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ABSTRACT
We propose the Burst-Induced Poisson Process (BPoP), a model

designed to analyze time series data such as feeds or search queries.

BPoP can distinguish between the slowly-varying regular activity

of a stable audience and the bursty activity of a curious audience,

often seen in viral threads. Our model consists of two hidden, inter-

acting processes: a self-feeding process (SFP) that generates bursty

behavior related to viral threads, and a non-homogeneous Poisson

process (NHPP) with step function intensity that is influenced by

the bursts from the SFP. The NHPP models the normal background

behavior, driven solely by the overall popularity of the topic among

the stable audience. Through extensive empirical work, we have

demonstrated that our model fits and characterizes a large number

of real datasets more effectively than state-of-the-art models. Most

importantly, BPoP can quantify the stable audience of media chan-

nels over time, serving as a valuable indicator of their popularity.

CCS CONCEPTS
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Computing methodologies → Machine learning approaches.
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1 INTRODUCTION
Why do content creators on YouTube frequently request their sub-

scribers to enable notifications? This practice stems from their

awareness that not all subscribers are regular viewers of their

channels [30], despite the argument that the primary determinant

of sustained interest lies in the number of subscriptions a chan-

nel garners [14, 48]. In fact, the popularity dynamics of online

items can be explained by several endogenous and exogenous fac-

tors [13, 54], which include the quality of the content [25, 50], their

metadata [18], their age [5], the recommendation algorithm and its

rank on keyword-based queries [59], promotions [38], and social

media effects [7, 50].

Accurately predicting the enduring appeal of online content

remains a notably challenging task due to the distinct patterns

exhibited in the popularity dynamics of online items [12, 26, 46].

These dynamics often involve one ormore peaks of popularity bursts
that intermingle with the regular and stable audience of the content.
Existing literature mainly focuses on supervised and feature-based

approaches for predicting long-term popularity [17, 25, 26, 38, 51],

while some models overlook the bursty nature of popularity dynam-

ics [1, 27, 41]. Moreover, these approaches aim to forecast an item’s

overall popularity, taking into account the influence of exogenous

factors such as media exposure and virality on social media.

Unlike previous studies, this paper introduces an approach that

(1) distinguishes between popularity bursts and the consistent and
stable audience of content, and (2) investigates the underlying dy-

namics of these audiences. We specifically focus on differentiating

two audience types: the curious, attracted by external and viral

events such as gossip [2, 8, 38], and the stable audience, represent-

ing stable viewership. Empirical evidence reveals that content such

as keyword-discovered videos [5], popular TV episodes, and mu-

sic videos [50] maintains steady popularity over time, dominated

by the stable audience. However, news, sports, and movie content

often undergo rapid popularity surges followed by quick declines,

mostly due to temporally limited events (e.g. breaking news). In

these cases, the curious tends to prevail over the stable audience.

The primary challenge in distinguishing between these audience

types arises from the lack of individual labels that distinguish stable

and curious viewers. Instead, we typically only have the total num-

ber of viewers for an observed random series of events (RSE), which

is a combination of both hidden processes associated with the two
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Figure 1: Two example time series that motivate the BPoP
model. Left: Michael Jackson (Jan/01/2008 to Dec/31/2010).
Right: Barack Obama (Jul 20 2015 Jul 19 2018). The data
is taken from Google Trend (country: USA; search engine:
Youtube).

types of audiences. Disentangling these two audience types poses

difficulties, particularly because during viral events, curious users

tend to dominate the channel’s activity, leading to a burst in the

overall RSE [6, 47, 53]. Such bursts can become so prominent that

they fully obscure the presence of the stable audience during these

events. To accurately identify and quantify the stable audience, it

becomes essential to pinpoint the timestamps associated with these

bursts. However, this task is challenging as the activity from the

stable audience remains unlabelled and gets mixed with the bursts.

Another significant challenge arises from the potential for the

stable audience to modify its typical behavior in response to bursts

or external events [16, 23, 33, 39, 49, 55, 56]. For instance, the un-

expected death of Michael Jackson in June 2009 triggered a surge

in media and web activity, leading to increased music sales, video

views, and reactions in posts. During this period, both existing and

new fans engaged with Jackson’s work, transforming him into an

enduring musical icon. This behavior is illustrated in the left-hand

side of Figure 1, where the blue line represents the cumulative web

activity associated withMichael Jackson’s RSE. Initially, it displayed

a relatively constant growth rate until his death (vertical black line),

followed by a sudden spike in interest. Over time, the blue line

returned to a consistent growth rate. We will illustrate how to dis-

tinguish between two types of web activities during such events: (1)

regular stable audience activity (yellow line) and (2) activity driven

by unexpected events generated by the curious audience (green

line). Notably, the yellow curve changed its slope after Jackson’s un-

expected death, marking a significant transition event that not only

led to a short-term burst of activity but also consistently altered the

stable audience [39, 56]. The revival of his songs, tribute notes, and

the younger generation’s discovery of Jackson’s work contributed

to a sustained increase in interaction. Conversely, the end of Barack

Obama’s presidential term (right-hand side of Figure 1) resulted in

reduced political activity and a decline in mentions.

Point processes form a statistical framework to learn and infer

about RSEs [9, 40]. There are two contrasting approaches in this

domain. One focuses on self-exciting point processes, which model

correlations between past and future events [8, 11, 44]. On the other

hand, the homogeneous Poisson process and its variants have also

been deemed suitable [8, 20, 21, 28]. This divergence has led to

extensive research examining the diversity of human actions. For

example, studies have found that Twitter (X) hashtag activity can

be continuous, periodic, or concentrated around a single peak [22].

Similarly, research on YouTube videos has shown that the current

tweeting rate and tweet volume since a video’s upload are crucial

parameters for identifying its virality or popularity [43]. Moreover,

the popularity of YouTube videos can undergo multiple phases

of growth and decline, likely influenced by various background

random processes superimposed on bursty behavior [55].

Therefore, in theory, point processes could be used to solve the

problem of estimating the stable audience of online items, but exist-

ing models are not appropriate for this particular setting: they focus

on different aspects of RSE characterization, and do not provide

methods to identify and measure burst-induced changes in back-
ground popularity. While Poisson processes (PPs) [21, 28] can easily

estimate the stable audience when all incoming events arrive at a

fixed and predictable rate, they fail to mimic the bursts of events

seen in real data. On the other hand, self-exciting processes, such

as Hawkes and Wold processes, are able to capture the correlations

between consecutive events that generate bursts of activity, but

existing approaches do not model the time-varying nature of the

stable audience [1, 2, 24, 29, 39, 45, 52].

To address these concerns, we propose the Burst-induced Poisson

Process (BPoP) model, which is able to flexibly incorporate depen-

dencies between the two hidden and underlying point processes

involving the stable audience and the curious audience. We show

that BPoP mimics the bursts of events seen in real data and is also

able to efficiently capture the time-varying background rates that

realistically represent the stable audience. Our main contributions

are: (a) A New Model, namely BPoP, which is able to disentangle

the slowly-varying regular activity of the stable audience from the

curious activity occurring in bursts. This model does not depend

on hard-to-get external information but uses only random series

of events (RSEs) (Section 2); (b) An EM algorithm to cope with

our intensity function’s complex dependence on the history of the

process (Section 3); (c) Novel findings describing and quantifying

the stable audience for eleven real world data containing more than

a hundred thousand RSEs (Section 4). (d) Extensive empirical inves-

tigations have demonstrated that BPoP consistently outperforms

alternative models in fitting both real and synthetic data (Section 5).

2 THE BPOP MODEL
Formal construction: filtrations are formal constructions in proba-

bility theory required for the formal description of time-dependent

processes. Consider a general continuous-time Markov process

adapted to the filtration (H𝑡 )𝑡 ∈R+ : H𝑡 represents the information

that is realised at time 𝑡 . Let𝑁 (𝑎, 𝑏) be the random number of events

in (𝑎, 𝑏]. The conditional intensity rate function characterizes the

distribution and is given by 𝜆(𝑡 |H𝑡 ) = limℎ→0
E (𝑁 (𝑡, 𝑡 + ℎ) |H𝑡 ) /ℎ.

Figure 2 shows the main idea of BPoP. We observe the point

process timestamps 0 < 𝑡1 < 𝑡2 < . . . of events up to a time 𝑡

(depicted as blue dots in the fourth row). We assume that these

events are a mixture of events coming from the stable audience and

the curious audience, which are two dependent point processes,

represented as yellow and green dots in the first and third rows,

respectively. On the one hand, we model the curious audience
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Figure 2: The Burst-induced Poisson Process (BPoP) model.
The curious (SFP) and stable audience (NHPP) labels, as well
as the transitions (events of MPP), are not observed.

generating the occasional bursts as a Self-Feeding process (SFP) [1,
44, 45]. SFPs are simple self-exciting processes, and their intensity

function is given by 𝜆𝑠 (𝑡 |H𝑡 ) = 1/(𝜇/𝑒 +Δ𝑡𝑖 ) (where Δ𝑡𝑖 = 𝑡𝑖 −𝑡𝑖−1,

𝑡𝑖 = max𝑘 {𝑡𝑘 : 𝑡𝑘 ≤ 𝑡} and 𝜇 > 0). Typical SFP instances alternate

between bursts and calm periods, making them an ideal model for

capturing bursts. On the other hand, the events associated with

the stable audience are modelled by a second process, the classical

non-homogeneous Poisson process (NHPP), shown in the third

row. A third underlying meta Poisson process (MPP) controls the

times when the stable audience (or NHPP) transitions occur. These

transitions are shown as white dots in the second row in Figure 2.

