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Abstract

Alignment between image and text has shown promising im-
provements on patch-level pre-trained document image mod-
els. However, investigating more effective or finer-grained
alignment techniques during pre-training requires a large
amount of computation cost and time. Thus, a question natu-
rally arises: Could we fine-tune the pre-trained models adap-
tive to downstream tasks with alignment objectives and achieve
comparable or better performance? In this paper, we pro-
pose a new model architecture with alignment-enriched tuning
(dubbed AETNet) upon pre-trained document image models,
to adapt downstream tasks with the joint task-specific super-
vised and alignment-aware contrastive objective. Specifically,
we introduce an extra visual transformer as the alignment-ware
image encoder and an extra text transformer as the alignment-
ware text encoder before multimodal fusion. We consider
alignment in the following three aspects: 1) document-level
alignment by leveraging the cross-modal and intra-modal con-
trastive loss; 2) global-local alignment for modeling localized
and structural information in document images; and 3) local-
level alignment for more accurate patch-level information. Ex-
periments on various downstream tasks show that AETNet can
achieve state-of-the-art performance on various downstream
tasks. Notably, AETNet consistently outperforms state-of-the-
art pre-trained models, such as LayoutLMv3 with fine-tuning
techniques, on three different downstream tasks. Code is avail-
able at https://github.com/MAEHCM/AET.

Introduction
Self-pretraining techniques aiming to learn generic represen-
tations have recently proved to be highly effective for docu-
ment image understanding. Notably, transfer learning based
on pre-trained document image models yields strong perfor-
mance on various document related downstream tasks (Xu
et al. 2020, 2021b; Garncarek et al. 2021; Hong et al. 2022;
Wu et al. 2021; Li et al. 2021a,c,d; Lee et al. 2022; Huang
et al. 2022; Li et al. 2022). A typical self-pretraining method
in document image understanding is to pre-train a model on
a large amount of pairs of the document images and OCR
texts with layout information underlying the constraints of
unsupervised losses. Downstream tasks then usually leverage
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Figure 1: A document image example containing rich contex-
tual text and layout information.

the pre-trained weights for initialization. After that, the ini-
tialized model is fine-tuned for a downstream task using a
task-specific supervised objective.

As shown in Figure 1, a document image contains rich con-
textual text and structural information, requiring fine-grained
interaction modeling between image and text. Although
self-supervision achieves large progress in document im-
age related-tasks, most existing pre-trained document image
models are trained with coarse self-supervised losses, which
ignore fine-grained interaction modeling between image and
text. Inspired by this, DocFormer (Appalaraju et al. 2021)
learns to reconstruct image pixels through a CNN decoder,
SelfDoc (Li et al. 2021c) proposes to regress the masked
region feature, and the latest model LayoutLMv3 (Huang
et al. 2022) introduces a word-patch alignment objective
by reconstructing masked patch tokens of the visual modal-
ity. Although alignment between image and text has shown
promising improvements on large-scale self-supervised pre-
trained document image models, investigating more effective
or finer-grained alignment techniques during the pre-training
requires huge computational cost and time. Thus, a question
naturally arises: Could we fine-tune the pre-trained models
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adaptive to downstream tasks with more alignment objectives
and achieve comparable or better performance?

In recent few years, with the wide success of large-
scale pre-trained models, a range of tuning techniques has
arisen to adapt these general-purpose models to downstream
tasks (Howard and Ruder 2018; Jiang et al. 2019; Houlsby
et al. 2019; Gururangan et al. 2020; Xu et al. 2021a; Liu
et al. 2021a,b; Li and Liang 2021). The model tuning strategy
(i.e., fine-tuning) (Howard and Ruder 2018) tunes all model
parameters during adaptation. To improve training efficiency,
adapters (Houlsby et al. 2019) and prompt tuning (Li and
Liang 2021; Liu et al. 2021b,a) tune pre-trained models by
a trivial amount of parameters, but they may suffer a small
performance degradation compared with fine-tuning. In ad-
dition, task-adaptive pre-training (Gururangan et al. 2020)
continues to train the pre-trained models with the unlabeled
data of specific tasks. However, it is inconvenient to incorpo-
rate alignment loss into existing tuning strategies due to the
limitation of fixed model architectures of pre-trained models.

