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FedSTEM-ADL: A Federated Spatial-Temporal
Episodic Memory Model for ADL Prediction

Doudou Wu*, Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan
School of Computing and Information Systems

Singapore Management University
Singapore

doudou.wu.2023@phdcs.smu.edu.sg, {shubhamp, budhitamas, ahtan}@smu.edu.sg

Abstract—Learning of Activities of Daily Living (ADLs) pro-
vides insights into an individual’s habits, lifestyle, and well-
being. However, it is crucial to address data privacy concerns
in practical situations when learning the ADL routines of indi-
viduals. In this paper, we introduce FedSTEM-ADL, a federated
spatial-temporal episodic memory model to address this privacy
issue. FedSTEM-ADL utilizes a federation of Spatial-Temporal
Episodic Memory for ADLs (STEM-ADL) for federated learning,
wherein multiple local STEM-ADL models from individual users
are combined into a global model while preserving the privacy
of the original data. Specifically, each local model is designed to
learn the spatio-temporal ADL routines of an individual user,
representing them as ADL events and sequences of such events
as episode patterns. The global model then integrates the local
models without referring to the underlying individual data, thus
addressing privacy concerns in multi-user ADL analysis. We
conduct a series of experiments based on both pseudo and real-
world multi-user ADL datasets. The results show that FedSTEM-
ADL is able to learn global ADL models in an efficient manner
and consistently outperforms the baseline models in the task of
next ADL event prediction.

Index Terms—Federated Learning, Activities of Daily Living
(ADLs), Self-Organizing Model, Fusion ART, Next Event Predic-
tion

I. INTRODUCTION

Smart healthcare is a fast-growing field that can enhance peo-
ple’s lives by integrating technology into healthcare solutions
[1]. One important aspect of this field is the study of peo-
ple’s daily self-care activities, for example, sleeping, eating,
bathing, etc., referred to as Activities of Daily Living (ADLs)
[2]. The study of ADLs involves ADL monitoring, recognition,
and next activity prediction. However, ADL recognition and
prediction involves the collection of personal data raising pri-
vacy concerns. Studying ADLs while preventing unauthorized
access and misuse of personal data remains an open challenge.
In this work, we adopt the federated learning approach [3]
to address this challenge in the context of next activity
prediction, which enables the learning of prediction models
across multiple individuals without sharing private data.

One class of models suitable for ADL pattern learning and
prediction is based on Adaptive Resonance Theory (ART) [4]–
[6], a neural theory for self organization and adaptive learn-
ing. The self-organizing feature of ART-based models allows
them to autonomously adjust their internal representations
and create new categories to accommodate new patterns. For

learning ADL routines in particular, STADLART [7] is an
ART-based model that can integrate multimodal contextual
information involving the time and space associated with the
ADL performed. However, for tasks involving the prediction
of subsequent activities, STADLART may not be directly
applicable as the ADL patterns learned do not encode the
order of the events in the episodes. A more recent model
called Spatial-Temporal Episodic Memory for ADL (STEM-
ADL) [8] addresses this issue by encoding ADL sequences
with the gradient encoding scheme, which is initially intro-
duced in EM-ART [9].

Combining the aforementioned strengths of federated learn-
ing for preserving data privacy and STEM-ADL’s episodic
memory encoding capability, we propose a novel federated
learning approach designed to integrate the knowledge of
STEM-ADL models trained across multiple individual clients
for privacy-preserving ADL learning and prediction. This
novel approach is named Federated STEM-ADL, or simply,
FedSTEM-ADL. Specifically, FedSTEM-ADL extends exist-
ing fusion ART models [9], [10] with the federated learning
methodology to merge multiple users’ ADL routine models
into a single global model without exposing private data. ADL
routine learning is achieved through a gradient-based method
proposed in EM-ART [9] that encodes the temporal order of
people’s ADL events and represents all the events in a day as
episode patterns. This enables FedSTEM-ADL to perform next
ADL event prediction tasks, which is useful in smart home-
based healthcare applications.

Compared with popularly used federated learning models
[11]–[13], FedSTEM-ADL is a lightweight model because
it requires fewer parameters during training, which makes
the model parameter transfer between the central server and
individual participants cost-efficient. Thus, FedSTEM-ADL
is especially suitable for applications where computational
resources are constrained.

