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Abstract

Adversarial examples are manipulated sam-
ples used to deceive machine learning models,
posing a serious threat in safety-critical ap-
plications. Existing safety certificates for ma-
chine learning models are limited to individual
input examples, failing to capture generaliza-
tion to unseen data. To address this limita-
tion, we propose novel generalization bounds
based on the PAC-Bayesian and randomized
smoothing frameworks, providing certificates
that predict the model’s performance and ro-
bustness on unseen test samples based solely
on the training data. We present an effective
procedure to train and compute the first non-
vacuous generalization bounds for neural net-
works in adversarial settings. Experimental
results on the widely recognized MNIST and
CIFAR-10 datasets demonstrate the efficacy
of our approach, yielding the first robust risk
certificates for stochastic convolutional neural
networks under the L2 threat model. Our
method offers valuable tools for evaluating
model susceptibility to real-world adversarial
risks. Our code is publicly available1.

1 INTRODUCTION

Deep neural networks (DNN) are known to outperform
other models in complex applications (LeCun et al.,
2015). However, it is difficult to justify their use in

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
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thor(s).

modern safety-critical applications, as DNN models
are generally susceptible to various security threats
(Szegedy et al., 2013; Papernot et al., 2016; Liznerski
et al., 2024), particularly adversarial examples (Szegedy
et al., 2013). The ability of DNNs to generalize to un-
seen data has been the subject of extensive research
in recent years (Bartlett et al., 2017; Kawaguchi et al.,
2017; Wei and Ma, 2019; Cao and Gu, 2019; Nagarajan
and Kolter, 2019; Dziugaite and Roy, 2017; Pérez-Ortiz
et al., 2021), but how to simultaneously achieve robust-
ness against adversarial attacks is still an important
open question (Bai et al., 2021). Past attempts to quan-
tify the robustness of trained models (Yin et al., 2019;
Awasthi et al., 2020; Khim and Loh, 2018; Mustafa
et al., 2022; Gao and Wang, 2021; Farnia et al., 2018)
inherit the limitations of uniform convergence bounds
in explaining the generalization of DNNs (Nagarajan
and Kolter, 2019). The resulting bounds for modern
models are vacuous (i.e., > 1.0)2, thus, while providing
valuable theoretical insights, are of little practical use.

The pioneering work of Dziugaite and Roy (2017) com-
puted the first non-vacuous bounds (i.e., < 1.0) on the
population risk of DNNs, leading to the emergence of
self-certified DNNs. Self-certified DNNs refer to models
or algorithms that provide population risk certificates
based solely on the training data (Pérez-Ortiz et al.,
2021). These risk certificates play a crucial role in de-
ploying DNNs in sensitive scenarios. Such certificates,
however, are lacking in adversarial settings.

In this paper, we develop the first non-vacuous
population risk bounds applicable to models deployed in

an adversarial setting.

Our novel approach involves the incorporation of ran-
domized smoothing Cohen et al. (2019) to transform

1
https://github.com/waleedamustafa/nonadvgenaistats

2See for example Figure 2, in Graf et al. (2022).
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the class of DNNs into a class of smoothed functions.
Members of such a class admit an efficient approach
to empirical robustness evaluation (i.e., robust perfor-
mance evaluation on the training set). Subsequently,
we apply PAC-Bayes analysis to effectively bound the
adversarial population risk (i.e., robust performance
on unseen data) of stochastic and smoothed DNNs in
terms of empirical robust performance. Our approach
offers a method to evaluate the robustness of models
using only training data, eliminating the requirement
for a separate test set while also providing a mechanism
to guide the training of such models.

2 RELATED WORK

In this section, we briefly discuss the related work.

Adversarial Generalization On Deterministic
DNNs Attias et al. (2019) utilized the VC dimen-
sion of the function class to derive adversarial gener-
alization bounds. Some studies assume that the at-
tacker’s strategy is known in advance (Gao and Wang,
2021; Farnia et al., 2018), which is a strong assumption
as real-world attackers can utilize a variety of attack
techniques. Xing et al. (2021) employed algorithmic
stability techniques to analyze the generalization of
adversarial training. Several works have employed the
Rademacher complexity to study the generalization
of ℓp-additive-perturbation attacks (Khim and Loh,
2018; Yin et al., 2019; Awasthi et al., 2020; Xiao et al.,
2021). Mustafa et al. (2022) utilized covering numbers
arguments (Lei et al., 2019; Mustafa et al., 2021) to
derive generalization bounds for general attacks beyond
ℓp-additive attacks. These bounds, however, are nu-
merically vacuous when applied to modern DNNs and
datasets. Xiao et al. (2023) considered a PAC-Bayes
approach to prove bound for adversarial loss in terms
of the product of spectral norms of weight matrices.
Again, these bounds are vacuous for modern setups.

Non-vacuous Bounds On Stochastic DNNs Dz-
iugaite and Roy (2017) were the first to compute
non-vacuous bounds on stochastic DNNs. They em-
ployed the techniques outlined in Langford and Caru-
ana (2001), commonly applied in the analysis of clas-
sical Bayesian methods (Wenzel et al., 2017). Dziu-
gaite and Roy (2018) utilized differential privacy to
train data-dependent priors. Pérez-Ortiz et al. (2021)
performed an extensive study on optimizing several
PAC-Bayes bounds and computed the state-of-the-art
risk certificate in the natural settings. Biggs and Guedj
(2022) brought non-vacuous PAC-Bayes bounds to de-
terministic shallow networks by a specific architecture.
These bounds, however, do not apply to adversarial
settings.

Practical Algorithms Inspired By PAC-Bayes
Bounds Wu et al. (2020) draw insight from PAC-
Bayes bounds to derive a scheme of adversarial training
in which both the input and network weights are at-
tacked. Wang et al. (2022) proposed minimizing an
upper bound on a PAC-Bayes bound by using the trace
of the Hessian of the empirical loss. Viallard et al.
(2021) proposed to optimize a PAC-Bayes bound of a
lower bound on the adversarial loss. They give tight-
ness guarantees on this lower bound by a total variation
between the random and adversarial noise distributions.
This quantity, however, is very hard to estimate in prac-
tice. These methods, while showing practical success in
the empirical evaluation of robustness, do not provide
any guarantees on the population adversarial risk.

Adversarial Verification Methods Based on
Mixed Integer Linear Programming (MILP) and Satis-
fiability Modulo Theories (SMT), exact verifiers (Katz
et al., 2017; Ehlers, 2017; Tjeng et al., 2017) are com-
plete-verifiers, that is, they will report adversarial ex-
amples when they exist. MILP verifiers do not scale
well to large networks (Cohen et al., 2019). Conser-
vative verifiers (Wong and Kolter, 2018; Dvijotham
et al., 2018; Raghunathan et al., 2018) use relaxation
and duality techniques to verify a given input. These,
however, tend to flag robust inputs as adversarial for
expressive networks (Salman et al., 2019). Randomized
smoothing (Cohen et al., 2019) are probabilistic verifi-
cation methods that are shown to scale to large DNNs
and datasets. They transform a given classifier into
a robust one by adding Gaussian noise to its inputs.
The resulting classifier is provably robust to L2 attacks.
Yang et al. (2020) extends randomized smoothing to
provide general guarantees to general Lp norms. These
methods, however, concern test time verification, with-
out any guarantees on their generalization properties.