To enable the pre-trained models to have the ability of mod-
eling alignment, ALBEF (Li et al. 2021b) and TCL (Yang
et al. 2022) encode the document image and text indepen-
dently with an extra image encoder and an extra text encoder
before fusion by a multimodal encoder. The model is then
pre-trained with alignment-aware strategies to improve the
learned features’ expressiveness, which is essential for joint
multi-modal representation learning. However, as mentioned
before, investigating more effective or finer-grained align-
ment techniques during the pre-training stage requires much
computation cost and time.

To bridge the above research gap, in this paper, we propose
a new model architecture with alignment-enriched tuning
(termed AETNet), which tunes pre-trained document image
models adaptively to enable downstream tasks with the joint
task-specific supervised and alignment-aware contrastive ob-
jective. As shown in Figure 2, compared with fine-tuning
and prompt-tuning, in our proposed AETNet, we introduce
an extra visual transformer as the alignment-ware image en-
coder and an extra text transformer as the alignment-ware text
encoder before multimodal fusion. We consider alignment
in the following three aspects: 1) document-level alignment
by leveraging the cross-modal and intra-modal contrastive
loss; 2) global-local alignment for modeling localized and
structural information in document images; and 3) local-level
alignment for more accurate patch-level information.

We evaluate our AETNet method on various down-
stream document image understanding tasks, including
FUNSD (Jaume, Ekenel, and Thiran 2019) for form under-
standing, CORD (Park et al. 2019) for receipt Understand-
ing, DocVQA (Mathew, Karatzas, and Jawahar 2021) for
document visual question answering, and a sampled subset
RVL-CDIP-1 from RVL-CDIP (Harley, Ufkes, and Derpa-
nis 2015) for document image classification. In terms of
performance, the proposed AETNet method consistently out-
performs existing state-of-the-art pre-trained models with
fine-tuning on various downstream tasks. Notably, with the
help of alignment-enriched tuning, AETNet achieves better
performance compared with general fine-tuning and prompt
tuning strategies. We also carry out ablation studies with de-

tailed analysis to investigate the effectiveness of each align-
ment loss in AETNet. Lastly, we conduct case studies over
real examples from the FUNSD task to show that AETNet
benefits from the alignment modeling.

Related Work

Multimodal Pre-training Multimodal self-supervised pre-
training has been successfully applied in document images
through effectively leveraging image, layout, contextual text
information (Xu et al. 2020, 2021b; Garncarek et al. 2021;
Powalski et al. 2021; Wu et al. 2021; Li et al. 2021a,c; Ap-
palaraju et al. 2021; Li et al. 2021d; Wang, Jin, and Ding
2022; Gu et al. 2022; Kim et al. 2022). LayoutLM and its
following works consider the layout information as a type
of two-dimensional positional vectors and fuse their trans-
formed vectors with text embeddings for the multimodal
pre-trained model (Xu et al. 2020; Li et al. 2021a; Hong et al.
2022; Lee et al. 2022). Some works extract CNN grid fea-
tures (Xu et al. 2021b; Appalaraju et al. 2021) and some (Xu
et al. 2020; Powalski et al. 2021; Li et al. 2021c; Gu et al.
2021) rely on object detectors to extract region features. How-
ever, these works are either limited by heavy computation bot-
tleneck or require region supervision. Recently researchers
make many efforts to overcome the above limitations caused
by CNN. Inspired by Vision Transformer (ViT) (Dosovitskiy
et al. 2021), most rely on separate self-attention networks
to learn visual features to reduce computational cost (Xue
et al. 2021; Li et al. 2021b; Dou et al. 2021). For instance,
ViLT (Kim, Son, and Kim 2021), one of works in vision-and-
language pre-training utilizing ViT, learns visual features
with a lightweight linear layer and significantly reduce the
model parameters and running time. Following ViLT, Lay-
outLMv3 (Huang et al. 2022) is the first work to take advan-
tage of patch-level embeddings without CNNs in Document
images. For modeling fine-grained interaction and alignment
between document image and their OCR text, we introduce
alignment-aware ViT (Dosovitskiy et al. 2021) and RoBER-
RTa (Liu et al. 2019) encoders before fusion.

