
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2024

gSWORD: GPU-accelerated sampling for subgraph counting gSWORD: GPU-accelerated sampling for subgraph counting

Chang YE
Singapore Management University, changye.2020@phdcs.smu.edu.sg

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Shixuan SUN

Wentian GUO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
YE, Chang; LI, Yuchen; SUN, Shixuan; and GUO, Wentian. gSWORD: GPU-accelerated sampling for
subgraph counting. (2024). Proceedings of the ACM on Management of Data. 2, (12), 15-26.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9320

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

gSWORD: GPU-accelerated Sampling for Subgraph
Counting

CHANG YE, Singapore Management University, Singapore
YUCHEN LI, Singapore Management University, Singapore
SHIXUAN SUN, Shanghai Jiao Tong University, China
WENTIAN GUO, Unaffiliated, United States

Subgraph counting is a fundamental component for many downstream applications such as graph repre-
sentation learning and query optimization. Since obtaining the exact count is often intractable, there have
been a plethora of approximation methods on graph sampling techniques. Nonetheless, the state-of-the-art
sampling methods still require massive samples to produce accurate approximations on large data graphs. We
propose gSWORD, a GPU framework that leverages the massive parallelism of GPUs to accelerate iterative sam-
pling algorithms for subgraph counting. Despite the embarrassingly parallel nature of the samples, there are
unique challenges in accelerating subgraph counting due to its irregular computation logic. To address these
challenges, we introduce two GPU-centric optimizations: (1) sample inheritance, enabling threads to inherit
samples from neighboring threads to avoid idling, and (2) warp streaming, effectively distributing workloads
among threads through a streaming process. Moreover, we propose a CPU-GPU co-processing pipeline that
overlaps the sampling and enumeration processes to mitigate the underestimation issue. Experimental results
demonstrate that deploying state-of-the-art sampling algorithms on gSWORD can perform millions of samples
per second. The co-processing pipeline substantially improves the estimation accuracy in the cases where
existing methods encounter severe underestimations with negligible overhead.

CCS Concepts: • Computing methodologies→ Shared memory algorithms.

Additional Key Words and Phrases: Graph sampling, Subgraph counting, GPU computing

ACM Reference Format:
Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo. 2024. gSWORD: GPU-accelerated Sampling for Subgraph
Counting. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 33 (February 2024), 26 pages. https://doi.org/10.
1145/3639288

1 INTRODUCTION
Subgraph counting determines the number of subgraphs in a data graphG isomorphic to a connected
query graphq. As one of the fundamental graph processing operations, subgraph counting facilitates
many downstream applications like graph kernels for representation learning [34, 39] and probabilis-
tic models for image segmentation [17, 51]. However, the subgraph isomorphism problem, which
decides whether there exists a subgraph of G isomorphic to q, is NP-complete [9]. The counting
problem is more challenging as millions or billions of instances are typically found even in relatively
small graphs. Hence, researchers propose a variety of approximation approaches [8, 18, 21, 24, 27, 30]
to estimate the count instead of computing the exact value. Particularly, the methods based on

Authors’ addresses: Chang Ye, Singapore Management University, Singapore, changye.2020@phdcs.smu.edu.sg; Yuchen Li,
Singapore Management University, Singapore, yuchenli@smu.edu.sg; Shixuan Sun, Shanghai Jiao Tong University, China,
sunshixuan@sjtu.edu.cn; Wentian Guo, Unaffiliated, United States, guowentian.cs@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/2-ART33
https://doi.org/10.1145/3639288

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

https://doi.org/10.1145/3639288
https://doi.org/10.1145/3639288
https://doi.org/10.1145/3639288

33:2 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

 0

 2

 4

 6

 8

 10

 12

213 214 215 216 217 218

 5

 10

 15

 20

 25

 30
E
la

p
se

d
 t

im
e
(s

)

Q
-e

rr
o
r

Number of samples

WJ cost
AL cost

WJ Q-error
AL Q-error

(a) eu2005

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

213 214 215 216 217 218
100

101

102

103

104

105

106

107

E
la

p
se

d
 t

im
e
(s

)

Q
-e

rr
o
r

Number of samples

WJ cost
AL cost

WJ Q-error
AL Q-error

(b) WordNet

Fig. 1. The performance of WanderJoin and Alley for a query of 8 vertices in eu2005 and WordNet.

random walks (RW) gain great interest due to their superior performance over other approximation
approaches in terms of both accuracy and efficiency [21, 27].

RW estimators compute the frequency of q appearing inG by executing a set of samples, each of
which independently extracts a subgraph fromG . A sample starts from a subgraphG ′ having a seed
vertex, expands G ′ by adding one vertex at each iteration, and terminates until G ′ has the same
number of vertices as q. The sample quality (i.e., the chance of a sample leading toG ′ isomorphic
to q) has a key impact on the sampling error of the estimation. As such, studies on RW-based
techniques [21, 23, 24, 54] focus on optimizing the strategies of expandingG ′ to improve the quality
of samples, which makes RW estimators mainly differ in the methods of sampling the vertices to
extendG ′. Take two state-of-the-art approaches, WanderJoin [24] and Alley [21], as examples. At
each step, WanderJoin samples a vertex from vertices adjacent to G ′ because the query graph q is
connected. To further improve the sample quality, Alley maintains a candidate set for sampling
and refines the set at each step based on the vertex just added to G ′.
To investigate the performance factors of WanderJoin and Alley, we conduct a preliminary

experiment on a query with 8 vertices in eu2005 and WordNet dataset. Figure 1 presents the
estimation error (q-error) and runtime with the number of samples increasing. In eu2005, both
methods produce more accurate estimates with an increase in the sample size. Although Alley
converges faster than WanderJoin, it takes longer time to process the same number of samples
due to the cost of refining candidate sets. Further, both WanderJoin and Alley exceed 6 seconds
to push the q-error below 1.5, which is equivalent to a 50% relative error to the true value. In
WordNet, both methods yield poor estimates. This is because it is hard to finding a valid instance
of the query graph even given a large number of samples. As a result, the estimated count is
empty, significantly deviating from the true count. In summary, the RW approaches to subgraph
counting are still computationally expensive to give an accurate estimation, and cannot meet the
rigid requirement of many time-critical applications such as dynamic network analysis [11, 12]
and query optimization [2, 53].

With thousands of cores, GPUs outperform CPUs in raw computational power, making themwell-
suited for embarrassingly parallel workloads like RW estimators, where each core can independently
process samples. Some recent studies propose to accelerate conventional RWworkloads onGPUs [19,
26, 41]. However, adapting subgraph counting estimators to GPUs is a non-trivial task. Specifically,
we encounter three challenges given the unique characteristics of RW estimators for subgraph
counting and the SIMT (single instruction multiple thread) computational paradigm of GPUs.
• Validate Imbalance. Conventional RW samples often terminate after performing the same
number of iterations, and therefore fit into SIMT seamlessly because threads in a warp (i.e., the
basic execution unit in GPUs) must execute the same instruction. In contrast, samples in RW

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:3

estimators may stop at any iteration if the extracted subgraph fails to pass the Validate step
and cannot be extended further to an isomorphic subgraph. As a result, thread resources are
underutilized. One appealing approach to address this issue is to start a new sample immediately
after an existing one becomes invalid. However, our experiments reveal that this method performs
poorly in practice due to suboptimal memory access patterns.
• Refine Imbalance. Conventional RW samples simply select a vertex from the neighbors of the
current residing vertex at each iteration, the computation of which is lightweight. Thus, the
workloads of threads in a warp are similar. By comparison, samples in RW estimators require
complex operations (e.g., set intersections on neighbor sets of selected vertices) to refine candidate
sets at each iteration. As such, threads in a warp can be fed with heavily skewed workloads
given the high variance of vertex degrees in real-world graphs. This phenomenon leads to poor
performance especially for threads in the same warp because these threads execute in lockstep
and their speed is determined by the slowest one.
• Underestimation.Although the RW estimators are theoretically unbiased, they could encounter
the problem of underestimation in practical scenarios [21, 52]. This issue arises from the low
percentage of valid samples, particularly for larger queries on datasets with skewed distributions,
where finding isomorphic subgraphs is challenging. In extreme cases, such as the WordNet
dataset illustrated in Figure 1, no valid samples are found. As a result, the RW estimators can only
generate an empty estimate. This highlights the limitations of the RW estimators on datasets
that have complex isomorphic subgraph distributions.

In this paper, we present gSWORD, a novel GPU-based framework to accelerate the RW-based
sampling process for subgraph counting. We design an iterative workflow consisting of Refine-
Sample-Validate steps to unify the state-of-the-art RW estimators, i.e., WanderJoin and Alley. At
each iteration of a sample, the Refine step first prunes the candidate sets to reduce the sample
space size, the subsequent Sample step selects a vertex from the refined sets to extend the extracted
subgraph G ′, and the Validate step finally decides whether the sample can be stopped given G ′. In
the workflow, we design novel optimization techniques to overcome the challenges associated with
processing RW workloads for subgraph counting on GPUs.

First, we propose a sample inheritance strategy to address the validate imbalance. When a thread
invalidates a sample, we keep the thread busy by inheriting a valid sample from another thread in
the same GPU warp. Note that the inherited samples lead to biased estimations if they are treated
independently. Hence, we propose an efficient method to adjust the sample weights according to a
recursive yet unbiased estimator. In this way, we collected more samples while executing the same
number of iterations.
Second, we devise a warp streaming strategy for handling the refine imbalance. If a sample

contains enough refinement workloads to be parallelized by a warp, we dynamically stream its
workloads to the warp where a member thread is assigned to a candidate at a time. Once a candidate
passes the refinement step, the thread sends the candidate to a reservoir sampler [21]. Thereby,
we keep all threads occupied while ensuring the vertices are desirably sampled from the refined
candidate set after the streaming process.