In summary, the main contributions of this work are as
follows:

• We propose a novel model of federated spatial-temporal
episodic memory named FedSTEM-ADL, which com-
bines federated learning and the STEM-ADL model for
ADL pattern learning and next event prediction.

• Following the federated learning framework, we present
an method for transfering the knowledge encoded in the



local models to the global model without exposing the
original data. Accordingly, the communication cost is
much more reduced compared with existing models.

• We conduct extensive experiments to compare FedSTEM-
ADL with alternative models based on the next event
prediction task on real-world multi-user ADL datasets,
which demonstrate the effectiveness and efficiency of
FedSTEM-ADL.

The rest of this paper is organized as follows. Section
II reviews the related work on federated learning and next
event prediction. The preliminaries regarding the STEM-ADL
model and algorithms are given in Section III. Our proposed
approach and FedSTEM-ADL model are presented in Section
IV. Section V reports and discusses the empirical experiments
conducted. Lastly, section VI concludes the paper.

II. RELATED WORK

A. Federated Learning

Early approaches to federated learning focused on methods
for aggregating model updates from multiple devices. These
methods included simple averaging and weighted averaging
of model updates, as well as more sophisticated methods
such as secure aggregation and differential privacy [11]. These
methods aimed to provide accurate and secure aggregation of
model updates while preserving data privacy.

Recent works have focused on distributed optimization
algorithms for federated learning. These algorithms aim to
optimize the global model by considering the local datasets
and models on each device. Popular algorithms in this category
include federated averaging, federated coordinate descent [12],
and federated stochastic gradient descent. These algorithms
have shown promising results in terms of accuracy and con-
vergence, but they are limited by the communication overhead
of aggregating model updates from multiple devices.

B. Next Event Prediction

Existing popular approaches to next event prediction of ADL
include the use of rule-based systems such as decision trees,
and machine learning methods such as Hidden Markov Models
[14] and Support Vector Machines [15]. Such approaches
are limited in their ability to handle complex and dynamic
ADL patterns. Recently, deep learning approaches have been
applied to the next event prediction of ADL. CNNs [16] have
been used to extract spatial features from sensor data, while
RNNs [17] have been used to capture temporal dependencies
between ADL events. Long short-term memory (LSTM) [18]
as an RNN-based model, is also widely used in next-event
prediction. In [19], the authors proposed a prediction technique
based on LSTM, the experiment’s results were evaluated on a
real dataset with sensor signals. Such deep learning approaches
have demonstrated superior performance in comparison to tra-
ditional approaches, particularly in the prediction of complex
and dynamic ADL patterns. Additionally, a federated version
of LSTM has been proposed for ADL prediction [13]. Their
results show that the centralized and federated approaches
differ only slightly in terms of performance, showing the

feasibility of federated learning for next-event prediction with
enhanced privacy.

III. PRELIMINARIES: STEM-ADL
Our proposed FedSTEM-ADL is composed of multiple local
models and a global model, each of which is based on STEM-
ADL [8]. As shown in Figure 1, the STEM-ADL network
architecture comprises an episode field F3, an event field F2,
and three input fields F t

1 , F p
1 , F a

1 for encoding input patterns
representing the time, place, and ADL activity information,
respectively. A summary of the STEM-ADL model is given
below.

Fig. 1. The STEM-ADL model.

STEM-ADL performs learning of ADL episodes in two
phases, namely event encoding and episode encoding. Each
episode is a sequence of ADL events. Events are learned by
the event nodes in the F2 event field based on inputs received
in the three input fields. Episode learning takes place in the
F3 field based on the events learned in the F2 field. The key
variables and the learning algorithm are presented as follows.
Input vectors: Let Ic = (Ic1 , I

c
2 , . . . , I

c
n) denote the input

vector of an input field F c
1 , where Ici ∈ [0, 1] for i ∈ [1, n]

and c ∈ {t, p, a}. Using complement coding, each input vector
is typically appended with a complementing vector Ic, where
Ici = 1− Ici for i ∈ [1, n].

Firstly, the starting time and ending time are given as
timestamps for each ADL. The time values are normalized
by (time in seconds)

86400 since there are 86,400 seconds per day.
Then, the normalized time input is encoded as

It = (Is
t, Ie

t, Is
t, Ie

t), (1)

where Is and Ie denote the start time and end time of an ADL,
respectively.

