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Aspect Discovery from Product Reviews
Ying Ding

Abstract

With the rapid development of online shopping sites and social media, product re-

views are accumulating. These reviews contain information that is valuable to both

businesses and customers. To businesses, companies can easily get a large number

of feedback of their products, which is difficult to achieve by doing customer survey

in the traditional way. To customers, they can know the products they are interested

in better by reading reviews, which may be uneasy without online reviews. How-

ever, the accumulation has caused consuming all reviews impossible. It is necessary

to develop automated techniques to efficiently process them.

One of the most fundamental research problems related to product review analy-

sis is aspect discovery. Aspects are components or attributes of a product or service.

Aspect discovery is to find the relevant terms and then cluster them into aspects. As

users often evaluate products based on aspects, presenting them with aspect level

analysis is very necessary. Meanwhile, aspect discovery works as the basis of many

downstream applications, such as aspect level opinion summarization, rating pre-

diction, and product recommendation.

There are three basic steps to go through for aspect discovery. The first one is

about defining the aspects we need. In this step, we need to understand and deter-

mine what are considered aspects. The second one is about identifying words that

are used to describe aspects. This step can help us concentrate on analyzing infor-

mation that is most relevant to aspect discovery. The third one is about clustering

words into aspects. The main goal of this step is to cluster words that are about the

same aspect into the same group.

There has been much work trying to do the three basic steps in different ways.

However, there still exist some limitations with them. In the first step, most existing



studies assume that they can discover aspects that people use to evaluate products.

However, besides aspects, there also exist another type of latent topics in product

reviews, which is named “properties” by us. Properties are attributes that are intrin-

sic to products, which are not suitable to be used to compare different products. In

the second step, to identify aspect words, many supervised learning based models

have been proposed. While proven to be effective, they require large amounts of

training data and turn to be much less useful when applied to data from a different

domain. To finish the third step, many extensions of LDA have been proposed for

clustering aspect words. Most of them only rely on the co-occurrence statistics of

words without considering the semantic meanings of words.

In this dissertation, we try to propose several new models to deal with some

remaining problems of existing work:

1. We propose a principled model to separate product properties from aspects

and connect both of them with ratings. Our model can effectively do the

separation and its output can help us understand users’ shopping behaviors

and preferences better.

2. We design two Recurrent Neural Network (RNN) based models to incorpo-

rate domain independent rules into domain specific supervised learning based

neural networks. Our models can improve a lot over some existing strong

baselines in the task of cross-domain aspect word identification.

3. We use word embeddings to boost traditional topic modeling of product re-

views. The proposed model is more effective in both discovering meaningful

aspects and recommending products to users.

4. We propose a model integrating RNN with Neural Topic model (NTM) to

jointly identify and cluster aspect words. Our model is able to discover clearer

and more coherent aspects. It is also more effective in sentence clustering than

the baselines.
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Chapter 1

Introduction

Online reviews are valuable to both businesses and customers. To businesses, com-

panies can learn what customers like or dislike. They can then adapt their products

in the future to satisfy customers’ needs. To customers, they can learn the strengths

and weaknesses of products based on existing reviews and figure out the products

they are mostly satisfied with. Online reviews are becoming more and more impor-

tant in customers’ shopping decision making. Figure 1.1 shows a sample review

of a restaurant. By reading this review, we know that the restaurant Saul has good

I have eaten at Saul, many times, the food is always 
outrageously good. The duck confit is always amazing and the 
foie gras terrine with figs was out of this world. But the wine list 
does have not enough choices. For the price, you cannot eat 
this well in Manhattan. We went around 9:30 on a Friday and it 
had died down a bit by then so the service was great!

Figure 1.1: A sample review of a restaurant.

food quality, reasonable price, and nice service. But its wine list does not have

enough choices. For a customer who cares a lot about food and price, he/she may

try this restaurant after reading this review. However, a customer who values drinks

a lot may not go to this place. Meanwhile, after reading this review, the manager

of the restaurant may try to enrich their wine list to attract more customers. We can

see that online reviews can likely affect both the customers and businesses. They

contain valuable information for us to mine and utilize.

1



One standard way to analyze online reviews is to decompose them into aspects

and do aspect-based analysis such as aspect level opinion mining, aspect-based

opinion summarization, product recommendation and so on. Aspects are compo-

nents or attributes of a product or service. For example, “screen” is an aspect of

iPhone 7, “service” is an aspect of a restaurant. It is obvious to see that the sample

review in Figure 1.1 covers some aspects of restaurants like food, drink, service, and

price. There are also some other aspects like ambiance, location, and parking that

are not included in the review in Figure 1.1. People care about these aspects and

also evaluate restaurants based on these aspects.

The goal of aspect discovery from product reviews is to identify aspect words

and group them into aspects. For example, “service,” “serve,” and “waiter” are all

words referring to the service aspect. So we should group them together to represent

the service aspect. The sentiment, opinions, and descriptions about these words can

then be grouped into the same aspect. Only after this, aspect-based analysis can

be accomplished. However, in product reviews, there are no labels about aspects

and the volume can be very high, which makes it impossible to manually identify

aspects. So we need to develop algorithms to do automated aspect discovery.

Aspect discovery is important to us as it can benefit a lot of downstream applica-

tions. Figure 1.2 shows the latent aspects in the review from Figure 1.1 that should

be discovered. Aspect words are grouped and shown in different colors. Based on

this, we can summarize that the user feels the food of Saul is “always outrageously

good,” the service is “great” and the wine list “does not have enough choices.” Var-

ious applications can be built based on this. We can do rating prediction at aspect

level to get an evaluation over each aspect. We can summarize users’ opinions to

understand the detailed comments on each aspect. We can also recommend products

to users and present the reasons in text to increase the quality of recommendation.

These applications may help us improve users’ shopping experiences and satisfac-

tions.

There are three basic steps in aspect discovery from product reviews. The first

2



I have eaten at Saul, many times, the food is always 
outrageously good. The duck confit is always amazing and the 
foie gras terrine with figs was out of this world. But the wine 
list does have not enough choices. For the price, you cannot 
eat this well in Manhattan. We went around 9:30 on a Friday and 
it had died down a bit by then so the service was great!

Figure 1.2: Aspect words in a sample review. Aspects are labeled with different
colors, green for food, yellow for drink, blue for price and red for service.

step is to answer “what are considered aspects,” which aims at determining the

aspects we try to discover. Before doing aspect discovery, we need to first under-

stand and determine what are considered aspects. Generally, people do not think

too much about this problem. Most previous work does not explicitly study this

problem as they assume that topics learned by topic modeling are naturally aspects

they need. In this thesis, we will take a closer look at this problem. The second

step is to identify aspect words, which is about identifying words that are referring

to aspects in product reviews. For example, in the sentence “The food is always

outrageously good,” the word “food” is the aspect word that should be identified.

By doing aspect word identification, we can concentrate on analyzing information

that is most relevant to aspect discovery. The third step is about “how to group

aspect words into aspects.” The main concern in this problem is designing models

to effectively cluster words that are about the same aspect together. For example,

“service,” “serve,” and “waiter” should be clustered into one aspect as they are all

about aspect service. This problem can also be considered as a normalization of

aspect words. While these three steps are closely connected, some work skips the

first two steps and directly studies step three [44, 48, 95]. There is also some work

focusing on step two [33, 51, 77] only.

Existing work tries to solve these problems separately or jointly but there are

still limitations of them. For step one, to decide “what are considered aspects,”

some previous work assumes that all aspects they get are rateable aspects that users

use to evaluate a product. However, there is more information to discover than this.

Besides aspects, there are also product properties, which are specific to products.

3



While an aspect is a criterion that can be used to compare all or most products in

the same category, a property is a feature or attribute that a product either possesses

or does not possess such as the brand, location or genre. Most previous work aims

at discovering aspects that users use to evaluate products by using topic models.

However, they either miss properties or fail to separate properties from aspects. It

is important for us to discover both aspects and product properties and separate

them as the results can help us better understand users’ shopping behaviors and

preferences.

For step two, to identify aspect word, different strategies have been proposed.

They can be categorized into the following categories:

• Frequency and rule-based extraction. When people write reviews about the

product, their vocabulary may converge and those nouns that are frequently

talked about are usually aspect words that are important to analyze [50]. Most

frequency-based aspect word identification algorithms are based on this as-

sumption. Rule-based techniques extract aspect words according to their rela-

tions with opinion expressions [77]. In product reviews, aspect words usually

come together with opinion expressions and there exist some frequent syntac-

tic relations between them, which can presumably help us with aspect word

extraction. Frequency and rules are often jointly used.

• Supervised model based extraction. Identifying aspect words can also be

treated as a classification problem. Most previous work adopted sequence

labeling techniques as they can effectively model lexical and syntactic pat-

terns [50].

While these techniques have been shown to be effective, there are still some flaws

with them. Although frequency and rule-based extraction can achieve reasonable

performance, it is difficult to get further improvement as rules cannot cover im-

plicit opinion expressions well. Supervised extraction requires a large amount of

annotated data and the trained model is domain specific. It is presumably useful

4



to combine domain independent rules and domain dependent supervised model to

build a model that can effectively identify aspect words across domains. But few

work has done this.

For step three, many extensions of Latent Dirichlet Allocation (LDA) [2] have

been proposed to cluster words into aspects. Some try to discover more meaningful

aspects by developing more complicated models [87] or leveraging external supervi-

sions [11]. Some focus on discovering both aspects and sentiments to have a more

comprehensive analysis [48]. There is also some work trying to connect aspects

with ratings by developing new principled models [57]. However, most of these

studies only rely on co-occurrence statistics of lexical terms. They do not take the

semantic meaning of words into consideration. Word embeddings, which emerge

in recent years, have been widely used in various NLP tasks as they can encode the

semantic and syntactic information of words. They should also be useful in boost-

ing topic models if we can incorporate them well. This is especially important to

product reviews as the length of product reviews varies and some can be very short

and the words used in reviews are usually very diverse. Traditional topic models

may not work well in this scenario.

Previous work has also tried to jointly model aspect word identification and as-

pect word clustering. Most of them do this is by injecting distant supervisions into

topic models. One type of distant supervision is prior knowledge defined by human

or mined from external resources. In [32], the authors use some sets of seed words

to represent the topics users are interested in and design three different topic models

to incorporate these seed words. Domain knowledge mined from external/internal

resources has also been used in some other work [10, 11, 12]. Another type of dis-

tant supervision is a supervised classifier trained on an external dataset. The output

of the classifier can be used to guide the generative process of documents, which

will influence the learned aspects in the end. Zhao et al. [103] propose a topic

model with a Maximum Entropy classifier as the distant supervision. The Maxi-

mum Entropy classifier is trained to separate aspect words from opinion words and
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background words. Existing work show that jointly identifying and clustering as-

pect words can help us learn aspects of higher quality. However, most of these work

still relies on traditional topic models and treats a document as a bag of words. They

fail to consider lexical semantic meanings of words and they do not incorporate the

state-of-the-art techniques (e.g. RNN) for aspect word identification.

As we can see, while there has been some work dealing with each of the three

basic problems in aspect discovery from product reviews, there are still some un-

solved problems. In this thesis, we point out some challenges in each of the three

steps and try to address them by developing some principled models.

To separate properties from aspects, we propose a model [19] that extends an

existing work that jointly models ratings and text [57] in Chapter 3. While this

existing work [57] works well in using review text to improve product recommen-

dation and providing corresponding explanations, it often mixes product properties

with aspects. As stated before, we define “aspects” to be criteria that can be used to

compare all or most products in the same category. We also define “product prop-

erties” to be latent factors that can explain user preferences but are intrinsic to only

certain products. Separating these two types of information in product reviews can

help us better understand users’ preferences and products’ qualities. As they can

both influence a user’s rating on an item, we link them with the ratings associated

with reviews and develop a principled model to jointly model aspects, properties,

and ratings. Experiments over three datasets from different domains show that our

model can effectively separate properties from aspects.

To combine the power of domain independent rules and domain dependent su-

pervised models together, we design two models [23] to incorporate rules into su-

pervised learning based RNN in Chapter 4. While syntactic rules can learn domain

independent knowledge, labeled training data can tune RNN to be able to model

implicit patterns. A combination of these two types of knowledge can help us learn

features that may lead to better performance in cross-domain aspect word identifica-

tion. We first use domain independent rules to generate auxiliary labels of the input

6



data. Then, we design two RNN-based models that can predict both true labels and

auxiliary labels. Experiments demonstrate that our models are effective in cross-

domain aspect word identification as they can outperform some strong baselines

with a large margin.

To model semantic meaning of words in topic models, we propose to model

online reviews by making use of word embeddings in Chapter 5 [20]. Our model

can seamlessly integrate word vectors into an LDA-based topic model. Meanwhile,

we also jointly model ratings, latent factors, topics, and word embedding vectors

simultaneously. Incorporating word embeddings can make the combination of con-

tent and collaborative filtering more effective. Experiments based on real-world

datasets show that our model is able to model latent topics in product reviews better

and it is also effective in product recommendation.

To jointly model aspect word identification and aspect word clustering, we pro-

pose to integrate RNN with Neural Topic Model (NTM) in Chapter 6 [22]. The

NTM we use can model the semantic meanings of words by using word vectors to

represent them. An RNN trained on a small scale external dataset is used to guide

the generation of product reviews. Experiments on two datasets from different do-

mains demonstrate that our model is able to learn aspects of high quality.

1.1 Dissertation Structure

In the remaining part of this dissertation, we will first review related literature in

Chapter 2. Then we will present our work on jointly modeling aspects, properties,

and ratings in Chapter 3. In this work, we designed a principled probabilistic model

that can separate rateable aspects from product properties and link both of them to

ratings, which help us better understand users’ rating behaviors. Chapter 4 covers

our work of combining domain independent rules and RNN for cross-domain as-

pect word identification. We propose several RNN-based neural networks to utilize

auxiliary labels generated by domain independent rules. In Chapter 5, we will intro-
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duce our work of using word vectors to model product reviews. Our work models

the semantic meaning of words in topic models by incorporating representational

vectors of words into a probabilistic graphic model. Next, we present our work of

using an integration of NTM and RNN to jointly identify and cluster aspect words in

Chapter 6. With a small scale labeled dataset, our model is able to discover aspects

of higher quality. In the end, we conclude this thesis and introduce some potential

future work in Chapter 7.
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Chapter 2

Literature Review

Because of the importance and accumulation of online product reviews, people

haven done various analysis of them. Among these studies, aspect discovery is

one of the most popular directions and researchers have tried to address it from dif-

ferent angles. Among the three basic steps, Step 2 and Step 3 have attracted most of

the attentions. However, most previous work skips Step 1 as they assume that topics

learned by topic models are naturally aspects. In this section, we will first give an

overview of research on opinion mining of product reviews as this thesis falls in

this category. We then review previous work on aspect word identification, aspect

word clustering and joint modeling of both, from which the inspiration of this thesis

comes. Recently, neural networks have also been applied to aspect discovery and

shown to be amazingly effective. So we also review work related to this direction

in the last subsection.

2.1 Opinion Mining of Product Reviews

Opinion mining of product reviews has been a popular research problem for

decades. Researchers have studied different sub-problems and achieved significant

progress.

Sentiment classification is one of the earliest directions that people start to look
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at [58, 72]. It is typically modeled as a classification problem and various algo-

rithms have been proposed for it. As online reviews are all written by users, there

may exist spam reviews or helpless reviews. To detect spam reviews and identify

helpful ones, people also study problems like spam review detection [37, 45, 47] and

review helpfulness score prediction [16, 54, 69]. As the volume of online reviews

is high, it is important to study how to help users better consume product reviews.

To do this, researchers have studied opinion retrieval and search [30, 100]. Various

techniques have been proposed for opinion summarization [21, 55, 67], which aims

at generating a summary of opinions for users to quickly digest.

Aspect discovery is a fundamental problem that can be utilized in many of the

problems mentioned above. This thesis focuses on aspect discovery as it is funda-

mentally important and improvement in it can benefit many other problems.

2.2 Traditional Methods for Aspect Discovery

Existing work of aspect discovery from product reviews is mainly composed of two

lines of work: (1) aspect word identification, and (2) aspect word clustering. In the

following sections, we will review these two lines of research separately.

2.2.1 Aspect Word Identification

There are mainly two lines of work doing aspect word identification: (1) frequency

and rule based methods, and (2) supervised learning based methods. Frequency

and rule based methods mainly rely on constraints and rules designed by human.

Supervised learning based methods need to utilize machine learning techniques and

human crafted features.

Frequency and Rule based Methods

Frequency and syntactic rules are usually jointly used to identify aspect word [27,

35, 77, 105]. Words used in reviews of the same type of product usually converge
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and some frequent words are normally important aspect words that people use to de-

scribe components or attributes of products. This phenomenon triggers researchers

to use frequency and other constraints to identify aspect words. As aspect words are

nouns or noun phrases most of the time, POS tagging is usually applied first to find

candidates. Since opinion expressions usually go together with aspect words, it is

presumably useful to use syntactic relations to identify aspect words. Based on this

idea, researchers have developed various models for aspect word identification.

Frequency and rule based methods are usually domain general. To utilize this

property, we propose to generate auxiliary labels based on syntactic rules and incor-

porate the auxiliary labels into the training of neural networks in Chapter 4.

Supervised Learning based Methods

Aspect word identification can also be treated as an information extraction problem.

Various supervised algorithms have been proposed for it. Among them, sequence

labeling models, such as Hidden Markov Model (HMM) [78] and Conditional Ran-

dom Field (CRF) [43] are the most dominant ones. Both lexical features and POS

tags are used in an HMM model to jointly identify aspect words and their sentiment

polarities in [36]. Dependency relations are also used as features in a CRF model to

do single- and cross-domain aspect word identification [33]. Li et. al. [44] propose

to use Skip-chain CRF and Tree CRF to model the conjunction structure and syn-

tactic tree structure for aspect word identification. In [94], HMM is used to model

the generation of web content. A probabilistic graphical model is integrated with

HMM to extract and cluster aspects.

In recent years, the popularity of deep learning has attracted much attention on

neural networks. Neural networks have also be applied to aspect word identifica-

tion and shown to be effective. An overview of these techniques will be given in

Chapter 2.3.