Third, we propose a trawling strategy that dynamically transitions selective samples to the enu-
meration process. By leveraging the enumerated samples, we address the issue of underestimation
caused by a lack of valid samples. To minimize the computational overhead of graph enumeration,
we design a CPU-GPU co-processing pipeline. This pipeline effectively overlaps the GPU-based
sampling process with the CPU-based enumeration process, resulting in little additional cost.

We thereby summarize our contributions as follows:

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:4 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

• We introduce gSWORD, a unified workflow for accelerating RW estimators for subgraph counting
on GPUs. To the best of our knowledge, this is the first study of its kind.
• We propose two novel GPU-centric optimizations, i.e., sample inheritance and warp streaming, to
address the workload imbalance issues of RW estimators.
• We devise the trawling strategy to discover more valid samples, along with a CPU-GPU co-
processing pipeline that overlaps sampling and enumeration with negligible overhead.
• The experimental results reveal that gSWORD significantly improves the efficiency of RW estima-
tors over the CPU and GPU baselines. In particular, gSWORD achieves 341x speedup on average
over the CPU baselines and 9x speedup for the GPU baselines. Further, the trawling strategy
shows orders of improvement on q-error on cases where existing RW estimators have severe
underestimation issues.

The rest of the paper is organized as follows. Section 2 introduces the background on subgraph
counting. In Section 3, we propose the gSWORD workflow as well as the discussions on the frame-
work implementation. Section 4 presents the optimization techniques for workload imbalance.
Section 5 presents our CPU-GPU co-processing pipeline. The experimental evaluations are dis-
cussed in Section 6. Finally, we discuss the related works and conclude the paper in Sections 7
and 8, respectively.

2 PRELIMINARIES
2.1 Notations and Problem Definition
Given a graph д =

(
Vд , Eд ,Lд

)
,Vд represents the vertex set, Eд represents the edge set, Lд is a

function that maps a vertex v ∈ Vд to a label l . q andG denote the query graph and the data graph
respectively. We call vertices and edges of q (resp. G) query vertices and query edges (resp. data
vertices and data edges), respectively. For ease of presentation, we focus on undirected graphs but
our approaches can support directed graphs. A graph д is isomorphic to д′ if there exist a graph
isomorphism (Definition 1) from д to д′.

Definition 1 (Graph Isomorphism). Given д and д′, a graph isomorphism from д to д′ is a
bijective function f :Vд →Vд′ s.t.

• ∀u ∈ Vд ,Lд (u) = Lд′ (f (u)); and
• ∀u,v ∈ Vд , e (u,v) ∈ Eд ⇐⇒ e(f (u), f (v)) ∈ Eд′ .

Problem Definition. The subgraph counting problem finds the number of subgraphs in the data
graph G that are isomorphic to the query graph q. For brevity, each isomorphic subgraph in G is
called an instance of q.

Following the literature [36], we present some important concepts used in the subgraph counting
algorithms.

Definition 2 (Matching Order). The matching order φ is a permutation of query vertices for
iterative matching to data vertices. φ[i] denotes the i-th query vertex to be matched.

Definition 3 (Partial Instance). A partial instance in G is a prefix match of the first i query
vertices by φ where i ≤ |φ |.

Definition 4 (Candidate Sets). A global candidate set C (u) of a query vertex u is a set of data
vertices such that for each v ∈ VG , if a mapping (u,v) exists in an instance of q in G, then v ∈ C(u).
Given a query edge e(u,u ′) and a data vertex v ∈ C(u), the local candidate set C(u,u ′,v) is the set of
neighbors of v belonging to C(u ′), i.e., C(u,u ′,v) = N (v)

⋂
C(u ′).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:5

A

B B

C D

u1

u2 u3

u4 u5

A

B B

C D

v1

v3 v4

A

B B

C D

v2

v5 v6

v7
v8

v9
v10

(a) Query graph (b) Data graph

u2 v3

u1

u3

(c) Candidate graph

v3 v4 v5

v8
u4 u5

v1

v7

v2

v4 v5

v9

v6

Fig. 2. Query graph, data graph and candidate graph.

Definition 5 (Candidate Graph). A candidate graph for q onG consists of the global candidate
set C(u) for each u ∈ Vq . Further, there is an edge connecting candidates v ∈ C(u) and v ′ ∈ C(u ′) if
e(u,u ′) ∈ Eq and e(v,v ′) ∈ EG .

Example 1. In Figure 2, we present a data graphG , a query graph q and the corresponding candidate
graph. We set the matching order as φ = (u1,u2,u3,u4,u5). (v1,v3) is a partial instance for q where
v1 matches u1 and v3 matches u2. For the same reason, (v1,v4), (v1,v5), (v2,v5) and (v2,v6) are
all partial instances. There is only one instance (v1,v3,v4,v7,v8) of q in G. In the candidate graph,
C(u2) = {v3,v4,v5,v6} is a global candidate set and C(u2,u4,v3) = {v7,v9} is a local candidate set.
Note that all instances can be found in the candidate graph but the candidate graph may store vertices
and edges that are not included in any instance of q in G, e.g., vertex v2 and edge e(v2,v6).

2.2 RW Estimators for Subgraph Counting
RW estimators are effective approaches for subgraph counting with theoretical guarantees. For
a query graph q, RW estimators iteratively sample data vertices to match with q. Note that RW
estimators are originally designed to sample on the data graph G directly, but it is straightfor-
ward to sample on the candidate graph for reducing the sample space. Here, we briefly review
WanderJoin [24] and Alley [21] as the state-of-the-art RW estimators.
WanderJoin. Each sample of WanderJoin is obtained by performing RW on the candidate graph.
A sample consists of a sequence of data vertices where the first vertex is sampled from a global
candidate set, and each subsequent vertex is sampled from a local candidate set based on a vertex
that has been previously selected into the sequence. If the sampled sequence is not a valid partial
instance by the validity check, then WanderJoin starts a new sample sequence. Given a sequence s ,
the probability of sampling s is

∏ |s |
i=1

1
|Ci |

where Ci is the candidate set of the i-th vertex.
Alley. A major drawback for WanderJoin is that many samples can be invalid and thus creates
high variance of estimation. To reduce the number of invalid samples, Alley imposes a refinement
step on the candidate set before selecting the next vertex. The refinement step guarantees that each
vertex in the refined candidate set always yields a valid partial instance. When a sample sequence
encounters an empty refined candidate set, Alley starts a new sample sequence. Given a sequence
s , the probability of sampling s is

∏ |s |
i=1

1
|Ci |

where Ci is the refined candidate set of the i-th vertex.
Remark: Alley [21] proposes two optimizations, namely branching and synopses, to improve the
sampling performance. Given a branching factor b, branching samples b vertices at each step, and
therefore a sample generates a tree consisting of multiple paths. Compared with sampling a vertex
(i.e., b = 1) at each step, branching can reduce the execution time of sampling the same number of
paths because candidate sets generated in a tree can be shared by multiple paths. Orthogonal to
sampling, synopses is an indexing technique to prune the paths that cannot lead to valid results.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:6 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

(u1,v1)

(u2,v3)

(u3,v4)

(u4,v7)

(u5,v8)

(u4,v9)

(u2,v4)

(u3,v3) (u3,v5)

(u2,v5)

(u3,v5)

(u4,v7) (u4,v9)

(u3,v3)

(u1,v2)

(u2,v5) (u2,v6)

(u3,v6) (u3,v5)(u3,v4)

(u4,v9)

Fig. 3. The sample space of RW estimators. The highlighted nodes are in the sample space of WanderJoin
but not Alley.

In particular, it performs a number of random walks to build an index for the patterns hard to be
processed by sampling.
However, we have chosen not to incorporate these two optimizations into our GPU-based

framework. The maintenance of a tree sample for branching introduces complex control flows and
frequent random accesses, making it unsuitable for the SIMT architecture of GPUs. Additionally,
the construction of synopses requires several hours to build the index [21] and is unable to handle
graphs with frequent updates due to the associated overhead.
HT estimator. With the sample probability, both WanderJoin and Alley employs the Horvitz-
Thompson (HT) estimator to approximate the subgraph count.

Definition 6. Let Yi , i = 1, 2, ...,n be an independent sample and πi is the inclusion probability of
sampling Yi . The Horvitz-Thompson estimator of the mean is given by

∑n
i=1 Yi /πi

n .

In the context of WanderJoin and Alley, πi is the probability of a sample si , and Yi denotes
an indicator random variable I(si) where si is an instance of q in G. Hence, the estimator for
WanderJoin and Alley is expressed as:

H =

∑n
i=1

((∏d
j=1 |Ci j |

)
I(si)

)
n

(1)

where Ci j denote the candidate set (possibly refined) for query vertex uj in sample si . If si finds a
match, then the indicator is 1. Otherwise, it is 0.

Example 2. Figure 3 shows the sample space for WanderJoin and Alley according to the matching
order φ = (u1,u2,u3,u4,u5) on the candidate graph in Figure 2. WanderJoin may sample a sequence
s1 = (v1,v4,v3) with a probability 1

2 ·
1
3 ·

1
2 =

1
12 . Alley may sample the same sequence s1, but with a

higher probability 1
2 ·

1
3 · 1 =

1
6 . This is because when s1 = (v1,v4), Alley refines the candidate set for

u3 by removing the candidate v5 since v5 is not a common neighbor of v1 and v4. Hence, the sample
space of Alley is smaller compared with that of WanderJoin. Both WanderJoin and Alley have the
same probability to sample the only instance of q as s2 = (v1,v3,v4,v7,v8), i.e., 1

2 ·
1
3 ·

1
2 ·

1
2 · 1 =

1
24 .

