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Motif Graph Neural Network
Xuexin Chen, Ruichu Cai⋆, Yuan Fang⋆, Min Wu⋆, Zijian Li, Zhifeng Hao

Abstract—Graphs can model complicated interactions between
entities, which naturally emerge in many important applications.
These applications can often be cast into standard graph learning
tasks, in which a crucial step is to learn low-dimensional graph
representations. Graph neural networks (GNNs) are currently the
most popular model in graph embedding approaches. However,
standard GNNs in the neighborhood aggregation paradigm
suffer from limited discriminative power in distinguishing high-
order graph structures as opposed to low-order structures. To
capture high-order structures, researchers have resorted to motifs
and developed motif-based GNNs. However, existing motif-based
GNNs still often suffer from less discriminative power on high-
order structures. To overcome the above limitations, we propose
Motif Graph Neural Network (MGNN), a novel framework to
better capture high-order structures, hinging on our proposed
motif redundancy minimization operator and injective motif
combination. First, MGNN produces a set of node representations
w.r.t. each motif. The next phase is our proposed redundancy
minimization among motifs which compares the motifs with
each other and distills the features unique to each motif.
Finally, MGNN performs the updating of node representations by
combining multiple representations from different motifs. In par-
ticular, to enhance the discriminative power, MGNN utilizes an
injective function to combine the representations w.r.t. different
motifs. We further show that our proposed architecture increases
the expressive power of GNNs with a theoretical analysis. We
demonstrate that MGNN outperforms state-of-the-art methods
on seven public benchmarks on both node classification and
graph classification tasks.

Index Terms—Graph Neural Network, Motif, High-order
Structure, Graph Representation

I. INTRODUCTION

Graphs are capable of modeling complex interactions be-
tween entities, which naturally emerge in many real-world sce-
narios. Social networks, protein-protein interaction networks,
and knowledge graphs are just a few examples, with many
important applications in areas like social recommendation [1],
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Fig. 1. Toy example of the discriminative power of GNNs on two nodes A
and B with non-isomorphic neighborhoods.

drug discovery [2], fraud detection [3], and particle physics
[4]. These applications can often be cast into standard graph
learning tasks such as node classification, link prediction, and
graph classification, in which a crucial step is to learn low-
dimensional graph representations.

Graph embedding approaches can be broadly categorized
into graph neural networks (GNNs) [5], [6], [7], matrix
factorization [8], [9] and skip-gram models [10], [11]. Among
these, GNNs are currently the most popular model, largely
owing to their ability of integrating both structure and content
information through a message passing mechanism. To be
more specific, in the standard GNN architecture, the repre-
sentation vector of a node is computed by aggregating and
updating messages (i.e., features or representation vectors)
from the node’s neighbors. The aggregation can be performed
recursively by stacking multiple layers, to capture long-range
node dependencies.

However, standard GNNs in the neighborhood aggrega-
tion paradigm suffer from limited discriminative power in
distinguishing high-order graph structures consisting of the
connections between neighbors of a node, as opposed to low-
order structures consisting of the connections between the
node and its neighbors. For example, standard GNNs cannot
distinguish between nodes A and B with non-isomorphic
neighborhoods in Fig. 1(a), as their neighborhoods differ
only in the higher-order. To capture high-order structures,
researchers have resorted to motifs [12], [13] and developed
motif-based GNNs [14], [15], [16], [17]. These approaches
usually employ a motif-based adjacency matrix for each motif,
which is constructed from the number of times two nodes
are connected via an instance of the motif. Such motif-based
adjacency matrices can better grasp the high-order structures.
For example, given the open and closed motifs illustrated
in Fig. 1(b), nodes A and B in Fig. 1(a) can be naturally
distinguished by motif-based GNNs since node A is only
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associated with an open motif, whereas node B is associated
with both open and close motifs.

However, existing motif-based GNNs often suffer from two
problems. First, they overlook the redundancy among motifs,
which is defined as common edges shared by different motif
instances. For example, in Fig. 1(c), the two motif instances of
node B share two edges. When the redundancy is high enough,
different motifs may become similar and lack specificity.
Second, they often combine multiple motifs in a non-injective
manner, potentially resulting in less discriminative power on
high-order structures. That is, a non-injective function, such as
sum or mean, is used to combine different motifs, as shown
in Fig. 1(d). In our example, node A has only an open motif
with a feature valued 6, and node B has both open and close
motifs each with a feature valued 3. However, when the motifs
are combined by summing up their features, both nodes A
and B would obtain the same feature representation of 6
and thus cannot be distinguished. Thus, the resulting node
representations may also converge and further decrease the
discriminative power.

To overcome the above limitations, we propose Motif Graph
Neural Network (MGNN), a new class of GNN capable
of distinguishing high-order structures with provably better
discriminative power. From a model perspective, our MGNN
follows the message passing mechanism, and its procedure is
broken down into the following four phases. The first phase
is motif instance counting. To form a motif-based adjacency
matrix, we count the number of times two nodes co-occur in an
instance of each motif. To capture comprehensive high-order
graph structures, MGNN employs the motif-based adjacency
matrices for all the possible motifs of size three, as opposed to
some previous work with only one [18] or some motifs [17].
The second phase is message aggregation. MGNN, like other
motif-based GNNs, aggregates node features (i.e., messages)
on each motif-based adjacency matrix to produce different
representations of the motifs. The first two phases are largely
based on previous studies, except that we have employed
all the motifs of size three to thoroughly capture high-order
structures in an efficient manner. The third phase is the
redundancy minimization among motifs. We address the chal-
lenge of redundancy among motifs by a proposed redundancy
minimization operator, which compares the motifs with each
other in terms of their representations, to distill the features
specific to each motif. The fourth phase is the updating of node
representations by combining multiple motifs. To improve the
limited discriminative power of non-injective combinations,
MGNN utilizes an injective function to combine motifs and
update node representations. For example, to distinguish nodes
A and B in Fig. 1(d), MGNN uses the injective concatenation
to combine motif-based representations, so that the represen-
tation of node A is (6,0) and that of B is (3, 3), which can be
differentiated apart. From a theoretical perspective, we show
that MGNN is provably more expressive than standard GNN,
and standard GNN is in fact a special case of MGNN.

We summarize our key contributions in the following.

• We propose Motif Graph Neural Network (MGNN), a
novel framework to better capture high-order structures,

hinging on the motif redundancy minimization operator
and injective motif combination.

• We further show that our proposed architecture increases
the expressive power of GNNs with a theoretical analysis.

• We demonstrate that MGNN outperforms existing stan-
dard or motif-based GNNs on seven public benchmarks
on both node classification and graph classification tasks.

II. RELATED WORK

Standard Graph Neural Networks follow the message pass-
ing paradigm to leverage node dependence and learn node
representations. Different GNN models resort to different
aggregation functions to aggregate the messages (i.e., features)
for each node from its neighbors, and update its representation
[5], [6], [7], [19], [20], [21], [22], [23], [24]. For example,
Graph Convolutional Networks [5] use mean aggregation to
pool neighborhood information. Graph Attention Networks [6]
aggregate neighborhood information with trainable attention
weights. GraphSAGE [7] uses mean, max or other learn-
able pooling function. Moreover, during aggregation, Message
Passing Neural Networks [19] also incorporate edge informa-
tion, while Graph Networks [20] and multi graph fusion-based
dynamic GCN [21] further consider global graph information.
In [22] and [23], GNNs are developed to use an aggregation
strategy based on Hilbert-Schmidt independence criterion and
self-paced label augmentation strategy, respectively. Some
graph-level downstream tasks, such as graph classification,
further employ a readout function to aggregate individual
node representations into a whole-graph representation. The
readout can be a simple permutation invariant function such
as average and summation, while more sophisticated graph
pooling methods have also been proposed, including global
pooling [25], [26], [27], hierarchical pooling [28], [29], [30],
[31], [32]. Besides graph-level downstream tasks, GNNs can
also be used for the visual question answering task, etc [24].
However, all these models are limited to only capturing low-
order graph structures around every node.

However, standard GNNs are at most as powerful as the
1-dimensional Weisfeiler-Leman (1-WL) graph isomorphism
test [33], which implies that they cannot distinguish nodes
with isomorphic low-order graph structures but different high-
order structures. In other words, standard GNNs will always
associate such nodes with the same representation. To improve
the discriminative power of GNNs, it is a common practice to
leverage high-order graph structures such as motifs [12], [13].
In particular, motif-based GNN models use one [18], [15],
[34] or more [16], [17], [35], [36], [14], [37], [38] motif-based
adjacency matrices to perform message passing. When multi-
ple motif-based adjacency matrices are used, the combination
function w.r.t. multiple motifs include summation [16], [37],
averaging [17], neighborhood aggregation [35], fusion by a
fully connected layer [36], selection by reinforcement learning
[14], combination by a variant of recurrent neural network
[38], and so on. However, all these previous combination
functions are not injective to sufficiently differentiate higher-
order structures. Note that although the model in [38] does
not employ an injective function, it still effectively captures
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the high-order structure of the nodes, through a strategy of
encoding neighbor’s features sequentially and a variant of the
recurrent neural network to learn the node representations. Be-
sides, all these models do not take into account the redundancy
among motif instances.

In another line, several studies [39], [40], [41] attempt to
extend the discriminative power of GNNs from 1-WL to k-
WL, given that the higher the dimension of WL, the stronger
the discriminative power. Like the standard GNNs, there is also
a message propagation mechanism in these k-WL approaches
where the difference is that the message is not propagated
between nodes but between k-tuples (or a subgraph with
k nodes). Since their message propagation is not between
nodes, they [39], [40], [41] have the following shortcomings
compared with our MGNN. First, they cannot generate node
embeddings, but MGNN can, which limits their application to
node-level tasks such as node classification. Second, their time
complexity is higher than that of MGNN. The time complexity
of MGNN is O(|V|2) (see Section IV-F), while their time
complexity is O(|V|3) [39] or even O(|V|4) in the worst case
[40], [41]. Third, [40], [41] have a space complexity O(|V|3),
which is also higher than O(|V|2) needed by MGNN.