Secondly, each ADL also has an associated place vector Ip
which represents the location of occurrence of the ADL, such
as bedroom, kitchen, bathroom, etc. Formally, Ip is defined as
follows

Ip = (Ip1 , . . . , I
p
P , I

p
1 , . . . , I

p
P ), (2)

where P is the number of places where the ADLs are
performed.

Lastly, the type of ADL, such as eating, watching TV,
sleeping, etc., is given as input vector Ia which is defined
as follows

Ia = (Ia1 , . . . , I
a
A, I

a
1 , . . . , I

a
A), (3)



where A is the number of ADL types.
Activation vectors: Let xt = It, xp = Ip, and xa = Ia
denote the activation vectors of the input fields F t

1 , F p
1 , and

F a
1 , respectively. Further, let y = (y1, y2, ..., yM ) denote the

activation vector of the event field F2, where M is the number
of learned nodes in F2 and yj ∈ [0, 1] is the activation value
of an event node j. Finally, let z = (z1, z2, ..., zS) denote the
activation vector of the episode field F3, where S is the number
of learned episode nodes and zk ∈ [0, 1] is the activation value
of an episode node k.
Weight vectors: Let wc

j denote the weight vector of a node
j in F2 for learning the input received from F c

1 , where c ∈
{t, p, a}. Further, let wk denote the weight vector of node k
in F3. Initially, both the F2 and F3 fields contain only one
uncommitted node.
Parameters: Learning in F2 layer corresponding to an input
field c is governed by the choice parameter αc > 1, vigilance
parameter ρc ∈ [0, 1], learning rate parameter βc ∈ [0, 1],
and contribution parameters γc ∈ [0, 1]. Similarly, in F3 layer,
the learning process is influenced by a set parameters: choice
parameter α > 1, vigilance parameter ρ ∈ [0, 1], learning rate
parameter β ∈ [0, 1], and contribution parameters γ ∈ [0, 1].

A. Encoding of Events
Given the input activation vectors xc where c ∈ {t, p, a},
STEM-ADL performs a series of learning steps described as
follows.
Code activation: The first step is to calculate a choice value
Tj for each F2 node j, as follows:

Tj = Σc∈{t,p,a} γ
c
|xc ∧ wc

j |
(αc + |wc

j |)
, (4)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm | · | is defined by |p| ≡ Σi|pi| for
vectors p and q.
Code competition: In this step, the winner node J with the
highest choice value is chosen as follows

TJ = max{Tj : for all F2 node j}. (5)

When a winner node J is chosen, the F2 activation values
are set as yJ = 1 and yj = 0, ∀j ̸= J (winner-take-all).
Template matching: The template matching process checks
if the matching function of the winner node J satisfies the
vigilance criterion set by the parameter ρc,

mc
J =

|xc ∧ wc
J |

|xc|
≥ ρc. (6)

If the vigilance constraint is not satisfied, a mismatch reset
occurs such that TJ is set to zero and another F2 node J is
selected through code competition. This process is repeated
until a node satisfies the vigilance constraints. If such a node
is not found, a new category node is created in F2.
Template learning: Once a selected node J satisfies the
matching criteria and the resonance occurs, the weight vector
wc

J is modified by the following learning rule:

wc′

J = (1− βc)wc
J + βc(xc ∧ wc

J), (7)

where wc′

J is the updated weight vector of node J in F2 layer
connecting to F c

1 field.
Activity readout: Any chosen F2 node j can perform a top-
down readout of weight vectors to the input field F c

1 such that
xc

′
= wc′

j , where xc
′

is the updated activation vector of F c
1

field.

B. Encoding of Episodes

An ADL episode (or daily routine) refers to a series of spatio-
temporal events that happen in a day. Each node in the F3 layer
of STEM-ADL represents a unique episode and it is learned
from the sequence of events encoded in the F2 layer. The
episode learning process in STEM-ADL is described below.

Let successive timestamps be represented as
t0, t1, t2, . . . , tn, in increasing order, and ytij denote the
activation value of the event node j in F2 at time ti. Then,
yt0j < yt1j < ... < ytnj , meaning that the activation value of
an event is higher if it takes place later in time.

When a new node is activated in F2, it has the maximum
activation value equal to one, and the activation values of
previously created nodes are decayed in each time step, so
that

y
(new)
j = y

(old)
j (1− τ), (8)

where y′j is the updated activation value of node j in this step
and τ denotes a predefined decay coefficient and τ ∈ (0, 1).