The intensity of the meta Poisson process generating the transitions

is proportional to the intensity of the SFP process, which acts as a

soft proxy for “whether a burst is currently occurring”.

Remark: The main difficulty with this model is that we only ob-

serve the blue dots in the fourth row. The labels associated with

each event (the green and yellow colors) and the transitions (the

white dots) are not directly observed.

Therefore, our BPoP model involves the combination of an

SFP, representing the curious, and a NHPP, representing the sta-

ble audience, which interact with each other. At time 𝑡 , the his-

tory of the process is composed of the observed event timestamps

{𝑡1, 𝑡2, . . .} < 𝑡 , unobserved labels {𝑧1, 𝑧2, . . .} as well as unobserved
MPP events {𝜑1, 𝜑2, . . .}, which represent the transitions. We use

the convention that 𝑧𝑖 = 0 if 𝑡𝑖 ∈ NHPP and 𝑧𝑖 = 1 if 𝑡𝑖 ∈ SFP.

Thus, BPoP is governed by the following three intensity functions:

(1) the SFP intensity 𝜆𝑠 (𝑡) = 1/[(𝑔(𝑡) − 𝑔(𝑔(𝑡))) + 𝜇/𝑒] where
𝑔(𝑢) = [max(𝑡𝑖 : 𝑧𝑖 = 1 ∧ 𝑡𝑖 < 𝑢)]+ denotes the last SFP event

before 𝑡 , with the convention that 𝑔(𝑡) = 0 if �𝑖 : 𝑡𝑖 ≤ 𝑡 ∧ 𝑧𝑖 = 1

and 𝜇 > 0 is the SFP parameter; (2) 𝜆Φ (𝑡) = 𝑐𝜆𝑠 (𝑡), where 𝑐 ∈ [0, 1]
is a parameter that controls the NHPP transition sensitivity; and

(3) 𝜆𝑝 (𝑡) = 𝜆𝑚𝑡
, where Λ = {𝜆0, 𝜆1, 𝜆2, · · · } is an infinite set

of positive numbers (parameters) and,𝑚𝑡 =
∑𝑛𝜙

𝑗=1
1𝜑 𝑗<𝑡 . Similarly

we can define 𝜆+𝑠 (𝑡) = lim𝛿→0
𝜆𝑠 (𝑡 + 𝛿) (resp. 𝜆+𝜙 (𝑡) and 𝜆

+
𝑝 (𝑡)) as

the intensity of the SFP (resp. MPP and NHPP) immediately after

𝑡 . Thus, to generate the next time stamp, we first generate three

exponential variables 𝐸𝑠 , 𝐸𝜙 and 𝐸𝑝 with intensities 𝜆+𝑠 (𝑡), 𝜆+𝜙 (𝑡)
and 𝜆+𝑝 (𝑡) respectively. Then, the next event will take place at 𝑡 + 𝐸,
where E=min(𝐸𝑠 , 𝐸𝜙 , 𝐸𝑝 ), and it will belong to the SFP (resp. NPHH,
MPP) component if 𝐸 = 𝐸𝑠 (resp. 𝐸𝜙 , 𝐸𝑝 ). Likewise, we continue

generating the rest of the process from time 𝑡 + 𝐸.
Considering the described generative model we aim to infer

the parameters of BPoP. When performing inference, 𝑐 is set as

a hyperparameter
1
and the parameters Λ, 𝜇 are determined via

maximum likelihood. To optimize the likelihood, we will use the

EM algorithm, relying on Gibbs sampling in the E-step. However,

the EM algorithm in the case of point processes requires great care,

since the events are not independent data and the usual derivations

are not appropriate.

3 FITTING USING EM
Our optimization approach to fitting the model relies on the EM

algorithm [35, 36]. The EM algorithm represents a broad class of

alternating optimization methods used to estimate the maximum

likelihood estimate of parameters 𝜃 in statistical models involving

unobserved latent variables 𝑍 . The strategy consists of two steps:

(1) the E-step estimates the conditional distribution of the latent

variables (given the observations) based on the current estimate of

the parameters; (2) the M-step computes the maximum likelihood

estimate of the parameters based on the current estimate of the

latent distribution. These two steps are performed alternately until

convergence. In our specific case, the latent variables are the labels

𝑧𝑖 (SFP/curious versus Poisson/stable) of the observed timestamps

and the transitions𝑚𝑖 , while the parameters are the 𝜆’s and the 𝜇.

In this context, since the conditional distribution of the labels (given

the observations and the parameters) is not analytically tractable,

we estimate it using Gibbs sampling [15].

In this section, we compute the likelihood for our model, the

marginal conditional probabilities required for Gibbs simulation,

and present the overall details of our approach. To do that, we

must first introduce some notation. Let 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑛} be the
observed event timestamps from the mixture of the SFP (curious)

and the NHPP (stable audience). Also, let 𝑁 (𝑡) = ∑𝑛
𝑖=1

1𝑡𝑖≤𝑡 be a
function that computes the cumulative number of events up to time

𝑡 . The number of transitions that occurred before 𝑡𝑖 is given by

𝑀 := {𝑚1,𝑚2, · · · ,𝑚𝑛}, where𝑚𝑖 =
∑𝑛𝜙

𝑗=1
1𝜑 𝑗<𝑡𝑖 , and the set of

NHPP transitions between 𝑡𝑖−1 and 𝑡𝑖+1 is given byΦ𝑖 := {𝜑 𝑗 |𝑡𝑖−1 <

𝜑 𝑗 < 𝑡𝑖+1}. Finally, we set 𝜃 = 𝑍 ∪ Φ ∪ 𝑀 (the latent variables),

𝜃−𝑖 = 𝜃 \ 𝜃𝑖 where 𝜃𝑖 := ({𝑧𝑖 ,𝑚𝑖 } ∪ Φ𝑖 ).
E-Step: Here we will explain how to use Gibbs sampling to draw a

set of latent variables 𝑍 ,𝑀 and Φ (collectively referred to as 𝜃 ) from

the conditional distribution given a fixed set of parameters 𝜇 and

Λ. Gibbs sampling is a general statistical method which allows one

to draw samples from complicated high-dimensional distributions.

To draw a sample from a distribution 𝑝 on R𝑑 , we start with an

arbitrary vector 𝑥 ∈ R𝑑 , and proceed to iteratively replace each

coordinate 𝑥𝑖 (𝑖 ≤ 𝑑) by a sample from the conditional distribution
of 𝑥𝑖 given the current values of the other coordinates 𝑥 𝑗 ( 𝑗 ≠ 𝑖). In

many situations, the conditional distribution is easier to compute

than the multivariate probability density function (PDF) due to the

intractability of the calculation of the multivariate normalization

constant. It is known that under mild conditions, after convergence,
Gibbs sampling leads to a sample from the original multivariate

distribution 𝑝 [15]. In our model, the distribution to estimate is

the latent joint distribution of the labels 𝑧𝑖 and transitions𝑚𝑖 . The

distribution is proportional to the corresponding likelihood, but

the normalization constant is intractable. On the other hand, the

1
Indeed, one cannot simply optimize over it since larger𝑐 allows for farmore transitions

and makes the model prone to overfitting
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Figure 3: A: Start: behaviour of SFP intensity function given
that label of 𝑡𝑖 is unknown (red dot). Green dots refer to SFP
events while yellow ones are NHPP events; B: Behaviour of
SFP intensity function given that 𝑡𝑖 ∈ NHPP; C: Behaviour of
SFP intensity function given that 𝑡𝑖 ∈ SFP.

conditional marginal distributions are easy to compute, making

Gibbs sampling a practical solution.

We start with an initialized value for 𝜃 , and we perform a large

number 𝑁
Gibbs

of updates on its components. At each update step,

we pick 𝑖 ≤ 𝑛 and update the value of the component 𝜃𝑖 according to

the conditional distribution of 𝜃𝑖 given the current value of 𝜃−𝑖 (and,
as always, the value of 𝑇 ). After a large number of iterations, this

procedure yields a sample whose distribution is approximately that

of a sample of 𝜃 given𝑇 only. Indeed, the distribution in question is

the only stationary distribution of the Markov chain corresponding

to the updates, as long as the chain is aperiodic and irreducible
2
.