There are also several approaches employing high-order
structures, in which each node receives messages from its
multi-hop neighbors, such as MixHop [42], GDC [43],
CADNet [44], PathGCN [45], SE-aggregation [46] and
MBRec [47]. However, like standard GNNs, they are typically
at most as powerful as the 1-WL test in distinguishing graph
structures [46].

III. PRELIMINARIES

In this section, we introduce major notations and definitions
of related concepts.

A. Notations and Problem Formulation

A graph is denoted by G = (V, E), with the set of nodes
V and the set of edges E . Let A ∈ R|V|×|V| be the adjacency
matrix of G, and X ∈ R|V|×d0 be the node feature matrix of
G, where i-th row means the features of node i denoted by
xi. We use (T)ij to represent the element in the i-th row and
the j-th column of a matrix T, and (T)i∗ to represent all of
the i-th row’s elements.

In this paper, we investigate the problem of graph repre-
sentation learning, which aims to embed nodes into a low-
dimensional space. The node embeddings can be used for
downstream tasks such as node classification, potentially in
an end-to-end fashion. Formally, a node embedding model is
denoted by a function ψ : V → H that maps the nodes in V to
d-dimensional vectors in H = {hi ∈ Rd|1 ≤ i ≤ |V|}, where
i denotes the index of the nodes.

B. Motif and Motif-based Adjacency Matrix

We work with directed motifs because they allow us to de-
scribe more complex structures. Specifically, we first introduce
the definition of motif [12], [18], [13] as follows.

1

32

𝑀1

1 2 3

1 0 0 1

2 1 0 0

3 0 1 0

𝑘 = 3

𝐁𝑀1

Fig. 2. An example of a 3-node (k = 3) network motif, along with its
adjacency matrix BM1

.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

𝑀8 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13

Fig. 3. All 3-node motifs in a directed and unweighted graph.

Definition 1. (Network motif). A motif M is a connected graph
of n nodes (n > 1), with a n × n adjacency matrix BM

containing binary elements {0, 1}.

An example of 3-node motif is given in Fig. 2. In particular,
a motif with three or more nodes (i.e., n ≥ 3) can capture
high-order graph structures. Among them, w.r.t. a given node,
the high-order structure captured by its motifs with n > 3
nodes (i.e., not only its edges incident to its neighboring nodes
but also the edges between its neighboring nodes), can be
similarly captured by multiple 3-node motifs. Thus, the given
node’s 3-node motifs have sufficient capacity for structures.
As shown in Fig. 3, we enumerate a total of thirteen 3-node
motifs. Therefore, we only utilize motifs with n = 3 nodes in
this work.

Given the above motif definition, we can further define the
set of motif instances as follows.

Definition 2. (Motif instance). Consider an edge set E ′ and
the subgraph G[E ′] induced from E ′ in G. If G[E ′] and a motif
Mk are isomorphic [48], written as Mk ≃ G[E ′], then

m(E ′) = {(xu,xv)
∣∣(u, v) ∈ E ′}

is an instance of the motif Mk, where u, v are two adjacent
nodes that form an edge in E ′, and xu means the u-th row of
X (i.e., the feature vector of node u).

For example, a motif instance of M1 in Fig. 2 is
{(x1,x3), (x2,x1), (x3,x2)}.

Definition 3. (Motif instance set). On a graph G = (V, E),
the set of instances of motif Mk, denoted as Mk, is defined
by

Mk = {m(E ′)|E ′ ⊆ E , |E ′| = r,Mk ≃ G[E ′]},

where E ′ ⊆ E , |E ′| = r denotes the set of all r-combinations
of the edge set E , and |E ′| = r is the number of edges in the
motif Mk.

Based on the motif instances, the definition of the motif-
based adjacency matrix is given as follows.
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Definition 4. (Motif-based adjacency matrix). Given a motif
Mk and its set of instances Mk, the corresponding motif-
based adjacency matrix Ak is defined by

(Ak)ij =
∑

m∈Mk

I((xi,xj) ∈ m), (1)

where I(·) is an indicator function, i.e., I(x) = 1 if the
statement x is true and 0 otherwise.

Intuitively, (Ak)ij is the number of times two nodes i and
j are connected via an instance of the motif Mk.

IV. PROPOSED APPROACH

In this section, we introduce the proposed approach. We first
present an overall framework of our approach, followed by its
four phases in detail. Finally, we discuss the overall objective
function for model training.

A. Overall Framework

We propose Motif Graph Neural Network (MGNN) that
can model high-order structures with provably better discrim-
inative power. Specifically, our MGNN follows a message
passing mechanism, and its procedure is broken down into
the following four phases.

The first phase involves the construction of a motif-based
adjacency matrix, as shown in Fig. 4(a). Given a motif, its
motif-based adjacency matrix captures the number of times
each pair of nodes are connected via an instance of the
motif. Thus, we need an efficient counting algorithm for
motif instances. In MGNN, we consider all 13 motifs of
size three, namely M1,M2, . . . ,M13 given by Fig. 3, and
correspondingly construct 13 motif-based adjacency matrices
A1,A2, . . . ,A13. The second phase is message aggregation,
as shown in Fig. 4(b). MGNN aggregates node features (i.e.,
messages) on each motif-based adjacency matrix to produce
a set of node representations w.r.t. each motif. The first
two phases of motif instance counting [18] and message
aggregation [16], [36] are largely similar to previous works,
except that we have employed all the motifs of size three
to comprehensively capture high-order structures in an effi-
cient manner. In the second phase, we follow previous work
completely. The third phase is the redundancy minimization
among motifs, as shown in Fig. 4(c). We propose a redundancy
minimization operator, which compares the motifs with each
other and distills the features unique to each motif. The
fourth phase performs the updating of node representations by
combining multiple representations from different motifs, as
shown in Fig. 4(d). In particular, to enhance the discriminative
power, MGNN utilizes an injective function to combine the
representations w.r.t. different motifs.

B. Motif-based Adjacency Matrix Construction

The key step to constructing a motif-based adjacency matrix
is to efficiently count the number of motif instances. Depend-
ing on if the motif is open (M8–M13) or closed (M1–M7),
different counting algorithms will apply.

For open motifs (M8–M13), existing methods [49], [50]
are often implemented by enumerating motif instances. For
example, given the graph in Fig. 5(a), to construct the M9-
based adjacency matrix, a traditional technique is to enumerate
the instances of M9 as shown in Fig. 5(b). However, such
enumeration suffers from high computational complexity, with
a worst-case complexity of O(|V|3) in both space and time.
To reduce the complexity, we propose an adjacency matrix
construction method for open motifs without enumerating any
motif instance, which has a time and space complexity of
O(|V|2) and O(|V|), respectively. Consider a node v. Let uin,
uout, and ubi denote an incoming, outgoing, and bi-directional
neighbor of node v, respectively. Correspondingly, let din, dout
and dbi denote the number of each type of neighbor of v,
respectively, as illustrated by the examples in Fig. 5(a). As
shown in Fig. 3, the center node of each open motif has at
most two types of neighbors; for example, M9 has uout and
uin, and M13 has only ubi. Our key observation is that (Ak)vu,
the number of times two nodes (v and u) are connected via an
instance of an open motif Mk, can be computed as follows. On
one hand, when the motif has two types of neighbors, (Ak)vu
will be equal to the number of the other type of neighbors,
e.g., (A9)vuin = dout, (A9)vuout = din, (A11)vuout = dbi,
(A12)vuin = dbi, (A11)vubi = dout − 1, (A12)vubi = din − 1.
On the other hand, when the motif has only one type of
neighbors, (Ak)vu will be equal to the number of neighbors
in the motif, e.g., (A8)vuout = dout − 1, (A10)vuin = din − 1,
(A13)vubi = dbi − 1. Still using Fig. 5 as an example, node
B is an incoming neighbor (uin) of node A, while C and D
are the outgoing neighbors (uout) of node A. Furthermore, for
(A9)AB , it satisfies (A9)vuin = dout (denoting node A as v)
and for (A9)AC or (A9)AD, it satisfies (A9)vuout = din.

The motif-based adjacency matrix for a closed motif (M1–
M7) can be constructed by an existing method [18] with a
time and space complexity of O(|V|3) and O(|V|2), respec-
tively, which counts (Ak)vu through two matrix multiplication
operations and the matrices used by this method can be stored
in the HDF5 format [51].

C. Motif-wise Message Aggregation

To produce the motif-wise node representations, on each
motif-based adjacency matrix, node features (i.e, messages)
can be incorporated into a multi-layer message aggregation
mechanism, as shown in Fig. 4(b).

Specifically, the motif Mk-based representation of node v
in the l-th layer is given by

h
(l)
v,k = AGG

({
α
(l)
k,vi · (Ãk)vi(Z

(l))i∗|i ∈ N (v)
})

, (2)

Z(l) = ÃH(l−1)W(l), (3)

where H(l−1) ∈ R|V|×dl−1 denote the node messages from
the previous (l−1)-th layer and H(0) = X, W(l) ∈ Rdl−1×dl

is the trainable weight matrix in the l-th layer. Ã is the
normalized adjacency matrix given by Ã = Â− λ̂max

2 I, where
Â = D−0.5AD−0.5 and D is a diagonal matrix in which
the diagonal elements are defined as (D)ii =

∑|V|
j=1(A)ij and
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Fig. 5. Overview for constructing M9-based adjacency matrix by enumeration
and non-enumeration method.