Tuning Techniques Fine-tuning is the useful paradigm for
tuning large pretrained language models for downstream
tasks (Devlin et al. 2019). In recent few years, different
fine-tuning techniques have been proposed. Model tun-
ing (Howard and Ruder 2018) requires tuning the entire pre-
trained model for each downstream task. Mixout (Lee, Cho,
and Kang 2019) randomly replaces part of the model param-
eters with the pre-trained weights during fine-tuning. Child-
Tuning (Xu et al. 2021a) updates parameters within the child
network via a gradient mask. There are also studies focus-
ing on parameter-efficient fine-tuning, such as adapter-based
methods (Houlsby et al. 2019), and the prompt tuning meth-
ods (Li and Liang 2021; Liu et al. 2021b,a). These works tune
pre-trained models by a trivial amount of parameters while
they may suffer a small performance degradation compared
with fine-tuning. Beyond, it is inconvenient to incorporate
alignment loss into these existing tuning strategies due to the
limitation of fixed model architectures of pre-trained models.
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Figure 2: Fine-tuning requires tuning the entire pre-trained model for each downstream task. Prompt-tuning only requires tuning
a trivial amount of extra parameters for each downstream task. Alignment-enriched tuning adds an extra alignment-aware image
encoder and an extra alignment-aware text encoder before the multimodal pre-trained model. Alignment-enriched tuning trains
the entire parameters together for each downstream task.

Methodology
In this section, we present a new model architecture with the
proposed alignment-enriched tuning (AETNet) for the trans-
fer of the patch-level pre-trained models in document images
to downstream tasks. We first introduce the model architec-
ture, followed by the tuning process. Then we detail the tun-
ing objectives including downstream task specific supervised
objective, document-level image-text contrastive objective,
intra-modal contrastive objective, global-local image-text
contrastive objective, and patch-level image-text alignment
objective.

Model Architecture
The model architecture of our method AETNet is shown
in Figure 3. The model architecture consists of a large-scale
patch-level multimodal pre-trained model, an extra alignment-
aware image encoder, and an extra alignment-aware text en-
coder. For the multimodal pre-trained model, we employ
LayoutLMv3 (Huang et al. 2022) as our pre-trained model
because of not only its state-of-the-art performance on down-
stream tasks but also its patch-level image encoder that is
suitable for the AETNet process. We use a RoBERTa (Liu
et al. 2019) as the extra alignment-aware text encoder. Like-
wise, we use a ViT (Dosovitskiy et al. 2021) as the extra
alignment-aware image encoder, which is initialized using
weights pre-trained on ImageNet-1k from DeiT (Touvron
et al. 2021). The implementation details of extra text and
image encoders, are described in Experiment Section.