To perform this procedure, we need to compute the conditional

probability P(𝜃𝑖 |𝑇, 𝜃−𝑖 ) for any 𝑖, 𝜃𝑖 , 𝜃−𝑖 .
We will do that in two steps: first, we compute the conditional

probability P(𝑧𝑖 ,𝑚𝑖 |𝑇, 𝜃−𝑖 ), and second, we compute the condi-

tional probability density function of Φ𝑖 given 𝜃−𝑖 ,𝑇 and 𝑚𝑖 , 𝑧𝑖 .

Those conditional probabilities and densities are proportional to

the corresponding likelihoods. Note that we have the following

expression for the likelihood of our model L(𝜃 ) =∏𝑛
𝑖=1

𝜆𝑠 (𝑡𝑖 )𝑧𝑖𝜆𝑝 (𝑡𝑖 )1−𝑧𝑖 ∏𝑛𝜙
𝑗=1

𝜆𝜙 (𝜑 𝑗 ) × 𝑒−
∫ 𝑡𝑛

0
𝜆𝑠 (𝑡 )+𝜆𝜙 (𝑡 )+𝜆𝑝 (𝑡 )𝑑𝑡 .

(1)

This naturally factorizes as L(𝜃 ) = L𝑠 (𝜃 )L𝜙 (𝜃 )L𝑝 (𝜃 ), where
L𝑠 (𝜃 ) L𝜙 (𝜃 ) and L𝑝 (𝜃 ) are, respectively, the components of the

likelihood function (evaluated at 𝜃 ) corresponding to the SFP, MPP

and NHP components: L𝑠 (𝜃 ) =
∏𝑛

𝑖=1
𝜆𝑠 (𝑡𝑖 )𝑧𝑖 𝑒−

∫ 𝑡𝑛

0
𝜆𝑠 (𝑡 )𝑑𝑡

. L𝜙 (𝜃 )
and L𝑝 (𝜃 ) are defined similarly.

A key observation now is that the factors in (1) corresponding

to the intervals (0, 𝑡𝑖−1] and (𝑡𝑓 (𝑓 (𝑖 ) ) , 𝑡𝑛] do not depend on the

values {𝑧,𝑚}, where 𝑓 (𝑢) = argmin𝑗 {𝑡 𝑗 |𝑡𝑢 < 𝑡 𝑗 ∧ 𝑧 𝑗 = 1} denotes
the index of the next SFP event after 𝑡𝑢 . Indeed, whether 𝑡𝑖 is an

SFP or Poisson event only influences the SFP intensity of the next

two SFP events. Therefore, we can write equivalently:

P(𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚 |𝑇, 𝜃−𝑖 ) ∝ L𝑖
𝑠 (Ω𝑧,𝑚)L𝑖

𝜙
(Ω𝑧,𝑚)L𝑖

𝑝 (Ω𝑧,𝑚), (2)

2
Those properties follow from the fact that the conditional distributions considered

all have full support, as can be the seen below.

where L𝑖
𝑠 (Ω𝑧,𝑚) (resp. L𝑖

𝜙
(Ω𝑧,𝑚) and L𝑖

𝑝 (Ω𝑧,𝑚)) corresponds to
the component of the likelihood corresponding the SFP (resp. MPP,

NHPP) and to the interval [𝑡𝑖−1, 𝑡𝑓 (𝑓 (𝑖 ) ) ) and Ω𝑧,𝑚 := 𝜃−𝑖 ∪ {𝑧,𝑚}.
Thus 𝜃 = Ω𝑧,𝑚 ∪ Φ𝑖 and we have

P(𝑧𝑖 = 𝑧,𝑚𝑖 =𝑚 |𝑇, 𝜃−𝑖 ) ∝
∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L(Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖
∝ L𝑖

𝑠 (Ω𝑧,𝑚)L𝑖
𝜙
(Ω𝑧,𝑚)

∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L𝑖
𝑝 (Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖 ,

(3)

where we can write L𝑖
𝑠 (Ω𝑧,𝑚) for L𝑖

𝑠 (Ω𝑧,𝑚 ∪ Φ𝑖 ) for any Φ𝑖 since
L𝑖
𝑠 doesn’t depend on Φ𝑖 and 𝐹Ω𝑧,𝑚

is the set of Φ𝑖s compatible with

the values of 𝑇,𝑀 when𝑚𝑖 is set to the index𝑚: for instance, if

𝑚𝑖−1 =𝑚𝑖+1, then there are no transitions in the interval [𝑡𝑖−1, 𝑡𝑖+1),
so 𝐹Ω𝑧,𝑚

= {∅}. On the other hand, if𝑚𝑖+1−𝑚𝑖−1 = 1 and𝑚 =𝑚𝑖+1,

𝐹Ω𝑧,𝑚
is the interval [𝑡𝑖−1, 𝑡𝑖 ).

To develop an intuition of how the label of 𝑡𝑖 affects L𝑖
𝑠 (Ω𝑧,𝑚),

we will demonstrate how to compute the intensities in the interval

of interest. A similar explanation can be reproduced for L𝑖
𝜙
(Ω𝑧,𝑚)

and L𝑖
𝑝 (Ω𝑧,𝑚). Consider Figure 3. By definition, given the parame-

ter 𝜇, the SFP intensity depends solely on the two last SFP events.

Therefore the computation of 𝜆𝑠 (𝑡) before 𝑡𝑖 only depends on the

labels of the events before 𝑡𝑖 and, therefore, as they are known, such

labels are not influenced by whether 𝑡𝑖 is a Poisson or a SFP event

(note the green lines before 𝑡𝑖 , Figure 3-A). Similarly, after 𝑡𝑓 (𝑓 (𝑖 ) )
all the labels of the events are known and 𝜆𝑠 (𝑡) can be directly com-

puted (note the green lines after 𝑡𝑓 (𝑓 (𝑖 ) ) , Figure 3-A). However, the
label of event 𝑡𝑖 impacts the value of 𝜆𝑠 (𝑡) between 𝑡𝑖 and 𝑡𝑓 (𝑓 (𝑖 ) ) .
In Figure 3-B, we consider the case where 𝑡𝑖 ∈ Poisson. In this case,

the only SFP shift will happen at 𝑡𝑓 (𝑖 ) , which is (by definition) the

first SFP event after 𝑡𝑖 . Observe that the intensity between 𝑡𝑖 and

𝑡𝑓 (𝑖 ) remains the same as before 𝑡𝑖 , with the next change occurring

at 𝑡𝑓 (𝑖 ) . On the other hand, if 𝑡𝑖 ∈ SFP (see Figure 3-C), two shifts

happen in the interval. The first one immediately after 𝑡𝑖 and the

second one after 𝑡𝑓 (𝑖 ) .
Therefore, L𝑖

𝑠 (Ω𝑧,𝑚) and L𝑖
𝜙
(Ω𝑧,𝑚) can be computed directly.

The integral L𝑖
𝑝 (Ω𝑧,𝑚) :=

∫
Φ𝑖 ∈𝐹Ω𝑧,𝑚

L𝑖
𝑝 (Ω𝑧,𝑚 ∪ Φ𝑖 )𝑑Φ𝑖 can be

expressed as

C∏
𝑗 :𝑡 𝑗 ∈[𝑡𝑖−1,𝑡𝑓 (𝑓 (𝑖 ) ) )

(
𝜆𝑝 (𝑡 𝑗 |Ω𝑧,𝑚)

)
1−𝑧 𝑗

×I(Ω𝑧,𝑚, 𝑡𝑖−1, 𝑡𝑖 ,𝑚𝑖−1,𝑚) × I(Ω𝑧,𝑚, 𝑡𝑖 , 𝑡𝑖+1,𝑚,𝑚𝑖+1).
(4)

The constant C is independent of𝑚, 𝑧, defined as

C = 𝑒𝑡𝑖−1𝜆𝑝 (𝑡𝑡−𝑖 )𝑒−𝑡𝑖+1𝜆𝑝 (𝑡𝑡+𝑖 )𝑒−
∫ 𝑡𝑓 (𝑓 (𝑖 ) )
𝑡𝑖+1

𝜆𝑝 (𝑡 )𝑑𝑡 ,

and

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) =
∫
T
𝑒

∑𝑚𝑒
𝑗=𝑚𝑏

(
𝜆( 𝑗+1)−𝜆( 𝑗 )

)
𝑥 ( 𝑗−𝑚𝑏+1)

𝑑𝑥,

whereT = {𝑥 = (𝑥1, . . . , 𝑥𝑚𝑒−𝑚𝑏
) |𝑡𝑏 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏

≤
𝑡𝑒 }. The integrand in the definition of I is proportional to the like-

lihood of observing no Poisson event between 𝑡𝑒 and 𝑡𝑏 assuming

𝑥𝑖 is the𝑚𝑏 + 𝑖th transition for all 1 ≤ 𝑖 ≤ 𝑚𝑒 −𝑚𝑏 . The integrals in

the above equations can be computed using the strategy described

in the Appendix of this paper. This concludes the explanation of the

computation of P(𝑧𝑖 = 𝑧,𝑚𝑖 = 𝑚 |𝑇, 𝜃−𝑖 ). Since 𝑧𝑖 ,𝑚𝑖 are discrete

random variables, it is then straightforward to sample from the

corresponding distribution.
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To complete our description of the Gibbs update which yields 𝜃𝑖 ,

we must describe how to draw Φ𝑖 from its conditional distribution

assuming Ω𝑧,𝑚 is given. Note that given Ω𝑧,𝑚 , Φ−
𝑖
and Φ+

𝑖
are inde-

pendent, whereΦ−
𝑖

:= {𝜑 𝑗 |𝑡𝑖−1 < 𝜑 𝑗 < 𝑡𝑖 } andΦ+
𝑖

:= {𝜑 𝑗 |𝑡𝑖 < 𝜑 𝑗 <
𝑡𝑖+1}. The probability density function of Φ−

𝑖
(resp. Φ+

𝑖
) is propor-

tional to I(Ω𝑧,𝑚, 𝑡𝑖−1, 𝑡𝑖 ,𝑚𝑖−1,𝑚) (resp. I(Ω𝑧,𝑚, 𝑡𝑖 , 𝑡𝑖+1,𝑚𝑖 ,𝑚𝑖+1)).
To generate a sample from the distribution of Φ−

𝑖
in practice (Φ+

𝑖
is completely analogous), we make the following observations.

For any interval [𝑎, 𝑏], let 𝑁𝑎,𝑏 = #( 𝑗 : 𝜙 𝑗 ∈ [𝑎, 𝑏]) and 𝑓1 =

(𝑡𝑖−1 + 𝑡𝑖 )/2. We have that the joint distribution of (𝑁𝑡𝑖−1,𝑓1 , 𝑁𝑓1,𝑡𝑖 )
evaluated at (𝑛1, 𝑛2) (with 𝑛1 +𝑛2 =𝑚𝑖+1 −𝑚𝑖−1) is proportional to

I(Ω𝑧,𝑚, 𝑡𝑖−1, 𝑓1,𝑚𝑖−1,𝑚𝑖−1+𝑛1)I(Ω𝑧,𝑚, 𝑓1, 𝑡𝑖 ,𝑚𝑖−1+𝑛1,𝑚𝑖 ). Thus,
a sample can be drawn from it. We can continue to split the interval

[𝑡𝑖−1, 𝑡𝑖 ) iteratively, choosing at each step how many 𝜑 𝑗 s are on

each side of each subinterval by drawing from the relevant discrete

distributions. This can be done until only one 𝜑𝑖 is in each interval,

and its precise position can then be determined by a draw from its

now one-dimensional probability distribution. This concludes the

generation procedure for the 𝐸 step.

M-Step: Now, we will elucidate the process of maximizing the

log-likelihood, which corresponds to the current estimate of the

conditional distribution of 𝜃 , over the parameter set {𝜇,Λ}. The
procedure described in the E-Step section allows us to draw 𝑁𝜃

samples {𝜃1, 𝜃2, · · · , 𝜃𝑁𝜃
} from the conditional distribution of 𝜃

given the current estimate of {𝜇,Λ}. We then update 𝜇 via the

formula 𝜇 =

(∑𝑁𝜃
𝑗=1

argmin𝜇 log(L𝑠 (𝜃 𝑗 ) )
)
/𝑁𝜃 , where the likelihood

minimization steps are performed via binary search. Note that 𝜇 is

an easy parameter to estimate as it affects the whole interval, thus

argmin𝜇L𝑠 (𝜃 𝑗 ) is a good estimate even for a single value of 𝑗 .

Regarding the set of parameters Λ, a key observation is that

L𝑠 (𝜃 ) and L𝜙 (𝜃 ) are independent of Λ, allowing us to maximize

over L𝑠 (𝜃 ) alone. Let 𝑈 𝑗 (𝜃 ) =
∑

𝑗 1𝑡 𝑗 ∈[𝜑 𝑗 ,𝜑 𝑗+1 )∧𝑧 𝑗=0
. The part of

log(L𝑠 (𝜃 )) which depends on 𝜆 𝑗 is −(𝜑 𝑗+1 −𝜑 𝑗 ) +𝑈 𝑗 (𝜃 ) log(𝜆 𝑗 ) −
log(𝑈 𝑗 (𝜃 )). Averaging over all values of 𝜃 and optimizing over 𝜆 𝑗 ,

we immediately obtain the following formula for the 𝜆s:

ˆ𝜆𝑖 =

∑𝑁𝜃
𝑗=1

𝑈𝑖 (𝜃 𝑗 )∑𝑁𝜃
𝑗=1

(𝜑 (𝜃 𝑗 )𝑖+1−𝜑 (𝜃 𝑗 )𝑖 )
, (5)

i.e. we are treating the observations of the Poisson events on the

intervals corresponding to 𝜆 𝑗 as if they came from a fixed homo-

geneous Poisson process. This is valid since the value of Λ only

influences the Poisson likelihood component.

4 EXPERIMENTS
In this section, we present our experiments with real-world RSEs

collected from various web systems. Additionally, we conduct syn-

thetic data experiments (cf. Appendix) to validate our model under

different ground truth scenarios and evaluate the effectiveness of

our EM algorithm’s derivation in recovering the model’s underlying

parameters. We showcase BPoP’s utility on 11 real-world datasets

involving RSEs from diverse web systems across various domains.

For more details regarding the datasets, we refer to the appendix.

Table 1 shows the total number of RSEs, the average number

of events, as well as the average of the indices absolute stability

𝜅 and relative stability �̃� (defined further in this section) for each

dataset considering the entire observed time interval of each time

series. Out of the total population, 91% of individuals exhibited

a value of 0.05 < 𝑃𝑁𝐻𝑃𝑃 < 0.95: this suggests a combination of

stable behavior and a curious audience. Among those, 21% have

at least one transition, i.e., their stable audience changed during

the analyzed period, an assumption that motivated the conception

of BPoP. The fifth column (|Φ|) in Table 1 shows the the average

number of transitions for each dataset among the individuals that

had transitions. In total, we analyzed more than 78 million events.

Disentangling Stable and Ephemeral Audiences:We demon-

strate the effectiveness of our disentangling method using data

from the #ACL Twitter hashtag during the Austin City Limits (ACL)
festival in 2009. ACL is an annual three-day music and art festi-

val held in Austin, Texas, USA, attracting over 130 bands, with

around 65,000 daily attendees. In 2009, ACL promoted the "The

Sound and the Jury competition (SJC)," a virtual band contest of-

fering a festival slot to the winner. Our model, relying solely on

event timestamps related to the Twitter hashtag #ACL (Figure 5, top

left), effectively separates the series of events into stable audience

(NHPP) and curious (SFP) components. Notably, in this context, the

audience is not tied to the festival itself but rather to the related

hashtag in the period before, during, and after the festival. The
stable audience (of the hashtag) comprises dedicated music fans who

regularly engage with the Twitter feed, while the curious audience
consists of individuals intrigued by the festival. The first compo-

nent (Figure 5, bottom left) maintains a constant event arrival rate

between transitions 𝜑1, 𝜑2, . . . (indicated by vertical lines). This rate

𝜆𝑝 (𝑡) signifies the stable audience rate at a given time 𝑡 . In our

model, bursts (Figure 5, top right) are associated with the intensity

of the SFP, 𝜆𝑠 (𝑡) (Figure 5, bottom right), representing the curious

audience. Importantly, we acknowledge that the rate 𝜆𝑝 (𝑡) is not
stationary, as bursts (modeled by the SFP component) are triggered

by external or internal events related to the topic. These factors

not only generate short bursts of intense activity but also lead to

enduring changes in the topic’s discussion dynamics. Examples of

such incidents could include retweets by prominent celebrities or

the passing of influential figures related to the topic, both of which

can alter the composition and behavior of the stable audience.

These facts can be observed in the behavior of the hashtag #ACL
and its disentangled representation provided by BPoP. In the pre-

SJC period, the arrival rate of the events was very low: at this time,

only hard-core fans were actively posting tweets, namely the stable

audience. This period of calm was disrupted by the SJC campaign

period. The SJC campaign (highlighted in purple) was a short period

of time during which the bands involved in the contest together

with their fans (the curious) posted a large number of tweets asking

users to vote for them. In addition to the short burst of tweets asking

for votes, this effect altered the topic dynamic: now, it was not only

the hard-core fans of the festival, but also the bands’ supporters

which were active in the social network. This effect was to continue

until the end of the first round, and the announcement of the TOP-

20 bands, which would be selected to compete in the next stage.