λ̂max refers to the largest eigenvalue of Â. The above normal-
ization technique aids in the centralization of the Laplacian’s
eigenvalues and the reduction of the spectral radius bound [52].
The motif Mk-based adjacency matrix Ak is normalized in the
same way into Ãk. AGG, the function of H(l−1) and Ãk as
Fig. 4(b) illustrated, is a message aggregate function, e.g., sum,
mean or max. The coefficient α(l)

k,vi is the attention weight that
indicates the importance of node i’s messages to node v. α(l)

k,vi

can be assigned a constant value according to prior knowledge
or computed by the attention mechanism [6]. N (v) represents
the set of neighboring nodes of v. Note that not all nodes will
have 13 motifs, and MGNN can still accommodate such nodes.
In particular, if node v lacks a motif Mk, the entries (Ak)vj
and (Ak)jv in Eq. (1) are all set to zeros, and subsequently,
h
(l)
v,k in Eq. (2) will also be a zero vector.
Intuitively, in Eq. (2), before performing motif-wise aggre-

gation for the motif Mk, we first stack a GCN layer [5], i.e.,
Z = ÃH(l−1)W(l) in Eq. (3), to update the overall node
messages by aggregating from the previous layer. The GCN
layer can also be replaced by other GNN layers.

D. Motif Redundancy Minimization

As different motifs often share certain substructures, their
corresponding motif-wise representations may become sim-
ilar and lack specificity. Inspired by the idea of redundancy
minimization between features [53], we propose a redundancy

minimization operator at the motif level, denoted ∆. The
key idea of ∆ is to compare the motifs with each other
and adaptively distill the features specific to each motif. We
formally define ∆ as follows. Given a node v, for simplicity,
let hk and zv denote h

(l)
v,k, (Z(l))v∗ respectively. We call

the motif- and GCN-based representations collectively as the
intermediate representations of the node.

Definition 5. (Motif redundancy minimization operator). For
any node v, given its intermediate representations h1, ...,
h13, zv , let H̄k =

(∥∥13
i=1,i̸=k

hi

)∥∥zv , where ∥ is the con-
catenation operator. In other words, H̄k concatenates all the
intermediate representations except that based on motif Mk.
Then, for motif Mk, its redundancy minimized representation
of the node v is given by

h̃k = ∆(k,h1, ...,h13, zv)

= σ
(
βk ·

(
f(hk)− fk(H̄k)

))
.

(4)

h̃k is the updated representation of hk after redundancy
minimization. f : Rd → Rd′

is a learnable projection function
to map the intermediate motif-based representations to the
same space as its redundant features. And fk : R13d → Rd′

is a learnable feature selection function, which selects the
redundant features w.r.t. motif Mk. βk is the similarity between
f(hk) and fk(H̄k), which acts as a regularizer to prevent
extremely small or large differences between the two terms. σ
is an activation function (e.g., ReLU).

Intuitively, in Eq. (4), the motif redundancy minimization
operator subtracts or removes redundant features w.r.t. each
motif from the intermediate representations of a given node.
Apart from minimizing the redundancy, the operator also
performs an adaptive selection of motifs in general. That is,
for an unimportant motif Mk, this operator will make h̃k in
Eq. (4) close to a zero vector through functions f and fk.
In particular, when h̃k is a zero vector, it is equivalent to
removing the instance of Mk containing node v in Eq. (1).
In Section VI-C, we will use a heatmap to demonstrate this
adaptive selection mechanism, which improves the robustness
of MGNN.
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To realize the motif redundancy minimization operator, we
need to instantiate f , fk and βk in Eq. (4). In particular, we
use a fully connected layer to fit f and fk, namely,

f(hk) = W
(l)
f hk + b

(l)
f , (5)

fk(H̄k) = W
(l)
fk
H̄k + b

(l)
fk
, (6)

where W
(l)
f ∈ Rd′

l×dl is a trainable matrix in the l-th
layer shared by all motifs, and W

(l)
fk
∈ Rd′

l×(13dl) is a
trainable matrix specific to motif Mk in the l-th layer, and
b
(l)
f ∈ Rd′

l and b
(l)
fk
∈ Rd′

l are the corresponding bias vectors.
Furthermore, to measure the similarity βk, we use the inner
product with a non-linear activation (e.g., sigmoid or tanh),
that is,

βk = σ
(
f(hk)

⊺fk(H̄k)
)
. (7)

σ in Eq.(4) and Eq.(7) might be the same or distinct.
Through the above instantiations, we can minimize the

redundancy among motifs as shown in Fig. 4(c), for every
node in every layer. That is,

h̃
(l)
v,k = ∆

(
k,h

(l)
v,1, ...,h

(l)
v,13, (Z

(l))v∗
)
, (8)

where h̃
(l)
v,k ∈ Rd′

l is the updated representation of node v
based on motif Mk in the l-th layer.

E. Node Representation Update via Injective Function

As shown in Fig. 4(d), MGNN updates the node represen-
tation by combining their intermediate, motif-based represen-
tations. To improve the discriminative power on high-order
structures, MGNN utilizes an injective function to combine
different motif-based representations of each node, to update
the output node representations in each layer. Specifically, we
use the injective vector concatenation function, and generate
the output node representation in the l-th layer below.

h(l)
v =

∥∥13
k=1

h̃
(l)
v,k, (9)

where h
(l)
v ∈ R13dl is the output representation of node v in

the l-th layer.
The following two properties of the concatenation function

are essential to increase the expressive power of MGNN.
First, the output node representation h

(l)
v will not change if

the order of concatenation and aggregation is interchanged.
Second, h(l)

v can always explicitly preserve each motif-based
feature embedding via the injective combination. Using these
two properties, we can theoretically show that MGNN has a
larger representation capacity than the standard GNN, as we
will further discuss in Section V.

F. Model Training

The node representations generated by MGNN can be used
for various downstream learning tasks, including supervised
and unsupervised learning.

For supervised learning, the node representations can be
directly used as features for a specific downstream task,
optimized with a supervised loss that can be abstracted as

L(Y, Ŷ), (10)

Ŷ = Φ(H(L)), (11)

where Ŷ is the predicted matrix. H(L) is the node repre-
sentation matrix generated by the last or L-th MGNN layer,
such that its i-th row is the embedding vector h

(L)
i of node

i in Eq. (9). The loss function L, prediction function Φ and
the ground truth Y depend on the specific downstream task.
Taking node classification as an example, the loss can be the
cross-entropy loss over the training samples, as follows.∑

i∈Y

nc∑
j=1

−(Y)ij log(H̃
(l))ij , (12)

where Y is the set of training node indices, nc denotes the
number of classes, Y is the ground truth matrix such that
its i-th row is the one-hot label vector of node i, and H̃(l)

is the predicted matrix such that its i-th row is the predicted
class distribution of node i, which can be obtained by taking a
softmax activation or additional neural network layers as the
prediction function Φ and passing H(l) through Φ. Another
common supervised task is graph classification, which can use
a similar cross-entropy loss and prediction function, but the
node representations must first undergo a readout operation
[33] to generate the graph-level representations.

For unsupervised learning, the node representations can be
trained through the graph auto-encoder [54] or other self-
supervised frameworks [55] without any task-specific super-
vision.

Algorithm 1 summarizes the framework of MGNN. To be
more specific, MGNN takes the node features, normalized
adjacency matrix, and motif-based adjacency matrices for all
possible motifs as inputs. The construction of motif-based
adjacency matrices is based on our proposed method and
another method in the literature mentioned in section IV-B.
MGNN further propagates the node representations (or node
input features) layer by layer. In each layer, first, from line 4 to
line 7, MGNN produces the Mk-based representation h

(l)
v,k of

node v by performing message aggregation. Second, from line
8 to line 14, MGNN compares the Mk-based representation
with each other using the motif redundancy minimization
operator, to distill the features specific to each motif. Third, in
line 15, MGNN utilizes the injective concatenation to combine
Mk-based representations and update the representation of the
node. Finally, in line 18, the set of output representations of
each node is returned.

The computational complexity of one MGNN layer is
O(|V|2), as follows. Firstly, the complexity is dominated
by the computations in Eqs. (2) and (3), where the time
complexities are given by O(|V|d) and O(|V|2d), respectively
(d denotes the dimension of an MGNN layer). Hence, when
computing Eq. (2) over all the nodes, the complexity is
O(|V|2d). Secondly, in our implementation, Eq. (3) can be
pre-calculated before Eq. (2). Therefore, the overall time
complexity of MGNN is O(|V|2d), which can be further
simplified to O(|V|2) as d is typically a small constant.

V. THEORETICAL ANALYSIS

In this section, we aim to analyze the representation capacity
of MGNN in comparison with standard GNN. In order to
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Algorithm 1: The framework of MGNN.

Input: Node input feature matrix X ∈ R|V|×d0 ,
normalized adjacency matrix Ã ∈ R|V|×|V|,
and normalized motif-based adjacency matrices
Ãk ∈ R|V|×|V|, k ∈ {1, ..., 13}.