Tuning Process
In the downstream tuning process, our model is trained with
the joint loss of downstream task specific objective and the
proposed alignment-enriched objective. As shown in Figure 3,
an input document image I is first encoded into a sequence of
patch-level visual representation vectors: {vcls, v1, ..., vN}
through the alignment-aware ViT, where cls denotes the spe-
cial token [CLS] and N is the number of patches. Mean-
while, the input text (i.e., the textual content of this document
image, which is obtained by the open-source OCR toolkit,
Tesseract is fed into the alignment-aware RoBERTa to be
transformed into a sequence of text token representation vec-
tors: {wcls, w1, ..., wL}, where L is the length of the input

text tokens. Before fusion with LayoutLMv3, we compute
alignment-aware losses based on the obtained representations
in terms of alignment-aware objectives to let the obtained rep-
resentations preserve alignment information. Then, we derive
the patch-level input image embeddings for LayoutLMv3 by
the sum of obtained alignment-enriched image representa-
tion vectors and original input image embeddings of Lay-
outLMv3. Likewise, input text embeddings for LayoutLMv3
are derived by the sum of obtained alignment-enriched text
representation vectors and original input text embeddings
of LayoutLMv3. Lastly, LayoutLMv3 transforms the newly
fused embeddings into output hidden representation for com-
puting supervised task-specific loss.

Tuning Objectives
The full tuning objective of AETNet consists of five objec-
tives: the downstream task-specific subjective objective (SO),
global-level cross-modal alignment (GCMA), global-level
intra-modal contrastive (GIMC), Global-Local MI Maximiza-
tion (GLMI), and Local-level Cross-Modal Alignment (LL-
CMA), shown as below:

Laet = Lso + Lditc + Limc + Lglitc + Lpita. (1)
In the following, we elaborate each objective in details.

Supervised Objective (SO) In the vanilla fine-tuning
framework, the model is first initialized with the parame-
ters of large pre-trained models (LPM). Then, the initial-
ized model is fine-tuned for a certain downstream task using
the task-specific objective on the corresponding dataset. Un-
like vanilla fine-tuning, our model consists of three modules:
LPM, the alignment-aware image encoder, and the alignment-
aware text encoder. We train these three modules together
in our model with the task-specific objective: Lso(I, T, Y ),
where image I and OCR text T are the input and Y is for
the ground-truth labels. We take the semantic entity labeling
task (Jaume, Ekenel, and Thiran 2019; Park et al. 2019), one
of the downstream tasks mentioned in Experiment Section,
as an example. Lso is the cross entropy loss based on OCR
tokens’ predictions and their corresponding ground-truth la-
bels.

Document-Level Image-Text Contrastive (DITC) The
purpose of DITC is to learn better document(global)-
level alignment cross-modality through a contrastive
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Figure 3: An overview of the framework of AETNet. The model architecture consists of a vision transformer, a text transformer,
and a fusion encoder. Image and text encoders have their paired momentum encoder updated by the momentum-based moving
average. The alignment objective contains four contrastive losses (i.e., DITC, IMC, GLITC and PITA) for both alignment-enriched
cross-modal and intra-modal representation learning.

loss, which pulls representations of matched image-
text pairs to be close and pushes the unmatched ones
apart. To model global information, we apply similarity
functions sim(vcls, w̃cls) = fimg(vcls)

>ftxt(w̃cls) and
sim(wcls, ṽcls) = ftext(wcls)

>fimg(ṽcls) for the DITC
loss, where fimg and ftxt are two projection heads for map-
ping hidden vectors into low-dimensional representations in
the contrasitve loss space and vcls and wcls are two [CLS]
vectors from alignment-aware image and text encoders, re-
spectively. Next, we refer to MoCo (He et al. 2020) and AL-
BEF (Li et al. 2021b) to maintain two memory queues (i.e.,
Ĩcls = {ṽ1cls, ..., ṽKcls} for images, T̃cls = {w̃1

cls, ..., w̃
K
cls} for

text) to record the most recent K image and text representa-
tions from the momentum alignment-aware encoders. The
document-level contrastive loss for a pair of document image
I and OCR text T can be defined as follows:

Lcl(vcls, w̃cls, T̃cls) = − log
exp(sim(vcls, w̃cls)/τ)∑K
k=1 exp(sim(vcls, w̃k

cls)/τ)
,

(2)
where τ is the learnable temperature rate. Considering image-
to-text and text-to-image together, DITC loss is defined as:

Lditc =
1

2
E(I,T )∼B

[
Lcl(vcls, w̃cls, T̃cls)+

Lcl(wcls, ṽcls, Ĩcls)
]
,

(3)

whereB is a batch of image-text pairs. In addition, We follow
ALBEF (Li et al. 2021b) to guide the training of DITC loss
by pseudo-targets generated by the momentum model.

