
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection Dissertations and Theses

6-2017

Recommending personalized schedules in urban environments Recommending personalized schedules in urban environments

Cen CHEN
Singapore Management University, cenchen.2012@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll_all

 Part of the Digital Communications and Networking Commons, and the Software Engineering

Commons

Citation Citation
CHEN, Cen. Recommending personalized schedules in urban environments. (2017).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll_all/22

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection by an authorized administrator of Institutional Knowledge at Singapore Management University. For
more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll_all
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

RECOMMENDING PERSONALIZED SCHEDULES

IN URBAN ENVIRONMENTS

CEN CHEN

SINGAPORE MANAGEMENT UNIVERSITY

2017

Recommending Personalized Schedules in Urban Environments

by

Cen Chen

Submitted to School of Information Systems in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee

Hoong Chuin Lau (Supervisor/Chair)
Professor
Singapore Management University

Shih-fen Cheng (Co-Supervisor)
Associate Professor
Singapore Management University

Pradeep Varakantham
Associate Professor
Singapore Management University

Stephen F. Smith
Professor
Carnegie Mellon University

Singapore Management University
2017

Copyright (2017) Cen Chen

Recommending Personalized Schedules in Urban Environments

Cen Chen

Abstract

In this thesis, we are broadly interested in solving real world problems that

involve decision support for coordinating agent movements in dynamic urban

environments, where people are agents exhibiting different human behavior

patterns and preferences. The rapid development of mobile technologies makes

it easier to capture agent behavioral and preference information. Such rich

agent specific information, coupled with the explosive growth of computational

power, opens many opportunities that we could potentially leverage, to better

guide/influence the agents in urban environments.

The purpose of this thesis is to investigate how we can effectively and

efficiently guide and coordinate the agents with a personal touch, which en-

tails optimized resource allocation and scheduling at the operational level.

More specifically, we look into the agent coordination from three specific as-

pects with different application domains: (a) crowd control in leisure envi-

ronments by providing personalized guidance to individual agents to smooth

the congestions due to the crowd; (b) mobile crowdsourcing by distributing

location-based tasks to part-time crowd workers on-the-go to promote the plat-

form efficiency; (c) workforce scheduling by better utilizing full-time workforce

to provide location-based services at customers’ homes. For each, we pro-

pose models and efficient algorithms, considering agent-level preferences and

problem-specific requirements. The proposed solution approaches are shown to

be effective through various experiments on real-world and synthetic datasets.

Contents

1 Introduction 1

1.1 Background & Motivation . 1

1.1.1 Crowd Control . 5

1.1.2 Mobile Crowdsourcing 5

1.1.3 Workforce Scheduling . 6

1.2 Contributions . 7

1.3 Organization of the Dissertation 9

2 Preliminaries 10

2.1 Orienteering Problem . 10

2.1.1 Mathematical Formulation 11

2.1.2 Common OP Variants 12

2.1.3 Applications of OP . 13

2.1.4 Solution Approaches . 14

2.1.4.1 Solution Approaches for OP 14

2.1.4.2 Solution Approaches for OP Variants 15

2.2 Lagrangian Relaxation for Solving ILP 16

2.2.1 Mathematical Formulation 17

2.2.2 Solving the Lagrangian Dual 17

3 Crowd Control 20

3.1 Overview . 20

i

3.2 Literature Review . 21

3.3 Problem Formulation . 22

3.3.1 A Motivating Example 22

3.3.2 Centralized Formulation 24

3.3.3 A Game-theoretic Formulation for MOPTCC 27

3.4 Solution Approaches . 28

3.4.1 Sampled fictitious play algorithm 30

3.4.2 Generating feasible initial solution 32

3.4.3 Computing best responses 33

3.5 Computational Experiments . 34

3.5.1 Instance Generation . 34

3.5.2 Numerical Results . 35

3.5.3 Comparison Against Baseline 38

3.6 Summary . 39

3.7 Appendix . 40

4 Mobile Crowdsourcing 41

4.1 Overview . 41

4.2 Literature Review . 42

4.3 Problem Formulation . 46

4.3.1 Mathematical Model . 47

4.3.2 The Multi-Coverage Extension 51

4.3.3 Scalability of the Model 52

4.4 Solution Approaches . 53

4.4.1 Lagrangian Relaxation 53

4.4.2 Speeding Up LR Implementation 55

4.5 Computational Experiments . 57

4.5.1 LR Heuristics versus the Exact Approach 58

4.5.2 LR Heuristics versus Deterministic Heuristics 59

ii

4.6 TA$Ker: a Real-world Mobile Crowdsourcing Platform 62

4.6.1 TA$Ker Architecture . 62

4.6.2 User Study Details . 63

4.6.3 Performance of the Recommendation Engine 65

4.6.3.1 Super-Agent Phenomenon 67

4.6.3.2 Efficiency of Users 67

4.7 Summary . 71

5 Home Health Care 73

5.1 Overview . 73

5.2 Literature Review . 75

5.3 Problem Formulation . 78

5.3.1 Mathematical Model . 80

5.3.2 Modeling Duration Uncertainty 83

5.4 Solution Approaches . 84

5.4.1 Lagrangian Relaxation 85

5.4.2 Handling Duration Uncertainty 88

5.5 Computational Experiments . 90

5.5.1 Instance Generation . 90

5.5.2 Algorithms Compared 91

5.5.3 Numerical Results . 92

5.6 Summary . 95

6 Conclusion and Future Work 97

6.1 Crowd Control . 98

6.2 Mobile Crowdsourcing . 99

6.3 Workforce Scheduling . 100

6.4 Challenges for Future Works . 102

Bibliography 103

iii

List of Figures

1.1 Overviews of the problems addressed in the thesis. 3

3.1 Max deviations of 2-agent, 5-agent, and 8-agent instances. . . . 37

3.2 The average progress of SFP algorithm over iterations for a sam-

ple instance with random restarts (the error bar is one standard

deviation over all random restarts of this instance). 37

3.3 Maximal equilibrium utility value for 5-agent instances: 25 tight

instances (left) and 25 loose instances (right). X-axis denotes in-

dividual instances. Y-axis represents the maximum utility value

of the equilibrium solutions discovered for that instance. 38

3.4 Maximal deviations for selected 8-agent (left) and 10-agent (right)

instances with random restarts. Each line represents a different

random restart. X-axis denotes iterations, Y-axis denotes the

maximal deviation maxi δi. A deviation δi for player i can be

viewed as the utility improvement made by choosing the best

response. If maxi δi is 0, a pure strategy equilibrium is found,

i.e., no player can benefit from unilateral deviation. Setting:

(m,n,T) = (m,10,10). 39

3.5 Comparison for different time budget discount ratios for 5-agent

instances: (m,n,T) = (5,10,10). 40

4.1 Illustrations of OP variants. 47

4.2 Overall architecture of the TA$Ker. 62

iv

4.3 Error in recommendations. 66

4.4 Super-agent phenomenon. 67

4.5 Total detour incurred during the trial. 68

4.6 Detour efficiency of (a) push-class and (b) pull-class users. . . . 70

5.1 Means and standard deviations of service durations over one-

month visits grouped by different service disciplines. Note, the

statistics are summarized using the actual visit records of Sept.

2015. Discipline specifies the type of service required, e.g.,

speech therapy, skilled nursing, physical therapy, to name a few. 74

v

List of Tables

3.1 Agents’ time-dependent utilities at different providers. 23

3.2 Payoff matrix for all joint decisions. 23

3.3 Results for equilibria found on per-instance bases. For smaller

instances (2-agent and 5-agent cases), each instance is solved by

executing SFP algorithm for 20 iterations. For larger instances

(8-agent), we execute SFP algorithm for 50 iterations. Note

that all mentions of equilibria refer to pure strategy equilibria. 35

4.1 LR heuristics vs. ILP: on both quality and time. (*: We cut off

CPLEX solver as the optimality gap is only 0.06%) 59

4.2 LR heuristics vs. deterministic baselines. 60

4.3 Summary of the metrics across classes and agent categories. . . 68

5.1 Comparison of DLR-E and DLR-H against actual schedules on

one instance of size (D, R, K)=(7, 2062, 199) with different r+. . 93

5.2 Comparison on synthetic instances with time-windows, tempo-

ral dependencies and (D, R, K)=(7, 2062, 199). 93

5.3 Results on synthetic instances of ins-tight with (D, R, K) = (7,

2062, 199). TW denotes time-window chance constraints, while

TB refers to the time budget chance constraints. 95

vi

Acknowledgement

First of all, I am deeply grateful to my primary advisor Professor Hoong Chuin

Lau and secondary advisor Associate Professor Shih-fen Cheng for the insight-

ful conversations and useful feedbacks over the years. Their valuable guidance,

encouragement, and great considerations have helped shape my interests and

ideas, which are great supports for my research and career development.

I am very thankful to my thesis committee members, Associate Professor

Pradeep Varakantham and Professor Stephen Smith, for their commitments

and constructive comments to improve the thesis. I would like to thank: Pro-

fessor Archan Misra for his insightful feedbacks and guidance which help shape

the idea for Chapter 4 and direct me to this prominent topic; Professor Stephen

Smith and Dr. Zachary Rubinstein for the discussions and valuable guidance

during my visit at CMU, from which Chapter 5 have benefited a lot.

I would like to thank Living Analytics Research Center for the scholar-

ships and financial supports for my study. I would also like to extend my

thanks to Professor Steve Fienberg and Professor Ee-peng Lim for giving me

the opportunity to participate in PhD Overseas Training Residency in CMU.

I have been very privileged to collaborate with many great people: Asso-

ciate Professor Zhiling Guo, Aldy Gunawan, Na Fu, Thivya Kandappu, Nikita

Jaiman, Randy Tandriansyah, Yinfei Yang, Forrest Bao, Qiang Qu. Also sin-

cere thanks to all my amazing friends and lab mates in SMU: Larry Lin, Wei

Xie, Jing Guo, Peipei Xia, Jingjing Gu, Ying Ding, Yuan Tian, Jing Ren, Wei

Gong, Jiali Du and all others with whom I shared my precious graduate life.

vii

Last but not least, I would like to express my deepest gratitude to my fam-

ily for their unconditional love, support, encouragement, and companionship

throughout my Ph.D. journey.

viii

- To my family.

ix

List of Publications

The work discussed in this thesis has directly led to 8 papers. We list these

and other papers published during the Ph.D. candidature as follows.

Journal

1. Shih-fen Cheng, Cen Chen, Thivya Kandappu, Hoong Chuin Lau,

Archan Misra, Nikita Jaiman, Randy Tandriansyah, Desmond Koh. Scal-

able Urban Mobile Crowdsourcing: Handling Uncertainty in Worker

Movement. ACM Transactions on Intelligent Systems and Technology,

to appear.

2. Cen Chen, Shih-Fen Cheng, and Hoong Chuin Lau. Multi-agent ori-

enteering problem with time-dependent capacity constraints, Web In-

telligence and Agent Systems: An International Journal, 12.4: 347-358,

2014.

Conference and Workshop

1. Cen Chen, Zachary Rubinstein, Stephen Smith and Hoong Chuin Lau.

Tackling Large-scale Home Health Care Delivery Problem with Uncer-

tainty. International Conference on Automated Planning and Scheduling

(ICAPS-17), Pittsburgh, USA, June 2017.

2. Cen Chen, Zachary B. Rubinstein, Stephen F. Smith, Hoong Chuin

Lau. Achieving Near-optimal Solutions for Large-scale Home Health

Care Scheduling Problem. AAAI Conference on Artificial Intelligence

x

(AAAI-17) Workshop on AI and OR for Social Good, San Francisco,

February 2017.

3. Cen Chen, Shih-Fen Cheng, Hoong Chuin Lau, and Archan Misra.

Towards city-scale mobile crowdsourcing: Task recommendations under

trajectory uncertainties, International Joint Conference on Artificial In-

telligence (IJCAI-15), Beunos Aires, Argentina, July 2015.

4. Cen Chen, Shih-Fen Cheng, Archan Misra, and Hoong Chuin Lau.

Multi-agent task assignment for mobile crowdsourcing under trajectory

uncertainties (Extended Abstract), International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-15), Istanbul, Turkey, May

2015.

5. Cen Chen, Shih-Fen Cheng, Aldy Gunawan, Archan Misra, Koustuv

Dasgupta, and Deepthi Chander. TRACCS: A Framework for Trajectory-

Aware Coordinated Urban Crowd-Sourcing, AAAI Conference on Hu-

man Computation and Crowdsourcing (HCOMP-14), Pittsburgh, USA,

November 2014.

6. Cen Chen Shih-Fen Cheng, and Hoong Chuin Lau. The multi-agent

orienteering problem (Extended Abstract), Metaheuristics International

Conference (MIC-13), Singapore, August 2013.

Related Publications

1. Thivya Kandappu, Nikita Jaiman, Randy Tandriansyah, Archan Misra,

Shih-Fen Cheng, Cen Chen, Hoong Chuin Lau, Deepthi Chander, and

Koustuv Dasgupta. TASKer: Behavioral insights via campus-based ex-

perimental mobile crowd-sourcing, ACM International Joint Conference

on Pervasive and Ubiquitous Computing (UbiComp-16), Heidelberg, Ger-

many, September 2016.

xi

2. Thivya Kandappu, Archan Misra, Shih-Fen Cheng, Hoong Chuin Lau,

Cen Chen, Nikita Jaiman, Randy Tandriansyah, Koustuv Dasgupta,

and Deepthi Chander. Campus-scale mobile crowd-tasking: Deployment

and behavioral insights, ACM Conference on Computer-Supported Co-

operative Work and Social Computing (CSCW-16), San Francisco, CA,

USA, February 2016.

Other Publications

1. Cen Chen, Peilin Zhao, Longfei Li, Jun Zhou, Xiaolong Li and Minghui

Qiu. Locally Connected Deep Learning Framework for Industrial-scale

Recommender Systems (Poster), International World Wide Web Con-

ference (WWW-17), Perth, April 2017.

2. Yinfei Yang, Cen Chen, Minghui Qiu, and Forrest S. Bao. Aspect Ex-

traction from Product Reviews Using Category Hierarchy Information

(Short), European Chapter of the Association for Computational Lin-

guistics (EACL-17), Valencia, April 2017.

3. Yinfei Yang, Cen Chen, Minghui Qiu, and Forrest S. Bao. Aspect-

Based Helpfulness Prediction for Online Product Reviews, IEEE Inter-

national Conference on Tools with Artificial Intelligence (ICTAI-16), San

Jose, November 2016.

4. Cen Chen, Zhiling Guo, Shih-fen Cheng, and Hoong Chuin Lau. An

Experimental Investigation of Product Competition and Marketing in

Social Networks, China Summer Workshop on Information Management

(CSWIM-16), Dalian, China, June 2016.

5. Qiang Qu, Cen Chen, Christian S. Jensen, Anders Skovsgaard. Space-

Time Aware Behavioral Topic Modeling for Microblog Posts, IEEE Data

Engineering Bulletin, 38(2): 58-67, 2015.

xii

Chapter 1

Introduction

1.1 Background & Motivation

Urbanization is a social phenomenon involving population shifts from rural

areas to urban cities. Rapid urbanization1 improves the vitality of the society,

while inevitably leading to high population density in urban cities. As a result

of overcrowding, this has led to huge increase in demand vis-à-vis supply of

public facilities and services. Main reason for this is due to insufficient expan-

sion space, long construction time and high costs involved for infrastructure

expansion. At the same time, urban environments are typically multi-faceted

large physical systems, which naturally lacks coordination in the usage of re-

sources. Rapid urbanization, coupled with inefficient usage of the existing

facilities and services, essentially may deteriorate people’s quality of life in

various ways, such as longer waiting times for queues, manpower scarcity for

public services and decreased efficiency for city logistics. In response to the

rapid urbanization, city planners may invest on building more infrastructures,

such as introducing more manpower and providing more public services, which

requires tremendous financial budgets. However, an increase in financial spend-

1United Nations [94] reported that 54% of world’s population live in cities in 2014, and
this figure is projected to increase to 66% by 2050.

1

CHAPTER 1. INTRODUCTION

ing does not always equate to expected outcomes. Rather, greater emphasis

should be placed on better coordination mechanisms to make use of the ex-

isting infrastructures in order to improve service efficiency. In this research,

we are broadly interested in solving the real-world problems that involve de-

cision support for agent coordination in complex urban settings, where people

are agents exhibiting different human behavior patterns and preferences.

When coordinating agents in urban environments, it is a very important yet

challenging task to tailor the schedules/recommendations with agent-specific

information. Personalized context-aware recommendation is an emerging trend

in our daily life, which has demonstrated its importance in various real-world

domains, such as online retailing. A survey reported that 87% of the consumers

found themselves “influenced to buy more when retailers personalize” [30].

Better personalization helps to facilitate better adoption of the recommenda-

tions, regardless of being the items suggested, the guidance provided, or the

schedules generated. Recommendations in the retail industry often considers

each person’s own preferences independently and others’ preferences are solely

used as side information to improve the recommendation or for the cold-start

situation2. However, in generating recommendation or schedule for agents in

an urban environment, we need to take into consideration multiple interactive

urban dwellers with diverse behavior patterns and preferences, as the decision

of one agent may affect the quality of the schedule/recommendation of an-

other. Such dependencies among agents make personalization much harder to

achieve in complex urban environments.

Against this backdrop, the objective of this thesis is therefore to investigate

how we can effectively and efficiently coordinate agents with a personal touch,

i.e., taking into consideration individual agent’s personal interests as well as

their interactions with one another. The rapid development of mobile tech-

2“Cold-start problem” is prevalent in recommender systems, which refers to the situation,
where we have no clue about one’s own preference or information.

2

CHAPTER 1. INTRODUCTION

nologies makes it easier to capture agent behavioral and preference information

nowadays. Such rich agent-specific information opens many opportunities for

agent coordination that can be potentially leveraged. How to better make use

of such information to guide/influence the agents, is critical in any decision

support system that recommends or schedules for agents.

At the high level, agent coordination problems can be classified into two

types: with non-cooperative agents and cooperative ones. More specifically,

as shown in Figure 4.2, we study the two types of coordination problems with

the following application domains.

• For the non-cooperative case, we look into crowd control problem in

the leisure environments, with the objective of providing personalized

guidance to individual agents to reduce the congestions due to the crowd.

• For the cooperative case, we first study the mobile crowdsourcing prob-

lem, where location-based tasks are centrally distributed to part-time

crowd workers to promote task completion. We then explore a mobile

version of the workforce scheduling problem in the home health care con-

text, with the goal to roster and route the full-time providers to serve

customers at their specified locations to improve public service efficiency.

Figure 1.1: Overviews of the problems addressed in the thesis.

Non-cooperative problems usually can be solved using techniques from game

3

CHAPTER 1. INTRODUCTION

theory, while cooperative ones often employ techniques from the operations

research literature.

Mathematically speaking, these problems share some commonality that

agents move on a graph to perform some actions and receive rewards for per-

forming these actions. Thus, the routing aspect is important to be incorpo-

rated, putting aside the additional problem-specific considerations/constraints.

To a large extent, the problems of our concern all share the Orienteering Prob-

lem as the underlying problem model. Orienteering problems [135, 57] have

long been extensively studied to model various problems from transportation

and logistics, whose goal is to determine the routes (i.e., a subset of nodes to

visit in a sequence) such that the total reward collected is maximized within

the given time budget. Hence, we model these problems as variants of the

Orienteering Problem.

This thesis focuses on developing computationally efficient strategies to ad-

dress the above-mentioned three coordination problems. The inclusion of per-

sonalization makes these problems much harder to solve, due to the additional

agent-specific preference constraints. Thus, the challenges lying is to provide

scalable mechanisms to deal with the complexity of preference handling for

each agent. In this thesis, we intentionally exploit the problem structures,

i.e., the potential decomposability that individual agent’s preference and ori-

enteering are independent from those of the other agents. Techniques, such as

Lagrangian relaxation and sampled fictitious play, are employed to decompose

the large problem into much smaller agent-level sub-problems, which essen-

tially shift the computation complexity into individual sub-problems that can

be solved efficiently and parallelly.

In the following subsections, we will provide details on these problems.

4

CHAPTER 1. INTRODUCTION

1.1.1 Crowd Control

The first application domain that motivates this research is the crowd control

problem in leisure environments. For service operators, one critical task they

need to perform on a daily basis is to provide proper guidance to visitors. Such

guidance may be passive, which is delivered via sign board or staff’s ground

instructions. The guidance can also be active, in which case individual visitors

may be guided by following instructions delivered in real time to their mobile

devices. As the venue operator needs to watch closely how queues build up at

different attractions throughout the day, it needs to generate recommendations

for individual visitors, following their respective preferences, while observing

capacity constraints for different attractions throughout the day.

In the real world, recommendations for visitors are often generated in a

passive manner, with less emphasis to visitor’s preferences. For example, Dis-

ney employed a FASTPASS system to incentivize visitors to visit popular at-

tractions at later times by giving reservation coupons, which guarantee them

immediate access if they visit these attractions at the system-generated ap-

pointment return times [44]. However, in this strategy, individual agents are

treated the same without considering agent-specific interests and constraints,

thus guidance generated might be less appealing for individual agents to follow.

And here lies the potential: if we could generate recommendations for visitors

actively to control the crowd without sacrificing their visiting experience, it

will be a win-win situation for both visitors and park operators.

1.1.2 Mobile Crowdsourcing

The second application domain explored is the mobile crowdsourcing. In the

traditional crowdsourcing paradigm, task owners distribute tasks via online

platforms to attract crowd workers who would work on them for monetary

rewards. Mobile crowdsourcing is a rapidly growing extension to the tradi-

5

CHAPTER 1. INTRODUCTION

tional crowdsourcing paradigm, characterized by (a) tasks having strong lo-

cation specificity (i.e., the task requires a crowd worker physically visiting

a specific location) and (b) tasks principally requiring the use of mobile de-

vices/smartphones at these locations. A lot of tasks nowadays exhibit clear lo-

cation characteristics, such as citizen sensing (asking participants to contribute

sensor readings such as pollution, congestion, noise level) [64, 145, 139, 146],

price checks, store audits (e.g., checking shelves, store displays), logistics (pack-

age pickup and delivery) [4], just to name a few.

In most of the existing works [2, 68, 67, 61], tasks are prioritized and

assigned to available crowd workers using the knowledge about the worker’s

current location and availability, which is a myopic strategy that does not

consider agent-specific behaviors, e.g., individual agent’s movement patterns

and preferences, such as the amount of time they are willing to spend, the types

of tasks preferred and willingness to accept the tasks assigned. Nowadays,

with the mobile crowdsourcing app installed in worker’s phone, it’s easy for

the company to capture workers’ trajectories and their preferences. The often

predictable movement patterns of the mobile crowd workers clearly present

a unique opportunity: instead of letting users individually select tasks in an

uncoordinated fashion, a centralized crowd-tasking platform can suggest or

recommend tasks in a more efficient way. In other words, we want to guide the

crowd workers to perform tasks that align with their daily movement patterns

and their own preferences, and at the same time, maximize the task completion

rate and the global revenue.

1.1.3 Workforce Scheduling

The last application domain that draws our interest is a mobile version of the

workforce scheduling, where service providers are scheduled to service the cus-

tomers at their specified locations. More specifically, we study the workforce

6

CHAPTER 1. INTRODUCTION

scheduling for home health care visits. Home health care provides a wide range

of health care services that are delivered at patients’ homes. Over the past

decade, an increasing number of people subscribe to home health care services,

especially for patients with chronic conditions. According to the US National

Association for Home Care & Hospice [93], roughly 12 million people received

home health care services from 33,000 providers in 2008. This number is set to

grow rapidly with an increasing aging population: Population Reference Bu-

reau [98] predicts that “the number of Americans above 65 will increase from

46 million in 2016 to over 98 million by 2060”. Against the manpower crunch in

health care professionals, in-home service providers are under increasing pres-

sure to provide high-quality service at a low cost to an ever growing demand.

For workforce scheduling problems in the home health care context, individ-

ual’s preferences are commonly addressed, but not comprehensively. Problems

in this domain differ substantially, as problems considered often originate from

different regions with various requirements and regulations. Time windows,

qualifications, and provider availabilities are commonly considered, while other

preferences, such as workload fairness, continuity of care, inter-visit temporal

dependencies are less incorporated [41]. To close this gap, we aim to address

a more realistic problem with a comprehensive set of considerations from the

domain, that tightly integrating both patients’ and providers’ preferences.

1.2 Contributions

To summarize, we make the following contributions in this thesis:

1. What distinguishes the problems studied in this thesis from many agent

coordination problems in the literature is that they largely ignore person-

alization, i.e., neglect the importance of agent behavior and preferences.

In this thesis, we study the coordination problems with emphasis on per-

sonalization in three less applied domains, under both non-cooperative

7

CHAPTER 1. INTRODUCTION

and cooperative settings.