Output: Node embedding h
(L)
v ∈ R13dL for each

node.
1 Randomly initialize all parameters
2 H(0) ← X
3 for l = 1, ..., L do
4 for v ∈ V do
5 for k = 1, ..., 13 do
6 h

(l)
v,k ← Compute the Mk-based
representation of node v by Eq. (2)

7 end
8 for k = 1, ..., 13 do
9 f(h

(l)
v,k)← Map h

(l)
v,k to the same space by

Eq. (5)
10 H̄k ← Concatenate each h

(l)
v,i(i ̸= k) and

zv according definition 5
11 fk(H̄k)← Select the redundant feature

w.r.t. motif Mk by Eq. (6)
12 βk ← Compute the similarity between

f(h
(l)
v,k) and f(H̄k) by Eq. (7)

13 h̃
(l)
v,k ← Update h

(l)
v,k based on f(h(l)

v,k),
fk(H̄k) and αk by Eq. (8)

14 end
15 h

(l)
v ← Concatenate each h̃

(l)
v,k by Eq. (9)

16 end
17 end
18 return {h(L)

v

∣∣v ∈ V}
facilitate the analysis, we first introduce a simplified version of
MGNN, and then further show that even the simplified MGNN
still has stronger discriminative power than standard GNN.

A. Simplified Version of MGNN

A simplified version of the l-th MGNN layer is as follows:

h
(l)
v,k = ω

({
α
(l)
k,vi · (Ak)viW

(l)
m h

(l−1)
i

∣∣i ∈ N (v)
})
, (13)

h(l)
v =

∥∥13
k=1

σ(h
(l)
v,k), (14)

where ω represents the aggregate function.
Then we demonstrate that Eqs. (13)–(14) is a simplified

version of a MGNN layer. Specifically, in Eq. (2), normalized
Ãk and (Z(l))i∗ are substituted for Ak as well as W(l)

m h
(l−1)
i ,

respectively, where W
(l)
m is the trainable weight matrix in the

l-th simplified MGNN layer and h
(l−1)
i is the node messages

from the previous (l − 1)-th simplified MGNN layer (h(0)
i =

xi). After that, Eq. (13) is obtained. Then, the output h(l)
v,k of

Eq. (13) is utilized in place of h̃(l)
v,k in Eq. (9) and then Eq. (14)

is obtained. Thus, Eqs. (13)–(14) is a simplified version of a
MGNN layer.

TABLE I
THE LAYER OF THE ABSTRACT MODEL OF THE STANDARD GNN OR THE

SIMPLIFIED VERSION OF MGNN.

Step1 message aggregation

Standard GNN h̄
(l)
v = ω

({
(A)viW

(l)
s h̃

(l−1)
i

∣∣i ∈ N (v)
})

MGNN h
(l)
v,k = ω

({
α
(l)
k,vi · (Ak)viW

(l)
m h

(l−1)
i

∣∣i ∈ N (v)
})

Step2 node representation update

Standard GNN h̃
(l)
v = σ(h̄

(l)
v )

MGNN h
(l)
v =

∥∥13
k=1

σ(h
(l)
v,k)

𝐺 𝐺′

Fig. 6. Two graphs with self-loops that cannot be distinguished by the
standard GNN. Inside these two graphs, the features of the nodes are the
same and the self-loops are not depicted for brevity.

B. Representational Capacity Study

In order to compare the representational capacity of the
simplified version of MGNN with that of the standard GNN,
we begin with the layers of the abstract model of the standard
GNN and the simplified version of MGNN in Table I, where
W

(l)
s is the trainable weight matrix in the l-th standard GNN

layer, and h̃
(l−1)
i is the node messages from the previous

(l − 1)-th standard GNN layer (h̃(0)
i = xi). The mainstream

models of GNNs, including GCN, GAT, GraphSAGE and GIN,
can be viewed as an instance of the standard GNN. Then
we shows MGNN has larger representational capacity than
standard GNN in Lemmas 1–2 and Theorem 1.

Based on the above abstractions, we first show that even a
special case of MGNN at least has the same representational
capacity as the standard GNN in Lemma 1.

Lemma 1. Given any an instance of the standard GNN, if
the aggregate functions of standard GNN and MGNN are the
same and the input to ω only consist of values in the same
dimension from different feature vectors, its representations of
the graphs can also be generated by a special case of MGNN.

The proof for Lemma 1 is hinged on two important
properties of the injective concatenation function, i.e., the
interchangeability of concatenation and aggregation, and the
explicit preservation of motif-based representations, as first
mentioned in Section IV-E. The detailed proof can be found
in Section I of our supplementary materials. In short, Lemma
1 shows that a standard GNN can be subsumed by MGNN.
Taking one step further, we show that there exist two graphs
that can be distinguished by MGNN but are indistinguishable
by the standard GNN.

Lemma 2. There exist two non-isomorphic graphs G and G′

with self-loops, which can be distinguished by MGNN, but not
by the standard GNN.

Proof. As Fig. 6 illustrates, consider the two non-isomorphic
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graphs G and G′ with self-loops, in which all nodes have
the same features. First, G and G′ cannot be distinguished by
standard GNN, because the multi-set of neighboring features
of each node are the same. Second, G and G′ can be
naturally distinguished by MGNN since each node in G is
only associated with an open motif, whereas each node in G′

is associated with both open and close motifs.

Based on the results on Lemma 1 and Lemma 2, we
immediately come to the conclusion about the representation
capacity in Theorem 1.

Theorem 1. MGNN has a larger representation capacity than
the standard GNN.

VI. EXPERIMENTS

In this section, we introduce the details of the experimental
setup and the comparison results.

A. Experimental Setup

1) Datasets: To evaluate the effectiveness of our proposed
MGNN, we utilize seven public datasets on two bench-
mark tasks: (1) classifying nodes on three citation network
datasets (Cora, Citeseer, and Pubmed) and a knowledge graph
(Chem2Bio2RDF), and (2) classifying graphs on three bio-
chemical graph datasets (MUTAG, ENZYMES, and AIDS).
Table II summarizes the statistics of seven datasets.

• Cora, Citeseer and Pubmed [56] contain documents
represented by nodes and citation links represented by
edges.

• Chem2Bio2RDF [57] integrates data from multiple pub-
lic sources. Because the node feature is not provided in
Chem2Bio2RDF and the discriminative power of GNN-
based methods often depends on the properties of nodes,
we use the degree statistical information of each node
and its 1-hop neighborhood (5 dimensions in total) [58]
as its node features.

• MUTAG [59] contains 188 chemical compounds divided
into two classes according to their mutagenic effect on a
bacterium.

• ENZYMES [60] contains 100 proteins from each of the
6 Enzyme Commission top level enzyme classes.

• AIDS1 [61] contains 2 classes (active, inactive), which
represent molecules with activity against HIV or not.

2) Baselines: We consider three categories of methods,
namely low- and high-order GNN-based methods, network
embedding-based methods, as well as graph pooling-based
methods. Low-order GNN-based methods include:

• GCN [5] aggregates the feature information from a
node’s neighborhood.

• GraphSAGE [7] generates embeddings by sampling and
aggregating features from a node’s local neighborhood.

• GAT [6] incorporates the attention mechanism into the
propagation step, following a self-attention strategy.

1https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data/

• GIN [33] performs the feature aggregation in an injective
manner based on the theory of the 1-WL graph isomor-
phism test.

• BGNN [62] combines gradient boosted decision trees
(GBDT) with GNN.

High-order GNN-based methods include:
• MotifNet [16] utilizes a Laplacian matrix based on mul-

tiple motif-based adjacency matrices as the convolution
kernel of the graph, and uses an attention mechanism to
select node features.

• MixHop [42] concatenates the aggregated node features
from neighbors at different hops in each layer.

• GDC [43] utilizes generalized graph diffusion (e.g. Per-
sonalized PageRank) to generate a new graph, then uses
this new graph to predict rather than the original graph.

• CADNet [44] obtains neighborhood representations by
random walks with attention, and incorporates the neigh-
borhood representations via trainable coefficients.

Network embedding-based methods include:
• DeepWalk [11] combines truncated random-walk with

skip-gram model to learn node embedding.
• GraRep [9] leverages various powers of the adjacency

matrix to capture higher-order node similarity.
• HOPE [8] preserves higher-order proximity in node

representations.
• Node2Vec [10] employs biased-random walks, which

provide a trade-off between breadth-first (BFS) and
depth-first (DFS) graph searches, to learn node embed-
ding.

• Graph2Vec [63] creates WL tree for nodes as features
in graphs to decompose the graph-feature co-occurence
matrix.

• NetLSD [64] calculates the heat kernel trace of the
normalized Laplacian matrix over a vector of time scales.

• GL2Vec [65] extends Graph2Vec with edge features by
utilizing the line graph.

• Feather [66] describes node neighborhoods with random
walk weights.

Graph pooling-based methods include:
• Graclus [28] is an alternative of eigen-decomposition to

calculate a clustering version of the original graph.
• GlobalATT [26] employs gate recurrent unit architec-

tures with global attention to update node latent repre-
sentations.

• EdgePool [30] extracts graph features by contracting
edges and merging the connected nodes uniformly.

• TopKPool [31] learns a scalar projection score for each
node and selects the top k nodes.

• ASAP [29] utilizes a self-attention network along with a
modified GNN formulation to capture the importance of
each node in a given graph.

We use the low- and high-order GNN-based approaches
for both node classification and graph classification tasks,
except that BGNN is used for the node classification task
only since its GNN module is designed to provide the gradi-
ents generated by the node classification loss during training
[62]. We use the following node-level network embedding
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TABLE II
STATISTICS OF THE DATASETS.

Category Dataset # Graphs # Nodes (Avg.) # Edges (Avg.) # Features # Classes

Citation Graphs
Cora 1 2,708 5,429 1,433 7
Citeseer 1 3,327 4,732 3,703 6
Pubmed 1 19,717 44,338 500 3

Knowledge Graphs Chem2Bio2RF 1 295,911 727,997 5 10

Biochemical Graphs
MUTAG 188 17.90 19.79 7 2
ENZYMES 600 32.63 62.14 21 6
AIDS 2,000 15.69 16.20 42 2

approaches for the node classification task only: DeepWalk
[11], GraRep [9], HOPE [8], and Node2Vec [10]. We use all
the graph pooling approaches and the following graph-level
network embedding approaches for the graph classification
task only: Graph2Vec [63], NetLSD [64], GL2Vec [65], and
Feather [66].