3 NON-VACUOUS
GENERALIZATION BOUNDS IN
AN ADVERSARIAL SETTING

Here, we present our approach. We start by introducing
the notation and problem setting in Section 3.1. Next,
in Section 3.2, we present the main bounds, focusing
on an idealized setting to establish a strong theoretical
foundation. Section 3.3 is dedicated to deriving practi-
cal algorithms to compute these bounds, enabling their
application in real-world scenarios. In Section 3.4 we
describe the training process for models that exhibit
non-vacuous bounds, ensuring their practical relevance.
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3.1 Problem Setting

We start by introducing the notation and problem
settings. Let X ⊂ Rd denote the input space and
Y ⊂ {0, 1}K the output space (one-hot encoding of
K classes). The joint input-output space X × Y is
endowed with an unknown probability measure P . We
consider a stochastic classification setting using classi-
fiers h : (W,X) 7→ h(W ;x) parameterized by vectors
W ∈ W ⊂ Rp, where the classifier is represented by
a probability measure Q ∈ M(W) on the set of pa-
rameters W. HereM(W) is the set of all probability
measures on W. We measure the prediction quality
with the 0-1 loss ℓ(x, y, h(W ; ·)) = I(h(W ;x) = y). We
consider an attack model where an adversary manipu-
lates the input x by adding noise to it to disrupt the
classifier’s prediction. That is, the adversary’s goal is
to find an altered input x̃ deviating from the original
input x by a certain Euclidean distance not exceed-
ing R > 0 while incurring a maximal loss. In other
words, the adversary seeks to solve the optimization
problem x̃ = argmaxx̃:∥x−x̃∥2<R ℓ(x̃, y, h(W ; ·)), where
ℓadv(x, y, h(W ; ·)) := maxx̃:∥x−x̃∥2<R ℓ(x̃, y, h(W ; ·)) is
the adversarial loss.

We are interested in bounding the adversarial risk as-
sociated with the stochastic prediction Q:

L(Q, ℓadv) := EW∼Q

[
E(x,y)∼P ℓadv(x, y, h(W ; ·))

]
.

However, we only have access to the empirical risk

L̂(Q,S, ℓadv) := EW∼Q[
1

n

n∑
i=1

ℓadv(xi, yi, h(W ; ·))],

where S := {(xi, yi) ∼ P | i ∈ [n]} is an i.i.d. training
sample. Here, [n] = {1, . . . , n}.

Our main goal is derive an upper bound on L(Q, ℓadv)

in terms of L̂(Q,S, ℓadv) and the properties of Q that
is less than the trivial 1.0

In our approach, we employ Randomized Smoothing
(RS) (Cohen et al., 2019). RS transforms a given
classifier h(W ; ·) into a provably robust classifier g(W ; ·)
by applying the operator Tσx

defined by

g(W ;x) = Tσxh(W ;x) := argmax
y∈Y

Pr[h(W ;x+ϵ) = y],

for x ∈ X , W ∈ W . Here, ϵ ∼ N (0, σ2
xI) represents a

random noise vector and σx > 0 determines the level
of smoothing. The smoothed classifier g(W ; ·) selects
the output class y that maximizes the probability of
the original classifier h(W ; ·) producing the same out-
put class for perturbed inputs x+ ϵ. This smoothing
process makes the classifier more robust to small input
perturbations (Cohen et al., 2019).

3.2 PAC-Bayesian Bounds For Neural
Networks In Adversarial Environments

Now we introduce our approach for computing non-
vacuous generalization bounds of adversarial deep learn-
ing. We start by considering an idealized setting to
clearly describe the idea. In Section 3.3, we extend the
results to compute practical certificates.

Our approach entails substituting the loss ℓ by an
extended robust version ℓ̃ which we define below.

Definition 1 (Robust Loss of a Smoothed Classifier).
We define the robust loss ℓ̃ as ℓ̃(x, y, g(W ; ·)) :={

ℓ(x, y, g(W ; ·)) if Φ−1(pW,x)− Φ−1(p
W,x

) ≥ 2R
σ

1 otherwise,

where pW,x and p
W,x

are defined such that,

Pg(W ;x) ≥ pW,x ≥ p
W,x
≥ P¬g(W ;x),

Pg(W ;x) := Pr(h(W ;x+ ϵ) = g(W ;x)), P¬g(W ;x) :=
maxc̸=g(W ;x) Pr(h(W ;x+ ϵ) = c), and Φ is the CDF of
the standard normal distribution.

The definition of the robust loss ℓ̃ extends the 0-1 loss
ℓ by incorporating the uncertainty level of the smooth
classifier g into the loss. To see this, note that pW,x

serves as a lower bound on the probability of the class
predicted by the smoothed classifier g(W ;x), while
p
W,x

represents an upper bound on the probability of

any other class. The loss function ℓ̃ captures the idea
that as the difference between pW,x and p

W,x
increases

(i.e., g predicts with high confidence), the robustness of
g(W ;x) also improves. On the other hand, when the
difference between pW,x and p

W,x
is small, suggesting

a lack of robustness, ℓ̃ takes on its maximum value,
indicating the presence of an adversarial example for
g(W ;x). Thus, the loss ℓ̃ inherently provides a measure
of robustness for the smoothed classifier g(W ;x) based
on the probability bounds p

W,x
and pW,x.

It is noteworthy that the exact computation of pW,x

and p
W,x

within ℓ̃ can be intractable, however, we can

efficiently estimate them using sampling-based tech-
niques (Cohen et al., 2019). Further details on the
computational methods can be found in Section 3.3.

We are now ready to present the main result of this
section. Theorem 1 introduces a bound on the adver-
sarial risk of smoothed classifiers by their empirical
risk induced by the robust loss ℓ̃ and the Kullback-
Leibler (KL) divergence between a prior and a pos-
terior distributions of the model parameters. Recall
that the KL divergence between two distributions Q
and Q′ onW is defined as KL(Q||Q′) :=

∫
W ln( dQ

dQ′ )dQ
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This work Xiao et al. (2023) Mustafa et al. (2022)

Õ

(√
1

σ2
w

∑L
l=1∥W 0

l−Wl∥2
2

n

)
Õ

(√
(B+R)2L2ω

∏L
l=1∥Wl∥2

σ

∑L
l=1

∥Wl−W0
l
∥22

∥Wl∥2σ
n

)
Õ

(√
(B+R)2L2d

∏L
l=1∥Wl∥2

σ

∑L
l=1

∥Wl−W0
l
∥22,1

∥Wl∥2σ
n

)

Table 1: Norm-based generalization bounds.

if the Radon-Nikodym derivative dQ
dQ′ exists and ∞

otherwise. When Q and Q′ are Bernoulli distributions
with parameters q, q′ ∈ [0, 1], we use the shorthand
KL(q, q′) := KL(Q||Q′).

Theorem 1 (Main Result). Let Q0 ∈ M(W) be a
prior probability measure. Then, with probability 1− δ
over the randomness of the training sample S, simulta-
neously for all Q ∈M(W), we have

L(Q, ℓadv)≤KL−1
(
L̂(Q,S, ℓ̃),

KL(Q||Q0)+ln(2
√
n

δ )

n

)
, (1)

where KL−1(q, c) := sup{p ∈ [0, 1] : KL(q, p) ≤ c}.

The theorem presents an upper bound on the adver-
sarial risk L(Q, ℓadv) in terms of the empirical risk

L̂(Q,S, ℓ̃) and the complexity term of the posterior
KL(Q∥Q0). Note that the empirical risk is defined in
terms of the robust loss function ℓ̃ rather than ℓadv.
While computing ℓadv is intractable for many practical
models including DNNs, due to the maximum opera-
tor, ℓ̃ admits a tractable estimation via sampling based
techniques (see Section 3.3 for more details). Therefore,
Theorem 1 implies an efficient method to evaluate the
adversarial risks of classifiers via the bound (1).

We briefly sketch the proof of Theorem 1 here (Details
can be found in Appendix B). First, we leverage the
careful definition of ℓ̃ to establish an upper bound for
the adversarial loss ℓadv. Indeed, when g classifies with
a low margin (i.e., Φ−1(Pg(W ;x))−Φ−1(P¬g(W ;x)) <
2R
σ ), then ℓ̃ yields the maximum loss 1, therefore

ℓadv ≤ ℓ̃. Conversely, when g classifies with high mar-
gin (i.e., Φ−1(Pg(W ;x))−Φ−1(P¬g(W ;x)) ≥ 2R

σ ), then
ℓadv coincides with the non-adversarial loss ℓ and by
extension ℓ̃, that is ℓadv = ℓ̃. Indeed, this the case
since, as shown in Salman et al. (2019), the function
Φ−1(Pg(W ;x)) is 1

σ -Lipschitz in x. Therefore, we es-

tablish L(Q, ℓadv) ≤ L(Q, ℓ̃). Next, we bound L(Q, ℓ̃)
via the PAC-Bayes analysis (Langford and Caruana,
2001) to get the final result.