Given the activation vector y = (y1, y2, ..., yM ), assuming
there are M nodes in F2, STEM-ADL performs a series of
learning steps for episode encoding similar to those described
for event encoding in subsection III-A, as follows:
Code activation: Given a F2 activation vector y, for each F3

node k, a choice value Tk is computed as follows:

Tk =
|y ∧ wk|

(α+ |wk|)
. (9)

Code competition: In the code competition procedure, the
winner node K is the one with the highest choice value, as
follows

TK = max{Tk : for all F3 node k}. (10)

When a category choice is made at node K, the F3

activation values are set as zK = 1 and zk = 0, ∀k ̸= K.
Template matching: The template matching process checks if
the matching function of the winner node satisfies the vigilance
requirement, as follows

mK =
|y ∧ wK |
|y|

≥ ρ (11)

If the vigilance constraint is not satisfied, a mismatch reset
occurs so that TK is set to zero and another F3 node is
selected. If the vigilance constraints are not satisfied by any
selected node in F3, a new category node is added in F3.
Template learning: Once a node K is selected and the
resonance occurs, the weight vector wK is modified by the
following learning rule:

wnew
K = (1− βk)wold

K + βk(y ∧ wold
K ). (12)



Activity readout: The chosen F3 node K may perform a
top-down readout of weight vectors to the event field F2 such
that ynew = wK .

IV. PROPOSED METHOD

As illustrated in Figure 2, FedSTEM-ADL consists of multiple
local models on the client side and a single global model on
the server side. Each local model in FedSTEM-ADL is a three-
layered STEM-ADL network, as described in section III. The
server-side global model learned using federated learning also
consists of a similar three-layered STEM-ADL architecture.
The main processes in FedSTEM-ADL are as follows:

1) The server initializes the global model and sends the
local model configuration to all clients, which includes
the number of epochs of training as well as choice
parameters α, vigilance parameters ρ, learning rate pa-
rameters β, and contribution parameters γ. Hence, all
client-side local models can be trained with the same
configuration.

2) Each client performs local model training based on its
local ADL data using the process described in sec-
tion III. It then sends the weight templates of the learned
F2 and F3 nodes through activity readout to the server.

3) The central server aggregates the weight templates of the
F2 and F3 nodes submitted by local clients and updates
the global model (refer to subsection IV-A).

A. Global Model Aggregation

After the local model training process is completed, the global
model receives the weight vectors readout from F2 nodes of
local models one by one, with a flag that indicates the start and
end of one episode, and performs the training process until it
converges. The overall global model aggregation is described
as follows.

a) Readout and Transfer of Event Nodes: We denote the
five fields of a local model l as F t,l

1 , F p,l
1 , F a,l

1 , F l
2, and F l

3.
Similarly, the fields of the global model G are denoted as F t,G

1 ,
F p,G
1 , F a,G

1 , FG
2 , and FG

3 , respectively. During the readout
process, the activation vector yk = (y1, y2, ..., yM ) is readout
from F l

3 to F l
2 layer. While any component yj ∈ yk is greater

than zero, the highest yj is selected and the corresponding
weight vector wj is read out to the F t,l

1 , F p,l
1 , F a,l

1 fields. Then,
the event node with the second highest activation yj ∈ yk is
readout, and so on. This process yields a sequence of abstract
ADL event vectors (wj) which are transferred to the global
model. The readout process is repeated for all the episode
nodes k in the F l

3 field and for all local models l ∈ [1, L].
b) Global Model Learning of Event Nodes: Upon the

transfer of node k’s weights to the FG
1 input layer, the global

model initiates a series of learning steps for the encoding of
an event node as elaborated in subsection III-A, including
bottom-up code activation, code competition, and template
matching followed by template learning when a resonance
is achieved. This comprehensive sequence of learning steps
culminates in the formation or updation of activation vector
yG = (yG1 , y

G
2 , ..., y

G
M ′) in the F 2

G event field, where M ′ is

the number of learned event nodes in the global model and
yGj ∈ [0, 1] for event node j.

c) Global Model Learning of Episode Nodes: Given
the activation vector yG, the global model performs a series
of episode learning processes between FG

2 and FG
3 fields

as elaborated in subsection III-B including bottom-up code
activation, code competition, template matching followed by
template learning when resonance is achieved, and finally the
global model learns an episode node in FG

3 field.
Specifically, during the local training process, we try to

preserve every unique ADL routine to the highest extent by
using a relatively higher vigilance parameter value in both F l

2

and F l
3 field. However, during the global model aggregation

process, since we try to obtain a global model that encom-
passes features from different clients, a lower vigilance is used
in the FG

3 field to generalize the episode nodes from different
local models. The detailed learning process is presented in
Algorithm 1.