2. For crowd control, we introduce a multi-agent version of the Orienteering

Problem, where agents are self-interested. In this non-cooperative set-

ting, instead of seeking for a globally optimal plan, we focus on identify-

ing equilibrium solutions where individual agents cannot improve their

current utilities by deviation. We first formulate the centralized problem

as a variant of the Orienteering Problem. Due to the distributed nature

of the problem, we then formulate the problem in the game-theoretic

framework and propose to use the sampled fictitious play algorithm with

rejection-base sampling to seek for equilibrium solutions.

3. For mobile crowdsourcing, we investigate a trajectory-aware crowdsourc-

ing framework, where a centralized engine recommends tasks for a large

pool of workers while taking into account the uncertain movement pat-

terns and individual preferences. We formulate the problem as a vari-

ant of the Orienteering Problem. Mathematical formulations are devel-

oped, with the objective to find assignments and routes for all workers

that maximize the cumulative expected utility. Subsequently, effective

heuristics based on Lagrangian relaxation and dual decomposition are

presented to scale up the solution approaches to city-scale scenarios.

4. For workforce scheduling, we study a multi-period home health care

scheduling problem that generates start-of-the-day schedules. To make

the schedules personal and efficient, we look into realistic scenarios with

a comprehensive set of considerations, e.g., time windows, continuity of

care, workloads, inter-visit temporal dependencies, and especially dura-

tion uncertainties. We formulate the problem as a variant of the Orien-

teering Problem and incorporate the uncertainties by chance constraints.

Scalable solution approaches based on Lagrangian relaxation and sample

average approximation are then proposed to solve the problem.

8

CHAPTER 1. INTRODUCTION

1.3 Organization of the Dissertation

The rest of this thesis is organized as follows. Chapter 2 introduces the pre-

liminaries. Chapter 3 elaborates on the crowd control problem in leisure en-

vironments. Chapter 4 presents the trajectory-aware mobile crowdsourcing

problem. Chapter 5 investigates the home health care scheduling problem in

the urban environments. Chapter 6 concludes the thesis and discusses the

future work.

9

Chapter 2

Preliminaries

In this chapter, we present an overview of the Orienteering Problem and La-

grangian relaxation technique.

2.1 Orienteering Problem

The term orienteering originates from the cross-country navigation sport

where participants have to visit control points with aid of the map and compass

within a given time period. The first orienteering event was held in Norway

in 1897 [1]. Ever since then, different types of orienteering event have been

developed. For example the classic orienteering event is to visit every control

points in a predefined order and the participant, who completed with the

shortest time, wins. Another important type is score orienteering event, where

participants do not require to visit all controls. Instead, control points are

associated with different scores depending on difficulty. The winner of the game

will be the participant who collects the highest score within a time budget.

The Orienteering Problem (OP), formally defined by Tsiligirides [128],

was motivated by scheduling the score orienteering event in which participants

get rewards from visiting a set of control points. OP, also known as the selective

traveling salesman problem (TSP), can be used to model a wide variety of real-

10

CHAPTER 2. PRELIMINARIES

world problems like tour planning, route planning for facility inspection and

patrolling of security forces in a network. As a generalization of the TSP, it is

a notoriously challenging NP-hard problem, that has long been studied since

the 1980s. Golden et al. [51] prove the NP-hardness of the OP by reducing the

problem to TSP.

OP is defined over a graph G = (N,E), where N is a set of nodes and E

denotes a set of edges. A node i ∈ N can be viewed as an intersection point on

the graph, which exhibits either physical or virtual location characteristics. On

the road map, a node represents a physical location. On the internet, a node

can be a virtual IP address. Each node i is associated with a positive reward

si, which represents the incentive received when visiting the node. An edge

eij ∈ E is an accessible link between nodes i and j. Each edge is associated

with a non-negative cost, which is often interpreted as travel time, distance,

or petrol consumption. Travel time is commonly used in the OP. We denote

the travel time between node i and j as tij. A node can be visited at most

once within the given time budget Tmax. Given the origin node 1 and the

destination node n, the objective of the OP is to determine a route, i.e., a

set of sequenced nodes, to visit that maximizes the total accumulative reward

collected for the route within the time budget.

2.1.1 Mathematical Formulation

With these notations and assumptions, we can then formulate the OP as an

Integer Linear Program (ILP). We first define the following decision variables:

Variables Descriptions

xij ∈ {0, 1} set to 1 if node i is visited before node j in the route, and 0
otherwise.

ui ∈ {1, ..., n} denote the position of node i in the route.

11

CHAPTER 2. PRELIMINARIES

Mathematically, OP is formulated as follows [134]:

max
n∑
i=1

n∑
j=1

si · xij, (2.1)

T∑
t=1

n∑
j=1

x1j =
T∑
t=1

n∑
i=1

xin = 1, (2.2)

T∑
t=1

n∑
i=1

xid =
T∑
t=1

n∑
j=1

xdj ≤ 1, ∀d ∈ 2, ..., n− 1, (2.3)
2 ≤ ui ≤ n,

ui − uj + 1 ≤ (N − 1) (1− xij) ,

∀i ∈ 2, ..., n,

∀i, j ∈ 1, ..., n,

(2.4)

n∑
i=1

n∑
j=1

tij · xij ≤ Tmax, (2.5)

xij ∈ {0, 1}, ∀i, j ∈ 1, ..., n. (2.6)

Objective (2.1) maximizes the total reward collected. The first set of con-

straints (2.2) ensures that the route starts at node 1 and ends at node n.

Constraints (2.3) guarantee that flows are conserved at all nodes and each

node d is visited at most once. Constraints (2.4) specify the visiting sequences

of the nodes in the route and eliminate the sub-tours (follow the TSP Miller-

Tucker-Zemlin sub-tour elimination constraints [87]). Finally, constraint (2.5)

ensures that the route ends before the given time budget Tmax.

2.1.2 Common OP Variants

The most common variants of the OP include: 1) The Team Orienteering

Problem (TOP), in which a group of centrally controlled agents are sent to

collect rewards by visiting check points [24, 13], 2) The Orienteering Problem

with Time Windows (OPTW), in which service time windows are specified

for each node [66], and 3) the combination of the above two variants, i.e., the

Team Orienteering Problem with Time Windows (TOPTW) [90].

12

CHAPTER 2. PRELIMINARIES

2.1.3 Applications of OP

OP have been successfully applied in many application domains over the years.

1. Scheduling salesman visits: Tsiligirides [128] presented the problem of

traveling salesman visiting a number of cities, with sales at each city

known beforehand. As he is constrained by his limited time budget, he

has to schedule a route of a subset of cities to maximize his total sales.

This is the first orienteering application mentioned in the literature.

2. Goods delivery: Golden et al. [50] introduced an inventory routing prob-

lem, where trucks deliver fuels to consumers. As the fuel supply is limited

on a daily basis, the company have to decide a subset of customers to

serve based on consumer’s urgency score, such that customers can main-

tain their inventories at an adequate level.

3. Network design: Thomadsen and Stidsen [122] applied OP to a single-

ring design problem for building telecommunication networks. A ring

topology is used to protect breakdown in a telecommunication network.

In a ring, the number of nodes and the length of rings are limited due to

network delay problem. Each node in a ring is associated with certain

revenue. The goal is to design the ring, i.e., a subset of nodes in a

sequence, to maximize the revenue.

4. Security surveillance: Wang et al. [138] presented a military surveil-

lance scenario, where a submarine or an unmanned aircraft is involved

in surveillance activities. The length of the expedition is often lim-

ited by fuel or time constraint and locations are associated with multi-

dimensional benefits. The goal is to visit and photograph the best subset

of locations.

5. Tour guidance: Another widely studied OP application is in the context

of tour guidance. When visitors go to a city, it is often impossible for

13

CHAPTER 2. PRELIMINARIES

them to explore all the attractions within a day. Thus, they have to

schedule a route containing the best attractions to visits, that maximize

their visiting experience, depending on their personal preferences [131,

114, 138, 130, 111].

2.1.4 Solution Approaches

A large number of OP variants and corresponding algorithms for solving them

have been discussed in the literature. Tsiligirides [128] presented an early sur-

vey of heuristic methods for OP; this was followed by more recently surveys

of Vansteenwegen et al. [134] and Gunawan et al. [57], which provide mathe-

matical formulations and solution approaches for the OP and its related vari-

ants.

2.1.4.1 Solution Approaches for OP

Feillet et al. [39] presented an overview of the exact algorithms for solving the

OP. Researchers have proposed several exact algorithms, mainly by employ-

ing OR techniques, such as branch-and-bound (e.g., Laporte and Martello [77]

and Ramesh et al. [100]), branch-and-cut (e.g., Fischetti et al. [42] and Gen-

dreau et al. [47]), cutting-plane by Leifer and Rosenwein [78], and branch-and-

price by Feillet et al. [39]. Heuristics algorithms have also been discussed in

literature to tackle OP, such as Monte Carlo technique by Tsiligirides [128], lo-

cal search based methods (e.g., Golden et al. [50, 52], Ramesh and Brown [101],

and Chao et al. [23]), tabu search heuristics (e.g., Gendreau et al. [48], Keller

[71], and Liang et al. [80]), artificial neural network by Wang et al. [137], genetic

algorithm by Tasgetiren [119], and ant colony optimization (ACO) approach

by Liang et al. [80].

More recent approaches for solving the OP are ACO and variable neighbor-

hood search (VNS) based approaches proposed by Schilde et al. [111], particle

14

CHAPTER 2. PRELIMINARIES

swarm optimization based algorithms by Sevkli and Sevilgen [112], Multi-Level

VNS by Liang et al. [81], Greedy Randomized Adaptive Search Procedure

(GRASP) with path relinking by Campos et al. [19], and the latest algorithm

proposed by Marinakis et al. [85], which is a combination of GRASP, evolu-

tionary algorithm and two local search procedures.

2.1.4.2 Solution Approaches for OP Variants

TOP is an extension of OP where the goal is to plan a set of routes for all the

members of the team that maximizes the total rewards collected by the team

within the time limit Tmax[24]. TOP is well-studied, and many researchers

have proposed either exact solution approaches (e.g., Butt and Cavalier [18],

Tang and Miller-Hooks [118], and Boussier et al. [13]) or heuristic approaches

(e.g., Chao et al. [24], Tang and Miller-Hooks [118], Archetti et al. [3], and Ke

et al. [69]). Most recent research efforts on TOP have been on the development

of efficient and effective heuristics, such as greedy randomized adaptive search

procedure by Souffriau et al. [115], guided local search approach by Vansteen-

wegen et al. [132], memetic algorithm by Bouly et al. [12], population based

meta-heuristics (e.g., [92], Dang et al. [32], and Dang et al. [34]), and a Pareto

mimic algorithm proposed by Ke et al. [70]. A few recent exact approaches

was discussed by Dang et al. [33] using a branch-and-cut algorithm, followed

by Keshtkaran et al. [72] employing a branch-and-price approach.

Compared to OP and TOP, both their time window extensions, i.e., OPTW

and TOPTW, received much less attention in the early year. OPTW was first

solved by Kantor and Rosenwein [65], using an insertion heuristic. Exact algo-

rithms were mainly developed by Righini and Salani [104, 105] using dynamic

programming. Special cases of OPTW were discussed by Mansini et al. [84],

where start and end nodes are the same, and by Bar-Yehuda et al. [7], where

all nodes have the same scores and nodes are positioned in a line or with asym-

metric distances. More recent approaches for solving the OPTW are proposed

15

CHAPTER 2. PRELIMINARIES

by Duque et al. [35] with a pulse algorithm and Gunawan et al. [54] using

Iterated Local Search (ILS) technique.

Majority of the research efforts of TOPTW are solely on the development

of heuristics, e.g., ACO (e.g., Montemanni and Gambardella [90] and Gam-

bardella et al. [46]), ILS by Vansteenwegen et al. [133], hybridized evolution-

ary LS algorithm by Labadie et al. [74], LP-based Granular VSN by Labadie

et al. [75], hybrid algorithm based on GRASP and ILS by Souffriau et al.

[116], hybrid LS and Simulated Annealing(SA) based approaches by Hu and

Lim [60] and Lin and Vincent [83], and the recent state-of-the-art algorithm

by Gunawan et al. [56, 55], which hybridizes SA with ILS.

2.2 Lagrangian Relaxation for Solving ILP

Lagrangian relaxation (LR) is a well-known technique for solving difficult com-

binatorial problems. The central idea of the LR approach, as pointed out by

Fisher [43], is that “many difficult integer problems can be viewed as easy prob-

lems complicated by a relatively small set of side constraints.”. By moving these

constraints to the objective function (i.e., dualizing these side constraints), we

can provide a better lower bound (for minimization problems) more efficiently.

Note that there are also other decomposition techniques that can be ex-

plored to handle combinatorial optimization problems efficiently, such as Ben-

der decomposition which can efficiently solve large linear programming prob-

lems that have a special block structure. Bender decomposition focuses on

dualizing variables and iteratively adding new constraints, while LR focuses

on dualizing constraints and penalizing constraint violations. LR is particu-

larly powerful if the optimization problem allows further decomposition after

the dualization of difficult constraints, where sub-problems can be solved effi-

ciently in parallel.

16

CHAPTER 2. PRELIMINARIES

2.2.1 Mathematical Formulation

Suppose we have the following ILP:

min cTx

s.t. Ax ≤ b (P)

We refer this ILP as the primal problem P .

Lagrangian relaxation relax the explicit linear constraints by bringing them

into the objective function with associated vector λ = {. . . , λm, . . .} called the

Lagrangian multiplier. We denote the resulting dual problem as L(λ).

min cTx+ λ(Ax− b) (L(λ))

Lemma 2.2.1. Bounding Principle: For any value of λ ≥ 0, the objective of

(L(λ)) is a lower bound on the optimal objective function value of the original

optimization problem (P).

For detailed descriptions of the important concepts and proofs for La-

grangian relaxation, please see Bertsekas [11].

According to the above Lemma, if we maximize the minimum value we

obtain from (L(λ)), we obtain a tighter bound on the objective value of (P).

Thus we can address the original problem by instead solving the dual problem.

In the following section, we describe the subgradient descent algorithm to

approximate the Lagrangian dual.

2.2.2 Solving the Lagrangian Dual

The Lagrangian dual problem can be solved by using the following subgradient

descent algorithm [11]:

17

CHAPTER 2. PRELIMINARIES

Algorithm 2.2.2. Subgradient Descent Algorithm

• Initialization: Set iteration t = 1. Set λt to be all zeros.

• Iteration t ≥ 1:

1. Solving Duals: Solve the (L(λ)) given λt.

2. Primal Extraction: Obtain the primal objective function value

corresponding to the current dual solution.

3. Updating Lagrangian Multipliers: Lagrangian multipliers are

adjusted according to the degree of constraint violation; for violated

(satisfied) constraints, the values of corresponding multipliers should

be increased (decreased) accordingly. We adopt a well-known adap-

tive multiplier adjustment formula by Held et al. [58]:

λt+1 := max{0, λt + αt(Axt − b)},

where αt represents the update step size, and is defined to be adaptive

to both the duality gap and the solution quality (the magnitude of

constraint violation):

αt =
µt(F

∗ − L(λt))

||Axt − b||2
,

where F ∗ is the best primal value seen so far, and L(λt) represents

dual value obtained in iteration t. µt is in the range of (0, 2], and

is defined as:

µt =


2,

0.5 µt−1,

t = 0,

if L(λt) is non-improving for κ iterations.

4. Termination: The search process terminates either when the allo-

cated time is up or the duality gap (i.e., F ∗−L(λt)) is below certain

18

CHAPTER 2. PRELIMINARIES

threshold. In our implementation, we observe both termination con-

ditions.

19

Chapter 3

Crowd Control

3.1 Overview

We begin by first considering the crowd control problem for a collection of

interconnected service providers in leisure environments (real-world examples

include the MICE1 industry, amusement parks, and museums). Individual

agents (visitors) in this environment aim to visit a sequence of selected service

providers with the objective of maximizing their utilities obtained by receiving

services, while observing their individual time budget limitations and service

provider’s time-dependent capacity constraints.

In this chapter, we investigate the problem of crowd control in leisure envi-

ronments. We introduce a multi-agent version of the OP to address the crowd

control issue, which we believe to be the first of its kind. We call this OP

variant as Multi-agent Orienteering Problem with Time-dependent Capacity

Constraints (MOPTCC). In this problem, nodes are subject to time-dependent

capacity constraints and time-dependent rewards. The rewards allow us to

model individual agents’ preferences, while the capacity constraints enable the

operator to manage and control crowds.

We depart from the classical setting of TOP and TOPTW, which is con-

1Meetings, incentives, conferences, and exhibitions.

20

CHAPTER 3. CROWD CONTROL

cerned with the route planning for a team of agents in a centralized fashion.

Instead, we treat the problem as a multi-agent planning problem where indi-

vidual agents are self-interested and will scrutinize their given plans carefully.

Instead of seeking for a globally optimal plan, we focus on identifying Nash

equilibrium where individual agents cannot improve their current utilities by

deviation.

3.2 Literature Review

Formally speaking, this multi-agent TOP is modeled as a game, where players

are agents, player’s strategy space is the set containing all possible routes,

and the payoff function is the mapping from a joint strategy (routes from all

players) to a vector of payoff values for all players. If a particular joint strategy

is infeasible (e.g., if queue lengths at some service providers violate the capacity

constraints), all players will receive the value of −∞.

For any normal-form game, the existence of mixed strategy Nash equilib-

rium is guaranteed, but pure strategy Nash equilibrium does not always exist

(see for instance [97]). Under certain cases, pure strategy Nash equilibrium ex-

ists. According to Debreu-Glicksberg-Fan theorem [45], if we have an infinite

normal-form game where each strategy set is a compact convex subset of Eu-

clidean space and the payoff functions are continuous and quasi-concave, then

pure strategy Nash equilibrium exists. Cheng et al. [28] show that a symmet-

ric 2-strategy game2 must have a symmetric pure strategy Nash equilibrium.

While the complexity of finding a mixed Nash equilibrium in an n-player game

is still unknown, computing a mixed Nash equilibrium in a 2-player game is

PPAD-complete [27]. For the case of pure strategy Nash equilibrium, deter-

mining its existence in a graphical game (a special case of normal-form game)

is NP-complete [53]. From the computational perspective, it has been shown

2In a symmetric game, every player is identical with respect to the game rules.

21

CHAPTER 3. CROWD CONTROL

that finding pure strategy Nash equilibrium is only possible in fairly small

games (e.g., even for 5-player, 5-strategy games, it may take hours and some-

times days to solve). The classical approach for finding Nash equilibrium in a

2-player game is the pivot-based Lemke-Howson algorithm [79]. More recently,

a mixed integer programming formulation is also proposed for solving 2-player

normal-form games [110]. In cases where payoff matrix is large and complete

characterization is computationally intractable (e.g., each payoff value can only

be estimated by running multiple time-consuming simulations), the focus has

been on computationally tractable approaches in approximately finding equi-

libria (e.g., see Wellman et al. [140] and Jordan et al. [62]) without complete

payoff matrix.

Finally, most previous works on OP are static in that the network parame-

ters (such as travel times and node delays) remain constant over time. This is

another major feature that distinguishes our work from the literature. In the

problem we are about to describe, we allow queueing times at service providers

to be dependent on the number of visitors showing up in the same time period.

As such, the time required to receive service from a particular provider would

depend on not just this agent’s strategy, but also other agents’ strategies.

3.3 Problem Formulation

To understand why a game-theoretic framework would be necessary for MOPTCC,

let’s start with a simple example to illustrate the inadequacy of global optimum

in a multi-agent environment.

3.3.1 A Motivating Example

Consider the following two-agent, two-provider problem: Let n0 be the desig-

nated starting and ending nodes, and let n1 and n2 represent two providers.

We assume that both agents start their trips from n0 at time 1 and they have

22

CHAPTER 3. CROWD CONTROL

to return to n0 again on or before time 5. The travel time between any two

nodes is 1. For each provider, it can only serve one agent at a time, and its

service time is 1 time unit. If multiple agents request service from the same

provider simultaneously, we assume that agents are to be served one after an-

other according to their ID numbers. We further assume that the queueing

policy is set to allow provider n2 to handle at most one agent at a time (i.e.,

no queueing allowed) and no limit for provider n1. Finally, we assume that

agents collect their utilities when they finish their services at the provider.

Agents’ time-dependent utilities for receiving services from the two providers

are listed in Table 3.1:

Agent 1 Agent 2
t n1 n2 n1 n2

1 1 2 3 1
2 1 2 3 1
3 2 3 3 1
4 2 3 5 2
5 2 3 5 2

Table 3.1: Agents’ time-dependent utilities at different providers.

Based on the above setup, we can see that due to the time limit constraint,

each agent can choose at most one provider before returning to n0. The out-

comes resulting from agents’ joint decisions are summarized as the payoff ma-

trix in Table 3.2. Note that for the joint decision (n1, n1), both agents would

Agent 2
n1 n2

A
ge

n
t

1 n1 2 , 5 2 , 1
n2 3 , 3 −∞ , −∞

Table 3.2: Payoff matrix for all joint decisions.

arrive at n1 in time 2, with Agent 1 receiving service first, followed by Agent

2. Agent 1 would leave n1 in time 3 and receives the value of 2 (according

to Table 3.1); for Agent 2, he begins his service in time 3, and leaves n1 in

time 4, receiving the value of 5. For (n1, n2) and (n2, n1), since there are no

23

CHAPTER 3. CROWD CONTROL

conflict, the corresponding payoff values can be directly found in row (t = 3)

of Table 3.1. (n2, n2) is infeasible since provider n2 can handle at most 1 agent

(i.e., no queueing is allowed for n2).

From Table 3.2, we can see that the global optimum is (n1, n1), with com-

bined value 7. However, this solution is not stable, as Agent 1 would be better

off by deviating from n1 to n2. In fact, the joint strategy (n2, n1), with com-

bined value 6, is a Nash equilibrium.

This is a classical demonstration where selfish agents would deviate from

the globally optimal solution and opt for Nash equilibria with lower combined

payoff. In this instance, there are two major factors contributing to such

phenomenon: 1) agents have their respective time-dependent payoffs, and 2)

providers handle agents sequentially, and individual providers might be given

different limits on queue lengths.

3.3.2 Centralized Formulation

Although global optimum is not very meaningful for MOPTCC, as argued

earlier, we should still present the centralized formulation first. This central-

ized formula can serve as the comparison baseline, and it is also an important

subproblem to be solved repetitively when we introduce the game-theoretic

formulation.

The MOPTCC is derived from the classical single-agent OP, where n providers

(nodes) are assumed to be fully connected and can be represented as a com-

plete graph with tij denoting travel time from i to j. We assume that there

are m independent agents, and let stik be the utility agent k receives when

visiting node i in time t. The service time at provider d is a constant vd, and

the number of agents allowed to simultaneously visit provider d is capped at

Qmax
d . The horizon of the problem is set to be T time periods. Without loss

of generality, we assume that each agent k starts his trip at node 1 in time T k1

24

CHAPTER 3. CROWD CONTROL

and should end his trip at node n before time T kn (nodes 1 and n can either

be real or dummy nodes). Lastly, the decision variables are summarized as

follows:

Variables Descriptions

xtijk ∈ {0, 1} set to 1 if agent k leaves node i at time t and goes to
node j, and 0 otherwise.

Qt
d ∈ {0, ..., K} denote the number of agents visiting node d at time t.

With these notations and assumptions, we can then formulate a central-

ized optimization problem as an integer linear program, whose objective is to

maximize the combined utility received by all agents:

max
T∑
t=1

m∑
k=1

n∑
i=1

n∑
j=1

stik x
t
ijk . (3.1)

The first set of constraints (3.2) ensure that for each agent k, he starts at node

1 and ends at node n:

T∑
t=1

n∑
j=1

xt1jk =
T∑
t=1

n∑
i=1

xtink = 1 , ∀k. (3.2)

Constraints (3.3) guarantee that flows are conserved at all nodes except the

origin (node 1) and the destination (node n):

T∑
t=1

n∑
i=1

xtidk =
T∑
t=1

n∑
j=1

xtdjk , ∀k, d 6= 1 or n. (3.3)

As in all classical OP, we assume that for each agent k, each node d is visited

at most once:
T∑
t=1

n∑
j=1

xtdjk ≤ 1 . (3.4)

Constraints (3.5) define the queue length for each node d at time t. For sim-

plicity, we assume that service rate is 1 at all nodes. Thus Qt
d equals the queue

length from time t− 1 plus the inflow and minus the outflow of current time t

25

CHAPTER 3. CROWD CONTROL

for this node. Constraint (3.6) ensures that the queue length Qt
d at any node

d should not exceed its corresponding threshold Qmax
d at all times.