After this announcement, since the number of bands in the contest

has decreased, we expect a decrease in the number of supporters,

resulting in fewer hashtag users and tweets. From BPoP, we indeed
observe a transition at this event and a decreased stable audience

(NHPP) rate afterwards. The new rate remained constant until the

ACL event itself. Finally, a huge burst of events occurred during the
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Table 1: Fitting and characterization of the datasets

#RSE n 𝜿 �̃� |𝚽| 𝑹2
𝑩𝑷𝒐𝑷 𝑹2

𝑩𝑷 𝑹2
𝑯 𝑹2

𝑩𝑯
AskMe 490 133 0.36 0.45 1.03 0.8514 ± 0.11 0.6204 ± 0.10 0.3211 ± 0.15 0.2967 ± 0.2057

Digg 974 122 0.31 0.45 1.74 0.8944 ± 0.10 0.7231 ± 0.09 0.4824 ± 0.17 0.5142 ± 0.1786

Enron 147 1589 0.59 0.49 2.21 0.9449 ± 0.07 0.9178 ± 0.06 0.5954 ± 0.25 0.8686 ± 0.1459

GitHub(U) 40385 675 0.76 0.50 1.40 0.9565 ± 0.03 0.9526 ± 0.04 0.8876 ± 0.10 0.9657 ± 0.0524
GitHub(P) 35085 696 0.77 0.50 1.39 0.9570 ± 0.03 0.9523 ± 0.04 0.8853 ± 0.10 0.9503 ± 0.0449

G. Trends 579 2975 0.66 0.48 2.09 0.9632 ± 0.07 0.9596 ± 0.01 0.7973 ± 0.29 0.8148 ± 0.2128

MetaFilter 8249 172 0.42 0.43 1.23 0.8931 ± 0.09 0.7123 ± 0.11 0.3906 ± 0.18 0.4624 ± 0.2020

MetaTalk 2465 203 0.43 0.49 1.26 0.9176 ± 0.08 0.7921 ± 0.11 0.4535 ± 0.20 0.6093 ± 0.2145

Twitter(X) 18888 1142 0.71 0.50 1.60 0.9469 ± 0.05 0.8882 ± 0.12 0.8098 ± 0.23 0.8355 ± 0.2312

Yelp 1931 128 0.22 0.38 1.34 0.9193 ± 0.13 0.9411 ± 0.08 0.8402 ± 0.14 0.9470 ± 0.0422
YouTube 250 3241 0.59 0.49 1.90 0.9720 ± 0.02 0.9696 ± 0.01 0.7010 ± 0.18 0.7623 ± 0.1661

Figure 4: Left: Scatterplot of the average �̃� versus the average 𝜅 for each of the real datasets. Right: Each column of the plots
corresponds to the Google Trend time series associated with one of 5 artists. The top row shows the raw counts. The bottom
plots show the yearly average of log(𝜆𝑝 (𝑡)) (yellow line), 𝜅 (magenta line), and �̃� (red line). Vertical black lines mean NHPP
transitions.

Figure 5: Analysis of the #ACLTwitter hashtag associatedwith
the 2009 Austin City Limits (ACL) festival. Top left: cumu-
lative events; Top right: curious (burst) component; Bottom
left: stable audience (NHPP) component; Bottom right: in-
tensity of the SFP.

festival, which was correctly modeled by our model as mostly part

of the SFP process, which represents the curious. Our model also

detects a transition at this event, and the rate goes back to pre-SJC

levels afterwards. After the festival ends, the audience is once again

composed of the stable audience only.

Our model’s core hypothesis is that short bursts of activity are

likely to simultaneously change the stable audience constitution

because they share a common cause: topic related unusual incidents.

We model this by making the transition occurrence rate equal to

𝑐𝜆𝑠 (𝑡) or proportional to the arrival rate of atypical (SFP) events

(𝜆𝑠 (𝑡)), where 𝑐 is small. SFP events appear also during non-bursty

periods. BPoP allows for the possibility of transitions occurring

also during calm periods, not only during bursts, and our algorithm

is able to detect such transitions.

Absolute and Relative Stability: After learning the component

intensities 𝜆𝑠 (𝑡) and 𝜆𝑝 (𝑡) we can contrast their absolute and rela-

tive influence on the observed events. We define two indexes, both

in the interval [0, 1]:

𝜅 =

∫ 𝑏

𝑎

𝜆𝑝 (𝑡) (𝑏 − 𝑎)−1

𝜆𝑝 (𝑡) + 𝜆𝑠 (𝑡)
𝑑𝑡 and �̃� =

∫ 𝑏

𝑎
𝜆𝑝 (𝑡)𝑑𝑡∫ 𝑏

𝑎
(𝜆𝑝 (𝑡) + 𝜆𝑠 (𝑡))𝑑𝑡

. (6)

The absolute stability 𝜅 tells us the importance of the stable

audience averaged over the time interval [𝑎, 𝑏], whilst the relative
stability �̃� describes the proportion of the activity in the interval

[𝑎, 𝑏] that is assigned to the stable audience. The plot on the left

hand side of Figure 4 shows the average �̃� versus the average 𝜅 for
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Figure 6: Top: fitting performance (determination coefficient)
as a function of the proportion |𝑃𝑃 |/𝑛 of Poisson events. Bot-
tom: fitting performance as a function of the number of
transitions.

each of the real datasets. Consider the two pairs associated with

GitHub: 𝜅 ≈ 0.8 but �̃� ≈ 0.5. This shows that while the stable

audience (NHPP component) dominates most of the time, only half

of the activities are carried out by them, i.e., the other half comes

from the curious.

The plots in the right hand side of Figure 4 show the parameters

𝜆𝑝 , 𝜅 and �̃� calculated in each year separately. We demonstrate

the versatility of our method in capturing a wide range of time

series dynamics, including those with and without popularity tran-

sitions, as illustrated in the top graphs of Figure 4. For example, the

time series for (1) Claire reveals a lack of a stable audience, with

activity largely driven by transient curiosity. The middle graphs

all highlight a mix of audiences, showcasing (2) Redfoo (without

transitions), (3) Mendler (experiencing a single transition), and (4)

Ellish (also with one transition). In contrast, (5) Stacey Q’s time

series depicts a consistently stable audience devoid of abrupt fluc-

tuations. The analysis of popularity shifts is depicted in the bottom

graphs of Figure 4 (indicated by yellow lines). Notably, the popu-

larity levels for (1), (2), and (4) remain unchanged throughout the

observed period. Conversely, (3) exhibits a decline in popularity

around 2012, while (4) sees an uptick in stable popularity around

the same timeframe. Furthermore, the BPoP metric provides a quan-

titative comparison between stable popularity and curiosity-driven

behaviors, as analyzed in the red and purple lines of the bottom

graphs in Figure 4.

5 GOODNESS OF FIT
Baselines: BPoP is a model that relies only on the observed event

timestamps. We compare our model with three similar models.

Hawkes processes [2, 24, 29, 39, 52] are a class of self-exciting

processes which are widely used for modeling web communica-

tions. The Hawkes process model assumes that any event increases

the probability of additional events. Its conditional intensity is

𝜆(𝑡 |H𝑡 ) = 𝜆 +
∑
𝑡𝑖<𝑡 𝐾 (𝑡 − 𝑡𝑖 ), where 𝐾 (𝑥) > 0 is the kernel func-

tion, which satisfies

∫ ∞
0
𝐾 (𝑥)𝑑𝑥 < 1, to ensure stationarity.

BuSca [1]: similarly to our model BPoP, BuSca is a mixture pro-

cess involving a homogeneous Poisson process and a self-exciting

process. The conditional intensity of the BuSca model is given by

𝜆(𝑡 |H𝑡 ) = 𝜆 + 1

Δ𝑡+𝜇/𝑒 , where 𝜆 ≥ 0 and 𝜇 > 0 are constants and Δ𝑡
is the last SFP interval before 𝑡 . However, in contrast to our model,

BuSca assumes that the stable audience (Poisson component) re-

mains constant and continues indefinitely.

BuSca-Hawkes: this model is similar to BuSca. However, the

bursty component is a Hawkes process instead of an SFP. This can

be considered a particular case of the method described in [32].

Metrics: To assess the Hawkes Process method’s performance we

used the random time change theorem to transform a HP into a unit

rate Poisson process (see [9]). After the transformation we com-

puted the determination coefficient 𝑅2

𝐻
corresponding to the linear

regression problem predicting the cumulative number of events

𝑁 (𝑡) for all 𝑡s in the transformed process. Similarly, for BuSca, we

computed 𝑅2

𝑆
(SFP) and 𝑅2

𝐻𝑃𝑃
(homogeneous Poisson process) for

the disentangled processes (see [1]) and computed the final coef-

ficient 𝑅2

𝐵𝑃
= (𝑅2

𝑆
+ 𝑅2

𝐻𝑃𝑃
)/2. For the BuSca-Hawkes process, we

compute the combined metric 𝑅2

𝐵𝐻
= (𝑅2

𝑆
+ 𝑅2

𝐻
)/2, where 𝑅2

𝑆
and

𝑅2

𝐻
reflect the contributions of the respective underlying processes.