Algorithm 1 Global Model Aggregation
Require: Local models from 1 to L, initial global model G,
Ensure: Learning an aggregated global model G

1: for each local model l do
2: for each episode node k in the F l

3 field do
3: Readout yk = (y1, y2, ..., yM ) to F l

2 layer
4: while there is any yj > 0 in yk do
5: Select event node j with highest activation yj
6: Readout wj to the F t,l

1 , F p,l
1 , and F a,l

1 fields
7: Transfer wj to input fields of global model
8: Reset yj ← 0
9: compute the choice values of all event nodes in

FG
2 (see Eq. (4))

10: select node J in FG
2 with highest choice value as

winner node (see Eq. (5))
11: Compute activation vector yG = (yG1 , y

G
2 , ..., y

G
M ′)

in the FG
2 layer

12: Perform the template matching and template learn-
ing processes (see Eq. (6) and Eq. (7))

13: Select the winning node J in FG
2

14: Update all the activated values of vector yG of FG
2

such that y(new)
j = y

(old)
j (1− τ) (see Eq. (8))

15: Set yJ ← 1
16: end while
17: Given updated activation vector yG, compute the

choice values of all nodes in FG
3 (see Eq. (9))

18: Select winner node K with highest choice value in
FG
3 (see Eq. (10)) as the global aggregated episode

19: Perform the template matching and template learning
processes (see Eq. (11) and Eq. (12)) for node K

20: end for
21: end for

In Figure 3, a simplified example of global model aggrega-
tion is presented. This process involves the integration of two
distinct local models (denoted as l1 and l2) into a global model.
Specifically, l1 is composed of two episodes: E1 containing



Fig. 2. The framework of FedSTEM-ADL. The global model aggregation process is shown using the sequence of steps marked from 1 to 6.

Fig. 3. An illustration on how the ADL sequences learned by multiple local
models can be transferred and aggregated by the global model.

three events (e1, e2 and e3) and E2 containing three events
(e1, e2 and e4). Similarly, l2 is composed of two episodes:
E3 containing three events (e1, e2 and e3) and E4 containing
four events (e1, e2, e4 and e5). A notable observation is
the congruence between episode E1 in l1 and episode E3 in
l2. During the aggregation phase, our methodology focuses
on combining similar episodes while retaining distinct ones,
and the preservation of event sequences within each episode.
Consequently, the aggregated global model is composed of
E1, E2, and E4.

B. Next Event Prediction

After the global model is trained to aggregate the event and
episode nodes from the local models, it can be used to perform
the next event prediction task. In the three-layer global model,

each event has an associated pair of starting and ending time
stamps. Consequently, a temporal sequence of events encoded
in an episode can be used to predict the next event from the
previous ones. For such next event prediction, we need to
represent the temporal order of events encoded in the FG

2 layer
of the global model with gradient encoding [9]. The procedure
for next event prediction is as follows:

1) The trained FedSTEM-ADL global model takes xcur =
(xt, xp, xa) as the current input ADL.

2) The event node J in the FG
2 layer that best matches

xcur is selected based on a winner-take-all strategy (Eq
(5)). Based on the single node selected in FG

2 as the cue
for retrieving the episodes, the choice value of episode
nodes in FG

3 can then be calculated based on Eq (9).
However, multiple episode nodes in FG

3 might have
the same highest choice value since only one event
(matching xcur) is used as the cue and it might be
contained in multiple encoded episodes. Thus, multiple
episodes matching xcur might be selected.