Identifying aspect words is basically a classification problem. As there are far

more negative instances (words or phrases that are not describing aspects) than pos-
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itive instances, we should not use accuracy, which is widely used in many classi-

fication problems, as the evaluation metric. Precision, recall and F1 score of the

positive class are metrics commonly used in previous work [33, 36, 94]. If a phrase

or a word identified by a model matches with the ground truth, it will be counted as

a true positive case. Both exact matching and overlapping have been defined as a

match, but exact matching are now more commonly used. Then, precision P , recall

R and F1 score F can be computed as:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
. (2.1)

Here, TP , FP and FN refer to the number of true positive cases, false positive

cases and false negative cases respectively. In Chapter 4, we also use these metrics

for evaluation when comparing with the baselines.

While supervised learning based methods are effective in identifying aspect

words, they require a large amount of annotated training data and the models are

usually domain specific. Our neural network based sequence labeling models in

Chapter 4 are proposed to deal with this limitation.

2.2.2 Aspect Word Clustering

The purpose of aspect word clustering is to group words belonging to the same as-

pect together. Topic modeling has become the most dominant technique for this

problem. There are mainly three lines of topic modeling based aspect word cluster-

ing methods:

• Simultaneously clustering aspects and sentiments. As aspect words are usu-

ally target words in opinions while sentiment words are usually used as opin-

ion expressions, it is natural to model the dependency between them and clus-

ter them at the same time. The authors of [48] first do this by assuming

each topic is associated with a sentiment distribution. Simple prior infor-

mation based on sentiment lexicons is also used in this work. The authors
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of [5, 38] extend this work by assuming that all words in a sentence are from

the same topic. Local dependency is further modeled in [44] by using an Hid-

den Markov Model (HMM). A similar idea is also applied in [82], but this

work deals with review snippets instead of raw review documents and it can

separate sentiment words from aspect words. Moghaddam and her co-authors

design a new topic model to jointly model aspects and sentiments [61]. As

a follow up work, they summarize and compare several alternative ways to

design topic models for aspect based opinion mining [62].

• Using external resources to learn better aspects. To further improve the per-

formance of unsupervised topic models, some distant supervisions based on

domain knowledge or prior information have been incorporated. A topic

model that can take rules as prior knowledge is proposed in [12]. Based on

this work, the authors further proposed a model to exploit prior knowledge of

lexical relations in dictionaries in [11]. Automated extraction of knowledge

to incorporate into topic models is proposed in [10].

To evaluate the quality of discovered topics, researchers have developed differ-

ent evaluation metrics. Perplexity is a metric measuring the likelihood of generat-

ing a left out testing dataset based on a trained model. It is first used in LDA [2]

and then adopted by many other work on clustering aspect words in product re-

views [61, 62, 63]. However, this metric only measures the generalization ability of

topic models. It does not evaluate the quality of discovered topics directly. Topic

coherence [60] is a metric to measure how coherent the learned topics are, which

is widely used in existing work [11, 12]. Based on the intuition that words co-

occur more frequently are more likely to form a topic, it uses statistics of word

co-occurrences of the top words in all discovered topics to measure their qualities.

Human evaluation is also an important way as only topics that look meaningful to

human can be regarded as topics of high quality. Word intrusion [7, 31] is a popular

metric based on human evaluation. It first mixed a certain number of top words
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from a topic with a top word from another topic and then ask human annotators to

pick out the word that they think not belonging to the same topic with the others.

It is intuitive that the easier human annotators can correctly pick out the intruded

words, the better a model is at learning meaningful aspects. Another alternative way

to measure topic quality is to ask human to check if a learned topic is meaningful

and also pick out the words that are highly related to the meaningful topics [11, 12].

The underlying idea is quite similar to word intrusion, but it requires more human

efforts. To comprehensively compare our model with previous work on aspect qual-

ity, we use topic coherence in Section 5.3 and 6.3 for evaluation. Meanwhile, we

also test our proposed models on perplexity and word intrusion in Section 6.3.

While these studies haven been proven to be useful in clustering aspect words

and some other tasks, they only rely on co-occurrences of words to discover latent

topics. Semantic meanings of words are missed. In Chapter 5 and Chapter 6, we

propose a model that can cluster words into aspects based on both statistics of train-

ing data and semantic meanings of words. Another problem with these studies is

that properties are not separated from aspects. Some work even fails to discover

rateable latent aspect [57]. We try to tackle this problem in Chapter 3 by designing

a new topic model that separate properties from aspects with the help of user and

product identity and ratings.

2.2.3 Jointly Identifying and Clustering Aspect Words

Identifying and clustering aspect words can be jointly modeled. To this end, various

models have been proposed. Distant supervision based on prior knowledge is one

of the most popular ways. In [32], the authors try to guide topic models to learn top-

ics of specific interest to a user. They provide sets of seed words the user believes

are representative of the topics he/she is interested in and design 3 different exten-

sions of LDA to incorporate these seed words. To further improve the performance

of unsupervised topic models, more advanced models [10, 11, 12] have also been
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developed to incorporate distant supervision based on domain knowledge or prior

information. Supervised learning models can also be used to guide the discovery

of aspects. Zhao et. al. [103] use a Maximum Entropy classifier to separate aspect

words from opinion words and background words. A topic model is integrated with

this classifier to jointly cluster aspect words. These work rely only co-occurrence

of words to learn topics without considering their semantic meanings and do not

leverage the state-of-the-art deep learning techniques for aspect word identification.

In Chapter 6, we propose a new model to overcome these shortcomings.

2.2.4 Jointly Modeling Aspects and Ratings

The popularity of online shopping and online content or service providers have

made it easy for people to rate products and services. Users’ ratings are important

information that can help us learn user preferences and product/service qualities.

Compared with reviews, ratings are almost effortless for users to give, which also

means they are easier to be collected. Jointly modeling both reviews and ratings

may bring us additional benefits. There has been several work on this topic and our

work presented in Chapter 3 and Chapter 5 also fall into this category.

Most of existing work on this topic is based on Collaborative Topic Regres-

sion [90], which first combines topic models with matrix factorization. It is de-

signed to recommend papers to users by using topic models to model the content

of papers and using matrix factorization to model users’ adoptions of papers. In

this model, each paper is treated as a document, which is generated following LDA.

While the topic distribution of paper i is θi, its latent factor vi is sampled from a

normal distribution with θi as the mean:

vi ∼ N (θi, σ). (2.2)

By connecting θi with vi, we can regularize papers’ latent factors to be close to their

topic distributions. Then papers with similar content will also have similar latent
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factors. It is assumed that each user u also have a latent factor vu, which is sampled

from a multivariate Gaussian distribution. The inner product of vi and vu is used to

approximate user u adoption of item i:

r̂ui = vᵀuvi. (2.3)

All parameters are jointly learned by using gradient descent algorithm. Some other

work [57, 49] differ from CTR by using different hypothesis when modeling the

connection between topic distributions and latent factors. In [57], the authors try to

model product reviews for personalized rating prediction. They group all reviews

of the same product together to form a document for topic modeling. While their

framework is very similar to CTR, they assume that the product latent factor vi is

connected to the topic distribution θi of its reviews by an exponential transforma-

tion:

θij =
exp(κvij)∑
j′ exp(κvij′)

(2.4)

Ling et al. [49] propose another extension of CTR. They assume that to each user,

there is one Gaussian distribution for each topic, which models his preference on

that topic. User u’s rating on item i is sampled from a Gaussian mixture distribu-

tion with the topic distribution θi, which is learned from all reviews about i, as the

mixture probability.

Most previous work only connect latent factors with topic distributions with-

out considering sentiments and opinions. However, it is intuitive that opinions in

a product review have a strong correlations with its rating. Based on this intuition,

several models are proposed [18, 95]. They both connect sentiments with ratings

by assuming that an aspect specific sentiment distribution is determined by the cor-

responding aspect specific rating. When generating a word in a review, we should

either sample it from an aspect word distribution or a aspect-sentiment word distri-

bution. Besides, some researchers [1] have also taken product review helpfulness
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score into consideration when jointly modeling ratings and reviews. The core idea

of this work is to assign weights to training instances according to their helpfulness

score.

Different from work focusing on clustering aspect words, work that jointly

model ratings and reviews mainly care about their performances in recommend-

ing products to users. Root Mean Squared Error RMSE is one of the most widely

used evaluation metric for this [1, 18, 49, 57, 95], which measures the difference

between true ratings and the predicted ones by a model. We also use this metric to

evaluate our model in the experiments in Section 3.3 and Section 5.3. More detailed

explanations of this metric can also be found in these two sections.

While these work has achieved some improvements in recommending products,

they still have quite a few problems to be solved. Firstly, empirical experiments

show that the topics discovered by some of these models are intrinsic properties of

products instead of rateable aspects [57]. This indicates that these models cannot

fully utilize the information hidden in product reviews. To overcome this problem,

we propose a new principled model to separate aspects and properties in Chap-

ter 3, which also jointly models ratings and reviews simultaneously. Secondly, most

existing work still rely on topic models to model the content of product reviews.

Semantic meanings of words are not considered. However, traditional topic mod-

els may not work well on product reviews as reviews can have a larger diversity

in terms of document length and word usage compared with news articles. Taking

semantic similarities between words into consideration can help us overcome this

problem. Towards this end, we propose a model that can leverage word embedding

vectors, which encode the semantic and syntactic meanings of words, in Chapter 5.
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2.3 Neural Networks for Aspect Discovery

2.3.1 Word Embeddings

Word embedding is a recently proposed technique inspired by advances in deep

neural networks [59, 73]. Based on the learning from large corpora, it can represent

words with numerical vectors that encode their syntactic and semantic meanings.

The similarity between vectors of words that are semantically or syntactically sim-

ilar will be high. It has been used in different applications such as information

retrieval [14] and text summarization [42].

Traditional word embedding models assume that one word owns only on dense

vector. This is problematic as the semantic meanings and syntactic roles of a word

may vary in different context. Reisinger and Mooney [79] propose a model for

multi-prototype word vectors by first cluster word contexts and then learn word

vectors for each context. The similar idea is also used in [29]. The authors of [53]

tackle this problem from another angle by learn different word vectors under differ-

ent topics.

2.3.2 Neural Networks for Aspect Word Identification

Neural networks have been shown to be effective in aspect words identification.

The authors of [51] use standard RNN models [24, 39] and LSTM [26] for this

task. CRF is extended to incorporate continuous features and nonlinear functions

in [101]. The authors aim at tackling two different problems, aspect word iden-

tification and targeted sentiment classification at the same time. Three different

models are proposed: a pipeline model, a collapsed model and a joint model. Dis-

crete features that are commonly used in traditional sequence labeling problems are

also combined with neural features. Experiments show that the combination can

improve the performance. The pipeline model is proved to be the best based on

one English Tweet dataset and one Spanish Tweet dataset. While [51] and [101]
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both use neural networks to model aspect word extraction problem, they only uti-

lize the linear chain structure of a sentence. Long range dependency and syntactic

structures are not considered in these models. In [98], the authors propose to model

syntactic dependencies by using dependency path embeddings as input. Similar to

the training of word embeddings, dependency path embeddings are trained based on

a large corpus. Path embeddings encode the information of dependency relations as

continuous vectors, which can be later used as features for other models. Both word

embeddings and dependency path embeddings are then discretized and used as in-

put features to a CRF model. The dependency tree structure can also be directly

used for aspect word identification [93]. Recursive Neural Network is used to learn

the representation of each position. On top of this, a CRF model is further used to

model the sequence dependency of labels. Although neural networks are shown to

be effective in aspect word identification, it may turn to be less useful if the testing

data is from a different domain than the training data. This is actually a common

problem with all supervised based aspect identification algorithms.

Our model in Chapter 4 is based on RNN. RNN is a special class of artificial

neural networks with cyclical connections. They take a sequence as input and create

internal memory at each position, which is used to learn the representation of the in-

put. They can be used in various NLP tasks, such as POS tagging [74], information

extraction [51], text classification [85] and many others. Different types of RNN

units have been developed, which differ in how internal memory is generated. The

two most basic RNN models are Elman-RNN [24] and Jordan-RNN [39]. Assume

that x = (x1,x2, · · · ,xn) is an input sequence where each xt in it is a vector. An

RNN aims at learning a hidden representational vector ht for each position t that

supposedly encodes all the input from the beginning of the sequence up to position

t. ht is defined as:

ht = g(ht−1,xt)

Based on this hidden representation, we can further get an output vector yt, which
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can be used for prediction or other down-stream tasks. Elman-RNN and Jordan-

RNN differ in how ht are generated. In Elman-RNN, ht is calculated as:

ht = f(Uht−1 + Vxt + b). (2.5)

where U, V and b are parameters to be learned and f(·) is a nonlinear activation

function. In Jordan-RNN, ht is calculated as:

ht = f(Uyt−1 + Vxt + b).

However, both Elman-RNN and Jordan-RNN suffer from vanishing gradient and

exploding gradient problem, which makes them less capable of modeling long-term

dependencies. To overcome this probem, Long short-term memory (LSTM) net-

work was proposed [26]. It uses a gate mechanism to control the encoding of se-

quences. There are 3 gates at each position, namely the forget gate ft, the input gate

it and the output gate ot, which are generated based on the hidden representation

and input data. There is also a cell state Ct, which is used to update the memory

state ht. The full derivation of the gates and states are:

ft = σ(Ufht−1 + Vfxt + bf ) (2.6)

it = σ(Uiht−1 + Vixt + bi) (2.7)

ot = σ(Uoht−1 + Voxt + bf ) (2.8)

Ĉt = tanh(Ucht−1 + Vcxt + bc) (2.9)

Ct = ft ∗Ct−1 + it ∗ Ĉt (2.10)

ht = ot ∗ tanh(Ct). (2.11)

Another type of RNN unit using gate mechanism was also proposed, which is de-
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fined as:

zt = σ(Uzht−1 + Vzxt + bz) (2.12)

rt = σ(Urht−1 + Vrxt + br) (2.13)

ĥt = tanh(W(rt ∗ ht) + Vxt + b) (2.14)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt (2.15)

It uses less parameters as there are also two gates in it. An empirical comparison

demonstrates that both LSTM and GRU can significantly outperform traditional

RNN models [13]. But there is no concrete conclusion on which of these two RNN

units is better.

Although RNN models have been proved to be much more effective than tra-

ditional sequence labelling methods, the trained models are usually very domain

specific. In other words, RNN models cannot get decent performances when the

testing data comes from a domain that is different from the training data. The

main reason is that RNN models still heavily rely on domain specific features. To

overcome this problem, we propose two models to incorporate domain independent

rules into RNN for aspect word identification in Chapter 4. With the power of su-

pervised RNN model and unsupervised syntactic rules, our model is able to model

both explicit and implicit patterns of identifying aspect words. To the best of our

knowledge, there has been no neural networks developed to do this.

2.3.3 Neural Networks for Aspect Word Clustering

Since the emergency of LDA [2], various extensions based on it have been pro-

posed. However, most of these models rely on word co-occurrences to learn topics.

They share the same assumption that words co-occur frequently in the same docu-

ments are more likely to form a topic. Words are treated as discrete signals that are

independent from each other in these models. Their semantic meanings are totally

ignored. The recent advance in word embeddings [59, 73] and neural networks has
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brought us the opportunity to overcome this problem. As word embedding vectors

encode the semantic meanings of words, incorporating them into topic models can

help us learn more meaningful topics by leveraging both co-occurrence statistics

and semantic similarities. Gaussian-LDA [17] is the first work using word vectors

to represent words in documents. In LDA, the probability of generating a word

given a topic follows a multinomial distribution:

P (w|t, φt) = Mult(φt). (2.16)

Gaussian-LDA generates word vectors instead of word indexes. The probability of

getting a word vector given a topic follows a multivariate Gaussian distribution:

P (vw|t, µt,Σt) ∼ N(µt,Σt). (2.17)

Cao et al. [6] designed the Neural Topic Model (NTM) to model documents using

a generative process based on neural networks. The most significant difference be-

tween NTM and Gaussian-LDA is that NTM models topic word distribution based

on word embedding vectors as follows:

φtw =
σ(vᵀ

wet)∑
w′ σ(vᵀ

w′et)
(2.18)

where σ(·) is the sigmoid function and et is the embedding vector for topic t. Ex-

periments show that both Gaussian-LDA and NTM can outperform traditional LDA

in document classification. It proves that incorporating word vectors can help use

learn more meaningful topics. Softmax function can also be used to model the word

distribution in a topic [66]:

φtw =
exp(vᵀ

wet)∑
w′ exp(vᵀ

w′et)
. (2.19)
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This word distribution based on word embedding vectors is also combined with

traditional multinomial word distribution in [66]. The hybrid model can outperform

traditional topic models in terms of topic coherence and document clustering.

We propose two models based on word embedding vectors to model product

review content in Chapter 5 and Chapter 6. Our model in Chapter 5 is a combination

of Gaussian-LDA and matrix factorization. We find that modeling product reviews

with word vectors can help us do a better job in product recommendation. To the

best of our knowledge, no one has tried to use distant supervision to guide the

generation of documents based on word embedding vectors. Our model in Chapter 6

tries to tackle this problem by incorporating RNN model for sequence labelling

into a neural topic model. RNN model can help us identify words that are most

relevant to aspect discovery. Our experiments demonstrate that our proposed hybrid

model can outperform existing baselines in terms of perplexity, topic coherence and

sentence clustering.
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Chapter 3

A Joint Model of Product Properties,

Aspects and Ratings for Online

Reviews

Before doing aspect discovery, we need to first understand and determine what are

considered aspects. However, people do not think too much about this problem and

most previous work does not explicitly study this either as they assume that topics

learned by topic modeling are latent aspects that people use to evaluate products.

In fact, there exist other types of topics besides rateable aspects. Properties are one

type of topics that previous work either misses or fails to separate from rateable

aspects. In this chapter, we propose a new model on top of Hidden Factors as Top-

ics (HFT) model to separate product properties and aspects. Product properties are

intrinsic to certain products (e.g. types of cuisines of restaurants) whereas aspects

are dimensions along which products in the same category can be compared (e.g.

service quality of restaurants). Our proposed model explicitly separates the two

types of latent factors but links both to product ratings. Experiments show that our

proposed model is effective in separating product properties from aspects.
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3.1 Introduction

Online product reviews and the numerical ratings that come with them have at-

tracted much attention in recent years. During the early years of research on prod-

uct review mining, there were two separate lines of work. One focused on content

analysis using review texts but ignored users, and the other focused on collabora-

tive filtering-based rating prediction using user-item matrices but ignored texts. For

content analysis, the objectives of previous studies included predicting the overall

sentiment polarity or numerical rating of a review using text only [72, 71], iden-

tifying features or aspects of products on which they are evaluated [27, 87], and

modeling the feature or aspect level ratings [27, 86, 92]. However, these studies

do not consider the identities of reviewers, and thus cannot incorporate user pref-

erences into the models. In contrast, the objective of collaborative filtering-based

rating prediction is to predict a target user’s overall rating on a target product without

referring to any review text [80]. Collaborative filtering makes use of past ratings of

the target user, the target item and other user-item ratings to predict the target user’s

rating on the target item.