Intra-Modal Contrastive (IMC) The goal of IMC is to
learn more accurate representations within the same modality.
For the visual modality, we generate positive latent image

representation {v+cls, v
+
1 , ..., v

+
N} for the anchor augmented

image I+ by feeding the anchor image into the momentum
alignment-aware image encoder. For the text modality, the
positive latent representation {w+

cls, w
+
1 , ..., w

+
L} for the an-

chor text T is produced by the momentum model in the same
way as image samples. Two momentum queues used for the
DITC loss also provide negative samples for the IMC loss.
The IMC loss is define as follows:

Limc =
1

2
E(I,T )∼B

[
Lcl(vcls, v

+
cls, Ĩcls)+

Lcl(wcls, w
+
cls, T̃cls)

]
.

(4)

Global-Local Image-Text Contrastive (GLITC) In-
spired by TCL (Yang et al. 2022), we introduce the GLITC
loss to capture localized and structural information within
the single modality by modeling interactions between the
document-level representation and local regions. Specifically,
for the visual modality, we use global representation vcls
and compute the contrastive loss with momentum image
patch representations{ṽ2, . . . , ṽN}. Likewise, for the the text
modality, we use the text [CLS] representation wcls and mo-
mentum text token representations {w̃2, . . . , w̃L} for com-
puting loss. We encourage to model interactions between
global information and lcoal information within the same
modality by minimizing the following two-side interaction
contrastive loss:

Lglitc =
1

2
E(I,T )∼B

[ 1
N

N∑
i=1

Lcl(vcls, ṽi, I
−
B )+

1

L

L∑
j=1

Lcl(wcls, w̃j , T
−
B )
]
,

(5)
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where I−B and T−B are negative image patch and text token
representation vectors, respectively. These negatives are from
other data examples in the same batch B.

Patch-Level Image-Text Alignment (PITA) Although
the introduced DPITC loss has the ability to capture cer-
tain cross-modal localized and structural information in the
input, it ignores patch-level alignment between patch-level
images and patch-level contextual text. Patch-level align-
ment is critical to learning more accurate and finer-grained
representations for more accurate document understanding.
Therefore, we propose a novel patch-level alignment loss as
a complement to the previous three contrastive losses. As
shown in Figure 1, to compute the patch-level alignment
loss, we first find text tokens matching image patches by a
rule-based strategy that locates text in the image patches by
layout information obtained from the OCR toolkit. Then, we
average the representation vectors of the matched text tokens
to derive patch-level text representations for the matched text
{t1, t2, ..., tN}. The PITA loss is defined below:

Lpita = − 1

N

( N∑
i=1

〈vi, ti〉
||vi|| · ||ti||

)
. (6)

Experiment
Experiment Setting
Model Configures Since we aim to investigate the impact
of the proposed fine-grained alignment losses during the
tuning process, we thus adopt the patch-level multimodal pre-
trained model (LayoutLMv3 (Huang et al. 2022)) instead of
document-level pretrained models as our fusion model. Lay-
outLMv3 is pre-trained on 11 million document images of a
large IIT-CDIP (Harley, Ufkes, and Derpanis 2015) dataset.
LayoutLMv3BASE uses a 12-layer Transformer (Vaswani et al.
2017) Encoder with 12 self attention heads, 768 hidden
size, and 3,072 intermediate size for feed-forward network.
LayoutLMv3BASE uses a 24-layer Transformer (Vaswani et al.
2017) Encoder with 16 self attention heads, 1,024 hidden size,
and 4,096 intermediate size for feed-forward network. Patch
size in LayoutLMv3 is 16. The alignment-aware ViT and
RoBERTa encoders before fusion are initialized with the
model parameters released by DeiT (Touvron et al. 2021)
and RoBERTa (Liu et al. 2019), respectively. The size of the
momentum queues of all encoders is 65536.