Qt
d = Qt−1

d +
m∑
k=1

(
n∑
i=1

xt−tididk −
n∑
j=1

xtdjk

)
, ∀k, d, (3.5)

Qt
d ≤ Qmax

d , ∀k, d. (3.6)

In constraints (3.7), the arrival and departure times for agent k at node d are

constrained by taking into account all potential delays such as service time,

queue length at arrival, and travel time.

T∑
t=1

n∑
i=1

(
t+ tid +Qt+tid

d + vd
)
xtidk =

T∑
t=1

t

(
n∑
j=1

xtdjk

)
, ∀k, d. (3.7)

Finally, constraints (3.8) and (3.9) ensure that for each agent k, the schedule

starts at T k1 and ends before T kn .

∑T
t=1

∑n
j=1 t · xt1jk = T k1 , ∀k, (3.8)∑T

t=1

∑n
j=1 t · xtnjk ≤ T kn , ∀k. (3.9)

By expanding constraints (3.5) recursively, it can be rewritten as con-

straints (3.10).

Qt
d = Q1

d +
m∑
k=1

n∑
i=1

t−tid∑
s=2−tid

xsidk −
m∑
k=1

n∑
j=1

t∑
s=2

xsdjk , ∀d, t. (3.10)

When substituting Qt
d in constraints (3.7) with (3.10), there are non-linear

terms. To linearize these non-linear constraints, we introduce αstijdlk to rep-

resent xsjdl · xtidk and βstijdlk to replace xsdjl · xtidk. After the transformation,

26

CHAPTER 3. CROWD CONTROL

constraints (3.7) are replaced by constraints (3.11) – (3.13).

T∑
t=1

n∑
j=1

t · xtdjk =
T∑
t=1

n∑
i=1

(t+ vd + tid)x
t
idk +

T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t∑
s=2−tid

αstijdlk

−
T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t+tid∑
s=2

βstijdlk , ∀d, k, (3.11)


αstijdlk ≤ xsjdl ,

αstijdlk ≤ xtidk ,

αstijdlk ≥ xsjdl + xtidk − 1 ,

∀i, d, j, k, l, s, t, (3.12)


βstijdlk ≤ xsdjl ,

βstijdlk ≤ xtidk ,

βstijdlk ≥ xsdjl + xtidk − 1 ,

∀i, d, j, k, l, s, t. (3.13)

After linearization, the above mathematical programming model can then be

solved by using standard integer linear programming solver such as CPLEX.

However, such formulation does not scale well and only very small instance

can be solved [25]. In this chapter, our focus is to solve MOPTCC as a game,

and the above formulation can be revised to solve a single-agent version of the

problem. Before introducing the equilibrium-seeking algorithm, we will first

model the problem using game-theoretic framework.

3.3.3 A Game-theoretic Formulation for MOPTCC

The MOPTCC game is defined as the tuple Γ = 〈N ,S, u〉, where N =

{1, . . . , n} is the set of all players (agents), S = S1 × . . . × Sn is the joint

strategy space, and u : S → Rn is the payoff function. When not considering

27

CHAPTER 3. CROWD CONTROL

S−k, player k’s strategy space is defined as:

Sk = {(s1k, . . . , snk)|sik ∈ {1, . . . , n}, ∀i;

s1k = 1;∃ d, sdk = n,

for 1 < i < d, sik /∈ {s1k, . . . , si−1k },

for d < i ≤ n, sik = 0}. (3.14)

In other words, a player’s strategy must always begin with node 1, end with

node n, never repeat, and if the visit sequence is shorter than n, all visits after

node n must be no-op, which is denoted as 0.

Given any joint strategy profile s, we can straightforwardly compute the

corresponding Qt
d for all pairs of (t, d). We say that a joint strategy s ∈ S

produces feasible joint orienteering plan if the resulting Qt
d does not exceed

Qmax
d for all pairs of (t, d). The utility function u is only defined for strategies

that produce feasible joint orienteering plans. If a joint strategy s produces

infeasible plan, we defined uk(s) to be −∞ for all players.

As the MOPTCC game is defined as a normal-form game, all joint strate-

gies can be played. However, due to the feasibility condition defined above,

only a small fraction of strategies should ever be considered. As such, the

next challenge we have to address would be to devise an algorithm that can

effectively and efficiently identify feasible equilibrium of the MOPTCC game.

3.4 Solution Approaches

As reviewed in Section 3.2, even for a very simple game that contains only

two players, it can be very computationally challenging to compute equilib-

rium solutions. As the number of players and the size of strategy space in-

crease, the complexity of the equilibrium-seeking would increase quickly. In

the MOPTCC game, the critical challenge is the size of the strategy space.

28

CHAPTER 3. CROWD CONTROL

In fact, as in the usual OP, the size of the strategy space grows exponentially

as the number of destinations increases (e.g., for problem with n destinations,

the size of the strategy space is in the order of n!). Because of this, most

traditional enumeration-based equilibrium seeking techniques (e.g., the well-

known Lemke-Howson [79] algorithm) will not be effective, and we have to find

alternatives.

One computational approach that shows promise in dealing with the strat-

egy space explosion is the fictitious play algorithm, which is originally pro-

posed by Brown [16] and later adopted by researchers in operations research

and computer science in dealing with either centralized or decentralized plan-

ning problems. Without going into technical details, we can view fictitious

play algorithm as a way for players to learn about how to anticipate other

players’ responses, so that proper strategy can be selected. The strength of

the fictitious play is its simplicity, and it’s known that if potential function can

be defined for the game in interest, the fictitious play algorithm will converge

[89]. Important classes of games that possess such property include games with

identical interests (the team game) and a wide variety of congestion games.

Unfortunately, the original fictitious play algorithm has a number of unde-

sirable properties, both theoretically and computationally. First, the equilib-

rium that the fictitious play algorithm could converge to (if the convergence

is possible) is in mixed form, since the convergence results are all established

on the belief distribution (which is probabilistic in nature). Second, in each

iteration of the fictitious play algorithm, all players need to compute their

best responses against the current belief distribution, which potentially may

contain a big chunk of the original joint strategy space. This implies that the

evaluation of best responses (which is based on expected) might be exponential

as well.

To address the second issue, Lambert III et al. [76] have introduced the

idea of sampling to the evaluation of best responses: instead of evaluating

29

CHAPTER 3. CROWD CONTROL

against all possible combinations from the history in the belief distribution,

a small number (in most cases, only one sample is needed) of joint strategies

will be sampled, and the best response will be computed against these samples.

Lambert III et al. [76] proved that this sampled fictitious play will converge in

belief to equilibrium for games of identical interests. They then use this result

to solve large-scale unconstrained discrete optimization problems as games

using sampled fictitious play.

We will adopt the similar sampling idea in our first attempt to solve the

MOPTCC game. However, as we are looking to generate recommendations for

agents with heterogeneous preferences (represented in the form of payoff func-

tion), we will focus on finding pure strategy equilibria instead. As the existence

of pure strategy equilibrium is not guaranteed in general, and we cannot prove

it analytically due to the complexity of the formulation, we propose to use

sampled fictitious play (SFP) algorithm to identify pure strategy equilibrium

if one exists for the MOPTCC game.

3.4.1 Sampled fictitious play algorithm

In Algorithm 1, we define a variant of the SFP algorithm used in solving

MOPTCC game. The major new features we implement are: 1) the handling of

infeasible samples, which based on our earlier definition refer to joint strategies

that would result in over-capacitated destination; and 2) focus on identifying

pure strategy equilibrium when executing the SFP algorithm.

Algorithm 1 is a simplified skeleton that hides most implementation com-

plexity. To start the algorithm, we first randomly generate joint strategy that

is feasible by calling InitialSolutions() in line 3. This initial solution is then

used to initiate the history (i.e., the belief distribution). The iteration then

begins, in which a feasible joint strategy is to be sampled at the beginning of

the iteration in line 7. The tighter the capacity constraint, the more difficult

30

CHAPTER 3. CROWD CONTROL

Algorithm 1: Sampled fictitious play algorithm for MOPTCC games.

1 Input: (Γ, kmax)
2 Output: BNE

3 B← InitialSolutions()
4 H← UpdateHistory({},B)
5 k ← 1
6 while k <= kmax do
7 D← Sample(H, k)
8 for each agent i do
9 Q−i ← AggregateQueues(D−i)

10 (Bi, δi)← BestResponse(Γ,Q−i)

11 end
12 H← UpdateHistory(H,B)
13 if maxi δi = 0 then
14 BNE ← Append(BNE,B)
15 k ← k + 1

16 end

17 end
18 Return: BNE

it is in sampling a feasible joint strategy. However, as the initial joint strat-

egy is feasible, we can always find such sample. With a feasible sample joint

strategy, we then solve each agent’s best response problem as a mathematical

program, which is to be defined later. Note that when the best response is com-

puted in line 10, congestions at all destinations (Q−i) are determined by other

players’ joint strategy (D−i) in line 9. When computing the best response,

another information we get is the individual deviation δi, which refers to the

improvement made by choosing the best response. If δi is 0, it implies that

player i cannot benefit from unilaterally deviating from the sampled strategy.

If maxi δi is 0, no player can benefit from their deviations, and D is a pure

strategy equilibrium. Whenever we find such solution, we will store it in the

output set (note that in practice we will store all relevant information such as

utility and congestion besides just the equilibrium strategy).

In the next two subsections, we will explain how we generate random initial

solutions, how do we compute best responses using mathematical programming

approach.

31

CHAPTER 3. CROWD CONTROL

3.4.2 Generating feasible initial solution

The initial solutions are generated using a simple greedy approach in Initial-

Solutions(). We detail the used greedy approach as follows:

1. Initialize the congestion {Qt
d} to be 0 for all (t, d) pairs.

2. Choose any player k who doesn’t have an itinerary yet.

3. For this agent, randomly choose one destination at a time, assuming

that the current congestion is {Qt
d}. We use rejection-base sampling:

choosing all unvisited destinations with equal chance, and if the chosen

destination d is at its capacity at the estimated arrival time t, another

destination will be drawn.

4. For each agent, we would artificially reduce its time budget by 50%. This

is to approximately factor in the potential impact of this agent’s deci-

sion on other agents’ increased wait time. Based on our computational

experience, this damping factor can significantly improve the likelihood

of us getting feasible decisions. Depending on the number of players and

the problem parameters, different damping factors might be appropri-

ate. Our computational study on 5-agent instances is summarized in

Figure 3.5 in the Appendix.

5. After we have exhausted player k’s time budget, we fix player k’s itinerary

and update {Qt
d}.

6. If the set of free players is not empty, go to Step 2 and repeat.

We first generate initial solutions without artificially reducing player’s time

budget, but we soon find out that for problems with tight capacity constraints,

initial solutions generated with all players spending most of their time budgets

will result in joint solutions that are almost impossible to improve upon. In

these cases, time budget reduction in Step 4 is shown to be very effective in

32

CHAPTER 3. CROWD CONTROL

improving the efficiency of the algorithm (intuitively speaking, Step 4 allows

us to reserve buffer time in the schedule generated).

3.4.3 Computing best responses

An agent’s best response in the MOPTCC game can be computed using an ILP

model very similar to the one introduced in Section 3.3.2, constraints (5.1)–

(3.9). There are two major differences:

• The k index which represents different agent identities can be dropped.

E.g., the decision variable will become only xtij.

• All other agents’ chosen strategies, which are taken from the sampled

joint strategy, will collectively decide the background queue length. We

define Qinput
dt to be the background queue length built up by other agents

at node d in time t.

Most constraints will stay the same except constraints (3.5) and (3.7). These

two sets of constraints will be rewritten as:

Qt
d = Qinput

dt +
n∑
i=1

xt−tidid , ∀d, t, (3.15)

T∑
t=1

n∑
i=1

(
t+ tid +Qinput

d,t+tid
+ vd

)
xtid =

T∑
t=1

t
n∑
j=1

xtdj , ∀d. (3.16)

Since Qinput
dt is provided as problem data, the constraint is already linear and

requires no linearization. Together with the fact that index k is dropped, the

problem becomes much more tractable, and can be solved reasonably fast in

our computational study.

33

CHAPTER 3. CROWD CONTROL

3.5 Computational Experiments

In this section, we evaluate how effective our SFP variant is in finding pure

strategy equilibrium. All the instances used in this section are generated ran-

domly using our MOPTCC instance generator. The run times reported below

are measured on machines running 3.16GHz Intel Xeon CPU X5460 with 16GB

RAM.

3.5.1 Instance Generation

Numerical instances in our computational study are characterized by the tuple:

(m, n, T , type), where m, n, T denote the number of agents, the number of

nodes, and the number of time periods respectively. The final parameter,

type, refers to the tightness of the instance, which can be either loose or tight.

The tightness of the instance affects how node capacities (Qmax
d) are drawn.

For loose instances, capacities are drawn from discrete uniform distribution

between (p ·m) and m; for tight instances, capacities are drawn from discrete

uniform distribution between 1 and (p · m). In both instances, p is set to a

constant between 0 and 1. In all our experiments, p is set to 0.5.

The utility value for agent k to visit node i in time t, stik, is assumed to be

uniformly distributed between 1 to 5. The only exceptions are the start and

end nodes, st1k and stnk, whose values are both set to be 5. Finally, all travel

times (tij between nodes i and j) and service times (vd for node d) are set to

1 for simplicity.

For our computational experiments presented in this section, we generate

six categories of instances, with parameters m ∈ {2, 5, 8}, n = 10, T = 10, and

type ∈ {loose, tight}. 25 random instances are generated for each category.

To avoid being trapped in unpromising joint strategy subspace and increase

the likelihood of finding pure strategy equilibrium, each instance is indepen-

dently solved for 20 times, each time with a randomly generated initial solution

34

CHAPTER 3. CROWD CONTROL

(following steps introduced in Section 3.4.2).

3.5.2 Numerical Results

(m,n, T) (2, 10, 10) (2, 10, 10) (5, 10, 10) (5, 10, 10) (8, 10, 10) (8, 10, 10)

Instance Type tight loose tight loose tight loose
Total instances 25 25 25 25 25 25
Success rate of finding equilibria 100% 100% 100% 100% 100% 100%
Avg. # of equilibria found 267.88 256.08 79.12 66.92 44.96 20.35
Avg. # of distinct equilibria found 17.88 17.76 61.4 52.64 31.68 14.00
Best equilibrium / Best feasible 100% 100% 99.94% 99.97% 98.71% 98.98%
Avg. computational time(s) 114.24 172.43 337.08 439.14 3466.80 9913.22

Table 3.3: Results for equilibria found on per-instance bases. For smaller
instances (2-agent and 5-agent cases), each instance is solved by executing
SFP algorithm for 20 iterations. For larger instances (8-agent), we execute
SFP algorithm for 50 iterations. Note that all mentions of equilibria refer to
pure strategy equilibria.

For smaller instances (2-agent and 5-agent cases), each instance is solved

by executing SFP algorithm for 20 iterations. For larger instances (8-agent),

we execute SFP algorithm for 50 iterations so that better solution might be

found. The performance of our SFP variant in finding pure strategy equilibria

is summarized in Table 3.3. As we can see from Table 3.3, SFP can identify

large amount of high-quality pure strategy equilibria for smaller instances (2-

agent and 5-agent cases) very quickly. When the problem expands to have

8 agents, we can see that it’s drastically more difficult to find pure strategy

equilibria (measured by both the computational time and the number of pure

strategy equilibria found). Another interesting finding is that loose instances

are much more difficult to solve than tight instances for all numbers of agents,

probably because of greater degree of freedom we have (number of feasible joint

strategies would be much larger when the capacity constraints are loose, and

agents would have a more difficult time in producing coordinated actions as a

result). We also compute the ratio between the best pure strategy equilibrium

and the best feasible solution found for each instance. We can see that the

ratio is reasonably high for all instances. This is an encouraging computational

35

CHAPTER 3. CROWD CONTROL

result, as it’s well known that the adhering to Nash equilibria might cause

significant drop in social welfare (e.g., see Roughgarden and Tardos [107]’s work

on quantifying the price of anarchy in the routing domain, i.e., the sacrifice

one needs to endure for implementing Nash equilibrium solution).

Another interesting way to visualize the growing of computational com-

plexity in finding pure strategy equilibrium is to plot the histogram of agents’

maximal deviations in all iterations. Intuitively speaking, if we have lots of

cases with 0 deviation, it implies that it’s easy to identify pure strategy equi-

librium (when the maximal deviation is 0 among all players in any iteration,

it implies that a pure strategy equilibrium has been found, since no agent

can benefit from deviating unilaterally). Not surprisingly, with the number of

agents increasing, the performance of the algorithm takes a hit and the fre-

quency of zero deviation should decrease. The plots in Figure 3.1 confirm our

speculation. Besides steady decrease in zero-deviation cases, the distribution

of deviations also gradually shifts to the right hand side, indicating greater

difficulty in reaching coordinated outcomes. The instances with loose capacity

constraints also consistently have fatter tails to the right, indicating that it’s

more difficult to identify equilibrium in general for loose instances.

In terms of utility value improvement, the SFP algorithm progresses very

quickly. In Figure 3.2 we can observe the average progress of the SFP al-

gorithm over the iteration, with error bars at +1 and -1 standard deviation.

As illustrated in Figure 3.2, we can see that most of the progress is made at

the early iterations, after which the algorithm settles down quickly, with sta-

ble values and very low standard deviations. This execution pattern is also

consistent with prior research in using SFP algorithm for large-scale discrete

optimization (e.g., see [49]). Do note that Figure 3.2 is relative; when we have

larger number of agents, it’s expected that more iterations would be necessary,

however, the pattern improvement would resemble what is illustrated here.

36

CHAPTER 3. CROWD CONTROL

2 agents: tight instances

Deviation

F
re

q
u

e
n

c
y

0 5 10 15 20

0
2

0
0

0
5

0
0

0

2 agents: loose instances

Deviation

F
re

q
u

e
n

c
y

0 5 10 15 20

0
2

0
0

0
5

0
0

0

5 agents: tight instances

Deviation

F
re

q
u

e
n

c
y

0 5 10 15 20

0
1

0
0

0
2

5
0

0

5 agents: loose instances

Deviation

F
re

q
u

e
n

c
y

0 5 10 15 20
0

1
0

0
0

2
5

0
0

8 agents: tight instances

Deviation

F
re

q
u

e
n

c
y

0 5 10 15 20

0
1

0
0

0
2

0
0

0

8 agents: loose instances

Deviation

F
re

q
u

e
n

c
y

0 5 10 15 20

0
1

0
0

0
2

0
0

0

Figure 3.1: Max deviations of 2-agent, 5-agent, and 8-agent instances.

 80

 90

 100

 110

 120

 130

 140

 150

 0 5 10 15 20

U
ti
lit

y
 V

a
lu

e

Iteration

Figure 3.2: The average progress of SFP algorithm over iterations for a sample
instance with random restarts (the error bar is one standard deviation over all
random restarts of this instance).

37

CHAPTER 3. CROWD CONTROL

3.5.3 Comparison Against Baseline

5 10 15 20 25

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

5 10 15 20 25

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

Tight instances

M
a
x

e
q
u
ib

ri
u
m

 u
til

ity
 v

a
lu

e SFP
CD

5 10 15 20 25

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

5 10 15 20 25

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

Loose instances

M
a
x

e
q
u
ib

ri
u
m

 u
til

ity
 v

a
lu

e SFP
CD

Figure 3.3: Maximal equilibrium utility value for 5-agent instances: 25 tight
instances (left) and 25 loose instances (right). X-axis denotes individual in-
stances. Y-axis represents the maximum utility value of the equilibrium solu-
tions discovered for that instance.

To understand whether the SFP algorithm we use for MOPTCC indeed

has its merits, we compare it against a popular baseline algorithm called the

Coordinate Descent (CD) algorithm (similar CD algorithm has also been com-

pared to the SFP algorithm in other domains, such as the coordinated traffic

signal control [29]). The CD algorithm is a simple yet effective algorithm for

solving large-scale discrete optimization (despite its simplicity, it’s shown to

work well in practice and in theory [127]). In the MOPTCC domain, it exe-

cutes as follows: the CD algorithm would start from any player, for whom a

best response against the current solution is computed and this best response

will then be used to replace this player’s current strategy. The CD algorithm

then move on to the next player and repeat the above procedures. The CD

algorithm would terminate either after no further improvement can be made

after we have iterated through all agents or the computational time is up.

The comparison between the CD algorithm and the SFP algorithm is con-

ducted for our 5-agent instances, with results plotted in Figure 3.3. From

the figure we can see that the SFP algorithm is at least as good as the CD

algorithm, and for some instances the SFP algorithm managed to greatly out-

38

CHAPTER 3. CROWD CONTROL

perform the CD algorithm.

Finally, we extend our experiments to 8-agent and 10-agent instances, run-

ning 50 iterations of SFP algorithm. As shown in Figure 3.4, the number of

iterations needed to find a equilibrium increases with the number of agents.

In the 2-agent and 5-agent cases, SFP is able to find equilibrium within 20

iterations. For the 8-agent and 10 agent cases, equilibrium is seldom reached

within the first 20 iterations and most equilibria are found by the second half

of 50 iterations.

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

Iteration

M
ax

 d
ev

ia
tio

n

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

Iteration

M
ax

 d
ev

ia
tio

n

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

0 10 20 30 40 50

0
5

10
15

20

Figure 3.4: Maximal deviations for selected 8-agent (left) and 10-agent (right)
instances with random restarts. Each line represents a different random restart.
X-axis denotes iterations, Y-axis denotes the maximal deviation maxi δi. A
deviation δi for player i can be viewed as the utility improvement made by
choosing the best response. If maxi δi is 0, a pure strategy equilibrium is
found, i.e., no player can benefit from unilateral deviation. Setting: (m,n,T)
= (m,10,10).

3.6 Summary

In this chapter, we introduce a new variant of the OP, referred as Multi-agent

Orienteering Problem with Time-dependent Capacity Constraints (MOPTCC).

It can be used as the starting point for modeling many combinatorial optimiza-

tion problems which involve time-dependent capacity constraints; e.g., it can

be applied to crowd management in leisure settings, where controlling queue

lengths for various attractions is of vital concern to the operator.

39

CHAPTER 3. CROWD CONTROL

To this end, we first propose a centralized model using integer linear pro-

gramming formulation. Due to the distributed nature of the problem, we

reformulate it in the game-theoretic framework, and we propose to use the

sampled fictitious play algorithm (SFP) which is shown to be computational

efficient in identifying pure strategy equilibrium. By introducing rejection-base

sampling in the fictitious play iteration, we are able to deal with computational

intractability and also the feasibility requirement we impose on the MOPTCC

game, which is to require all capacity constraints be observed at all times. Our

initial computational experiments show great promises, as we are able to find

pure strategy equilibrium in all the randomly generated instances for 2-agent,

5-agent, and 8-agent MOPTCC games.

3.7 Appendix

● ●

0.1 0.3 0.5 0.7

50
15

0
25

0
35

0

Number of resampling

Percentage of time budget reduction

N
o.

 o
f r

es
am

pl
in

g

●

●

●

0.1 0.3 0.5 0.7

13
8

14
2

14
6

Best equilibrium utility value

Percentage of time budget reduction

U
til

ity
 v

al
ue

●

0.1 0.3 0.5 0.7

14
0

14
4

14
8

Best utility value

Percentage of time budget reduction

U
til

ity
 v

al
ue

Figure 3.5: Comparison for different time budget discount ratios for 5-agent
instances: (m,n,T) = (5,10,10).

The impact of using different time budget discount ratios is illustrated in

Figure 3.5. We can clearly see that more aggressive time budget reduction

directly leads to fewer number of re-samplings. The best utility value from

discovered equilibrium solutions also improves with higher time budget dis-

count ratios.

40

Chapter 4

Mobile Crowdsourcing

4.1 Overview

Mobile crowdsourcing, where citizen volunteers are incentivized to perform

location-specific tasks, has recently attracted strong commercial interest. Most

of the existing academic research and practical deployments of mobile crowd-

sourcing presently employ a pull-based model, that individual workers inde-

pendently search through, and select from, the corpus of available tasks (often

with built-in proximity filters that enable them to identify tasks that are close

to their current location). As pointed out by [91], such pull-based embodi-

ments of mobile crowdsourcing, suffer from the phenomenon of super agents,

i.e., a small percentage of crowd workers who perform the majority of tasks1.

Domination at such high level is undesirable, as many ordinary crowd workers

might drop out as a result of not having enough tasks, reducing the worker

pool and thus the peak capacity of the mobile crowdsourcing platform. By

examining empirical data, Musthag and Ganesan conclude that the major dif-

ference between ordinary worker agents and super agents is the latter’s ability

in planning better routes and choosing tasks that fit their routes best.

Absent from the pull-based approaches are the fundamental concepts of (i)

1Based on their study, 10% of most active users complete 80% of all completed tasks.

