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Context Aware REpresentation: Jointly Learning
Item Features and Selection from Triplets

Rodrigo Alves and Antoine Ledent

Abstract—In areas of machine learning such as cognitive
modeling or recommendation, user feedback is usually context
dependent. For instance, a website might provide a user with a
set of recommendations, and observe which (if any) of the links
were clicked by the user. Similarly, there is growing interest
in the so-called ‘“odd-one-out” learning setting, where human
participants are provided with a basket of items and asked which
is the most dissimilar to the others. In both of those cases, the
presence of all the items in the basket can influence the final
decision. In this paper, we consider a classification task where
each input consists of three items (a triplet), and the task is
to predict which of the three will be selected. Our aim is not
only to return accurate predictions for the selection task, but
to additionally provide interpretable feature representations for
both the context and for each individual item. To achieve this
we introduce CARE, a specialized neural network architecture
that yields Context Aware REpresentations of items based on
observations of triplets of items alone. We demonstrate that, in
addition to achieving state-of-the-art performance at the selection
task, our model is able to produce meaningful representations
both for each item, as well for each context (triplet of items).
This is done using only triplet responses: CARE has no access
to supervised item-level information. In addition, we prove
parameter counting generalisation bounds for our model in the
ii.d. setting, demonstrating that the apparent sample sparsity
arising from the combinatorially large number of possible triplets
is no obstacle to efficient learning.

Index Terms—Cognitive Models of Knowledge, Collaborative
Filtering, Recommender Systems, Odd-one-out Problem.

I. INTRODUCTION

Humans evaluate the properties of objects by considering
a variety of criteria, ranging from (1) physical appearance
and functionality to (2) abstract and intangible attributes [1],
[2]. Their decisions are also typically influenced by cultural
and social relationships, which leads to the establishment of
comparable judgements within particular environments [3],
[4].

The mathematical modeling of human mental representa-
tions of object concepts is a fundamental open problem in
cognitive science. Here “mental representation” does not refer
to how concepts are biologically represented via brain activity
or neuronal connections. Instead, it refers to a means of
associating objects with vectors that geometrically capture how
humans consider objects. For example, one would want the
vector representing “dog” to be closer to “cat” than “wrench”.
A common approach to finding these representations is to
collect a large number of human responses on some task
(regarding the properties of a diverse set of objects), and
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then propose models to retrieve embedded representations. For
example, several works focused on collecting and describing
object features related to different setups, such as food [5],
object pictures [6] and language semantics [7].

The machine learning community has recently taken some
interest in modelling mental representations of objects. For
instance, SPoSE [8], [9] and VICE [2] are recently developed
methods that attempt to profile object representations based on
human judgements. These methods are trained on responses to
the odd-one-out triplet task where a human subject is presented
with three randomly chosen objects, e.g., a table, a sofa, and a
refrigerator, and is instructed to select the object least like the
others, or equivalently the pair that are the most similar (see
Figure 1). With many responses to this task these methods are
capable of learning a vector for each object that captures the
semantic properties of the objects.

Outside of cognitive science, the odd-one-out task naturally
occurs in many recommender systems (RS) scenarios. For
instance, an RS may select K advertisements for a website
and then display them to a cold-start user, who will typically
select the most relevant one (odd-one-out item) according
to their own judgment. Based on the user selections, the
RS profiles items and learns similarities with the aim of
performing more accurate recommendations in the future.
Notably, the vast majority of recommender system situations,
including implicit or explicit feedback [10], collaborative or
content-based filtering [11], [12], cold and warm-start [13],
[14], can be viewed as odd-one-out tasks. For K = 3, the
“recommended triplets” consist of the three ads being shown
and is similar to the triplet odd-one-out task that occurs in
cognitive science (see Figure 1, right). For the odd-one-out
task the composition of the triplet items might influence the



users’ judgments. Thus, integrating the composition of the
triplet, which we will call context, into a method may help
to enhance object representations and, potentially, improve
prediction accuracy.

In this paper, we investigate how to model and extract
interpretable embeddings that characterize the users’ repres-
entations of items that integrate context. To this end, we
propose CARE (which stands for “Context Aware REpres-
entations”). Our model is an artificial neural network that
includes a permutational layer (PL) (see Figure 2) that receives
three latent vectors (one for each item in the triplet) as input.
The PL is invariant to the order of the input vectors: any
permutation of the three items in a triplet yields the same
output of the PL. Unlike previous models for the odd-one-out
task, this architecture allows us to learn a context embedding
that summarizes the content of each triplet along with the
embeddings of individual items. Unlike SPoSE and VICE,
the odd-one-out item is set to be the item whose feature
representation is the furthest away from the context vector (the
distance serves the role of a classification score). The item
and context representations are learned jointly by attaching
the cross-entropy loss to the final odd-one-out predictions and
observations. We enforce component wise positivity and apply
¢'-norm regularization to the embeddings layer in order to
enhance the interpretability of the recovered item embeddings.

Our contributions are described as follows:

« we introduce CARE, an end-to-end model which jointly
learns item and context representations from triplets of
observations with odd-one-out responses, without ever
having access to item-level supervised information;

« we demonstrate through a series of experiments on four
datasets that our method exhibits state-of-the art perform-
ance at the odd-one-out selection task from triplets;

« we experimentally investigate the behavior of our item
level feature representations and demonstrate that we are
able to recover interpretable qualitative information about
item space without using any item-level supervision;

« we prove generalization bounds for the triplet selection
task in an i.i.d. setting, illustrating that the sample com-
plexity of the model is still comparable to the number of
parameters of the model, despite the fact that the total
number of triplets is combinatorially large.