Comparison To Related Work Existing gener-
alization bounds of adversarial learning largely fo-
cus on deterministic networks, rendering direct com-
parisons challenging. A relaxed comparison, how-
ever, provides insights into the mechanisms of non-
vacuous bounds. To facilitate the comparison, we

consider deterministic and stochastic DNNs, that is
h(W ;x) := Softmax(WLσ(. . . σ(W1σ(W0x)))). Let
W 0

l denote weights at initialization and Wl for trained
networks. The posterior distribution of the stochas-
tic DNN is defined as W̃l ∼ N (Wl, σ

2
wI)

3 and the

prior is defined as W̃l ∼ N (W 0
l , σ

2
wI). Further as-

sume that ∥x∥2 ≤ B, and the maximum number of
neurons per layer is ω. Table 1 summarises existing
bounds in comparison to the bound (1). Notably, the
dominant factor of the bounds Xiao et al. (2023) and
Mustafa et al. (2022) is the product of spectral norms∏L

l=1 ∥W∥σ. This term arises as an estimate of the
Lipschitz constant of a DNN. Interestingly, the corre-
sponding term in our bound is the inverse of the stan-
dard deviation 1

σw
. We argue that these two terms are

closely related through a randomized smoothing view
of G(W ) := E

W̃∼N (W,σI)
[E(x,y)∼P [ℓadv(x, y, h(W̃ ; ·))]].

Indeed, while Mustafa et al. (2020) and Xiao
et al. (2023) showed bounds on H(W ) :=
E(x,y)∼P [ℓadv(x, y, h(W ; ·))], the bound (1) is on

E
W̃∼N (W,σI)

[H(W̃ )] = G(W ). Thus, G can be per-

ceived as a smoothed variant of the H, where the
smoothing is conducted w.r.t. to the weights W . Con-
sequently, we suggest that the inherent smoothing effect
on the expected (adversarial) risk of a stochastic net-
work could be the primary factor behind the efficacy
of these methods in achieving non-trivial bounds.

On The Importance Of Randomized Smoothing
We consider stochastic DNNs, therefore, a non-vacuous
bound is achieved only if there exists a posterior dis-
tribution Q over classifiers such that robustness to
adversarial examples is achieved with high probability
(over Q). The following proposition shows, even for
the linear binary classification case, that the expected
adversarial loss of a stochastic DNN is always larger
than that of a deterministic model. The proof of the
proposition can be found in Appendix B.

Proposition 1. Consider binary classification with a
linear model. Suppose we are given a classifier w∗ and
an input example (x, y) ∈ X × {−1, 1}. The quality
of w∗ is measured by the hinge-loss ℓ(t, y) = ϕ(−yt),
where ϕ(t) := max(0, t). Then we have

max
∥δ∥≤ϵ

ℓ(⟨w∗, x+ δ⟩ , y) = ϕ(∥w∗∥ϵ− y ⟨w∗, x⟩).

3For simplicity we assume an isotropic covariance matrix
for both the prior and posterior with parameter σw
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Furthermore, for any σ, there exists Γ > 0 such that
when d ≥ 6

Ew̃∼N (0,σ2I)

[
max
∥δ∥≤ϵ

ℓ(⟨w∗ + w̃, x+ δ⟩ , y)
]

≥ ϕ (∥w∗∥ϵ− y ⟨w∗, x⟩+ ϵΓ) .

Note that since Γ > 0, the lower bound on the ex-
pected loss is larger than the loss on the mean w∗

for any w∗ ∈ Rd. Notably, the randomized smooth-
ing approach ensures that the model is 1

σ -Lipschitz
independently of the model weights. Therefore, we
posit that randomized smoothing can help alleviate
this. This is also experimentally verified in Section 4.3.

3.3 Computing The Certificate

In the previous section, we considered an idealized
setting, assuming tractability of the expectations with
respect to Q and the smoothing variable ϵ. In this
section, we provide a tractable upper bound on (1) that
holds with high probability. The main computational
challenge lies in computing L̂(Q,S, ℓ̃). To address this,
we follow Langford and Caruana (2001) to utilize the
Monte Carlo approximation of Q using m i.i.d. samples
{Wj ∼ Q | j ∈ [m]}, resulting in an unbiased estimate

L̂(Q̂, S, ℓ) =
1

mn

m∑
j=1

n∑
i=1

ℓ
(
xi, yi, h(Wj ; ·)

)
,

where Q̂ is the empirical distribution 1
m

∑m
j=1 δWj

.

To estimate an upper bound on L̂(Q̂, S, ℓ̃), we need
to address the difficulty of evaluating g(W ; ·), which
is computationally intractable. Algorithm 1 summer-
izes an estimation procedure for L̂(Q̂, S, ℓ̃). We first
estimate the prediction cA ≈ g(Wj ;x) by sampling N0

instances from h(Wj ;x+ ϵ) (lines 4-6). Next, we pro-
ceed to estimate a lower bound on Pr(h(Wj ;x+ϵ) = cA)
that holds with probability at least 1−α. Specifically, in
lines 7-8, we count the number of times h(Wj , x+ϵt) pre-

dicts cA in N trials,
∑N

t=1 I(h(Wj ;x+ϵt) = cA). In line
9, we estimate the lower bound pA on Pr(h(Wj ;x+ϵ) =
cA) using the confidence interval estimation procedure
BLC (Brown et al., 2001), which ensures a lower bound
with probability at least 1 − α. Finally, lines 10-12
compute ℓ̃(x, y, g(W ; ·)).

While Algorithm 1 provides an estimate to L̂(Q̂, S, ℓ̃),
its output is not an upper bound on L(Q, ℓadv). The fol-
lowing theorem presents such a bound that holds with
high probability in terms of the output of Algorithm 1.

Theorem 2. Let Q0 ∈ M(W) be prior distribution.
Then with probability at least 1− δ− δ′− δ′′, simultane-
ously for all Q ∈M(W), the adversarial risk L(Q, ℓadv)
is upper-bounded by

Algorithm 1: Estimate an upper bound on
L̂(Q̂, S, ℓ̃). Based on CERTIFY (Cohen et al.,
2019).

Input : S, N0, N , σ, {Wi}mi=1, α, R

Output : An estimate of L̂(Q̂, S, ℓ̃)
errors count← 0
for (x, y) ∈ S do

for j ← 1 : m do

{ϵt}t∈[N0]
iid∼ N (0, σI)

counts←
∑

t∈[N0]

h(Wj ;x+ ϵt)

cA ← argmax
k∈[K]

countsk

{ϵt}t∈[N ]
iid∼ N (0, σI)

counts←
∑

t∈[N ]

h(Wj ;x+ ϵt)

pA ← BLC(countscA , N, 1− α)
if pA ≤ 1

2 or cA ̸= y or Φ−1(pA) <
R
σ then

errors count← errors count+1
end

end

end
return Alg1 := errors count /m|S|

KL−1

(
KL−1

(
Alg1+

√
2α(1−α) log(

1
δ′′ )

m|S| +
log(

1
δ′′ )

3m|S| ,

(2)

log(
2
δ′ )

n

)
,
KL(Q||Q0)+log(

2
√
n

δ )

n

)
,

where Alg1 is the output of Algorithm 1.

The theorem provides a computationally tractable up-
per bound on the adversarial risk. The proof is found
in Appendix B. The key step is to utilize Bernstein’s
inequality to bound L̂(Q̂, S, ℓ̃) combined with the ob-
servation that KL−1 is monotonically increasing in the
first argument.