41

CHAPTER 4. MOBILE CROWDSOURCING

task coordination, where the crowdsourcing platform proactively recommends

tasks to each crowd-worker in a globally coordinated way, with the objective of

improving the acceptance and completion rates of such tasks, and (ii) predictive

crowd-tasking, where the recommendation or selection of tasks is not performed

myopically (based on just the current location context of the workers), but

instead exploits an individual’s movement trajectory over a longer time horizon

(e.g., an entire day).

In this chapter, we investigate a push based mobile crowdsourcing frame-

work, where tasks are proactively recommended by the platform taking into

account the uncertain movement patterns (as the worker may travel on differ-

ent routes on different days). Such uncertainty presents a technical challenge

to effective task recommendation under the push-based model, as the recom-

mendation strategy must still seek to recommend individual workers tasks that

are likely to lie along their routine commuting routes, while accounting for and

trying to mitigate the likelihood that their actual routes (on a specific day)

might make it infeasible for them to perform one or more of the recommended

tasks.

4.2 Literature Review

Mobile Crowdsourcing: Recent approaches such as [2], [68], [67], and [61]

have focused on a particular class of mobile crowdsourcing, called participa-

tory sensing, with a goal of maximizing the number of assigned tasks based on

agents’ current locations. For example, Kazemi and Shahabi [68] developed a

centralized allocation algorithm focused on maximizing an agent’s set of allo-

cated tasks, while satisfying a proximity constraint (which implied that some

tasks could be potentially performed by multiple agents). Sadilek et al. [109]

studied a general class of problems called crowdphysics where tasks requires

people to collaborate in a synchronized space and time. They reduced the

42

CHAPTER 4. MOBILE CROWDSOURCING

problem into a graph planning problem and proposed two methods: global co-

ordination using shortest-path algorithm and opportunistic routing based on

the ranking of the time-stamped locations.

Researchers have also investigated the impact of incentives on task as-

signment/selection behavior in mobile crowdsourcing. [108] investigated the

relative impacts of two different incentive mechanisms—micro-payments vs.

weighted lotteries, on the task acceptance and completion rates of mobile

agents (crowd workers). The MSensing approach by [142] focuses on incen-

tive design for mobile crowdsourcing tasks, employing either a Stackelberg

game model (for scenarios where the reward is specified by the platform) or

an auction-based agent selection mechanism (where the reward is determined

through competitive bidding) to model the dynamics between the pricing of

individual tasks and the willingness of each agent (task worker) to perform

that task. However, this approach either considers a single task in isolation or

employs a cost function (for each agent) that fails to account for the regular

movement trajectory of each agent. Other work on task assignment in mobile

crowdsourcing addresses questions of reliability – for example, recently Boutsis

and Kalogeraki [14] seek to maximize the reliability of crowdsourcing tasks by

selecting agents, subject to a task completion latency constraint.

In all of these approaches, the feasibility of task assignment is defined by

the task’s proximity to the agent’s current location. In contrast, our focus is on

a coordinated mechanism for task recommendation that operates over a longer

time horizon (e.g., a day). We also explicitly model the inherent stochasticity

(uncertainty) in individual agent trajectories and seek to minimize their task-

related detours.

Multi-agent Task Allocation: The planning of agent’s route to perform

tasks that maximizes utility can be seen as OP. The closest variant of OP to

our problem is TOP. However, to the best of our knowledge, none of the previ-

ous research on TOP actually considers the incorporation of agent-specific lo-

43

CHAPTER 4. MOBILE CROWDSOURCING

cation information, namely the probability distribution of routine routes taken

by agents. One other variant of OP is the Multi-Period Orienteering Prob-

lem with Multiple Time Windows (MuPOPTW) [125]. In MuPOPTW, sales

representatives need to visit a list of mandatory customers on a regular basis,

while non-mandatory customers located nearby should also be considered and

integrated into the current customer tours. While one may view the set of

mandatory customers as the nodes on the routine routes and non-mandatory

customers as the tasks in our problem, there is no predefined visiting sequence

for the mandatory customers and the stochasticity of agent routine routes is

not captured in that model.

There is also a large body of work focusing on solving pickup and delivery

problems [6] or dial-a-ride problems [31]; both are similar to the mobile task

assignment problem we intend to study in this chapter. However, all existing

models in these areas assume that a team of full-time staffs are employed and

can carry out any specific order. Such assumptions are in direct conflict with

the requirement that individual mobile workers should follow their respective

predicted trajectories, and they could only spend limited amount of time de-

viating from their routes to perform assigned tasks. As such, none of existing

model can be utilized straightforwardly.

Real-world Implementations: There are already several notable systems

that have demonstrated values of mobile crowdsourcing. Systems such as

mCrowd [141], Twitch crowdsourcing [129] and Slide-to-X [126] provide plat-

forms to enable various crowdsourcing tasks. Commercially, the most visible

examples are Uber-like services that provide a platform for willing “part-time

drivers” to offer rides to passengers. Several other applications enable smart

citizen monitoring by using crowdsourcing for, e.g., detecting potholes [86],

mapping noise [102] and pollution [117] in urban areas, and monitoring road

traffic [121, 88]. Several instances of paid mobile crowdsourcing start-ups have

44

CHAPTER 4. MOBILE CROWDSOURCING

also emerged commercially including FieldAgent2, GigWalk3, and Neighbor-

Favor4. They pay workers a few dollars for micro-tasks such as price checks,

product placement checks in stores, and location-aware surveys. Our real-

world deployed system focuses on two core problems of all these systems: (1)

assigning or recommending location-specific tasks to workers, and (2) explor-

ing the relationship between worker behavior (e.g., accept/reject a task, time

taken to choose the right task) and attributes of the tasks (e.g., rewards and

locations).

Task Acceptance & Completion Behavior: Limited studies have explored

the relationship between task attributes and worker behavior, especially for the

crowdsourced execution of location-dependent tasks. Wang et al. [136] stud-

ied the task completion times of online tasks (posted on Amazon Mechanical

Turk), and established a power-law relationship between task completion times

and task-related features, such as the type of the task, the task price and the

day the task was posted. Alt et al. [2] used an independently developed mobile

crowdsourcing platform to discover a variety of worker preferences, including

preference for performing tasks before and after business hours or involving rel-

atively simple chores (e.g., taking pictures). More recently, Thebault-Spieker

et al. [120] conducted studies on the relationship between task pricing and lo-

cation, at city-scale, and showed that workers preferred to perform tasks with

lower detours and that were outside economically-disadvantaged areas.

In contrast to this body of academic work on task recommendation and

experimental studies on city-scale worker behavior, our focus is to empirically

investigate the human dynamics of mobile crowdsourcing in an urban campus-

like setting, and to uncover key behavioral differences arising from the use of

push vs. pull models for task recommendation and selection.

2http://www.fieldagent.net
3http://www.gigwalk.com
4http://www.favordelivery.com

45

CHAPTER 4. MOBILE CROWDSOURCING

4.3 Problem Formulation

As mentioned in Section 4.1, we are interested in creating models for recom-

mending tasks to mobile crowd workers with known routine route distributions,

so as to maximize the expected total rewards collected by all agents. The major

constraints in task recommendation for each individual agent are the maximal

amount of detour time allowed, the routine route that specifies the list of nodes

each agent needs to traverse in order, and the probability distribution over a

collection of routine routes (if this agent has multiple routine routes).

Mathematically speaking, this can be viewed as a specialized routing prob-

lem with time budget constraint and routine route requirement, and can be

modeled as a variant of the OP. The classical OP can be seen in Figure 4.1a. In

the classical OP, usually the requirement is for an agent to begin his trip from

a given origin O1, and to end at a given destination D1. An agent can visit

any node in-between O1 and D1 and incur corresponding link travel costs; yet

he cannot exhaust his time budget before reaching D1. The objective is for an

individual agent to maximize value collected at visited nodes (each node comes

with different value). The OP variant for the mobile crowdsourcing problem

with deterministic routine route (for easy explanation) can be seen in Fig-

ure 4.1b. There are two major differences when compared to the classical OP

in Figure 4.1a: 1) there are multiple agents involved, and the planner aims to

optimize the sum of all agent’s values; and 2) for each agent, a routine route is

specified, and its partial order needs to be followed (e.g., in Figure 4.1b, agent

1 needs to follow O1−M1−D1, while agent 2 needs to follow O2−M2−D2).

In both cases, all nodes can be visited at most once.

To model uncertainty on agent’s routine route, we assume that each agent

may take one of multiple routes with known probability distribution. The ob-

jective is to optimize the sum of each agent’s expected collected values. For

the rest of the section, we will introduce an integer linear programming (ILP)

46

CHAPTER 4. MOBILE CROWDSOURCING

O1

D1

8

4

3

9

(a) Classical OP.

O1

D1

8

4

3

9

O2

D2

M1

M2

(b) OP variant for mobile
crowdsourcing.

Figure 4.1: Illustrations of OP variants.

formulation for the problem of mobile crowdsourcing with routine route uncer-

tainty. Note that our solution approach generates task recommendations for

agents prior to the realization of actual routes taken. Such approach requires

no agent inputs, and thus can reduce agent’s cognitive burden in picking tasks;

such approach is thus superior to the alternative where an agent has to first

specify a deterministic route, before receiving task recommendation (this was

the model in [26]).

4.3.1 Mathematical Model

Let N be the set containing both the routine nodes and the task nodes (de-

noted as Nt), and for all pairs (i, j), where i, j ∈ N and i 6= j, let tij be the

corresponding travel time to move from i to j. Let K be the set of agents, and

let Mk be the set of agent k’s routine routes. For each route m ∈ Mk, let βmk

be the probability that agent k would use route m, Rm
k be the collection of all

nodes in route m, omk be the origin, dmk be the destination, and pmik be the visit

order for node i ∈ Rm
k . For each task i ∈ Nt, let si be its reward, and ei be

its required execution time. The upper bound of the total detour time along

route m for agent k is bmk .

We have the following four sets of decision variables:

Note that the first set of decision variables, yik, is planner’s recommendation

47

CHAPTER 4. MOBILE CROWDSOURCING

Variables Descriptions

yik ∈ {0, 1} set to 1 when task i is recommended to agent k.
xmijk ∈ {0, 1} set to 1 when agent k moves from nodes i to j when the

realized routine route is m.
vi ∈ {0, 1} set to 1 if request i is not assigned to any provider.
umik ∈ {0, . . . , N} indicate the visit order of node i for agent k, when the

realized routine route is m.
zmik ∈ {0, 1} set to 1 when agent k fails to complete recommended

task i, when the realized routine route is m; if task i is
not recommended to agent k in the first place, zmik is set
to 0 for all m ∈Mk.

decision; while the rest of decision variables are used for evaluating the outcome

of the recommendation under different routine route realizations for each agent.

The objective of the ILP formulation is to maximize expected total rewards

earned by all agents, considering uncertainties over their routine routes. The

quantity yik(1−
∑

m∈Mk
βmk · zmik) refers to the probability that a task i can be

finished, if it is recommended to agent k (i.e., if yik is set to 1). Hence, the

objective is to:

max
∑
i∈Nt

si
∑
k∈K

yik

(
1−

∑
m∈Mk

βmk · zmik

)
. (4.1)

The above objective function is not linear, and in the next subsection, we will

propose a linearized model.

Constraint (4.2) ensures that each task is recommended to at most one

agent.

∑
k∈K

yik 6 1, ∀i ∈ Nt. (4.2)

All other constraints are at agent-route level (k,m), i.e., for each agent, k ∈

K, and for each of his routine route realization, m ∈ Mk, the same set of

constraints applies. These constraints are explained as follows.

The first group of constraints ensures that flows are consistent at all nodes.

48

CHAPTER 4. MOBILE CROWDSOURCING

In particular, (4.3) specifies that inflow and outflow at any node d must be

balanced (except for the origin and destination nodes). (4.4) specifies that all

routine nodes must be visited exactly once, while all other nodes can be visited

by at most once.

∑
i∈N

xmidk =
∑
j∈N

xmdjk, ∀d ∈ N\{omk , dmk }, (4.3)

∑
j∈N x

m
djk 6 1,∑

j∈N x
m
djk = 1,∑

i∈N x
m
idk = 1,

∀d ∈ N\Rm
k ,

∀d ∈ Rm
k \{dmk },

d = dmk .

(4.4)

The time budget constraint for each routine route is enforced in (4.5).

∑
i∈N

∑
j∈N

xmijk (tij + ei) 6 bmk . (4.5)

The following group of constraints produces visit orders (umik) from flows

(xmijk), and ensures that all nodes in the routine route m are visited according

to the given sequence pmnk. In particular, (4.6) states that the visit order of the

origin node must be 1; (4.7) states that if j is visited immediately after i (i.e.,

xmijk = 1), the visit order of j should be at least 1 more than the visit order of

i (i.e., umjk ≥ (umik + 1)).

umik = 1, i = omk , (4.6)

(umik + 1)− umjk 6 N (1− xmijk), ∀i, j ∈ N. (4.7)

(4.8) states that the partial order between any pair of nodes in the routine

route must be preserved.

umik − umjk > pmik − pmjk, ∀i, j ∈ Rm
k & pmik > pmjk. (4.8)

49

CHAPTER 4. MOBILE CROWDSOURCING

Finally, (4.9) extracts whether a task node is bypassed (zmik = 1) from the

flow decision (xmijk).

zmik > 1−
∑
j∈N

xmijk, ∀i ∈ Nt. (4.9)

Linearization: As noted earlier, the objective function (4.1) is nonlinear, as

it includes multiplicative terms composed of yik and zmik , both of which are

decision variables. We would linearize (4.1) by introducing δmik to replace zmik :

• δmik is set to 1 if task i is recommended to agent k, yet cannot be completed

when the realized routine route is m, and 0 otherwise. In other words,

δmik = yik · zmik .

With δmik , we can rewrite (4.1) as:

max
∑
i∈Nt

si
∑
k∈K

(
yik −

∑
m∈Mk

βmk · δmik

)
. (4.10)

To characterize δmik , we would rewrite (4.9) for all (k,m) as:

δmik > yik −
∑
j∈N

xmijk, ∀i ∈ Nt. (4.11)

With the above modifications, the formulation is now linear, and can be solved

as an ILP using standard commercial solvers such as CPLEX.

In this ILP formulation, we assume that each task is recommended to at

most one agent. As agents might choose to ignore the task recommendation for

various reasons, such single-agent recommendation scheme might not be robust

in terms of task completion. In the following subsection, a straightforward

extension is introduced to allow us to request for more than one agents to be

considered for each task.

50

CHAPTER 4. MOBILE CROWDSOURCING

4.3.2 The Multi-Coverage Extension

As noted in section 4.1, an agent is more likely to accept a task if it lies along his

routine route(s). In other words, the agent may choose to skip a recommended

task if his realized routine route forbids him from completing the task (the

computed recommendation plan maximizes expected reward, and some task

recommendation might not be feasible for a particular route). To increase the

robustness of the recommendation plan without making the model much more

complicated, we require that each chosen task be recommended to at least η

agents, where η is a given parameter. In such robust planning scheme, we

will either recommend η agents to a task, or not assign the task if this is not

possible. To achieve this, we would introduce two additional classes of decision

variables:

• vi ∈ {0, 1}: set to 1 if this task is recommended to η agents, 0 otherwise.

• wmik ∈ {0, 1}: variable for linearization, representing vi · δmik .

To realize this extension, the objective function (4.10) is rewritten as (4.12),

and the assignment constraint (4.2) is rewritten as (4.13). (4.11) also needs

to be included. To linearize (vi · δmik) with wmik , which appears in the modified

objective function (4.12), we need the set of constraints (4.14). Finally, to

ensure that we only assign task i to agent k when task i can at least be

completed by one of agent k’s route, we also need to include constraint (4.15).

51

CHAPTER 4. MOBILE CROWDSOURCING

In other words, for every tuple (i, k), if yik = 1, δmik = 0 for at least one m ∈Mk.

max
∑
i∈Nt

si

(
vi −

∑
k∈K

∑
m∈Mk

βmk · wmik
η

)
, (4.12)

∑
k∈K yik = η · vi,

yik 6 vi,

∀i ∈ Nt,

∀i ∈ Nt, k ∈ K,
(4.13)


wmik 6 vi,

wmik 6 δmik ,

wmik > vi + δmik − 1,

∀i ∈ Nt, k ∈ K, m ∈Mk, (4.14)

∑
m∈Mk

δmik ≤ yik(|Mk| − 1),∀i ∈ Nt, k ∈ K. (4.15)

4.3.3 Scalability of the Model

Although the above ILP model can be solved exactly using CPLEX, it will

not scale to even moderate sizes. Yet we introduce this exact model for two

purposes: 1) to provide the problem structure for use by our proposed La-

grangian relaxation heuristic (to be described in Section 4); and 2) to provide

an experimental benchmark for the heuristic.

To make the ILP model more scalable, we propose the following performance-

boosting preprocessing procedures on the data without affecting the optimality

of the model.

• For each subproblem pair (k,m), we remove all tasks that cannot be

reached within the given detour time. Therefore, instead of using global

node sets N and Nt in (k,m)-level constraints, we would use (k,m)-

specific node sets Nm
k and Nm

tk .

• To avoid having to solve shortest path routing problems explicitly in the

ILP model, we pre-compute shortest path distances for all origins and

destinations and store them in a N -by-N matrix. With this matrix, we

52

CHAPTER 4. MOBILE CROWDSOURCING

can further eliminate all non-essential nodes from Nm
k . More specifically,

only nodes along the routine route m and feasible task nodes Nm
tk need

to be included in Nm
k .

With these preprocessing steps, we are now ready to formally introduce the

Lagrangian relaxation heuristic for the ILP.

4.4 Solution Approaches

In this section, we present a LR-based heuristic for our problem, and show

that it is computationally efficient in producing high quality solutions.

4.4.1 Lagrangian Relaxation

In our ILP formulation, (4.11) is the set of complicating constraints that cou-

ples all subproblems together; therefore, we choose to dualize this set of con-

straints. Following the convention in the standard LR literature, we have

Lagrangian multipliers λ = {. . . , λmik, . . .} associated with each of the con-

straints in (4.11) (indexed as (k,m, i)), and convert the objective function to

be a minimization function. Thus, we have the following dual problem L(λ):

min
∑
i∈Nt

si

(∑
k∈K

∑
m∈Mk

βmk · wmik
η

− vi

)
(4.16)

+
∑
i∈Nt

∑
k∈K

∑
m∈Mk

λmik

(
yik − δmik −

∑
j∈N

xmijk

)
. (4.17)

All constraints except (4.11) remain the same. However, by observing the

problem structure, we can further decompose L(λ) into two different classes of

subproblems. The first subproblem class is the assignment subproblem, which

decides how tasks should be recommended to individual agents (involves only

yik); the second subproblem class is the routing subproblem, which finds the

53

CHAPTER 4. MOBILE CROWDSOURCING

exact node visit sequence for each (k,m) tuple (involves only xmijk). As sub-

problems can be solved independently, this decomposition can further improve

the efficiency of our LR algorithm.

There is only one assignment subproblem in our formulation, we denote it

as g(λ) and define it as:

min
∑
i∈Nt

si

(∑
k∈K

∑
m∈Mk

βmk · wmik
η

− vi

)
+
∑
i∈Nt

∑
k∈K

∑
m∈Mk

λmik (yik − δmik) , (4.18)

δmik 6 yik, ∀i ∈ Nt,m ∈M,k ∈ K, (4.19)

together with constraints (4.13) and (4.14). (4.19) is included to further tighten

this subproblem such that incompletion penalty will only be imposed if the task

is recommended.

The routing subproblem is defined for each (k,m) tuple; therefore, the

total number of routing subproblems is
∑

k∈K |Mk|. For each (k,m) tuple, let

fmk (λmk) be the corresponding routing subproblem, where

λmk = {. . . , λmi−1,k, λmi,k, λmi+1,k, . . .},

and fmk (λmk) is defined to optimize:

min−
∑
i∈Nt

λmik
∑
j∈N

xmijk, (4.20)

subject to constraints (4.3) – (4.8).

The Lagrangian dual problem is solved by using a standard subgradient

descent algorithm, detailed in section 2.2.2. Given a λ vector, we solve all

dual subproblems; obtain the dual objective function value, and use a primal

extraction procedure to obtain primal objective function value.

The dual objective function value L(λt) of our problem can be computed

by simply summing up all objective values from the subproblems, i.e., (4.18)

54

CHAPTER 4. MOBILE CROWDSOURCING

and (4.20):

L(λt) = g(λt) +
∑
k∈K

∑
m∈Mk

fmk (λmk,t). (4.21)

The corresponding primal solution can be obtained by inserting the current

routing dual solutions {xmijk} back into the original problem, i.e., optimizing

(4.12) subject to the same set of primal constraints (4.11) and (4.13) – (4.15).

The Lagrangian multipliersλmik,t+1 and stepsize αt are updated iteratively

according to the functions below:

λmik,t+1 := λmik,t + αt(yik − δmik −
∑
j∈N

xmijk), (4.22)

αt =
µt (F ∗ − L(λt))∑

i∈Nt,k∈K,m∈Mk

(
yik − δmik −

∑
j∈N x

m
ijk

)2 , (4.23)

4.4.2 Speeding Up LR Implementation

The LR subproblems are independent of each other, as such, they can be solved

in parallel. The performance of our LR heuristic thus depends on how sub-

problems are solved (slowest subproblem dictates overall solution time). The

baseline approach for solving both the assignment and the routing subprob-

lems is to optimize the mathematical programming models described in the

earlier part of this section. In implementation, we utilize heuristics for both

subproblems to boost performance.

The assignment subproblem can be solved exactly and efficiently using

a greedy algorithm. This greedy algorithm is designed to exploit the fact

that each and every task is considered independently, and all routing-related

considerations (visit orders and detour times) are handled separately.

Algorithm 4.4.1. A Greedy Algorithm for the Assignment Subproblem

For each task i, compare the case where vi = 0 (not performing the task) and

vi = 1 (performing the task). For vi = 0, the objective value is trivially zero.

55

CHAPTER 4. MOBILE CROWDSOURCING

For vi = 1, compute the best achievable objective value as:

1. For k ∈ K, we can quantify agent k’s contribution to the objective value

by setting yik = 1 for components involving k in (4.18):

∑
m∈Mk

(
λmik + δmik

(
si · βmk
η
− λmik

))
,

where we set δmik = 1 if
(
si·βm

k

η
− λmik

)
< 0 (because (4.18) is a minimiza-

tion problem).

2. Sort all agents according to their contributions in ascending order. Choose

the first η agents and set yik = 1 for these η agents. The objective value

for task i can be computed by summing contributions for these η.

If the objective value for vi = 1 is negative, set vi = 1, otherwise set vi =

0, yik = 0, δmik = 0 for all k ∈ K,m ∈Mk.

Proposition 4.4.2. Algorithm 4.4.1 always finds optimal solution.

Proof. In Step (2) of Algorithm 4.4.1, if we replace any of the η agents, the

objective value will only increase, leading to a suboptimal solution. Similarly,

in Step (1) of Algorithm 4.4.1, the objective value will only increase if δmik is

set differently.

Therefore, Algorithm 4.4.1 will always find the optimal assignment.

The routing subproblem, on the other hand, cannot be solved so efficiently,

and are the major performance bottleneck. To investigate the trade-off be-

tween the optimality and the time performance, we define the following two

LR variants based on how the routing subproblems are solved:

• LR-Exact: Routing subproblems are solved exactly by pure enumera-

tion. Pure enumeration is the preferred approach in most instances since

56

CHAPTER 4. MOBILE CROWDSOURCING

with reasonable detour limit (say up to 30%), the number of feasible

tasks will be small enough such that pure enumeration will outperform

regular routing algorithm; a threshold can be set for the solver to switch

to regular router if the number of feasible tasks is too large.

• LR-Greedy: Routing subproblems are solved using a simple greedy

heuristic: an agent starts with the routine route m, and repeatedly try

to evaluate the gain of inserting one of the remaining tasks into all po-

tential slots; of all possible (task, slot) combinations, the best is chosen

(thus greedy). There is no optimality guarantee, but it can solve routing

subproblems very efficiently.

The LR-Greedy heuristic is very efficient, and can finish within O(|Rm
k | ·

|Nt|) even in the worst case (when there is no limit on worker’s detour time).

The LR-Exact algorithm, on the other hand, can perform very poorly as it

simply enumerates all feasible task combinations. For smaller detour limits

(e.g., the 30% as mentioned above), this might not be an issue. But for higher

detour limits, the LR-Exact approach will experience exponential execution

time growth in the number of tasks, and will not be scalable.

In the next section, we will empirically evaluate the effectiveness and effi-

ciency of both approach, and quantify whether the quality and time trade-off

of the LR-Greedy heuristic is worthwhile.