II. RELATED WORKS

Triplet-based learning settings encompass various applica-
tions. For example, the triplet-based odd-one-out task has been
used not only to establish a framework for assessing how
artificial intelligence mechanisms can interactively estimate
pairwise similarity between objects [15] and solve IQ prob-
lems [16], but it has also found significant utility in the realm
of cognitive science [2]. Furthermore, in [17], the authors
employ a reinforcement learning algorithm to address the odd-
one-out task, specifically focusing on triplets of geometric
figures characterized by their shapes, colors, and textures.
Beyond the odd-one-out task, triplet losses have been used
as a contrastive supervision signal to train other learning
tasks in computer vision [18]. Likewise, in sentiment analysis,

the task of triplet extraction consists in extracting relational
triplets of concepts from a sentence, which could be framed as
identifying an optimal one out of many candidate triplets [19],
[20].

In cognitive science, this task plays a crucial role in explor-
ing human mental representations, forming an important strand
of research [21]-[24]. However, other methods have also been
employed by cognitive scientists to collect data for studying
mental representations. In this context, previous studies have
asked subjects to provide descriptors for an object [25] or to
select which descriptors from a list best describe an object
[26]. In other cases, subjects were asked to report the most
similar pair of objects using a Likert scale (ranging from 1
to 10) [27]. The odd-one-out triplet task offers significant
advantages over these approaches: it is straightforward to
answer, it is insensitive to subject differences in rating scale
(e.g., subject A’s rating of 7 may be equivalent to subject B’s
rating of 10), and it does not make any a priori assumptions
about which properties are important.

To our best knowledge, two models have been proposed
for learning representation vectors from odd-one-out triplet
responses: SPoSE [9] and VICE [2]. Both algorithms are based
on a model of similarity using a softmax function. Given
objects indexed by i, j,k with representations x;,x;, T, the
probability of {a,b} < {i,j,k} being selected as the most
similar pair is given by

exp(zlx
P ({a,b} [ {i,4,k}) = (24 Tp)

exp(xTx;) + exp(ﬂc;ka) + exp(xTxy)’

We observe that CARE does not use this type of similarity-
based model. Given a collection of odd-one-out triplet re-
sponses, both SPoSE and VICE learn object representations
that are enforced to be nonnegatve and are encouraged to
be sparse by ¢! regularization. VICE is a Bayesian approach
relying on Variational Inference to extract item representations.
Like SPoSE, VICE was also found to return semantically
meaningful dimensions for the object representations on the
odd-one-out task on datasets such as THINGS [6], [8], [28].
On THINGS, VICE’s was found to require far less data than
SPoSE to achieve similar predictive performance. Later works
have found the representations from VICE to be consistent
with results from other object similarity tasks [29]. Note that
unlike the present work, neither of these contributions exper-
imented with applications of triplet-based learning settings to
Recommender Systems contexts.

Pairwise Learning: A natural predecessor of triplet losses
and triplet learning strategies such as the odd-one-out task we
study is found in pairwise learning, with incorporates the
theoretical study of learning settings where the loss function
depends on two inputs instead of one. There is a wide array
of research on the theoretical and practical properties of such
models [30]-[35].

Recommender systems build internal representations of user
and item behaviors to predict which items users are likely
to enjoy [36]-[42]. A vast range of research focuses on
explaining and interpreting such user and item representations.
For instance, previous works analyzed user and item proper-
ties via social network analysis [43], [44], natural language



processing [45]-[47], or feature extraction in content-based
methods [48], [49]. Others relied on user and (or) item-
based collaborative filtering approaches [50]-[55] to extract
information from interactions alone. For a detailed survey, we
suggest [56]. Our method belongs to the last category in the
sense that we explore patterns in the interactions between user-
items in an RS to extract item features. However, differently
from most of the previously proposed methods, CARE is user-
agnostic by focusing on cold-start recommendation sessions.
In addition, to the best of our knowledge, we are the first to
consider the triplet-based learning setting and its analogy to the
odd-one-out task from cognitive sciences in a recommendation
context. This makes the quality of our feature representations
particularly noteworthy since they are obtained relying solely
on triplet-based observations without access to the user IDs or
even any item-level information: in particular, the above meth-
ods cannot be directly compared to ours either qualitatively
(w.r.t. interpretability) or quantitatively (w.r.t. performance).
Several studies attempt to extract context vectors from
session content by employing, for instance, convolutional
neural networks [57] or recurrent neural networks [58], [59].
In this regard, the most similar approach to ours is [57],
which models session content as time series, focusing on the
progression through the items in the order in which they are
viewed. In sharp contrast, our context vector summarizes the
triplet’s content in a permutation-invariant fashion by relying
on a permutation layer. This disentangles the order information
from the context vector, simplifying interpretation. Thus, while
related works are focused on predicting future interactions in
session-based settings, our approach is much better targeted
at delivering interpretable observations in a more general
“grouped sample” setting such as click prediction.
Self-supervised methods for recommendation systems:
Contrastive learning [60]-[63] is a broad class models which
aim to learn useful representations in data in a self-supervised
way. This can be done either through direct comparisons [32],
[64] or by maximizing the mutual information between learnt
features and the samples [60], [65]. Alternatively, the Inform-
ation Bottleneck approach [66], [67] maximizes the mutual
information with the labels whilst minimizing the mutual
information with the samples, thus ensuring that only the
information most closely related to the classification task is
retained. Whilst such techniques have historically focused on
image data [60], [61], there has been a growing interest in
their application in the context of Graph Neural Networks
and Recommendation Systems [65], [68]. In particular, [69]
uses the Information Bottleneck approach to learn three dis-
entangled representation of the users and items through the
interaction graph and variants of it relying on edge dropping
and node dropping. The method is further incorporated in an
involved jointly trained model which performs the interaction
prediction task. Furthermore, LightGCL [70] uses a contrastive
loss learn representations from the interaction graphs by using
a LightGCN [71] architecture over the original graph as a
teacher model and a simplified model relying on a spectrally-
truncated version of the message-passing layer as a student.
However, the self-supervised aspect of these works merely
refers to the optimal extraction of user and item representations

from interaction graphs without explicit supervisions regarding
the nature of individual items (e.g. movie content, genre,
synopsis). Indeed, whilst some of these methods do make
use of item-wise pairwise losses in training ( [70], [71]), they
still utilize the full matrix of interactions between users and
items to construct their embeddings. In particular, they still
rely on information at the level of individual items and even
(user, item) pairs by comparing every pair of items for each
individual user. In contrast, our work relies only on triplet-
level training data: only a choice of item out of three for the
triplets in the training set is provided. This corresponds to
a much weaker form of supervision for several reasons: (1)
None of our models have access to the user ID, (2) Not all
combinations of items are available in the training data, and
(3) comparisons are over triplets rather than pairs.