3) Implementation details: The configurations of our
MGNN as well as GNN-based baselines on the node classifi-
cation task are as follows. We use 1 GNN layer for Cora and
Citeseer datasets, while 2 GNN layers for the other two larger
datasets namely Pubmed and Chem2Bio2RDF. In addition,
a fully connected layer (FCL) is added after the last GNN
layer to further process the node representation matrix. For
the graph classification task, we use 3 GNN layers on 3
biochemical graph datasets for MGNN, GNN-based baselines
as well as graph pooling-based baselines. Similarly, the node
representation matrix after the last GNN layer would be passed
through three fully connected layers. We use sum aggregation
as the readout operation to derive the embedding for the graph.

For our MGNN, aggregate function AGG in Eq. (2) was
sum. The activation function σ in Eq. (7) was set as sigmoid
for Cora and Citeseer, while it was set as tanh for other
datasets [6]. We further set d1, d2, d3 in Eq. (2), the output
dimensionality of the GCN layer which is stacked in the first,
second, and third MGNN layers, to 16, nc, nc, respectively,
where nc is the number of classes in the corresponding
dataset. Next, the dimensionality d′l in Eq. (5) was set to 6 on
each dataset. We used the Adam optimizer and the learning
rate η in the optimization algorithm was set as 0.011. The
maximum number of training epochs t was set as 3000. In
practice, we made use of PyTorch for an efficient GPU-based
implementation of Algorithm 1 using sparse-dense matrix
multiplications.2

For the baselines, we tuned their settings empirically. First,
for GNN-based methods and graph pooling-based methods, the
embedding dimension and dropout [67] rate of these models,
were set to 16, 0.5, respectively. GCN, GAT, MotifNet used
their default aggregate function and GraphSAGE used max
aggregate empirically. The degree of multivariate polynomial
filters in MotifNet was set to 1 and utilizes 13 motif-based
adjacency matrices. Considering that GAT concatenates dif-
ferent head outputs, which is similar to MGNN. Therefore,
GAT was set to use 13 heads and the embedding dimension

2Our source codes and pre-processed datasets are publicly available via
https://github.com/DMIRLAB-Group/MGNN

is 8. Second, for network embedding-based methods, the
embedding dimension of these models was set to 128, and
we used the logistic regression model [68] as a classifier to
evaluate the quality of the embeddings generated by these
unsupervised models. The other settings for these models
largely align with the literature.

Note that, in our experiments, all the methods make use
of the same directed/undirected edge information on each
dataset. Specifically, Chem2Bio2RDF is a directed graph. The
baseline implementations used here are able to deal with
directed graphs, in which message propagation follows the
given edge directions. Meanwhile, ENZYMES, MUTAG, and
AIDS are all undirected graphs, and the original Cora, Citeseer
and Pubmed are directed citation graphs. Following standard
benchmarking practice, the three citation graphs are treated as
undirected [69], [70], where a preprocessing step is applied
to ignore edge directions for all the methods. Note that when
an undirected graph is fed into MGNN, MGNN treats each
undirected edge as two directed edges in opposite directions.

We adopt a widely-used accuracy metric for performance
evaluation. For the node classification task, similar to the
experimental setup in [71], we split the dataset into 500 nodes
for validation, 500 nodes for testing, and the remaining nodes
were used for training, to simulate labeled and unlabeled
information. Note that Chem2Bio2RDF is an exception, and
we split it into 5000 nodes for validation and 5000 nodes
for testing due to its large size. Then we report the average
and standard deviation of accuracy scores across the 5 runs
with different random seeds. For the graph classification task,
similar to the experimental setup in [33], we perform 5-fold
cross validation. For other experiments, we present the average
accuracy scores over the 5 runs with various random seeds.

B. Performance Evaluation

We evaluate the empirical performance of MGNN against
the state-of-the-art baselines in Tables III and IV.

1) Comparison to baselines: As shown in Table III,
MGNN significantly and consistently outperforms all the base-
lines on different datasets. In particular, GraphSAGE achieves
the second best performance on Pubmed and Chem2Bio2RDF,
while MixHop achieves the second best performance on Cora
and Chem2Bio2RDF, and GDC achieves the second best
performance on Citeseer. Our MGNN is capable of achiev-
ing further improvements against GraphSAGE by 2.81% on
Pubmed, against MixHop by 2.92% on Cora, as well as against
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TABLE III
PERFORMANCE ON THE NODE CLASSIFICATION TASK, MEASURED IN ACCURACY. STANDARD DEVIATION ERRORS ARE GIVEN. THE BEST PERFORMANCE

IS MARKED IN BOLD, AND THE SECOND BEST IS UNDERLINED.

Cora Citeseer Pubmed Chem2Bio2RDF

DeepWalk 0.4313 ± 0.0221 0.2732 ± 0.0216 0.4440 ± 0.0208 0.9253 ± 0.0023
GraRep 0.5957 ± 0.0062 0.4220 ± 0.0022 0.6147 ± 0.0073 0.9313 ± 0.0018
HOPE 0.4510 ± 0.0010 0.3180 ± 0.0021 0.4880 ± 0.0011 0.9030 ± 0.0001
Node2Vec 0.7150 ± 0.0042 0.4670 ± 0.0145 0.6788 ± 0.0063 0.9029 ± 0.0012

GCN 0.8595 ± 0.0207 0.7764 ± 0.0045 0.8865 ± 0.0048 0.9371 ± 0.0017
GraphSAGE 0.8610 ± 0.0101 0.7744 ± 0.0061 0.8980 ± 0.0049 0.9630 ± 0.0010
GAT 0.8775 ± 0.0127 0.7852 ± 0.0052 0.8840 ± 0.0079 0.9628 ± 0.0017
GIN 0.8107 ± 0.0188 0.7255 ± 0.0160 0.8810 ± 0.0156 0.9205 ± 0.0129
BGNN 0.8470 ± 0.0143 0.7750 ± 0.0112 0.8380 ± 0.0119 0.8746 ± 0.0115

MotifNet 0.8580 ± 0.0075 0.7750 ± 0.0071 0.8895 ± 0.0102 0.8863 ± 0.0114
MixHop 0.8803 ± 0.0120 0.7796 ± 0.0053 0.8628 ± 0.0150 0.9630 ± 0.0004
GDC 0.8660 ± 0.0100 0.7854 ± 0.0061 0.8768 ± 0.0059 0.8838 ± 0.0036
CADNet 0.8612 ± 0.0131 0.7652 ± 0.0148 0.8772 ± 0.0085 0.8287 ± 0.0258

MGNN 0.9060 ± 0.0049 0.7948 ± 0.0050 0.9232 ± 0.0084 0.9870 ± 0.0021

GraphSAGE and MixHop by 2.49% on Chem2Bio2RDF. On
Citeseer, MGNN outperforms GDC by 1.20% in terms of
accuracy. Note that the number of edges in Citeseer is small
and the occurrences of motifs are limited. Therefore, our
MGNN cannot collect as much high-order information as it
can on other datasets, and MGNN achieves less improvement
on Citeseer than on other datasets.

Similarly, in Table IV, MGNN regularly surpasses all the
baselines. In particular, GCN achieves the second best per-
formance on AIDS, while GDC achieves the second best
performance on MUTAG, and MixHop achieves the second
best performance on ENZYMES. MGNN is able to achieve
further improvements against GCN by 0.76% on AIDS, against
GDC by 3.18% on MUTAG and against MixHop by 10.95%
on ENZYMES as shown in Table IV. In particular, a graph
represents a compound’s molecular structure in these three
biochemical graph datasets. Any chemical structure can be
represented by 13 motifs, which allows our MGNN to identify
similar structures among various compounds and boost classi-
fication accuracy. For example, both carbon dioxide CO2 and
methane CH4 have the motif M8. Moreover, CH4 has six M8

while CO2 has one M8 only, and such difference is useful for
graph classification.

Next, we further compare the robustness of MGNN and the
baseline approaches by introducing noise. Specifically, by re-
placing the original input node features with a 16-dimensional
random vector, we first modified Cora and Pubmed which are
denoted as Cora-RandomX and Pubmed-RandomX. Then we
compared the performance of MGNN and the baselines on the
above two modified datasets. As shown in Fig. 7(a)(b), the
performance of MGNN and other GNN baselines on Cora-
RandomX and Pubmed-RandomX showed signs of deterio-
ration to varying degrees compared with that on Cora and
Pubmed, which is intuitive since additional noise is introduced
through random features. Importantly, not only does MGNN
considerably and continuously exceed all GNN baselines on
the accuracy metric but also its rate of decrease is the lowest.
This is because MGNN can grasp more high-order structure
information with higher discriminative power, which makes

TABLE IV
PERFORMANCE ON THE GRAPH CLASSIFICATION TASK IN TERMS OF

ACCURACY. STANDARD DEVIATION ERRORS ARE GIVEN.