Presumably if review texts, numerical ratings, user identities and product iden-

tities are analyzed together, we may achieve better results in rating prediction and

feature/aspect identification. This is the idea explored in a recent work by [57],

where they proposed a model called Hidden Factors as Topics (HFT) to combine

collaborative filtering with content analysis. HFT combines latent factor models for

recommendation with Latent Dirichlet Allocation (LDA). In the joint model, the la-

tent factors play dual roles: They contribute to the overall ratings, and they control

the topic distributions of individual reviews.

While HFT is shown to be effective in both predicting ratings and discovering

meaningful latent factors, we observe that the discovered latent factors are often-

times not “aspects” in which products can be evaluated and compared. In fact, the

authors themselves also pointed out that the topics discovered by HFT “are not sim-
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ilar to aspects” [57]. Here we use “aspects” to refer to criteria that can be used

to compare all or most products in the same category. For example, we can com-

pare restaurants by how well they serve customers, so service is an aspect. But we

cannot compare restaurants by how well they serve Italian food if they are not all

Italian restaurants to begin with, so Italian food cannot be considered an aspect.

It is more like a feature or property that a restaurant either possesses or does not

possess. Identifying aspects would help businesses see where they lose out to their

competitors and consumers to directly compare different products under the same

criteria. In this chapter, we study how we can modify the HFT model to discover

both properties and aspects. We use the term “product properties” or simply “prop-

erties” to refer to latent factors that can explain user preferences but are intrinsic

to only certain products. Besides types of cuisines, other examples of properties

include brands of products, locations of restaurants or hotels, etc. Since a product’s

rating is related to both the properties it possesses and how well it scores in different

aspects, we propose a joint model that separates product properties and aspects but

links both of them to the numerical ratings of reviews.

We evaluate our model on three data sets of product reviews. Based on human

judgment, we find that our model can well separate product properties and aspects

while at the same time maintaining similar rating prediction accuracies as HFT. In

summary, the major contribution of our work is a new model that can identify and

separate two different kinds of latent factors, namely product properties and aspects.

3.2 Model

In this section, we first briefly review the HFT model. We then describe our joint

model for product properties, aspects and ratings. In this section, we will describe

our join model for product properties, aspects and ratings.
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Figure 3.1: Plate notation of (a) HFT and our (b) PAR model. Circles in gray
indicate hyperparameters and observations.

3.2.1 The HFT Model

There have been quite a few works on modelling product reviews and ratings simul-

taneously. However, most of them do not model user preference and item properties

like our model. So we picked HFT [57] as our baseline as it could be considered

as the state-of-the art method in jointly modelling topics and ratings of review text,

user preference and item properties.

As our model can be considered as a extension of HFT model, so we first briefly

introduce HFT as background knowledge. The HFT model is one of the state-of-

the-art methods that jointly model review texts, ratings, user preferences, and item

properties. In this model, it is assumed that there are K latent factors that influence

ratings as well as review texts. Items and users each have a real-valued latent vector

in the space of the latent factors. The rating ru,i of user u on item i is modeled as

the dot product of vUu and vIi plus some bias terms, where vUu is the latent vector for

user u and vIi the latent vector for item i. This assumption is the same as in previous

work on latent factor models for rating prediction.

The major difference of HFT from previous work is that it transforms the item
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vector into a probability distribution as follows:

θi,k =
exp

(
κvIi,k

)∑
k′ exp

(
κvIi,k′

) , (3.1)

where vIi,k is the k-th element of latent vector vIi , θi is the topic distribution of

reviews on item i and θi,k is the probability of topic k. It then uses the multinomial

distribution parameterized by θi to sample latent topics for each word in a review,

in the same way as LDA does. Essentially in HFT, each latent topic corresponds to

a latent factor. Figure 3.1(a) shows the basic idea of HFT.

It transforms each latent factor to a topic distribution through an exponential

transformation. And the corresponding review documents are generated according

to this topic distribution. Its objective function is a linear combination of the squared

error of rating predictions and log-likelihood of review documents, which can be

formally shown as:

FHFT =
∑
ru,i∈T

(rec(u, i)− ru,i)2 − µl(T |θ, φ) (3.2)

where rec(u, i) is the predicted ratings of item i by user u, l(T |θ, φ) is the log

likelihood of review documents and µ is the weighting parameter.

3.2.2 Our Model

Generation of Ratings

As we have pointed out in Section 3.1, many of the latent factors learned by HFT are

product properties such as brands, which cannot be used to compare all products in

the same category. In order to explicitly model both product properties and aspects,

we first assume that there are two different sets of latent factors: There is a set of

P product properties, and there is another set of A product aspects. Both are latent

factors that will influence ratings.

Next, we assume that each product has a distribution over product properties and
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each user has a real-valued vector over product properties. Because properties gen-

erally model features that a product either possesses or does not possess, it makes

sense to associate a distribution over properties with a product. For example, if each

type of cuisines corresponds to a property, then a Mexican restaurant should have

a high probability for the property Mexican food but low or zero probabilities for

properties such as Japanese food, Italian food, etc. If here we instead use a real-

valued vector where negative values are allowed, it would be hard to interpret the

vector. For example, for a restaurant which does not serve Mexican food, should it

have a zero value or a very negative value for the property Mexican food? On the

other hand, a user may like and dislike certain product properties, so it makes sense

to use real numbers that can be positive or negative to indicate a user’s preferences

over different properties. For example, if a user does not like Japanese food, she

is likely to give low ratings to Japanese restaurants, and therefore it makes sense

to model this as a negative value associated with the property Japanese food in her

latent vector.

Analogically, it makes sense to assume that a product has a real-valued latent

vector over aspects, where a positive value means the product is doing well in that

aspect and a negative value means the product is poor in that aspect. For example,

a restaurant may get a negative score for the aspect service but a positive score

for the aspect price. On the other hand, we assume that a user has a distribution

over aspects to indicate their relative weight when the user rates a product. For

example, if service is not important to a user but price is, she will have a low or

zero probability for the aspect service in her vector but a high probability for the

aspect price. It would not make sense to use a negative value to indicate a user’s

indifference to an aspect. If a restaurant is doing well in the aspect service but

service is not important to a user, this should not lower the user’s rating to the

restaurant.

Formally, let θi denote the property distribution of product i, vUu denote the

property vector of user u, πu denote the aspect distribution of user u and vIi denote
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the aspect vector of item i. Based on the assumptions above, it makes sense to

model the rating of user u given to item i to be close to (θi · vUu + πu · vIi ). If we

compare this formulation with standard ways of modeling ratings such as in HFT,

we can see that the major difference is the following. In standard models, the latent

vectors of both users and items are unconstrained, i.e. both positive and negative

values can be taken. This may cause problem interpreting the learned vectors. For

example, when user u has a negative value for the kth latent factor and item i also

has a negative value for the kth latent factor, the product of these two negative values

results in a positive contribution to the rating of item i given by user u. But how

shall we interpret these two negative values and their combined positive impact to

the rating? In our model, we separate the latent factors into two groups. For one

group of latent factors (product properties), we force the items to have non-negative

values, while for the other group of latent factors (product aspects), we force the

users to have non-negative values. By doing this, we improve the interpretability of

the learned latent vectors.

Generation of Review Texts

In our model, for each latent factor, which can be either a product property or an

aspect, there is a word distribution associated with it, which we denote by φp for

property p and ψa for aspect a.

We assume that a review of a product given by a particular user mainly consists

of two types of information: properties this product possesses and evaluation of

this product in the various aspects that this user cares about. Content related to

product properties is mainly controlled by the property distribution of the product.

For example, reviews on a Mexican restaurant may contain much information about

Mexican food. Content related to aspects are mainly controlled by the user’s aspect

preference distribution. A user who values service more may comment more about

a restaurant’s service. Based on these assumptions, in the generative process of

reviews, each word in a review document is sampled either from a product property
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or an aspect.

The Generative Process

Our model is shown in Figure 3.1. and the description of the generative process is

as follows:

• For each product property p, sample a word distribution φp ∼ Dirichlet(β).

• For each aspect a, sample a word distribution ψa ∼ Dirichlet(β).

• For each item

– Sample a product property distribution θi ∼ Dirichlet(α).

– Sample an A-dimensional vector vIi where vIi,a ∼ Normal(0, σ2).

– Sample an item rating bias bi ∼ N (0, σ2).

• For each user

– Sample an aspect distribution πu ∼ Dirichlet(α).

– Sample a P -dimensional vector vUu where vUu,p ∼ Normal(0, σ2).

– Sample a user rating bias bu ∼ N (0, σ2).

• For a user-item pair where a review and a rating exist

– Sample the rating ru,i ∼ Normal(θi · vUu + πu · vIi + bi + bu, σ
2)

– Sample the parameter for a Bernoulli distribution ρu,i ∼ Beta(γ)

– For each word in the review

∗ Sample yu,i,n ∼ Bernoulli(ρu,i).

∗ Sample zu,i,n ∼ Discrete(θi) if yu,i,n = 0 and zu,i,n ∼ Discrete(πu)

if yu,i,n = 1.

∗ Sample wu,i,n ∼ Discrete(φzu,i,n) if yu,i,n = 0 and wu,i,n ∼

Discrete(ψzu,i,n
) if yu,i,n = 1.

Here, α,β and γ are hyper-parameters for Dirichlet distribution, σ is the standard

deviation for Gaussian distribution, ρu,i is the switching probability distribution for
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review of user u on item i, yu,i,n and zu,i,n are the switching variable and topic

assignment for word at position n of review on itme i from user u. We refer to our

model as the Property-Aspect-Rating (PAR) model.

3.2.3 Parameter Estimation

Our goal is to learn the parameters that can maximize the log-likelihood of both

review texts and ratings simultaneously. Formally speaking, we are trying to esti-

mate the parameters V U , V I , BU , BI , πU , θI , ρ, φP and ψA that can optimize

the following posterior probability.

P (V U ,V I ,BU ,BI ,πU ,θI ,ρ,φP ,ψA|W ,R) (3.3)

=
P (V U ,V I ,BU ,BI ,πU ,θI ,ρ,φP ,ψA,W ,R)

P (W ,R)

∝ P (V U ,V I ,BU ,BI ,πU ,θI ,ρ,φP ,ψA,W ,R)

= P (V U)P (V I)P (BU)P (BI)P (πU)P (θI)P (ρ)P (φP )P (ψA)

·P (W |πU ,θIρ)P (R|V U ,V I ,BU ,BI)

where

P (vUu ) = N (0,σ), P (vIi ) = N (0,σ) (3.4)

P (bu) = N (0, σb), P (bi) = N (0, σb) (3.5)

P (πu) = Dir(α), P (θi) = Dir(α) (3.6)

P (ρu,i) = Beta(γ), P (φp) = Dir(β) (3.7)

P (ψa) = Dir(β) (3.8)
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and

P (W |πU ,θI ,ρ) =
∏
u

∏
i

∏
w∈dui

(ρ0
u,i

∑
t

θitφtw

+ρ1
u,i

∑
t

πtψtw) (3.9)

P (R|V U ,V I ,BU ,BI) =
∏

{u,i}∈D

N (rui|vIi
ᵀ
vUu + bu + bi, σ) (3.10)

where Dir(·) denotes a Dirichlet distribution and N (·) denotes a Gaussian distribu-

tion. Besides, V U and V I refer to all latent vectors for items and users, BU and

BI refer to all the bias terms,W refers to all the words in the reviews andR refers

to all the ratings. The hyperparameters are omitted in the formula. Equivalently, we

will use the loglikelihood as our objective function.

As there is no closed form solution for it, we use Gibbs-EM algorithm [89] for

parameter estimation.

E-step: In the E-step, we fix the parameters πU and θI and collect samples of the

hidden variables Y and Z to approximate the distribution P (Y ,Z|W ,R,πU ,θI).

For each word, we use Gibbs sampling algorithm to sample its latent variable y and

z. For word w in a review from user u on item i, the sampling probabilities are:

P (y = 0, z = t|Y −y,Z−z,W ) ∝ ρ0
u,iθitφtw (3.11)

P (y = 1, z = t|Y −y,Z−z,W ) ∝ ρ1
u,iπutψtw (3.12)

M-step: In the M-step, with the collected samples of Y and Z, we seek values of

πU , θI , V U , V I ,BU andBI that maximize the following objective function:

L =
∑

(Y ,Z)∈S

logP (Y ,Z,W ,R|πU ,θI ,V U ,V I ,BU ,BI) (3.13)

where S is the set of samples collected in the E-step. The gradient for these param-
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eters are calculated as:

∂L
∂vUu

=
∑
{u,i}∈D

euiθi ,
∂L
∂vIi

=
∑
{u,i}∈D

euiπu (3.14)

∂L
∂bu

=
∑
{u,i}∈D

eui ,
∂L
∂bi

=
∑
{u,i}∈D

eui. (3.15)

where D is the union of all user-item pairs with ratings and reviews in our dataset.

As θi and πu are two stochastic vectors, we cannot directly use gradient descent

based algorithm to find their optimal values. We replace these parameters with two

exponential transformations of some auxiliary parameters by:

θit =
exp(ηit)∑
t exp(ηit)

, πut =
exp(κut)∑
t exp(κut)

. (3.16)

The derivatives with respect to these auxiliary parameters are:

∂L
∂ηit

=
∂L
∂θit

∂θit
∂ηit

= (N I
t + α)(1− θit) +

2

σ

∑
{u,i}∈D

euiv
U
utθit(1− θit) (3.17)

∂L
∂κut

=
∂L
∂πut

∂πut
∂κut

= (NU
t + α)(1− πut) +

2

σ

∑
{u,i}∈D

euiv
I
itπut(1− πut) (3.18)

where eui is the error of predicting rating rui, which can be calculated as

θᵀi v
U
u + πᵀ

uv
I
i + bi + bu − rui. (3.19)

In our implementation, we perform 600 runs of Gibbs EM. Because Gibbs sam-

pling is time consuming, in each run we only perform one iteration of Gibbs sam-

pling and collect that one sample. We then have 60 iterations of gradient descent.

The gradient descent algorithm we use is L-BFBS, which is efficient for large scale

data set.
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Data Set #Reviews #W/R Voc #Users #Items
SOFT 54,330 84.6 16,653 43,177 8,760
MP3 20,689 103.9 8,227 18,609 742
REST 88,865 86.5 21,320 8,230 3,395

Table 3.1: Statistics of our data sets.*#W/R stands for #Word/Review and Voc stands
for vocabulary.

3.3 Experiments

In this section, we present the empirical evaluation of our model.

3.3.1 Data

We use three different review data sets for our evaluation. The first one is a set of

software reviews, which was used by [57]. We refer to this set as SOFT. The second

one is a set of reviews of MP3 players, which was used by [92]. We refer to this

set as MP3. The last one is a set of restaurant reviews released by Yelp1 in Recsys

Challenge 20132, which was also used by [57]. We refer to it as REST. Based on

common practice in previous studies [86, 87, 90], we processed these reviews by

first removing all stop words and then removing words which appeared in fewer

than 10 reviews. We then also removed reviews with fewer than 30 words. Some

statistics of the processed data sets are shown in Table 3.1.

3.3.2 Experiment Setup

As we have discussed in Section 3.1, the focus of our study is to modify the HFT

model to capture both product properties and aspects. Note that HFT model is de-

signed for both predicting ratings and discovering meaningful latent factors. There-

fore, the goal of our evaluation is to test whether our PAR model can perform sim-

ilarly to HFT in terms of rating prediction and latent factor discovery, and on top

of that, whether our PAR model can well separate product properties and aspects,

1http://www.yelp.com
2https://www.kaggle.com/c/yelp-recsys-2013
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which HFT cannot do. In the rest of this section, we present our evaluation as fol-

lows. We first compare PAR with HFT in terms of finding meaningful latent factors.

We then evaluate how well PAR separates properties and aspects. Finally, we com-

pare PAR with HFT for rating prediction. Note that when we compare PAR with

HFT in the first and the third tasks, we do not expect PAR to outperform HFT but

we want to make sure PAR performs comparably to HFT.

In all our experiments, we use the same number of latent factors for PAR and

HFT. For PAR, the number of latent factors is the number of properties plus the

number of aspects, i.e. P +A. After some preliminary experiments, we set the total

number of latent factors to 30 for both models. For PAR, based on observations

with the preliminary experiments, we empirically set P to 10 and A to 20. User

latent factor vUu and item latent factor vIi should have the dimensions equal to P

and A respectively. Although these settings may not be optimal, by using the same

number of latent factors for both models, no bias is introduced into the comparison.

For other hyperparameters, we empirically tune the parameters using a develop-

ment set and use the optimal settings. For PAR, we set α = 2, β = 0.01, σ = 0.1

and γ = 1. For HFT, we set µ = 10 for MP3 and SOFT and µ = 0.1 for REST. All

results reported below are done under these settings.

3.3.3 Annotation of Ground Truth

The major goal of our evaluation is to see how well the PAR model can identify and

separate product properties and aspects. However, in all three data sets we use, there

is no ground truth and we are not aware of any data set with ground truth labels we

can use for our task. Therefore, we have to annotate the data ourselves.

Instead of asking annotators to come up with product properties and aspects,

which would require them to manually go through all reviews and summarize them,

we opted to ask them to start from latent factors discovered by the two models. We

randomly mixed the latent factors learned by PAR and HFT. The top 15 words of
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Product Properties Aspects
Number Avg. # Relevant Words Count Avg. # Relevant Words

SOFT 18 11.3 9 9.2
MP3 6 5.0 13 9.9
REST 13 10.4 5 7.8

Table 3.2: Summary of the ground truth latent factors.