III. MODEL AND PROPERTIES
A. CARE model

In this section, we define our model mathematically and
discuss its basic properties. CARE consists in three main
components: (1) a permutational Layer; (2) a feed-forward
neural network; and (3) a distance-based classifier. The per-
mutational layer performs a set of operations on the feature
representations of the three items to obtain a context vector Z
summarizing an entire triplet. These operations enforce per-
mutational invariance between the components of the triplets,
whilst encoding the similarity between the spaces in which the
component vectors live. Next, a feed forward neural network
¢ is applied to Z to obtain a context vector p, which represents
our final feature representation of the triplet.

Finally, our model picks the item whose feature repres-
entation’s Euclidean distance to the context vector is the
greatest. Thus, if the input to our model is (ey,eq,e3), our
output will be whichever of e;,es and es is deemed to be
the “odd-one-out”, i.e. the item which is the least similar to
the other two. A particularly interesting aspect of our method
is that this whole operation can be trained in an end-to-end
fashion with the feature representations of each item being
trainable parameters. Thus, our model can learn both item-
level feature representations and triplet level context vectors
from the observation of triplet level labels only.

The next three subsections each correspond to one of the
components of the model. The model is also illustrated in
Figure 2. Finally, Subsection III-B contains a discussion of
the generalization behaviour of triplet based methods such as
ours.

Permutational Layer: We write n for the number of
items/objects. We also write E for the set of all such items.
Therefore n = |E|. For each triplet (e1,es,e3), the label,
which represents which of the three items should be picked, is
represented by y. The (label,triplet) pairs are drawn i.i.d. from
some distribution P over {1,2,3} x E3. Our model assigns
a separate learnable d-dimensional feature vector z, € R
We refer to this process as the feature assignment layer.
We collect all the vectors x. as the columns of a (trainable)
matrix y € R?*" For each triplet (e, e, e3), the output of our
feature assignment layer is the matrix X := (%, Tey, Tey)-
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Figure 2: Architecture of CARE. Only y (which contains the embeddings of each item) and the neural networks ¢ and ¢ are
learning parameters. In the first step of the permutation layer (top left of the picture), all the pairwise combinations of the three
item representations are constructed. The resulting pairs are all fed through a trainable neural network ¢, whose outputs are
then subjected to max pooling. Then, another neural network ¢ is used to extract a context vector from the result. This context
vector is then compared to the original embeddings via the euclidean distance to obtain a prediction of the odd-one-out. More

details are provided in the text.

Note that since the feature representations are trainable, we
can assume without loss of generality that E is the set of
basis vectors of R™. This means that by identifying the th
object with the vector e; = (0,...,0,1,0,...,0)" (where
the 1 is in the ¢th position), we can interpret the feature
assignment layer as multiplication by X on the left. Indeed,
ifeg =d,e0 = j,es =k, we have X 1= (Z¢,, Tey, Tes) = X6,
where e € R"*3 is formally interpreted as the input to our
network and consists of three columns which are the indicator
vectors for positions i, j, k respectively.

Next, our model performs a permutational layer, which
consists in three operations. The first part of the permutational
layer consists in collecting all pairwise concatenations of the
three inputs (including self concatenations), which are then
collected as rows of the outputs. More formally, the output of
the first part of the permutational layer is a matrix Y e R24x?
where the first (resp. second, third) column of Y is the
vector concat(zq, 1) (resp. concat(x1,x2), concat(x, x3)).
Similarly, the fourth (resp. fifth, sixth) column of Y is the
vector concat(xa,x1) (resp. concat(xa, xs), concat(zsa,x3))
and the seventh, eighth and ninth columns of Y are the
vectors concat(xz,x1), concat(rs,zs) and concat(xsz,xs3)
respectively. Observe that this layer can be interpreted as a

sequence of matrix multiplications as follows

. X 0 P,
=5 x)(R): W
where
1110 0 0 0 0 O
P = 0O 001 1 1 000 2)
0O 00 00 0111
and
10 01001 0 O
Py = 01 0 01 0 O0T10O0 3)
0O 01 001 001

Next, for the second part of the premutational layer, we

apply a “network in network™: each column of Y is fed
through a given fully-connected neural network ¢ with D,
parameters. The output of the network in a network component
is denoted by Z € R%*9:

Zog = 6(Yor) 4)

for all £ < 9.

This network in network component is analogous to a series
of one dimensional convolutions, and has been explored in
various settings, notably in the Inception architecture [72].



Note that since we arrange the spacial components as the
columns of our matrix Z, the network in network compon-
ent can also be explicitly written in terms of the weights
matrices of the network ¢. Let W' ..., WWEt denote the
weight matrices corresponding to each layer of the network
¢. Let also o denote our component-wise activation function,
which we choose as Relu. Thus, Equation (4) can also be
written:

Z=0¢Y)=cWhoWh=1(. . c(W'Y)..)). 5

Next, we perform a max pooling operation over the spacial
dimension, which we denote by o,.x, leading to the final
output Z, which is obtained from Z by taking a row-wise
maximum so that R? 5 Z is

Z = omax(Z) = amax(J(WLla(WLl_l(. .. O'(W1Y) .. ))()6))

Equivalently, Z; = maxy Zk for all i < d. Thus, R¢ 5 Z
is the final output of our permutational layer. Permutational
layers have been used previously to encode permutational
invariance when modeling interacting particle systems [73].
Note that is it trivial to check that Z is invariant to per-
mutations of the input vectors (e, es,e3), since all pairwise
concatenations appear in Y in any case, and the row-wise
maximum removes any notion of order between the columns
of Y.