3.4 Training A Certifiable Network

In this section, we utilize Theorem 1 to train stochastic
DNNs, for which the bound (2) is non-vacuous. The

goal is then to find a posterior distribution Q̂ ∈M(W)
that minimizes the adversarial PAC-Bayes bound (1).
As discussed earlier, evaluating and minimizing the
adversarial PAC-Bayes bound directly is challenging.
Therefore, we aim to derive a surrogate objective that
is amenable to optimization, particularly using SGD-
based algorithms. First, we consider the evaluation
of the function KL−1. It does not have a closed-form
solution, and back-propagating through the numeri-
cal algorithm for KL−1 is computationally expensive.
While several upper bounds have been proposed in the
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literature (McAllester, 1999; Pérez-Ortiz et al., 2021;
Tolstikhin and Seldin, 2013; Thiemann et al., 2017),
we employ the PAC-Bayes-quadratic (Rivasplata et al.,
2020) as it experimentally outperformed other surro-
gates. It is defined as fq(Q,Q0, S, ℓadv) :=

[√
L̂(Q,S, ℓadv) +

KL(Q||Q0) + log( 2
√
n

δ )

2n

+

√
KL(Q||Q0) + log( 2

√
n

δ )

2n

]2
.

Now we proceed to estimate the gradient of
fq(Q,Q0, S, ℓadv). It is computationally efficient to
compute the KL-divergence and its gradients when
using normal distributions with diagonal covariance
for both the prior Q0 and the posterior Q. It re-
mains to estimate the gradients of L̂(Q,S, ℓadv) with
respect to the parameters of Q (i.e. µ and Σ). We
employ the pathwise gradient estimator (Price, 1958)

∇µ,Σ
1
n

∑n
i=1 ℓadv(xi, yi, g(W ; ·)), whereW := µ+Σ

1
2V ,

where V is sampled from N (0, I) 4. This approach ad-
dresses the computational challenges in evaluating the
expectation with respect to Q.

Next, we focus on approximating classifier g(W ;x)
and the adversarial loss ℓadv. During the training
process, we employ the empirical version of the classi-
fier, which is given by 1

M

∑
t∈[M ] h(W ;x+ ϵt), where

ϵt
iid∼ N (0, σI). To approximate the adversarial loss,

we utilize adversarial training techniques (Madry et al.,
2017; Tramèr et al., 2017). Specifically, we adopt the
SMOOTHADV approach proposed by Salman et al. (2019),
in which Projected Gradient Descent (PGD) is used
to find an adversarial example for each training sam-
ple. The gradients of the inputs required by PGD
are approximated by ∇xℓ

(
1
M

∑M
t=1 h(W ;x + ϵt)

)
. It

is important to note that during the training process,
the cross-entropy loss is used as a surrogate for the 0-1
loss. Algorithm 2 provides a summary of the training
procedure, outlining the steps involved in training the
self-certified stochastic model. This algorithm incorpo-
rates the techniques mentioned above to optimize the
model parameters and enhance its robustness against
adversarial attacks.

4 EXPERIMENTS

In this section, we demonstrate the practical applica-
tions of our self-certified model training and evaluation

4To ensure positivity of Σ during training we use the
reparameterization Σ = log(1 + exp(ρ)) (Pérez-Ortiz et al.,
2021).

Algorithm 2: Adversarial PAC-Bayes

Input :Training set S, number of iteration T ,
batch size B, prior Q0

Output :Posterior distribution model Q
Initialize µ0, ρ0 from prior Q0

µ← µ0

ρ← ρ0
for t← 1 : T do

Sb ← Sample a batch from S with batch size B
V ∼ N (0, I)
Σρ ← log(1 + exp(ρ))

W ← µ+Σ
1
2
ρ V

S̃b ← []
for (x, y) ∈ Sb do

{ϵi}Mi=1
iid∼ N (0, σ2I)

x̂ = argmax
∥x̂−x∥2≤R

ℓ

(
x̃, y, 1

M

∑
t∈[M ]

h(W ; ·+ ϵt)

)
Append {(x̂+ ϵi, y)}Mi=0 to S̃b.

end

fq(µ, ρ) = fq(N (µ0,Σ0)N (µ,Σρ), L̂(δW , S̃b, ℓ))
µ← SGD/ADAM(∇µfq)
ρ← SGD/ADAM(∇ρfq)

end
return N (µ, ρ)

techniques, showcasing their utility and efficacy in com-
puting a non-vacuous generalization bound. We com-
pute the empirical certificates (Algorithm 1) and the
adversarial risk bound (Theorem 2) for various settings
on the established MNIST and CIFAR-10 datasets.

4.1 Experimental Setup

For all our experiments, we use a shared setup of eval-
uation parameters, which we report in the Appendix.
However, most of the experimental parameters vary de-
pending on the context. For example, we use different
network architectures for MNIST and CIFAR-10.

DNN Architectures For MNIST, we use a simple
CNN architecture (∼4.8M parameters) consisting of
two convolutional layers with 32 and 64 filters, respec-
tively. They are followed by two fully connected layers
with 128 and 10 output neurons, respectively. We use
ReLU activation and a dropout for each but the final
layer. For CIFAR-10, we adopt a VGG-like (Simonyan
and Zisserman, 2014) deep CNN (∼41M parameters)
following Pérez-Ortiz et al. (2021). This architecture
comprises 13 convolutional layers with up to 512 filters.
The final prediction is computed using three fully con-
nected layers with 1024, 512, and 10 output neurons,
respectively. Additionally, we observed that incorpo-
rating Batch Normalization (BatchNorm) (Ioffe and
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Szegedy, 2015) facilitates faster prior learning. How-
ever, we exclude the learnable affine transformation
that scale and shift the normalized data, and we freeze
the running statistics after learning the prior to ensure
that the network is fully parameterized by its weights.

Our Model Is Sensitive To Hyperparameters
Due to computational constraints–training and comput-
ing the certificates on CIFAR-10 takes approximately
30 hours on 8 A100 GPUs–we performed a greedy grid
search of the hyperparameters. Overall the model dis-
played robustness to, e.g., the choice of learning rate.
However, we found that, for CIFAR-10, the stochastic
network is sensitive to the choice of the prior covariance
Σ0. Any value above Σ0 = 0.015I makes the poste-
rior training fail to converge, while any value below
Σ0 = 0.01I showed no further improvement. Addition-
ally, the prior exhibits a tendency to overfit, prompting
us to search for an optimal dropout rate. Among the
values tested (0.1, 0.2, 0.3, 0.5), a dropout rate of
0.2 proved to be the most effective. For MNIST, we
searched within the same set of hyperparameters as for
CIFAR-10. The prior Σ0 was selected to be 0.03I. We
set dropout to 0.5.

4.2 Our Model Achieves Robust Risk
Certificates Across All Settings

First of all, the most important experiment is to show
empirically that our computed bounds are indeed non-
vacuous and that the method remains robust across
different settings. In Figures 1 and 2, we investigate
the MNIST and CIFAR-10 setup.

The orange lines depict the bound on L̂(Q̂, S, ℓ̃), while
the blue lines depict the bound on L(Q, ℓadv) as given
in Theorem 2. The green line shows the empirical
risk on a hold-out test dataset (i.e., the proportion of
adversarially certified test sets’ samples). Overall, our
method consistently achieves robust certificates across
all datasets. The computed generalization bounds are
non-vacuous for both MNIST on the small network and
CIFAR-10 on the deep network. They are also tight
when compared to the stochastic test certificate, as the
bounds barely exceed the test certificates.

Adversarial Training Leads To Better Certifi-
cates We consider two settings for our experiments.
Firstly, we report results for adversarial training as
outlined in Algorithm 2. In the second setting, we omit
the adversarial training step, i.e. omitting line 12 in
Algorithm 2. Adversarial training imposes a harder
constraint on the models. Consequently, we anticipated
that while it would enhance the empirical certificate
(orange lines), it could potentially widen the general-
ization gap, thus leading to inferior risk certificates

(a) Without Adversarial Training

(b) With Adversarial Training

Figure 1: Shown are adversarial risk bounds for a
DNN trained with and without adversarial training
on MNIST. Each subfigure plots the 0-1 loss over in-
creasing attacker capacities (i.e., R). The blue curve
represents the risk bound, the orange curve is the em-
pirical certified robustness of the training data, and the
green curve is the empirical loss on a hold-out dataset.