SOFT MP3 REST
# Good LF Prec Rec # Good LF Prec Rec # Good LF Prec Rec

PAR 20 0.67 0.74 14 0.47 0.74 10 0.33 0.56
HFT 20 0.67 0.74 12 0.40 0.63 10 0.33 0.56

Table 3.3: Results for identification of meaningful latent factors

each latent factor were shown to two annotators, and each annotator independently

performed the following three steps of annotations. In the first step, an annotator

had to determine whether a latent factor was meaningful or not based on the 15

words. In the second step, for latent factors labeled as meaningful, an annotator

had to decide whether it was a product property or an aspect. In the third step, an

annotator had to pick relevant words from the given list of 15 words for each latent

factor. After the three-step independent annotation, the two annotators compared

and discussed their results to come to a consensus. During this discussion, duplicate

latent factors were merged and word lists for each latent factor were finalized. The

annotators were required to exclude general words such that no two latent factors

share a common relevant word. In the end, the annotators produced a set of product

properties and another set of aspects for each data set. For each latent factor, a list

of highly relevant words was also produced. Table 3.2 shows the numbers of ground

truth properties and aspects as labeled by the annotators and the average numbers

of relevant words per latent factor of the three data sets.

3.3.4 Discovery of Meaningful Latent Factors

In the first set of experiments, we would like to compare PAR and HFT in terms of

how well they can discover meaningful latent factors. Here latent factors include

both product properties and aspects.
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Results

We show three numbers for each data set and each method. The first is the number

of “good” latent factors discovered by a method. Here a good latent factor is one

that matches one of the ground truth latent factors. A learned latent factor matches

a ground truth latent factor if the top-15 words of the learned latent factor cover at

least 60% of the ground truth relevant words of the ground truth latent factor. We

find the 60% threshold reasonable because most matching latent factors appear to

be meaningful.

We use Precision and Recall as the evaluation metric. We would like to point

out that the recall defined in this way is higher than the real recall value, because

our ground truth latent factors all come from the discovered latent factors, but there

may exist meaningful factors that are not discovered by either HFT or PAR at all.

Nevertheless, we can still use this recall to compare PAR with HFT. The results

are shown in Table 3.3. As we can see from the table, PAR and HFT performed

similarly in terms of discovering meaningful latent factors. PAR performed slightly

better than HFT on the MP3 data set. Overall, between one-third to two-thirds of

the discovered latent factors are meaningful for both methods, and both methods

can discover more than half of the ground truth latent factors.

3.3.5 Separation of Product Properties and Aspects

In this second set of experiments, we would like to evaluate how well PAR can sepa-

rate product properties and aspects. In order to focus on this goal, we first disregard

the discovered latent topics that are not considered good latent topics according to

the criterion used in the previous experiment.

We then show the 2×2 confusion matrix between the labeled two types of latent

factors and the predicted two types of latent factors by PAR for each data set. The

results are in Table 3.4. As we can see, our model does a very good job in separating

the two types of latent factors for MP3 and REST. For SOFT, our model mistakenly
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Prediction
Ground Truth

SOFT MP3 REST

P A P A P A
P 8 2 3 0 8 0
A 4 6 1 10 0 2

Table 3.4: Confusion matrices of PAR for all data sets. *P stands for property and A
stands for aspect.

labeled 4 product properties as aspects. Although this result is not perfect, it still

shows that our model can separate properties from aspects well in different domains.

We find that properties in the software domain are mostly functions and types of

software such as games, antivirus software and so on. Aspects of software include

software version, user interface, online service and others. In the MP3 data set,

properties are mainly about MP3 brands such as Sony and iPod while aspects are

about batteries, connections with computers and some others. Properties of the

restaurant data set are all types of cuisines and aspects include ambiance and service.

In order to qualitatively understand the performance of our model on separat-

ing aspects from product properties, we show the aspects and properties of SOFT

learned by our model in Table 3.5. We can see that aspects are mainly topics over

which users can evaluate a product, like user experience, interface, customer service

and so on. Properties are about the type of software and their brands. The obser-

vation follows our hypothesis and proves that our model is effective in separating

aspects from product properties.

3.3.6 Rating Prediction

Finally we compare our model with HFT for rating prediction in terms of root mean

squared error. The results are shown in Table 3.6. We can see that PAR outperforms

HFT in two real data sets (SOFT, MP3) and gets the same performance for the

data set REST. This means separating properties and aspects in the model did not

compromise rating prediction performance, which is important because otherwise

the learned latent factors might not be the best ones explaining the ratings.
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Properties

File Backup drive backup hard disk linux files system data partition suse boot
ghost cd computer image

Microsoft
Office

office word microsoft ms use excel outlook documents document pdf

Games game games play fun old kids get one playing son year child like
daughter played

Tax Prepara-
tion

tax year turbotax state taxcut return years taxes software turbo

CD/DVD
Burning

cd dvd software roxio creator burn easy nero copy disc

Windows
OS

windows xp vista system computer microsoft install run os upgrade
new

Financial quicken money data business quickbooks intuit account accounts mi-
crosoft years

Antivirus norton computer internet system security mcafee virus firewall
symantec antivirus

Aspects

Version version new years since old upgrade still versions used previous
Experience screen feature file click change list open option see set
User Inter-
face

user interface features users available application system many abil-
ity offers

Purchase software product buy price purchased reviews purchase amazon rec-
ommend products

Online Ser-
vice

web free site support page website online help get read

Edition simple home design tool create make basic want professional limited

Table 3.5: The properties and aspects of SOFT learned by PAR. The second column
is the human annotated labels of each latent factor and the third column is the top 10
words of the corresponding latent factor. We can see that most properties are types
of software.
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SOFT REST MP3
PAR 1.394 1.032 1.401
HFT 1.399 1.032 1.404

Table 3.6: Performance in rating prediction.

3.3.7 Latent Factors Learned by PAR

To compare the performance of identifying meaningful latent factors, we pick out

the latent factors learned by PAR and HFT that are easy to interpret and show them

in Table 3.7. The SOFT and MP3 data sets are used and each latent factor is man-

ually labeled by the authors. We can see that PAR can discover more meaningful

aspects than HFT in both datasets. However, HFT learns some aspects that are not

covered by PAR, like network, which needs to be addressed in our following up

work.

3.4 Discussion

We presented a joint model of product properties, aspects and numerical ratings for

online product reviews. The major advantage of the proposed model is its ability

to separate product properties, which are intrinsic to products, from aspects that are

meant for comparing products in the same category. To achieve this goal, we com-

bined probabilistic topic models with matrix factorization. We explicitly separated

the latent factors into two groups and used both groups to generate both review

texts and ratings. Our evaluation showed that compared with HFT our model could

achieve similar or slightly better performance in terms of identifying meaningful

latent factors and predicting ratings. More importantly, our model is able to sepa-

rate product properties from aspects, which HFT and other existing models are not

capable of.
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SOFT

PAR

Operating Sys-
tem

mac os apple pc act use windows work run leopard running application virtual time using

Upgrade version new years since old upgrade still versions used previous ago features using much
year

User Interface screen feature file click change list open option see set start window options name menu
Experience user interface features users available application system many ability offers using

friendly server provides functions
Purchase software product buy price purchased reviews purchase amazon recommend products

package buying company disappointed cost
Online Service web free site support page website online help get read download box number pay manual
Support support software product problem work tech get would problems tried customer install

computer installed phone
Version simple home design tool create make basic want professional limited plan allows tools

also etc

HFT Operating Sys-
tem

act server database outlook data using access palm network email business microsoft
manager features sync

Network mac os apple pc windows use leopard new run work imac tiger parallels upgrade virtual

MP3

PAR

Problem software computer problem work get manual problems tried would player first download
time firmware could

Connection with
computer

usb windows device pc software computer media use 2. 1. files xp cable 3. sync

Controls volume buttons button menu screen use sound good control like wheel touch scroll back
easy

Battery battery hours life charge usb charger unit use power long 2 time charging 3 adapter
Music album songs song artist playlist playlists albums tracks play name music list order art

track
Audio fm radio recording record voice tuner features recorder also sound good feature unit qual-

ity reception
Video video videos screen movies tv watch music play great pictures quality movie photos pic-

ture convert
Sound Quality sound player quality great mp3 good headphones use easy sony ear better product excel-

lent recommend
Size nano ipod screen case mini small black scratches color easily like scratch size great pocket
Service service customer support amazon product unit back would get one days called told new

send

HFT

Photo photo photos drive palm pictures hard device lifedrive screen camera pda color view life
storage

Memory card sd memory cards unit slot firmware speaker flash expansion display file back internal
files

Audio fm radio player mp3 recording voice record unit recorder tuner good features also sound
well

Network touch classic wifi screen internet iphone web device wireless browser itouch bluetooth
use wi-fi pad

Video video screen videos movies files watch tv photos picture pictures media movie play con-
vert format

Sound Quality sound quality great good use like better headphones battery life best audio listening small
really

Size nano small screen 4gb black color 8gb scratches 2gb much memory case size pocket 4

Table 3.7: Ratable aspect topics and their top words identified by PAR and HFT
in SOFT and MP3 datasets. The first column shows the methods while the second
column and third column is the topic and topic word list respectively.
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Chapter 4

Recurrent Neural Networks with

Auxiliary Labels for Cross-domain

Opinion Target Extraction

As introduced in Chapter 1, the second step of aspect discovery from product re-

views is to identify words that are describing aspects. Since we mainly care about

aspects users are showing opinions to in product reviews, aspect word identifica-

tion can also be treated as an opinion target extraction problem. In recent years,

neural network based supervised learning methods have achieved competitive per-

formance on this task. However, as with any supervised learning method, neural

network based methods for this task cannot work well when the training data comes

from a different domain than the test data. On the other hand, some rule-based un-

supervised methods haven shown to be robust when applied to different domains.

In this chapter, we use rule-based unsupervised methods to create auxiliary labels

and use neural network models to learn a hidden representation that works well for

different domains. When this hidden representation is used for opinion target ex-

traction, we find that it can outperform a number of strong baselines with a large

margin.

43



4.1 Introduction

Opinion Target extraction is one of the most fundamental problems in opinion min-

ing. It is important to many down stream applications, such as sentiment prediction,

opinion summarization and so on. This problem has attracted enormous attention

from research community in the last decade [83]. Given a sentence, its goal is to

extract the targets that users are expressing opinion towards. For example, given

the sentence I like the tuna sandwich and chicken salad very much., the correctly

extracted targets should be tuna sandwich and chicken salad. This is typically mod-

eled as a sequence labeling problem and Conditional Random Field(CRF) [43] is

one of the most popular techniques used for it. CRF is an undirected probabilistic

graphical model that can take various features as input. However, it relies on manual

created features that take a lot of time and effort to extract. The recent advances of

deep neural networks are bringing new improvement over existing models. Besides,

deep neural networks are also able to automatically construct features from the raw

input. They are so attractive that many researcher are trying to apply them on multi-

ple NLP problems. Among these deep learning models, Recurrent Neural Network

(RNN) and its variations, such BiRNN, LSTM and so on, have been proved to be

effective [51, 101, 98, 93] for target extraction.

However, it requires a large amount of labeled data to train neural networks.

Creating labeled data can be tedious and time consuming. Opinion target extraction

is a very domain sensitive problem. Those neural networks that are well trained

based on domain A may not be useful at all in a different domain B. One of the

most serious problems causing this is that in different domains, the target words and

opinion words may be very different. For example, food and beverage are frequent

opinion targets in restaurant domain while delicious and tasty are usually the opin-

ion words used on these words. However, in laptop domain, you may not see these

words at all. Istead, target words like CPU and hard disk and opinion expression

fast, easy to use are important and frequent. So a neural network trained on domain
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A can only learn lexical and syntactic information that are useful in the itself, which

may not generatlize to domain B. People usually create a new labeled dataset when

they need to work on a new domain. This may help us build domain specifically

effective neural networks, but it also costs a lot of labours. It would be nice if we

can train a neural network that can work on different domains efficiently. This is

named as “cross-domain target extraction”, which has been studied in several previ-

ous work. However, most of them are using traditional sequence labeling technique

(e.g. CRF).

There exist some natural relations between opinion expressions and opinion tar-

gets [77]. Many of them are used in unsupervised target extractions [27, 77]. How-

ever, both precision and recall of these techniques can be limited. Parsing tree can

be inaccurate, especially for user generated content, which is normally written in an

informal way. Secondly, some opinion are expressed explicitly, without using opin-

ion words or common patterns. The targets of these opinions will not be detected

by patterns of relations.

It is presumably useful to combine advanced supervised sequence labeler – RNN

– with unsupervised domain independent syntactic rules for cross domain target ex-

traction. While syntactic rules can help use learn domain independent representa-

tions, labeled training data can tune RNN to be able to model explicit patterns. A

combination of these two types of knowledge can help us learn a domain indepen-

dent representation that will lead to better performance. In this chapter, we design

two models to incorporate rules into supervised neural network. We first use do-

main general rules to assign auxiliary labels to our data. Our neural networks can

be trained based on the true labels of source domain data and the auxiliary labels.

Experiments over four datasets from different domains show that our methods can

outperform the baselines with a large margin.
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I like the tuna sandwich and chicken salad .
O O BO I O B I O

sentence:
label:

very much
O O

Figure 4.1: A sample sentence and its labels.

4.2 Methodology

4.2.1 Notation

Opinion target extraction aims at extracting all the opinion targets from a given sen-

tence. An opinion target is not restricted to a single token; in fact, it often contains

multiple tokens. The task is therefore a typical sequence labeling problem.

Formally, we represent a sentence as a sequence of tokens x =

(w1, w2, . . . , wN), where each wi is a word type from a vocabulary V . Opin-

ion targets are indicated by token-level labels y = (y1, y2, . . . , yN), where each

yi ∈ {B, I,O}. The three labels B, I and O refer to the beginning, inside and

outside of an opinion target, respectively, and they follow the standard BIO nota-

tion used in sequence labeling. A sample review sentence together with its opinion

target labels are shown in Figure 4.1.

We assume that there is a set of labeled review sentences from a source domain,

denoted withDs = {(xs,ys)}. On the other hand, the sentences from which opinion

targets need to be extracted come from a different target domain and are denoted

with Dt = {xt}. We would like to use both Ds and Dt to train a good model for

opinion target extractions for the target domain.

4.2.2 Overview of Our Method

Our method is essentially a supervised method based on recurrent neural networks.

The key to our method is a hidden layer of the neural network that is trained using

auxiliary labels created by domain-independent rules. The idea of using auxiliary

labels to induce a representation for domain adaptation is not new [4, 3]. It es-

sentially follows the principle of multi-task learning, where it is generally believed
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the tuna sandwich

y3 y4 y5

h3 h4 h5

the tuna sandwich

h3 h4 h5

h0
5h0

4h0
3

y3 y4 y5

z5z4z3

the tuna sandwich

y3 y4 y5

z5z4z3

h3 h4 h5

h0
5h0

4h0
3

(a) Standard (b) Ours (Concatenated Network) (c) Ours (Hierar-
chical Network)

Figure 4.2: Overview of the standard method and our method.

that if multiple prediction tasks are related, then the underlying prediction models

are likely to share some common feature structures. When the auxiliary tasks are

related to the actual prediction task and the labels of the auxiliary tasks can be eas-

ily obtained for both the source and the target domains, we can use the auxiliary

tasks to help us induce a good hidden feature representation that is good for domain

adaptation.

Neural network models are intrinsically suitable for this kind of multi-task learn-

ing based domain adaptation because we can naturally use one of the hidden layers

as the cross domain hidden representation. To the best of our knowledge, however,

there has not been any work on extending neural network models to solve the do-

main adaptation problem for opinion target extraction. In our method, we use a

recurrent neural network (specifically, an LSTM) to process an input sentence such

that each token has a corresponding hidden vector. Typically this hidden vector will

then go through a linear transformation followed by a softmax layer to make the fi-

nal prediction. In our method, this hidden vector is used for predicting not only the

opinion target label but also some auxiliary label. The auxiliary labels are predicted

by manually-crafted syntactic rules, which will be detailed below.

Figure 4.2 illustrates the main idea of our method at a high level. We can see that

typically, as shown in Figure 4.2(a), the hidden layer h is learned only through back

propagation from the true labels y, which are only available in the source domain.
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With our method, as shown in Figure 4.2(b) and Figure 4.2(c), there is an auxiliary

hidden layer h′ that is learned using some auxiliary labels z. And this auxiliary

hidden layer h′ is then either to be concatenated with h or to generate h in order

to predict the true labels y. Because the auxiliary labels z are available in both the

source and the target domains, we can expect the auxiliary hidden layer h′ to be

properly learned such that it works well for both domains.

4.2.3 Recurrent Neural Networks for Opinion Target Extraction

In this section, we describe how we use recurrent neural networks for opinion target

extraction. Note that this is a standard approach and has been studied before [51].

Recall that we use x = (w1, w2, . . . , wN) to represent an input sentence. Let

xi ∈ Rd denote the embedding vector for word wi. A recurrent neural network

model aims at learning a hidden vector representation for each position i that sup-

posedly encodes all the tokens from the beginning of the sentence up to position i.

Specifically, let hi−1 denote such a hidden vector corresponding to position i − 1.

Then the hidden vector hi is defined as follows:

hi = g(hi−1,xi), (4.1)

where g(·) is some function. For example, in standard RNN, we have

hi = f(Uhi−1 + Vxi + c), (4.2)

where U ∈ Rl×l and V ∈ Rl×d are weight matrices, c ∈ Rl is a bias vector, l is the

dimension of the hidden layer, and f(·) is an element-wise non-linear transforma-

tion function.

In our experiments, we experiment with a few different types of RNNs, includ-

ing the standard RNN, bi-directional RNN, long short-term memory (LSTM) net-

work (which is a special form of RNN), and bi-directional LSTM. We will not give
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the details of LSTM here. Interested readers can refer to [26] for details.

To simplify the discussion, we use Θ to denote all the parameters used in any

type of an RNN, and represent the hidden layer as

hi = RNNΘ(hi−1,xi). (4.3)

The vector hi is then used to predict the opinion target label as follows:

p(yi | hi) = softmax(Whi + b), (4.4)

where W is a weight matrix and b is a bias vector, both to be learned.

4.2.4 Rule-based Auxiliary Labels

Our preliminary experiments using the RNN model presented above on target opin-

ion extraction suggest that the supervised RNN model relies much on lexical infor-

mation. This is not surprising because the RNN model does not model syntactic

structures of a sentence such as part-of-speech tags and dependency relations. Al-

though lexical information is very important for opinion target extraction, it is also

very domain specific. As a result, we find that the RNN model performs poorly in

cross-domain settings.