To check the goodness of fit of BPoP, we first output the {𝑍, Φ̂} ⊂
𝜃𝑖 , where 𝑖 = argmax𝑗 {L(𝜃 𝑗 ) ; 1 ≤ 𝑗 ≤ 𝑁𝜃 }, which allows us

to disentangle the NHPP from the SFP. For the SFP fitting, we

took the inter-event times sample and built the empirical cumula-

tive distribution function F(𝑡) leading to the odds-ratio function

𝑂𝑅(𝑡) = F(𝑡)/(1 − F(𝑡)). Then, we computed the 𝑅2

𝑆𝐹𝑃
coefficient

of the linear regression problem predicting the cumulative number

of events 𝑁 (𝑡) versus the 𝑂𝑅(𝑡) (see [44]).
The computation of 𝑅2

𝑁𝐻𝑃𝑃
requires some explanation. Let Φ̄ be

the list of the elements of {0∪Φ∪𝑡𝑛} ordered from smallest to largest,

so that 𝜑0 = 0, 𝜑𝑚𝑡+1 = 𝑡𝑛 . For all 𝑖 ∈ {0, 1, · · · , |Φ̄| − 1}, we con-
struct the set 𝑇𝑖 = {𝑡 𝑗 |𝜑𝑖 < 𝑡 𝑗 < 𝜑𝑖+1} and then estimate 𝑅𝑁𝐻𝑃𝑃

2

𝑖
as the determination coefficient corresponding to the linear re-

gression problem predicting 𝑁 (𝑡) from 𝑡 on the interval [𝜑𝑖 , 𝜑𝑖+1)
with the datapoints obtained from 𝑇𝑖 . Finally, we compute 𝑅2

𝑁𝐻𝑃𝑃

as the weighted average of the 𝑅𝑁𝐻𝑃𝑃
2

𝑖
s. The weight is a multi-

ple of the respective interval. More formally, 𝑅2

𝑁𝐻𝑃𝑃
=

∑
𝑖 (𝜑𝑖+1 −

𝜑𝑖 )𝑅𝑁𝐻𝑃𝑃
2

𝑖
/𝑡𝑛 . Finally, we compute 𝑅2

𝐵𝑃𝑜𝑃
= (𝑅2

𝑆𝐹𝑃
+ 𝑅2

𝑁𝐻𝑃𝑃
)/2.

All 𝑅2
coefficients vary between 0 (worst case) and 1 (best case).

Table 1 shows the goodness-of-fit statistics (average and standard

deviation) forBPoP and for the baselines, grouped by dataset.BPoP
surpasses the Hawkes process method in all datasets considered.

It also consistently outperforms BuSca (in 9 out of 11 datasets).

Indeed, the high concentration of 𝑅2

𝐵𝑃𝑜𝑃
(as 𝑅2

𝑆𝐹𝑃
and 𝑅2

𝑁𝐻𝑃𝑃
, in

Figure 6) close to the maximum value of 1 shows that our model

can accurately fit the time series considered, as well as disentangle

the mixed process into its two hidden components (NHPP and SFP).

Results: Figure 6 shows how our disentangledmodels behave under

different regimes. To construct the top graph, we computed 𝑃𝑁𝐻𝑃𝑃

and rounded the value considering the range {0, 0.1, 0.2, · · · , 1}. The
extremes correspond, respectively, to a pure Poisson processes and

a pure SFP. We can observe that our model improves significantly

when the mixture is dominated by the bursty behavior. With respect

to the number of transitions |Φ|, the boxplots on the bottom show

that BPoP outperforms the baselines across the whole spectrum,

with the performance increasing with the number of transitions.
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6 RELATEDWORK
Human Communication Dynamics: Characterizing the dynam-

ics of human communication on the web has significant implica-

tions for various applications, including trend detection, clustering,

anomaly detection, and popularity prediction [11, 29, 52, 57]. This

research is inspired by a substantial body of work focused on pre-

dicting the popularity of online content, such as YouTube videos,

hashtags, and forum posts [2, 16, 33, 38, 49, 55]. The primary goal is

to estimate the total number of events associated with a given item.

At first, Crane and Sornette posited two primary mechanisms for

the occurrence of viewing activity: random occurrences influenced

by external factors such as featuring, or internally driven through

sharing [8]. However, recent studies have identified additional fac-

tors influencing popularity, such as content quality [25, 50], item

metadata [18], item age [5], recommendation algorithms, ranking

in keyword-based queries [59], and social network effects [7, 50].

More recently, Yu et al. [55] have introduced a phase representa-

tion model for online videos, extending Crane and Sornette’s en-

dogenous growth and exogenous shockmodel. They discovered that

online videos undergo multiple stages of popularity fluctuations

over several months. This finding received further support from

Rizoiu et al. [38], who identified a strong correlation between ex-

ternal promotion and online video popularity. Their research high-

lighted the substantial impact of external attention and promotion

on video popularity. Additionally, Gleeson et al. [16] emphasized

the significance of recent popularity over cumulative popularity in

the adoption of Facebook apps.

RSEs Modeling: Human activity on the web displays a broad spec-

trum of unpredictability, ranging from complete randomness [8,

20, 21, 28] to high correlation and burstiness [3, 19, 29, 45, 52].

These diverse patterns have prompted the adoption of point pro-

cess stochastic models, which provide statistical frameworks for

comprehending sequences of random events [9, 40]. In principle,

these models can be employed to estimate the audience size (fan-
base) of online items. However, existing models are not well-suited

for this specific task. Poisson processes (PPs) [21, 28] are suitable

when events arrive regularly at a fixed rate, allowing for stable

audience estimation. While a significant portion of online items

can be accurately described by such a simple model [7, 8, 12, 27],

PPs have limitations. For example, Malmgren et al. [28] introduced

a non-homogeneous Poisson process model that accounts for cir-

cadian cycles with varying rate 𝜆(𝑡), but it lacks the self-exciting
property. This means that the probability of observing an event at

a small time interval [𝑡, 𝑡 + Δ𝑡) does not depend on previous events

within that interval. This limitation hampers PPs from effectively

capturing event bursts observed in real-world data.

On the other hand, while self-exciting processes effectively cap-

ture correlations between consecutive events responsible for activ-

ity bursts in real data, existing methods often overlook the time-

varying nature of the fanbase. Hawkes processes [2, 24, 29, 39, 52],

one of the most widely used models, maintain a constant baseline

rate and incorporate event history via a conditional intensity for-

mula: 𝜆(𝑡 |H𝑡 ) = 𝜆 +
∑
𝑡𝑖<𝑡 𝐾 (𝑡 − 𝑡𝑖 ), where 𝐾 (𝑥) > 0 is typically a

decreasing exponential kernel. Hawkes processes promote bursty

behavior and fall into the category of pure self-exciting models

with a constant background intensity. They offer an alternative to

pure Poisson processes, with nuanced mathematical properties and

applications. However, they cannot capture changes in background

intensity, a feature addressed in our work.

The recent literature reflects a growing interest in exploring al-

ternatives to the widely-used Hawkes-based processes for modeling

self-exciting point process data. For instance, Etesami et al. [10]

and Trouleau et al. [42] have applied variational inference algo-

rithms to fit Bayesianmodels for multivariate self-feeding processes,

enabling the analysis of real-world communication dynamics. More-

over, Noorbakhsh and Rodriguez [37] have introduced a novel class

of Gumbel-max point processes specifically designed to address

causal issues in point process modeling. Lastly, [34, 58] study state-

dependent Hawkes processes, where point processes interact based

on a latent state. Similarly to our work, they involve a latent state,

which in our corresponds to the current metapoisson intensity.

However, in their case, the type of the event (which random point

process it is drawn from) is known for each event time.

Our results consistently make a strong case for the adoption of

self-feeding processes as a compelling alternative to widely-used

Hawkes-based models. Previous research, including [1, 4, 31, 45],

strongly supports this approach. Its appeal lies in its simplicity

and its ability to accurately capture the short-memory and power-

law behavior common in real-world data. Self-feeding processes

produce point patterns characterized by bursts of intense activity

followed by periods of low activity, aligning well with real-world

observations. By applying our model to another real case, we aim

to demonstrate its effectiveness as a competitive alternative for

modeling self-exciting point processes. Finally, Alves et al. [1] em-

ployed a Wold process to model social media events effectively.

However, this model, with a constant background rate, presents

significant training challenges due to multiple approximations re-

quired for EM algorithm expectations. Our novel model addresses

these limitations by accurately mimicking event bursts while effi-

ciently capturing time-varying background rates, providing a more

realistic representation of our fanbase dynamics.

7 CONCLUSION
In this article, we presented Burst-induced Poisson Process (BPoP),
a model that separates stable and curious media audiences. BPoP
combines an SFP for viral thread bursts (representing the curious

audience) with a non-homogeneous Poisson process for regular

user behavior (the stable audience). These components interact, and

we develop a tailored EM algorithm to address this complexity. Our

model excels in identifying audience dynamics in both synthetic

and real data.
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APPENDIX
A DATASETS’ DESCRIPTION
Below, we provide a description of the real-world datasets used in

our study:

• AskMe, MetaFilter and MetaTalk3: the time-series are

from topics of an online discussion forum and the events

consist of comments timestamps.