With s1 (invalid sample) and s2 (valid sample), both WanderJoin and Alley yield the same estimate
as 0+24

2 = 12.

3 GSWORD FRAMEWORK
3.1 Framework Design
gSWORD is a generic GPU sampling framework for RW estimators on subgraph counting. All RW
samples are independent and the estimated value of each sample is aggregated using the HT

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:7

estimator. As the number of RW samples increases, the accuracy of the estimator improves. Our
system enhances subgraph counting performance by gathering more samples within a given time
budget. For each iteration of a RW sample, a new vertex is sampled. To ease the development of RW
estimators on GPUs, we abstract a sampling iteration into the Refine-Sample-Validate (RSV) steps.
• Refine. A refined set is computed based on a local candidate set for sampling the next vertex.
The estimation wrt. a sample is more accurate when the refined set is smaller.
• Sample. One of the vertex in the refined set is sampled as a new vertex for the sample.
• Validate. We check if the sample remains a valid partial/full instance after the new vertex is
added. The sample is terminated when an invalid instance is found.

Candidate Graph Format. We design a general yet efficient format to store the candidate graph
cд as depicted in Figure 4. All query edges e(u,u ′) are stored in a compressed sparse row (CSR)
format, i.e., the first two arrays in cд are the offset list and the edge list of the query graph CSR
respectively. For each edge e(u,u ′), the candidates for u and the corresponding candidates for u ′
are stored using a second and a third CSRs. Our design enables efficient lookup for global and local
candidate sets. Given a query edge e(u,u ′) and a data vertexv ∈ C(u), we use the first CSR to locate
the edge. Then, we search the second CSR for v as a global candidate for u, and the local candidate
set C(u,u ′,v) is found in the third CSR.

u2 u3

0 1 3

u4

v1 v2 v1 v2 v3 v4

0 2 4 7 9

v5

0 3 5 8

v3 v4 v5 v5 v6 v3 v4

Query Edge Offset of u’

Query Edge of (u,u’)

Candidate Offset of u

u’

Candidates of u v

v’

Candidate Offset of u’

4

u5

v5 v5 v6

v3 v5 v4 v6

v4 v5 v3 v3 v7 v9 v9 v8

v7

0

u1

Candidates of u’

11

v10 v10

10 12 13 14 16 17 18 19

u1 u1 u2 u2 u3 u4

1st CSR

2nd CSR

3rd CSR

Fig. 4. Efficient candidate graph format.

Example 3. In Figure 4, the query edge e(u1,u2) found in the first CSR corresponds with two tuples
(u1,u2,v1) and (u1,u2,v2) where v1,v2 ∈ C(u1) are stored in the second CSR. The local candidate set
C(u1,u2,v1) = {v3,v4,v5} can be retrieved from the third CSR.

gSWORD framework can easily support existing RW estimators, such as WanderJoin and Alley.
Furthermore, it also allows users to develop and test new RW estimators with ease. Due to space
limit, we put the detailed implementation of WanderJoin and Alley within our framework in the
Appendix of our extended report [1].

3.2 Framework Implementation
Algorithm 1 presents an overview of the gSWORD framework. Lines 1-3 initialize the data structures
for each thread. Since each sample may incur varying computational cost, distributing a fixed
number of samples to each thread results in workload-imbalance. Thus, we devise a sample pool
bp for each GPU block where all threads share the workload within the same block. Lines 4-5 of
Algorithm 1 depict the block sharing approach where a new sample task is fetched from bp as
long as there remains some samples to be computed in the block. The fetch operation is efficiently

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:8 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

Algorithm 1: The RSV abstraction of gSWORD.
Input :Candidate graph cд, block sample pool bp
Output :Thread HT estimation H , sample size nSample

1 refine← Init();
2 nSample← 0;
3 H← 0;
4 while bp , ∅ do
5 s← FetchSampleTask(bp);
6 d← 1;
7 while d ≤ |Vq | do
8 (cand,clen)← GetMinCandidate(cg,s,d);
9 rlen← Refine(s,d,cand,clen,refine);

10 (v,prob)← Sample(s,d,refine,rlen);
11 valid← Validate(s,d,v,prob);
12 break if valid == false;
13 d← d + 1;
14 if d == |Vq | + 1 then
15 H← H + 1

s .prob ;

16 nSample← nSample+1;
17 return (H ,nSample); ▷ Estimate aggregation omitted.

handled by atomic instructions in the shared memory. After obtain a sample task s , we iteratively
sample vertices into s (Lines 7-13). For each sample iteration, we retrieve the smallest candidate set
cand with its length clen from the candidate graph cg and send cand for refinement. Note that cand
is the local candidate set given the partial result rather than the global candidate set of a query
vertex. Then, we sample a vertex v from the refined set refine as the d-th vertex of the instance in s .
If s remains to be a valid partial instance after adding v , we continue to the next sample iteration.
Otherwise, the inner loop terminates and a new sample task is fetched from bp. Once an instance
of |Vq | vertices is obtained, we update the HT estimator value with the sampling probability of
s in Lines 14-15. Finally, we return the HT estimator value and the sample size within a thread.
We omit the estimate aggregation among all threads since it can be directly implemented by the
efficient parallel reduce for GPUs [7].
Sample Synchronization vs. Iteration Synchronization. In the current implementation, threads
in a warp are synchronized implicity on completing the samples. Each thread will wait for the other
threads in the warp to finish before fetching a new sample task. We call such an approach sample
synchronization. The problem with this approach is warp divergence because threads in a warp
process different samples in lock steps, and the samples can terminate at different iterations. To
address this issue, iteration synchronization is an alternative approach where threads synchronize
after each vertex is sampled (one iteration of the inner while loop in Algorithm 1). In fact, iteration
synchronization is the common approach widely adopted in GPU graph processing [32, 43, 48, 49]
as well as GPU-based subgraph enumeration [14, 15, 22, 37].
The benefit of the alternative is: without waiting for other threads in the warp to complete

their current samples, a thread can start a new sample at any iteration once the current sample
is invalid. To enable iteration synchronization on GPUs, we can place an explicit barrier after

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:9

each iteration and start a new sample immediately once a current sample is invalid. Surprisingly,
iteration synchronization is even slower than sample synchronization with an average run time
slowdown of 1.3 times.

 0

 2

 4

 6

 8

 10

dblp eu2005 hprd human patents wordnet yeast youtubeC
y
cl

e
s

p
e
r

In
st

ru
ct

io
n

Sample StallWait
Sample StallLong

Iter StallWait
Iter StallLong

Fig. 5. Micro-benchmark on the warp efficiency of sample and iteration synchronization with nsight.

Micro-benchmark. We use the nsight profiler to examine the top-2 warp stall factors for the
sample and iteration synchronization methods (Alley is used as the sampling method). Figure 5
presents the profiling results. StallLong is the number of cycles stalled for memory load instructions.
StallWait is the number of cycles stalled due to instruction loading issues. Although the iteration
synchronization has better instruction-level parallelism (i.e., fewer StallWait cycles), the benefit is
overwhelmed by the cost of memory accesses (i.e., more StallLong cycles).

Our investigation reveals that irregular memory access pattern of the iteration synchronization
leads to these results. Specifically, for iteration synchronization, threads in a warp can process
different query vertices at an iteration, which leads to the access of candidate sets of different query
vertices. By comparison, for sample synchronization, threads in a warp always process the same
query vertex at an iteration, so the same candidate set is usually accessed, which has a much better
memory locality. More details are explained in Example 4. Compared with subgraph enumeration
where the processing workload is heavy due to large intermediate results, the workload for each
RW sample is lightweight benefiting from the pruning of the candidate graph. Thus, the nature of
the RW samples favors a regular memory access pattern even at the cost of the workload imbalance.
Thus, we implement the sample synchronization approach in gSWORD.

Example 4. Figure 6 illustrates the process of sample synchronization and iteration synchronization
with Alley as the RW estimator. For brevity, a warp has three threads T1, T2 and T3 in the example.
Each thread executes a sample on graphs in Figure 2. The table lists query vertices processed at each
iteration. Samples in T2 and T3 terminate at iteration 3 and 2, respectively, since their instances are
invalid. The method with iteration synchronization immediately starts a new sample, whereas the
sample synchronization method starts a new sample for each thread until all threads complete the
samples assigned initially.

Candidates highlighted on the CSRs are accessed by threads at iteration 7. Iteration synchronization
accesses candidates scattered across the candidate graph because threads process different query vertices.
In contrast, sample synchronization has much better spatial locality because all threads process the
same query vertex. As a result, sample synchronization outperforms the iteration synchronization
alternative despite the wasted thread resources.