MUTAG ENZYMES AIDS

Graph2Vec 0.6650 ± 0.0087 0.2033 ± 0.0239 0.8045 ± 0.0033
GL2Vec 0.6703 ± 0.0106 0.1967 ± 0.0461 0.8225 ± 0.0065
NetLSD 0.7450 ± 0.0611 0.2136 ± 0.0461 0.9575 ± 0.0082
Feather 0.7716 ± 0.0341 0.2483 ± 0.0226 0.7930 ± 0.0019

Graclus 0.7504 ± 0.0750 0.2567 ± 0.0253 0.8640 ± 0.0398
ASAP 0.7562 ± 0.0799 0.2600 ± 0.0320 0.8960 ± 0.0279
EdgePool 0.7508 ± 0.0687 0.2500 ± 0.0449 0.8615 ± 0.0581
TopKPool 0.7238 ± 0.0527 0.2417 ± 0.0349 0.8530 ± 0.0492
GlobalATT 0.7346 ± 0.0736 0.2383 ± 0.0427 0.8390 ± 0.0248

GCN 0.7555 ± 0.0651 0.2100 ± 0.0285 0.9895 ± 0.0091
GAT 0.7391 ± 0.0315 0.1667 ± 0.0000 0.8740 ± 0.1013
GraphSAGE 0.7984 ± 0.0526 0.2333 ± 0.0586 0.9855 ± 0.0091
GIN 0.7780 ± 0.0940 0.2630 ± 0.0330 0.9870 ± 0.0090

MotifNet 0.8040 ± 0.0330 0.1770 ± 0.0140 0.9880 ± 0.0060
MixHop 0.7663 ± 0.0897 0.2767 ± 0.0494 0.9265 ± 0.0157
GDC 0.8199 ± 0.0849 0.2633 ± 0.0126 0.8705 ± 0.0165
CADNet 0.7450 ± 0.0531 0.2267 ± 0.0273 0.7995 ± 0.0011

MGNN 0.8460 ± 0.0230 0.3070 ± 0.0300 0.9970 ± 0.0030
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Fig. 7. Performance on robustness comparison in two modified datasets
using random vectors as node features. Compared to Cora and Pubmed, the
performance degradation rate of models is denoted by the inverted black
triangle with the percentage on the top of each bar.

MGNN more robust than other standard or motif-based GNNs.
2) Model ablation study: As Fig. 4 illustrates, the network

motif, motif redundancy minimization and injective Mk-based
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Fig. 8. Ablation study on all motifs on seven datasets, minimal-redundancy
operator ∆ and injective vector concatenation function on three datasets: (a)
the ablation study result related to all motifs on seven datasets and (b)(c):
the ablation study results related to ∆ and concatenation function on three
datasets, respectively.

representation concatenation are key components in our pro-
posed MGNN. We can thus derive the following variants of
MGNN: (1) MGNN without any motif information denoted
as MGNNw/oM (this variant is actually a GCN); (2) MGNN
without motif redundancy minimization operator ∆ denoted
as MGNNw/o∆; (3) MGNN with other functions for feature
vector combination, including summation, max and mean. To
show the impact of motifs, ∆ and injective concatenation in
MGNN, we compare MGNN with the above variants.

In Fig. 8, we observe that MGNN achieves better perfor-
mance than the variants in terms of accuracy, demonstrating
the effectiveness of motifs, ∆ and injective concatenation.
Firstly, in order to demonstrate the impact of the motif on
MGNN’s performance, we compare MGNN with the variant
MGNNw/oM. As Fig. 8(a) shows, we observe that the perfor-
mance of MGNNw/oM is lower than that of MGNN on all
the 7 datasets, demonstrating the importance of incorporating
motif into GNNs, that is, the high-order structures grasped
by motif are important for GNNs’ performance. Secondly, in
order to investigate the impact of ∆, we removed the minimal-
redundancy operator ∆ on MGNN, and the comparison be-
tween MGNN and MGNNw/o∆ is as Fig. 8(b) illustrates. As
can be seen, MGNN significantly outperforms MGNNw/o∆
in terms of accuracy in three datasets. Note that the number
of edges in Pubmed is large and the redundancy of motifs
is probably higher than other datasets (i.e, different motifs
in Pubmed share more certain substructures). Therefore, on
Pubmed, MGNNw/o∆ is more difficult to distinguish between
different motif-wise representations than on other datasets, and
the performance gap between MGNN and MGNNw/o∆ is
more pronounced on Pubmed than on other datasets. Thirdly,
to demonstrate the impact of injective concatenation, we used

other non-injective vector combination functions, including
summation, max, and mean, to replace injective concatenation.
Fig. 8(c) illustrates that MGNN with concatenation performs
significantly better than MGNN with other functions on these
three datasets. Moreover, we show the results of different
combination functions (namely, concatenation, max, sum and
mean) on three datasets in Table V. We can observe that
the performance decline is larger on Citeseer and Cora than
on PubMed. A potential reason is Cora and Citeseer are
very sparse and the occurrences of motifs are limited. Thus,
the limited number of motifs on Cora and Citeseer would
make it more difficult to distinguish among different node
representations using non-injective functions.

TABLE V
PERFORMANCE OF MGNN BY USING DIFFERENT COMBINATION

FUNCTIONS ON THREE DATASETS. THE RATES OF DECLINE IN
PERFORMANCE W.R.T. CONCATENATION ARE GIVEN IN PARENTHESES.

Concat Max Sum Mean

Cora 0.906 0.878 (3.09% ↓) 0.884 (2.43% ↓) 0.894 (1.32% ↓)
Citeseer 0.795 0.776 (2.37% ↓) 0.766 (3.62% ↓) 0.788 (0.86% ↓)
Pubmed 0.923 0.914 (1.00% ↓) 0.918 (0.56% ↓) 0.918 (0.56% ↓)

C. Case Study

In this section, we investigate the importance of different
motifs for prediction and demonstrate the necessity of using
the high-order structure for prediction. We completed the
following two studies on the Chem2Bio2RDF dataset. First,
MGNN makes a prediction across the 5 runs by using only 1
out of the 13 motifs and then compares the results to determine
the significance of various motifs. Second, we take protein-
disease association prediction as our case study. In particular,
we rank the protein-disease pairs based on their predicted
scores, then identify those top pairs supported by existing
publications. Meanwhile, we also evaluate the performance
of MGNN versus the baseline approaches for protein-disease
association prediction. Next, we show the details of these two
studies.

1) The importance of different motifs for prediction: To
demonstrate the importance of different motifs, MGNN uti-
lizes just one motif to conduct node classification across the
5 runs on the Chem2Bio2RDF network, and the performance
of MGNN is used to assess the importance of each motif in
Table VI.

As shown in Table VI, we can draw two conclusions.
First, for a Chem2Bio2RDF network, the importance of dif-
ferent motifs varies. This is because important motifs often
serve as building blocks within a network, and can even be
used to define universal classes of the network they are in
[12]. For example, M13 is a building block of the protein-
protein interaction (PPI) network on the Chem2Bio2RDF
graph (protein↔protein↔protein), and the PPI network is key
for protein-disease association prediction, M13 is thus ranked
as one of top 3 most significant motifs on this dataset as
shown in Table VI. Another example is the triangular motifs
(M1-M7), which are essential in social networks due to their
triadic closure nature [13], [72]. Second, the performance of
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TABLE VI
IMPORTANCE RANKING OF 13 MOTIFS ON CHEM2BIO2RDF. THE

IMPORTANCE SCORE OF EACH MOTIF IS THE PERFORMANCE OF MGNN
WHEN USING ONLY THAT MOTIF FOR PREDICTION. THE SYMBOL ‘ALL’

INDICATES THAT ALL MOTIFS ARE USED BY MGNN.

Rank Motif ACC Rank Motif ACC

1 M3 0.9809 8 M1 0.9686
2 M13 0.9802 9 M8 0.9477
3 M7 0.9791 10 M10 0.9408
4 M2 0.9789 11 M12 0.9377
5 M11 0.9781 12 M9 0.9317
6 M5 0.9762 13 M6 0.9271
7 M4 0.9717 - ALL 0.9870

the top three motifs is similar to the performance of all motifs
combined (last row on the right). This is because a single
motif may effectively encapsulate all of the network’s essential
information. With these two conclusions, we can see that one
of the advantages of MGNN is its generality. That is, even if
the importance of motifs is unknown, we can still use MGNN
with all the motifs to achieve a final performance similar to
that of using important motifs only.

To further demonstrate the adaptive selection results of our
motif redundancy minimization operator, we conduct the fol-
lowing experiments on Chem2Bio2RDF. We randomly sample
15 nodes and presented the representations of the top 3 and
bottom 3 most significant motifs in Table VI by heatmap.
As shown in Fig. 9, representations w.r.t. unimportant motifs
(M9, M6) are more sparse than other motifs. In addition, we
observed that there are often only no more than three non-
zero dimensions for a motif, which shows that MGNN actually
needs a very low dimension to capture high-order structures.

2) The necessity of incorporating high-order structure in-
formation for prediction: We take protein-disease association
prediction on the Chem2Bio2RDF dataset as an example
to demonstrate the necessity of incorporating higher-order
information from two aspects, i.e., illustration of validity
and illustration of practicality. For an illustration of validity,
we train MGNN and compare it to the baseline methods
for protein-disease association prediction in terms of the
area under the ROC curve (AUROC). For an illustration of
practicality, we rank all the protein-disease pairs based on
their predicted scores and then identify top pairs supported
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Fig. 9. Heatmap of the top 3 (M3,M13,M7) and bottom 3 (M12,M9,M6)
most important motif-based representations on Chem2Bio2RDF.
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Fig. 10. Performance on protein-disease association prediction in
Chem2Bio2RDF dataset, measured in AUROC. Standard deviation errors are
given.

TABLE VII
TOP PREDICTED PROTEIN-DISEASE ASSOCIATIONS WITH LITERATURE

SUPPORT.