4.5 Computational Experiments

In section 4.4, we have addressed the task recommendation under route un-

certainty using the ILP model and coming up with efficient heuristics. In this

section, we investigate the computational properties of these approaches using

synthetic datasets. These investigations will help us understand the perfor-

mance trade-offs we would face when deploying our recommendation engine

57

CHAPTER 4. MOBILE CROWDSOURCING

for real-world field trials (to be reported in section 4.6.2).

More specifically, we investigate the performance of our LR heuristics from

the following two perspectives:

• LR heuristics versus the exact approach: To understand the trade-

offs between computational efficiency and solution quality, we solve the

same problem instances using both our LR heuristics and the ILP model

(which returns the true optimum). This evaluation can only be con-

ducted for small instances due to the complexity of solving the ILP

model.

• LR heuristics versus deterministic heuristics: To understand the

benefits of modeling route stochasticity explicitly, we compare the per-

formance of the LR heuristics against two deterministic heuristic ap-

proaches. One is a push-based deterministic model proposed in [26]; the

other is a pull-based proximity approach that emulates current best prac-

tices. We use a city-scale network topology to perform this comparison.

4.5.1 LR Heuristics versus the Exact Approach

The purpose of this evaluation is to compare LR-Exact and LR-Greedy to the

exact ILP model, both in terms of solution quality and computational time.

Test instances are generated randomly with parameters (K,Nt, N), where K

refers to the number of agents, Nt refers to the number of task nodes, and N

refers to the total number of nodes in the network. Each agent is assumed

to have two routine route candidates, where all routes have 5 nodes and are

selected with equal probability. The coordinates of all nodes are generated

uniformly randomly on a grid network. The distance between all pairs of

nodes are Euclidean distance.

Our evaluation is summarized in Table 4.1. The gap is percentage from the

optimum obtained via solving ILP model exactly. From these small testing

58

CHAPTER 4. MOBILE CROWDSOURCING

(K,Nt, N)
ILP LR-Exact LR-Greedy

time gap time gap time

(2, 4, 40) 0.8s 0% 0.09s 0% 0.05s
(4, 8, 80) 22.9s 0% 0.2s 4.12% 0.06s
(8, 16, 80) 6558s∗ 0.06% 14.8s 0.06% 0.14s

Table 4.1: LR heuristics vs. ILP: on both quality and time.
(*: We cut off CPLEX solver as the optimality gap is only 0.06%)

instances, we can see that both LR heuristics can produce close-to-optimum

solutions very quickly. But examining the results closer, we can see that the

efficiency of LR-Exact and LR-Greedy can potentially be different by one to

two orders of magnitude.

4.5.2 LR Heuristics versus Deterministic Heuristics

To empirically quantify the benefits of generating recommendations consider-

ing routine route uncertainties, we introduce the following two deterministic

heuristic baselines to compare with:

• Deterministic-ILS: Following the deterministic model and the iterated

local search (ILS) heuristic proposed by Chen et al. [26], we designate

each agent’s routine route to be the route with highest probability. We

denoted this baseline as DILS.

• Proximity-Based Approach: This heuristic emulates how most pull-

based mobile crowdsourcing platforms work nowadays. At each decision

epoch, agents who are available will be given the opportunity to pick de-

sired tasks based on proximity. We denoted this baseline as Proximity.

The network used in this evaluation is based on the actual public transit

network in Singapore (4,296 nodes and 10,129 edges), which contains all stops

from the metro and bus services. All-pair-shortest distance matrix is computed

a priori. To reflect the heterogeneous travel patterns of agents, we include two

59

CHAPTER 4. MOBILE CROWDSOURCING

types of agents: 80% of normal agents who compute back and forth between

fixed locations (e.g., home and office), and 20% of freelancers whose routine

routes have randomly chosen origin and destination nodes. For both agent

types, the origin nodes are randomly picked from the non-central zones, while

the end nodes are from the central zones (reflecting a commuting pattern from

“home” to “office”). Two routes are constructed for each agent as follows:

(i) the shortest path between the chosen origin and destination, and (ii) the

path with the least number of stops. The probability distribution over agent

k’s two routes follows Bernoulli distribution with parameter αk, where αk is

sampled uniformly from (0, 1). Locations of tasks are generated according to

the distribution (pr, ph), where pr and ph refer to the ratio of tasks in the non-

central and the central zones. For the synthetic instances, half are generated

with (pr, ph) equals: (60%, 40%), while the rest with (40%, 60%). Each task

is associated with a fixed utility value of 100.

Estimate LR-E LR-G DILS Proximity

Detour Bound Gap Gap Gap Gap

10% 54.5% -0.6%∗ 0.6% 13.2% 15.3%
20% 77.4% -0.9%∗ 0.1% 10.4% 12.2%
30% 91.9% 0.1% 1.1% 7.1% 8.6%

Table 4.2: LR heuristics vs. deterministic baselines.

The results for this section are summarized in Table 4.2, categorized using

different detour limits for the tuple (K,Nt, N) = (20, 30, 160), where 20 syn-

thetic instances are randomly generated for every detour limit category using

the above scheme. For each synthetic instance, all approaches are engaged to

produce their respective task recommendation plans, which are then evaluated

by 1000 routine route realizations. For each sampled route realization, we com-

pute the percentages of tasks that can be accomplished for recommendation

plans generated by all approaches (subject to the specified detour limit). For

each approach, we then compute the average task completion percentage over

60

CHAPTER 4. MOBILE CROWDSOURCING

1000 route realizations and treat it as the performance of the approach.

To provide an estimated upper bound on the task completion percentage

for each synthetic instance, we assume that the routine route realization is

known during the evaluation phase and we solve the recommendation problem

using DILS. This value is then used as the comparison baseline. The reported

gaps in Table 4.2 are all relative to this estimated bound (in other words,

the smaller the better). Although the estimated bounds are obtained with

perfect information on route realization, due to the heuristic nature of DILS,

there are cases (denoted with ∗) where the LR-Exact approach outperforms

the estimated bounds.

From Table 4.2 we can clearly see the advantage of considering route uncer-

tainties: both LR-Exact and LR-Greedy are able to obtain significantly smaller

gap compared to deterministic alternatives. The advantage of push-based ap-

proach (DILS) over pull-based approach (Proximity) is also significant, which

is consistent with previously reported results. We repeat similar experiments

with a wide range of tuples (K,Nt, N), and in all instances, LR-based ap-

proaches outperform deterministic alternatives, and the advantages of our LR

heuristics increase further as we tighten detour limits.

0
50
00

10
00
0

15
00
0

(K, Nt, N)

R
un
tim
e
(s
)

(500,500,1559) (500,1000,1927) (500,1500,2350) (500,2000,2760) (500,2500,3200)

detour=10
detour=20
detour=30

(a) Runtime(s) when Nt is increased.

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

(K, Nt, N)

R
un
tim
e
(s
)

(200,1000,1509) (400,1000,1808) (600,1000,2020) (800,1000,2232) (1000,1000,2394)

detour=10
detour=20
detour=30

(b) Runtime(s) when K is increased.

In terms of scalability, LR-Exact does not scale well. Without paralleliza-

61

CHAPTER 4. MOBILE CROWDSOURCING

tion, LR-Exact takes more than 9 hours to solve (100, 200, 600) instances,

which is of moderate size. LR-Greedy, on the other hand, is much more scal-

able. In Figure 4.2a, we fix K at 500 and increase Nt from 500 to 2500; in

Figure 4.2b, we fix Nt at 1000 and increase K from 200 to 1000. From both

figures, we empirically observe that runtime scales linearly in K and Nt.

4.6 TA$Ker: a Real-world Mobile Crowdsourc-

ing Platform

The applicability of our push-based task recommendation is put to test in a

campus-scale mobile crowdsourcing platform called TA$Ker. TA$Ker is de-

signed to allow students in our school to register as crowd workers, and a wide

variety of tasks are designed and distributed via the platform.

4.6.1 TA$Ker Architecture

Task
Management

Portal

Task
Recommender

TA$Ker App

Worker
Interaction
Manager

Worker Profile
Manager

Route Predictor

Results Analyzer

Historical
Movement Traces
– Indoor Location

Tracking

TA$Ker Backend

Figure 4.2: Overall architecture of the TA$Ker.

TA$Ker comprises a set of front-end and back-end components. Figure 4.2

shows the overall system architecture and illustrates the various individual

62

CHAPTER 4. MOBILE CROWDSOURCING

components and their interactions. The Worker Interaction Manager is re-

sponsible for handling interactions with individual workers via the mobile App

(such as providing a list of suggested tasks, capturing user acceptance and

completion of assigned tasks). The Worker Profile Manager is responsible for

managing worker profiles (including tasks such as handling worker registration

and indicating expertise for specific task categories). The Task Management

Portal handles the interactions with task owners, allowing task owners to spec-

ify various attributes for tasks (such as the completion deadline, the amount

of payment and the task location). The Route Predictor utilizes historical

traces of individual user movement to develop a predictive trajectory profile.

Finally, the Task Recommender is responsible for taking as inputs the list of

location-dependent tasks, and the predicted movement profile of workers, and

recommending an allocation of tasks (which individual workers may or may

not accept) to each individual worker.

More specifically, the Task Recommender is built based on our proposed

push-based LR heuristics presented in section 4.4 with uncertain move pat-

terns. All participating students’ preferences are collected through the TA$Ker

mobile App. On-campus movement traces of all participating students are

collected using Wi-Fi-based indoor localization techniques. Based on the col-

lected movement traces, Route Predictor generates the probability distribution

of routine routes for all participating students (details of the TA$Ker platform

can be found in [63]).

4.6.2 User Study Details

Results presented here are obtained from a user study conducted with student

participants on our university campus. All experimental studies are conducted

with approval from our Institutional Review Board on campus. As part of the

study, we recruited 160 students, who were briefed on the functionalities of the

63

CHAPTER 4. MOBILE CROWDSOURCING

App (but not told about the push vs. pull modes of task recommendation). To

protect privacy, we did not extract any personally identifiable information such

as name, date of birth, age and contact details. We then asked the students

to perform tasks using our App at various locations on the campus. The trials

were conducted over a two-week period from September 23 – October 2, 2015.

During the trial, each student was free to use the TA$Ker App to perform any

task that was in her list of Available Tasks.

The tasks can be categorized into the following four categories:

1. Discrete valued multiple choice: workers have to select from a predefined

set of values. Example: Is the male toilet at the second level of the

Science building clean? Yes / No.

2. Counting-based: workers have to select from a predefined set of numerical

values. Example: How many people are queuing at the coffee shop? 0–10.

3. Picture-based: workers are required to upload task-specific images using

their smartphones. Example: Snap a picture of the promotion sign cur-

rently hanging in front of the Men’s Grooming section at the Watsons

store on campus.

4. Free text-based: workers are to type in their answers as text. Example:

Tell us the price of AXE body spray sold at the Watsons store on campus.

To study the relative efficacy of push vs. pull models, 160 students were

randomly and equally divided into the “Push” class and the “Pull” class. For

students belonging to the “Push” class, they were provided task recommenda-

tions tailored to their predicted routes. In contrast, for students in the “Pull”

class, they were able to see the entire set of available tasks, and have to make

their own task selection. The user study was governed by several important

parameters:

64

CHAPTER 4. MOBILE CROWDSOURCING

• Task Time Windows: To accommodate student’s typical daily schedule,

each day was divided into three 3-hour time windows: (a) 9am – 12pm,

(b) 12pm – 3pm, and (c) 3pm – 6pm. New tasks were loaded into the

App at the beginning of every new time window (i.e., at 9am, 12pm,

and 3pm). Any task not completed by the end of its time window was

considered expired and was removed from the list of available tasks.

• Reward per Task: As our study did not focus on incentive design, we

adopted a flat reward structure: every successfully completed task re-

sulted in an earning of $1.

• Maximal Tasks per Time Window: Each student was allowed to perform

at most 3 tasks per time window.

• Varying η: To investigate the effectiveness of the coverage ratio per task,

we experiment with different η values ranging from 1 to 4.

4.6.3 Performance of the Recommendation Engine

It is natural to ask: given the inherent location errors and movement uncer-

tainties of workers on the campus, can our recommendation strategy gener-

ate useful task recommendations? To establish this efficacy, we compute the

accuracy of two distinct recommendation strategies: (a) our proposed strat-

egy where the recommendations take into account each worker’s individual

predicted trajectories, versus (b) a trajectory-oblivious strategy, where each

worker is first assigned one of five “representative trajectories” (each of which

traverses all the floors of one of five campus buildings), and the centralized

recommendation algorithm is then executed on these synthetic trajectories.

The recommendation error is then computed in terms of the “detour distance”

to a task’s location, with this detour being defined as the minimum distance

to the task location, from all reference locations that the worker actually visits

65

CHAPTER 4. MOBILE CROWDSOURCING

during the task’s validity period. For example, assume that the recommended

task T1 (with location l1) is valid during (10:00am, 10:30am) and the observed

series of stay locations during this period is {X, Y, Z}. The minimum needed

detour is then computed as min{d(X, l1), d(Y, l1), d(Z, l1)}.

0

2

4

6

8

0 30 60 90 120 150 180

A
ve

ra
ge

 e
rr

o
r

in

re
co

m
m

e
n

d
at

io
n

 (
in

m

in
u

te
s)

Task Validity Period

trajectory based

trajectory oblivious

Figure 4.3: Error in recommendations.

Figure 4.3 plots the average error (detour overheads across all users) versus

task validity period for these two strategies. We can see that the average error

of our recommender is around 2.5 times lower compared to the trajectory-

oblivious approach. More specifically, for a 15-minute validity window, our

recommendation error is less than 3 minutes (equivalent to travel times between

floors of the same building), while the trajectory-oblivious approach has an

error of over 8 minutes (equivalent to the time needed to visit a location three

buildings away). We also can see that in general, as the task validity period

increases, the error in recommendation decreases, as the additional slackness

in time enables us to better predict a worker’s precise trajectory.

To study the efficacy of η, the multi-coverage parameter, we considered data

from another pilot (March-April 2015) for a 4-week period where 80 students

signed up and completed 800 tasks. During this trial period, we incremented

η each week from 1 to 4. We compute the task completion rate each week by

calculating the ratio between the number of completed tasks in that week and

the total number of tasks accepted (normalized over number of users partic-

ipated in each week). We find that increasing η indeed helps to improve the

66

CHAPTER 4. MOBILE CROWDSOURCING

task completion rate. With η = 3, the task completion rate is improved by

20%; when η = 4, the task completion rate is improved by 26%.

4.6.3.1 Super-Agent Phenomenon

While examining TA$Ker user’s behaviors, we observe an interesting trend – a

relatively small number of users generate a disproportionally large fraction of

task responses. Figure 4.4 shows that 30% of active agents are responsible for

70% of total tasks completed on the TA$Ker platform. The existence of such

heavily skewed behavior makes it important to focus on this critical group of

users since they play an important role in the overall dynamics of the system

and contribute more value to the task owners. We refer to this top 30% of

active agents as super agents.

0

0.2

0.4

0.6

0.8

1

0% 20% 40% 60% 80% 100%C
u

m
u

la
ti

ve
 t

as
ks

 c
o

m
p

le
te

d

% of Active students

Figure 4.4: Super-agent phenomenon.

4.6.3.2 Efficiency of Users

In this section, we illustrate how we measure a user’s efficiency in perform-

ing mobile crowdsourcing tasks. In particular, we provide measurements on

a user’s planning efforts and task performance efforts and demonstrate how

being in the push/pull classes and being super/normal agents would affect

these performance measures. All results are summarized in Table 4.3. The

definitions of all used metrics are explained below.

Detour: To compute detour efficiency, we need to estimate detours that

67

CHAPTER 4. MOBILE CROWDSOURCING

Metrics Push vs Pull Super vs Normal Push Class Pull Class
Push Pull Super Normal Super Normal Super Normal

Total detour 5.2 7.6 45 15 40 12 62 18
(min) (per task) (per task)

Detour efficiency 168 160 169 170 175 165 140 172
(cents/ min)

Task selection 9 16 13 13 8 11 15 18
efficiency (min)

Performance 8 3 6 6 8 9 3 3
interval (min)
Performance one adjacent 3 levels 2 levels one 3-4 levels 2-3 sections adjacent

efficiency (distance) building section away away building away away section

Table 4.3: Summary of the metrics across classes and agent categories.

are related to the performance of tasks. However, measuring the total time

traveled by a user is not straightforward since we need to identify the neighbor-

ing stay locations (both prior to and after the task performance) in which the

user stays for a significant amount of time (in our case, more than 4 minutes)

to calculate additional time elapsed for him to reach his next location after

deviating from his usual route to perform the chosen task.

Let the task location be denoted as Z, we analyze the location traces, and

identify locations this user stayed at, for considerably longer time before and

after going to Z. We denote the location this user stayed before Z as X, and

the location after Z as Y . The detour time is then (tX,Z + tZ,Y)− tX,Y , where

tX,Z denotes the travel time to reach location Z from location X.

0%

20%

40%

60%

80%

100%

40 80 120 160 200

%
 o

f
u

se
rs

Total detour (in minutes)

Push class

Pull class

Figure 4.5: Total detour incurred during the trial.

Figure 4.5 shows the histogram of the total detour made per user through-

out our trial period. After averaging over the detour time over the number

of completed tasks, we find that users from the push class incurred a detour

68

CHAPTER 4. MOBILE CROWDSOURCING

of 5.2 minutes per task, which is 2.4 minutes shorter on average than users in

the pull class. A t-test confirms that the push class indeed incurs statistically

lesser detour time than the pull class with a p-value of 0.0016. In terms of

labor supply, super agents contributed on average 45 minutes while normal

agents contributed only 15 minutes on average.

To further study how the push and pull modes affect behaviors of super

agents, we separately analyze behaviors of super agents and normal agents

in both push and pull classes. In the push class, super agents incurred 40

minutes of detour while normal agents incurred only 12 minutes. The same

trend is observed in the pull class – super agents made significantly more detour

compared to normal users (62 and 18 minutes, respectively).

Detour Efficiency: We have seen that super agents are willing to con-

tribute more detour time, but does the extended travel lead to more earning

opportunities? We measure this by the detour efficiency, which is defined as

cents earned per detour minute. The histogram of detour efficiency for all ac-

tive users is given in Figure 4.6. When broken down by the agent categories,

super agents and normal agents have similar detour efficiencies at 169 and 170

cents per detour minute respectively. When broken down by the push/pull

classes, the push class is earning 168 cents per detour minute, which is slightly

more efficient than the pull class, which is earning 160 cents per detour minute.

For normal agents in both push and pull classes, their performances are sim-

ilar as well. However, the efficiency of super agents differs greatly depending

on whether they are in the push or the pull class. While super agents in the

push class earn 175 cents per detour minute, super agents in the pull class

earn only 140 cents per detour minute, a 20% drop. This demonstrates that

for dedicated mobile crowdworkers, push technology is particularly valuable as

it allows workers to outsource their planning efforts to our recommendation

engine.

Task Selection Efficiency: By analyzing how users interact with our

69

CHAPTER 4. MOBILE CROWDSOURCING

0%

10%

20%

30%

40%

50%

60%

<= 0.5 <= 1 <= 1.5 <= 2 <= 2.5 <= 3

%
 o

f
u

se
rs

Detour efficiency ($ earned per minute)

Push class - super agents

Push class - normal agents

(a) Push-class users.

0%

10%

20%

30%

40%

50%

<= 0.5 <= 1 <= 1.5 <= 2 <= 2.5 <= 3 <= 3.5

%
 o

f
u

se
rs

Detour efficiency ($ earned per minute)

Pull class - super agents

Pull class - normal agents

(b) Pull-class users.

Figure 4.6: Detour efficiency of (a) push-class and (b) pull-class users.

App, we can quantify the “search efforts” spent by users in identifying the set

of tasks to commit to. More specifically, for each time window, we estimate the

task selection efficiency within this time window as the time difference between

the moment a user opens the App for the first time or browses through the

list of tasks (whichever happens first) and the moment the user accepts a

task. Similar to earlier metrics, we provide comparison across two dimensions:

between push and pull classes, and between super and normal agents.

While users from the push class spent 9 minutes browsing through the

tasks list and accept the tasks, users from the pull class spent nearly twice

as long as their counterparts. This is consistent with our intuition that users

from the push class have the advantage (over the pull class) of browsing only

the tasks in the recommended list. Interestingly, despite the fact that super

agents perform more tasks than normal agents, both agent classes spend 13

minutes (on average) in making initial task commitment. When analyzing

both agent categories in each class separately, we notice that both super and

normal agents spend much less time in the push class than in the pull class.

For super/normal agents, it is 8/11 minutes for being in the push class and

15/18 minutes for being in the pull class.

Performance Interval: To understand how far in advance does a user

commit to his tasks, we also measure the time in between task selection and

task performance. We find that a user from push class submits a task after

70

CHAPTER 4. MOBILE CROWDSOURCING

8 minutes since the acceptance time; however, pull class users submit after

a mere 3 minutes. However, agent category does not seem to play a role in

this metric, as the performance intervals for both super and normal agents are

around 6 minutes.

Performance Efficiency (distance): We also notice that users from

the pull class accept tasks mostly in the vicinity of their current locations –

when they are (on average) 50 seconds away from task locations (translates to

several sections away, usually on the same building level). On the other hand,

push class users are more likely to accept a task further away, even when they

are several buildings away. Instead of reporting the actual travel time (or

distance), we report whether the distance is such that it is still on the same

level (but in sections), on different levels (but still in the same building), or in

different buildings.

4.7 Summary

In this chapter, we study a “push-based” paradigm for large-scale mobile

crowdsourcing, where a centralized engine provides trajectory-aware task rec-

ommendations to a large pool of workers, while taking into account individual’s

uncertain daily movement patterns. We present a stochastic integer linear pro-

gram, to find assignments that maximize the cumulative expected rewards by

all workers, considering the uncertainties over their routine routes. Subse-

quently, to develop a solution that can scale to city-scale scenarios, we exploit

the separable problem structure and apply Lagrangian relaxation and dual

decomposition. Experiments using realistic movement traces over Singapore’s

public transport network show that our Lagrangian relaxation based heuristics

can generate recommendations faster than an exact ILP formulation by more

than two orders of magnitude, while suffering a less-than-1% degradation in

the percentage of tasks recommended (compared to an idealized alternative

71

CHAPTER 4. MOBILE CROWDSOURCING

where the realized routes are known a priori).

The applicability of our push-based task recommendation is put to test

in a campus-scale mobile crowdsourcing platform called TA$Ker. Real-world

crowdsourcing studies show that this push-based approach can be effective even

with highly uncertain routine routes, achieving more than 25% of improvement

in efficiency for top workers, compared to a traditional pull-based alternative.

72

Chapter 5

Home Health Care

5.1 Overview

The last application domain that draws our interest is a mobile version of the

workforce scheduling, where service providers are scheduled to service the cus-

tomers at their specified locations. More specifically, we study the workforce

scheduling for home health care services1. In the literature, a considerable

amount of problem specific systems have been developed for home health care

settings across the world. For example, Begur et al. [9] first developed a spatial

decision support system for Visiting Nursing Association in the United States

to minimize total travel time, taking into consideration of routing, provider

availabilities, and fixed visitation frequencies. Eveborn et al. [38] presented a

single day scheduling system, called LAPS CARE, for Swedish health care sys-

tem that maximizes the number of served requests and considers time windows,

skill requirements, and breaks. We believe the existing systems/practices fell

short in the following two key aspects.

• Failure to address the uncertainties: Due to the varying health con-

ditions of the patients as well as the experience of healthcare providers,

1These medical services range from cleaning, personal hygiene to administering some
medical treatments, such as blood pressure tests, prescriptions, injections and so on

73

CHAPTER 5. HOME HEALTH CARE

1 2 3 4 5 6 7 8 9 10 11 12
Service disciplines

0

10

20

30

40

50

60

70

80

M
in

u
te

s

Service durations by discipline

Figure 5.1: Means and standard deviations of service durations over one-month
visits grouped by different service disciplines. Note, the statistics are summa-
rized using the actual visit records of Sept. 2015. Discipline specifies the type
of service required, e.g., speech therapy, skilled nursing, physical therapy, to
name a few.

the service durations can have quite substantial variance. Figure 5.1

plots the means and standard deviations of actual service durations over

one month of actual visit records grouped by different service disciplines.

We can see that service duration uncertainty is clearly exhibited, where

standard deviations under all disciplines are larger than 10 minutes up

to 30 minutes. In addition, unforeseen traffic conditions, such as conges-

tion, accidents, and breakdowns, often result in varying travel durations,

thus further complicates the prediction of service start times. Faced with

both types of duration uncertainties, providers responsible for scheduling

are confronted with the dilemma of either over-estimating duration times

so as to guarantee services and travel and, hence, under-utilizing their

resources, or under-estimating those times and, thus, short-changing pa-

tients by making them wait for services. In any case, duration uncer-

tainties can potentially deteriorate patient satisfaction and result in ad-

ditional costs for the company.