(blue lines). Surprisingly, adversarial training increased
the model robustness without significantly affecting
the generalization gap. This observation suggests that
the KL regularization is not at odds with adversarial
training when applied to smoothed classifiers.

Our Approach Scales Well With Deeper Net-
works When evaluating a much deeper network on
CIFAR-10, we observed that despite the network’s
larger size (41 million parameters vs. 4.8 million
parameters), the generalization gap did not signifi-
cantly change. This finding emphasizes that the KL-
divergence is a superior measure of complexity for deep
neural networks compared to relying solely on the num-
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(a) Without Adversarial Training

(b) With Adversarial Training.

Figure 2: Shown are adversarial risk bounds for a
DNN trained with and without adversarial training on
CIFAR-10. Each subfigure depicts the 0-1 loss over
increasing attacker capacities (i.e., R). The blue curve
is the risk bound, the orange curve is the empirical
certified robustness of the training data, and the green
curve is the empirical loss on hold-out data.

ber of parameters. Other measures with similar im-
plications have been proposed in the literature, such
as the distance to initialization (Bartlett et al., 2017;
Arora et al., 2019).

4.3 Smoothing Is Vital For Robust
Classification

In our previous experiments, we observed that adversar-
ial training combined with smoothed networks yields
consistently strong empirical adversarial certificates
across various settings. Smoothing is a core ingredient
for achieving this strong performance. While we have
already given an intuition for this in the methodology

section, we here demonstrate this in an extended exper-
iment on CIFAR-10. Figure 3 shows both adversarial
certificates for smoothed networks (dashed lines) and
empirical performance under PGD attack (solid lines)
for non-smoothed deterministic networks.

Note that adversarial certificates are upper bounds on
the empirical adversarial risk, while the empirical per-
formance under PGD attack is a lower bound on the
empirical adversarial risk. We find that the empirical
performance for deterministic networks is consistently
worse than the certificate for smoothed networks. This
provides evidence that it is challenging to obtain ro-
bustness for a set of models with large probability as
measured by the posterior, underscoring the effective-
ness of randomized smoothing in obtaining such a set
of robust models.

Figure 3: This figure shows the effect of adversarial
smoothing on CIFAR-10. It shows empirical adversarial
certificates (dashed lines) for smoothed networks (i.e.,
σϵ = 0.5) and empirical performance under PGD attack
(solid lines) for a DNN trained with no smoothing (i.e.,
σϵ = 0). Each color corresponds to a network trained
with varying attacker capacities (i.e., Rtrain). Overall,
the figure depicts the 0-1 loss as the attacker capacity
during inference (R) increases.

4.4 Learning The Prior Yields Stronger
Certificates

In this section, we investigate the impact of training a
data-dependent prior. On MNIST, our findings align
with the expectations, as learning the prior significantly
reduces the generalization gap, as demonstrated in Fig-
ure 4. Moreover, our observations reveal notable en-
hancements in the empirical training certificates when
the prior mean is learned. However, when consider-
ing CIFAR-10, training with data-independent priors
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proved challenging. The posterior did not outperform
random guessing. These results strongly emphasize
the importance of learning the prior to obtaining non-
vacuous certificates. This was also highlighted in the
literature (Dziugaite and Roy, 2018; Dziugaite et al.,
2021; Pérez-Ortiz et al., 2021).

(a) Without Prior Training

(b) With Prior Training

Figure 4: Effect of a data-dependent prior. Shown
are adversarial risk bounds for a DNN trained with
and without prior training on MNIST. Each subfigure
plots the 0-1 loss over increasing attacker capacities
(i.e., R). The blue curve represents the risk bound,
while the orange curve represents the empirical certified
robustness of the training data.

4.5 Further Insights Are In The Appendix

In further experiments, we find that varying the smooth-
ing variance (σϵ) for a range of attacker capacities sub-
stantiates the usefulness of smoothing. Additionally,
as expected, without KL regularization, the generaliza-
tion gap between the certificates and the adversarial

risk bound explodes. Training–especially training the
prior–is particularly prone to overfitting. We require
careful tuning of the hyperparameters. There are more
details on these findings and further experiments with
interesting observations in the Appendix.
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A DETAILS ON THE EXPERIMENTAL SETUP

In this section, we provide more details on the experimental setup used in the main manuscript and, if not
mentioned otherwise, in the appendix.

In Algorithm 2, line 1, the prior can be randomly initialized. However, following (Pérez-Ortiz et al., 2021), we
found that learning the prior mean via ERM yields consistently stronger bounds. We use 70% of the training
data to learn the prior for CIFAR-10 and 50% of the data for MNIST. The remaining data is utilized to learn the
posterior and compute the certificates.

During training, we fix the number of ϵi samples for smoothing to M = 4, use 10 steps for the PGD adversarial
attack, a KL regularization for the posterior training with a factor of λKL = 0.1, a batch size of 256, SGD
optimization with a momentum of 0.9 for learning the prior and 0.95 for learning the posterior, and train for 100
epochs both for the prior and posterior. For CIFAR-10, picking from learning rates in {5e-4, 1e-3, 5e-3, 1e-2,
5e-2}, we determined that 1e-3 produced the best results for the posterior, while 5e-3 was optimal for the prior.
For MNIST, we picked 5e-2 as a learning rate for the posterior and 1e-3 for the prior. We tested different learning
rate schedulers and used a linear learning rate decrease of one-tenth at the 60th epoch for CIFAR-10 and every
20 epochs for MNIST. The smoothing variance for training (Algorithm 2, line 11) and computing the certificates
(Algorithm 1, lines 4 and 7) is set to σϵ = 0.5. The final attacker capacity during training (Algorithm 2, line
12) is set to Rtrain = 1.0. We implemented a “warm-up” where we gradually increase Rtrain during the first 10
epochs of prior and posterior training until it matches the final attacker capacity. For the empirical certificate
computation, we utilize 100 Monte Carlo samples for selection (N0 = 100) and 10000 samples for estimation
(N = 10000). We set δ = δ′ = δ′′ = 0.01, α = 0.001, and pmin = 10−5 (see Theorem 2). 300 Monte Carlo samples
(m=300) are used for the adversarial risk bound. Our data preprocessing involved standardizing all data and
applying simple data augmentation techniques, i.e., random resizing with padding of four and random horizontal
flips.

A.1 Time Complexity Of Algorithms

We discuss the time complexity of Algorithms 1 and 2 in this section. Algorithm 1 runs in O(nmN), where n is
the number of samples, m the number of MC-samples from Q, and N is the MC-sample size for estimating g.
Here we assume a fixed architecture; that is, the forward path takes constant time. For Algorithm 2 the time
complexity is O(TBTadvM), where T is the number of iteration for the algorithm, B is the batch size, M is the
number of samples to estimate g, and Tadv is the number of iterations of the adversarial examples subroutine
(e.g., number of steps for PGD).

B MISSING PROOFS

In this section, we present the proofs that are missing in the main manuscript.

B.1 Proof Of Theorem 1

We first present the proof of Theorem 1.

Theorem 3 (Theorem 1 (restated)). Let Q0 ∈M(W) be a prior probability measure on the set of weights W.
Consider the smoothed classifier g := Tσh. Then, with probability 1− δ over the randomness of the training sample
S, simultaneously for all Q ∈M(W), we have

L(Q, ℓadv) ≤ KL−1

(
L̂(Q,S, ℓ̃),

KL(Q||Q0) + log( 2
√
n

δ )

n

)
, (3)

where L and L̂ are defined for the smoothed classifier g.