4 GPU-CENTRIC OPTIMIZATIONS
As discussed in Section 3.2, processing different samples by parallel threads independently can lead
to severe workload imbalance. There are two major sources of imbalance: validate imbalance and
refine imbalance, which occurs in the Validate and Refine step. In this section, we introduce two

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:10 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

Iter. T1 T2 T3

1 {u1,v1} {u1,v1} {u1,v1}

2 {u2,v3} {u2,v4} {u2,v5}

3 {u3,v4} {u3,v3} {u1,v1}

4 {u4,v7} {u1,v1} {u2,v1}

5 {u5,v8} {u2,v3} {u3,v4}

6 {u1,v2} {u3,v5} {u4,v7}

7 {u2,v?} {u4,v?} {u5,v?}

new
samples

v10

v1 v2 v1 v5

0 3 5 …

v3 v4 v5 v5 v6 v3

v

v’

v3 v5 v4 v6

v3 v7 v9 v9 v8

v7

v10

17 18 1914 16

…

…

u2 u3 u4

0 2 4 7 9

u’

u5u1

11

u1 u2u1 u2 u3 u4

u

(a) Iteration synchronization

u2 u3 u4

v10

Iter. T1 T2 T3

1 {u1, v1} {u1, v1} {u1, v1}

2 {u2,v3} {u2, v4} {u2, v5}

3 {u3,v4} {u3, v3}

4 {u4,v7}

5 {u5,v8}

6 {u1, v2} {u1, v1} {u1, v1}

7 {u2,v?} {u2,v?} {u2,v?}

v1 v2 v1 v5

0 3 5 …

v3 v4 v5 v5 v6 v3

v

v’

v3 v5 v4 v6

v3 v7 v9 v9 v8

v7

v10

17 18 1914 16

…

…

u2 u3 u4

0 2 4 7 9

u’

u5u1

11

u1 u2u1

u

new
samples

(b) Sample synchronization

Fig. 6. The access patterns of iteration vs. sample synchronization, the tables show the data vertices sampled
at each step.

GPU-centric optimization techniques, i.e., sample inheritance and warp streaming to address these
two sources of workload imbalance respectively.

4.1 Sample Inheritance
With the sample synchronization, samples from different threads may terminate at any iteration
after the Validate step. The threads with terminated samples will remain idle while other threads
in the same warp are still busy with active workload, hence leading to validate imbalance. To address
this issue, we propose the sample inheritance approach. Once a thread discovers an invalid sample,
the thread will immediately “inherit” a valid partial sample from one of its neighborhood threads
in the same warp. As such, all threads in a warp are always working on the same iteration and thus
render a cohesive data access pattern. Despite additional workload assigned, sample inheritance
(gSWORD) only incurs marginal memory access overhead while processing additional samples.

Example 5. Figure 7 explains the sample inheritance approach. Following Example 4, Threads T1,
T2,and T3 belong to the same warp, and each starts a new sample independently. The partial instance
(v1,v5) from T3 is invalid at iteration 2. T3 randomly selects a thread in the warp to inherit the search
path. Here, T3 inherits the partial instance (v1,v3) from T1. The instance (v1,v4,v3) from T2 is invalid
since v4 maps to u2 but it does not connect to a data vertex with label C . Thus, T2 inherits the instance
(v1,v3,v4) from T1. At iteration 4, the instances from T3 become invalid again, so it inherits the same
instance held by T1, i.e., (v1,v3,v4,v7). At the last iteration, all threads sample the last vertex for
their respective instances. Note that all threads are occupied with sampling tasks when inheritance is

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:11

Iter. T1

v1

T2

v1
1

T3

v1

v1 v3 v1 v42 v1 v5

v1 v3 v4 v1 v4 v33 v5

v1 v3 v4 v74 v1 v3 v5 v7

v1 v3 v4 v7 v8 v1 v3 v4 v7 v85 v8

v3v1

v1 v3 v4 v7

v1 v3 v7

u2 u3 u4

v10

Iter. T1 T2 T3

1 {u1,v1} {u1,v1} {u1,v1}

2 {u2,v3} {u2,v4} {u2,v5}

3 {u3,v4} {u3,v3} {u3,v5}

4 {u4,v7} {u4,v7} {u4,v7}

5 {u5,v8} {u5,v8} {u5,v8}

6 {u1,v2} {u1,v1} {u1,v1}

7 {u2,v?} {u2,v?} {u2,v?}

v1 v2 v1 v5

0 3 5 …

v3 v4 v5 v5 v6 v3

v

v’

v3 v5 v4 v6

v3 v7 v9 v9 v8

v7

v10

17 18 1914 16

…

…

u2 u3 u4

0 2 4 7 9

u’

u5u1

11

u1 u2u1

u

new
samples

v4

Fig. 7. Example of sample inheritance.

enabled. The data access pattern is cohesive as the threads always process the same query vertex on the
same iteration (bottom right of Figure 7).

Although we keep the threads busy with the inheritance optimization, the inherited samples are
correlated and biased. This is because more samples will be generated towards larger search tree
branches as the partial instances have higher chance to be valid.

Example 6. In Figure 7, there are three initial samples managed by each thread. Further, there are
three additional inherited samples (indicted by the dashed boxes). If we treat all samples independent,
the estimate is 1

6 · (3 · 24+ 3 · 0) = 12 (3 validate samples each with a sample probability of 1/24 and 3
invalid samples), which significantly deviates from the ground-truth value of 1.

To eliminate the bias, we observe that once a partial instance is inherited, the inherited samples
can be used to collectively estimate the new search space determined by the inherited partial
instance. Based on this observation, we present our refine inheritance optimization in Algorithm 2.
Instead of terminating an invalid sample in Algorithm 1, a thread participates in a voting process
to see if there are still valid partial samples to be inherited in its warp. We take advantage of the
warp-level primitives to enable efficient collaboration via registers across the threads (functions
with underline prefix).

If there exists any valid partial sample in the warp indicated by the _any primitive, a thread
holding a valid sample s is selected as the parent using _ballot. In Line 3, we count the number
of idle threads that run into invalid samples. Since there are in total idleThreads + 1 threads that
will inherit s from the parent (including the parent itself), we update the probability of s before
the parent shares its sample with all idle threads using the _shfl primitive. After the inheritance
process, all threads hold a valid partial sample and can proceed with the next sample iteration as in
Algorithm 1.

Example 7. At iteration 4, T3 inherits the partial instance s = (v1,v3,v4,v7) from T1 and we
obtain an estimate of 1

2 · (1 + 1) = 1 conditioned s (from the two valid partial samples of T1 and T3).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:12 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

Algorithm 2: Refine Inheritance
// Replace Line 12 in Algorithm 1

1 if _any(valid) then
2 parentId← _ballot(valid);
3 idleThreads← _reduce_sum(valid==false);
4 if threadId == parentId then
5 s.prob = s.prob/(idleThreads+1);
6 if valid==false then
7 s← _shfl(s,parentId);

8 else
9 break;

Recursive Estimator. Despite its simplicity, Algorithm 2 is in fact a push-down evaluation of
a recursive estimator. Let Ri (s) denote the estimator at level i of the search tree given a partial
instance s . Ri (s) is recursively estimated as follows:

Ri (s) =

∑
t

Ri−1(s ∪ {vt })

ni
, if i > 1 and s is inherited to t

Ri−1(s ∪ {v}), if i > 1 and s is not inherited
I(s)

P(s)
, if i = 1, aka. the leaf level

where ni denote the number of inherited samples at level i .
Push-down evaluation. A thread initially holds an empty sample s at the root level, i.e., R |Vq |(s =
∅). For each iteration, the thread moves to a lower level on the search tree until it reaches the
leaf level. The normalization factors ni are all pushed down via the sample probability P(s) to the
leaf level. The push down evaluation enables efficient one-pass estimation without recursive calls
for backward propagation of the values from the leaf to the root. We prove that R is an unbiased
estimator as the HT estimator H .

Theorem 1. E[Ri (s)] = E[Hi (s)] for any given partial instance s where Hi (s) denote the HT
estimator in Equation 1 to sample i vertices without inheritance and i ∈ [1, |Vq |].

Discussion. The sample inheritance optimization shares similarities with the branching technique
of Alley in a sense that both sample multiple vertices from the candidate set given a partial
instance. However, branching always selects multiple vertices when the size of a candidate size
is greater than eight, which results in a sample tree and the size of which cannot be determined
in advance. This introduces complicated control logic and dynamic memory management, which
is very challenging to be optimized on the GPU architecture. In contrast, inheritance occurs only
when some threads in a warp experience invalid samples. This strategy can be efficiently optimized
on the GPU architecture with warp-level intrinsics and static memory management.

4.2 Warp Streaming
Within each sample iteration, Refine scans the candidate array cand and outputs a refine array
for Sample. Both arrays can have varying lengths for different samples, which causes the refine
imbalance. To overcome the issue, we dynamically distribute the Refine and Sample workloads

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:13

Algorithm 3: Warp Streaming
// Replace Line 9-11 in Algorithm 1

1 curIter← 0;
2 curV← dummy;
3 curW← 0;
4 curTotalW← 0;
5 while _any(clen - curIter ≥ 32) do
6 leaderId← _ballot(clen - curIter ≥ 32);
7 leaderSample← _shfl(s, leaderId);
8 workerCand← _shfl(cand,leaderId) + threadId;
9 rlen← Refine(leaderSample,d,workerCand,1,refine);

10 (v,w)← Sample(leaderSample,d,refine,rlen);
11 key← UniformRand()1/w ifw , 0 and 0 otherwise;
12 (key*,v*,w*) = _reduce_max(tuple<>(key,v,w));
13 totalW← _reduce_sum(w);
14 if threadId == leaderId then
15 curTotalW← curTotalW + totalW;
16 (curV,curW)← (v*,w*) with probability totalW

curTotalW
17 curIter = curIter + 32;