• Insufficient business considerations: Existing automated scheduling

systems differ significantly, as problems originate from different regions

with various requirements and regulations. Fikar and Hirsch [41] recently

74

CHAPTER 5. HOME HEALTH CARE

presented a comprehensive survey on the home health care problem. To

the best of our knowledge, none of the existing works completely ad-

dresses all the business requirements raised by our problem.

In this chapter, we propose to develop a decision-support system for the

efficient delivery of services to patients at home, while tightly integrating both

patients’ and providers’ preferences. We focus on generating the start-of-the-

day schedules, considering realistic scenarios driven by our real-world needs,

with a comprehensive set of considerations for home health care settings, e.g.,

time windows, continuity of care, workloads, inter-visit temporal dependencies,

and especially the duration uncertainties.

5.2 Literature Review

The Home Health Care Scheduling Problem (HHCSP) is the problem of schedul-

ing and routing service providers to visit patients at home. It was first men-

tioned by Fernandez et al. [40], where community nurses are scheduled to visits

patients. Essentially, HHCSP instantiates some form of workforce scheduling

and routing problems. Castillo-Salazar et al. [22] review the workforce schedul-

ing and routing problem, not limited to the health care industry and view the

home health care as one of the application domains. Other similar applications

can also be found in the technician scheduling, emergency services, transporta-

tion systems, or call centers [36, 22]. Problems from different domains share

some commonality, and also differs substantially in problem settings. Given

a large amount of literature, we focus on the research more related to our

problem and heath care domain.

On the workforce scheduling aspect, literature on workforce scheduling in

health care domain mainly deals with staff rostering requirements, such as

skills, shifts, time-related constraints, work regulations and ect [17, 99]. On

the routing aspect, Vehicle Routing Problem (VRP) [123] and OP [57] have

75

CHAPTER 5. HOME HEALTH CARE

long been extensively studied to model various problems from transportation

and logistics. In literature, HHCSP is often modeled as the VRP [41], with

assumption that the workforce is sufficient and the goal is to cover all the

requests with the minimal travel costs or manpower. In our problem, however,

the company faces an oversubscribed situation, where the number of requests

received often exceeds its service capacity, especially under the case when we

care about patient preferences and continuity of care. The current practice for

the company is to first schedule requests for full-time providers. Any uncovered

requests are then made up by a combination of either extending the visits for

full-time providers or outsourcing to part-time providers. We are concerned

with scheduling full-time workforce with the objective to maximize patients’

satisfaction, measured in terms of rewards. Hence, the underlying problem at

stake is an OP rather than a VRP. We model the problem as a variant of the

TOPTW.

There is also a thread of research dedicated to home health care. Fikar and

Hirsch [41] recently present a comprehensive survey on HHCSP. The majority

of the related works focuses on single-period problems, i.e., a single day as

scheduling horizon, and only few papers consider multi-period ones, i.e., over

multiple days. Our problem can be categorized as a multi-period HHCSP. The

problem becomes much more challenging and complicated when going into

a longer scheduling horizon, as the scheduling process involve more complex

assignments, regulations, and continuity of care. Problems differ substantially

due to different business considerations. Time windows, qualifications, and

provider availabilities are commonly addressed in multi-period problems, while

other aspects, such as workload fairness, continuity of care, inter-visit temporal

dependencies are less incorporated, especially uncertainties [41]. Next, we focus

on the multi-period HHCSP literature.

In multi-period HHCSP literature, there have been works addressing the

workload fairness as the objective function, to minimize the workload differ-

76

CHAPTER 5. HOME HEALTH CARE

ence among providers or optimize utilization factors [59, 8, 20, 37]. Yuan

and Fügenschuh [144] handle the workload in the objective to minimize daily

working hours. In our problem, the company desires a provider to service a

minimum workload if possible and overworking is not preferred. We model the

minimum workload as soft constraints as the penalty in the objective function

and maximum workload as hard constraints.

Considering the continuity of care, works by [5, 21] model it as hard con-

straints that require patients to be visited strictly by the same providers over

the scheduling horizon, which is not flexible to a certain extent. Nickel et al.

[95] try to minimize the sum of, over all the providers, the different providers

serving the same the patient, while Rodriguez et al. [106] allow a patient to be

visited by a maximum number of different service providers. However, these

providers are treated equally without priorities. Lin et al. [82] use five cases

of hard weight allocation criteria to enforce care continuity and incorporate

priority. Instead, we take a softer and flexible approach. Our objective is

to maximize patients’ satisfaction, measured in terms of rewards collected for

serving the patients. The provider-request dependent rewards give us the flex-

ibility to reflect the continuity of care with prioritized provider candidates and

to further capture requests’ information, such as type, emergency or request

priority.

Inter-visit dependency is another aspect to consider. Rasmussen et al. [103]

study a single-day problem with five types of temporal precedence. Existing

research on the multi-period problem focuses on day-level temporal depen-

dencies. Some impose fixed visiting days [9, 124], while some assume service

frequency, often handled by using predefined service combinations as the input

and let the model decide the visiting days [10, 113, 95, 144]. In our problem,

we handle both fixed visiting days, as well as visiting service frequencies for

patients with flexible availabilities.

With regards to handling uncertainties, we notice that most of the existing

77

CHAPTER 5. HOME HEALTH CARE

works with uncertainties consider the uncertain demands [73, 21, 106, 15],

whereas stochastic service or travel times are rarely studied in HHCSP. Yuan

et al. [143] present an exact branch-and-price algorithm to tackle a single-

day problem with uncertain service times, which solves small instances up

to 50 patients. It focuses on the penalty for late arrivals in the objective,

instead of enforcing the time windows. Errarhout et al. [37] propose a two-

stage model in a multi-period setting to cater uncertain service times and solve

the model by CPLEX with instances up to 11 nurses and 75 patients. However,

time-windows and inter-visit temporal dependencies are not respected. The

introduction of uncertain durations makes the problems with time windows

even harder to solve. In this problem, we incorporate duration uncertainties

by enforcing a set of time window chance constraints.

In summary, to the best our knowledge, none of the existing works can be

readily extended to handle our problem.

5.3 Problem Formulation

In this section, we provide the formal definition for our multi-period home

health care scheduling problem, motivated by the requirements from a leading

home health care and hospice company in Pittsburgh. The problem is defined

as the following tuple:

〈D, N, T, R, K〉

D denotes the set of days d for the scheduling horizon, i.e., d ∈ D. Each

day is discretized into minutes, indexed from 1 to 1440. N represents the set of

all nodes, N = Nt∪Nk, where Nt and Nk are the set of patient’ requested visit

locations and health care providers’ start and end locations, respectively. T is

the pairwise travel time matrix and tij ∈ T denotes the travel time between

78

CHAPTER 5. HOME HEALTH CARE

node i and j.

R represents the set of patients’ requests, for the given scheduling horizon,

e.g., the next 7 days. Each request represents a service task to be specifically

performed at a patient’s home. A request belongs to only one patient, and a

patient may specify several requests over the scheduling horizon. Each request

i is characterized by a tuple 〈ni, ai, wi, qreqi , {[oid, cid]}〉 where:

• ni ∈ Nt, ai and wi are the service location, service duration, units of

work required by the request, respectively.

• qreqi is the service discipline specifying the type of service that the request

needs, e.g., speech therapy, skilled nursing, physical therapy, just to name

a few.

• {[oid, cid]} refers to the set of available time windows, during which a

patient wish servicing of a request i to be started. It is possible that a

patient indicates several available time windows for the same request i

over different days d – e.g., Alice is free on Monday morning and Thurs-

day 2pm-4pm for a physical therapy treatment, from which health care

providers have to decide the best time slot to allocate. More specifi-

cally, oid and cid are the earliest and latest start-times for a time window

[oid, cid]. If a provider arrives earlier than oid, he will wait until the time

window opens. While arriving later than cid will lead to the violation of

the time window constraint.

K represents the set of health care providers. Each health care provider

k ∈ K has a set of qualifications that he holds. Typically, qualifications are

flat and distinct, e.g., nurse, nutritionist, and therapist. Each provider is

constrained by an availability time window [T 1
kd, T

2
kd] on each day d, i.e., he

will leave his start node N1
k at time T 1

kd, and return to the end node N2
k before

time T 2
kd.

79

CHAPTER 5. HOME HEALTH CARE

A request is considered as completed if and only if a qualified and avail-

able provider starts the service within the patient’s available time window and

stays with the patient for the whole service duration.

The goal is to schedule and route service providers for home health care

visits on a weekly basis that considers the requirements from both patients

and service providers. The problem is further subject to the following consid-

erations:

• Inter-visit Temporal Dependency: A patient may subscribe several

visits/requests over the same week. These requests can be temporally

dependent such that request j has to be fulfilled at least D−ij days after

and no more than D+
ij days after servicing request i. Such inter-visits

dependencies are often seen in practice.

• Workload Fairness: A provider is paid a fixed salary as long as he is

working on a day. The company desires a provider to service at least W−

units of work on a daily basis, if possible. At the same time, a maximum

working unit W+ is imposed, as overworking is not preferred.

• Continuity of Care: Each patient has a set of prioritized provider

candidates and is preferred to be visited by his primary provider. This

is important for patient satisfaction, especially for patients with chronic

conditions.

• Uncertain Durations: In real-world scenarios, travel and service dura-

tions are usually uncertain. We assume travel times tij and service times

ai are random variables following certain distributions.

5.3.1 Mathematical Model

In this section, we first propose an ILP model for the deterministic problem,

followed by incorporating the duration uncertainties. Decision variables are

80

CHAPTER 5. HOME HEALTH CARE

summarized as follows:

Variables Descriptions

xdijk ∈ {0, 1} set to 1 if provider k serves request j right after i on day d.
ydik ∈ {0, 1} set to 1 if request i is assigned to provider k on day d.
vi ∈ {0, 1} set to 1 if request i is not assigned to any provider.
edik ∈ {1, . . . , T} service start time of request i for provider k on day d.
fkd ∈ {0, 1} set to 1 if provider k is assigned with requests on day d.
pkd ∈ {0, 1} set to 1 if the route for provider k on day d is penalized.

Intuitively, reward will be collected if a request is completed by a provider.

Let rik be the provider-dependent rewards, defined based on the units of work

(wi) the request needs and whether this provider is the patient’s primary

provider under this discipline(lik). Thus, we have:

rik = r · wi + r+ · lik,

where r is a constant base reward and r+ is the additional reward assigned for

the primary provider. The reward structure helps the continuity of care, where

there is an incentive to assign primary providers to patients, and promotes

the productivity, where higher reward will be collected for request requiring

more units of work. The bigger the r+, the stronger the enforcement of care

continuity.

The objective of this model is to generate a sequence of requests to visit for

each provider on each day that maximizes the expected total rewards collected

for the whole team considering the route penalties. γ is the amount of penalty

81

CHAPTER 5. HOME HEALTH CARE

incurred if a route does not meet the minimum workload.

max
∑
i∈Nt

∑
d∈D

∑
k∈K

rik · ydik − γ ·
∑
d∈D

∑
k∈K

pkd, (5.1)

vi +
∑
d∈D

∑
k∈K

ydik = 1, ∀i ∈ Nt, (5.2)

ydik = 0 ∀i ∈ Nt; d ∈ D; k ∈ {K \Kid}, (5.3)
D−ij −M(vi + vj) 6

∑
k∈K

∑
d∈D d · (ydjk − ydik) ∀i, j ∈ Nt,∑

k∈K
∑

d∈D d · (ydjk − ydik) 6 D+
ij +M(vi + vj), ∀i, j ∈ Nt,

(5.4)

ydik 6 fkd, ∀i ∈ Nt; k ∈ K; d ∈ D, (5.5)
W− · fkd −

∑
i∈Nt

ydik · wi 6M · pkd, ∀k ∈ K; d ∈ D,∑
i∈Nt

ydik · wi 6 W+ ∀k ∈ K; d ∈ D,
(5.6)

ydik 6
∑
j∈N

xdijk ∀i ∈ Nt; k ∈ K; d ∈ D, (5.7)

Constraints (5.2) ensure each request is assigned at most one provider over

the entire scheduling horizon. As Kid denotes the set of providers who are

qualified and available to serve request i on day d, constraints (5.3) make sure

that requests will not be assigned to any unavailable or unqualified providers.

Constraints (5.4) reflect requests’ inter-visit temporal dependencies. Con-

straints (5.5) specify that a route exists when it contains any request. Con-

straints (5.6) enforce the minimum and maximum workload requirements on

every route. M is a large positive number. If a provider works less than W−

units on a day, the route for that provider on that day will be penalized (i.e.,

pkd = 1). Note, if a provider is not assigned any requests on a day, it will not

be penalized, as there is no cost incurred by the health care company. Con-

straints (5.7) bind the decision variables ydik with decision variables xdijk, which

ensure that requests are assigned only when they can be visited.

The rest of the constraints (5.8) - (5.12) are provider-day (k, d) level routing

82

CHAPTER 5. HOME HEALTH CARE

constraints. For each provider k ∈ K on each day d ∈ D, the same set of

constraints applies.



∑
j∈N x

d
ijk =

∑
j∈N x

d
jik,∑

j∈N x
d
ijk −

∑
j∈N x

d
jik = 1,∑

j∈N x
d
jik −

∑
j∈N x

d
ijk = 1,

∀i ∈ N \ {N1
k , N

2
k},

i = N1
k ,

i = N2
k ,

(5.8)

edik = T 1
kd, i = N1

k , (5.9)

edik + ai + tij − edjk 6M(1− xdijk), ∀i, j ∈ N, (5.10)

oid 6 edik 6 cid, ∀i ∈ Nt, (5.11)

edik 6 T 2
kd, i = N2

k . (5.12)

Constraints (5.8) ensure that every provider k starts and ends at his specified

nodes N1
k and N2

k and the connectivity of the nodes. Note that, edik refers to

the start service time of node i. Early service or late service will cause the

violation of the request time window constraints. Constraints (5.9) initialize

the start service time of the start node for provider k. Timing consistency

constraints are enforced in constraints (5.10). For every provider k, if node j

is visited immediately after node i (i.e., xdijk = 1), the start service time edjk

of node j should be at least (ai + tij) time units later than the start service

time edik of node i (also eliminates the subtours). Constraints (5.11) make sure

that requests’ time windows are respected. Finally, constraints (5.12) limit the

time budget.

5.3.2 Modeling Duration Uncertainty

To incorporate the uncertain durations, we then extend the deterministic

model. We assume travel times tij and service times ai are random variables

following certain distributions. We assume these distributions are given as

problem input, which can be derived from historical records obtained from the

83

CHAPTER 5. HOME HEALTH CARE

home health care domain. Note that in the deterministic model, these dura-

tions only affect the time window and time budget constraints. Thus, to model

duration uncertainty, we replace the time window constraints (5.11) and time

budget constraints (5.12) by a set of chance constraints (5.13) and (5.14), while

the rest of the constraints remain the same as the deterministic formulation.

Thus, we have:

max Objective (5.1)

s.t. Constraints (5.2)− (5.10)

P (oid 6 edik 6 cid) > 1− α, ∀i ∈ Nt; k ∈ K; d ∈ D (5.13)

P (edik 6 T 2
kd) > 1− α, ∀i = N2

k ; k ∈ K; d ∈ D. (5.14)

The chance constraints (5.13) and (5.14) enforce the probability of satisfying

the respective constraints are at least 1 − α, α ∈ [0, 1]. α is the risk level,

indicating the decision maker’s level of conservativeness.

5.4 Solution Approaches

The deterministic model can be solved by commercial solvers such as CPLEX.

However, it is not scalable with increasing number of providers and requests

with longer scheduling horizon. In this section, we use Lagrangian relaxation

and dual decomposition to improve its scalability.

84

CHAPTER 5. HOME HEALTH CARE

5.4.1 Lagrangian Relaxation

We relax constraints (5.7), which couple all the assignment and routing decision

variables together, into the objective function.

min L(λ) = −
∑
i∈Nt

∑
d∈D

∑
k∈K

ydik · rik + γ ·
∑
d∈D

∑
k∈K

pkd

+
∑
i∈Nt

∑
d∈D

∑
k∈K

λdik(y
d
ik −

∑
j∈N

xdijk). (5.15)

We then decompose the relaxed dual problem L(λ) into one assignment

sub-problem, which assigns the requests to the providers, and provider-day-

level sub-problems, which find the routes for the providers.

Assignment Sub-problem: The assignment sub-problem is defined as:

min
∑
i∈Nt

∑
d∈D

∑
k∈K

ydik · (λdik − rik) + γ ·
∑
d∈D

∑
k∈K

pkd, (5.16)

s.t. Constraints (5.2)− (5.6)

The assignment ILP model can be solved exactly by CPLEX. To further scale

up the sub-problem, we can apply linear relaxation. The idea is to drop integer

constraints for decision variables, which transforms hard ILP problem into an

easier polynomial solvable linear problem (LP). In minimization problem, the

objective value achieved by the LP is always smaller or equal to that of the

original ILP, thus it can serve as a lower bound for the assignment sub-problem.

Routing Sub-problems: There are K · D independent provider-day-level

85

CHAPTER 5. HOME HEALTH CARE

routing sub-problems for each provider k and on each day d:

min−
∑
i∈Nt

∑
j∈N

λdik · xij, (5.17)

s.t. Constraints (5.8)− (5.12)∑
j∈N

xij 6 1, ∀i ∈ Nt, (5.18)

∑
i∈Nt

∑
j∈N

xij · wi 6 W+. (5.19)

Constraints (5.18) and (5.19) are included to further tighten the sub-problems,

such that one node is visited at most once in a route and the maximum work-

load is enforced (i.e., no more than W+ units of work in a route). This routing

sub-problem can be viewed as an OP, which is NP-hard. Instead of solving

the routing ILP, we develop a search algorithm (2), that exploits the rout-

ing problem structure. During the search phase, we systematically extend the

routes and discard unpromising dominated routes, which guarantees to find

the optimal routing solution. Before going into the algorithm details, we first

present the following observation.

Observation - Route Comparability: two feasible routes are comparable if

and only if they contain exactly the same set of nodes and end at the same

node, i.e., |r1| = |r2| and rk1 = rk2 (assume k is the last node in the route).

Observation 1 holds because two feasible routes having the same set of nodes

with different visiting sequences and the same ending node leads to the same

objective value, and provides a fair starting point for further route extension.

For two comparable routes, route r1 dominates route r2 if they are compa-

rable and the total time for r1 is less than the total time for r2. The intuition

is that the route with the shorter total time will have more room for future

insertion. In algorithm (2), we insert only nodes with positive Lagrangian

multipliers(λdik) into the route to improve the objective value. A node can be

inserted into the route if and only if all the time windows, time budget, and

86

CHAPTER 5. HOME HEALTH CARE

maximum workload constraints are satisfied (i.e., GetFeasibleRequest()).

We start with a route with only one node, i.e., the provider’s start location.

At each iteration, non-dominated routes from the last iteration are expanded

by one more feasible node. A node is considered as feasible if the resulting

extended route satisfies the time window and time budget requirements. By

doing so, routes of longer length are generated. Only non-dominated routes

will be stored and dominated routes will be pruned. Note, with the dominance,

if there are several comparable routes with the same shortest total time, we

will keep just the first one. The search procedure stops when no route can be

further expanded.

Algorithm 2: BFS with Dominance Pruning

1 Input: (λdik, N)
2 R← Initialize(), continue←TRUE
3 while continue do
4 for r ∈ R do
5 Nfeasible ← GetFeasibleRequest(r,N, λdik)
6 for n ∈ Nfeasible do
7 r

′ ← ExtendRoute(r, n, λdik)

8 R ← UpdateNonDominatedSet(r
′
, R)

9 end

10 end
11 continue← CheckContinue()

12 end
13 r∗ ← UpdateBest(R)

Since all the sub-problems are independent from each other, our decompo-

sition based approach allows further parallelization for the sub-problems in the

system implementation, which would largely speed up the solution approach.

Note, in the experiment section, sub-problems are run sequentially, without

parallelization.

After dual decomposition, we solve the Lagrangian dual problem through

projected sub-gradient descent algorithm, detailed in section 2.2.2. At each

iteration, sub-problems are solved given the Lagrangian multipliers λt. λt are

87

CHAPTER 5. HOME HEALTH CARE

updated iteratively through the master function:

λdik,t+1 := λdik,t + αt(y
d
ik −

∑
j∈N

xdijk) ∀i ∈ Nt, k ∈ K, d ∈ D. (5.20)

In order to iteratively move towards the optimal solution and determine

the convergence, we need the best primal solution with the dual solutions at

each iteration. However, dual solutions may not always result in a feasible

primal solution, as a request may appear in several routing solutions. Let

zdik =
∑

j∈N x
d
ijk where xdijk are the decisions from routing sub-problems. To

restore a good feasible primal solution from the routing solutions, we solve the

following ILP:

min−
∑
i∈Nt

∑
d∈D

∑
k∈K

rik · ydik + γ ·
∑
d∈D

∑
k∈K

pkd, (5.21)

s.t. Constraints (5.2)− (5.6)

ydik 6 zdik ∀i ∈ Nt; k ∈ K; d ∈ D. (5.22)

To improve the scalability of primal extraction, we also developed a greedy local

search heuristic. Given routing solutions as the base, we try to greedily resolve

the conflicts of same requests appearing in several routes and insert unassigned

requests using local search heuristic (several local search operations are used,

such as insert, replace and etc).

5.4.2 Handling Duration Uncertainty

To solve the chance constrained model, we apply Sample Average Approxima-

tion (SAA) [96] to reduce realization set to manageable size and convert the

stochastic formulation into a deterministic one. We randomly generate a set

of independent and identically distributed samples, S = {ξ1, ξ2, ..., ξs}, for all

tij and ai from the known distributions, and check whether time window and

88

CHAPTER 5. HOME HEALTH CARE

time budget constraints are satisfied. Note, these duration distributions can be

derived based on the domain knowledge and historical data. We approximate

the probabilities as:

P
(
oid 6 edik 6 cid

)
≈ |S+|/|S|

P
(
edik 6 T 2

kd

)
≈ |S+|/|S| (5.23)

where |S+| are the number of samples under which the corresponding con-

straints are satisfied. Note that, when approximating chance constraints on a

discrete set of samples, it is important to identify a smaller risk threshold α
′
,

where α
′
< α. Since SAA replaces the original distributions with empirical

distributions obtained from the samples, a smaller α
′

is used to hedge against

the under-representation of the limited samples.

The resulting formulation is an ILP that still maximizes the total col-

lected rewards but also considers the constraints over all the samples. Sim-

ilarly, the chance constrained criteria can be incorporated into our solution

approach by modifying the routing sub-problems, i.e., specifically the Get-

FeasibleRequest() Function in our specialized search routine. Now, fea-

sible requests are generated by checking the chance constraints over all the

duration samples (against α
′
), instead of just the deterministic durations.

Sample selection heuristic: The scalability and quality of the SAA

method depend on the size and representativeness of the sample set. So in-

stead of use a fixed large sample set S ′, we use a small representative subset

S ∈ S ′, where we try to select samples that are as different as possible. In-

tuitively, the smaller the durations, the lesser chance of constraint violation.

We first generate a large amount of samples from the duration distributions,

say |S ′| = 1000. We then sort the samples according to certain metric, i.e.,

ds =
∑

i∈N
∑

j∈N tij +
∑

i∈Nt
ai. We then uniformly select |S| samples from

|S ′| based on the distances ds.

89

CHAPTER 5. HOME HEALTH CARE

5.5 Computational Experiments

In this section, we empirically demonstrate the efficiency and effectiveness of

our approaches on instances adapted from a real world dataset.

5.5.1 Instance Generation

The problem instances considered in our experiments are adapted from a

real-world dataset from a leading home health care and hospice company

in Pittsburgh, USA. The data contains one month of visit-related informa-

tion for September 2015. Each service provider is characterized by start geo-

coordinates and his qualifications. Also, each patient is associated with a

home geo-coordinates and provider preferences. A patient may have several

visit records over the week. Each visit record contains information such as a

visit datetime, actual service duration, type, discipline, and provider assigned.

As the dataset contains the actual visits information and not the input requests

for the scheduling, we need to generate the requests from the dataset.