Downstream Tasks We evaluate the proposed alignment-
enriched tuning (AET) method on three document multi-
modal downstream tasks as follows:
Form and Receipt Understanding is a sequential labeling
task, which aims to assign a label to each word. Form and
receipt understanding requires an understanding of visual
information and textual content extracted from structural
forms in document images. We follow fine-tuning settings
in LayoutLMv3 to evaluate AET on two public datasets, i.e.,
FUNSD (Jaume, Ekenel, and Thiran 2019) and CORD (Park
et al. 2019). FUNSD is a dataset sampled from the RVL-
CDIP dataset (Harley, Ufkes, and Derpanis 2015) about noisy
scanned form understanding. It consists of 199 documents
(149 documents for training and 50 documents for testing)

Model FUNSD CORD
F1↑ F1↑

BERTbase (Devlin et al. 2019) 60.26 89.68
RoBERTabase (Liu et al. 2019) 66.48 93.54
BROSbase (Hong et al. 2022) 83.05 95.73
UDoc (Gu et al. 2021) 87.93 98.94†

LayoutLMv2base (Xu et al. 2021b) 82.76 94.95
DocFormerbase (Appalaraju et al. 2021) 83.34 96.33
LayoutLMv3base (Huang et al. 2022) 89.82 95.97
AETNetbase (Ours) 91.55 97.04

BERTlarge (Devlin et al. 2019) 65.63 90.25
RoBERTalarge (Liu et al. 2019) 70.72 93.80
BROSlarge (Hong et al. 2022) 84.52 97.40
LayoutLMv2large (Xu et al. 2021b) 84.20 96.01
DocFormerlarge (Appalaraju et al. 2021) 84.55 96.99
LayoutLMv3large (Huang et al. 2022) 90.94 97.01
AETNetlarge (Ours) 92.33 97.52

Table 1: Performance comparison with existing published
pre-trained models with fine-tuning on FUNSD and CORD
datasets. The results of LayoutLMv3 are based on our imple-
mentations with the released UniLM (Dong et al. 2019). The
score† is not directly comparable to other scores.

and 9,707 semantic entities. CORD is a receipt key infor-
mation extraction dataset, including 1,000 receipts and 30
semantic labels defined under 4 categories, where 800 sam-
ples are used for training, 100 for validation, and 100 for
testing.
Document Visual Question Answering is to predict the an-
swer given an document image and a question, which requires
models understanding the knowledge in documents and learn-
ing to reason over documents to answer. We follow the task
formulation in LayoutLMv3, considering this task as an ex-
tractive QA problem. Specifically, the model is required pre-
dicting start and end positions of the answer in the document.
This is a binary classification over each text token. We follow
the official partition of the DocVQA (Mathew, Karatzas, and
Jawahar 2021) dataset, which consists of 10,194/1,286/1,287
images with 39,463/5,349/5,188 questions for training/vali-
dation/test, respectively.
Document Image Classification is a document classifica-
tion task aiming to predict the category of a given document,
which requires of an understanding of document contents.
Due to the limitations of our servers, we sampled a subset
from RVL-CDIP (Harley, Ufkes, and Derpanis 2015), termed
RVL-CDIP-1 , including 10,000 data examples with 16 cat-
egories from the RVL-CDIP datasets of 400,000 document
images as our evaluation dataset. RVL-CDIP-1 is divided into
8000 training samples, 1000 validation samples, and 1000
test samples.

AETNet on Downstream Tasks
The detailed description of hyper-parameters, including run-
ning epochs, learning rate, batch size, and optimizer, for our
method on three downstream tasks and four datasets, are
referred to https://github.com/MAEHCM/AET.