18 while curIter < clen do
19 rlen← Refine(cg,s,d,cand+curIter,1,refine);
20 (v,w)← Sample(s,d,refine,rlen);
21 curTotalW← curTotalW + w;
22 (curV,curW)← (u,w) with probability w

curTotalW ;
23 valid← Validate(s,d,curV, curW

curTotalW);

among threads in the same warp in a streaming manner. Intuitively, if a sample contains enough
workloads to be parallelized by a warp, we keep the threads busy by streaming the Refine and
Sample operations to the warp.
The warp streaming approach is presented in Algorithm 3. We initialize four variables to keep

track of the streaming process for each sample iteration. curIter keeps track of the next vertex to
process in the cand array. curV and curW denote the current vertex sampled and its corresponding
sample weight. curTotal is the total sample weight accumulated among all processed candidates.
There are two phases in streaming the candidates: Collaborative Phase and Independent Phase.
Collaborative Phase (Line 5-17). In Line 5, _any checks if there exists a thread holding a sample
that has enough candidates to be processed by the warp. If so, one of the qualifying thread takes
the leader role with _ballot and share its sample s to all threads in the warp via _shfl (Line
6-7). The leader also shares its candidate array cand so that each thread is assigned to process a
unique candidate in cand (Line 8). The candidate is later fed to Refine followed by Sample. Now
each thread holds a sampled vertex v with its sample weight w set, we need to select at most
one vertex v∗ from the warp and make sure its sampling probability is proportional to its sample
weight w∗. To this end, we adapt the A-Res streaming algorithm [10] where a key is randomly
generated as r 1/w for any vertex v and weight w where r is a uniform random number in (0, 1).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:14 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

...

u1

u2

ud

Visited by sampling

Visited by enumeration

Fig. 8. Example of trawling.

Subsequently, _reduce_max safely selects the vertex v∗ and its weight w∗ with the largest key
value. Furthermore, _reduce_sum computes the total weight totalW among the warp. The leader
thread can then update curV and curW with v∗ andw∗. Line 15-16 guarantees the selected vertex
sample curV always has a sampling probability proportional to curW among processed candidates
with total sampling weight curTotalW . The leader also moves curIter to indict 32 candidates that
have been processed.
Independent Phase (Line 18-22). When no thread holds more than 32 candidates to process,
each thread streams the remaining candidates independently. A thread incrementally refines a
candidate and samples a vertex v with weightw . Line 21-22 uses the same approach as Line 15-16
to ensure curV has the correct sampling probability wrt. curW .

Finally, we check if s∪{curV } form a valid partial/full instance. The following theorem guarantees
that curV is selected with the correct probability distribution.

Theorem 2. curV is sampled with a probability curW
curTotalW is an invariant in Algorithm 3.

5 CPU-GPU CO-PROCESSING
While gSWORD demonstrates high efficiency in generating a large number of samples and provid-
ing accurate estimations for various query types, our empirical evaluation has revealed certain
challenging scenarios where the estimation deviates significantly despite that millions of samples
are generated. This discrepancy can be attributed to the underestimation problem encountered
by RW estimators when the sample space exhibits significant skewness, resulting in a dearth of
valid samples that match the query graph. Previous research studies have also reported cases of
underestimation in their investigations [21, 52]. Furthermore, certain extreme cases, such as queries
within the WordNet dataset, present an even greater hurdle, as many of them do not yield a single
valid sample.
Trawling Strategy. A simple strategy to overcome the deficiency of valid samples is to directly
enumerate all valid instances. However, the enumeration is simply prohibitive to handle large
search spaces. In contrast, the sampling methods can estimate large search spaces but suffer from
invalid samples. Hence, we combine the merits of sampling and enumeration and propose a trawling
strategy to mitigate the issue of underestimation.
As shown in Figure 8, we sample d vertices as a partial instance of si (d) where d ≤ |Vq | and

then enumerate the remaining |Vq | − d vertices to obtain the number of valid instances given si (d)
as the partial instance. As such, the sampled partial instance can quickly navigate through the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:15

large sample space. By effectively reducing the sample space, the subsequent enumeration process
focuses on collecting as many valid instances as possible, a process we refer to as trawling.

Algorithm 4 represents the process of trawling strategy. We select d to determine the number of
nodes to sample. The estimate Hs of sample s with d vertices is obtained using the HT estimator in
Algorithm 1. Then we invoke the enumeration algorithm to count cnt , which is the total number of
valid instances that can be extended from s . Line 6 updates the estimator H using cnt and Hs . Note
that all enumeration processes on CPUs will be executed after all samples on GPUs are completed.

Algorithm 4: The Trawling Strategy.
Input :Candidate graph cд, block sample pool bp
Output :Estimate H , sample size nSample

1 nSample, H ← 0;
2 while bp , ∅ do
3 d ← Select(|Vq |);
4 Get the estimate Hs by sampling a partial instance s with d vertices using Algorithm 1;
5 cnt← Enumeration(cg,s);
6 H ← H + Hs · cnt;
7 nSample← nSample + 1;
8 return (H ,nSample);

Selection of d . Selecting an appropriate value for d strikes a balance between efficiency and
accuracy. When d = 0, it corresponds to a purely enumeration-based approach that yields the
exact answer but becomes computationally impractical for large sample spaces. Conversely, as d
increases, the efficiency improves due to the utilization of a sampled partial instance. However,
a higher d also increases the likelihood of including more invalid samples, resembling a purely
sampling-based method when d = |Vq |.
Motivated by the need for this trade-off, we devise a random selection process based on a

geometric distribution. Specifically, we set P(d = j) ∝ 2−j , where j ranges from 3 to |Vq |. We
initiate the enumeration process only from the third vertex onwards to avoid the prohibitively high
cost associated with full enumeration. In practice, the sampling method can generate a considerable
number of valid partial instances with three vertices, while the enumeration process ensures a
comprehensive coverage of the search space given the vertices that have been sampled.
CPU-GPU Co-processing. Deploying the trawling strategy solely on GPUs would not be efficient
because the additional enumeration operations can occupy GPU computing resources and degrade
the existing sampling process.

Moreover, recent advancements in complex pruning techniques for subgraph matching are not
suitable for GPUs’ SIMT architecture. CPUs, on the other hand, excel at handling such intricate
logic, making them an ideal choice for enumeration using state-of-the-art CPU-based methods [3–
6, 20, 36].
To address this issue, we propose a CPU-GPU co-processing pipeline, as depicted in Figure 9.

Sampling batches are scheduled and the GPU generates complete samples for each batch using
previously discussed techniques. This ensures continuous production of sampling estimates, regard-
less of whether the trawling strategy is activated. Additionally, we uniformly select t samples and
transfer the selected samples to CPUs for trawling such that the CPU-GPU data transfer overhead is
limited byO(t |Vq |). For now, we set t to be the number of cores on the GPUs. On the CPU side, we

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:16 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

…

…

GPU

…

…

Random Walk Generator

GPU

…

…

Random Walk Generator

GPU

CPU

…

GPU HT
Estimator

Combiner

CPU

…

…

…

…

Timeline

…

sampler sampler sampler sampler sampler sampler sampler sampler sampler

Random Walk Generator

CPU
Estimator

cudaMemCpy cudaMemCpy

GPU sampling GPU sampling GPU sampling

CPU enumeration CPU enumerationcopy copy

timeout timeout

Fig. 9. CPU-GPU co-processing pipeline.

produce a separate estimate by trawling the received samples. We use the CPU method from [36]
but any alternative can be easily substituted.

The CPU-GPU co-processing pipeline incurs minimal overhead compared to a GPU-only imple-
mentation of gSWORD. Figure 9 illustrates the concurrent execution of CPU and GPU processing,
which maximizes resource utilization of both sides. To prevent stalls caused by expensive and
unpredictable CPU-side enumeration overhead, a timeout mechanism is employed. Once the GPU
sampling batch completes, CPU-side enumeration is terminated, and only samples that have com-
pleted the enumeration process are considered for estimation. This parallel batch execution allows
for the full exploitation of the distinctive processing characteristics of CPUs and GPUs. For better
overlapping the CPU enumeration and GPU sampling, a small batch size is preferred. However,
if the batch size is too small, it may lead to poor estimates due to insufficient enumeration. We
conducted an experiment to assess the trade-off between batch size and estimation accuracy in
Section 6.5.

In the Appendix of our extended report [1], we show that the proposed trawling strategy produces
an unbiased estimation to the subgraph count under the CPU-GPU co-processing pipeline.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
Compared Methods. We compare gSWORD with G-Care [27], the-state-of-the-art CPU-based
sampling framework for subgraph counting, and NextDoor [19], the state-of-the-art GPU-based
sampling framework for conventional RW workloads. Specifically, we regard each sample as a
task unit and keep load balance among threads with the dynamic scheduling [29]. It achieves
high performance on CPUs because RW estimators are embarrassingly parallel. We study two
sampling algorithms including WanderJoin (WJ) and Alley (AL). Alley cannot be directly deployed
to NextDoor because the framework does not consider the refinement step in Alley. Therefore,
we implement Alley without any frameworks but following the same parallelization strategy of
NextDoor as the baseline on GPUs. In summary, we compare the following methods.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:17

Table 1. Dataset Statistics.
Categories Dataset V E d L

Biology Yeast 3,112 12,519 8.0 71
HPRD 9,460 34,998 7.4 307

Lexical WordNet 76,853 120,399 3.1 5
Citation Patents 3,774,768 16,518,947 8.8 20

Social
DBLP 317,080 1,049,866 6.6 15
Orkut 3,072,441 117,185,083 38.14 150

Web eu2005 862,664 16,138,468 37.4 40
uk2002 18,520,486 298,113,762 16.1 200

 0
 1
 2
 3
 4
 5
 6
 7
 8

yeast
hprd wordnet

patents
dblp orkut eu2005

uk2002

S
p

e
e
d

 u
p 4-nodes 8-nodes 16-nodes

(a) WanderJoin

 0
 5

 10
 15
 20
 25
 30

yeast
hprd wordnet

patents
dblp orkut eu2005

uk2002

S
p

e
e
d

 u
p 4-nodes 8-nodes 16-nodes

(b) Alley

Fig. 10. The speedup of gSWORD over GPU baselines with the query size increasing.