To broaden the analysis, we also synthetically generate an additional set

of problem instances with time windows, inter-visit dependencies and dura-

tion uncertainties2. We first retrieve the visits within the specified schedul-

ing horizon and the subregions. From the selected visits, we retrieve the

corresponding patients’ and providers’ information. Deterministic pair-wise

Haversine distances (i.e., great-circle distances) are computed based on their

actual geo-information and converted into travel times a priori (with a travel

speed of 30mph). We then synthetically generate some additional patients’

request-related information, such as available time windows and inter-visit

dependencies. We assume visit i’s start service time si is the midpoint for

request i’s time window. Two types of request time windows are then speci-

2Due to patient privacy concerns, it is not possible for us to make actual problem data
provided by the HHC Company publicly available. However, the additional synthetically
generated problems are accessible: sites.google.com/site/homehealthcarewebsite/

90

CHAPTER 5. HOME HEALTH CARE

fied as [si − tw/2, si + tw/2], with time-window width tw set to 2 hours and

6 hours, denoted as ins-tight and ins-loose respectively. 2-hour time-window

is rather realistic while 6-hour time-window provides more scheduling flexibil-

ity. To reflect the inter-visit temporal dependencies, we randomly select 40%

of the patients and filter out the patients with only one request. For each

selected patient, we then synthetically generate [D−ij , D
+
ij] for all his request

pairs (i, j) ∈ Rk. Additionally, we allow those selected requests to have several

available days, while the rest of the requests have to be visited on the same

days as the actual visits. Lastly, we assume providers are available on the days

of the visits, and they work from 7am to 5pm. Provider-dependent rewards

are generated based on r and r+. Here, we assume the base reward r is a fixed

value of 100.

For stochastic instances, in lieu of having distributions based on historical

data, we assume durations t ∈ T (both travel and service times) are nor-

mally distributed N (µt, σ
2
t) with µt equal deterministic durations and σt as 10

minutes.

5.5.2 Algorithms Compared

The performances and runtime of our proposed methods depend on how sub-

problems are solved. To investigate the trade-off between the optimality and

the time performance, in the experiment section, we evaluate the following four

algorithms. The routing sub-problems are solved by the search algorithm (2).

These algorithms differ from each other on how the assignment sub-problem

is solved and how the primal solution is extracted at each iteration. More

specifically, we have:

• DLR-E: Both assignment and primal extraction are solved exactly by

ILP formulation.

• DLR-H: This is the relaxed version of DLR-E that solves the assignment

91

CHAPTER 5. HOME HEALTH CARE

sub-problem by linear relaxation and primal extraction by the greedy

local search heuristics.

• SLR-E/ SLR-H: Each extends DLR-E and DLR-H respectively to handle

duration uncertainties, by applying SAA in the routing search procedure.

In all the experiments, the route penalty γ is set to 80. The cut-off running

time for all approaches is set to 10 minutes, if not specified in experiments.

Experiments were conducted on a machine with i7-4790 CPU@3.6GHz and 32

GB RAM.

5.5.3 Numerical Results

We first compare the scalability of exact ILP with DLR. After running CPLEX

for exact ILP on small instances (e.g., (D, R, K)=(7, 359, 44)) for 2 hours, it

turns out that optimality cannot be reached and running out of memory. Our

approaches can return good solutions within 10 minutes even for large-scale

instances up to size (D, R, K)=(7, 4203, 273).

Results on Deterministic HHCSP: We first compare the quality of the

schedules produced by our LR-based approaches against the actual schedules

derived from company-provided visit data. This instance is of size (D, R,

K)=(7, 2062,199), where all the requests have fixed visiting days and no time

windows. To compare the trade-off between generating more valid routes and

assigning more primary providers, we test the instance with different r+ ∈

{100, 50}. Results are summarized in Table (5.1). Metrics are measured in

percentage of relative difference, normalized by those of the actual visits.

Table (5.1) shows that LR-based approaches improve the objective value

by at least 10%. The number of route metric is measured in terms of route

reduction. DLR-E generates fewer routes compared to the others, i.e., less

manpower required from the company. In terms of workload fairness, we com-

pare the number of valid routes generated by each approach. A route is valid

92

CHAPTER 5. HOME HEALTH CARE

r+
Objective No. of Routes No. of Valid Routes Primary Assigned
DLR-E DLR-H DLR-E DLR-H DLR-E DLR-H DLR-E DLR-H

100 20.32% 19.72% -2.59% 0.00% 17.65% 0.74% 46.12% 47.25%
50 14.79% 12.27% -13.45% 0.17% 52.21% -3.68% 37.23% 46.65%

Table 5.1: Comparison of DLR-E and DLR-H against actual schedules on one
instance of size (D, R, K)=(7, 2062, 199) with different r+.

if it meets the minimum and maximum workloads. The more valid routes

generated, the better. Again, DLR-E outperforms the rest. For continuity

of care, we compare the total number of primary providers assigned. Both

LR-based approaches substantially assign more primary providers compared

to actual visits, especially DLR-H. Results also show that increasing r+ biases

the solutions towards more primary providers assigned, a smaller r+ tends to

generate solutions with fewer routes. This demonstrates the flexibility of our

methods on generating solutions for different focuses.

Table (5.2) describes the key results on the performance comparison be-

tween the DLR-E and DLR-H on both ins-tight and ins-loose instances with

time-windows and inter-visit dependencies. Results are averaged over 10 ran-

dom instances of each instance type.

Instance
type

DLR-E DLR-H
gap% tPerItr(s) gap% nGap% tPerItr(s)

ins-tight 4.46% 137.01 10.52% 6.03% 53.72
ins-loose 0.27% 132.97 7.71% 3.08% 54.26

Table 5.2: Comparison on synthetic instances with time-windows, temporal
dependencies and (D, R, K)=(7, 2062, 199).

The gap here refers to the gap between the best primal and the best dual

solution found. Table (5.2) clearly shows that both DLR-E and DLR-H are

able to get provably near-optimal solutions, with optimality gaps less than

4.46% for DLR-E and 10.52% for DLR-H. nGap represents the normalized

gap, which is calculated as the percentage difference between the best primal

solution found by DLR-H and the best dual solution found by DLR-E (tighter

93

CHAPTER 5. HOME HEALTH CARE

lower bound). We can see that the actual optimality gaps for DLR-H should be

smaller than nGap, i.e., less than 6% on both instances. tPerItr represents the

runtime per iteration. DLR-E provides better solution quality while DLR-H

provides a trade-off between solution quality and runtime, which finds good

solutions within a shorter time.

Results on Stochastic Extension: Due to durational uncertainties,

there is a probability that a request cannot be served within the time win-

dow or that a route may exceed its time budget. In this section, we examine

the solution quality based on 1000 random duration realizations. Results are

averaged over 10 random instances of each instance type and an instance is

evaluated over all the realizations. In the experiments, we set our risk level α

as 0.3. The smaller the α′ we set, the more conservative we are against the

representativeness of the selected samples. Meanwhile, increasing the sample

size leads to better approximations for the real distributions, but less efficient.

Based on our initial set of parameter experiments (omitted here due to space

limit), we set α′ as 0.15 and sample size as 60. Samples are generated using

our sample selection heuristic.

We focus on two evaluation metrics: 1) Chance constraint violation ratio,

the number of chance constraints that are violated, normalized by the total

number; 2) Expected objective, the average objective value achieved by the

solution. For these results, a chance constraint is considered as violated if more

than α · 1000 times over the 1000 realizations (α = 30% here), this constraint

is not satisfied. The expected objective is calculated as the sum of provider-

dependent rewards of all requests, whose time window chance constraints are

not violated, averaged over the random instances.

We compare the stochastic extensions with both deterministic approaches,

DLR-E and DLR-H. We evaluate the deterministic approaches with two set of

duration input from the distributions: mean and maximum durations. We use

the durations that are 2σ upper away from the means, i.e., 97.75% percentile,

94

CHAPTER 5. HOME HEALTH CARE

Expected Objective TW Violations TB Violations
DLR-E: mean 382600 76.7/1987.2 14/508.2
DLR-H: mean 387470 65.9/1991.3 11.6/531
DLR-E: max 319780 0/1597.4 0/512.2
DLR-H: max 340320 0/1708.6 0/551.9
SLR-E 388350 0.2/1938 0 /511
SLR-H 394090 0.1/1960 0 /534

Table 5.3: Results on synthetic instances of ins-tight with (D, R, K) = (7,
2062, 199). TW denotes time-window chance constraints, while TB refers to
the time budget chance constraints.

to approximate the maximum values.

We can observe from Table (5.3), our deterministic approaches with mean-

duration are sensitive to duration uncertainties on ins-tight instances, where

time window chance constraints and time budget chance constraints can be eas-

ily violated. On the other hand, deterministic approaches with max-duration

can guarantee services and travel. However, they suffer from worse expected

objectives, where providers are underutilized. While both SLR-E and SLR-

H, are robust towards the stochasticity, achieving almost no violations of the

chance constraints. Stochastic approaches slightly outperform the determinis-

tic counterparts with mean-duration on expected objective values and they

substantially outperform the deterministic counterparts with max-duration

on this metric. Thus, more sophisticated approaches, i.e., our stochastic ap-

proaches, to model uncertainty are warranted.

5.6 Summary

We investigate the multi-period home health care scheduling problem driven

by the real-world needs. An integer linear programming model is proposed

to formulate the deterministic problem. We further extend it with chance

constraints to handle stochastic travel and service times, which is useful for

real-world situations. Subsequently, to develop a solution that can scale to city-

95

CHAPTER 5. HOME HEALTH CARE

scale scenarios, we apply the Lagrangian relaxation and exploit the separable

problem structure to decompose the formulation into smaller sub-problems.

Finally, we solve the chance constrained problem by applying sample average

approximation. With this sampling based approach incorporated, as long as

there is a distribution simulator driven by the historical duration data, we can

provide proactive solutions, which react well to potential uncertainties.

96

Chapter 6

Conclusion and Future Work

In this thesis, we propose to investigate real-world decision support prob-

lems for agent management and coordination in urban environments, which

inevitably involve agents with different behavior patterns and preferences and

often require orienteering agents in such environments.

In Chapter 2, we give an overview of the OP, which can serve as the start-

ing point to model a broad range of real-world problems. In Chapters 3–5,

we specifically explore three application-driven problems that aim to manage

agents with a personal touch. Chapter 2 handles the crowd control problem

in leisure environments with non-cooperative agents by adapting the sampled

fictitious play. Two problems studied in Chapters 3-4 share some common-

ality that cooperative agents are required to perform location-based tasks in-

dependently, and Lagrangian relaxation is applied in both cases. These two

problems also differ significantly: while the mobile crowdsourcing problem fo-

cuses on task allocation, taking into consideration of the uncertain movement

patterns, the workforce scheduling problem is concerned with generating the

actual schedules by considering various requirements from both patients and

providers.

In the following sections, we will provide brief summaries of the contribu-

tions and discuss potential future works that can be extended from this thesis.

97

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Crowd Control

We addressed the crowd control problem in leisure environments, where indi-

vidual agents aim to visit a sequence of selected attractions with the objective

of maximizing their rewards according to their own preferences while observing

individual’s time budget limitations and attractions’ capacity constraints. In

this problem, we focused on identifying pure strategy Nash equilibrium solu-

tions where individual agents cannot gain by deviation. Below, we identify

several specific future research directions.

• In the current work, the initial computational experiments show great

promises, as we are able to find pure strategy equilibrium in all the ran-

domly generated instances for 2-agent, 5-agent, and 8-agent games. The

immediate next step is to further improve the computational approach so

that it can scale to even larger instances. In the proposed sampled ficti-

tious play algorithm, each player’s best response is computed by solving

an exact ILP model using CPLEX. Exact methods from operation re-

search literature, such as cutting plan, branch and bound and relaxation

techniques, can be explored to speed up the best response computation.

• In leisure environments, visitors may exhibit similar preference patterns,

which can be categories into different groups, such as thriller seekers,

water lovers, and family with kids. While current work considers each

individual visitor as an agent, another direction to explore is to aggre-

gate the visitors into different flow groups with preferences and treat the

aggregated groups as agents. Instead of looking for pure strategy equi-

librium, we try to identify mixed strategy Nash equilibrium for agents.

• Current work assumes that we have complete information about the time-

dependent payoff matrix. However, in reality, payoff matrix is often large,

especially when more agents are involved in the games and complete

98

CHAPTER 6. CONCLUSION AND FUTURE WORK

characterization is computationally intractable, e.g., each payoff value

can only be estimated by running multiple time-consuming simulations.

It is also possible that the payoffs are noisy. To handle these, one possible

direction is to estimate games through simulation and sampling. We may

pursue computationally tractable approaches such as empirical game-

theoretic analysis framework to approximately find equilibria.

6.2 Mobile Crowdsourcing

We investigated the push-based mobile crowdsourcing where tasks are proac-

tively recommended by the platform to workers, taking into account the uncer-

tain movement patterns of the workers. The objective is to maximize rewards

for all assigned tasks while ensuring that each individual’s task-related detour

from their routine routes stays within a specified time budget. The applicabil-

ity of our push-based task recommendation was put to test in a campus-scale

mobile crowdsourcing platform called TA$Ker. There are significant opportu-

nities for further improvement and refinement.

• To make the task assignment algorithms applicable to a wider variety

of problem settings, the algorithms have to be enhanced to deal with

additional task-related constraints, such as task time windows, sequential

dependencies among tasks, or finer-grained time separation requirements

for recurring tasks. Worker-level considerations can also be incorporated,

such as how to ensure the fairness among the mobile workers, how to

synchronize mobile workers to perform some collaborative tasks, how to

measure the quality of the work done by the mobile workers.

• The model can be further extended to consider the case of task bundles,

where workers must pick an entire set of tasks. Such task bundling is

becoming commonplace in urban delivery services as it helps workers

99

CHAPTER 6. CONCLUSION AND FUTURE WORK

amortize their travel overheads. An open question is whether such bun-

dles can be effectively formed without knowing each worker’s trajectories,

but based on the overall city-scale models of aggregate commuting flows.

• Most existing task assignment models focus on centrally assigning tasks

from platform’s perspective, which assumes that workers will perform the

tasks as long as they are assigned. However, it is possible that workers

may reject the tasks assigned due to various reasons. Thus, it is more

efficient and effective to combine the centralized assignment model with

worker selecting model so that workers may select the tasks they are

good at and then compete with others to obtain the reward.

• Incentive mechanism plays an important role in maximizing the number

of tasks performed for any mobile crowdsourcing platform. The most

popular incentive currently for the crowd workers to perform the tasks

is using the monetary reward. How should we price the tasks or task

bundles such that workers are incentivized and task completion rate is

maximized, is an interesting research question to be explored. Several

directions may be explored, such as conventional micro-payment, group-

oriented macro-rewards, elastic pricing models.

• Further empirical studies can be performed on the TA$Ker platform to

systematically explore other facets of mobile crowdsourcing, including

evaluating the performances of different assignment algorithms, compar-

ing various incentive mechanisms, understanding the effects of pricing

strategies.

6.3 Workforce Scheduling

We studied a weekly home health care scheduling problem that generates the

start-of-the-day schedules for the service providers to visit patients at home,

100

CHAPTER 6. CONCLUSION AND FUTURE WORK

with the objective to maximize rewards for the company. We considered the

scenario driven by real-world needs, with a comprehensive set of considera-

tions, e.g., time windows, continuity of care, workloads, inter-visit temporal

dependencies, and especially the stochastic service and travel durations. This

problem can be extended from following directions.

• While current model maximizes the total rewards collected by the health

care company, other aspects may be explored for the objective function,

such as minimizing distance traveled, reducing the manpower costs, or

maximizing the service level. Different objectives can also be combined

through various means, e.g., constructing weighted objective functions,

considering different objectives in a lexicographic order, or approximating

the Pareto optimal frontier.

• From the problem setting perspective, additional considerations may be

incorporated, such as mandatory breaks (e.g., lunch breaks), synchro-

nization of services that requires multiple providers serving the same

requests simultaneously, and the utilization of part-time workers to sup-

plement the full-time workforce. Aside from that, uncertain demands

are frequently observed in the real life due to various reasons. Emergent

requests may occur or services may be canceled at a short notice. When

generating the schedules, it is important to also incorporate the demand

uncertainty into the problem formulation.

• Most of the research on this problem focuses on the single modal trans-

port, e.g., usually assuming the use of vehicles. However, the needs to

combine multiple modes of transport (e.g., vehicles, bikes, public trans-

ports and walking) or sharing the resources are often observed in real life,

especially at the urban centers where public transport system is conve-

nient or vehicle resources are limited. The model can be further extended

to multi-modal transport scenario to increase the efficiency of workers,

101

CHAPTER 6. CONCLUSION AND FUTURE WORK

improve the utilization of vehicles and decrease the costs.

• Other heuristics can be also studied for this problem, such as iterative

local search, tabu search, and large variable neighborhood search, to

compare against our proposed approaches.

6.4 Challenges for Future Works

This thesis has direct relevance to the emerging concept of smart cities, which

enables better coordination among interactive agents in usage of services/facilities

in urban environments. To going further, we will build upon this thesis towards

the following four general directions:

• Handling more realistic urban challenges: In the near future, we

are interested in solving more realistic problems arising from the urban

environments and scaling up to city scale. For example, mobile crowd-

sourcing is only applicable in urban cities, where worker pool is sufficient

and there are increasing demands for services. A number of research

questions are left unaddressed in this thesis. For instance, how to main-

tain worker pool so that the platform could sustain? How to handle

various real-word considerations, such as congestions, to better utilize

workforce in urban environments?

• Coping with uncertainties: We live in a world of uncertainty in many

sense. It is important to deal with sources of uncertainties such as de-

mand, supply, durations, breakdowns, cancellations of bookings, etc.

How to generate robust solutions that that can be executed with high

probability in uncertain urban environments remains to be studied.

• Utilizing human data: Mobile technology changes the way businesses

engage with people. At the individual level, there is an increasing trend

102

CHAPTER 6. CONCLUSION AND FUTURE WORK

in using mobile apps to generate schedule or recommendation. At the

company level, people’s digital traces can be aggregated and analysed to

predict demand patterns, movements patterns or other preference infor-

mation. How to better utilize massive human behaviour and preferences

data collected through various means, such as mobile devices, to provide

context-aware recommendations and incentivize the urban dwellers, is

important to be further explored.

• Moving from offline to online: Lastly, the approaches presented in

this thesis actually compute offline strategy to be executed online. The

reactive online approach is a challenging direction which is not yet ex-

plored. In the future, we would like to close the loop by moving to

online reactive algorithms to manage schedule throughout its execution,

including incorporating unexpected events that occur throughout days.

103

Bibliography

[1] Orienteering, author=Wikipedia, howpublished = https:

//en.wikipedia.org/wiki/orienteering, note = Accessed: 2016-10-

31.

[2] Florian Alt, Alireza Sahami Shirazi, Albrecht Schmidt, Urs Kramer, and

Zahid Nawaz. Location-based crowdsourcing: extending crowdsourcing

to the real world. In 6th Nordic Conference on Human-Computer Inter-

action: Extending Boundaries, pages 13–22. ACM, 2010.

[3] Claudia Archetti, Alain Hertz, and Maria Grazia Speranza. Metaheuris-

tics for the team orienteering problem. Journal of Heuristics, 13(1):

49–76, 2007.

[4] Claudia Archetti, Martin W. P. Savelsbergh, and M. Grazia Speranza.

The vehicle routing problem with occasional drivers. European Journal

of Operational Research, 254(2):472–480, 2016.

[5] Rym Ben Bachouch, Alain Guinet, and Sonia Hajri-Gabouj. A decision-

making tool for home health care nurses planning. In Supply Chain

Forum: an International Journal, volume 12, pages 14–20. Taylor &

Francis, 2011.

[6] Roberto Baldacci, Enrico Bartolini, and Aristide Mingozzi. An Exact

Algorithm for the Pickup and Delivery Problem with Time Windows.

Operations Research, 59(2):414–426, 2011.

104

https://en.wikipedia.org/wiki/orienteering
https://en.wikipedia.org/wiki/orienteering

BIBLIOGRAPHY

[7] Reuven Bar-Yehuda, Guy Even, and Shimon Moni Shahar. On approxi-

mating a geometric prize-collecting traveling salesman problem with time

windows. Journal of Algorithms, 55(1):76–92, 2005.

[8] David Barrera, Nubia Velasco, and Ciro-Alberto Amaya. A network-

based approach to the multi-activity combined timetabling and crew

scheduling problem: Workforce scheduling for public health policy im-

plementation. Computers & Industrial Engineering, 63(4):802–812, 2012.

[9] Sachidanand V Begur, David M Miller, and Jerry R Weaver. An inte-

grated spatial dss for scheduling and routing home-health-care nurses.

Interfaces, 27(4):35–48, 1997.

[10] Ashlea R Bennett and Alan L Erera. Dynamic periodic fixed appoint-

ment scheduling for home health. IIE Transactions on Healthcare Sys-

tems Engineering, 1(1):6–19, 2011.

[11] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont,

1999.

[12] Hermann Bouly, Duc-Cuong Dang, and Aziz Moukrim. A memetic al-

gorithm for the team orienteering problem. 4or, 8(1):49–70, 2010.

[13] Sylvain Boussier, Dominique Feillet, and Michel Gendreau. An exact

algorithm for team orienteering problems. 4OR: A Quarterly Journal of

Operations Research, 5(3):211–230, 2007.

[14] Ioannis Boutsis and Vana Kalogeraki. On task assignment for real-time

reliable crowdsourcing. In Distributed Computing Systems (ICDCS),

2014 IEEE 34th International Conference on, June 2014.

[15] John Bowers, Helen Cheyne, Gillian Mould, and Miranda Page. Conti-

nuity of care in community midwifery. Health care management science,

18(2):195–204, 2015.

105

BIBLIOGRAPHY

[16] George W Brown. Iterative solution of games by fictitious play. Activity

analysis of production and allocation, 13(1):374–376, 1951.

[17] Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and

Hendrik Van Landeghem. The state of the art of nurse rostering. Journal

of scheduling, 7(6):441–499, 2004.

[18] Steven E Butt and Tom M Cavalier. A heuristic for the multiple tour

maximum collection problem. Computers & Operations Research, 21(1):

101–111, 1994.

[19] Vicente Campos, Rafael Mart́ı, Jesús Sánchez-Oro, and Abraham

Duarte. Grasp with path relinking for the orienteering problem. Journal

of the Operational Research Society, 65(12):1800–1813, 2014.

[20] Paola Cappanera and Maria Grazia Scutellà. Joint assignment, schedul-

ing, and routing models to home care optimization: a pattern-based

approach. Transportation Science, 49(4).

[21] Giuliana Carello and Ettore Lanzarone. A cardinality-constrained ro-

bust model for the assignment problem in home care services. European

Journal of Operational Research, 236(2):748–762, 2014.

[22] J Arturo Castillo-Salazar, Dario Landa-Silva, and Rong Qu. Workforce

scheduling and routing problems: literature survey and computational

study. Annals of Operations Research, 239(1):39–67, 2016.

[23] I-Ming Chao, Bruce L Golden, and Edward A Wasil. A fast and effective

heuristic for the orienteering problem. European Journal of Operational

Research, 88(3):475–489, 1996.

[24] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. The team ori-

enteering problem. European Journal of Operational Research, 88(3):

464–474, 1996.

106

BIBLIOGRAPHY

[25] Cen Chen, Shih-Fen Cheng, and Hoong Chuin Lau. The multi-agent

orienteering problem. In Tenth Metaheuristics International Conference,

Singapore, August 2013.

[26] Cen Chen, Shih-Fen Cheng, Aldy Gunawan, Archan Misra, Koustuv

Dasgupta, and Deepthi Chander. TRACCS: Trajectory-aware coordi-

nated urban crowd-sourcing. In 2nd AAAI Conference on Human Com-

putation and Crowdsourcing, pages 30–40, 2014.

[27] Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash

equilibrium. In Foundations of Computer Science (FOCS), 2006.

[28] Shih-Fen Cheng, Daniel M Reeves, Yevgeniy Vorobeychik, and Michael P

Wellman. Notes on equilibria in symmetric games. In Proceedings of the

6th International Workshop On Game Theoretic And Decision Theoretic

Agents GTDT 2004, pages 71–78, 2004.

[29] Shih-Fen Cheng, Marina A. Epelman, and Robert L. Smith. CoSIGN:

A parallel algorithm for coordinated traffic signal control. IEEE Trans-

actions on Intelligent Transportation Systems, 7(4):551–564, 2006.

[30] Clickz. Personalization helps amazon prevail. https://www.clickz.

com/personalization--helps--amazon--prevail/24250, 2015. Ac-

cessed: 2016-10-22.

[31] J.-F. o. Cordeau and G. Laporte. The dial-a-ride problem (darp): Vari-

ants, modeling issues and algorithms. pages 89–101, 2003.

[32] Duc-Cuong Dang, Rym Nesrine Guibadj, and Aziz Moukrim. A pso-

based memetic algorithm for the team orienteering problem. In European

Conference on the Applications of Evolutionary Computation, pages 471–

480. Springer, 2011.

107

https://www.clickz.com/personalization--helps--amazon--prevail/24250
https://www.clickz.com/personalization--helps--amazon--prevail/24250

BIBLIOGRAPHY

[33] Duc-Cuong Dang, Racha El-Hajj, and Aziz Moukrim. A branch-and-cut

algorithm for solving the team orienteering problem. In International

Conference on AI and OR Techniques in Constriant Programming for

Combinatorial Optimization Problems, pages 332–339. Springer, 2013.

