustness properties. Specifically, we randomly select 50
inputs from the test set of MNIST and set the perturbation radius as r ∈ {2, 4},
resulting in a total of 400 robustness properties, each of which can be certi-
fied using DeepPoly. The time limit for each computation task is 2 h. We also
implement an abstraction-based method (ABS) to compute the preimages for
comparative analysis. Details refer to [50].

Fig. 3. Results of preimage computation.

The results are depicted
in Fig. 3. The boxplot shows
the distribution of the val-
ues of the scaling variables
obtained by the two methods
for each layer, where Ax and
Mx denote the results of layer
fx obtained by the ABS and
MILP methods, respectively.
(Note that some Ax and
Mx may be missing because
the DNN has no fx layer.)
The table reports the average
computation time in seconds,
where (i) indicates the num-
ber of tasks that run out of
time in 2 h. We find that com-
pared to the MILP method,
the ABS method tends to obtain significantly smaller values for scaling variables
in earlier layers, albeit requiring less time. It is mainly attributed to the inherent
over-approximation in the abstract transformers. Note that the scaling variable
for the last affine layer returned by the ABS method is typically larger than that
obtained via the MILP method. However, we argue that the scaling variables of
preceding layers are more significant, with larger values being preferable for a
successful forward quantization process subsequently. Therefore, we opt for the
MILP method to implement UnderPreImage, despite its longer execution time.
Integrating both methods is an interesting direction for future work.

Certified Quantization Strategy Synthesis for Neural Networks 355

Table 2. Certified quantization strategy synthesis results for robustness.

Quadapter with (Bl,Bl) = (1, 16) Quadapter∗ with (Bl,Bl) = (2, 16)
Network

#S #F Bit-width Acc. PTime(s) QTime(s) #S #F Bit-width Acc. PTime(s) QTime(s)

MP1 250 0 (6,3) 95.57% 8.17 10.80 250 0 (4,4) 96.59% 8.75 3.96
MP2 248 2 (8,6,3) 94.11% 30.49 29.18 249 1 (5,4,4) 96.35% 31.60 13.38
MP3 175 75 (11,9,6,3) 95.47% 39.55 58.63 208 32 (8,5,4,4) 96.08% 42.37 78.22
MP4 228 0 (8,6,3) 94.48% 1,066 160.2 227 0 (4,4,4) 96.97% 1,066 32.99

FP1 250 0 (6,4) 78.54% 6.93 10.48 250 0 (4,4) 83.89% 7.80 3.63
FP2 249 1 (8,6,3) 79.43% 29.82 28.86 248 2 (5,4,4) 84.56% 33.13 11.39
FP3 180 70 (11,9,6,3) 74.23% 36.90 59.45 222 26 (7,5,4,4) 85.74% 39.71 39.44
FP4 221 2 (8,7,3) 75.98% 564.0 160.7 220 2 (4,4,4) 83.07% 565.3 64.23

Unsurprisingly, we also observe the decrease of scaling variables as r increases
or the layer index decreases. The former is attributed to the enlargement of the
reachable region of each neuron with an increasing r, leading to a diminution in
the theoretical range of the amplification. The latter is because we propagate the
preimage towards the input layer and the preimage returned by UnderPreImage
increasingly under-approximates the ground truth. Additionally, we find a more
pronounced impact of the number of layers in a DNN on the scaling, as opposed
to the impact of the number of neurons per each layer. For example, when r = 4,
while the scaling of the last affine layer is similar across MP2, MP3, and MP4,
a notable divergence is observed as the preimage computation progresses to the
preceding layer, i.e., the scaling of f4 in MP3 largely diminishes compared to that
of f2 in MP2 and MP4, and even approaches zero in some tasks. We conjecture
that as the DNN gets deeper and r gets larger, DeepPoly shows enhanced efficacy
in its symbolic propagation such that the region delineated by A2i+2 becomes sig-
nificantly tighter compared to the region confined by N[2i+1:2i+2](A2i). Finally,
we find that the preimage computation time is predominantly impacted by the
number of neurons per each layer (e.g., MP2 vs MP4).