Evaluation on Form and Receipt Understanding We
compare the proposed model architecture with alignment-
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Model DocVQA
ANLS↑

BERTbase (Devlin et al. 2019) 63.72
RoBERTabase (Liu et al. 2019) 66.42
LayoutLMv2base (Xu et al. 2021b) 78.08
LayoutLMv3base (Huang et al. 2022) 78.76
AETNetbase (Ours) 79.73

Table 2: Performance comparison on DocVQA dataset.

enriched tuning (AETNet) to three types of self-supervised
pre-training approaches using fine-tuning: (1) Pre-trained
models only using text modality. BERT (Devlin et al. 2019)
and RoBERTa (Liu et al. 2019) is based on Transformer
architecture and only use text information; (2) Pre-trained
models with text and layout modalities. BROS (Hong et al.
2022) incorporates layout information by encoding relative
layout positions; (3) Pre-trained models with text, layout
and image modalities. UDoc (Gu et al. 2021) adopts object
proposals from document images and concatenate region fea-
tures and text embeddings. LayoutLMv2 (Xu et al. 2021b)
use a CNN network to extract image features and then feed it
with layout and text information into multimodal Transformer.
DocFormer (Appalaraju et al. 2021) extract image features
with CNN. LayoutLMv3 (Huang et al. 2022) replaces CNN
backbones with patch-level linear embedding layers.

Table 1 reports the results of the comparison AETNet
to fine-tuning for existing published pre-trained models on
FUNSD and CORD datasets. Our APTNet achieves state-
of-the-art performance while outperforming the previous
fine-tuning based methods. For transferring the pre-trained
model to the downstream tasks, we compared AETNetbase
to the reported fine-tuning for LayoutLMv3base (Huang et al.
2022) and our implemented fine-tuning for LayoutLMv3base.
AETNetbase improves +1.25 and +1.73 on FUNSD and
+0.51 and +1.07 on CORD, revealing the necessity of con-
ducting document-level and patch-level intra-modal and
cross-modal alignment after pre-training.
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Figure 4: Performance comparison on the sampled subset
RVL-CDIP-1 dataset.

#Pre-train Training tasks FUNSD CORD
Models F1↑ F1↑

LayoutLMv3base

Fine Tuning 89.82 95.97
P-Tuning (Liu et al. 2021a) 83.75 87.37
AETNet 91.55 97.04

Table 3: Comparison to different adaptation approaches on
FUNSD and CORD datasets. Fine Tuning: All pre-trained
parameters are tuned with the supervised objective. P-Tuning:
Prompt parameters of each layer are tuned with the super-
vised objective. AETNet: Pre-trained parameters and extra
alignment-aware image and text encoders are tuned with the
supervised objective and our proposed alignment loss. All
results are based on our implementation.

Evaluation on Document Visual Question Answering
Table 2 reports the performance comparison on the DocVQA
dataset. We compare AETNetbase to methods only requiring
text modality, i.e., BERTbase, RoBERTabase, and methods
requiring image and text as inputs, i.e., LayoutLMv2base (Xu
et al. 2021b) and LayoutLMv3base (Huang et al. 2022).
AETNetbase substantially outperforms existing baseline
methods, achieving an absolute accuracy of +0.97 boost
compared to LayoutLMv3base.

Evaluation on Document Image Classification Figure 4
shows the performance comparison on the sampled subset
classification dataset, RVL-CDIP-1. We compare AETNet
with the general fine-tuning and prompt-tuning strategies for
LayoutLMv3 in both base and large model sizes. Although
prompt-tuning is more parameter efficient, it cannot outper-
form fine-tuning and alignment-enriched tuning. Likewise,
fine-tuning outperforms prompt tuning but is worse than
alignment-enriched tuning. Overall, in terms of performance,
AETNet can achieve desirable results on document image
classification with the help of alignment modeling.