Proof. We start by showing that L(Q, ℓadv) ≤ L(Q, ℓ̃) in the context of the smoothed classifiers g. The following
lemma summarizes this result.
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Lemma 1. Let S := {(x1, y1), . . . , (xn, yn)} ⊂ X ×Y be a given dataset, Q ∈M(W) be a probability measure on
the set of weights W. Further, let ϵ ∼ N (0, σI) with some σ > 0, and let pA, pB :W ×X → [0, 1] such that, for
all (x, y) ∈ S and W ∈ W,

Pr(h(W ;x+ ϵ) = g(W ;x)) ≥ pA(W,x) ≥ pB(W,x) ≥ max
c ̸=g(W ;x)

Pr(h(W ;x+ ϵ) = c).

Then the following statements are true:

L̂(Q,S, ℓadv) ≤ L̂(Q,S, ℓ̃), (4)

L̂(Q̂, S, ℓadv) ≤ L̂(Q̂, S, ℓ̃), (5)

L(Q, ℓadv) ≤ L(Q, ℓ̃). (6)

Proof. We commence the proof by first observing the stability property of function g as delineated in Theorem 5.
Subsequently, through the careful construction of ℓ̃, we demonstrate its capacity to provide an upper bound for
the adversarial loss ℓadv.

Let W ∈ W and consider an arbitrary (x, y) ∈ X × Y. By Theorem 5 and the definitions of pA(W,x) and
pB(W,x), we establish that

g(W ; x̃) = g(W ;x) for all ∥x̃− x∥2 < R′,

where
R′ =

σ

2
(Φ−1(pA(W,x))− Φ−1(pB(W,x))).

Thus, we can deduce that

ℓadv(x, y, g(W ; ·)) = max
∥x̃−x∥2<R

ℓ(x̃, y, g(W ; ·)) = ℓ(x, y, g(W ; ·)),

whenever R′ ≥ R. In instances where R′ ≤ R, as per the definition of ℓ̃, we ascertain that the loss assumes its
maximum value of 1. Consequently, we arrive at the conclusion that

ℓadv(x, y, g(W ; ·)) ≤ ℓ̃(x, y, g(W ; ·)).

Since W , x, and y are arbitrarily chosen, the above inequality holds for all (x, y,W ) ∈ X × Y ×W. By the
monotonicity property of expectations, Equations (4) to (6) follow. Thus, we conclude the proof.

Now it remains to bound L(Q, ℓ̃). Note that ℓ̃ is bounded by 1.0, therefore by the classical PAC-Bayes bound
(see Theorem 6) we have with probability at least 1− δ over the randomness of S, we have

L(Q, ℓ̃) ≤ KL−1

(
L̂(Q,S, ℓ̃),

KL(Q||Q0) + log( 2
√
n

δ )

n

)
. (7)

Combined with (6) concludes the proof.

B.2 Proof Of Theorem 2

We now state the proof of Theorem 2.

Theorem 4 (Theorem 2 (restated)). Let Q0 ∈ M(W) be prior distribution. Then with probability at least
1− δ − δ′ − δ′′, simultaneously for Q ∈M(W), the adversarial risk L(Q, ℓadv) is upper-bounded by

KL−1

(
KL−1

((
Alg1+α+

√
2α(1−α) log(

1
δ′′ )

mn +
log(

1
δ′′ )

3mn

)
,
log(

2
δ′ )

m

)
,
KL(Q||Q0)+log(

2
√
n

δ )

n

)
.
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Proof. We structure the proof in three steps.

• First, we establish the bound L̂(Q,S, ℓ̃) ≤ L̂(Q̂, S, ℓ̃). By applying Lemma 4 to 1
m

∑m
j=1 ℓ̃(x, y, g(Wj ; ·)) and

EW∼Q[ℓ̃(x, y, g(W ; ·))], we obtain the following bound (Langford and Caruana, 2001), with probability at
least 1− δ′:

L̂(Q,S, ℓ̃) ≤ KL−1

(
L̂(Q̂, S, ℓ̃),

log( 2
δ′ )

n

)
. (8)

• Second, we establish a bound on L̂(Q̂, S, ℓ̃) by the output Alg1 of Algorithm 1. We summarize this result in
the following lemma.

Lemma 2. Let S := {(xi, yi)}ni=1 ⊂ X × Y and W := {Wi}mi=1 be a set of weights. Let Alg1 be the output
of Algorithm 1, then with probability at least 1− δ over the randomness of the algorithm, we have

L̂(Q̂, S, ℓ̃) ≤

Alg1+α+

√
2α(1− α) log( 1δ )

mn
+

log( 1δ )

3mn

 . (9)

Proof. Firstly, let us consider (xi, yi) ∈ S for i ∈ [n] and Wj ∈ W where j ∈ [m]. In Algorithm 1, lines 5
and 6 provide an estimation for the predicted class cA of g(Wj ;xi). This estimation relies on the empirical

estimate ĝ(Wj ;xi) of the function g(Wj ;xi). For the sake of simplicity, let us define ℓ̃ij := ℓ̃(xi, yi, g(Wj ; ·))
and ℓ̂ij := ℓ̃(xi, yi, ĝ(Wj ; ·)). The objective of Algorithm 1 is to utilize ℓ̂ij as a substitute for computing ℓ̃ij .

To ensure the validity of this substitution, it is imperative that ℓ̃ij ≤ ℓ̂ij . Thus, we proceed by quantifying

the frequency with which this condition is not satisfied. Let Zij := I(ℓ̃ij > ℓ̂ij), where Zij is a random
variable indicating whether the surrogate loss is smaller than the original loss. Consequently, we have the
following inequality:

L̂(Q̂, S, ℓ̃) :=
1

nm

n∑
i=1

m∑
j=1

ℓ̃ij ≤
1

mn

n∑
i=1

m∑
j=1

(ℓ̂ij + Zij). (10)

We now proceed to establish an upper bound for 1
mn

∑n
i=1

∑m
j=1 Zij . Let pcA = Pr(h(W ;x+ ϵ) = cA) and

p̂c be the lower 1− α confidence interval estimate of pc based on a finite sample of size N as computed in
line 9. Consequently, we have:

Pr(pc < p̂c) ≤ α.

According to the definition of ℓ̃, ℓ̃ij ≤ ℓ̂ij only if pc < p̂c. Thus, the variables Zij are independent Bernoulli
random variables with a success probability less than α, a mean E[Zij ] ≤ α, and a variance Var(Zij) ≤ α(1−α).
Let Z = 1

mn

∑
i

∑
j(Zij − E[Zij ]). Then we know that Z is a random variable bounded by 1 with zero mean

and a variance less than α(1− α).

By applying Bernstein’s inequality (Lemma 5), we obtain, with a probability of at least 1− δ, the following
inequality:

Z ≤

√
2α(1− α) log( 1δ )√

mn
+

log( 1δ )

3mn
,

1

mn

n∑
i=1

m∑
j=1

Zij ≤
1

nm

n∑
i=1

m∑
j=1

E[Zij ] +

√
2α(1− α) log( 1δ )√

mn
+

log( 1δ )

3mn
,

≤ α+

√
2α(1− α) log(1δ )√

mn
+

log( 1δ )

3mn
. (11)

By noting that Alg1 = 1
mn

∑n
i=1

∑m
j=1 ℓ̂ij and combining Eq.(10) and Eq.(11), we arrive at the final result.

• Finally, by combining Equations (1), (8), and (9) and noting that KL−1 is monotonic in the first term, we
achieve the final result and conclude the proof.
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B.3 Proof Of Proposition 1

Proposition 2 (Proposition 1 (restated)). Consider binary classification with a linear model. Suppose we are
given a classifier w∗ and an input example (x, y) ∈ X × {−1, 1}. Consider the loss ℓ(t, y) = ϕ(−yt), where
ϕ(t) := max(0, t). Then we have,

max
∥δ∥≤ϵ

ℓ(⟨w∗, x+ δ⟩ , y) = ϕ(∥w∗∥ϵ− y ⟨w∗, x⟩).

Furthermore, for any σ, as long as d ≥ 6, we have:

Ew̃∼N (0,σ2I)

[
max
∥δ∥≤ϵ

ℓ(⟨w∗ + w̃, x+ δ⟩ , y)
]
≥ ϕ (∥w∗∥ϵ− y ⟨w∗, x⟩+ ϵΓ) ,

where Γ := min
(

1
8σ(d− 1)

(
σ

∥w∗∥

)
, ∥w∗∥γ

)
(with γ =

√
6(d−1)2

d(d+5) − 2).