5.2 Certified Quantization for Robustness

We evaluate Quadapter in terms of robustness properties on all the networks
listed in Table 1 with the fractional bit-width range [Bl,Bu] = [1, 16]. For each
network, we randomly select 50 inputs from the test set of the respective dataset
and set the perturbation radius as r ∈ {1, 2, 3, 4, 5}. It results in a total of 250
synthesis tasks for each network, each of which can be certified by DeepPoly.

The results are reported in Columns 2 to 7 in Table 2. Columns (#S) and
(#F) list the number of quantization successes and quantization failures due
to small values of scaling variables. Column (Bit-width) lists the average bit-
width for each layer within the quantization strategies synthesized by Quadapter
and Column (Acc.) lists the average accuracy of the resulting QNNs. Columns
(PTime) and (QTime) show the average execution time in seconds for the preim-
age computation and forward quantization procedures, respectively. Overall,
Quadapter solves almost all the tasks of MPx and FPx for x ∈ {1, 2}, and

356 Y. Zhang et al.

most tasks of MP4 and FP4, where all timeout cases occur in the preimage
computation process. For MP3 and FP3, all quantization failures are due to the
excessively small preimage returned by UnderPreImage, posing a great challenge
in finding a feasible quantization strategy, which requires that the quantized
region must be strictly included within the preimage. Given the distribution
shift phenomenon shown in Fig. 1, we hypothesize that it may be alleviated by
relaxing such “strict-inclusion” requirement on the early layer quantization while
not compromising soundness. Thus, we next relax the restriction by permitting
the quantized regions of some portion of neurons, e.g., 25%, in each affine layer
(except the output layer to guarantee the soundness of the approach) to devi-
ate from the preimage returned by UnderPreImage. Note that, when using the
relaxed version of our tool, named Quadapter∗, we set Bl = 2 to circumvent situ-
ations where the use of the smallest bit-width (specifically, 1-bit), while theoreti-
cally yielding a viable solution for the current layer, may lead to a lack of feasible
quantization for subsequent layers. Experimental results are shown in Columns
8 to 13 in Table 2. We observe that Quadapter∗ usually synthesizes quantiza-
tion strategies with smaller bit-widths for earlier layers, larger bit-widths for the
last later, better accuracy, and solves more tasks on average. While the accuracy
drops slightly, it also slightly drops using the same but non-certified quantization
scheme and our certified quantization achieved comparable accuracy [50].

Fig. 4. Certified quantization strategies synthesis results for backdoor-freeness.

5.3 Certified Quantization for Backdoor-Freeness

We evaluate Quadapter in terms of backdoor-freeness on MP1, MP2, FP1 and
FP2. For each network, we randomly select 5 trigger positions and consider all
the 10 output classes as target labels of the backdoor attacks with two shapes
of triggers, i.e., hs = ws = 3 and hs = ws = 5, resulting in 5 × 10 × 2 =

Certified Quantization Strategy Synthesis for Neural Networks 357

100 backdoor-freeness properties. Following [37], we set the input parameters of
Algorithm 2 as (Bl,Bu) = (2, 16), θ = 0.9, K = 5, ε = 0.01, and σ = � = δ =
0.05. Note that these parameters do not affect the soundness of Algorithm 2.

The results are given in Fig. 4. We observe that for (hs, ws) = (3, 3),
Quadapter solves almost all the tasks of MP1 and FP1, and most tasks on MP2
and FP2. For (hs, ws) = (5, 5), over half of the tasks are solved by Quadapter.
All the quantization failures (due to small values of scaling variables) may be
solvable with the relaxed version of Quadapter which is left as future work. The
histogram shows the distribution of target classes in the solved tasks on MP1
and FP1, where the x-axis gives the synthesis success rate. We also observe
that Quadapter is more likely to successfully find certified quantization strategies
w.r.t. target classes {0, 1, 4, 6, 9} on MP1 and target classes {1, 2, 4, 5, 7, 8, 9} on
FP1, compared to its efficacy w.r.t. other classes. Due to the black-box nature, we
currently cannot explain the discrepancy in performance between target classes.