Rank Gene Disease PubMed ID

1 COX2 Colorectal Carcinoma 26 159 723
6 CTNNB1 Colorectal Carcinoma 24 947 187
7 P2RX7 Colorectal Carcinoma 28 412 208

12 SMAD3 Colorectal Carcinoma 30 510 241
16 HRH1 Colorectal Carcinoma 30 462 522
37 ABCB1 Colorectal Carcinoma 28 302 530
44 AKT1 Malignant neoplasm of breast 29 482 551
64 TP53 Malignant neoplasm of breast 31 391 192
82 EP300 Colorectal Carcinoma 23 759 652
92 ADORA1 Colorectal Carcinoma 27 814 614
107 REN Renal Tubular Dysgenesis 21 903 317
141 FGFR2 Autosomal Dominant 16 141 466
157 BCL2 Non-Hodgkin Lymphoma 29 666 304
169 NOS2 Malignant neoplasm of breast 20 978 357
263 CTNNB1 Mental retardation 24 614 104

by existing publications.
MGNN is first trained to predict each protein-disease pair’s

associated score and compare it to the baseline approaches.
Specifically, we will describe this step in detail by stating the
background of the task as well as the specific experimental
setup. As for the background of the task, protein-disease
association prediction is a significant issue with the potential
to give clinically actionable insights for disease diagnosis,
prognosis, and treatment [73]. The issue can be defined as
predicting which proteins are associated with a given disease.
Experimental methods and computational methods are the two
primary kinds of current attempts to solve this challenge.
Experimental methods for gene–disease association, such as
genome-wide association studies (GWAS), and RNA inter-
ference (RNAi) screens, are costly and time-consuming to
conduct. Therefore, a variety of computational methods have
been developed to discover or predict gene–disease associa-
tions, including text mining, network-based methods [74], and
so on. Among them, network-based methods often need to
use the structure information of the PPI network (constructed
by M13 motif). However, high-order PPI network structure is
largely ignored in protein-disease discovery nowadays [73].
Our MGNN thus can overcome this limitation.

We next describe the experimental setup. We mapped a
protein to the gene that it is produced by, and viewed protein-
disease association prediction as a link prediction task on
the graph [73]. We split the edges of the Chem2Bio2RDF
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dataset with the ratio of 85%/5%/10% for training, validation
and testing respectively. We adopted an inner product decoder
for link prediction. The parameters of the model were op-
timized using negative sampling and cross-entropy loss and
we used AUROC as a metric. The number of the epoch
was set to 1000 and the other hyperparameter settings are
consistent with the node/graph classification task. Note that,
the Chem2Bio2RDF dataset is missing a semantic mapping
to disease IDs. To alleviate this problem, we search for
genes associated with the disease (2929 known gene(protein)-
disease links in Chem2Bio2RDF), and perform gene-disease
association queries in the public database DisGeNET3, so as
to realize the inference of the actual semantics of the disease
IDs. Fig. 10 compares the performance of MGNN and other
GNN-based methods under five random seeds. As can be seen,
MGNN exceeds all GNN baselines on the AUROC metric.
Importantly, the AUROC of MGNN is close to 100%, and the
standard deviation is very small, which means that MGNN has
strong practicability in protein-disease association prediction.

For an illustration of practicality, we further ranked the
whole unknown protein-disease pairs (over 28 million un-
known pairs) based on their predicted scores, and identified
103 out of the top 1000 pairs that are supported by existing
publications. Table VII displays the first 15 of these 103
pairs, and the last column provides the PubMed ID of the
publications that support our prediction.

As shown in Table VII, all pairs have been validated by
wet-labs and can be found in the DisGeNET database, e.g.
row 2 (CTNNB1, Colorectal Carcinoma) is validated by RNAi
screening [75], and row 4 (SMAD3,Colorectal Carcinoma)
is validated by GWAS [76]. These methods predict protein-
disease association from the angles which are orthogonal from
MGNN. Therefore, we consider that they provide reasonable
supports for our prediction. Taking the first protein-disease
pair as an example, COX2 and Colorectal Carcinoma are
reported in [77] (i.e. PubMed ID: 26159723). In fact, COX2
is preferentially expressed in cancer cells and its expression is
enhanced by proinflammatory cytokines and carcinogens [77].
It is thus reasonable to predict a protein-disease association be-
tween them because there is evidence that the over-expression
of COX2 is related to the infiltrating growth of Colorectal
Carcinoma and other pathological characteristics [78].

D. Parameter Sensitivity

We present the sensitivity analysis for the dimensionality
parameters d′l and d1 in our MGNN.

In Fig. 11(a), the performance of MGNN is not sensitive to
changes in the dimensionality d′l in Eqs. (5)–(6). Particularly,
values of d′l in the range [22, 25] typically give a robust and
reasonably good performance, e.g., d′l = 6 is a desirable choice
in most cases. For the output dimensionality d1 in Eq. (3), as
shown in Fig. 11(b), the performance gradually improves and
becomes stable around 24, which is the preferred choice in
most cases.
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Fig. 11. Parameter sensitivity analysis for MGNN: (a) dimensionality d′l in
Eqs. (5)–(6). (b) output dimensionality d1 in Eq. (3).

TABLE VIII
MODEL SIZE AND EFFICIENCY ANALYSIS ON THE PUBMED DATASET.

# Params Training Inference Accuracyper epoch/s overall/min /ms

GAT 104,624 0.01 1.13 4.00 0.8840
MixHop 24,144 0.02 15.01 19.48 0.8628

BGNN 9,866,596 1.97 608.64 4.57 0.8380
EGAT 108,107 3.72 320.29 20.63 0.8970
ESAGE 212,693 3.11 14.01 5.77 0.9040
EGAT+SAGE 164,443 3.27 150.07 12.34 0.8992

MGNN 26,084 0.04 10.00 1.25 0.9232

E. Model Size and Efficiency

We evaluate the model size and efficiency of MGNN, in
terms of the number of trainable parameters, training time
(per epoch and overall), and inference time. We select a
representative baseline from standard GNNs (i.e., GAT) and
high-order GNNs (i.e., MixHop), respectively, for comparison
to MGNN. Moreover, since MGNN can be viewed as a model
that integrates several motif-based modules, we also compare
an ensemble GNN here (i.e., BGNN).

For a more comprehensive comparison, we also develop
a simple ensemble framework over 13 GNN modules (cor-
responding to our 13 motifs). First, we separately apply
thirteen GNN modules that employ different initializations but
otherwise the same input, and fuse their output by a fully
connected layer. All hidden dimensions are set to 16. For the
above framework, we develop three variants, respectively, the
modules use only 13 GATs, only 13 GraphSAGEs as well as
7 GraphSAGEs and 6 GATs, denoted as EGAT and ESAGE,
and EGAT+SAGE, respectively.

As shown in Table VIII, MGNN is competitive in terms of
model size and efficiency, while achieving the best accuracy.
In particular, although several ensemble methods including
EGAT, ESAGE and EGAT+SAGE achieve better accuracies
among the baselines, their model sizes or efficiency are all
worse than MGNN. Note that the per epoch and overall
training times are often inconsistent across methods, as a
method may train faster per epoch but it converges slower,
or vice versa. Further experiments involving ensemble GNNs
on all datasets are presented in Section II of our supplementary
materials.

3https://www.disgenet.org/
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VII. CONCLUSION

We propose Motif Graph Neural Networks, a novel frame-
work to better capture high-order structures. Different from
previous work, we propose the motif redundancy minimiza-
tion operator and injective motif combination to improve the
discriminative power of GNNs on the high-order structure.
We also propose an efficient manner to construct a motif-
based adjacency matrix. Further, we theoretically show that
MGNN is provably more expressive than standard GNN, and
standard GNN is in fact a special case of MGNN. Finally, we
demonstrate that MGNN outperforms all baselines on seven
public benchmarks.
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APPENDIX

A. Proof for Lemma 1

Proof. First, we show the relationship between the graph’s
adjacency matrix and the motif-based adjacency matrix. Then,
using this relationship, we finish the proof of the lemma.

On the directed graph G with self-loops, the subgraph
composed of any node linked to any two of its neighbors is
always an instance of open motif (M8–M13). That is, in the
adjacency matrix A of the graph with self-loops, if (A)ij > 0,
(A)uv > 0 where (i, j) and (u, v) are adjacent edges in
G, then there always exist k′ ∈ {8, 9, ..., 13} such that Ak′

satisfies (Ak′)ij > 0, (Ak′)uv > 0. It immediately follows
that, on a graph with self-loops, if (A)ij > 0, then we also
have (Ak′)ij > 0. Without loss of generality, we assume

k′ = 13 for ease of discussion later. That is, ∀(i, j) ∈ E ,
(A13)ij > 0.

Next, we use the construction method to complete
the proof of this lemma. Based on Table I, an in-
stance of standard GNN is in the form of h̃

(l)
v =

σ(ω
({

(A)viW
(l)
s h̃

(l−1)
i

∣∣i ∈ N (v)
})

). We will use the fol-
lowing steps to find a special case of MGNN which have the
same representational capacity as standard GNN.

First, this special case of MGNN must satisfy the following
equation.∥∥13

k=1
σ(ω({α(l)

k,vi · (Ak)viW
(l)
m h

(l−1)
i

∣∣i ∈ N (v)}))

= σ(ω({
∥∥12
k=1

0k

∥∥(A)viW
(l)
s h̃

(l−1)
i

∣∣i ∈ N (v)})),
(15)

where 0k is a dl-dimensional zero vector, W(l)
m and W

(l)
s ∈

Rdl×dl−1 , h(l−1)
i and h̃

(l−1)
i ∈ Rdl−1 , so that the dimensions

on both sides of Eq. (15) are the same. That is, the output
dimensions of the special case of MGNN and standard GNN
are the same, both being 13dl.

Next, with W
(l)
m and α(l)

k,vi as variables, our goal is to prove
that there will always be solutions to W

(l)
m and α(l)

k,vi such that
Eq. (15) holds.