On the other hand, people have studied how to use general syntactic patterns to

detect opinion targets [105, 77]. An important observation is that opinion targets

often co-occur with explicit opinion expressions, which usually contain opinion

words. Syntactically, there are some patterns between opinion words and opinion

targets, and these patterns tend to be general across different domains. For example,

usually the object of the verb love is an opinion target. Using this rule, we can

predict that the phrases tuna sandwich and chicken salad in the sentence “I love tuna

sandwich and chicken salad very much” are opinion targets. We can also predict that

the phrase the design of iPhone 7 in the sentence “I love the design of iPhone 7”
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RuleID Rule Example

R1 O
amod−→ T They have nice

dessert.
(nice amod−→ dessert)

R2 T
nsubj−→ O Its camera is great.

(camera
nsubj−→ great)

R3 T
dobj−→ O I love their fries.

(fries
dobj−→ love)

R4 T
nsubj−→ H

amod←− O iPhone is the best cell-
phone.
(iPhone

nsubj−→ phone
amod←− best)

ER1 W
amod−→ T I like Indian food.

(Indian amod−→ food)
ER2 W

nn−→ T Their spring roll is
great.
(spring nn−→ roll)

ER3 W2
pobj−→ W1

prep−→ T I like the design of
iPhone.
(iPhone

pobj−→ of
prep−→

design)

Table 4.1: Rules for detecting opinion targets. H represents any word. W represents
an additional target word to be detected using the expansion rules.

is an opinion target. We can see that the two sentences come from very different

domains, but the rule is general.

Based on the work by [77], we develop a set of rules that use syntactic patterns to

detect potential opinion targets. The rules are based on three dependency relations:

amod, nsubj and dobj. In the descriptions below, we use arrows to indicate the

direction of the dependency relations. We use T to denote a potential opinion target

and O to denote an opinion word. We use four rules (R1, R2, R3 and R4) shown in

Table 4.1 to identify T.

In addition, we have the constraints that the opinion word O must come from a

pre-defined sentiment lexicon, and the POS tag of the target T must be one of {NN,

NNS, NNP, NNPS}.

The rules above can only help us identify the head word of an opinion target.
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However, many opinion targets consist of multiple tokens. In order to identify addi-

tional tokens in opinion targets, we analyze the dependency relations within opinion

targets and identify a set of expansion rules to expand opinion targets. They are

shown as ER1, ER2 and ER3 in Table 4.1.

The rules described above can help us identify potential opinion targets in any

given domain. However, using only these rules to extract opinion targets does not

give very competitive results. This is because the coverage of these rules is still

limited, and therefore the performance of a purely unsupervised method using these

rules is not competitive, as we will see in the experiment section. In the next section,

we will describe in detail how we combine these rules with recurrent neural network

models to perform cross-domain opinion target extraction.

4.2.5 Two Architectures for Cross-domain Opinion Target Ex-

traction

In this section, we will describe the neural network architectures we use to combine

auxiliary labels with true labels in order to perform cross-domain opinion target

extraction. The core of our models is to learn a hidden vector representation for

each token that is useful for both the source and the target domains.

First of all, we have the following training data available to us. Recall that in

the source domain, we have a set of sentences together with the true opinion target

labels, denoted as Ds = {(xs,ys)}. Next, for both sentences in the source domain

and sentences in the target domain, based on the syntactic rules we have defined,

we can obtain their auxiliary label sequences. Let us use z to denote the auxiliary

labels of sentence x. Let Da = {(xa, za)} denote all the sentences from the source

and the target domains together with their auxiliary labels.

We now present two neural network architectures to use Ds and Da to learn a

prediction model. In both architectures, we introduce an auxiliary hidden layer h′.
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Concatenated Network

In the first architecture, we first use an RNN to create the auxiliary hidden layer h′

as follows:

h′i = RNNΘ′(h′i−1,xi). (4.5)

This hidden layer will be used to predict the auxiliary labels:

p(zi | h′i) = softmax(W′h′i + b′). (4.6)

We also use a different RNN to create the standard hidden layer h as follows:

hi = RNNΘ(hi−1,xi). (4.7)

Next, we concatenate h and h′ into a single vector:

hi = hi
⊕

h′i. (4.8)

This concatenated hidden vector is then used to predict the true opinion target label:

p(yi | hi) = softmax(Whi + b). (4.9)

This architecture is shown in Figure 4.2(b). We can see that different from a

standard model, this model uses the additional auxiliary hidden vector h′ together

with h to predict the final labels.

Hierarchical Network

In the second architecture, the auxiliary hidden vector h′ is defined in the same way

as in Eqn. (4.5), and the probability distribution p(zi | h′i) is also defined in the same
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way as in Eqn. (4.6). However, the standard hidden layer h now uses h′ as input:

hi = RNNΘ(hi−1,h
′
i). (4.10)

And finally, to predict the true opinion target label, we have

p(yi | hi) = softmax(Whi + b). (4.11)

This architecture is shown in Figure 4.2(c). We call this the hierarchical network

because h′ and h now reside at different layers of the neural network.

While both architectures can combine the power of domain-independent rules

and the true opinion target labels from the source domain, they differ in how knowl-

edge from these two parts are integrated. In the Concatenated Network, there is not

much interaction between h′ and y. The Hierarchical Network has a more compli-

cated mechanism by feeding h′ into the RNN that produces h. However, both mod-

els share the similar idea of (1) using auxiliary labels to encode domain-independent

rules, and (2) learning parameters based on true annotated labels and auxiliary labels

to obtain representation vectors that are useful across different domains.

4.2.6 Learning the Parameters

To learn the parameters, we use the commonly-used log likelihood objective func-

tion. Note that there are two parts in our loss function, one related to the auxiliary

labels z and the other related to the true labels y.

Let us define the following loss functions:

Lz =
∑

(xa,za)∈Da

− log p(za | xa), Ly =
∑

(xs,ys)∈Ds

− log p(ys | xs). (4.12)

To learn the parameters of our model, we can divide our training process into

two steps by first minimizing Lz and then minimizing Ly with all the parameters
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Dataset # Sentences # Words

Restaurant 5,841 88,707
Laptop 3,845 63,011
Device 3,836 70,913
Service 8,545 159,742

Table 4.2: Basic statistics of the datasets.

learned by minimizing Lz fixed. We can also jointly minimize the sum of Lz and

Ly with respect to all the parameters. We refer to the former as separate training

and the latter as joint training. Back propagation is used in both training strategies.

In our experiments, we will compare their performance.

4.3 Experiments

Datasets

We use reviews from four different domains for our experiments. The four domains

are restaurant, laptop, digital device and web service. The restaurant data is a com-

bination of the restaurant reviews from SemEval 2014 [76] and SemEval 2015 [75].

The laptop data comes from SemEval 2015 [75]. The digital device dataset contains

review sentences on five digital devices and was created by [41]. The web service

dataset was introduced by [88] and consists of sentences from reviews of web ser-

vices. The sentiment lexicon we use was downloaded from University of Illinois at

Chicago.1

During preprocessing, all words are converted to lowercase, URL links are re-

placed with <URL> and numbers are replaced with <NUM>. We also remove

some noisy sentences in the web service dataset. After preprocessing, the basic

statistics of our datasets are shown in Table 4.2. For simplicity, we use Restaurant,

Laptop, Device and Service to denote each of the datasets, respectively.

1https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#lexicon
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Evaluation Metric

We use the F1 score of opinion targets as the evaluation metric. Following previous

work [51, 101], we only consider exact matches, which means a target is considered

correctly extracted only if the output of a model is exactly the same without any

missing word or extra word.

Parameter Settings

We use pre-trained word embeddings from Google word2vec2 to initialize the word

embeddings in our models. The word embeddings are updated in the training pro-

cess. To learn the parameters of our model, we use the Adagrad algorithm with a

mini-batch size of 10 sentences. The initial learning rate is set to 0.01. Following

previous work [51, 93, 101], we concatenate the word embeddings of the current

word, its previous word and next word as the input to our model. This setting is

also used in our neural network baselines. For each target domain, we leave out 200

randomly selected sentences as validation set. The dimension of the hidden layers

is determined according to the performance on the validation set. We find 100 to be

the best and the reported results below are obtained using 100 as the hidden layer

dimension. All neural network models are trained for 15 iterations. Based on per-

formance on the validation set, we choose the best model across the 15 iterations as

our final model.

4.3.1 Models for Comparison

We use the following baselines for comparison:

• CRF: This is a traditional sequence labeling model using Conditional Ran-

dom Field and discrete features such as word types, POS tags and dependency

relations. It has been used for both single-domain and cross-domain opinion

target extraction [33].
2https://code.google.com/archive/p/word2vec/
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• mDA: This is a recently proposed domain adaptation method using marginal-

ized denoising auto-encoders [9]. We use features that have been proven to

be useful for opinion target extraction, including current word, previous word,

next word, current POS tag, and the shortest dependency path and distance to

an opinion word. The features are largely the same as in the CRF method.

• FEMA: This is another recently proposed domain adaptation method based

on cross-domain feature embeddings [97]. We use the same feature templates

as those for mDA.

• Direct-1, Direct-2: These two methods naively use the labeled training data

from the source domain to train an LSTM model and apply it to the target

domain test data. Direct-2 uses two layers of LSTM. This is to compare with

our hierarchical model, which also uses two layers of LSTM.

• Aux: This is an unsupervised method where we directly use the rules pre-

sented earlier to extract opinion targets.

• Direct-Aux: This is a naive way of using both the labeled training data from

the source domain and the general syntactic rules. Essentially, we train an

LSTM model using the combination of the source domain data with the true

labels and the target domain data with the auxiliary labels generated by the

rules.

Meanwhile, we have the following variants of our proposed models:

• Con-Sep The concatenated network trained with separate training.

• Con-Joint The concatenated network trained with joint training.

• Hier-Sep The hierarchical network trained with separate training. After the

parameters Θ′ are learned and the word embeddings updated, they are kept

fixed. The subsequent training only updates Θ in Eqn. (4.7) and W and b in

Eqn. (4.9).
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Data CRF mDA FEMA Direct-1 Direct-2 Aux Direct-Aux Con-Sep Con-Joint Hier-Sep Hier-Joint

L-R 0.170 0.243 0.350 0.301 0.364 0.390 0.436 0.302 0.338 0.436 0.467†
D-R 0.025 0.213 0.207 0.306 0.352 0.390 0.432 0.280 0.281 0.451† 0.504†
S-R 0.170 0.325 0.376 0.439 0.458 0.390 0.434 0.458 0.421 0.479† 0.520†

R-L 0.109 0.209 0.266 0.277 0.290 0.199 0.210 0.248 0.292 0.269 0.317†
D-L 0.245 0.257 0.268 0.323 0.353 0.199 0.197 0.334 0.329 0.252 0.362†
S-L 0.116 0.146 0.150 0.252 0.249 0.199 0.219 0.256 0.288† 0.260 0.300†

R-D 0.090 0.172 0.229 0.246 0.225 0.233 0.246 0.269† 0.295† 0.300† 0.320†
L-D 0.270 0.294 0.296 0.296 0.300 0.233 0.226 0.308 0.316 0.279 0.316
S-D 0.097 0.169 0.187 0.283 0.275 0.233 0.241 0.243 0.283 0.309† 0.334†

R-S 0.088 0.131 0.108 0.146 0.175 0.151 0.127 0.167 0.145 0.180† 0.198†
L-S 0.086 0.131 0.148 0.152 0.183 0.151 0.126 0.150 0.185† 0.111 0.234†
D-S 0.045 0.095 0.088 0.165 0.151 0.151 0.132 0.166 0.186† 0.241† 0.235†

Average 0.126 0.199 0.223 0.265 0.281 0.243 0.252 0.265 0.280 0.297 0.342

Table 4.3: F1 scores achieved by the various methods we consider. The Data col-
umn shows the source and the target domains, where L stands for laptop, R stands
for restaurant, D stands for device and S stands for service. † indicates that the result
is statistically significantly better than CRF, mDA, FEMA, Direct-1, Direct-2, Aux
and Direct-Aux with p < 0.01 based on McNemar’s test. As an upper bound, we
note that the F1 scores on the four domains R, L, D and S when trained on in-domain
data are 0.779, 0.766, 0.451 and 0.438, respectively.

• Hier-Joint The hierarchical network trained with joint training.

4.3.2 Experiment Results

We show the F1 scores of the various methods under different source-target do-

main settings in Table 4.3. From the table we can observe the following: (1) Our

proposed model with the hierarchical network and joint learning can outperform all

the other methods under all settings except one. Furthermore, most of the time the

improvement is statistically significant. This shows the advantage of our proposed

model with the Hier-Joint setting. (2) Our proposed model with the other settings

(Con-Sep, Con-Joint and Hier-Sep) also tend to work well in many cases, outper-

forming the baselines. This shows that in general our idea of learning a hidden

representation using the auxiliary labels is effective. (3) Comparison among Con-

Sep, Con-Joint, Hier-Sep and Hier-Joint shows that using joint learning helps and

using the hierarchical network generally is better than using the concatenated net-

work. (4) Among the baselines, Direct-2 tends to work well in general except when
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Figure 4.3: Effect of RNN unit.

Restaurant is the target domain, in which case Aux and Direct+Aux generally work

better. This shows that none of the baselines we consider is guaranteed to work well

in a cross-domain setting for the opinion target extraction task.

Overall, the results demonstrate that our hierarchical network with joint learn-

ing can integrate labeled dataset from the source domain with domain-independent

syntactic rules well. The reinforcement between these two types of information

makes this model more effective than other models for cross-domain opinion target

extraction.

To understand how our Hier-Joint model obtains better performance over the

others, we compare the precision and recall of Hier-Joint with all the other base-

lines. We find that Hier-Joint can get both better precision and better recall most

of the time. It demonstrates that our hierarchical network with auxiliary labels can

discover more targets without bringing in many false positive predictions.
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Figure 4.4: Effect of hidden dimensions.

Comparison of different RNNs

The results above are based on LSTM, which is a special case of RNN. To com-

pare the effectiveness of different types of RNNs, we use each dataset as the target

domain and compare the performances of different RNNs. We consider standard

RNN, Bi(bi-directional)RNN, LSTM and Bi(bi-directional)LSTM. The results are

shown in Figure 4.3 with X-axis showing the source domain. We can see that LSTM

and BiLSTM consistently achieve better F1 scores than RNN and BiRNN over all

source-target domain pairs. However, there is no clear winner between LSTM and

BiLSTM

Effect of the hidden layer dimension

We also study the effect of using different hidden layer dimensions. We show the

results in Figure 4.4. The results are from the Hier-Joint model, which is the best

among our proposed models. We can see that the F1 score first goes up. For most

target domains, it reaches the optimal value at dimension 100 or 150 and then starts

to go down. One possible reason for the drop in F1 score is that the model starts to
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Sentence Hier-Joint Direct Aux

But dinner here is never disappointing , even if
the prices are a bit over the top .

dinner
prices prices dinner

All my co-workers were amazed at how small
the dish was .

dish
co-workers
dish co-workers

The noise level was unbearable , conversation
impossible .

noise level NONE
noise level
conversation

My friend got the mushroom pizza which tasted
better .

mushroom pizza NONE NONE

Table 4.4: Sampled sentences and the targets extracted by different models. We use
Service as source domain and restaurant as target domain. The gold standard targets
are highlighted in black font.

overfit the training data when the hidden layer dimension becomes too high.

Case Study

To understand how Hier-Joint works better than Direct and Aux, we sample 4 sen-

tences from Restaurant domain and show the extracted targets of Hier-Joint, Direct

and Aux when using Service as the source domain in Table 4.4. Direct fails to iden-

tify domain specific targets, like dinner and mushroom pizza. Aux can only extract

those that have certain relations with sentiment words, like noise level and dinner.

We can see that Direct and Aux are actually complementary to each other. As an

integration of these two methods, Hier-Joint can successfully extract all the targets

in these sentences.

4.4 Discussion

In this chapter, we propose two RNN-based neural networks for cross-domain opin-

ion target extraction. We first use unsupervised syntactic rules to generate an aux-

iliary label sequence for each sentence. We then train our models using both the

true labels and the auxiliary labels. By leveraging knowledge from labeled train-

ing data and domain-independent syntactic rules at the same time, our Hierarchical

Network with joint learning can learn a robust vector representation that is useful
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across domains and outperform several strong baselines. This chapter shows that it

is a promising direction to boost RNNs with rules and auxiliary tasks for opinion

target extraction.
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Chapter 5

Modelling Product Reviews with

Word Vectors

The third step for aspect discovery from product reviews is to cluster words into

groups according to the aspects they are referring to. Although various models have

been proposed for aspect word clustering, they mostly rely on lexical similarity to

calculate textual similarity. However, as reviews are edited freely by customers, a

diverse range of words may be used. This renders the traditional ways of calcu-

lating textual similarity ineffective. In this chapter, we apply vector representation

of words to measure the semantic similarity between text. We design a model that

seamlessly integrates word vectors into a joint model of user feedback and text con-

tent. Extensive experiments on datasets from various domains prove that our model

is effective in both aspect discovery and recommendation in social media.

5.1 Introduction

With the explosive usage of online shopping websites and reviews websites, online

reviews are accumulating and becoming more and more important to various tasks.

They can help us understand users’ online behaviour and accurately model their

preferences and interests. One important applications of using reviews is to recom-
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mend product to potential customers. Indeed there has been several recent studies

trying to combine textual data with rating or adoption data for recommendation.

Among these studies, many use textual information separately from their recom-

mendation model. They first extract useful information from text and then embed

such information in their recommendation models [8, 91]. Some other work uses a

unified, principled model to combine text with rating or adoption data [1, 49, 57].

A limitation of these recent studies is that their textual similarity is based on

lexical similarity only. When two items’ descriptions are semantically related but

use different words, these models may not consider the two items to be similar. In

online platforms, however, the vocabulary used is very diverse and two pieces of

text can be semantically similar even with low lexical overlap, so semantic similar-

ity is especially important when we analyze social media content. Assume that we

know that product A is an excellent gift for mothers and product B is often bought

for people’s parents from their online reviews. Based on the semantic similarity

between “mother” and “parent”, we can be confident to recommend B to a user who

has bought A or shows interest in buying a gift for his mother even if few people

have bought both of them and their reviews have few overlapping words. What’s

more, in the Meetup dataset we use, which is about online interest groups and or-

ganized events, there is a group tagged with “Buddhism” and another group tagged

with “vegetarian.” If we only consider lexical similarity, these two groups may not

be considered related based on the tags. However, we should probably recommend

the second group to users who have joined the first group as many Buddhists are

also vegetarians. The challenge is how to incorporate the consideration of seman-

tic similarity based on textual descriptions into a traditional collaborative filtering

framework in a principled way.