Fully-connected component and context vector: Next, we
feed the output Z of the permutational layer through a second
neural network ¢ with Dy parameters W' ... W2 and non
linearity 0 = Relu. The output is a vector

p:=0(Z) = oWhg(Wh= (.. .a(W'Z)..))). (D

This vector p is what we refer to as a context vector: it is
a deep feature representation of the triplet which is invariant
to permutations of the triplet. In addition, the structure of the
permuation layer implies that the function which maps the
triplet to the context vector maintains a notion of individuality
between the three inputs through the use of the network ¢,
which is individually applied to each column of Y. Thus, the
permutation layer represents a well-principled way to encode
the knowledge that the input consists in a triplet of three
objects/feature representations living in the same space, with
permutational invariance between them.
Euclidian distance-based classifier: The aim of our model
is to identify the odd-one-out, i.e. the item with the least
similarity to the other two as possible. To achieve this, we pick
the item whose feature representation is the furthest away from
that of the context vector. Formally, our model consists in a
score for each possible item, each being equal to the squared
distance to the context vector:

flerseases) = (lp —anl, o — 22l o —2s]) . ®)

At prediction time, we predict the odd-one-out to be the
item e; where

i = argmax ([|p — 1|, [p — 2, [p — wa]) - ©)

In addition, probabilities for each item can also be obtained
via a softmax layer, similarly to classic classification problems.

Note that the use of a distance-based classifier at the last
layer makes our model more intuitive and increases the poten-
tial for interpretability of the feature representations obtained
for each item (which can be recovered from the matrix ), as
well as the context vector p.

Finally, in our experiments, we further increase the inter-
pretability of our model by ensuring component-wise positivity
of the feature representations.

B. On the generalization performance of triplet based models

Writing n for the number of items, the total number of

possible triplets is , which is O(n?). For example,

n
3
in the MovieLens dataset, we have 1600 items, which gives
around 6.8 x 10® possible triplets. Thus, it is clear that it
is impossible to sample a significant proportion of the total
set of triplets. However, a careful understanding of classic
results from Statistical Learning Theory shows that only the
total function class capacity of our model is relevant: as long
as the number of parameters is not too large (and certain
Lipschitzness constraints are satisfied), the number of samples
(triplets) required to train the model properly (the sample
complexity) will scale roughly like the number of parameters
in the model. In our case, this number is dn + D1 + D5, which
scales linearly in both the number of the of parameters of the
hidden networks Dq, Dy and the number of items n. This is
irrespective of the total number of triplets. Indeed, we have
the following theorem:

Theorem 3.1: Let ¢ > 0 and B,R > 0 be fixed
constants. Assume that the activation function is RELU and
that the triplets are drawn i.i.d. with a distribution P over
{1,2,3} x E3. For any § > 0, with probability greater than
1 — 0 over the draw of the training set, if the weights of our
neural network satisfy

L1 L2
Ixlles + 35 IW e + D0 IW e < R

(10)
=1 =1
L, Ly
Ixles [ TAW* e + D T JAUW e +1) <T, (D)
/=1 /=1

then for large enough N, we also have the following general-
ization bound, where ¢, represents the margin loss !:

E (£a(y, f(er,e2,e3)) — B (a(y, fler, ea,e3)))  (12)
<\/(dn+D1+D2)l]3g(1}\F)+log((1;)’ 13

where C is some constant and K represents the empirical
expectation over the training set of (label, triplets) pairs
available.

Proof 3.1: See Appendix.
Recall that here, N is the number of triplets sampled, n is the
number of items, and f is the neural network function defined
above. Note that for relatively shallow networks (i.e. if the

YA (y, f) = 0 if the classification margin is = A, £5(y, f) = 0 for miss
classified triplets, see also Equation (17) in the Appendix.



number of layers is fixed, e.g. 10), RI' can be considered a
non-exponential quantity 2, meaning that bound scales roughly
like O (\/@): the dominant term in the sample

~

complexity of our model is O (dn + Dy + Ds), with hidden
logarithmic factors of the constraints on the norms and the
margin requirement.

A noteworthy point is that the complexity only scales
linearly in n (the number of objects/items), despite the fact that
we are using a triplet-based model and the number of triplets

that can be formed (which is n )) grows polynomially in

3
n. This illustrates that the apparent sample sparsity arising

from the combinatorially large number of possible triplets is
no obstacle to efficient learning: if the number of items grows
by a factor of 2, the number of randomly sampled triplets
required to reach comparable accuracy only grows by a factor
of 2, even though the number of triplets grows roughly by a
factor of 8.

Remarks:

1) Our bounds involve the quantities R and I', which are
upper bounds on the norms of the parameters. Although
they must be selected in advance, it is trivial to modify
the results to replace them by the observed values of
the quantities on the left hand sides of Equations (10)
and (11). This can be done via a union bound [74], [75]
and is usually left to the reader [76], [77].

2) For our results, it is crucial that the triplets be sampled in
an i.i.d. fashion and uniformly randomly over the set of
all possible triplets involving all items. Indeed, if instead
a subset of k£ items were to be drawn, and all possible
triplets involving those k items be used for training, we
anticipate the generalization error to still only decay like
ﬁ even if all O(k?3) triplets are used. This is by analogy
with the pairwise learning literature, which considers
pairs of instances rather than triplets (see, e.g. [31]).