6 Related Work

Numerous methods have been proposed to verify (local) robustness of
DNNs (e.g., [7,10,17,40,45,47]) and QNNs (e.g., [9,12,14,19,52–54]). Recently,
backdoor-freeness verification for DNNs has been explored leveraging a sim-
ilar hypothesis testing method [37]. Methods for verifying quantization error
bound [30,35,36,51] and Top-1 equivalence [16] between DNNs and QNNs have
also been proposed. Except for [16], these works only verify properties with-
out adjusting quantization strategies for falsified properties. The concurrent
work [16] iteratively searches for a quantization strategy and verifies Top-1 equiv-
alence after quantization, refining strategies if equivalence is violated. However,
it does not support general properties (e.g., backdoor freeness or robustness of
multi-label classification [6]). Additionally, [16] requires frequent equivalence ver-
ification, which is computationally expensive and inefficient (e.g., networks with
100 neurons in 20min). Comparison experiments are given in [50].

The primary contribution of this work is the first certified quantization strat-
egy synthesis approach utilizing preimage computation as a crucial step. Hence,
any (under-approximate) preimage computation methods can be integrated. [28]
introduced an exact preimage computation method that, while precise, is imprac-
tical due to its exponential time complexity. The inverse abstraction approach [4]
circumvents the intractability of exact preimage computation by using symbolic
interpolants [2] for compact symbolic abstractions of preimages. However, it still
faces scalability issues due to the complexity of the interpolation process. [18,49]
considered over-approximate preimages, which are unsuitable for our purpose.

Quantization-aware training has been studied to improve robustness for a
given fixed quantization strategy [19,23,24,41,43], but only [19] provides robust-
ness guarantees by lifting abstract interpretation-based training [29] from DNNs
to QNNs. In contrast, our work aims to obtain a better quantification strategy
for preserving given properties. Thus, our work is orthogonal to and could be
combined with them. We leave this as interesting future work.

358 Y. Zhang et al.

7 Conclusion

In this work, we have presented a pioneering method Quadapter to synthesize a
fine-grained quantization strategy such that the desired properties are preserved
within the resulting quantized network. We have implemented our methods as
an end-to-end tool and conducted extensive experiments to demonstrate the
effectiveness and efficiency of Quadapter in preserving robustness and backdoor-
freeness properties. For future work, it would be interesting to explore the adap-
tation of Quadapter to other activation functions and network architectures,
towards which this work makes a significant step.
Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 1–39 (2018)

2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8_22

3. Amir, G., Wu, H., Barrett, C.W., Katz, G.: An SMT-based approach for verifying
binarized neural networks. In: Proceedings of the 27th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
vol. 12652, pp. 203–222 (2021). https://doi.org/10.1007/978-3-030-72013-1_11

4. Dathathri, S., Gao, S., Murray, R.M.: Inverse abstraction of neural networks using
symbolic interpolation. In: Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 3437–3444 (2019). https://doi.org/10.1609/AAAI.
V33I01.33013437

5. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications.
Comput. Sci. Rev. 40, 100379 (2021). https://doi.org/10.1016/J.COSREV.2021.
100379

6. Eleftheriadis, C., Kekatos, N., Katsaros, P., Tripakis, S.: On neural network equiva-
lence checking using SMT solvers. In: Proceedings of the 20th International Confer-
ence on Formal Modeling and Analysis of Timed Systems, vol. 13465, pp. 237–257
(2022). https://doi.org/10.1007/978-3-031-15839-1_14

7. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the 2018 IEEE Symposium on Security and Pri-
vacy, pp. 3–18 (2018)

8. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A sur-
vey of quantization methods for efficient neural network inference. In: Low-Power
Computer Vision, pp. 291–326. Chapman and Hall/CRC (2022)

9. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_5

10. Guo, X., Wan, W., Zhang, Z., Zhang, M., Song, F., Wen, X.: Eager falsification
for accelerating robustness verification of deep neural networks. In: Proceedings of
the 32nd IEEE International Symposium on Software Reliability Engineering, pp.
345–356 (2021)

https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-030-72013-1_11
https://doi.org/10.1609/AAAI.V33I01.33013437
https://doi.org/10.1609/AAAI.V33I01.33013437
https://doi.org/10.1016/J.COSREV.2021.100379
https://doi.org/10.1016/J.COSREV.2021.100379
https://doi.org/10.1007/978-3-031-15839-1_14
https://doi.org/10.1007/978-3-030-45237-7_5

Certified Quantization Strategy Synthesis for Neural Networks 359

11. Gurobi. A most powerful mathematical optimization solver (2018). https://www.
gurobi.com/

12. Henzinger, T.A., Lechner, M., Zikelic, D.: Scalable verification of quantized neural
networks. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI), pp. 3787–3795 (2021). https://doi.org/10.1609/AAAI.V35I5.16496

13. Hong, S., Panaitescu-Liess, M., Kaya, Y., Dumitras, T.: Qu-anti-zation: exploit-
ing quantization artifacts for achieving adversarial outcomes. In: Proceedings of
the Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
9303–9316 (2021)

14. Huang, P., et al.: Towards efficient verification of quantized neural networks. In:
Proceedings of the 38th AAAI Conference on Artificial Intelligence, pp. 21152–
21160 (2024). https://doi.org/10.1609/AAAI.V38I19.30108

15. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2704–2713 (2018)

16. Jr., J.B.P.M., de Lima Filho, E.B., Bessa, I., Manino, E., Song, X., Cordeiro,
L.C.: Counterexample guided neural network quantization refinement. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 43(4), 1121–1134 (2024). https://doi.
org/10.1109/TCAD.2023.3335313

17. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Proceedings of the 29th
International Conference on Computer Aided Verification, pp. 97–117 (2017)

18. Kotha, S., Brix, C., Kolter, J.Z., Dvijotham, K., Zhang, H.: Provably bounding
neural network preimages. Adv. Neural Inf. Process. Syst. 36 (2024)

19. Lechner, M., Žikelić, -D., Chatterjee, K., Henzinger, T.A., Rus, D.: Quantization-
aware interval bound propagation for training certifiably robust quantized neu-
ral networks. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 14964–14973 (2023). https://doi.org/10.1609/AAAI.V37I12.26747

20. LeCun, Y., Cortes, C.: Mnist handwritten digit database (2010)
21. Li, Z., Ni, B., Zhang, W., Yang, X., Gao, W.: Performance guaranteed network

acceleration via high-order residual quantization. In: IEEE International Confer-
ence on Computer Vision (ICCV), pp. 2603–2611 (2017). https://doi.org/10.1109/
ICCV.2017.282

22. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep
convolutional networks. In: Proceedings of the 33nd International Conference on
Machine Learning (ICML). pp. 2849–2858 (2016)

23. Lin, H., Lou, J., Xiong, L., Shahabi, C.: Integer-arithmetic-only certified robustness
for quantized neural networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (CVPR), pp. 7808–7817. IEEE (2021). https://
doi.org/10.1109/ICCV48922.2021.00773

24. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness.
In: International Conference on Learning Representations (2018)

25. Liu, J., Xing, Y., Shi, X., Song, F., Xu, Z., Ming, Z.: Abstraction and refine-
ment: towards scalable and exact verification of neural networks. arXiv preprint
arXiv:2207.00759 (2022)

26. Ma, H., et al.: Quantization backdoors to deep learning commercial frameworks.
IEEE Trans. Depend Secure Comput. (2023). https://doi.org/10.1109/TDSC.2023.
3271956