• CPU-WJ and CPU-AL are the baselines on CPUs, implemented within G-Care [27].
• GPU-WJ and GPU-AL are the baseline on GPUs, implemented by following the computation
method of NextDoor [19].
• gSWORD-WJ and gSWORD-AL are the implementations of gSWORD.

Data graphs.We conduct experiments on eight real-world datasets from diverse categories. These
datasets are widely used in previous studies [5, 16, 36, 38, 53]. Table 1 presents the statistics of
the datasets. Three of them are labeled graphs, namely, Yeast, HPRD, and WordNet. The rest are
unlabeled graphs. For unlabeled graphs, we follow the same method used in existing works [6, 16]
to randomly generate labels for the vertices.

Table 2. Running time (milliseconds) per query of the compared approaches with standard deviations (±).
Methods Yeast HPRD WordNet Patents DBLP Orkut eu2005 uk2002
CPU-WJ 2929±457 15396±599 6744±1127 82788±3907 22843±3329 79056±43199 46228±10055 99296±7790
CPU-AL 4571±792 16711±690 7278±1204 132309±5696 38219±4016 171921±17796 124693±35402 223441±33915
GPU-WJ 237±55 260±29 246±55 302±14 348±96 569±310 456±97 1160 ±91
GPU-AL 2697±233 2768±95 1026±169 2281±236 2880±302 5912±601 3822±1085 9614±1459

gSWORD-WJ 61±10 107±8 46±8 80±3 79±11 204±51 97±20 266±20
gSWORD-AL 179±14 361±12 70±11 107±11 205±22 639±70 359±103 709±107

Queries. To align with previous research [4–6, 36], the queries are extracted from the data graphs
using random walks. The number of vertices in queries are set to 4, 8, 16 with 16 as the default. We

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:18 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

 0
 2
 4
 6
 8

 10

yeast
hprd wordnet

patents
dblp orkut eu2005

uk2002

S
p

e
e
d

 u
p dense sparse

(a) WanderJoin

 0

 5

 10

 15

 20

yeast
hprd wordnet

patents
dblp orkut eu2005

uk2002

S
p

e
e
d

 u
p dense sparse

(b) Alley

Fig. 11. The speedup of gSWORD over GPU baselines with the query type varied.

generate 20 queries for the same number of query vertices on each data graph. For queries with 8
or 16 vertices, we generate 10 sparse queries and 10 dense queries where a sparse query has the
maximum degree less than 3. For all compared methods, we generate 106 samples for each query
by default as the RW estimators can converge for most datasets as discussed in Section 6.4.
In our efficiency evaluation, we do not take into account the cost associated with constructing

and transferring the candidate graph from CPUs to GPUs.
We compare the current implementations to those that directly sample the data graph without

using candidate graphs in the Appendix of the extend report [1]. Our results indicate the running
time of sampling directly on data graph is consistently higher than the approach of sampling on
the candidate graph, even when accounting for the preparation costs associated with constructing
and transferring candidate graphs.
Matching order. We adopt the matching order from QuickSI [33] as our default matching or-
der, which achieves a good performance based on the performance study [37]. Both Alley and
WanderJoin follow the same matching order. We also compare QuickSI and the matching order in
G-CARE and the results of the two orders in terms of efficiency and accuracy are similar. Please
refer to the Appendix of the extended report [1] for the experimental results.
Environment. All experiments are conducted on a server equipped with Intel Xeon W-2133
CPUs (12 cores,3.6GHz), 64 GB main memory, and two RTX 2080 Ti GPUs. All source codes are
implemented in CUDA/C++ and compiled by O3 optimizations.

6.2 Main Efficiency Results
Overall Comparison. The average running time of all the compared approaches on processing
a query under the default setting is presented in Table 2. A detailed analysis of the errors in the
sampling algorithms will be discussed in Section 6.4 later on.
Among the CPU-based methods, CPU-AL is slower than CPU-WJ due to the overhead of the

refinement operations. For example, CPU-WJ is 2.7 times faster than CPU-AL on eu2005. Nonetheless,
the running time of all CPU-based methods ranges from 3-223 seconds for processing one query.
This result demonstrates the necessity of accelerating RW estimators on GPUs.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:19

The GPU-basedmethods producemassive efficiency boost. On average, the GPU baselines achieve
90.0x and 21.3x speedup over the CPU counterparts for WanderJoin and Alley, respectively. The
speedup of GPU-AL is lower compared with those of GPU-WJ because the refinement of GPU-AL
incurs heavy memory access cost. In general, the running time of all GPU baselines falls within the
range of 0.2-9.7 seconds. gSWORD exhibits superior performance by completing the queries within
0.7 seconds. On average, gSWORD achieves a speedup of 341x compared to the CPU baselines and is
9x faster than the GPU baselines. These results clearly demonstrate the remarkable efficiency of
gSWORD as proposed in this paper.

Given the significant performance advantage of GPU-based methods over CPU-based methods,
our focus in the subsequent experiments is on the GPU-based approaches. Consequently, we
proceed to evaluate the performance of gSWORD while varying the query size and query type.
VaryingQuery Size&QueryType. In Figure 10, we observe the speedup achieved by gSWORD over
the GPU baselines as the query size increases from 4 to 16. Notably, Alley exhibits a significantly
higher speedup compared to WanderJoin. This is attributed to the fact that WanderJoin does
not face the issue of workload imbalance during refinement, unlike Alley. As the query size
increases, gSWORD achieves a higher speedup in bothmethods, particularly in Alley. This is primarily
due to the GPU baselines encountering significant workload imbalances during validation and
refinement operations for larger queries. The increased number of iterations and overhead associated
with refining larger queries contribute to this observation. The results clearly demonstrate the
effectiveness of the optimization techniques proposed in Section 4.

Figure 11 depicts the speedup achieved by gSWORD on dense and sparse queries. gSWORD performs
well on queries with varying structures, highlighting the robustness of the framework.

6.3 Evaluation of GPU-Centric Optimizations
To evaluate the impact of each optimization proposed in Section 4, we conducted an ablation study
on WanderJoin and Alley, focusing on runtime reduction for the proposed optimizations.

We measure the runtime while enabling sample inheritance and warp streaming optimizations
incrementally, and the results are depicted in Figure 12. When only the inheritance optimization was
enabled, a significant reduction in runtime was observed for both WanderJoin and Alley, resulting
in speedups of 3.9x and 2.5x, respectively. The higher speedup in WanderJoin can be attributed to
its heavier validate workload imbalance compared to Alley. Furthermore, upon enabling the warp
streaming optimization, a 5.3x further reduction in runtime was achieved specifically in Alley.
However, the runtime for WanderJoin did not experience further reduction as it does not have a
refine stage for sampling. The results confirm the effectiveness of the optimizations in addressing
the imbalance issues for enabling RW estimators on GPUs.

6.4 Evaluation of RW estimators
We measure the accuracy of RW estimators with q-error , a widely used metric for the cardinality
estimation problem [25]. Suppose that the estimated cardinality is ĉ and the ground truth is c . Q-
error is equal tomax(max(1, c)/max(1, ĉ),max(1, ĉ)/max(1, c)). The value of the q-error represents
the quality of estimation, where a smaller value indicates a better estimation. To present the q-error
of overestimated and underestimated queries, we display the q-error of overestimated queries
upward and the q-error of underestimated queries downward with respect to a reference value of 1.

Figure 13 illustrates the q-errors of the two RWestimators for different query sizes. Comparatively,
Alley consistently outperforms WanderJoin when employing the same number of samples. For
4-node queries, both methods yield accurate estimations. As the number of query vertices increases
to 8, Alley maintains accurate estimates, while WanderJoin exhibits larger but still reasonable

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:20 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

 0

 0.5

 1

 1.5

 2

yeast
hprd wordnet

patents
dblp orkut eu2005

uk2002

R
u
n
n
in

g
 t

im
e
 (

s)
O0 O1 O2

(a) gSWORD-WJ

 0

 2

 4

 6

 8

 10

 12

yeast
hprd wordnet

patents
dblp orkut eu2005

uk2002

R
u
n
n
in

g
 t

im
e
 (

s)

O0 O1 O2

(b) gSWORD-AL
Fig. 12. Runtime of the proposed methods with no optimization (O0), sample inheritance optimization only
(O1) and sample inheritance+warp streaming optimizations (O2).

1010

105

100

105

1010

yeast hprd wordnet patents dblp orkut eu2005 uk2002

Q
-e
rr
o
r

4-nodes 8-nodes 16-nodes

(a) WanderJoin

1010

105

100

105

1010

yeast hprd wordnet patents dblp orkut eu2005 uk2002

Q
-e
rr
o
r

4-nodes 8-nodes 16-nodes

(b) Alley

Fig. 13. Q-error of the RW estimators under study.