• Digg: each time-series corresponds to a different news post

in the website and the events are the diggs (a “digg” is a

concept akin to a Facebook “like”) given to the respective

post.

• Enron4: a sequence of events is associated with an e-mail

account and the events are the incoming and outgoing mes-

sages timestamps.

• Github (Collected by the authors): we split this dataset into

two parts: Github (Users) and Github (Projects). In the first

one, the events are activities of a user (in different projects).

In the second one, the events correspond to different activi-

ties by the user on the corresponding project.

• Google Trends (Collected by the authors): time series of

YouTube views. We consider only USA users. Each topic is

related to famous people such as singers and politicians.

• Twitter(X): the event timestamps correspond to tweets fea-

turing a given hashtag. (Collected by the authors)

• Yelp: the dataset consists of timestamps of user ratings for

several restaurants.

• Youtube: each time series correspond to a YouTube video

and the events are the timestamps of users’ comments.

The GitHub dataset in this study was collected by the authors

and it includes user and repository events, with each entry being a

User ID, Project ID, and Timestamp triplet, indicating user actions

like "Fork" or "Commit". We then aggregate time series data for

users (GitHub U) and projects (GitHub P). For Google Trends data,

collected via a PythonAPI, preprocessingwas needed as timestamps

are not provided. The data consist of normalized search volumes

on a 0 to 100 scale, collected in batches with a single anchor in

each for rescaling purposes. Post-collection, each data point has a

120-number sequence indicating relative search volumes. The data

transformation involved generating random event series from these

numbers, e.g., from a series {12, 7, 50, . . . , 43} ∈ R120
, sampling

uniformly 12 points from (0, 1], 7 from (1, 2], and 43 from (119, 120].

B SYNTHETIC DATA EXPERIMENTS
BPoP is a generative model that combines an SFP to represent the

curious audience and an NHPP to represent the stable audience,

both interacting with each other. While the complete generation

procedure is originally detailed in the main paper’s model descrip-

tion, we’re providing a concise summary in this appendix for ease

of reference.

Generation procedure: consider that, at time 𝑡 , the history of the

process is composed of the observed event timestamps {𝑡1, 𝑡2, . . .} <
𝑡 , unobserved labels {𝑧1, 𝑧2, . . .} as well as unobserved MPP events

{𝜑1, 𝜑2, . . .}, which represent the transitions.We use the convention

3
Avaiable in: http://stuff.metafilter.com/infodump/

4
Available at: https://www.cs.cmu.edu/~./enron/
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that 𝑧𝑖 = 0 if 𝑡𝑖 ∈ NHPP and 𝑧𝑖 = 1 if 𝑡𝑖 ∈ SFP. Define the following

three intensity functions: (1) the SFP intensity 𝜆𝑠 (𝑡) = 1/[(𝑡𝑔 (𝑡 ) −
𝑡𝑔 (𝑔 (𝑡 ) ) ) + 𝜇/𝑒] where 𝑔(𝑢) = [max(𝑡𝑖 : 𝑧𝑖 = 1 ∧ 𝑡𝑖 < 𝑢)]+ de-

notes the last SFP event before 𝑡 , with the convention that𝑔(𝑡) = 0 if

�𝑖 : 𝑡𝑖 ≤ 𝑡∧𝑧𝑖 = 1 and 𝜇 > 0 is the SFP parameter; (2) 𝜆Φ (𝑡) = 𝑐𝜆𝑠 (𝑡),
where 𝑐 ∈ [0, 1] is a parameter that controls the NHPP transition

sensitivity; and (3) 𝜆𝑝 (𝑡) = 𝜆𝑚𝑡
, where Λ = {𝜆0, 𝜆1, 𝜆2, · · · } is an

infinite set of positive numbers (parameters) and,𝑚𝑡 =
∑𝑛𝜙

𝑗=1
1𝜑 𝑗<𝑡 .

Similarly we can define 𝜆+𝑠 (𝑡) = lim𝛿→0
𝜆𝑠 (𝑡 + 𝛿) (resp. 𝜆+𝜙 (𝑡) and

𝜆+𝑝 (𝑡)) as the intensity of the SFP (resp. MPP and NHPP) immedi-

ately after 𝑡 . Thus, to generate the next time stamp, we first generate

three exponential variables 𝐸𝑠 , 𝐸𝜙 and 𝐸𝑝 with intensities 𝜆+𝑠 (𝑡),
𝜆+
𝜙
(𝑡) and 𝜆+𝑝 (𝑡) respectively. Then, the next event will take place

at 𝑡 + 𝐸, where E=min(𝐸𝑠 , 𝐸𝜙 , 𝐸𝑝 ), and it will belong to the SFP

(resp. NPHH, MPP) component if 𝐸 = 𝐸𝑠 (resp. 𝐸𝜙 , 𝐸𝑝 ). Likewise,

we continue generating the rest of the process from time 𝑡 + 𝐸.
Experimental setup: Let 𝑃𝑁𝐻𝑃𝑃 =

∑𝑛
𝑖=1

(1 − 𝑧𝑖 )/𝑛 be the pro-

portion of observed NHPP events. We chose sets of 𝜇,Λ and 𝑐

corresponding to estimated values of (E(𝑛),E( |Φ|),E(𝑃𝑁𝐻𝑃𝑃 )) in
the set {500, 750, 1000} × {0, 1, 2} × {0, 0.25, 0.5, 0.75, 1}. In the case

where transitions are present, we considered only the cases in

which the expected number of events of both processes (SFP and

NHPP) is greater than 0. For example, the tuple (500, 1, 0) was not
considered since we would expect only one transition and zero

NHPP events. Concerning the parameter Λ we selected values such

that ∀𝑖 min(𝜆𝑖 , 𝜆𝑖+1)/max(𝜆𝑖 , 𝜆𝑖+1) = 1/3.

For each tuple (E(𝑛),E( |Φ|),E(𝑃𝑁𝐻𝑃𝑃 )), we conducted 50 sim-

ulations (we use the generation procedure explained above) and

assessed our methods via two metrics. To assess our method’s

ability to recover the ground truth model accurately given the ob-

servations, we aggregate the relative difference between the total

intensities corresponding to our recovered labels and the ground

truth labels:

𝛿 (𝜃, ˆ𝜃 ) =
∫ 𝑡𝑛
0

| (𝜆𝑠 (𝑡 |𝜃 )+𝜆𝑝 (𝑡 |𝜃 ) )−(𝜆𝑠 (𝑡 | ˆ𝜃 )+𝜆𝑝 (𝑡 | ˆ𝜃 ) ) |
𝜆𝑠 (𝑡 |𝜃 )+𝜆𝑝 (𝑡 |𝜃 ) 𝑑𝑡 . (7)

The reason we do this instead of simply counting the proportion of

correct labels is as follows. Correctly classifying the timestamps is

both more difficult and less interesting inside a burst compared to

calm periods. Furthermore, the parametrization of the model could

present some redundancy, in which case very different parameter

combinations could correspond to similar point processes. On the

other hand, 𝛿 (𝜃, ˆ𝜃 ) is far less sensitive to the label assignments in

a short bursty period, but a small value of 𝛿 (𝜃, ˆ𝜃 ) still indicates
excellent performance. Indeed, it shows that the model accurately

represents the position of the set of observations in the probability

space and would perform well at predicting the positions of further

observations if they had been left unobserved.

The second metric simply aims at verifying convergence. We

evaluate the log-likelihood log(L( ˆ𝜃 )) at our model parameters

(and at one high-likelihood draw of the conditional labels), and

compare it with the log-likelihood evaluated with the ground truth

parameters and labels log(L(𝜃 )).
We report the results of our experiments evaluated with both

metrics in Figure 7. The box plot shows that our method has a strong

ability to recover the underlying components (SFP and NHPP) based

only on the observed timestamps. Larger values of the number of

events (𝑛) correspond to smaller values of 𝛿 (𝜃, ˆ𝜃 ). Mixtures with

higher 𝑃𝑁𝐻𝑃𝑃 tend to produce fewer bursts and therefore have a

more uniform behavior over the whole observed period. Consis-

tently with this, we observe that larger values of 𝑃𝑁𝐻𝑃𝑃 correspond

to smaller values of 𝛿 (𝜃, ˆ𝜃 ). The number of transitions (|Φ|) has
a lower impact in comparison to the other parameters’, though

smaller values of 𝛿 (𝜃, ˆ𝜃 ) are associated with fewer transitions. The

rightmost graph in Figure 7 shows that log(L( ˆ𝜃 )) is systematically

close to log(L(𝜃 )), and even surpasses it in more than 80% of the

cases. Both metrics’ behavior jointly indicate that our method can

accurately recover the ground truth based only on the timestamps

of the observed mixture process.