Before we prove the above result, we will need the following lemma:

Lemma 3. As long as d ≥ 6, we have:

Ew̃∼N (0,σ2I) ∥w∗ + w̃∥ ≥ ∥w∗∥+min

(
1

8
σ(d− 1)

(
σ

∥w∗∥

)
, ∥w∗∥γ

)
, (12)

where γ :=
√

6(d−1)2

d(d+5) − 2 > 0.

Proof. Note that by Taylor’s Theorem, we have, for any positive x:

√
1 + x ≥ 1 +

1

2
x− 1

8
x2. (13)

Indeed, the third derivative of the function f(x) =
√
1 + x is 3

8
√
1+x

3 , which is always positive.

Without loss of generality, we can assume that w∗ = (∥w∗∥, 0, . . . , 0)⊤ = (s, 0, . . . , 0)⊤ and w̃ = (a1, a2, . . . , ad)
⊤.

Then we have Ew̃∼N (0,σ2I)(∥w∗ + w̃∥) =

E


√√√√(s+ a1)

2
+

d∑
i=2

a2i

 = E
(√

s2 +A+ 2sa1

)
= sE


√√√√√1 +

A+ 2sa1
s2︸ ︷︷ ︸
:=x


≥ sE

(
1 +

1

2
x− 1

8
x2

)
≥ s+

1

2
sE(x)− 1

8
sE
(
x2
)
, (14)

where x := A+2sa1

s2 and A =
∑d

i=1 a
2
i = ∥w̃∥2. Next, we can calculate:

E(x) =
σ2d

s2

E
(
x2
)
=

1

s4
(
E
(
A4
)
+ 4sEa31 + 4s2E(a21)

)
=

1

s4

(
3dσ4 +

d(d− 1)

2
σ4 + 4s2σ2

)
=

2

2

d(d+ 5)

2

(σ
s

)4
+ 4

(σ
s

)2
. (15)

Plugging this back into equation (14), we obtain:

Ew̃∼N (0,σ2I)(∥w∗ + w̃∥) ≥ s+
1

2
sd
(σ
s

)2
− s · d(d+ 5)

16

(σ
s

)4
− 1

2
s
(σ
s

)2
= s+

1

2
s(d− 1)

(σ
s

)2
− s

d(d+ 5)

16

(σ
s

)4
(16)
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We now split into two cases:

Case 1: s ̸= 0 and dσ2

s2 ≤ 6 d−1
(d+5) :

Ew̃∼N (0,σ2I)(∥w∗ + w̃∥) ≥ s+
1

2
s(d− 1)

(σ
s

)2
− s

d(d+ 5)

16

(σ
s

)4
≥ s+

1

8
s(d− 1)

(σ
s

)2
(17)

= ∥w∗∥+ 1

8
σ(d− 1)

(
σ

∥w∗∥

)
(18)

where at equation (17) we have used the assumption that dσ2

s2 ≤ 6 d−1
(d+5) .

Case 2: dσ2 > 6s2 d−1
(d+5)

In this case, σ
√
d− 1 ≥ s

√
d− 1

√
6 d−1
d(d+5) = s(2 + γ), where γ :=

√
6(d−1)2

d(d+5) − 2 > 0 (recall d ≥ 6).

Thus we have in this case:

Ew̃∼N (0,σ2I)(∥w∗ + w̃∥) ≥ −∥w∗∥+ Ew̃∼N (0,σ2I)(∥w̃∥)

= −∥w∗∥+
√
2σΓ(d+1/2)

Γ(d/2)
(19)

≥ −∥w∗∥+ σ
√
d− 1 (20)

≥ ∥w∗∥+ ∥w∗∥γ (21)

where at line (20) we have used the following inequality for ratios of Gamma functions (valid for all x > 0 and
0 < λ < 1), from Laforgia and Natalini (2013):

x1−λ ≤ Γ(x+ 1)

Γ(x+ λ)
≤ (x+ 1)(1−λ), (22)

used with x = d−1
2 and λ = 1

2 . At line (19), we have used the explicit formula for the expectation of the norm of a
Chi-squared distribution (cf. Simon (2002)). The lemma is proved when putting together equations (21) and (18).

Now, we can go back to the proof of Lemma 1:

Proof of Lemma 1. Note that ϕ is monotonically increasing, therefore, we have

max
∥δ∥≤ϵ

ℓ(⟨w∗, x+ δ⟩ , y) = ϕ(max
∥δ∥≤ϵ

−y ⟨w∗, x+ δ⟩).

Note that,

max
∥δ∥≤ϵ

−y ⟨w∗, x+ δ⟩ =

{
max∥δ∥≤ϵ−⟨w∗, x+ δ⟩ = −min∥δ∥≤ϵ ⟨w∗, x+ δ⟩ , where, y = 1,

max∥δ∥≤ϵ ⟨w∗, x+ δ⟩ , where, y = −1.

Therefore,

max
∥δ∥≤ϵ

−y ⟨w∗, x+ δ⟩ =

{
∥w∗∥ϵ− ⟨w∗, x⟩ , where, y = 1,

∥w∗∥ϵ+ ⟨w∗, x⟩ , where, y = −1.

Hence,
max
∥δ∥≤ϵ

ℓ(⟨w∗, x+ δ⟩ , y) = ϕ(∥w∗∥ϵ− y ⟨w∗, x⟩). (23)

Now consider

Ew̃∼N (0,σ2I)

[
max
∥δ∥≤ϵ

ℓ(< w∗ + w̃, x+ δ >, y)

]
.
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Therefore, by (23) we have,

Ew̃∼N (0,σ2I)

[
max
∥δ∥≤ϵ

ℓ(< w∗ + w̃, x+ δ >, y)

]
= Ew̃∼N (0,σ2I) [ϕ(∥w∗ + w̃∥ϵ− y ⟨w∗ + w̃, x⟩)]

≥ ϕ(Ew̃∼N (0,σ2I) [∥w∗ + w̃∥ϵ− y ⟨w∗ + w̃, x⟩])
≥ ϕ

(
∥w∗∥ϵ+ Γϵ− Ew̃∼N (0,σ2I)(y ⟨w∗ + w̃, x⟩)

)
(24)

≥ ϕ (∥w∗∥ϵ+ Γϵ− y ⟨w∗, x⟩) , (25)

where at the second line, we have used Jensen’s inequality and at line (24) we have used Lemma (3), writing Γ

for min
(

1
8σ(d− 1)

(
σ

∥w∗∥

)
, ∥w∗∥γ

)
. This concludes the proof.

C BACKGROUND RESULTS

In this section, for completeness, we present the results from the literature required for the proofs of our theorems.

Theorem 5 (Theorem 1 in Cohen et al. (2019)). Let h : X → Y be a given function, ϵ be a random variable
with a Gaussian distribution N (0, σI), where I is the identity matrix. Define g = Tσh. Suppose cA ∈ Y, and let
pA, pB ∈ [0, 1] be defined such that

Pr(h(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

Pr(h(x+ ϵ) = c).

Then we have
g(x̃) = cA, for all ∥x̃− x∥2 < R,

where
R =

σ

2
(Φ−1(pA)− Φ−1(pB)),

where Φ is the CDF of a standard normal distribution.

Theorem 6 (Classical PAC-Bayes bound (Langford and Caruana, 2001; McAllester, 1999)). Let Q0 ∈M(W) be
a prior probability measure on W. For any δ ∈ (0, 1), with probability at least 1− δ over the randomness of the
training sample S, simultaneously for all distributions Q ∈M(W),

KL(L̂(Q,S, ℓ), L(Q, ℓ)) ≤
KL(Q||Q0) + log( 2

√
n

δ )

n
.