IV. EXPERIMENTS
A. Datasets

We compare CARE to the baselines using four datasets.
We aim to learn interpretable individual item features, without
ever having access to side information related to the individual
items. This will be achieved through a model capable of
reliably isolating one item from a group of three based on a
context-dependent rule. For the MovieLens,GoodReads and
Douban datasets the supervision comes from the odd-one-
out task of predicting the item with a rating that differs from
the others (cf. details below). In the Outbrain dataset, each
sample naturally consists of a sequence of three advertisements
presented to a user, from which the user selects one item to
click on. Note that Outbrain functions as an advertising service
across diverse websites. Unlike the other datasets, where users
rate movies while seeking information in the movie domain,
Outbrain’s items may not necessarily align with the content of

2because it only has implicit exponential dependence in the number of
layers L assuming the norms of the weights don’t vary too much between
layers

the website the user is accessing. For instance, when a user is
reading an article about politics, they could be presented with
a set of three different tourism activities. These advertisements
are displayed collectively, and the user’s decision to click
on a particular item is influenced by the composition of the
exhibited advertisements. In this case, our model seeks to
capture embeddings that represent the contextual composition
of the advertisement set, and the selected “odd-one-out” item
is the one that most effectively captures the user’s attention
at that specific moment. A comprehensive description of our
two datasets and sampling procedure is provided below.
MovieLens®, GoodReads and Douban: In MovieLens and
Douban [78], users are members of a social network, items
are movies and the entry of a rating matrix r;; is the rating
given by user ¢ to movie j, in a scale {1,2,3,4,5}. The
GoodReads [79] (Romance) dataset serves as the counterpart
to MovieLens and Douban in the realm of books, utilizing
a rating scale of {0,1,2,3,4,5}. For these datasets, assume
a valid triplet any set of three items {a,b,c} with a # b,
|7ia —Tic| > 1, |rip—7ric| > 1 and |r;q —r4| < 1. Note that, for
instance, {74, rip, Tic} equals to {1,1,4} or {5,4,2} are valid
{a,b,c} triplets, while {3,2,4} or {2, 2,2} are not. The reason
is to construct triplets in accordance with the one-odd-out
trials: our triplets always contain items @ and b rated by user @
as significantly more similar than c. Thus c is consistently the
odd-one-out item here. Sampling procedure: To sample triplets
we used the following sampling procedure: (1) randomly split
the observed entries of rating matrix R into three groups
and then construct matrices Ryuain, Ryalidation and Riese (With
60%,20% and 20% of the original entries, respectively); (2)
from Ryin sample among all valid (a, b, ¢) triplets with equal
probability to build the training set; (3) repeat the process with
Ryatidation and Ryes; to build the validation and test sets. Thus,
we employ a stricter separation between training, validation
and test sets than the i.i.d. setting. This is so that the quality
of our feature representations can be compared favorably even
to those obtained through direct item-level supervision in
Recommender Systems Settings.

Outbrain*: In Outbrain the input data consists of a large
number of recommendation batches containing a small set of
items A = {aj,as, -+ ,ar}, with k € {2,3,--- ,12} which is
presented to the user. The output is the unique a € A on which
the user clicked. Sampling procedure: to build a triplet dataset
from the original dataset we performed the following: (1) drop
all instances with k£ = 2; (2) if k > 2, we keep the clicked
item and randomly selected two among the non-clicked ones.
(3) then, we randomly sampled 8.5 million triplets. (4) finally,
we filtered the dataset by keeping triplets composed of items
that appear at list five times.

Remark: Our model is able to recognize odd-one-out com-
ponents in multiple settings. It should be observed, however,
that the tasks performed using MovieLens and Outbrain differ
significantly from an interpretation perspective. We interpret
the context vector, in both cases, as a summary of the triplet’s
content.

3 Available in: https://grouplens.org/datasets/movielens/
4Available in: https://www.kaggle.com/c/Outbrain-click-prediction/data



Table I: Performance comparison of our methods vs baselines on the real datasets. Metric: accuracy

Douban

GoodReads

MovieLens

Outbrain

SPoSE-Similarity

0.5698 + 0.0004

0.4582 4+ 0.0011

0.4447 4+ 0.0012

0.5726 + 0.0004

SPoSE-Distance

0.5470 & 0.0005

0.4583 + 0.0010

0.4210 & 0.0013

0.5322 + 0.0043

VICE 0.5687 &+ 0.0002 0.4591 4+ 0.0003 0.4462 4+ 0.0012 0.5724 &+ 0.0003
CaRe 0.5701 + 0.0006 | 0.4658 + 0.0008 | 0.4516 + 0.0016 | 0.5794 + 0.0002
#Items 2.5K 115K 1.6K 2.5K
#Triplets Train/Val/Test 5.0 M/500K/500K 5.0 M/500K/500K 2.5M/240K/240K 7.6M/425K/425K

B. Baselines

As explained above, although there are many baselines
which apply to the recommendation setting and rely on user
and item-level information, they do not apply to our learning
setting which consists in choosing an item from a group of
three. Thus, we only compare to baselines which apply to
this triplets-based scenario. The three baselines we consider
are SPoSE-Similarity, SPoSE-Distance and VICE, and the
corresponding methods are explained in detail below.

o Sparse Positive Similarity Embedding (SPoSE) - Sim-
ilarity [8], [9]: SPoSE assumes that the decision in a
given odd-one-out trial is explained as a function of
the similarity between the embedding vectors of the
three concepts presented. To infer embedding vectors
from data, the method maximizes similarities between the
vectors of the objects of the triplet that are not the odd-
one-out.

o Sparse Positive Similarity Embedding (SPoSE) - Dis-
tance [8], [9]: SPoSE assumes that the decision in a given
odd-one-out trial is explained as a function of the distance
between the embedding vectors of the three concepts
presented. To infer embedding vectors from data, the
method minimizes the distance between the vectors of
the objects of the triplet that are most similar.

e Variational  Interpretable = Concept = Embeddings
(VICE) [2]: VICE is an Bayesian method for embedding
object concepts in a vector space using data collected
from humans in a triplet odd-one-out task. VICE uses
variational inference to provide representations of object
concepts with uncertainty estimates for the embedding
values. VICE incorporates spike-and-slab regularization,
reinforcing the reduction of weights. Notably, the
spike-and-slab prior imposes a more substantial penalty
on larger weights compared to smaller ones, which is
conducive to gradient-based optimization techniques.
This characteristic makes VICE especially well-suited
for modeling scenarios. The parameters involved in the
regularization, namely ke, Tspike, and Cgpike, Undergo
cross-validation. We determine their values using the
grid outlined in the subsection “Hyperparameter grid” of
Section E in the appendix of [2]).