With the recent advances in learning word embeddings from large corpora, we

can use vector representation of words to measure the semantic similarity between

two pieces of text. Word embeddings are techniques that can project words into

vectors carrying their semantic meanings [59, 73]. In this study, we propose a new
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document modelling technique that makes use of word embeddings and integrate

it with collaborative filtering for better product recommendation. Our model can

jointly model ratings, latent factors, topics and word embedding vectors simultane-

ously. With the help of vector representations of words, the model is able to learn

cleaner topics, more accurate latent factors and provide better recommendations.

Extensive experiments show that our model outperforms other methods on item rec-

ommendation and topic discovery. For example, for the Meetup data, our method

can successfully recommend the “vegetarian” group to users who have joined the

“Buddhism” group, and based on the ground truth, for such users our method indeed

gives better performance than other baseline methods we consider.

5.2 Method

In this section, we formally formulate our problem and present our proposed model.

Based on our model’s properties, we denote it by Collaborative filtering with word

Embedding-based Topic models (CET). We will first give a brief description of the

background the notations. Then the model and the parameter estimation algorithm

are formally described.

5.2.1 Problem Formulation and Notation

Suppose we have a collection of NI items I = {i1, i2, · · · , iNI
} and a collection

of NU users U = {u1, u2, · · · , uNU
}. We also observe a collection of ratings1 R =

{rui}where rui is the rating of item i by user u. For each item, there is an associated

document di, which is a sequence of words. This document can be from different

sources of user-generated content. For example, in online review websites, we can

use the reviews of a product as the document associated with the product. For items

that have user-assigned tags, we can use the set of tags as the associated document

1For convenience, we assume we have numerical rating data, but the model can be easily gener-
alized for binary adoption data.
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Variable Description
rui Rating of item i by user u

vw,vwi Vector of word w learned by word embeddings and corre-
sponding value at the ith dimension

α The hyper-parameters for the Dirichlet distribution
σU , σI , σR The standard deviation for univariate Gaussian distributions

ΓU ,ΓI The covariance matrices for multivariate Gaussian distribu-
tion

bu, bi The rating bias of user u and rating bias of item i
pu, qi The latent factor of user u and latent factor of item i
θi The topic distribution of item i

µt,Σt The mean and covariance matrix for the multivariate Gaus-
sian distribution of topic t

Dir(α) A Dirichlet distribution with hyper-parameter α
N (µ,Σ) A Gaussian distribution with mean µ and covariance matrix

Σ
Multi(θ) A discrete distribution with θ as parameter

Table 5.1: Notation of our model.

for an item. The set of all words appearing in our data comprises the vocabulary V

and for each word w of this vocabulary, we assume that we have a pre-trained vector

vw of dimension K, which can be learned by word embedding models [59, 73]. Our

task is to recommend items to users according to both their rating histories and the

textual data generated by users in social media.

5.2.2 Collaborative Filtering with Word Embedding-based

Topic Models

Our model is based on matrix factorization, topic modeling and word embedding

vectors. On the rating part, we apply matrix factorization as the generative process.

On the text part, we design a generative process based on Latent Dirichlet Allo-

cation (LDA) [2]. We also assume that the topic distribution of an item is linked

to the item’s latent vector used in matrix factorization, which is an idea previously

explored in [49, 57, 90]. By doing this, we build a single unified and principled

model that combines text and ratings. Similar to [90], we assume that item factors

are derived from the corresponding topic distributions instead of setting them to be
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identical. Specifically, item i’s latent factor qi is sampled from a multivariate nor-

mal distribution with its topic distribution θi, which is derived from review text, as

the mean:

qi ∼ N (θi,ΓI) (5.1)

where ΓI represents the covariance matrix. This renders our model more flexible in

modeling latent factors. Different from standard LDA, which treats each word as a

single discrete symbol, we use the vector representations of them instead. We still

assume that there is a multinomial topic distribution for each document. But for

each topic, we assume there is a multivariate Gaussian distribution, which is used

to generate word vectors. There are two parameters for each topic t, which are the

mean vector µt and co-variance matrix Σt. To generate a word in a document, we

first need to sample a topic according to the document-topic distribution, and then

sample a vector from the Gaussian distribution of the sampled topic. The generative

process of our model is shown below and we list the used notation in Table 5.1.

• For each user, sample a bias bu ∼ N (0, σU) and a latent vector pu ∼

N (0,ΓU).

• For each item i, sample a topic distribution θi ∼ Dir(α) for text. Sample a

latent vector qi ∼ N (θi,ΓI) and a bias bi ∼ N (0, σI). For each word w in

the associated text:

– Sample a topic z ∼ Multi(θi).

– Sample a word embedding vector vw ∼ N (µz,Σz).

• For rating of item i by user u, sample a numerical value rui ∼ N (bu + bi +

pᵀuqi, σR).

With this model, we can find the underlying topics of words based on their se-

mantic meanings. This can help us recommend items to users even if the used text is

very diverse, which is common in social media. For example, although “fitness” and
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“exercise” are two different words, in pre-trained word embeddings, their distance

is smaller than a random pair of words, so they are more likely to be generated

by the same multivariate Gaussian than from different Gaussian distributions. In

our model, items whose descriptions contain “fitness” and items whose descriptions

contain “exercise” will have similar topic distributions and so are their latent factors.

Then for a user who has adopted items with the word “fitness,” our model is more

likely to recommend items with the word “exercise” to him. Unfortunately, tradi-

tional models may not achieve this as they do not consider the semantic meaning of

words.

It is worth pointing out that in our CET model, the modified LDA component,

which generates word embedding vectors from a mixture of multivariate Gaus-

sian distributions, is essentially the same as in a recent work by Das et. al. [17].

Both models assume that each document has a multinomial topic distribution with a

Dirichlet distribution as the prior. Both model also assume that there is a multivari-

ate Gaussian distribution for each topic and word vectors are sampled from these

Gaussian distributions. The only difference is that in Gaussian-LDA, the hyper-

parameter α, which is used in the prior Dirichlet distribution, is to be learned. But

in our model, we assume that it is a parameter set by users. However, we developed

our model independently and our focus is to apply the model for the purpose of rec-

ommendation. Note also that although here we assume the text is associated with

each item, our model is not restricted to this setting. If there is text associated with

users, our model can also be directly applied by switching the generative process of

items with that of users.

5.2.3 Parameter Estimation

When applying our model to a dataset, text, ratings and word vectors are all given,

and we need to find the hidden parameters that can maximize the posterior like-

lihood. So, our goal of training is to learn the parameters that can maximize the
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following probability:

P (P ,Q,BU ,BI ,θ,µ,Σ|W ,R)

∝ P (P ,Q,BU ,BI ,θ,µ,Σ,W ,R)

= P (P )P (Q|θ)P (BU)P (BI)P (θ)P (µ)P (Σ)P (W |θ,µ,Σ)

P (R|P ,Q,BU ,BI) (5.2)

where

P (pu) = N (pu|0, σU), P (qi) = N (qi|θi, σI) (5.3)

P (bu) = N (bu|0, σU), P (bi) = N (bi|0, σI) (5.4)

P (θi) = Dir(θi|α) (5.5)

and

P (W |θ,µ,Σ) =
∏
i

∏
v∈di

N(wv|µ,Σ) (5.6)

P (R|P ,Q,BU ,BI) =
∏
{u,i}∈D

N (rui|pᵀuqi + bu + bi, σR) (5.7)

HereP andQ refer to all latent vectors for items and users,BU andBI refer to bias

terms of users and items. W refers to all the words we observe and R refers to all

the ratings. µ and Σ represent all means and covariance matrices of the Gaussian

distributions of all topics. As there is no closed form solution for our problem,

we use Gibbs-EM algorithm [89] for parameter estimation. For each iteration, we

alternate between Gibbs sampling and gradient descent. More specifically, in each

iteration, we first perform Gibbs sampling based on parameters learned in the last

iteration, which will be fixed in the sampling stage. Then based on the sampled

hidden variables, we optimize our objective function using gradient descent.

E-step: We fix the parameters θ, µ and Σ and collect samples of the hidden

variables Z to approximate the distribution P (Z|W ,θ,µ,Σ). The distribution of

68



the hidden labels for Gibbs Sampling is:

P (zij = t) ∝ θit · N (vwij
|µt,Σt). (5.8)

Here, zij is the topic assignment of the word at the jth position of text of item i and

wij denotes the corresponding word.

M-step: With the collected samples of Z, we need to find the values of P , Q,

BU ,BI , θ, µ and Σ that maximize the following objective function:

L =
∑
Z∈S

logP (Z,W ,R,P ,Q,BU ,BI ,θ,µ,Σ|α, σU , σI , σR,ΓU ,ΓI), (5.9)

where S is the set of samples collected in the E-step. The full expansion of the

objective function is:

L =
∑
Z∈S

logP (W |Z,µ,Σ)P (Z|θ)P (R|P ,Q,BU ,BI) ·

P (θ|α)P (P |ΓU)P (Q|θ,ΓI)P (BU |σU)P (BI |σI)

=
∑
Z∈S

{
NI∑
i=1

Li∑
j=1

logN (vwij
|µzij ,Σzij)θizij

+
N∑
j=1

logN (rj|pᵀuqi + bu + bi) +
D∑
d=1

log Dir(θd|α)

+
I∑
i=1

logN (qi|θi,ΓI) +
U∑
u=1

logN (pu|0,ΓU)

+
I∑
i=1

logN (bi|0, σI) +
U∑
u=1

logN (bu|0, σU)}. (5.10)

It is noted that θ for any document is constrained to be a multinomial distribu-

tion. To transform this constrained optimization problem to an unconstraint one, we

use a set of auxiliary variables λit to replace θit with exp(λit)∑
t′ exp(λit′ )

. We use gradient

descent to find the optimal value of P , Q, BU , BI , θ. Based on the expanded
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objective function, the update formulas are:

λit = λit + γ · {
T∑

k=1,k 6=t
[
1

ΓkkI
(θik − qik)θikθit + (Nik + α− 1)θit]

+
1

ΓttI
(qit − θit)(θit − θ2

it) + (Nit + α− 1)(1− θit)} (5.11)

qit = qit + γ · [−
∑
j∈Ri

I

1

σR
ejput +

1

ΓttI
(θit − qit)] (5.12)

put = put + γ · (−
∑
j∈Ru

U

1

σR
ejqit −

1

ΓttU
put) (5.13)

bi = bi + γ · (−
∑
j∈Ri

I

1

σR
ej −

1

σI
bi) (5.14)

bu = bu + γ · (−
∑
j∈Ru

U

1

σR
ej −

1

σU
bu). (5.15)

µ and Σ can be updated using the following equations:

µti =
1

Nt·

V∑
w=1

Ntwvwi Σii
t =

1

Nt·

V∑
w=1

Ntw(vwi − µti)2. (5.16)

where Ntv is the number of times word type w is assigned to topic t, Nt· is the

number of times all word types are assigned to topic t and Σii
t is the element at row

i, column i of matrix Σt.

After all parameters in the model are learned, we use r̂ui = pᵀuqi + bu + bi

to predict the rating of item i by user u. In our implementation, we perform 600

runs of Gibbs EM. Because Gibbs sampling is time consuming, in each run we only

perform one iteration of Gibbs sampling and collect that one sample. We then have

60 iterations of gradient descent. The gradient descent algorithm we use is L-BFGS,

which is efficient for large scale data set [68]. We downloaded word vectors from

the homepage of word2vector2 and use them as our word embedding vectors.

2https://code.google.com/p/word2vec/
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5.3 Experiment

Our model can be applied to many recommendation tasks on social media where

user-generated content plays an important role. To test it, we pick two representative

social media platforms for experiments. The first is Meetup3, an event-based online

social network. Meetup allows users to create interest groups and organize events.

A commonly studied recommendation task on Meetup is how to recommend an

interest group to a user. The second is Amazon’s product review platform. We use

user-generated product reviews as additional textual information to help product

recommendation. The content in these two platforms are also representative. In the

online social network website we use, content contains tags given by users. Because

there is not a controlled vocabulary of tags and the number of tags assigned to each

item can be small, the data is very sparse. In online review website, users can write

their reviews in free form. So the content is relatively rich but the diversity is still

high.

For each dataset, we use 10% of the data as the development set and another

10% of the data as the testing set. The remaining 80% of the data is used for train-

ing. We tune all models according to the development set and test them on the

testing set. As our model does not update word embedding vectors. Those words

with no pre-trained vectors are of no use to CET. So we just delete them all. The

average percentage of words with embedding vectors is 54.7% over all datasets. To

show the effectiveness of our model, we choose several appropriate state-of-the-art

recommendation techniques for comparison. Besides showing their performance,

we also do statistical significance test of results using Wilcoxon signed-rank test.

5.3.1 Group Recommendation in Meetup

The first experiment is conducted on a Meetup dataset [52]. Meetup is an online

event-based social network. In this website, users can build or join groups and each

3http://www.meetup.com
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group can organize and publish offline events for people to participate in. Users and

groups can use tags to label themselves to show their interests. The text we use is

tags associated with groups. As some of these tags are phrases with multiple words,

we add up the embedding vectors of all words in the tag to get the embedding vector

of the tag. The dataset we use is a random sample from the data used in [52]. There

are 2225 users, 6950 groups, 8015 user-group membership pairs and each group

has 7.06 tags on average. This data is very sparse as only 0.04% of its user-group

matrix entries contain values. For this dataset, we only have the information about

which groups a user has joined. For the groups the user has not joined, there can be

different reasons. The user may not like the group or the user may be unaware of the

group at all. This type of negative examples is called implicit feedback. Because

of this, we choose two models that work on implicit feedback as our baselines as

follows.

CTR: Collaborative Topic Regression [90] is a model designed for scientific article

recommendation with implicit feedback. It assumes that each article’s latent factor

is a deviation from its topic distribution.

OCF: One-class Collaborative Filtering [70] extends traditional matrix factorization

to model implicit feedback. In our experiments, we use the re-weighting technique

proposed in this paper.

Quantitative Study

We use MPR (Mean Percentage Ranking) [28] as the evaluation metric. For each

user-group pair in our testing data, we randomly select 1,000 “negative” groups

and mix them with the “positive” group. We rank all these 1,001 groups based the

predicted rating from the target user. Then, we calculate MPR as follows:

MPR =
1

N

N∑
i=1

Ri

M
, (5.17)
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Figure 5.1: Mean Average Ranking (MAR) for CET, CTR and
OCF on Meetup data.

where Ri is the position of the adopted group in testing pair i and M is the number

of ranked groups, which is 1001 in our experiment, and N is the number of pairs

in testing data. For a testing instance i, Percentage Ranking (PR) is defined as Ri

M
,

which will be used in the next subsection.

The MPR for CET, CTR and OCF are shown in Figure 5.1. OCF performs the

worst for this dataset. This is because the dataset is too sparse and it is very hard

to learn useful item latent vectors purely based on user membership information.

By utilizing tag information, CTR can obtain a much better MPR value. CET can

even outperform CTR by using word embedding vectors as it utilize the semantic

meaning of words. Statistical test shows that CET’s performance is significantly

better than CTR and OCF at 5% level. It proves that compared with the baselines,

our model can learn latent factors much more effectively.

Qualitative Study

To qualitatively understand how our model outperforms CTR, we display some sam-

ple users in Table 5.2. The representative tags of groups they have joined as indi-

cated in the training data, the tags of “positive” groups in the testing data (i.e. groups

that should be recommended) and the corresponding Percentage Ranking (PR) by

CET and CTR are also shown together. For user 1408, the tags of groups he has

joined tell us that he is interested in exercises and outdoor activities. A recommen-

dation method should rank groups related to this topic higher than others. The group
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User ID Tags of groups they
have joined

Tags of groups we
should recommend

PR
by
CET

PR
by
CTR

1408 fitnees friends music
meditation hiking yoga

aerobics running 0.020 0.577

1247 cooking nutrition
movies fitness

volleyball 0.135 0.663

835 photo weightloss fit-
ness

theater art museum 0.001 0.528

399 photoshop alternative
mediation buddhism

vegetarian nutrition 0.042 0.563

Table 5.2: Sampled users, the representative tags of groups they join, the tags of
group we should recommend and the percentage ranking of CET and CTR.

with tags “aerobics” and “running” shows up in our test instances. Our CET model

ranks it higher than 98% of the negative examples while CTR only ranks it higher

than 42% of the negative examples. The reason is that tags used in social media is

very diverse, and groups with similar properties may share no words at all. Tradi-

tional way of using lexical similarity to compute textual similarity cannot work very

well in this case. So it becomes hard for them to recommend groups based on tags.

However, by leveraging words’ vector representation, CET can tackle this problem

better. The second and third cases also prove this. It is interesting that CET is also

able to recommend groups that is conceptually related but have different properties.

In the fourth row, we can see that user 399 is interested in Buddhism, and he has

also joined a group about vegetarian, which appears in our test dataset. Buddhism is

about religion while vegetarian is about food preference. It is impossible to connect

them based only on lexical similarity. However, we know that many Buddhists are

also vegetarians. So these two words are semantically related and it is reasonable

to recommend a vegetarian group to a person interested in Buddhism. While CTR

fails to do this, our CET model successfully recommends this group based on using

semantic similarity between words.

We also show the top words of the topics learned by CET and CTR in Table 5.3.

As we can see, topics learned by CET look much neater. We can find some noisy
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CET

dance dancing salsa tango salsa-dancing latin-dance fla-
menco dance-lessons ballet latin-dancing
hiking excursionismo-hiking kayaking camping out-
doors snowshoeing skiing backpacking walkers paddling
dogs puppy cats pets chihuahua pug yorkie sheltie
dachshund dog-lovers
language culture spanish-culture english french-culture
language-and-culture languages japanese-language
german-culture european-culture
movies films movie film movie-nights arthouse movies-
dinner movies-and-dinner cinema-and-films dinner-and-
a-movie

CTR

dance wellness group-fitness-training japanese dance-
lessons cloud-computing english-conversation python
democrat korean
hiking outdoor-recreation startup-ventures javascript
creative-writing new-york-city dogs singles-who-love-
to-travel activities css
business-networking weightloss stress foodie crosscul-
tural socializing-dogs dog-lovers london liberty anime
social language theater bike beer backpackers business-
and-social-networking museum rockclimbing men
fitness movies movie-nights exercise-nutrition busi-
ness film snowboard cinema-and-films movies-dinner
mountain-biking

Table 5.3: Top words of sampled topics learned from Meetup data by CET and
CTR.

words in topics learned by CTR. For example, dance and Japanese are in the same

topic and hiking and dogs are also in the same topic. Previous work has shown that

LDA, which is used to model text in CTR, is not able to learn topics well when

documents are very short [96]. The average number of tags for each meetup group

is only 7, so it is really hard for LDA to learn good topics. However, by using the

embedding vectors, which carry semantic meanings of words, CET can cluster word

much better and learn neater and more meaningful topics.