27. Marco, V.S., Taylor, B., Wang, Z., Elkhatib, Y.: Optimizing deep learning infer-
ence on embedded systems through adaptive model selection. ACM Trans. Embed.
Comput. Syst. 19(1), 2:1–2:28 (2020). https://doi.org/10.1145/3371154

https://www.gurobi.com/
https://www.gurobi.com/
https://doi.org/10.1609/AAAI.V35I5.16496
https://doi.org/10.1609/AAAI.V38I19.30108
https://doi.org/10.1109/TCAD.2023.3335313
https://doi.org/10.1109/TCAD.2023.3335313
https://doi.org/10.1609/AAAI.V37I12.26747
https://doi.org/10.1109/ICCV.2017.282
https://doi.org/10.1109/ICCV.2017.282
https://doi.org/10.1109/ICCV48922.2021.00773
https://doi.org/10.1109/ICCV48922.2021.00773
http://arxiv.org/abs/2207.00759
https://doi.org/10.1109/TDSC.2023.3271956
https://doi.org/10.1109/TDSC.2023.3271956
https://doi.org/10.1145/3371154

360 Y. Zhang et al.

28. Matoba, K., Fleuret, F.: Exact preimages of neural network aircraft collision avoid-
ance systems. In: Proceedings of the Workshop on Machine Learning for Engineer-
ing Modeling, Simulation, and Design, pp. 1–9 (2020)

29. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Proceedings of the 35th International Con-
ference on Machine Learning, vol. 80, pp. 3575–3583 (2018)

30. Mohammadinejad, S., Paulsen, B., Deshmukh, J.V., Wang, C.: DiffRNN: differen-
tial verification of recurrent neural networks. In: Dima, C., Shirmohammadi, M.
(eds.) FORMATS 2021. LNCS, vol. 12860, pp. 117–134. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85037-1_8

31. Musa, A.A., Hussaini, A., Liao, W., Liang, F., Yu, W.: Deep neural networks
for spatial-temporal cyber-physical systems: a survey. Future Internet 15(6), 199
(2023). https://doi.org/10.3390/FI15060199

32. Nagel, M., Amjad, R.A., Van Baalen, M., Louizos, C., Blankevoort, T.: Up or
down? Adaptive rounding for post-training quantization. In: Proceedings of the
37th International Conference on Machine Learning (ICML), vol. 119, pp. 7197–
7206 (2020)

33. Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., van Baalen, M.,
Blankevoort, T.: A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295 (2021)

34. Pan, X., Zhang, M., Yan, Y., Yang, M.: Understanding the threats of tro-
janed quantized neural network in model supply chains. In: Proceedings of the
Annual Computer Security Applications Conference (ACSAC), pp. 634–645 (2021).
https://doi.org/10.1145/3485832.3485881

35. Paulsen, B., Wang, J., Wang, C.: Reludiff: differential verification of deep neural
networks. In: 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE), pp. 714–726. IEEE (2020)

36. Paulsen, B., Wang, J., Wang, J., Wang, C.: NeuroDiff: scalable differential verifi-
cation of neural networks using fine-grained approximation. In: Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering,
pp. 784–796 (2020)

37. Pham, L.H., Sun, J.: Verifying neural networks against backdoor attacks. In: Pro-
ceedings of the 34th International Conference on Computer Aided Verification
(CAV), pp. 171–192 (2022). https://doi.org/10.1007/978-3-031-13185-1_9

38. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural net-
works. In: Proceedings of the Annual Conference on Neural Information Processing
Systems, pp. 15762–15772 (2019)

39. Rokh, B., Azarpeyvand, A., Khanteymoori, A.: A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Trans. Intell.
Syst. Technol. 14(6), 97:1–97:50 (2023). https://doi.org/10.1145/3623402

40. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certify-
ing neural networks. Proc. ACM Program. Lang. (POPL) 3, 41:1–41:30 (2019).
https://doi.org/10.1145/3290354

41. Song, C., Fallon, E., Li, H.: Improving adversarial robustness in weight-quantized
neural networks. arXiv preprint arXiv:2012.14965 (2020)

42. Song, X., Sun, Y., Mustafa, M.A., Cordeiro, L.C.: QNNRepair: qneural network
repair. In: Proceedings of the 21st International Conference on Software Engineer-
ing and Formal Methods, vol. 14323, pp. 320–339 (2023)