C. Parameter Setting and Tuning Schemes

In this section we will describe the parameter settings
and tuning schemes for our model and the baselines. SPoSE
variants involve tuning two hyperparameters: the dimension
of the embedding vectors for the three concepts, denoted as
p, and a regularization parameter A controlling the norm of

each concept embedding x,;. The regularization parameter A
was cross validated by searching over the set {1076,5 x
107%,---,0.1,0.5,1} and we initialize model with p = 100
dimensions. Regarding VICE, the parameters involved in the
regularization, namely Tgpike, Ospikes aNd Tgpike, Undergo cross-
validation. We determine their values using the grid outlined
in the subsection “Hyperparameter grid” of Section E in the
appendix of [2]. In all cases, the cited parameters and sections
follow the notation of the respective papers.

In our own model, we have tuned the hyperparameter A
in a range that adheres to the same structure as described
for A in SPoSE and D e {25,50,100}. We first run the all
the models (the baselines and ours) once for 50 epochs with
early stopping with a tolerance of 5 epochs and output the
combination that provides the best validation accuracy. We
then run each model for 20 times (50 epochs with 5 epochs of
tolerance). The results displayed in Table I consist of averages
of accuracy over the 20 experiments. We implement our model
and SPoSE via classic gradient-based methods implemented
in Tensorflow 2. For VICE we used the code provide by the
authors®. The number of items and our train-test setup for
each dataset can be found in Table I.

D. Analysis of the Results

Table I summarizes the datasets’ statistics and the results of
the real-world data experiments. Although the model’s inter-
pretability assessment is qualitative, comparing the accuracy
of odd-one-out item prediction of our method with state-of-
the-art methods that handle the same problem is a consistent
indicator of our method’s effectiveness. We compared the
performance of our method to all previous baselines and
datasets. Observe that our method demonstrates state-of-the-art
performance, achieving the highest accuracy in the analyzed
datasets, with the added benefit of interpretability through the
context vector.

V. INTERPRETABILITY

This section will analyze the interpretability of the rep-
resentation vectors our model assigns to each triplet and to
each individual item. These can help us to understand what
properties CARE learns from the triplet data. Our analysis is
conducted using MovieLens and Outbrain datasets.

A. Item Embeddings

Via its feature assignment layer, our model encodes item
representations into the columns of a matrix Y € R¥". To

5 Available at: https://github.com/LukasMut/VICE
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visually investigate the behavior of those representations, we
first reduce their dimensionality to two by using ¢-SNE. After
that, we perform the k-means clustering algorithm with the
so-called elbow method [80] to select the number of clusters
ke {2,3,---,100} that effectively minimizes the sum of the
squared distances within-cluster. Finally, we plot the graph
with the “optimal” k. Results can be seen in the top two graphs
of Figure 3. The chosen number of clusters for MovieLens and
Outbrain are eight and forty, respectively. For the MovieLens
dataset side information is present and can be used to help
understand the clusters. Unfortunately, item descriptions are
not available for the Outbrain dataset.

For MovieLens we find that the movies’ representations are
indeed meaningful. For example, the far-left yellow cluster
(B) on the top-left image in Figure 3 contains several adult,
comedy movies, such as Beverly Hills Cop Ill, Beavis and
Butt-head Do America, I Know What You Did Last Summer.
The bottom-left cluster contains serious, classic drama movies
like The Godfather, Citizen Kane, and Taxi Driver. Adjacent
to the navy cluster (D), we find a dark blue one (E) with,
for instance, Forrest Gump, The Godfather: Part II, and Jaws.
Note that both of these groups are made up of blockbusters
that are typically well-liked by the majority of users that
interacted with them in MovieLens. CARE effectively captures



the proximity of these two groups. However, one may argue
that the latter is composed of movies with relatively more
recent success, also justifying our model’s decision to group
them into two different clusters. Finally, it is noteworthy that
the light green group (B, middle top of the graph) contains a
substantial sample of “foreign” (non-American) movies such
as Les Rendez-vous de Paris, Bis ans Ende der Welt, and
Il Cristo proibito. In contrast to the previous two clusters
(also opposed in CARE’s geography), this group contains
rather niche moves, and is accordingly well separated from
the other groups in the geometrical representations elicited by
our model.

B. Context Embeddings

Our model produces a context vector p for each triplet
(observed or non-observed). To explore patterns in the context
vector distribution of MovieLens and Outbrain, we randomly
selected 5 x 10° triplets and applied the same dimensionality
reduction method to their context vectors as was used for item
embeddings in Subsection V-A. The resulting visualization is
displayed in the bottom half of Figure 3.

The red dots concentrated on the left of the MovieLens
graph correspond to triplets containing both Citizen Kane and
E.T. the Extra-Terrestrial (both movies’ item representations
belong to Cluster D — top left graph of Figure 3). Since
such triplets have two items in common, it is expected that
they are not too far from each other, as observed. We also
expect them to be closer or further away depending on the
nature of the third element, which we indeed observe, further
highlighting the relevance of the representations. Indeed, note
the two adjacent triplets highlighted at the bottom of the plot
respectively have, as their third components, the movies The
Seventh Seal and The Speed (datapoints 1 and 2, respectively),
whose item embeddings also belong to the same cluster (B).
Similar behavior is shown for the data points marked at the top
(left) of the graph, with the third item being the movies Wolf
and The Age of Innocence (datapoints 3 and 4, respectively —
Cluster H).

Furthermore, such behavior can also be observed in other
regions of the space of context vectors: the highlighted data
points on the right side of the graph correspond to triplets
containing both Batman Forever and Beavis and Butt-head
Do America, which likewise belong to the same cluster (A) in
item space (but a different one from that of Citizen Kane and
E.T. the Extra-Terrestrial (D)).