5.3.2 Product Recommendation in Online Review Website

For the second experiment, we use data from Amazon, which is composed of 9

datasets used in [57]. We have users’ explicit ratings at scale 1-5 of items and their
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dataset #users #items #reviews #word types #tokens/review
office 691 313 4034 12652 46.33
patio 748 344 6814 8691 32.7
software 314 235 2468 14317 83.03
beauty 4281 1817 33290 22208 33.91
sports 8039 5545 91294 37645 30.23
tools 4935 3346 38998 68390 55.14
toys 3479 2776 25951 51224 50.07
games 9919 6124 88684 301829 115.83
health 4529 2460 35123 39674 40.36

Table 5.4: Dataset statistics, which show number of users, number of items, number
of reviews, total number of word types, average number of tokens per review in each
column.

reviews. Similar to [57], we use the aggregated reviews of an item as the associated

text of it. Users and items with fewer than 3 reviews are filtered out. Statistics of this

type of dataset are shown in Table 5.4. We choose two state-of-the-art techniques

that model both explicit ratings and text information as our baselines.

HFT: Hidden Factors as Hidden Topics [57] is a model that directly ties each di-

mension of hidden factors in matrix factorization of ratings to one hidden topic in

review text by using an exponential transformation function.

RMR: Ratings Meet Reviews [49] is a model similar to HFT except the way they

link ratings with reviews. It assumes that each user has one Gaussian rating distri-

bution on each topic, which characterizes how the user is interested in this topic.

Quantitative Study: Rating Prediction

For Amazon review dataset, we use RMSE (Root Mean Squared Error) [57] as the

evaluation metric, which is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(r̂i − ri)2, (5.18)

where ri is the true rating for the ith testing instance and r̂i is the prediction. The

results over all 9 datasets are shown in Table 5.5. We can see that CET significantly
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office patio software beauty sports tools toys video health

CET 0.521† 0.252‡ 0.725‡ 0.371‡ 0.215‡ 0.746‡ 0.967‡ 1.183 0.483‡

RMR 0.597 0.309 0.767 0.484 0.351 0.802 1.013 1.138 0.595

HFT 0.552 0.283 0.776 0.444 0.262 0.813 1.146 1.172 0.548

Table 5.5: RMSE of CET, HFT and RMR. For each dataset, the best result is in bold
font. † indicates that CET significantly outperforms RMR at 1% level. ‡ indicates
that CET significantly outperforms both RMR and HFT at 1% level.
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Figure 5.2: RMSE over topic numbers on two datasets. The left one is office dataset,
the right one is patio dataset.

outperforms RMR and HFT on most datasets. It means our model can effectively

learn users’ interests by modeling rating and text information.

To have a closer look at how the performance of all three models change over

different number of topics, we pick two datasets office and patio and show the results

in Figure 5.2. We can see that CET outperforms both baselines when using different

numbers of topics. Its performance is also more stable over topic numbers compared

with the other two.

office patio software beauty sports tools toys video health

CET -1.495 -1.198 -1.140 -1.730 -1.938 -1.776 -1.934 -1.434 -1.821

RMR -0.744 -0.745 -0.627 -0.702 -0.711 -0.742 -1.247 -0.882 -0.793

HFT -0.737 -0.739 -0.500 -0.718 -0.773 -0.957 -0.987 -0.752 -0.844

Table 5.6: Topic Coherence
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Quantitative Study: Topic Coherence

We also evaluated our models with topic coherence, which is a metric measuring

aspect quality based on co-occurrence of words [60]. It is defined as

C(t, V (t)) =
2

M(M + 1)

M∑
m=2

m−1∑
l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

,

where V (t) contains the M most probable words in topic t. v(t)
m and v(t)

l are the mth

and lth words in V (t). D(v
(t)
l ) is the number of documents containing word v(t)

l and

D(v
(t)
m , v

(t)
l ) is the number of documents containing both v(t)

m and v(t)
l .

As topic coherence is calculated based on co-occurrence statistics of words in

the training data, CET may not get a good performance on this metric. Table 5.6

shows the results of CET, RMR and HFT. We can see that the performance of CET is

not as good as that of RMR and HFT. However, as CET leverage semantic meanings

encoded by word vectors, it can still learn clear topics, which we will show later.

Qualitative Study

In this subsection, we show the top words of some sampled topics learned by CET,

RMR and HFT in Table 5.7. All topics are from the office domain and the number of

topics is set to 30 for all models. As we can see, CET can learn meaningful topics

like office, file, paper, purchase and so on as well as HFT and RMR. By taking

a closer look at the top words of these topics, we can find that the top words of

CET are cleaner. Most of the top words are about the same topic and there is less

noise in these words. However, there exist some noisy words in the top word list of

HFT and RMR, many of them are general words like “one”, “use”, “well”, etc. By

using word vector to represent words, words can be clustered better compared with

models like HFT and RMR. It is interesting that CET also discover a topic, family

members, which cannot be learned by RMR and HFT. This may be a topic worth

mining for recommendation as it probably reflects who the product is bought for.
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Topics learned by CET
work tape paper product pages daughter
office file binder products templates old
job files printed price interface home
desk tapes printing buy page son
working folder printer purchase multiview mother
phone folders print buying text father
cabinet video binders brand functionality niece
offices taped pencil purchasing webpage grandmother
works filing sheets brands app granddaughter
telephone clips ink pricing template dad

Topics learned by HFT
desk folders binder pen cards black
keyboard tabs binders markers paper color
mouse folder rings fine card folders
pad file pages pens print look
hp12c reinforced open colors business good
feet tab one ink avery colors
rest manila pockets write printer great
wrist use ring sharpie printed nice
holder smead front use quality side
platform box plastic highlighters make well

Topic learned by RMR
desk folders binder markers cards folders
keyboard files binders colors paper black
mouse hanging rings pens card color
pad using open ink avery look
rest still pockets pen print file
wrist drawer pages sharpie business good
holder pendaflex ring highlighters printer great
feet bottom front great printed nice
platform product avery write make one
tray capacity cover marker professional colors

Table 5.7: Top words of sampled topics learned by CET, HFT and RMR.
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However, CET is not perfect and it fails to discover the topic about pens.

5.4 Discussion

In this chapter, we have proposed a recommendation model for social media based

on users’ ratings, text and word embedding vectors. Compared with existing work,

our model is able to find the similarity between two pieces of text based on their

semantic similarity rather than simply lexical similarity. This makes it more ef-

fective for recommendation problems in social media. Extensive experiments on

two recommendation problems in social media show that this model can outper-

form state-of-the-art methods. A closer look at topics also tells us that by using

the semantic meanings reflected in embedding vectors, our model can learn cleaner

topics. When documents have as few as seven words on average, our model can still

learn meaningful topics and get good recommendation results.

We have shown that using vectors learned from neural network based model can

improve both recommendation and topic discovery in social media. It would be

interesting to try vectors learned by other word embedding models such as topical

word embedding [53], multi-prototype word embedding [65] and so on. Besides,

it is a promising direction to model text in other ways beyond bag of words. Mod-

els which take order into consideration, like Recursive Neural Network [84] and

Convolutional Neural Networks [40] are worth trying.

80



Chapter 6

A Neural Network Model for

Semi-supervised Review Aspect

Identification

In Chapter 4 and Chapter 5, we introduce our work on aspect word identification

and aspect word clustering respectively. Actually, these two steps can be naturally

handled by one joint model as they are closely related. However, few work has

looked into this direction. In this chapter, we propose an integration of Neural Topic

Model (NTM) and Recurrent Neural Network (RNN) to jointly identify and cluster

aspect words in product reviews. As we have discussed, aspect word clustering is

usually solved in an unsupervised manner, and topic models have been widely used

for the task. A key difference of our neural network model from topic models is

that we do not use multinomial word distributions but instead embedding vectors

to generate words. Furthermore, to leverage review sentences labeled with aspect

words, a sequence labeler based on RNN is incorporated into our neural network.

The resulting model can therefore learn better aspect representations. Experimen-

tal results on two datasets from different domains show that our proposed model

can outperform a few baselines in terms of aspect quality, perplexity and sentence

clustering results.
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6.1 Introduction

Sentiment analysis of online customer reviews has been well studied for over a

decade. One of the key tasks in mining customer reviews is aspect identifica-

tion [50]. Here aspects refer to features, components and other criteria on which

a product or service may be evaluated by online users. Since the seminal work

in [27], aspect identification has been recognized as a central problem in mining

and summarizing customer reviews. Given a collection of reviews from the same

domain (e.g., reviews of restaurants), aspect identification aims to discover a set

of aspects, each associated with a set of aspect terms (or a distribution over such

terms). For example, from restaurant reviews, we may expect to discover an aspect

on service, with aspect terms such as “waiter” and “serve,” and another aspect on

food, with aspect terms such as “pizza” and “burger.” The aspect identification task

is useful for downstream tasks such as aspect-based review summarization [104]

and product comparison [55].

Aspect identification is generally treated as an unsupervised task and a com-

monly adopted solution is based on topic models such as LDA (Latent Dirichlet

Allocation) [2]. Here each aspect is modeled as a topic, which is essentially a

multinomial distribution over words, and reviews are modeled as mixtures of these

topics. A number of special topic models have been proposed for aspect identifica-

tion [25, 64, 103].

With recent advances in neural networks and representation learning for natural

language processing, embedding words in a low-dimensional hidden space to cap-

ture their distributional behaviors has shown to be effective for a number of data

mining tasks [15, 99, 102]. In this chapter, we explore how neural network models

can be used to address the review aspect identification problem and whether they can

outperform standard topic models. Our work is motivated by two observations: (1)

Compared with the traditional multinomial word distribution based language mod-

els, neural language models constructed in a continuous space may better handle
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low-frequency words in reviews and address the data sparsity problem. (2) Some-

times review sentences with aspect terms annotated are available. For example, the

Aspect Based Sentiment Analysis task in SemEval-2014 provides such annotated

data. It has been shown that neural network models can achieve strong results on

the supervised aspect term extraction task [51, 101]. We would like to explore how

these trained neural network models can be used to help the aspect identification

task.

In this work, we propose a neural network model for review aspect identifica-

tion. Different from existing topic model based approaches to aspect identification,

our model is based on continuous space language models, and it uses a small amount

of labeled review sentences to train an RNN model for semi-supervised learning.

Using reviews from two different domains, we show that our model improves the

quality of the identified aspects compared with some baseline models, and both

components of our proposed model contribute to the improved performance.

6.2 Method

In this section, we present our neural network model for aspect identification.

6.2.1 Problem Formulation

The setup of our aspect identification task is as follows. We assume that we have a

set of unlabeled reviews R from the same domain, e.g., a set of restaurant reviews.

In addition, we have a set of review sentences S from the same domain annotated

with aspect terms, as shown in Table 6.1. Our goal is to discover K aspects from

R and S , where each aspect is associated with some parameter vk and from vk

we can understand the meaning of the kth aspect. In traditional topic model-based

approaches to aspect discovery, each vk would be a distribution over the words in the

vocabulary, and the words with the highest probabilities in vk would well represent

the aspect. In our work, we do not constrain vk to be a probability distribution, as
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From the [appetizers] we ate, the [dim sum] and other variety of [food],
it was impossible to criticize.
The [design] and [atmosphere] are just so good.

Table 6.1: Examples of annotated sentences. Aspect words are highlighted and
enclosed with brackets.

we will explain below.

6.2.2 Model Overview

The general idea behind our model is as follows. We aim to re-construct the re-

views in R from a set of parameters capturing various properties of the reviews.

To re-construct a review, we treat the review as a bag of sentences and generate the

sentences one by one in a probabilistic way. Each sentence will probabilistically be

assigned an aspect, and then be treated as a bag of words sharing the same aspect.

Different from standard topic models, however, we also model the context of

each word using a recurrent neural network (RNN) and the context will be used

to influence the probability of generating the word. Specifically, the probability of

generating a word comes from a combination of a number of vectors representing

different aspect models and a background model. This kind of a mixture model

is inspired by [103]. However, our model has notably the following differences

from [103]: (1) Unlike [103], which is an extension of LDA, we do not use multi-

nomial distributions to model topics (i.e., aspects in this case). Instead, we use a

neural networks with continuous vectors to derive the probabilities of generating

different words. This treatment is similar to a number of recent work on neural

topic models [6, 66]. (2) Unlike [103], which uses a Maximum Entropy model to

incorporate the context of word into its probabilistic modeling, we use an RNN to

incorporate the context, which presumably is more effective given the recent success

of using RNN models for sequence modeling problems.
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6.2.3 Review Generation Process

Modeling Aspects

We assume that there are K underlying aspects. Similar to [103], which assumes

that each aspect has two word distributions, namely an aspect word distribution and

an opinion word distribution, we assume that each aspect k has two embedding

vectors associated with it: vk ∈ Rd and ck ∈ Rd. Here vk is meant to capture words

that directly describe the aspect (as those highlighted terms in Table 6.1), such as

“pizza” and “cake” for the aspect on food or “waiter” and “waitress” for the aspect

on service. ck is meant to capture other words closely associated with the aspect but

are not considered opinion target terms. These may include “delicious” and “tasty”

for the aspect on food or “friendly” for the aspect on service. Note however that

neither vk nor ck is a distribution over the words in the vocabulary, and we will

explain later how they are used to generate words.

Modeling Background Words

We assume that there is a background distribution over words, which we denote

with θb. This distribution represents how reviews may contain words not related to

any aspect.

Modeling Documents

Similar to [103], we assume that each review has a multinomial distribution over

the K aspects. Let us use βr to represent this distribution for the rth review. We

also assume that there is a document-independent probability λ that controls how

likely a word is associated with an aspect or with the background model θb.

Modeling Word Context

We use wr,s,n to represent the nth word in the sth sentence in the rth review. Here

1 ≤ wr,s,n ≤ V is an index in the vocabulary and V is the vocabulary size. We
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assume that this word has a vector hr,s,n that encodes its context using an RNN

model we will describe later. With this vector hr,s,n and the RNN model, there is a

probability πr,s.n associated with word wr,s,n to indicate how likely this word is an

opinion target term rather than an opinion term, i.e., how likely wr,s,n is going to be

generated from some vk or from some ck.

Review Generation

With the various embedding vectors and probabilities defined above, we now de-

scribe the re-construction loss function which we try to minimize in order to learn

the parameters. We use the negative log likelihood of generating the words inside

all the reviews in R as our objective function. The overall objective function is as

follows:

− log p(R) = −
|R|∑
r=1

log p(wr) = −
|R|∑
r=1

Mr∑
s=1

log
K∑
k=1

βr,kp(wr,s|k), (6.1)

p(wr,s|k) =

Nr,s∏
n=1

p(wr,s,n|k)

=

Nr,s∏
n=1

[
(1− λ)θb

wr,s,n
+

λ
(
πr,s,nφk,wr,s,n + (1− πr,s,n)ψk,wr,s,n

)]
, (6.2)

where Mr is the number of sentences in the rth review, Nr,s is the number of words

in the sth sentence in the rth review, wr represents all the words in the rth review,

wr.s represents all the words in the sth sentence in the rth review, and φk and ψk are

two distributions corresponding to aspect terms and opinion terms, which we will

explain below.

Basically the loss function above shows that to generate a review r, for each

sentence in the review we pick an aspect k according to the distribution βr. Then

for each word in this sentence, we generate it either from the background model θb

or one of the two models φk and ψk.

86



So far the model above is very similar to [103]. However, φk and ψk are mod-

eled differently from [103]. Instead of treating these as multinomial distributions

and directly learning the probabilities, we assume that they are derived from the

embedding vectors vk and ck as follows:

φkv =
exp(vᵀ

k ·wA
v )∑

v′ exp(vᵀ
k ·wA

v′)
(6.3)

ψkv =
exp(cᵀ

k ·wC
v )∑

v′ exp(cᵀ
k ·wC

v′)
. (6.4)

WA ∈ Rd×V and WC ∈ Rd×V are two matrices to model the semantic represen-

tations of words, which are initialized with pre-trained Google word2vec.1 Each

column in them is used to encode one word type.

6.2.4 RNN to Incorporate Context

We now explain how we obtain πr,s,n for each word wr,s,n by making use of the

annotated review sentences. Our method is again inspired by the MaxEnt-LDA

model [103], in which a Maximum Entropy model was trained on some labeled data

to help separate aspect words, opinion words and background words. The same idea

applies to our problem, but here we use a Recurrent Neural Network (RNN) model,

which represents the state of the art for aspect term extraction [51].

The motivation of making use of the labeled review sentences is that there are

some patterns we can learn to locate aspect terms. For example, nouns following

adjectives which are sentiment words, such as the word “service” in the phrase

“excellent service,” are more likely to be aspect terms. We can try to learn such

patterns from the labeled review sentences, even though the labels only indicate

which words are aspect terms but do not group them into aspects.

Because usually there is only a small amount of such labeled review sentences,

to address the data sparsity problem, here we again make use of dense vector rep-

resentations to train a classifier. Specifically, we use Recurrent Neural Network

1https://code.google.com/archive/p/word2vec/
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(RNN) models. Let us assume that (l1, l2, . . . , ln) is the sequence of words in

a labeled sentence, where each li ∈ Rd is a dense word embedding vector. Let

(y1, y2, . . . , yn) represent the corresponding labels marking the positions of the as-

pect terms. We can build an RNN model from the sequence (l1, l2, . . . , ln) as fol-

lows:

hi = f(Uhi−1 + Vli + e), (6.5)

where f(·) is a non-linear activation function, U ∈ Rdo×do , V ∈ Rdo×d and e ∈

Rdo are parameters to be learned, do is the output dimension and hi is the hidden

state at position i. We can then use hi to predict the label yi through a softmax

layer. While there exist some other RNN structures like LSTM(Long Short Term

Memory), Bidirectional-RNN, Bidirectional-LSTM and so on, RNN has simpler

structure and competitive performance [51]. So we only use RNN to predict πr,s,n

in this work.