3) The readout vector of a selected episode node in FG
3

may contain the actual activation value of the current
event. Let yGJ be the activation value corresponding
to the current event. Based on Eq (8), the activation
value yGj∗ of the next event within each episode can be
calculated as

yGj∗ =
yGJ

1− τ
. (13)

All nodes j∗ in the readout vector(s) of the selected
node(s) in FG

3 with an activation value equal to yGj∗ form
a candidate next event set B = {j∗1 , j∗2 , ..., j∗B}. Then,



event vectors (xt
b,x

a
b ,x

p
b) can be readout corresponding

to each j∗b ∈ B.
4) Among the multiple candidate ADL events, the winning

one is selected as follows. Firstly, the ADL type xa
b

that occurs most frequently in B (time and place might
vary) is identified and all the events containing xa

b are
shortlisted. Subsequently, among the shortlisted events,
the one whose start time has the least difference from
the end time of the current event xcur is selected as the
single winning next event.

V. EXPERIMENTS

Our first set of experiments is conducted based on a public
domain ADL dataset called Orange4Home1 which contains
daily ADL sequences performed by a single user. We sim-
ulated three users from this data set by splitting the dataset
into three roughly equal segments. As the Orange4Home
dataset was collected based on a single subject, who adhered
to a prescribed lifestyle pattern, it is deemed as a clean
ADL dataset. The experiments conducted on this dataset thus
effectively evaluate the various federated models’ ability to
integrate the daily routines learned by the local models and
perform the next event prediction.

The second experiment is conducted on a real-world dataset
called TWOR2 that records the daily ADL sequences of two
users. This is to evaluate the capacity of FedSTEM-ADL to
predict the next event using noisy ADL data produced by
different users. We specifically opted for these two datasets
since they provide ADL records over an extended duration,
ranging from dozens to hundreds of days. The choices in the
ADL domain are notably limited as such datasets are rare,
underscoring the challenging nature of ADL research.

Federated versions of LSTM [18] and RNN [17], namely
Fed-LSTM and Fed-RNN, are chosen as the baseline methods
for comparison with FedSTEM-ADL. The recently introduced
FedMA algorithm [20] is used for global model aggregation
for both methods since it has shown better performance than
traditional FedAvg [11] owing to its matched averaging ap-
proach. We implement the LSTM and RNN models underlying
Fed-LSTM and Fed-RNN, respectively, to learn to predict both
the next ADL and its start time (dual output) compared to
the previous work using federated LSTM that only predicts
the next ADL [13]. The hyper-parameter settings for these
models are done similarly to that reported in STEM-ADL [8]
work. These include setting the number of neurons to 128,
training for 300 epochs, using a batch size of 64, employing
”MSE” as the loss function, and ”Adam” as the optimizer.
Other parameters of both the baseline models were iteratively
tuned.

A. Experiments on Orange4Home

a) Dataset: The Orange4Home dataset records the ADLs
performed by a single user over 20 successive workdays with
full annotations of ADLs, comprising the starting timestamp,

1https://amiqual4home.inria.fr/orange4home/
2https://casas.wsu.edu/datasets/twor.2010.zip

TABLE I
ORANGE4HOME DATASET WITH THREE SIMULATED USERS.

Resident 1 Resident 2 Resident 3 Total
Days 7 7 6 20

Events 183 178 132 493
Place Type Entrance, Living room, Kitchen, Bedroom, Office, Bath-

room, Toilet, Staircase
ADL Type Entering, Reading, Napping, Cleaning, Eating, Watching

TV, Computing, Going up, Going down, Dressing, Leaving,
Using the sink, Using the toilet, Showering, Preparing,
Cooking, Washing the dishes

TABLE II
NEXT EVENT PREDICTION PERFORMANCE OF VARIOUS NON-FEDERATED

AND FEDERATED LEARNING MODELS ON ORANGE4HOME.

Accuracy F1 score MAE
Local LSTM 0.887±0.082 0.889±0.018 9.67
Model RNN 0.817±0.071 0.832±0.103 12.31

(w/o FL) STEM-ADL 0.892±0.037 0.881±0.052 10.89
Global Fed-LSTM 0.898±0.054 0.901±0.094 5.53
Model Fed-RNN 0.884±0.070 0.912±0.067 10.02

(with FL) FedSTEM-ADL 0.917±0.034 0.916±0.072 7.58

ending timestamp, the place information, and the associated
activity type. Table I lists the segmentation and distribution of
the data in the Orange4Home dataset. As mentioned in section
III, the time vector is normalized and complement coded.

b) Experiment Settings: From each local dataset, two
days are randomly selected as the test data. In total, 14 days of
ADL data are used for training and 6 days are used for testing.
For fair comparison, all local models and global models in our
experiments use the same train-test split in the experiments.