C EXPLICIT COMPUTATION OF THE
INTEGRAL I

There exists an explicit formula for the multiple integral

I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) =
∫
T 𝑒

∑𝑚𝑒
𝑗=𝑚𝑏

(
𝜆 ( 𝑗+1)−𝜆( 𝑗 )

)
𝑥 ( 𝑗−𝑚𝑏+1) )

𝑑𝑥 (8)

where T = {𝑥1, . . . , 𝑥𝑚𝑒−𝑚𝑏
: 𝑡𝑏 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏

≤ 𝑡𝑒 }.
For any 𝑁 and 𝑎 = (𝑎1, . . . , 𝑎𝑁 ) define 𝐺𝑎 = 𝐺𝑁

𝑎 =
∫
T 𝑒

∑𝑁
𝑖=1

𝑎𝑖𝑥𝑖𝑑𝑥

where T = {𝑥1, . . . , 𝑥𝑁 : 𝑇1 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚𝑒−𝑚𝑏
≤ 𝑇2}

(where we omit the dependence on 𝑇1,𝑇2 for notational simplicity).

Thus I(Ω, 𝑡𝑏 , 𝑡𝑒 ,𝑚𝑏 ,𝑚𝑒 ) = 𝐺
𝑚𝑒−𝑚𝑏(
𝜆( 𝑗+1)−𝜆 ( 𝑗 )

)
𝑗≤𝑚𝑒 −𝑚𝑏

and computing

𝐺𝑎 for any choice of 𝑎 is enough.

First, we observe that we have the following recurrence relation

𝐺𝑁
𝑎1,...,𝑎𝑁

=

∫ 𝑇2

𝑇1

∫ 𝑇2

𝑥1

. . .

∫ 𝑇2

𝑥𝑁 −1

𝑒
∑𝑁

𝑖=1
𝑎𝑖𝑥𝑖𝑑𝑥𝑁 . . . , 𝑑𝑥2𝑑𝑥1

=

∫ 𝑇2

𝑇1

∫ 𝑇2

𝑥1

. . .

∫ 𝑇2

𝑥𝑁 −2

[
𝑒𝑇2𝑎𝑁 − 𝑒𝑎𝑁 𝑥𝑁 −1

𝑎𝑁

]
𝑑𝑥𝑁−1 . . . 𝑑𝑥1

=
𝑒𝑇2𝑎𝑁𝐺𝑁−1

𝑎1,...,𝑎𝑁 −1

𝑎𝑁
−
𝑒𝑇1𝑎𝑁𝐺𝑁−1

𝑎1,...,𝑎𝑁 −1+𝑎𝑁
𝑎𝑁

. (9)

Based on iteratively applying this recurrence relation, we can

get the following formula:

𝐺𝑁
𝑎1,...,𝑎𝑁

= 𝑒𝑇1 (𝑎1+...+𝑎𝑁 )
( ∑︁
𝛿∈{0,1}𝑁

(−1)
∑𝑁

𝑖=1
𝛿𝑖

(10)

×

∏

{𝑖:𝛿𝑖=0} 𝑒
(𝑇2−𝑇1 ) (𝑎𝑖+

∑𝑁
𝑗=𝑖+1

𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁

𝑖=1
(𝑎𝑖 +

∑
𝑗=𝑖+1

𝑎 𝑗
∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)
.

Whilst the iterative computation in question is reasonably straight-

forward, we reproduce the details here for the reader’s convenience.

Proof of Formula (10). The proof is by induction. Note that

for 𝑁 = 1, we have indeed𝐺𝑁
𝑎1

= 𝑒𝑇2
𝑎

1

𝑎1

− 𝑒𝑇1
𝑎

1

𝑎1

as expected. Suppose

the result holds for 𝑁 − 1 and let us prove it holds for 𝑁 .

Note that by the scaling of the formula and the definition of 𝐺 ,

it is clear that we can restrict ourselves to the case 𝑇1 = 0. Now, by
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Figure 7: Summary of the results of synthetic data experiments. Left: 𝛿 (𝜃, ˆ𝜃 ) distribution grouped by (E( |Φ|),E(𝑃𝑁𝐻𝑃𝑃 )). The
𝑥-axis shows the expected number of observed events. Right: plot of log(L(𝜃 )) × log(L( ˆ𝜃 )) with the 𝑦 = 𝑥 line in red.

equation (9), we have 𝐺𝑁
𝑎1,...,𝑎𝑁

=

𝑒𝑇2𝑎𝑁𝐺𝑁−1

𝑎1,...,𝑎𝑁 −1

𝑎𝑁
−
𝐺𝑁−1

𝑎1,...,𝑎𝑁 −1+𝑎𝑁
𝑎𝑁

(11)

=
𝑒𝑇2𝑎𝑁

𝑎𝑁

∑︁
𝛿∈{0,1}𝑁 −1

(
(−1)

∑𝑁 −1

𝑖=1
𝛿𝑖

×

∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (𝑎𝑖+

∑𝑁 −1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)

− 1

𝑎𝑁

∑︁
𝛿∈{0,1}𝑁 −1

(
(−1)

∑𝑁 −1

𝑖=1
𝛿𝑖

×

∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (�̃�𝑖+

∑𝑁 −1

𝑗=𝑖+1
�̃� 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)
,

where 𝑎𝑖 = 𝑎𝑖 for 𝑖 ≤ 𝑁 − 2 and 𝑎𝑁−1 = 𝑎𝑁−1 +𝑎𝑁 . Now, note that

∑︁
𝛿∈

{0,1}𝑁 −1

−(−1)
∑𝑁 −1

𝑖=1
𝛿𝑖

𝑎𝑛


∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (�̃�𝑖+

∑𝑁 −1

𝑗=𝑖+1
�̃� 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


(12)

=
1

𝑎𝑛

∑︁
𝛿∈

{0,1}𝑁 −1×{1}

(
(−1)

∑𝑁
𝑖=1

𝛿𝑖

×

∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (𝑎𝑖+

∑𝑁
𝑗=𝑖+1

𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁
𝑗=𝑖+1

𝑎 𝑗
∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)

=
∑︁
𝛿∈

{0,1}𝑁 −1×{1}

(
(−1)

∑𝑁
𝑖=1

𝛿𝑖

×

∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (𝑎𝑖+

∑𝑁
𝑗=𝑖+1

𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁

𝑖=1
(𝑎𝑖 +

∑𝑁
𝑗=𝑖+1

𝑎 𝑗
∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)
. (13)

and

𝑒𝑇2𝑎𝑁

𝑎𝑁

∑︁
𝛿∈

{0,1}𝑁 −1

(−1)
∑𝑁 −1

𝑖=1
𝛿𝑖


∏

{𝑖 :
𝛿𝑖=0}

𝑒
𝑇2 (𝑎𝑖+

∑𝑁 −1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


=

∑︁
𝛿∈

{0,1}𝑁 −1×{0}

(−1)
∑𝑁

𝑖=1
𝛿𝑖

𝑎𝑁


∏

{𝑖:𝛿𝑖=0} 𝑒
𝑇2 (𝑎𝑖+

∑𝑁
𝑗=𝑖+1

𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


=

∑︁
𝛿∈

{0,1}𝑁 −1×{0}

(−1)
∑𝑁

𝑖=1
𝛿𝑖


∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (𝑎𝑖+

∑𝑁
𝑗=𝑖+1

𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁

𝑖=1
(𝑎𝑖 +

∑𝑁
𝑗=𝑖+1

𝑎 𝑗
∏𝑗

𝑢=𝑖+1
𝛿𝑢 )

 .
Plugging Eqs (12) and (??) back into Eq. (11), we obtain𝐺𝑁

𝑎1,...,𝑎𝑁
=

𝑒𝑇2𝑎𝑁

𝑎𝑁

∑︁
𝛿∈

{0,1}𝑁 −1

(
(−1)

∑𝑁 −1

𝑖=1
𝛿𝑖

×

∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (𝑎𝑖+

∑𝑁 −1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)

− 1

𝑎𝑁

∑︁
𝛿∈

{0,1}𝑁 −1

(
(−1)

∑𝑁 −1

𝑖=1
𝛿𝑖

×

∏

𝑖:𝛿𝑖=0
𝑒
𝑇2 (�̃�𝑖+

∑𝑁 −1

𝑗=𝑖+1
�̃� 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁−1

𝑖=1
(𝑎𝑖 +

∑𝑁−1

𝑗=𝑖+1
𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)

=
∑︁
𝛿∈

{0,1}𝑁

(
(−1)

∑𝑁
𝑖=1

𝛿𝑖 ×

∏

𝑖:𝛿𝑖=0
𝑒𝑇2 (𝑎𝑖+

∑
𝑗=𝑖+1

𝑎 𝑗

∏𝑗

𝑢=𝑖+1
𝛿𝑢 )∏𝑁

𝑖=1
(𝑎𝑖 +

∑
𝑗=𝑖+1

𝑎 𝑗
∏𝑗

𝑢=𝑖+1
𝛿𝑢 )


)
.
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