To train this model, we maximize the probabilities of the observed labels in

the training dataset S. Given a new sentence, we can use the trained RNN model

to obtain the hidden states h, and for each word in the sentence, we can use its

corresponding hidden state to obtain a probability πr,s,n for the word to be an aspect

term.

6.2.5 Connections with Topic Models

With certain configurations, our model is closely connected with traditional topic

models. However, our model learns aspect vectors and uses a linear transformation

followed by the softmax function to model topic-word dependencies. Compared

with multinomial distributions, which are typically used in topic models, our model

can incorporate more information, like semantic meanings of words and topics. In

recent years, neural network based topic models have been invented to incorporate

pre-trained word embeddings [6, 46, 66]. Compared with these models, our model
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Algorithm 1 Gibbs-EM algorithm for learning
1: for i← 1,maxEpoch do . maxEpoch is the maximum number of epochs.
2: E-step:
3: for r ← 1, |R| do
4: for s← 1,Mr do
5: Sample an aspect tir,s according to Formula 6.6.
6: end for
7: end for
8: M-step:
9: Keep Ti fixed. Compute the gradient ∂Li∂Θ by back-propagation.

10: Use the gradient to update all parameters Θ.
11: end for

is a more general framework. Each component of it can be replaced with other

suitable options. So it is easier to extend and adapt to different tasks. Besides this,

we uses RNN to separate aspect words from context words, which can potentially

help us learn better topics. This has not been used in existing neural topic models.

6.2.6 Learning

To learn our model, we need to find the optimal values of vk, ck, θb, βr, WA, Wc

and λ that can minimize the objective function L = − log p(R).

Back-propagations cannot be directly used to learn our neural network as there

are some constraints placed on βr. To deal with this, one alternative is variational-

EM algorithm. However, it is not an exact estimation algorithm as it tries to optimize

the lower bound of the objective function. Instead of using variational inference

to approximate posterior distributions at the E-step, we adopt Gibbs sampling to

sample an aspect for the sth sentence in the rth review according to

p(tr,s = k) =
βr,kp(wr,s|k)∑
k′ βr,k′p(wr,s|k′)

. (6.6)

Then, in the M-step, we first update θb,βr and λ based on the sampling results of
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E-step:

λ0 =
n0 + η

n0 + n1 + 2η
(6.7)

θbw =
nbw + ξ

nb· + V ξ
(6.8)

βrt =
nrt + α

nr· + Tα
(6.9)

where n0 is the number of words assigned to background, n1 is the number of words

assigned to context, nbw is the number of times word w is assigned to background

and nrt is the number of words in review r that are assigned to topic t. nb· =
∑

w nbw

and nr· =
∑

t nrt. η, ξ and α are all hyper-parameters. Then, we apply back-

propagation to update all other parameters in our neural network with the sampled

aspect for sentence fixed. The objective function for the M-step in the ith epoch is

Li = − log p(R|Ti) = −
|R|∑
r=1

Mr∑
s=1

log p(wr,s|tir,s), (6.10)

where Ti is the sampled aspects of all sentences in epoch i and tir,s is the sampled as-

pect in epoch i for the sth sentence in the rth review. The gradient of our parameters

can be calculated as follows:

∂L
∂vt

=
∑
v

natv(φtvw
A
v −

∑
v′

φtvφtv′w
A
v′) (6.11)

∂L
∂ct

=
∑
v

nctv(ψtvw
C
v −

∑
v′

ψtvψtv′w
C
v′) (6.12)

∂L
∂wv

A

=
∑
t

natwφtv(1− φtv)vt (6.13)

∂L
∂wv

C

=
∑
t

nctwψtv(1− ψtv)ct (6.14)

where natv is the number of times word v is assigned to aspect topic t, nctv is the

number of times word v is assigned to context topic t.
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6.3 Experiments

In this section, we evaluate our proposed model from different angles. Through

the evaluation we mainly want to test if our neural network model using aspect and

context vectors to generate words work better than traditional topic models based

on multinomial unigram word distributions for aspect identification. In addition, we

also look at the generative ability and the effectiveness of clustering sentences using

our model.

We consider the following different models for comparison.

• LDA: Latent Dirichlet Allocation. This is a classical topic modeling tech-

nique proposed in [2]. To have a fair comparison with our models and the

other baselines, we use a modified version that assumes that all words in the

same sentence come from the same topic.

• ME-LDA: LDA with Maximum Entropy classifier [103]. This models uses

both traditional topic models based on multinomial unigram word distribu-

tions and Maximum Entropy models for supervision.

• RNN-LDA: LDA with RNN. We replace the maximum entropy classifier in

ME-LDA with the trained RNN model to estimate the probability of each

word being an aspect word or not. By comparing with this model, we can

evaluate the effect of using aspect and context vectors together with softmax

to generate words.

• ME-NA: Neural network for aspect identification with Maximum Entropy.

This is a variation of our model. We replace LDA in ME-LDA with our

neural network model. By comparing with this model, we can evaluate the

usefulness of using RNN instead of standard linear classifiers for the supervi-

sion.

• RNN-NA: Neural network for aspect identification with RNN. This is our

complete model as presented in Section 6.2, where we use both unlabeled

and labeled data for aspect identification. We do not fine tune WA and WC ,
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i.e., the word embeddings are not updated during training.

• RNN-NA-t: This is also our complete model RNN-NA. However, we initial-

ize WA and WC with word embeddings and fine-tune them during training.

To compare the models above, we first conduct three experiments to evaluate

the quality of identified aspects. Then we do a quantitative evaluation based on

perplexity to check the model’s ability to predict words in unseen reviews. We

also do another quantitative evaluation using sentence clustering to evaluate each

model’s effectiveness in grouping review sentences into different aspects.

6.3.1 Data

We use two datasets for our experiments. The first one contains restaurant reviews

from the Yelp academic dataset.2 As the original dataset contains millions of re-

views from different businesses, we only keep the restaurant reviews and randomly

sample 20,000 from them. The other dataset is a laptop dataset crawled from Ama-

zon, used by [92].3 For the set of labeled training sentences, we use the sentences

tagged with aspect terms from SemEval competitions. For the restaurant domain,

the training sentences are from SemEval 2014 and 2015, and for the laptop domain,

the training sentences are from SemEval 2015.

To pre-process the review data, we remove stop words and words with no pre-

trained embeddings. Sentences with less than 3 words are also removed. After

preprocessing, the Yelp dataset contains 17948 reviews, with each document con-

taining 9.1 sentences on average and each sentence containing 5.8 words on aver-

age. In the Laptop dataset, there are 31,363 documents, where each document has

8.8 sentences on average and each sentence has 7.6 words on average.

2https://www.yelp.com.sg/dataset challenge
3http://www.cs.virginia.edu/˜hw5x/dataset.html
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Dataset #Aspect LDA ME-LDA RNN-LDA ME-NA RNN-NA RNN-NA-t

Yelp 10 0.533 0.65 0.45 0.50 0.53 0.65

20 0.55 0.51 0.40 0.50 0.63 0.55

Laptop 10 0.47 0.50 0.70 0.70 0.58 0.73

20 0.57 0.59 0.74 0.65 0.55 0.75

Table 6.2: Model precision (MP) of word intrusion by various models.

6.3.2 Aspect Quality

Word Intrusion

To evaluate the quality of aspects identified by our models, we conduct the word

intrusion experiment [7]. For each discovered aspect, we extract 5 most probable

words. We also extract another intrusion word that has a high probability in some

other aspect but low probability in the current aspect. There words are then mixed

and presented to the annotators to pick out the intrusion word. We ask four gradu-

ate students for the annotation. Fleiss’ Kappa, which is a standard way to measure

agreement among more than two annotators, shows that the inter-annotator agree-

ment is 0.353 for the Yelp dataset and 0.487 for the Laptop dataset. These two

scores indicate fair agreement and moderate agreement respectively. Model Preci-

sion (MP ) is used as the evaluation metric, which is defined as

MP =
1

N

N∑
a=1

Ma

T
. (6.15)

Here, N is the number of annotators, T is the number of aspects, Ma is the number

of intrusion words that are correctly identified by annotator a.

The performances of all models with aspect number set to be 10 and 20 are

shown in Table 6.2. We can see that RNN-NA-t performs the best most of the time,

which demonstrates that our model is effective in mining aspects with high quality.

RNN-NA can only outperform RNN-NA-t in one case. It proves that fine-tuning

word embeddings in our model is important.
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Dataset #Aspect LDA ME-LDA RNN-LDA RNN-NA ME-NA RNN-NA-t

Yelp 10 -2.932 -4.421 -4.110 -0.757 -0.639 -0.363

20 -3.487 -4.319 -4.129 -0.698 -0.628 -0.443

Laptop 10 -1.638 -5.476 -5.591 -1.090 -1.077 -0.866

20 -2.746 -5.514 -5.698 -1.186 -1.111 -0.787

Table 6.3: Topic coherence.

Coherence

Besides human evaluation, we also evaluated our models with topic coherence,

which is a metric measuring aspect quality based on co-occurrence of words [60].

It is defined as

C(t, V (t)) =
2

M(M + 1)

M∑
m=2

m−1∑
l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

, (6.16)

where V (t) contains the M most probable words in topic t. v(t)
m and v(t)

l are the mth

and lth words in V (t). D(v
(t)
l ) is the number of documents containing word v(t)

l and

D(v
(t)
m , v

(t)
l ) is the number of documents containing both v(t)

m and v(t)
l .

Table 6.3 displays the averaged topic coherence of different models. All mod-

els based on our proposed neural network can get better performance than others.

Meanwhile, RNN-NA-t consistently gets the best performance. It proves that as-

pects discovered by our models are more coherent than those discovered by the

competitors.

Qualitative Evaluation

To qualitatively study the quality of aspects identified by our proposed model, we

show 4 sample aspects of the laptop dataset identified by RNN-NA-t and ME-LDA

in Table 6.4. The top 10 most probable words of each aspect are displayed. Words

that are closely related to the aspect are emphasized in bold font. From the table

we can see that aspects learned by RNN-NA-t look more coherent and more words

are closely related to the topic. As the dataset we use focuses on the laptop domain,
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RNN-NA-t ME-LDA
network display os support network display os support
wifi screen windows support windows screen windows warranty
wireless display os service screen keyboard system service
connection resolution system customer support windows os customer
internet keyboard operating warranty wireless battery screen support
windows color software tech wifi quality operating drive
driver size xp shipping connection display software screen
card quality vista samsung system sound use hard
network colors use screen internet price keyboard windows
drivers brightness works battery battery touch drive battery
support retina hardware system keyboard drive battery shipping

Table 6.4: Sampled learned aspects from the Laptop dataset.

some frequent words become dominant and appear in many topics, such as “win-

dows” and “keyboard”. This increases the difficulty of learning clean aspects from

this dataset. However, compared with ME-LDA, RNN-NA-t is much less affected

by this. Dominant words only appear near the bottom of the topic word list learned

by it. The qualitative evaluation shows the advantage of our neural network for

aspect identification in discovering meaningful and coherent aspects.

6.3.3 Perplexity

We evaluate all models’ generative abilities using perplexity, which is a commonly

used metric to evaluate the quality of language models and topic models. The defi-

nition of perplexity is as follows:

perplexity = exp(− 1

N

∑
s∈T

P (s)), (6.17)

where T is our held-out test dataset, N is the total number of sentences in it and

P (s) is the probability of generating sentence s. In our experiment, we leave 20%

of our dataset for testing and train the models based on the remaining 80% dataset.

Perplexities over different numbers of aspects are shown in Figure 6.1.

We can see that our complete model with fine tuning of word embeddings is

performing the best over various numbers of aspects on both datasets. Meanwhile,

using RNN models to help separate aspect words from the rest performs better than

using Maximum Entropy based models most of the time. Both findings verify that
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Figure 6.1: Perplexities over different numbers of aspects for different models.

using neural networks in our model can improve generalization capabilities.

6.3.4 Sentence Clustering

To show how topical embeddings learned by different models benefit downstream

tasks, we compare the different models in terms of sentence clustering. We manu-

ally labeled 100 sentences from the Yelp dataset and 100 sentences from the Laptop

dataset. Normalized mutual information [56], which is a popular metric in text clus-

tering, is used to measure performances in our experiment. we do not include it in

this evaluation.

The results are shown in Figure 6.2. We can see that our proposed neural net-

work models outperform all other competitors. As all sentences are from the same

domain, it is uneasy to effectively discover clear aspects and cluster sentences by

using co-occurrence statistics. So traditional topic models perform poorly. By learn-

ing topic embeddings, our models can improve a lot. Figure 6.2 also shows that us-

ing RNN to help separate out aspect words is much more effective than Maximum

Entropy classifier.

6.4 Discussion

We explored aspect identification from reviews by proposing a novel neural net-

work model. Our model is able to associate aspects and words using distributional

vectors. An RNN model trained on labeled sentences is embedded into our model,
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Figure 6.2: Normalized mutual information.

which helped the model learn cleaner and more discriminative topics. Experiments

on two datasets from different domains show that our model is effective in discov-

ering meaningful aspects, predicting words and benefiting downstream applications

such as sentence clustering. In the future, we will explore more complex neural

network layers to model aspects and documents, and to jointly train the RNN with

the neural network model for aspect identification.
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Chapter 7

Dissertation Conclusion and Future

Work

7.1 Summary

With the popularity of online shopping, there are more and more online reviews of

products/services generated every day. As it is almost impossible to manually read

these reviews, we need to develop automated techniques to process them. Aspect

discovery is one fundamental way to help us do it. Aspects are attributes or fea-

tures of a product/service, which people usually use to evaluate a product/service.

They are also the dimensions along which people write reviews. Aspect discovery

can benefit a lot of downstream applications such as aspect-based opinion mining,

product recommendation, aspect specific rating prediction and so on.

We argue that there are 3 sub-tasks in aspect discovery from online reviews,

which are: 1) define aspect, 2) identify aspect words, and 3) cluster aspect words.

The first step aims at specifying the aspects we are interested in and figuring out

how to find them. The second step is to find out words that are most relevant to

aspect discovery and filter out other words. The last step is to cluster aspect words

into groups. Words that refer to the same aspect should be grouped together in this

step.
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While many researchers have been looking into the second and third problem,

few has studied the first one. Most previous work of aspect discovery from product

reviews assumes that the topics learned by unsupervised topic models are naturally

aspects. However, this may not be true as reviews also contain information other

than aspects. To tackle the second problem, existing work usually transforms it into

a sequence labeling problem and uses sequence labeling models to solve it. Most

of these models are extensions of Conditional Random Filed or Hidden Markov

Models. In recent years, Recurrent Neural Network (RNN) and its extensions have

also been applied to this problem. Although these models can achieve good perfor-

mances when the testing data come from the same domain as the training data, they

cannot work well in a cross-domain setting. The main reason of this problem is that

these models heavily rely on domain-dependent features. To solve the third prob-

lem, many variants of Latent Dirichlet Allocation have been designed. However,

they treat words as discrete signals without considering their semantic meanings.

Because of this, aspects can only be learned based on co-occurrence statistics of

words. They may not work well when the word usage of reviews is diverse or the

input data is sparse.

To solve the above problems of existing work, we use four chapters to intro-

duce four models in this thesis. Firstly, we argue that besides aspects reviews also

talk about properties of products, which should be separated from aspects. Prop-

erties are products’ intrinsic features, such as their brands, genres and so on. We

design a generative model which considers aspects, properties, and other related

latent factors to model the generation of product reviews. Our model can separate

aspects from properties and link both of them to ratings of reviews. Secondly, to

improve the performance of RNN in cross-domain aspect word identification, we

use domain-independent syntactic rules to generate auxiliary labels and design two

neural network models to incorporate this information. With the help of auxiliary

labels and our specially designed neural networks, we are able to learn features that

are useful to both source and target domains. Thirdly, we design a topic model us-
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ing representational vectors of words to learn aspects. Instead of treating words as

independent discrete signals, our model can incorporate their semantic meanings.

In the end, we also propose a model to jointly identify and cluster aspect words. In

this model, RNN is seamlessly integrated with a neural network based topic model,

which is also called Neural Topic Model (NTM).

7.2 Future Work

We acknowledge that this thesis does not exhaustively solve aspect discovery from

product reviews. There are some open problems worth exploring in the future. We

try to spot and introduce some of them in this section.

A Joint Training of Aspect Word Identification and Clustering

While aspect word identification and clustering are two tasks that are often sepa-

rately handled by previous work, they are naturally related and may reinforce each

other. We propose a model in Chapter 6 by integrating RNN with Neural Topic

Model (NTM). The RNN model is first trained on a small scale labeled dataset and

its output is then used as a distant supervision to guide the NTM we design. It is

easy to imagine that words that can easily form an aspect are more likely to be as-

pect words. Meanwhile, words that are more likely to be aspect words should be

able to form an aspect with higher probability. Our model only models the sec-

ond hypothesis. We can model both hypothesises by jointly training the RNN and

NTM components of our model at the same time. Both labeled sentences and un-

labeled product reviews should be used in the joint training. Besides, an advanced

optimization algorithm, variational back propagation is required to learn this model.

100



Modeling the Aspects and Words in a New Way

To model the semantic meanings of words, we develop two models in Chapter 5 and

Chapter 6. We assume that each aspect has a representational vector to model its

semantic meaning. Relatedness between a word and an aspect is determined by the

inner product between the word vector and aspect vector. Compared with existing

work, which uses multinomial distribution to represent an aspect, our models can

use semantic level information. However, using inner product to model semantic

relatedness is still too simple. A more advanced deep neural network should be

used for it. By doing this, we may be able to model words and aspects in a higher

dimension space without introducing too many parameters.

Modeling Word Sequence and Sentence Sequence in Product Re-

views

In this thesis, we treat a document either as a bag of words or as a bag of vec-

tors. These assumptions help us simplify the generation of product reviews without

losing too much key information. However, the sequential ordering of words and

sentences are also important. Even with the same words, the meaning of a sentence

can be totally different when the order changes. Besides, there are transitions of as-

pects between words and sentences. Modeling the transitions can help us discover

aspects more accurately. Existing work [34, 81] has tried to use directed probabilis-

tic graphical (e.g. HMM) to do this and has achieved good results. It is a promising

direction to use deep learning techniques to model word sequences, sentence se-

quences, and aspect transitions.
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ilies and former friends: Unsupervised learning for dynamic fictional relationships.
In Proccedings of The 2016 Conference of the North American Association for Com-
putational Linguistics, pages 1534 – 1544, 2016.
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