C. Distance Scale

The output of CARE is always computed by applying the
softmax function to the distances between the context vector
p and each item vector of the triplet to identify the “oddest”
item. However, the precise interpretation of the choice varies
according to the task it is solving. Consider a triplet (a, b, c) €
E3, with a, b, and c distinct. In Outbrain, the output score
corresponding to the item c refers to the probability of ¢ being
clicked on. In MovieLens, however, it refers to the probability
of a and b being frequently judged to be of the most similar

quality by many users. By fixing two items a and b and
iterating among all possible c’s, we define the score

Z#{a b} P(c is oddest item)

vs(a,b) = (14)

n—2

The value of v5(a,b) can be seen as the probability of a and
b being the most similar in a triplet where c is sampled from
E\{a, b}. Define vg(a) as follows

_ Zb;&a 'VS(av b) .

n—1 =

7s(a)
Here vs(a) is the probability of a being selected as one of
the most similar (or equivalently, not being selected as the
odd-one-out output of our model) in a triplet when b and c
are sampled from F\{a,b}. Thus, in the MovieLens dataset,
we can interpret yg(a) as an indicator of how many “similar
movies ” lie in the neighborhood of a in feature space. On the
other hand, in the Outbrain dataset, the feature representations
yielded by our model are more targeted to the concrete task
of predicting which item is clicked on, which complicates the
interpretation of ys(a) as a measure of nearby similarity, since
a user clicking on a when presented with the triplet (a, b, c)
does not guarantee that b and c are truly similar. However, we
can concretely interpret o (a) := 1 —~g(a) as the probability
of a being clicked on, which is naturally an interpretable
quantity of interest.

Due to the prohibitive computational burden of estimating
vs(a) via all valid triplets in the dataset, we compute an
estimate based on a random sample of 10000 valid triplets
for each item a. The histograms on the left of Figure 4
show the results. The distributions of vg(a) (for MovieLens)
and yc(a) = 1 — 7yg(a) (for Outbrain) are similar to
normal distributions centered at approximately 0.66 and 0.33
(respectively), as could be expected. To better understand
the underlying behavior of vys(a) and vs(a,b), we computed
the set I's(a) := {ys(a,b) : b € E} for a = Goldeneye
and for a = Casablanca. The two last graphs of Figure 4
show the resulting distributions. The x-axes of the graphs
correspond to the ranking of vg(a,b) € T's(a), ordered from
the largest to the lowest value of yg(a,b). Note that although
~vs(Goldeneye) and ~ys(Casablanca) have comparable values,
they their distributions are different. A very small number of
movies (including No Escape) have a very high probability
of being considered as most similar together with Goldeneye.
In sequence, we can then observe a large set of movies with
a moderate similarity to Goldeneye, corresponding to a low-
rate decay of 7s(a,b). Finally, the line ends with a huge
decay: our model detects that there is a very small set of
movies, including b=Grease 2 and b=Girl in the Cadilac
with a very low similarity ~s(Goldeneye,b) to Goldeneye.
However, for Casablanca we can observe an almost quadratic
decay, indicating a broader range of degrees of similarity to
Casablanca in the items in the catalog. We also highlight the
very high probability of Casablanca being classified as the
most similar to 7axi Driver in a triplet, whilst the opposite
behaviour is observed when considered the movie Mr Magoo
instead.



VI. CONCLUSION

In this work we have presented an adaption of the odd-one-
out task from cognitive science to recommender systems. For
this we introduced CARE, a model that performs the odd-one-
out task by constructing a context from a triplet and selecting
the item representation that is the furthest from the context.

We

find that this method achieves state-of-the-art accuracy

whilst producing highly interpretable representations. Though
this work is only an initial foray, we feel that this integration
of cognitive science models and recommender systems will
be a fruitful direction for future research. Additionally, the
question of how CARE mechanisms can be harnessed to en-
hance recommendation algorithms accuracy remains an open
research direction as well as explore the one-odd-out problem
for groups of more than three items.
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APPENDIX

First, recall the following proposition which relates the
complexity of a function class to its number of parameters.

Proposition A.1: [81]-[86] Let G be a set of functions
from a domain Z to [0, M] such that for some B > 5 and
for some d € N and for some norm |-|; on R?, there exists
a map from the unit ball in R? (w.r.t. |-||;) to G which is B-
Lipschitz with respect to the norms |-|; and |-|4. For large
enough n and for any distribution P over Z, if S is sampled
n times independently form P, for any § > 0, we have with
probability > 1 — ¢ that for all g € G,

E.-r(9(2)) < Bs(g) + CM\/ Qo8(B) +1og(1/5)

where C is some constant.

Back to our situation, if we sample triplets of data, with
both our model and our loss function being allowed to depend
on the full triplet, we can still apply the above theorem
by replacing the sampling distribution P (over individual
samples) by a sampling distribution P over triplets. This yields
the following

Proposition A.2: Let F be a set of functions from a domain
Z3 10 [0,1]3, and let ¢ : ({1,2,3},[0,1]%) — [0,1] be a loss
function with Lipschitz constant %

Assume there exists a B > 5, some d € N, some norm ||-||;
on R?, and a map from the unit ball in R? (w.rt. |-]1) to F
which is B-Lipschitz with respect to the norms ||-|; and |- .-
For large enough n and for any distribution P over the set of
combinations of triplets and labels {1,2,3} x Z3, if a set of
triplets and labels S = {(y, (e}, eb,€})) : 4 < N} is sampled
N times independently form P, for any > 0, we have with
probability > 1 — § that for all f € F,

E(y,(e1,e2,e5))~P (Y, f(e1, €2, €3))

dlog (§) +log (3)
N )

(16)

< ]ES(E(y, fle1,e2,e3)) + \/

where C' is some constant.

Proof A.3 (Proof of Proposition A.2): This follows directly
from applying proposition A.1 to the composite function class
G := (o F. Indeed, this function class satisfies the assumptions
of the statement of proposition A.1 with Lipschitz constant %
and M = 1.