Lemma 4 ((Langford and Caruana, 2001)). Let t1, . . . , tm ∼ B(λ) be independent Bernoulli variables with
λ ∈ [0, 1]. Then with probability at least 1− δ,

KL

(
1

m

m∑
j=1

tj

∥∥∥λ) ≤ log( 2δ )

n
.

Lemma 5 (Bernstein’s Inequality (Boucheron et al., 2003)). Let X1, . . . ,Xn be i.i.d real-valued random variables
with Xi ≤ 1, and E[Xi] = 0, for i ∈ [n]. Further, let

1

n

n∑
i=1

Var(Xi) ≤ ν.

Then with probability at least 1− δ,

1

n

n∑
i=1

Xi ≤

√
2ν log( 1δ )

n
+

log( 1δ )

3n
(26)
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D ADDITIONAL EXPERIMENTS

In the following sections, we provide ablation studies that focus on sensitive hyperparameters and highlight the
usefulness of smoothing and adversarial learning.

D.1 Smoothing And Adversarial Training Improves Model Robustness

Figure 3 in the main paper investigated the effect of smoothing by comparing the training data adversarial
certificate for smoothed networks to the training loss under PGD attack for deterministic networks. Here, we
instead explore varying the random smoothing and adversarial attack hyperparameters in the training algorithm
and plot the training data adversarial certificate and adversarial risk bound. In particular, we vary the smoothing
variance (Algorithm 1, lines 4 and 7; Algorithm 2, line 11) and the attacker capacity for adversarial learning. As
shown in Figure 5, we observe that models are more robust when confronted with stronger adversarial attacks
during training but achieve inferior bounds in a weak adversarial setup (R < 0.2). Decreasing the variance of
smoothing has a similar effect. While it improves the bounds for weaker adversarial setups, it makes the bounds
collapse at R ≥ 0.7.

(a) σϵ = 0.5 (b) σϵ = 0.25

Figure 5: Effects of varying the adversarial capacity and smoothing parameter during training on CIFAR-10.
Each color corresponds to a network trained with varying attacker capacities (i.e., Rtrain). Each subfigure depicts
the 0-1 loss as the attacker’s capacity during inference (R) increases. The dashed curve represents the risk bound,
while the dotted curve represents the empirically certified robustness of the training data.
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D.2 The Generalization Gap Explodes Without KL Regularization

In this section, we shift our focus toward investigating the impact of Kullback-Leibler (KL) divergence regularization.
To assess its influence on the production of certifiable models, we conduct experiments without KL-regularization,
specifically setting λKL to 0.

As expected, the absence of KL-regularization leads to an improvement in the empirical training error. However,
the resulting adversarial risk certificates are found to be vacuous (see Figure 6). This observation underscores the
significance of optimizing the PAC-Bayes bound to computing non-vacuous generalization bounds.

(a) σϵ = 0.5 (b) σϵ = 0.25

Figure 6: Effect of omitting KL regularization. This figure shows adversarial risk bounds for a DNN trained on
CIFAR-10 with two different smoothing variances σϵ. Each color corresponds to a network trained with varying
attacker capacities (i.e., Rtrain). Each subfigure depicts the 0-1 loss as the attacker’s capacity during inference
(R) increases. The dashed curve represents the risk bound, while the dotted curve represents the empirically
certified robustness of the training data.
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D.3 Again, No Smoothing Deteriorates Robustness Significantly

In this section, we investigate the effect of smoothing by completely removing smoothing during training; i.e.,
setting σϵ = 0 in line 11 of Algorithm 2. In contrast to Figure 3 in the main paper, however, we investigate the
significance of training a smoothed classifier vs. smoothing a naturally or adversarially trained one. To this end,
we compute certificates to classifiers that are trained under natural or adversarial conditions and are subsequently
smoothed by a smoothing parameter σϵ = 0.25. Figure 7 shows the adversarial risk bounds and training data
certificates for different adversarial training settings. Interestingly, the figures demonstrate that naturally trained
classifiers fail to provide reasonable robustness certificates even after smoothing, emphasizing the significance of
using randomized smoothing during training.

Figure 7: Effects of adversarial smoothing. This figure shows adversarial risk bounds for a DNN trained on
CIFAR-10 with no smoothing during training (i.e., σϵ = 0) but with smoothing variance σepsilon = 0.25 for
computing the certificate. Each color corresponds to a network trained with varying attacker capacities (i.e.,
Rtrain). The figure depicts the 0-1 loss as the attacker capacity during inference (R) increases. The dashed curve
represents the risk bound, while the dotted curve represents the empirically certified robustness of the training
data.

While the aforementioned experiment highlights the importance of randomized smoothing during training, it raises
an intriguing question: Are the trained models robust, despite the absence of certifiability through smoothing
techniques? To address that question, we subjected these models to PGD attacks, thereby establishing a lower
bound on empirical adversarial risk. See Figure 3 in the main paper.
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D.4 Training The Prior Is Prone To Overfitting

In our early experiments without dropout, we noticed that, while the prior often achieves a training error of close
to 0%, the posterior fails to follow. It is stuck at around 50% training error. Even though we use the common
data augmentation, we hypothesize that the prior overfits on the training data. Figure 8 shows adversarial risk
bounds for varying dropout rates when training the prior mean via ERM. We use Rtrain = 0.5. It can be seen
that the model achieves the best bounds with a dropout rate of roughly 20%. Without dropout, the model seems
to overfit and produces far inferior bounds. On the other hand, larger dropout rates seem to cause the model to
underfit as the bounds deteriorate.

Figure 8: Effect of dropout in prior training. This figure shows adversarial risk bounds for a DNN trained on
CIFAR-10. Each color corresponds to a network trained with varying dropout rates during prior training. The
figure depicts the 0-1 loss as the attacker capacity during inference (R) increases. The dashed curve represents
the risk bound, while the dotted curve represents the empirically certified robustness of the training data.
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D.5 Training The Posterior Is Sensitive To The Prior Variance

As shown in Figure 4 in the main paper, learning the prior mean via ERM improves the model performance
significantly. This prompts us to investigate the impact of the prior covariance on the posterior performance.
Figure 9 shows adversarial risk bounds for varying prior covariances Σ0 and fixed Rtrain = 0.5. We find that
the model is sensitive to this hyperparameter. Increasing Σ0 above 0.015 deteriorates the bounds drastically.
Decreasing Σ0 below 0.01 seems to have no significant effect.

Figure 9: Effect of prior variance. This figure shows adversarial risk bounds for a DNN trained on CIFAR-10.
Each color corresponds to a network trained with varying prior covariances Σ0. The figure depicts the 0-1 loss
as the attacker capacity during inference (R) increases. The dashed curve represents the risk bound, while the
dotted curve represents the empirically certified robustness of the training data.
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E APPROXIMATING KL−1

In this section, for completeness, we present the numerical algorithm to approximate the inverse Kullback-Leibler
divergence KL−1 (Dziugaite and Roy, 2017). In order to approximate KL−1(p, c) = sup{q ∈ [0, 1] : KL(p||q) ≤ c},
we leverage Newton’s method for finding the roots of the function f(q; p, c) = KL(p||q) − c. This approach
is effective since the proximity of q to the supremum in the definition of KL−1 corresponds to the closeness

of f to zero at q. Newton’s method utilizes iterative updates of the form qn+1 = qn − f(qn)(
df
dq

∣∣∣
q=qn

)−1 to

converge towards a root of f . For Bernoulli distributions, the Kullback-Leibler divergence is expressed as
KL(p, q) = p log p

q + (1− p) log 1−p
1−q , and its derivative with respect to q is ∂ KL

∂q = 1−p
1−q −

p
q . Thus, we can utilize

updates in the following form:

qn+1 = qn −
p log p

qn
+ (1− p) log 1−p

1−qn
− c

1−p
1−qn

− p
qn

to approximate KL−1(p, c).

To initialize the process (setting q0), we employ the simple upper bound KL−1(p, c) ≤ p+
√

c
2 (Dziugaite and

Roy, 2017) and ensure that the initial estimate falls within the domain [0, 1] by setting:

q0 = min

{
1, p+

√
c

2

}
.
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