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

4 8 16

S
a
m

p
le

 s
u
cc

e
ss

 r
a
ti

o
(%

)

Query size

yeast
hprd

wordnet
patents

dblp
orkut

eu2005
uk2002

Fig. 14. Sample success ratio of ALLEY

errors. However, as the number of query vertices further increases to 16, we observe a significant
deterioration in the accuracy of WanderJoin. On the other hand, Alley maintains stable accuracy
across different query sizes, except in the case of the WordNet dataset where a notable increase in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:21

1010
105
100
105
1010

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

Q
-e
rr
o
r

trawling WJ

(a) WanderJoin

1010
105
100
105
1010

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

Q
-e
rr
o
r

trawling AL

(b) Alley

Fig. 15. Q-error of RW estimators v.s. trawling in WordNet with 16-nodes queries.

q-error is observed for both estimators. Specifically, the maximum q-error for 16-nodes queries
is 106 for Alley but 109 for WanderJoin. It is important to note that both Alley and WanderJoin
suffer from severe underestimations in their estimations.

In order to investigate the severe underestimation problem observed in WordNet, we conducted
an experiment to analyze the percentages of valid samples for Alley across all datasets. The results
are presented in Figure 14. The chance of obtaining a valid sample for 16-node queries was found
to be extremely low, falling below 10−5%. This implies that out of 106 samples, there were less than
one valid sample obtained on average. The significantly low percentages of valid samples in the
WordNet dataset render the RW estimators unreliable for such cases.

6.5 Evaluation of CPU-GPU Co-processing
To showcase the effectiveness of our CPU-GPU co-processing solution in mitigating the underesti-
mation problem, we provide a comprehensive analysis of the q-error and runtime for all 20 queries
with 16 vertices in the WordNet dataset, which exhibit the most severe underestimation issue.
Q-error Reduction. Figure 15 demonstrates the impact of employing trawling on the q-errors in
both WanderJoin and Alley. Utilizing the trawling technique significantly reduces the q-errors by
a considerable factor of 5.7 · 105 in WanderJoin and 1.7 · 105 in Alley. Furthermore, the maximum
q-error in WanderJoin, across all queries, is reduced from 109 to 1.2·104, while the maximum q-error
in Alley is reduced from 2 · 106 to 1.2 · 104 through trawling. These improvements underscore the
effectiveness of the trawling strategy in mitigating underestimation issues.
Runtime Overhead. In addition, we conducted an evaluation to assess the overhead of CPU-GPU
co-processing by measuring the individual components of GPU sampling and CPU enumeration.
The results were then compared with the total execution time of CPU-GPU co-processing, as
shown in Figure 16. Notably, the execution times are very similar, indicating that the overhead of
CPU enumeration is effectively overlapped with GPU sampling. This demonstrates the efficient
coordination and synchronization between CPU and GPU in the co-processing solution.
Tuning The Number Of Batches. Figure 17 illustrates the impact of the number of batches on
CPU-GPU co-processing performance using five representative queries. Increasing the number
of batches ideally reduces the q-error by facilitating more overlaps between CPU enumeration
and GPU sampling. This enables a greater number of samples to be enumerated on the CPU side,
improving estimation accuracy and reducing q-error. However, we observed an increase in q-error

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:22 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

specifically for queries q2 and q3when the number of batches reached 8, while the overall execution
time remained stable across different batch sizes. This increase in q-error is attributed to limited
execution time available for the enumeration process within each batch when the number of
batches is too large. Insufficient time allocated for accurate enumeration leads to poorer estimation
results. To strike a balance between sampling and enumeration overlap and accurate estimation,
we determined that 6 is the default setting for the number of batches in our experiment.
EnumerationWithMultiple Threads.We conduct an experiment by varying the number of CPU
threads to demonstrate the adaptability across systems with differing CPU and GPU computational
power. We find that increasing the number of threads is associated with a decrease in Q-error for
representative queries. The results are presented in Figure 18. The elapsed time is bounded by the
sampling process on the GPU side, thus the total running time does not vary. Take query q3 for an
example, the Q-error is 300 when deploying a single thread, but it reduces to 64 after deploying
12 threads. This is because CPU enumeration is much more expensive than GPU sampling. In
parallel execution for a batch, when the GPU finishes the sampling process, it prompts the CPU to
terminate. As a result, additional CPU resources can complete more enumeration tasks, enhancing
accuracy without extending the overall runtime.

 0
 20
 40
 60
 80

 100
 120
 140
 160

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

E
la

p
se

d
 t

im
e
 (

m
s)

Enumertion Sampling Co-processing

Fig. 16. The component time in CPU-GPU co-processing.

 0

 100

 200

 300

 400

 500

 600

2 4 6 8

Q
-e

rr
o
r

Number of batches

q1
q2

q3
q6

q19

 80

 100

 120

 140

 160

 180

 200

2 4 6 8

E
la

p
se

d
 t

im
e
(m

s)

Number of batches

q1
q2

q3
q6

q19

Fig. 17. Q-error and runtime with varying batches.

 0

 50

 100

 150

 200

 250

 300

 350

1 4 8 12

Q
-e

rr
o
r

Number of CPU Threads

q1
q2

q3
q6

q19

 80

 100

 120

 140

 160

 180

 200

1 4 8 12

E
la

p
se

d
 t

im
e
(m

s)

Number of CPU Threads

q1
q2

q3
q6

q19

Fig. 18. Q-error and runtime with varying threads.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:23

7 RELATEDWORK
Random walk (RW) is an effective approach to extract information from large graphs. For example,
many RW algorithms are proposed to learn graph representations such as DeepWalk [28] and
Node2vec [13]. Many surveys [31, 44, 45] on RW-based algorithms have been published. To accel-
erate RW algorithms, recently researchers have proposed a variety of frameworks to implement
different RW algorithms. These frameworks consider each random walk as a parallel task unit
and focus on accelerating the sampling procedure that chooses a vertex from the neighbors of the
current residing vertex given the probability distribution customized by users. In the following, we
will review the CPU and GPU based systems, followed by learning-based subgraph counting.
CPU-based Systems. KnightKing [46] is a distributed framework adopting the BSP (bulk synchro-
nous parallel) model. In particular, it expands one vertex for all queries in each iteration. To reduce
the communication cost across machines, it uses the rejection sampling method to avoid scanning
the whole neighbor set to sample one vertex. GraphWalker [42] is an I/O efficient framework on a
single machine. It adopts the asynchronous model where each thread executes a walk independently.
It divides the graph that cannot reside in the memory into a set of partitions and optimizes the
scheduling method of loading partitions into memory to minimize the disk I/Os. ThunderRW [35]
focuses on improving in-memory computation efficiency for random walks. Specifically, it proposes
the step interleaving technique that executes different queries in an interleaving manner to reduce
CPU pipeline stalls incurred by random memory accesses. Uninet [47] proposes a sampler called
M-H to generate a sample vertex in constant time.
GPU-based Systems. To further improve the performance, several GPU-based systems are pro-
posed. C-SAW [26] adopts the BSP model that executes one step for all queries in each iteration.
It implements the inverse transformation sampling method to sample a vertex, which needs to
scan the neighbors of the current residing vertex. To improve the GPU computation efficiency,
C-SAW supports RW with the same length only to enforce the regular workload. NextDoor [19] is a
framework targeting at graph sampling applications. It adopts the rejection sampling method. Users
can implement a wide variety of RW-algorithms by defining a "next" function, which specifies the
logic of sampling the next vertex. SkyWalker [41] improves the performance on large graphs by
optimizing the alias sampling method on GPUs. In particular, it assigns computation resources to
build the alias table based on the vertex degrees to achieve balanced workload.
Nevertheless, all existing CPU and GPU systems focus on the optimization for the sampling

stage in traditional random walks. However, as discussed in Section 1, the heavy refinement step in
RW estimators for subgraph counting incurs the validate workload imbalance and refine workload
imbalance problems, which lead to the under utilization of GPUs’ resources. Different from all
previous works, we focus on designing an efficient framework to accelerate RW estimators for
subgraph counting.
Learning-based Subgraph Counting. Recently, researchers propose several learning-based sub-
graph counting methods [40, 50, 52]. The active learned sketch method [52] estimates subgraph
count by creating a sketch with a neural network regression model and updating the sketch with
an active learner given new arrival queries. NeurSC [40] extracts representative substructures from
the data graph for each query and then estimates subgraph count based on learned representations.
LSSMatch [50] improves the estimation for complex cyclic graph queries by the query decomposi-
tion based on learning techniques. However, the error of these methods cannot be bounded due
to the neural network components and hence the learned methods incur expensive training and
maintenance costs. Additionally, these methods focus on algorithmic design, whereas we aim to
build an efficient framework for RW estimators.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:24 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

8 CONCLUSION
We present gSWORD, a GPU framework that accelerates RW estimators for subgraph counting. There
are unique challenges to accelerate the workflow on GPUs due to severe workload imbalance.
We propose sample inheritance for refine imbalance and warp streaming for validate imbalance.
Moreover, existing sampling-based solutions suffer from underestimation issues due to the lack
of valid samples. We propose a CPU-GPU co-processing pipeline which overlaps sampling and
enumeration to mitigate this issue. Through extensive experiments, we verify the efficacy of gSWORD
over the state-of-the-art CPU and GPU baselines. Ablation studies further validate the effectiveness
of our optimization strategies. Finally, we verify that the co-processing pipeline enhances estimation
accuracy, particularly in scenarios where obtaining valid samples is challenging.
Acknowledgment. This project is supported by the Ministry of Education, Singapore, under its
Academic Research Fund Tier 2 (Award No.: MOE2019-T2-2-065). Yuchen Li is supported by the
LKC fellowship of Singapore Management University.