A canonical example of such a 1/A-Lipschitz loss function
would be the following margin loss, which we use in The-
orem 3.1:

g(ya f(61762763)) =0 if N(ya f(617€2763)) = A

1 if /’L(yv f(ela €2, 63)) <0 and
—1_ :u(ya f(eX €2, 63)) otherwise
(17)
where M(ya f(eh €2, 63)> =
max fler,e2,e3); — é%%xyf(@hem%)r (18)

Note that in Proposition A.2, both the Lipschitz constant of
the parametrization and the margin parameter A only show up

in logarithmic terms. Furthermore, in the case of a standard
CNN, the Lipschitz constant of the parametrization has been
shown (cf. proof of Lemmas 2.5 and 3.4) to scale like the
product of the spectral norms of the weights of each layer.

Indeed, we have the following simplified version of one of
the main results of [81]:

Proposition A.4 (Simplified version of Lemmas 2.5 and 3.6
in [81]): Consider a neural network f defined by the weights
0 = (Al,A27...,AL), with a componentwise 1-Lipschitz
activation function o, so that

fo(z) = o(ALa(AFL . o(AT2)...). (19)

1 N S ) ~L )
Letd=(A",...,A"), 6 =(A ,A ,...,A ") be two possible
values of the parameter 6 with the property that

~{
[TIALTTIA <t
L<L L<L

We have the following inequality for any z with ||z|| < c:

L
[fo(@) — f5@)] <Te ) | A=A,

{=1

(20)

where |-|| denotes the spectral norm.
Proof A.5 (Proof of Proposition A.4): The proof is a
simplified version of that of Lemma 2.5 in [81].

~1
Since A' = A for all [ # ¢, we can write gy = Gdown ©
gat © Gup and gz = Gdown © gx¢ © Gup for two functions gy,

~1
and ggown (depending on Al = A for all the [ # ¢) where
g represents the operation z — o(W*x) for any £ < L. We
then have

| fo(x) — f3(2)|
= Hgdown © gt © Gup(Z) — Gdown © gxe© gup(x)H

= |gaoun o (9¢ = 93¢) © up(@)] 2]

L
[T 1A 1

-1 .
<[LIAY A=A
=1 =41

~f
< A" —A". (21)

Thus, writing out a telescoping sum, we have

| fo(z) — f3()]
L
S Z Hf(Al,A..,Af,A[Jrl,...,KL)(x) - f(Al,.A.,Azfl,A[,...,KL)(x)H
=1
L

<o YA =R,
=1

(22)

as expected.

Using this, we can finally provide the proof of our main
Theorem:

Proof A.6 (Proof of Theorem 3.1, stated in the main text):

First, note that in Propositions A.1 and A.2, if the map goes
from a ball of radius R instead of 1, we can just replace the
norm |-| by % to reach the same result with the constant B
replaced by BR.



In our situation, the parameters
O, W, ..., Wk W . WE2) live in a space R4 +D1+D2
of dimension dn + D1 + Ds. On that space, we can define a
norm by

”9H = ”(X, Wl,...,WLl,Wl,.”’WLg)H

L1 L2
= Il + 5 Wl + D W

(23)
=1 =1
Claim: For any two sets of parameters
91 = (Xl,Wll,...,WlLl,Wll,...,Wle)
and
92 = (X25W217'"aW2Ll7W217"'7W2LQ)7
we have, for any triplet (eq, eo, e3) and label y:
|€(y7 f01 (617 €2, 63)) - E(yv f91 (617 €2, 63))|
< [T+ 2(1Prlee + [P2llee)]160] = 13]6] 24)

where the matrices Py, P» are defined in equations (1) and (2).

Proof of Claim: As long as we can view the operations
performed by our model as a combination of linear operations
element wise activation functions, we can apply Proposi-
tion A.4. However, the matrices Al from Proposition must
be the matrices representing the full linear operation of each
layer expressed as a map from a vector space to another. In
our model, we used matrix notation with the input also being
a matrix: the linear component of each layer is expressed as
Xouwt = WX;,, where X;,, is a matrix. For instance, at the
first layer, X = xe, where e € E3, and at the next layer

(o x)(R)

0 X

To apply Proposition A.4, we need to compute the spectral
norms of the matrices A, which correspond to a translation of
the operation X,,; = W X, in vector notation:he correspond-
ing A! matrix in the notation of Proposition A.4 is the matrix
op(W) such that unfold(X,,:) = op(W)(unfold(X;,)).

Thus, at the first layer, we need the spectral norm of the
operation

R™3 3¢ — ye € R"*3, (25)

viewed as a map from the vector space R3" to itself.

Fortunately, the spectral norm can be bounded directly
bounded by the Frobenius norm of x, i.e. ||x|m. This is
because for any matrices A, B, | AB|p < |Allp:|B|r, which
implies |xeler < | x|¥:/€]m, or equivalently |unfold(ye)]|
< ||x||py||unfold(e)|, which holds for any e and shows that
[op(X)| < [x|r- A similar argument holds for every layer,
which explains our use of Frobenius norms for the weights
W* of each layer.

Note that to be able to compare the context vector with the
features in X at the distance-based classifier step, we need
to create a skip connection from X to the output p. Thus
the output of layer 2 must be thought of as (X,Y") (rather
than Y) and the output of the permutation layer as (X, Z)
(rather than Z) etc. However, it is still straightforward to bound

the spectral norms of the relevant operators in terms of the
Frobenius norms of the weights. Indeed, we certainly have

X 0
H( 0 X ) o < 2| Xlgr and then  (26)
H(X7Y)”Fr < HXHFr + 2”X”F!(HP1HFr + HPQHFr)
<X [re(X + 2[ Pree + 2] Pelle)

Similarly, the norm at the /th layer of ¢ (resp. ¢) is bounded
by 1+ |[W*|g (resp. 1 + ||W¥||g;). This concludes the proof
of Claim 1.

To finish the proof of the Proposition, we only need to apply
Proposition A.2 with the norm defined in Equation (23).
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