As a key learning parameter of STEM-ADL, the vigilance
parameters ρ in the F2 and F3 layers specify the minimum
degree of match required for resonance and learning. For ease
of discussion, we denote the vigilance parameter values for
event encoding and episode encoding in the global model as
ρe(G) and ρs(G) respectively and in a similar manner, as ρe(l)

for event encoding and ρs(l) for episode encoding in the local
models. For the other parameters, a standard set of parameter
values was used as follows for both local model training and
global model aggregation:

1) For event encoding between F1 and F2, the parameters
for each of the three input fields were set as choice
parameters α = 0.001 to maximize code compression,
contribution parameters γ = 0.333 for equal input con-
tributions, and learning rate β = 1 for fast learning.

2) For episode encoding between F2 and F3, the parameters
for the only input channel were set as α = 0.001, γ =
1, β = 1. The delay coefficient τ was set to 0.1.

c) Performance Measures: As discussed in section IV-B,
FedSTEM-ADL is designed to predict both the ADL type and
the duration of the ADL performed. For ADL-type prediction,
accuracy and F-score are used as the performance measures.
Besides ADL type prediction, we also compare the perfor-
mance of the predicted starting time of the next events by



computing mean average error (MAE) [8], which is the mean
absolute difference between the ground-truth starting time and
predicted starting time of next ADL events.

Through the utilization of fuzzy AND operations and
complement coding, FedSTEM-ADL learns generalized event
nodes which can provide the start time intervals during which
users initiate specific activities. However, for comparison with
the Fed-LSTM and Fed-RNN models that produce a single
timestamp prediction, we take the middle of the predicted
starting time interval in our model as the single predicted
time value. Specifically, let tgi denote the ground-truth starting
time of the ith next event, and ti = [ts1i, ts2i] denote the
predicted starting time interval of the ith next event, the MAE
is computed as

MAE =
1

H

H∑
i=1

|tgi −mean(ts1i, ts2i)|, (14)

where H denotes the number of next event predictions made.
d) Results & Analysis: The performance of FedSTEM-

ADL compared with those of Fed-LSTM and Fed-RNN is
shown in Table II. For non-federated scenarios, the LSTM
model produced a slightly better F1 score and lower MAE
compared to STEM-ADL. However, in the federated setting,
the FedSTEM-ADL model produced the best accuracy and F1
scores in predicting the type of the next events, while Fed-
LSTM incurred the least MAE in predicting the starting time
of the next events. Therefore, we can say that FedSTEM-
ADL is at least as competitive as Fed-LSTM in next event
prediction task for this data set. For FedSTEM-ADL, the best
result is observed when the local models are trained with ρe(l)

= 0.99 and ρs(l) = 1.0, in conjunction with ρe(G) = 0.99
and ρs(G) = 1.0 used in the global model. This indicates that
the FedSTEM-ADL model achieves better performance when
allowing a small degree of generalization on the event nodes
encoded in the F2 field of both the local models and global
model.

B. Experiments using Real Multi-user Dataset

a) Dataset: The TWOR dataset is one of the CASAS
data sets, which consists of a total of 38 data sets that contain
sensory data collected from well-equipped test beds in several
cities across the world. The TWOR data set records the ADLs
performed by two users over 250 consecutive workdays with
full annotations.

Table III summarizes the data characteristics and distri-
bution of the TWOR data set. The TWOR dataset includes
seven place labels and twelve ADL types. The number of days
covered in the dataset as well as the total length of the ADLs
sequences are much longer compared to the Orange4Home
dataset. Also, the number of ADLs sequences contained in
each day varies significantly, making it difficult to learning
an ADL pattern. This is the most notable difference between
TWOR and Orange4Home.

b) Experiment Settings: Similarly, the test set is also
randomly selected from each of the two local user datasets.
The training to test ratio is fixed at 0.7 to 0.3. For all

TABLE III
KEY STATISTICS OF TWOR DATA SET.

Resident 1 Resident 2
Days 250 250

Events 1813 1764
Place Type kitchen, living room, toilet, staircase, walkway, bath-

room, bedroom
ADL Type Bathing, Bed Toilet Transition, Eating, Enter Home,

Leave Home, Meal Preparation, Personal Hygiene, Sleep,
Sleeping Not in Bed, Wandering in room, Watch TV,
Work

TABLE IV
NEXT EVENT PREDICTION PERFORMANCE OF VARIOUS NON-FEDERATED

AND FEDERATED LEARNING MODELS ON TWOR.