For simplicity, in Eq. (15), we use symbol φ, a aggregation
function with activation, to represent σ ◦ ω, that is,∥∥13

k=1
φ({α(l)

k,vi · (Ak)viW
(l)
m h

(l−1)
i

∣∣i ∈ N (v)})

=φ({
∥∥12
k=1

0k

∥∥(A)viW
(l)
s h̃

(l−1)
i

∣∣i ∈ N (v)}).
(16)

In the left hand side (LHS) of Eq. (16), the result will not
change if the order of concatenation operation and aggregation
φ is exchanged. This is because the result value for each
dimension in the LHS is only aggregated from the values
of the same dimension in different feature vectors, and each
feature vector is completely preserved after concatenation is
performed. Thus, the LHS of Eq. (16) becomes

φ({
∥∥13
k=1

α
(l)
k,vi · (Ak)viW

(l)
m h

(l−1)
i

∣∣i ∈ N (v)}). (17)

By combining Eq. (16)–(17), we get the equivalent form of
Eq. (15):

φ({
∥∥13
k=1

α
(l)
k,vi · (Ak)viW

(l)
m h

(l−1)
i

∣∣i ∈ N (v)})

=φ({
∥∥12
k=1

0k

∥∥(A)viW
(l)
s h̃

(l−1)
i }

∣∣i ∈ N (v)}).
(18)

Therefore, our goal now is to prove that there will always
be solutions such that Eq. (18) holds. We can solve for the
following Eqs. (19)–(20) to ensure that Eq. (18) holds. For
k ∈ {1, ..., 12},

α
(l)
k,vi · (Ak)viW

(l)
m h

(l−1)
i = 0k, (19)

and for k = 13,

α
(l)
13,vi · (A13)viW

(l)
m h

(l−1)
i = (A)viW

(l)
s h̃

(l−1)
i . (20)

Then we will demonstrate that ∀l ≥ 1, there will always
be solutions to W

(l)
m and α

(l)
k,vi, such that Eqs. (19)–(20)

holds. Specifically, when l = 1, h
(0)
i = h̃

(0)
i = xi, allow-

ing Eqs. (19)–(20) to hold for W
(l)
m = (A)vi

α
(l)
13,vi·(A13)vi

W
(l)
s ,

α
(l)
13,vi ̸= 0 and α

(l)
k,vi = 0 (k ∈ {1, ..., 12}), that is, 1-th
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TABLE IX
PERFORMANCE COMPARISON ON THE NODE CLASSIFICATION TASK, MEASURED IN ACCURACY. STANDARD DEVIATION ERRORS ARE GIVEN.

Cora Citeseer Pubmed Chem2Bio2RDF

GCN 0.8595 ± 0.0207 0.7764 ± 0.0045 0.8865 ± 0.0048 0.9371 ± 0.0017
GraphSAGE 0.8610 ± 0.0101 0.7744 ± 0.0061 0.8980 ± 0.0049 0.9630 ± 0.0010
GAT 0.8775 ± 0.0127 0.7852 ± 0.0052 0.8840 ± 0.0079 0.9628 ± 0.0017
GIN 0.8107 ± 0.0188 0.7255 ± 0.0160 0.8810 ± 0.0156 0.9205 ± 0.0129

BGNN 0.8470 ± 0.0143 0.7750 ± 0.0112 0.8380 ± 0.0119 0.8746 ± 0.0115
EGAT 0.8720 ± 0.0040 0.7220 ± 0.0060 0.8970 ± 0.0010 0.9658 ± 0.0040
ESAGE 0.8612 ± 0.0135 0.7604 ± 0.0171 0.9040 ± 0.0102 0.9633 ± 0.0019
EGAT+SAGE 0.8792 ± 0.0102 0.7632 ± 0.0141 0.8992 ± 0.0109 0.9663 ± 0.0010

MGNN 0.9060 ± 0.0049 0.7948 ± 0.0050 0.9232 ± 0.0084 0.9870 ± 0.0021

special case of MGNN layer can generate the same vector
representation as 1-th standard GNN layer since both models
have the same output in the previous layer (i.e., h(0)

i = h̃
(0)
i ).

Similarly, when l > 1, Eqs. (19)–(20) holds. This finishes the
proof of the lemma.

B. Performance Evaluation of Ensemble GNNs

TABLE X
PERFORMANCE COMPARISON ON THE GRAPH CLASSIFICATION TASK,

MEASURED IN ACCURACY. STANDARD DEVIATION ERRORS ARE GIVEN.

MUTAG ENZYMES AIDS

GCN 0.7555 ± 0.0651 0.2100 ± 0.0285 0.9895 ± 0.0091
GAT 0.7391 ± 0.0315 0.1667 ± 0.0000 0.8740 ± 0.1013
GraphSAGE 0.7984 ± 0.0526 0.2333 ± 0.0586 0.9855 ± 0.0091
GIN 0.7780 ± 0.0940 0.2630 ± 0.0330 0.9870 ± 0.0090

EGAT 0.7820 ± 0.0610 0.2420 ± 0.0450 0.9850 ± 0.0050
ESAGE 0.7350 ± 0.0650 0.2670 ± 0.0560 0.9850 ± 0.0060
EGAT+SAGE 0.7340 ± 0.0320 0.2500 ± 0.0480 0.9840 ± 0.0070

MGNN 0.8460 ± 0.0230 0.3070 ± 0.0300 0.9970 ± 0.0030

We evaluate the empirical performance of MGNN against
ensemble GNNs and standard GNNs in Table IX and Table X.

As shown in Table IX, MGNN significantly and consistently
outperforms all the baselines on different datasets. In particu-
lar, ESAGE achieves the second best performance on Pubmed,
while EGAT+SAGE achieves the second best performance on
Cora and Chem2Bio2RDF. On Citeseer, GAT achieves the
second best performance. MGNN is able to achieve further
improvements against ESAGE by 2.12% on Pubmed, against
GAT by 1.22% on Citeseer, as well as against EGAT+SAGE
by 3.05% and 2.14% on Cora and Chem2Bio2RDF respec-
tively.

In Table X, similarly, MGNN regularly surpasses all base-
lines. In particular, ESAGE achieves the second best per-
formance on ENZYMES, while GraphSAGE achieves the
second best performance on MUTAG and GCN achieves the
second best performance on AIDS. Our MGNN is capable of
achieving further improvements against ESAGE by 14.98%
on ENZYMES, as well as against GraphSAGE and GCN by
5.96% on MUTAG and by 0.76% on AIDS, respectively.

TABLE XI
THE EFFICIENCY ANALYSIS OF THREE METHODS FOR CONSTRUCTING
MOTIF-BASED ADJACENCY MATRIX, IN TERMS OF THE RUNNING TIME
(SECONDS). ‘MATMUL’ DENOTES MATRIX MULTIPLICATION METHOD.

# Nodes
Closed Motif: M1 Open Motif: M13

MatMul [10] Enumerate Non-
enumerate

Cora 2,708 0.003 73.322 1.534
Pubmed 19,717 0.027 4249.435 18.852
Chem2-

Bio2RDF 295,911 0.228 1226K 69.353

C. Efficiency Analysis of Motif-based Adjacency Matrix Con-
struction

We evaluate the efficiency of MatMul [18] for closed motifs
and our proposed non-enumeration method for open motifs, in
terms of the running time, in Table XI below. For open motifs,
we would compare the running time of both enumeration and
non-enumeration methods.

As shown in Table XI, it can be observed that MatMul
can run very fast for closed motifs even for large-scale
graphs, such as Chem2Bio2RDF. Meanwhile, compared to the
standard enumeration method, our proposed non-enumeration
method performs much better for open motifs. Even for
Chem2Bio2RDF dataset, our non-enumeration can still run
quite fast, taking about 69 seconds to construct the adjacency
matrix for the open motif M13. These results demonstrate that
our preprocessing for both closed and open motifs is efficient.

D. Performance and efficiency analysis of MGNN using all
motifs

TABLE XII
PERFORMANCE AND EFFICIENCY ANALYSIS OF MGNN USING ALL

MOTIFS OR NOT, MEASURED IN ACCURACY AND OVERALL TRAINING TIME
(MINUTES). ‘(M7, M8, M9)’ DENOTES THAT MGNN USES ONLY M7 , M8

AND M9 MOTIFS.

ACC Overall/min

# Nodes (M7, M8, M9) ALL (M7, M8, M9) ALL

Cora 2,708 0.8732 0.9060 0.87 1.37
CiteSeer 3,327 0.7224 0.7948 0.80 1.29
PubMed 19,717 0.4220 0.9232 5.73 10.00
Chem2-

Bio2RDF 295,911 0.9741 0.9870 14.26 27.26
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We compare the performance and efficiency of MGNN
using all motifs or not, in terms of accuracy and overall
training time. Specifically, we select motifs M7, M8 and M9

which are commonly important in Cora, CiteSeer, PubMed
and Chem2Bio2RDF, and make MGNN utilize just the above
three motifs to conduct node classification on the four datasets.
For simplicity, we denote this variant of MGNN as (M7, M8,
M9).

As shown in Table XII, MGNN using all the motifs achieves
better accuracy, while (M7, M8, M9) method can clearly save
the training time. However, (M7, M8, M9) method achieves
lower accuracy than MGNN using all the motifs on all four
datasets, showing that these three motifs are not sufficient to
capture all the important high-order structures for these four
datasets. In addition, we would think the efficiency when using
all the motifs is still satisfactory. Even on the largest dataset
(i.e., Chem2Bio2RDF), the overall training time for MGNN
using all the motifs is just 13 minutes longer than (M7, M8,
M9) method, while on other datasets the differences are much
smaller.
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