REFERENCES
[1] 2023. The technical report for gsword. https://github.com/Gibyeng/gsword/blob/main/report/report.pdf.
[2] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. Emp-

tyheaded: A relational engine for graph processing. ACM Transactions on Database Systems(TODS) 42, 4 (2017),
1–44.

[3] Junya Arai, Yasuhiro Fujiwara, and Makoto Onizuka. 2023. GuP: Fast Subgraph Matching by Guard-based Pruning.
PACMMOD 1, 2 (2023), 1–26.

[4] Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser, and James Trimble. 2019. Sequential
and parallel solution-biased search for subgraph algorithms. In CPAIOR. 20–38.

[5] Bibek Bhattarai, Hang Liu, and H Howie Huang. 2019. Ceci: Compact embedding cluster index for scalable subgraph
matching. In SIGMOD. 1447–1462.

[6] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, andWenjie Zhang. 2016. Efficient subgraph matching by postponing cartesian
products. In SIGMOD. 1199–1214.

[7] Ian Buck. 2007. Gpu computing with nvidia cuda. In ACM SIGGRAPH 2007 courses. 6–es.
[8] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John CS Lui. 2016. A general framework for estimating graphlet

statistics via random walk. PVLDB 10, 3 (2016), 253–264.
[9] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In STOC. 151–158.
[10] Rayane El Sibai, Yousra Chabchoub, Jacques Demerjian, Zakia Kazi-Aoul, and Kablan Barbar. 2016. Sampling algorithms

in data stream environments. In ICDEc. 29–36.
[11] Jessica Enright and Rowland Raymond Kao. 2018. Epidemics on dynamic networks. Epidemics 24 (2018), 88–97.
[12] Philippe Fournier-Viger, Ganghuan He, Chao Cheng, Jiaxuan Li, Min Zhou, Jerry Chun-Wei Lin, and Unil Yun.

2020. A survey of pattern mining in dynamic graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery(DMKD) 10, 6 (2020), e1372.

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD. 855–864.
[14] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee Tan. 2020. Gpu-accelerated subgraph

enumeration on partitioned graphs. In SIGMOD. 1067–1082.
[15] Wentian Guo, Yuchen Li, and Kian-Lee Tan. 2020. Exploiting reuse for GPU subgraph enumeration. IEEE Transactions

on Knowledge and Data Engineering(TKDE) 34, 9 (2020), 4231–4244.
[16] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han. 2019. Efficient subgraph matching:

Harmonizing dynamic programming, adaptive matching order, and failing set together. In SIGMOD. 1429–1446.
[17] Zaïd Harchaoui and Francis Bach. 2007. Image classification with segmentation graph kernels. In CVPR. 1–8.
[18] Shixun Huang, Yuchen Li, Zhifeng Bao, and Zhao Li. 2021. Towards efficient motif-based graph partitioning: An

adaptive sampling approach. In ICDE. IEEE, 528–539.
[19] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini. 2021. Accelerating graph sampling for graph

machine learning using GPUs. In EuroSys. 311–326.
[20] Xun Jian, Zhiyuan Li, and Lei Chen. 2023. SUFF: Accelerating Subgraph Matching with Historical Data. PVLDB 16, 7

(2023), 1699–1711.
[21] Kyoungmin Kim, Hyeonji Kim, George Fletcher, and Wook-Shin Han. 2021. Combining Sampling and Synopses with

Worst-Case Optimal Runtime and Quality Guarantees for Graph Pattern Cardinality Estimation. In SIGMOD. 964–976.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

https://github.com/Gibyeng/gsword/blob/main/report/report.pdf

gSWORD: GPU-accelerated Sampling for Subgraph Counting 33:25

[22] Zhuohang Lai, Xibo Sun, Qiong Luo, and Xiaolong Xie. 2022. Accelerating multi-way joins on the GPU. VLDB J. 31, 3
(2022), 529–553.

[23] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggregation via random walks. In SIGMOD.
615–629.

[24] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2019. Wander join and XDB: online aggregation via random walks. ACM
Transactions on Database Systems(TODS) 44, 1 (2019), 1–41.

[25] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad plans by bounding the impact of
cardinality estimation errors. PVLDB 2, 1 (2009), 982–993.

[26] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-SAW: A framework for graph sampling
and random walk on GPUs. In SC. 1–15.

[27] Yeonsu Park, Seongyun Ko, Sourav S Bhowmick, Kyoungmin Kim, Kijae Hong, and Wook-Shin Han. 2020. G-CARE: a
framework for performance benchmarking of cardinality estimation techniques for subgraph matching. In SIGMOD.
1099–1114.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In KDD.
701–710.

[29] Imran Qureshi. 2014. Cpu scheduling algorithms: A survey. International Journal of Advanced Networking and
Applications(IJANA) 5, 4 (2014), 1968.

[30] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. 2021. A survey on subgraph
counting: concepts, algorithms, and applications to network motifs and graphlets. ACM Computing Surveys(CSUR) 54,
2 (2021), 1–36.

[31] Purnamrita Sarkar and Andrew W Moore. 2011. Random walks in social networks and their applications: a survey. In
Social Network Data Analytics. 43–77.

[32] Mo Sha, Yuchen Li, and Kian-Lee Tan. 2021. Self-adaptive graph traversal on gpus. In SIGMOD. 1558–1570.
[33] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming verification hardness: an efficient algorithm

for testing subgraph isomorphism. PVLDB 1, 1 (2008), 364–375.
[34] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. 2009. Efficient graphlet

kernels for large graph comparison. In AISTATS. 488–495.
[35] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021. ThunderRW: An in-memory graph

random walk engine. PVLDB 14, 11 (2021), 1992–2005.
[36] Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth study. In SIGMOD. 1083–1098.
[37] Xibo Sun and Qiong Luo. 2023. Efficient GPU-Accelerated Subgraph Matching. PACMMOD 1, 2 (2023), 1–26.
[38] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012. Efficient subgraph matching on billion

node graphs. PVLDB 5, 9 (2012), 788–799.
[39] Vladimir Vacic, Lilia M Iakoucheva, Stefano Lonardi, and Predrag Radivojac. 2010. Graphlet kernels for prediction of

functional residues in protein structures. Journal of Computational Biology(J. Comput. Biol) 17, 1 (2010), 55–72.
[40] Hanchen Wang, Rong Hu, Ying Zhang, Lu Qin, Wei Wang, and Wenjie Zhang. 2022. Neural Subgraph Counting with

Wasserstein Estimator. In SIGMOD. 160–175.
[41] PengyuWang, Chao Li, JingWang, Taolei Wang, Lu Zhang, Jingwen Leng, Quan Chen, andMinyi Guo. 2021. Skywalker:

Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs. In PACT. 304–317.
[42] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John CS Lui. 2020. GraphWalker: An I/O-Efficient and Resource-

Friendly Graph Analytic System for Fast and Scalable Random Walks. In USENIX ATC. 559–571.
[43] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D Owens. 2016. Gunrock: A

high-performance graph processing library on the GPU. In PPoPP. 1–12.
[44] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong. 2019. Random walks: A review of

algorithms and applications. IEEE Transactions on Emerging Topics in Computational Intelligence(TETCI) 4, 2 (2019),
95–107.

[45] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. 2021. Graph learning: A survey.
IEEE Transactions on Artificial Intelligence(TAI) 2, 2 (2021), 109–127.

[46] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang. 2019. Knightking: a fast distributed
graph random walk engine. In SOSP. 524–537.

[47] Xingyu Yao, Yingxia Shao, Bin Cui, and Lei Chen. 2021. Uninet: Scalable network representation learning with
metropolis-hastings sampling. In ICDE. 516–527.

[48] Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, and Jianling Sun. 2021. Gpu-accelerated graph label propagation for
real-time fraud detection. In SIGMOD. 2348–2356.

[49] Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, and Jianling Sun. 2023. Large-Scale Graph Label Propagation on GPUs.
IEEE Transactions on Knowledge and Data Engineering(TKDE) 01 (2023), 1–14.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

33:26 Chang Ye, Yuchen Li, Shixuan Sun, and Wentian Guo

[50] Hao Zhang, Qiyan Li, Kangfei Zhao, Jeffrey Xu Yu, and Yuanyuan Zhu. 2022. How Learning Can Help Complex Cyclic
Join Decomposition. In ICDE. IEEE, 3138–3141.

[51] Luming Zhang, Mingli Song, Zicheng Liu, Xiao Liu, Jiajun Bu, and Chun Chen. 2013. Probabilistic graphlet cut:
Exploiting spatial structure cue for weakly supervised image segmentation. In CVPR. 1908–1915.

[52] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A learned sketch for subgraph counting. In
SIGMOD. 2142–2155.

[53] Peixiang Zhao and Jiawei Han. 2010. On graph query optimization in large networks. PVLDB 3, 1-2 (2010), 340–351.
[54] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random sampling over joins revisited. In

SIGMOD. 1525–1539.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 33. Publication date: February 2024.

	gSWORD: GPU-accelerated sampling for subgraph counting
	Citation

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Notations and Problem Definition
	2.2 RW Estimators for Subgraph Counting

	3 GSWORD Framework
	3.1 Framework Design
	3.2 Framework Implementation

	4 GPU-centric Optimizations
	4.1 Sample Inheritance
	4.2 Warp Streaming

	5 CPU-GPU Co-Processing
	6 EXPERIMENTAL EVALUATION
	6.1 Experimental Setup
	6.2 Main Efficiency Results
	6.3 Evaluation of GPU-Centric Optimizations
	6.4 Evaluation of RW estimators
	6.5 Evaluation of CPU-GPU Co-processing

	7 Related work
	8 Conclusion
	References