Accuracy F1 score MAE
Local LSTM 0.516±0.049 0.523±0.012 45.24
Model RNN 0.482±0.092 0.478±0.075 58.66

(w/o FL) STEM-ADL 0.502±0.030 0.481±0.098 48.45
Global Fed-LSTM 0.533±0.107 0.529±0.074 41.26
Model Fed-RNN 0.496±0.118 0.488±0.02 52.85

(with FL) FedSTEM-ADL 0.547±0.013 0.536±0.025 40.47

experiments, the global model and local models use the same
test data. The learning parameters of all models, including
local model training and global model aggregation, were set
as the same as those used for Orange4Home.

c) Results & Analysis: Based on the TWOR dataset, we
evaluate the performance of FedSTEM-ADL against Fed-RNN
and Fed-LSTM in predicting the type and starting time of the
next events. Again, the best performance of FedSTEM-ADL is
observed when the local models are trained with ρe(l) = 0.99
and ρs(l) = 1.0 in local models, in conjunction with ρe(G)

= 0.99 and ρs(G) = 1.0 in the global model. This outcome
aligns with the findings from the prior experiment, indicating
that FedSTEM-ADL performs best when it applies moderate
generalization in encoding event nodes in the local and global
models.

As shown in Table IV, though LSTM, as the local model,
produced the best performance across all measures, the
FedSTEM-ADL model can significantly improve upon the
performance of STEM-ADL (as the local model) and produced
the best performance in predicting both the type and the
starting time. The results show that the unique structure and
learning dynamics of the ART models brings strong robustness
in global model aggregation, which enables FedSTEM-ADL
to achieve superior performance and stability in this prediction
task. Comparing with the results obtained for Orange4Home,
the impact of our proposed federated learning approach ap-
pears to be most profound in integrating the diverse ADL
patterns provided by distinct users into the global model.

C. Comparison of Learning Efficiency

In terms of efficiency, FedSTEM-ADL requires significantly
less computing time for training compared with Fed-RNN
and Fed-LSTM, as shown in Table V. Specifically, due to



TABLE V
COMPARISON OF TRAINING TIME (IN MINUTES) TAKEN BY VARIOUS

MODELS ON ORANGE4HOME AND TWOR.

Local Model (w/o FL) Global Model (with FL)
STEM- Fed- Fed- FedSTEM-

LSTM RNN ADL LSTM RNN ADL
Orange4Home 17.74 11.32 5.65 29.13 21.77 12.19

TWOR 29.41 25.01 9.38 39.45 31.12 17.67

the fast and stable learning characteristics of the ART-based
models, FedSTEM-ADL converges quickly on the spatial-
temporal ADL data. While the computational time advantage
of FedSTEM-ADL is not as significant for smaller data sets
such as Orange4Home, it is more evident on the TWOR
dataset. This is a huge advantage of FedSTEM-ADL to dealing
with very large data sets.

VI. CONCLUSION

In this study, we propose FedSTEM-ADL, a novel approach
for aggregating daily behavior patterns of individual users
to a global model through federated learning. Specifically,
FedSTEM-ADL enables the transfer of the model parameters
between local models and the global model without sharing
the original data. Additionally, its intrinsic structural char-
acteristics significantly reduce the communication cost com-
pared with the existing approaches. Our extensive experiments
have demonstrated that FedSTEM-ADL can achieve superior
ADL event prediction performance and protect users’ data
privacy both on clean and noisy datasets. Those abilities
make FedSTEM-ADL an ideal choice for ADL modeling
applications in smart home healthcare and health-assistive
services.

Regarding future work, a potential direction for enhancing
the FedSTEM-ADL framework involves incorporating feder-
ated personalization. By leveraging techniques such as user-
specific fine-tuning, context-aware feature selection, and per-
sonalized aggregation strategies, the FedSTEM-ADL frame-
work can be extended to adapt to individual preferences and
behaviors, leading to more accurate and tailored results for
personalized healthcare applications. Additionally, exploring
the integration of fusion ART and reinforcement learning
algorithms could further enhance the framework’s ability to
adapt and optimize its performance over time, especially in
dynamic healthcare environments.
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