43. Tang, Z., Dong, Y., Su, H.: Error-silenced quantization: bridging robustness and
compactness. In: Proceedings of the Workshop on Artificial Intelligence Safety
(AISafety@IJCAI) (2020)

https://doi.org/10.1007/978-3-030-85037-1_8
https://doi.org/10.3390/FI15060199
http://arxiv.org/abs/2106.08295
https://doi.org/10.1145/3485832.3485881
https://doi.org/10.1007/978-3-031-13185-1_9
https://doi.org/10.1145/3623402
https://doi.org/10.1145/3290354
http://arxiv.org/abs/2012.14965

Certified Quantization Strategy Synthesis for Neural Networks 361

44. Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J.: Two-step quantization
for low-bit neural networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 4376–4384 (2018). https://doi.
org/10.1109/CVPR.2018.00460

45. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split con-
straints for neural network robustness verification. In: Proceedings of the Annual
Conference on Neural Information Processing Systems, pp. 29909–29921 (2021)

46. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

47. Yang, P., et al.: Improving neural network verification through spurious region
guided refinement. In: TACAS 2021. LNCS, vol. 12651, pp. 389–408. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_21

48. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly
accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23

49. Zhang, X., Wang, B., Kwiatkowska, M.: On preimage approximation for neural
networks. arXiv preprint arXiv:2305.03686 (2023)

50. Zhang, Y., Chen, G., Song, F., Sun, J., Dong, J.S.: Certified quantization strategy
synthesis for neural networks. https://github.com/zhangyedi/Quadapter (2024)

51. Zhang, Y., Song, F., Sun, J.: Qebverif: quantization error bound verification of
neural networks. In: Proceedings of the 35th International Conference on Computer
Aided Verification, vol. 13965, pp. 413–437 (2023). https://doi.org/10.1007/978-3-
031-37703-7_20

52. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 175–200. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81685-8_8

53. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: Precise quantitative analysis
of binarized neural networks: a BDD-based approach. ACM Trans. Softw. Eng.
Methodol. 32(3), 62:1–62:51 (2023). https://doi.org/10.1145/3563212

54. Zhang, Y., Zhao, Z., Chen, G., Song, F., Zhang, M., Chen, T., Sun, J.: Qvip: an ilp-
based formal verification approach for quantized neural networks. In: Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 82:1–82:13 (2022). https://doi.org/10.1145/3551349.3556916

55. Zhu, Y., et al.: Towards robustness evaluation of backdoor defense on quantized
deep learning model. SSRN: https://ssrn.com/abstract=4578346

https://doi.org/10.1109/CVPR.2018.00460
https://doi.org/10.1109/CVPR.2018.00460
http://arxiv.org/abs/1708.07747
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/978-3-030-01237-3_23
http://arxiv.org/abs/2305.03686
https://github.com/zhangyedi/Quadapter
https://doi.org/10.1007/978-3-031-37703-7_20
https://doi.org/10.1007/978-3-031-37703-7_20
https://doi.org/10.1007/978-3-030-81685-8_8
https://doi.org/10.1145/3563212
https://doi.org/10.1145/3551349.3556916
https://ssrn.com/abstract=4578346

362 Y. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Certified quantization strategy synthesis for neural networks
	Citation

	Certified Quantization Strategy Synthesis for Neural Networks
	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 Foundation of Quadapter
	3.2 Overview of Quadapter
	3.3 Template T2i of Preimage P2i
	3.4 Details of Function UnderPreImage
	3.5 Checking (A"0362A2i)P2i

	4 Applications: Robustness and Backdoor-Freeness
	4.1 Certified Quantization for Robustness
	4.2 Certified Quantization for Backdoor-Freeness

	5 Evaluation
	5.1 Performance of UnderPreImage Function
	5.2 Certified Quantization for Robustness
	5.3 Certified Quantization for Backdoor-Freeness

	6 Related Work
	7 Conclusion
	References