[34] Duc-Cuong Dang, Rym Nesrine Guibadj, and Aziz Moukrim. An effec-

tive pso-inspired algorithm for the team orienteering problem. European

Journal of Operational Research, 229(2):332–344, 2013.

[35] Daniel Duque, Leonardo Lozano, and Andrés L Medaglia. Solving the

orienteering problem with time windows via the pulse framework. Com-

puters & Operations Research, 54:168–176, 2015.

[36] Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David

Sier. Staff scheduling and rostering: A review of applications, methods

and models. European journal of operational research, 153(1):3–27, 2004.

[37] A Errarhout, S Kharraja, and C Corbier. Two-stage stochastic assign-

ment problem in the home health care. IFAC-PapersOnLine, 49(12):

1152–1157, 2016.

[38] Patrik Eveborn, Patrik Flisberg, and Mikael Rönnqvist. Laps care—an

operational system for staff planning of home care. European Journal of

Operational Research, 171(3):962–976, 2006.

[39] Dominique Feillet, Pierre Dejax, and Michel Gendreau. The profitable

arc tour problem: solution with a branch-and-price algorithm. Trans-

portation Science, 39(4):539–552, 2005.

[40] Aurora Fernandez, G Gregory, A Hindle, and AC Lee. A model for

community nursing in a rural county. Journal of the Operational Research

Society, 25(2):231–239, 1974.

108

BIBLIOGRAPHY

[41] Christian Fikar and Patrick Hirsch. Home Health Care Routing and

Scheduling: A Review. Computers & Operations Research, 77:86–95,

2017.

[42] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving

the orienteering problem through branch-and-cut. INFORMS Journal

on Computing, 10(2):133–148, 1998.

[43] Marshall L Fisher. The lagrangian relaxation method for solving integer

programming problems. Management science, 27(1):1–18, 1981.

[44] Robert C Ford and Duncan R Dickson. Enhancing customer self-efficacy

in co-producing service experiences. Business Horizons, 55(2):179–188,

2012.

[45] Drew Fudenberg and Jean Tirole. Game theory, 1991. Cambridge, Mas-

sachusetts, 393:12, 1991.

[46] Luca Maria Gambardella, Roberto Montemanni, and Dennis Weyland.

Coupling ant colony systems with strong local searches. European Jour-

nal of Operational Research, 220(3):831–843, 2012.

[47] Michel Gendreau, Gilbert Laporte, and Frederic Semet. A branch-and-

cut algorithm for the undirected selective traveling salesman problem.

Networks, 32(4):263–273, 1998.

[48] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. A tabu search

heuristic for the undirected selective travelling salesman problem. Euro-

pean Journal of Operational Research, 106(2):539–545, 1998.

[49] Archis Ghate, Shih-Fen Cheng, Stephen Baumert, Daniel Reaume,

Dushyant Sharma, and Robert L Smith. Sampled fictitious play for

multi-action stochastic dynamic programs. IIE Transactions, 46(7):742–

756, 2014.

109

BIBLIOGRAPHY

[50] Bruce L. Golden, Larry Levy, and Rakesh Vohra. The orienteering prob-

lem. Naval Research Logistics, 34(3):307—318, 1987.

[51] Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering prob-

lem. Naval research logistics, 34(3):307–318, 1987.

[52] Bruce L Golden, Qiwen Wang, and Li Liu. A multifaceted heuristic

for the orienteering problem. Naval Research Logistics (NRL), 35(3):

359–366, 1988.

[53] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Pure nash

equilibria: hard and easy games. In Journal of Artificial Intelligence

Research, pages 215–230, 2003.

[54] Aldy Gunawan, Hoong Chuin Lau, and Kun Lu. An iterated local search

algorithm for solving the orienteering problem with time windows. In Eu-

ropean Conference on Evolutionary Computation in Combinatorial Op-

timization, pages 61–73. Springer, 2015.

[55] Aldy Gunawan, Hoong Chuin Lau, and Kun Lu. Sails: Hybrid algorithm

for the team orienteering problem with time windows. In Proceedings

of the 7th multidisciplinary international scheduling conference (MISTA

2015), Prague, Czech Republic, pages 276–295, 2015.

[56] Aldy Gunawan, Hoong Chuin Lau, and Kun Lu. Well-tuned ils for ex-

tended team orienteering problem with time windows. In LARC Tech-

nical Report Series. Singapore Management University, 2015.

[57] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orien-

teering problem: A survey of recent variants, solution approaches and

applications. European Journal of Operational Research, 2016.

[58] Michael Held, Philip Wolfe, and Harlan P Crowder. Validation of sub-

gradient optimization. Mathematical programming, 6(1):62–88, 1974.

110

BIBLIOGRAPHY

[59] Alain Hertz and Nadia Lahrichi. A patient assignment algorithm for

home care services. Journal of the Operational Research Society, 60(4):

481–495, 2009.

[60] Qian Hu and Andrew Lim. An iterative three-component heuristic for

the team orienteering problem with time windows. European Journal of

Operational Research, 232(2):276–286, 2014.

[61] Shenggong Ji, Yu Zheng, and Tianrui Li. Urban sensing based on human

mobility. In 2016 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, pages 1040–1051, 2016.

[62] Patrick R. Jordan, Yevgeniy Vorobeychik, and Michael P. Wellman.

Searching for approximate equilibria in empirical games. In Seventh

International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 1063–1070, 2008.

[63] Thivya Kandappu, Archan Misra, Shih-Fen Cheng, Nikita Jaiman,

Randy Tandriansyah, Cen Chen, Hoong Chuin Lau, Deepthi Chander,

and Koustuv Dasgupta. Campus-scale mobile crowd-tasking: Deploy-

ment & behavioral insights. In Proceedings of the 19th ACM Conference

on Computer-Supported Cooperative Work & Social Computing, pages

800–812. ACM, 2016.

[64] Salil S Kanhere. Participatory sensing: Crowdsourcing data from mobile

smartphones in urban spaces. In 12th IEEE International Conference on

Mobile Data Management, pages 3–6, 2011.

[65] Marisa G Kantor and Moshe B Rosenwein. The orienteering problem

with time windows. Journal of the Operational Research Society, 43(6):

629–635, 1992.

[66] Marisa G. Kantor and Moshe B. Rosenwein. The orienteering problem

111

BIBLIOGRAPHY

with time windows. The Journal of the Operational Research Society, 43

(6):629–635, 1992.

[67] Leyla Kazemi and Cyrus Shahabi. A privacy-aware framework for par-

ticipatory sensing. ACM SIGKDD Explorations Newsletter, 13(1):43–51,

2011.

[68] Leyla Kazemi and Cyrus Shahabi. Geocrowd: enabling query answering

with spatial crowdsourcing. In 20th International Conference on Ad-

vances in Geographic Information Systems, pages 189–198. ACM, 2012.

[69] Liangjun Ke, Claudia Archetti, and Zuren Feng. Ants can solve the

team orienteering problem. Computers & Industrial Engineering, 54(3):

648–665, 2008.

[70] Liangjun Ke, Laipeng Zhai, Jing Li, and Felix TS Chan. Pareto mimic

algorithm: An approach to the team orienteering problem. Omega, 61:

155–166, 2016.

[71] C Peter Keller. Algorithms to solve the orienteering problem: A compar-

ison. European Journal of Operational Research, 41(2):224–231, 1989.

[72] Morteza Keshtkaran, Koorush Ziarati, Andrea Bettinelli, and Daniele

Vigo. Enhanced exact solution methods for the team orienteering prob-

lem. International Journal of Production Research, 54(2):591–601, 2016.

[73] Paulien M Koeleman, Sandjai Bhulai, and Maarten van Meersbergen.

Optimal patient and personnel scheduling policies for care-at-home ser-

vice facilities. European Journal of Operational Research, 219(3):557–

563, 2012.

[74] Nacima Labadie, Jan Melechovskỳ, and Roberto Wolfler Calvo. Hy-

bridized evolutionary local search algorithm for the team orienteering

problem with time windows. Journal of Heuristics, 17(6):729–753, 2011.

112

BIBLIOGRAPHY

[75] Nacima Labadie, Renata Mansini, Jan Melechovskỳ, and Roberto Wolfler

Calvo. The team orienteering problem with time windows: An lp-based

granular variable neighborhood search. European Journal of Operational

Research, 220(1):15–27, 2012.

[76] Theodore J. Lambert III, Marina A. Epelman, and Robert L. Smith. A

fictitious play approach to large-scale optimization. Operations Research,

53(3):477–489, 2005.

[77] Gilbert Laporte and Silvano Martello. The selective travelling salesman

problem. Discrete applied mathematics, 26(2-3):193–207, 1990.

[78] Adrienne C Leifer and Moshe B Rosenwein. Strong linear programming

relaxations for the orienteering problem. European Journal of Opera-

tional Research, 73(3):517–523, 1994.

[79] Carlton E Lemke and Joseph T Howson, Jr. Equilibrium points of bima-

trix games. Journal of the Society for Industrial & Applied Mathematics,

12(2):413–423, 1964.

[80] Yun-Chia Liang, Sadan Kulturel-Konak, and Alice E Smith. Meta heuris-

tics for the orienteering problem. In Evolutionary Computation, 2002.

CEC’02. Proceedings of the 2002 Congress on, volume 1, pages 384–389.

IEEE, 2002.

[81] Yun-Chia Liang, Sadan Kulturel-Konak, and Min-Hua Lo. A multiple-

level variable neighborhood search approach to the orienteering problem.

Journal of Industrial and Production Engineering, 30(4):238–247, 2013.

[82] Meiyan Lin, Kwai Sang Chin, Xianjia Wang, and Kwok Leung Tsui.

The therapist assignment problem in home healthcare structures. Expert

Systems with Applications, 62:44–62, 2016.

113

BIBLIOGRAPHY

[83] Shih-Wei Lin and F Yu Vincent. A simulated annealing heuristic for

the team orienteering problem with time windows. European Journal of

Operational Research, 217(1):94–107, 2012.

[84] R Mansini, M Pelizzari, and R Wolfer. A granular variable neighbour-

hood search heuristic for the tour orienteering problem with time win-

dows. Technical report, Technical Report RT 2006-02-52, University of

Brescia, Italy, 2006.

[85] Yannis Marinakis, Michael Politis, Magdalene Marinaki, and Nikolaos

Matsatsinis. A memetic-grasp algorithm for the solution of the orien-

teering problem. In Modelling, Computation and Optimization in In-

formation Systems and Management Sciences, pages 105–116. Springer,

2015.

[86] Artis Mednis, Girts Strazdins, Reinholds Zviedris, Georgijs Kanonirs,

and Leo Selavo. Real-time pothole detection using android smartphones

with accelerometers. In 2011 International Conference on Distributed

Computing in Sensor Systems and Workshops, 2011.

[87] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer pro-

gramming formulation of traveling salesman problems. Journal of the

ACM (JACM), 7(4):326–329, 1960.

[88] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ram-

jee. Nericell: Rich monitoring of road traffic conditions using mobile

smartphones. In 7th ACM Conference on Embedded Networked Sensor

Systems, 2008.

[89] Dov Monderer and Lloyd S Shapley. Potential games. Games and Eco-

nomic Behavior, 14(1):124–143, 1996.

114

BIBLIOGRAPHY

[90] R. Montemanni and L. Gambardella. Ant colony system for team ori-

enteering problems with time windows. Foundations of Computing and

Decision Sciences, 34(4):287—306, 2009.

[91] Mohamed Musthag and Deepak Ganesan. Labor dynamics in a mobile

micro-task market. In SIGCHI Conference on Human Factors in Com-

puting Systems, pages 641–650, 2013.

[92] Shanthi Muthuswamy and Sarah S Lam. Discrete particle swarm opti-

mization for the team orienteering problem. Memetic Computing, 3(4):

287–303, 2011.

[93] National Association for Home Care & Hospice. Basic statistics about

home care. Washington, DC: National Association for Home Care &

Hospice, pages 1–14, 2010.

[94] United Nations. World urbanization trends 2014: Key

facts. https://esa.un.org/unpd/wup/Publications/Files/

WUP2014-Highlights.pdf, 2008. Accessed: 2016-10-22.

[95] Stefan Nickel, Michael Schröder, and Jörg Steeg. Mid-term and short-

term planning support for home health care services. European Journal

of Operational Research, 219(3):574–587, 2012.

[96] BK Pagnoncelli, Shabbir Ahmed, and A Shapiro. Sample average ap-

proximation method for chance constrained programming: theory and

applications. Journal of optimization theory and applications, 142(2):

399–416, 2009.

[97] C. Papadimitriou. Algorithms, games, and the internet. In Symposim

on Theory of Computing (STOC), pages 749–753, 2001.

[98] Population Reference Bureau. Fact Sheet: Aging in the United

115

https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf
https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf

BIBLIOGRAPHY

States. http://www.prb.org/Publications/Media-Guides/2016/aging-

unitedstates-fact-sheet.aspx, 2016.

[99] Abdur Rais and Ana Viana. Operations research in healthcare: a survey.

International transactions in operational research, 18(1):1–31, 2011.

[100] R Ramesh, Yong-Seok Yoon, and Mark H Karwan. An optimal algorithm

for the orienteering tour problem. ORSA Journal on Computing, 4(2):

155–165, 1992.

[101] Ram Ramesh and Kathleen M Brown. An efficient four-phase heuris-

tic for the generalized orienteering problem. Computers & Operations

Research, 18(2):151–165, 1991.

[102] Rajib Kumar Rana, Chun Tung Chou, Salil S Kanhere, Nirupama Bu-

lusu, and Wen Hu. Ear-phone: an end-to-end participatory urban noise

mapping system. In 9th ACM/IEEE International Conference on Infor-

mation Processing in Sensor Networks, pages 105–116, 2010.

[103] Matias Sevel Rasmussen, Tor Justesen, Anders Dohn, and Jesper Larsen.

The home care crew scheduling problem: Preference-based visit cluster-

ing and temporal dependencies. European Journal of Operational Re-

search, 219(3):598–610, 2012.

[104] Giovanni Righini and Matteo Salani. Dynamic programming for the

orienteering problem with time windows. Note del Polo-Ricerca, 91, 2006.

[105] Giovanni Righini and Matteo Salani. Decremental state space relax-

ation strategies and initialization heuristics for solving the orienteering

problem with time windows with dynamic programming. Computers &

Operations Research, 36(4):1191–1203, 2009.

[106] Carlos Rodriguez, Thierry Garaix, Xiaolan Xie, and Vincent Augusto.

116

BIBLIOGRAPHY

Staff dimensioning in homecare services with uncertain demands. Inter-

national Journal of Production Research, 53(24):7396–7410, 2015.

[107] Tim Roughgarden and Eva Tardos. How bad is selfish routing? Journal

of ACM, 49(2):236–259, 2002.

[108] John P. Rula, Vishnu Navda, Fabián E. Bustamante, Ranjita Bhagwan,

and Saikat Guha. No “one-size fits all”: Towards a principled approach

for incentives in mobile crowdsourcing. In 15th Workshop on Mobile

Computing Systems and Applications, pages 3:1–3:5, 2014.

[109] Adam Sadilek, John Krumm, and Eric Horvitz. Crowdphysics: Planned

and opportunistic crowdsourcing for physical tasks. In 7th International

AAAI Conference on Weblogs and Social Media, pages 536–545, 2013.

[110] Tuomas Sandholm, Andrew Gilpin, and Vincent Conitzer. Mixed-integer

programming methods for finding nash equilibria. In National Conf. on

Artificial Intelligence (AAAI)), 2005.

[111] Michael Schilde, Karl F Doerner, Richard F Hartl, and Guenter Kiechle.

Metaheuristics for the bi-objective orienteering problem. Swarm Intelli-

gence, 3(3):179–201, 2009.

[112] Zülal Sevkli and F Erdogan Sevilgen. Discrete particle swarm optimiza-

tion for the orienteering problem. In IEEE Congress on Evolutionary

Computation, pages 1–8. IEEE, 2010.

[113] Yufen Shao, Jonathan F Bard, and Ahmad I Jarrah. The therapist

routing and scheduling problem. IIE Transactions, 44(10):868–893, 2012.

[114] Wouter Souffriau, Pieter Vansteenwegen, Joris Vertommen, Greet Van-

den Berghe, and Dirk Van Oudheusden. A personalized tourist trip de-

sign algorithm for mobile tourist guides. Applied Artificial Intelligence,

22(10):964–985, 2008.

117

BIBLIOGRAPHY

[115] Wouter Souffriau, Pieter Vansteenwegen, Greet Vanden Berghe, and Dirk

Van Oudheusden. A path relinking approach for the team orienteering

problem. Computers & Operations Research, 37(11):1853–1859, 2010.

[116] Wouter Souffriau, Pieter Vansteenwegen, Greet Vanden Berghe, and Dirk

Van Oudheusden. The multiconstraint team orienteering problem with

multiple time windows. Transportation Science, 47(1):53–63, 2013.

[117] Matthias Stevens and Eliie D’Hondt. Crowdsourcing of pollution data

using smartphones. In Workshop on Ubiquitous Crowdsourcing, held at

12th ACM Conference on Ubiquitous Computing, 2010.

[118] Hao Tang and Elise Miller-Hooks. A tabu search heuristic for the team

orienteering problem. Computers & Operations Research, 32(6):1379–

1407, 2005.

[119] M Fatih Tasgetiren. A genetic algorithm with an adaptive penalty func-

tion for the orienteering problem. Journal of Economic and Social Re-

search, 4(2):1–26, 2001.

[120] Jacob Thebault-Spieker, Loren G. Terveen, and Brent Hecht. Avoiding

the south side and the suburbs: The geography of mobile crowdsourcing

markets. In 18th ACM Conference on Computer Supported Cooperative

Work & Social Computing, 2015.

[121] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel

Madden, Hari Balakrishnan, Sivan Toledo, and Jakob Eriksson. Vtrack:

Accurate, energy-aware road traffic delay estimation using mobile

phones. In 7th ACM Conference on Embedded Networked Sensor Sys-

tems, 2009.

[122] Tommy Thomadsen and Thomas K Stidsen. The quadratic selective

travelling salesman problem. Technical report, 2003.

118

BIBLIOGRAPHY

[123] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and

applications. SIAM, 2014.

[124] Andrea Trautsamwieser and Patrick Hirsch. A branch-price-and-cut ap-

proach for solving the medium-term home health care planning problem.

Networks, 64(3):143–159, 2014.

[125] Martin Romauch Karl F. Doerner Tricoire, Fabien and Richard F. Hartl.

Heuristics for the multi-period orienteering problem with multiple time

windows. Computers and Operations Research, 37(2):351–367, 2010.

[126] Khai N. Troung, Thariq Shihipar, and Daniel J. Wigdor. Slide to x:

Unlocking the potential of smartphone unlocking. In 32nd SIGCHI Con-

ference on Human Factors in Computing Systems, 2014.

[127] Paul Tseng. Convergence of a block coordinate descent method for non-

differentiable minimization. Journal of Optimization Theory and Appli-

cations, 109(3):475–494, 2001.

[128] T. Tsiligirides. Heuristic methods applied to orienteering. The Journal

of the Operational Research Society, 35(9):797–809, 1984.

[129] Rajan Vaish, Keith Wyngarden, Jingshu Chen, Brandon Cheung, and

Michael S. Bernstein. Twitch crowdsourcing: Crowd contributions in

short bursts of time. In 32nd SIGCHI Conference on Human Factors in

Computing Systems, 2014.

[130] Pieter Vansteenwegen. Planning in tourism and public transportation-

attraction selection by means of a personalised electronic tourist guide

and train transfer scheduling. 2008.

[131] Pieter Vansteenwegen and Dirk Van Oudheusden. The mobile tourist

guide: an or opportunity. OR insight, 20(3):21–27, 2007.

119

BIBLIOGRAPHY

[132] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and

Dirk Van Oudheusden. A guided local search metaheuristic for the team

orienteering problem. European Journal of Operational Research, 196(1):

118–127, 2009.

[133] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk

Van Oudheusden. Iterated local search for the team orienteering problem

with time windows. Computers & Operations Research, 36(12):3281–

3290, 2009.

[134] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden.

The orienteering problem: A survey. European Journal of Operational

Research, 209(1):1 – 10, 2011.

[135] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden.

The orienteering problem: A survey. European Journal of Operational

Research, 209(1):1–10, 2011.

[136] Jing Wang, Siamak Faridani, and Panagiotis Ipeirotis. Estimating the

completion time of crowdsourced tasks using survival analysis models.

In Workshop on Crowdsourcing for Search and Data Mining, 2011.

[137] Qiwen Wang, Xiaoyun Sun, Bruce L Golden, and Jiyou Jia. Using ar-

tificial neural networks to solve the orienteering problem. Annals of

Operations Research, 61(1):111–120, 1995.

[138] Xia Wang, Bruce L Golden, and Edward A Wasil. Using a genetic al-

gorithm to solve the generalized orienteering problem. In The vehicle

routing problem: latest advances and new challenges, pages 263–274.

Springer, 2008.

[139] Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a

120

BIBLIOGRAPHY

path using sparse trajectories. In 20th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 25–34, 2014.

[140] Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen

Cheng, and Rahul Suri. Approximate strategic reasoning through hi-

erarchical reduction of large symmetric games. In Twentieth National

Conference on Artificial Intelligence, pages 502–508, 2005.

[141] Tingxin Yan, Matt Marzilli, Ryan Holmes, Deepak Ganesan, and Mark

Corner. mCrowd: A platform for mobile crowdsourcing. In 7th ACM

Conference on Embedded Networked Sensor Systems, 2009.

[142] Dejun Yang, Guoliang Xue, Xi Fang, and Jian Tang. Crowdsourcing to

smartphones: Incentive mechanism design for mobile phone sensing. In

18th Annual International Conference on Mobile Computing and Net-

working, 2012.

[143] Biao Yuan, Ran Liu, and Zhibin Jiang. A branch-and-price algorithm

for the home health care scheduling and routing problem with stochastic

service times and skill requirements. International Journal of Production

Research, 53(24):7450–7464, 2015.

[144] Zhi Yuan and Armin Fügenschuh. Home health care scheduling: a case

study. In proceedings of the 7th Multidisciplinary International Confer-

ence on Scheduling : Theory and Applications (MISTA 2015), 25 - 28

Aug 2015, Prague, Czech Republic, pages 555–569, 2015.

[145] Alexandros Zenonos, Sebastian Stein, and Nicholas R Jennings. Coordi-

nating measurements for air pollution monitoring in participatory sens-

ing settings. In 14th International Conference on Autonomous Agents

and Multiagent Systems, pages 493–501, 2015.

[146] Yu Zheng, Tong Liu, Yilun Wang, Yanmin Zhu, Yanchi Liu, and Eric

121

BIBLIOGRAPHY

Chang. Diagnosing new york city’s noises with ubiquitous data. In

2014 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, pages 715–725, 2014.

122

	Recommending personalized schedules in urban environments
	Citation

	Introduction
	Background & Motivation
	Crowd Control
	Mobile Crowdsourcing
	Workforce Scheduling

	Contributions
	Organization of the Dissertation

	Preliminaries
	Orienteering Problem
	Mathematical Formulation
	Common OP Variants
	Applications of OP
	Solution Approaches
	Solution Approaches for OP
	Solution Approaches for OP Variants

	Lagrangian Relaxation for Solving ILP
	Mathematical Formulation
	Solving the Lagrangian Dual

	Crowd Control
	Overview
	Literature Review
	Problem Formulation
	A Motivating Example
	Centralized Formulation
	A Game-theoretic Formulation for MOPTCC

	Solution Approaches
	Sampled fictitious play algorithm
	Generating feasible initial solution
	Computing best responses

	Computational Experiments
	Instance Generation
	Numerical Results
	Comparison Against Baseline

	Summary
	Appendix

	Mobile Crowdsourcing
	Overview
	Literature Review
	Problem Formulation
	Mathematical Model
	The Multi-Coverage Extension
	Scalability of the Model

	Solution Approaches
	Lagrangian Relaxation
	Speeding Up LR Implementation

	Computational Experiments
	LR Heuristics versus the Exact Approach
	LR Heuristics versus Deterministic Heuristics

	TA$Ker: a Real-world Mobile Crowdsourcing Platform
	TA$Ker Architecture
	User Study Details
	Performance of the Recommendation Engine
	Super-Agent Phenomenon
	Efficiency of Users

	Summary

	Home Health Care
	Overview
	Literature Review
	Problem Formulation
	Mathematical Model
	Modeling Duration Uncertainty

	Solution Approaches
	Lagrangian Relaxation
	Handling Duration Uncertainty

	Computational Experiments
	Instance Generation
	Algorithms Compared
	Numerical Results

	Summary

	Conclusion and Future Work
	Crowd Control
	Mobile Crowdsourcing
	Workforce Scheduling
	Challenges for Future Works

	Bibliography