Intrinsic Analysis
AETNet v.s. Other Tuning Methods As shown in
Table 3, we compare AETNet with fine-tuning based
LayoutLMv3base and P-tuning based LayoutLMv3base on
FUNSD and CORD datasets. With the help of alignment-

Tuning Objective FUNSD CORD
F1↑ F1↑

LayoutLMv3base (Fine-tuning) 89.82 95.97

AETNetbase (w/ Supervised Objective) 89.77 96.30
+ DITC 90.44 96.48
+ IMC 90.45 96.61
+ GLITC 90.18 96.37
+ PITA 90.69 96.78

AETNetbase 91.55 97.04

Table 4: Ablation study of each loss in the AETNet on
FUNSD and CORD datasets. The F1 is reported. DITC, IMC,
DLITC, and PITA means Document-Level Image-Text Con-
trastive, Intra-Modal Contrastive, Global-Local Image-Text,
and Patch-Level Image-Text Alignment, respectively. All
results are obtained by our implementation.
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Case 1:

Case 2:

(a) LayoutLMv3 (b) AETNet (c) Ground Truth

Figure 5: Visualization of two cases on FUNSD, which are predicted by LayoutLMv3 (Column (a)) and AETNet (Column (b).
Column (c) is the Ground-truth annotations.

enriched tuning, AETNet achieves the best performance
among these three tuning strategies. Specifically, AETNet
achieves absolute improvements of +1.73 points over fine-
tuning and +7.79 over prompt-tuning on FUNSD, and +1.07
points over fine-tuning and +9.67 over prompt-tuning on
CORD. It indicates that alignment-enriched tuning has the
ability to improve the quality of representations when trans-
ferring pre-trained models to downstream tasks.

Ablation Study of each Loss in AETNet To learn the ef-
fectiveness of the newly proposed losses (i.e., DITC, IMC,
GLITC, and PITA) in improving the document multi-modal
representation learning, we perform an ablation study of each
each loss in AETNet on FUNSD and CORD datasets. Ta-
ble 4 report the results. Firstly, it is worth mentioning that
AETNetbase using supervised objective is slightly worse than
LayoutLMv3base using supervised objective. In other words,
adding more parameters during the fine-tuning process in
this study cannot improve performance. This observation
further verifies that downstream tasks benefit from alignment-
enriched representations learned by our proposed alignment-
enriched objective during the tuning process. Secondly, com-
bining with any newly proposed loss in AETNetbase im-
proves the performance on FUNSD and CORD, which can
be attributed to the consideration of document-level or patch-
level alignment-enriched representations.

Case Study Figure 5 shows the visualization of two cases
predicted by LayoutLMv3 and AETNet. In case 1, AETNet
predict three entities within the reb box as “question” but
LayoutLMv3 predict them as “header”. The possible reason

is that LayoutLMv3 makes the prediction based on the layout
information rather than content text, which requires models
to have more accurate interaction and alignment modeling
ability to avoid this error. In case 2, LayoutLMv3 learns from
two neighbors above it to predict the entity within the red box
as “answer”, which indicates that the model utilizes too much
layout information to make predictions rather than based on
understanding it.

Conclusion
This paper proposes a new model architecture with alignment-
enriched tuning method named AETNet for transferring mul-
timodal pre-trained models in document images. AETNet
consists of an extra visual transformer as the alignment-ware
image encoder and an extra text transformer as the alignment-
ware text encoder, and a multimodal fusion encoder initial-
ized by pre-trained model parameters. Based on this model ar-
chitecture, AETNet tunes pre-trained models for downstream
tasks with joint task-specific supervised and alignment-aware
contrastive objective. AETNet achieves consistent improve-
ments over existing state-of-the-art pre-trained models with
fine-tuning and different commonly-used tuning techniques
over various downstream tasks, which indicates the effective-
ness of our proposed AETNet.
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