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Proactive and Reactive Strategies to Handle Surges in Urban Crowds

Jiali Du

Abstract

Most urban infrastructures are built to cater a planned capacity, yet surges in usage

do happen in times (can be either expected or unexpected), and this has long been

a major challenge for urban planner. In this thesis, I propose to study approaches

handle surges in urban crowd movement. In particular, the surges in demand studied

are limited to situations where a large crowd of commuters/visitors gather in a small

vicinity, and I am concerned with their movements both within the vicinity and

out of the vicinity (the egress from the vicinity). Significant crowd build-ups and

congestions can be observed in a number of cases I studied, and when capacity

expansion is not a viable strategy (either because of budget or physical constraints),

smoothing these demand surges would be the only practical solution. To handle

such demand surges in urban crowds, we can either:

1. Distribute demands temporally: by slowing down the flow rate of incoming

demands to the congested region through providing incentives or distractions.

2. Distribute demands spatially: by redirecting overflowing demands to other

parts of network where spare capacities are still available. This might require

additional investment in establishing complementary connection service.

My thesis aims at proposing computationally efficient strategies to tackle these

issues. The first strategy targets on distributing demands temporally in a proactive

way. In other words, this strategy is designed to prevent demand peaks from forming

by slowing down crowd from congregating to areas of concern. As an example, I

propose to study the strategy of crowd management in the context of theme park; in

particular, the delay of flow rate towards congested areas is achieved by providing

distractions (or incentives). It is demonstrated that crowd build-ups can be mitigated



by utilizing this strategy. However, it might not always be possible to delay the

crowd movement. For example, after major sports events that end late, most of

crowd would just want to leave the stadium and reach home as soon as possible,

and they will not slow down their egress pace, regardless of distractions/incentives.

In these cases, I propose to study the use of the second strategy, which distributes

crowds spatially to other parts of network so as to avoid clogging the vicinity that is

closest to the demand node. More specifically, I propose to provide parallel services

complementing existing ones so that more commuters can leave overcrowded areas

and start their trips from other less crowded nodes. Consequently, there should be

much fewer people queuing for services at the origin node.
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Chapter 1

Introduction

1.1 Motivation

For the past few decades, we have witnessed unprecedented growth in the degree

of urbanization. The percentage of global population living in cities has already

reached 54% in 2014, and is expected to reach two-third by 20501. The increasing

population leads to higher complexity in urban city management. In particular, most

existing infrastructures are built to cater a planned capacity, yet the surges in usage

do happen in times (can be either expected or unexpected), and this has been a major

challenge for urban planner.

Challenges include but not limited to: (1). Reducing the congestions in popular

theme park to prevent passengers from waiting for too long; (2). Managing the

traffic support for large crowds after major events to reduce the congestion; (3).

Balancing the supply and demand for taxis service during peak hours so that to

reduce the inconvenience for passengers; (4). Adjusting the toll price to control the

traffic flow on express road and so on.

To tackle the demand surge issues for urban crowds, I propose to study ap-

proaches which can handle surges in urban crowd movement. Surge of demand

should be quantified by analysis on the data set and the proposed strategy is ex-

1http://www.un.org/en/development/desa/news/population/
world-urbanization-prospects-2014.html

1
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CHAPTER 1. INTRODUCTION

pected to be practical and not too costly.

Demand surge generally describes the phenomenon where excessive demand

occurs suddenly but the supply is not prepared to respond quickly. Specifically,

the surges in demand studied in this thesis are limited to situations where a large

crowd of commuters/visitors gathering in a small vicinity, and I am concerned with

their movements both within the vicinity and out of the vicinity (the egress from the

vicinity). Vicinity studied in this thesis include national stadium, major MRT sta-

tions, popular theme park. Surges studied are triggered by the large event, morning

evening peak hours and popular attractions.

Demand surges cause inconvenience for people and leads to various problems.

For instance, in a large theme park of Singapore, historical data shows an average

waiting time of over 80 minutes for the popular attractions during peak hours[7],

which heavily impacts visitors’ experience. Figure 1.1 provides details of waiting

time for different attractions at different time of a day, from which we observe that

attraction T has a long queue (over 80 mins) in early morning. Another example

Figure 1.1: Historical waiting time in theme park [7]

addresses the problem of egress when huge number of people gather at the facilities

such as stadium or conventional centers during major events. Such demands are

going to overwhelm the existing infrastructures significantly. Peak-hour traffic con-

gestion in growing metropolitan areas is another concern for urban planners. In a

business park, the majority of people seeking to move in during morning rush hours,

which causes heavy congestions in MRT stations nearby.
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Having the necessary resources to respond to surging demand in a timely man-

ner is therefore, very important and mechanisms must be proposed to handle this

efficiently in order to enhance the experience. To handle such demand surges in

urban crowds, we can either:

(1). Distribute demands temporally by slowing down the flow rate of incoming

demands to the congested region through providing incentives or distractions.

(2). Distribute demands spatially by redirecting overflowing demands to other

parts of network where spare capacities are still available. This might require

additional investment in establishing complementary connection service.

My thesis aims at proposing computationally efficient strategies to tackle these

issues.

1.2 Research Objectives

We discuss two strategies in this thesis. The first strategy targets on distributing

demands temporally in a proactive way. In other words, this strategy is designed to

prevent demand peaks from forming by slowing down crowd from congregating to

areas of concern.
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(b) Congestion level at node s

Figure 1.2: Illustration of the first strategy – using s′ to slow down the crowds and
hence reduce the congestion level

Figure 1.2 helps explain the idea. Formally, recognizing the high likelihood of
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flow moving towards a busy node, s, in a short time, it is possible to make people

take detour to a leisure node, s′, before they reach s. The dotted line with arrows in

Figure 1.2(a) represents the original direction of flow and the solid line denotes the

actual flow after diverting. Remaining at s′ takes some time and helps slow down

the increasing speed of the flow to s. As can be seen in Figure 1.2(b), without any

intervention, the congestion level at node s quickly increases over time shown with

the dotted line. After deploying the strategy, the increasing speed on the congestion

level at node s is mitigated described by the solid line.

However, it might not always be possible to delay crowd movement. For exam-

ple, after major sports events that end late, most would just want to leave the stadium

and reach home as soon as possible, and they will not slow down their egress pace,

regardless of distractions/incentives. In these cases, I propose the second strategy,

which distributes crowds spatially to other part of network quickly so as to avoid

clogging the node that is closest to the demand node.
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Figure 1.3: Illustration of the second strategy – adding capacity between s and s′ to
increase the dispersion rate of crowds hence reduce the congestion level

Formally, when observing large quantities of flow accumulated at node s, we tar-

get on accelerating the dispersal process of flow going from node s to its neighbors,

s′. Refer to Figure 1.3(a), we use dotted lines to represent the original capacity be-

tween s and s′ and the solid lines denote the additional capacity provided to increase

the throughput between nodes s and s′. After putting in more spare capacities, the

quantity of flow clogged at node s represented by solid line is reduced compared to
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the original one denoted by dotted line in Figure 1.3(b).

In the following sections, we use three real-world applications to explain how

we apply the two strategies to handle the demand surges.

1.2.1 Learning and Controlling Network Diusion: A Temporal

Redistribution Approach

In this section, I propose to study the first strategy of crowd management in the

context of theme park. In particular, the delay of flow rate towards congested areas is

achieved by providing distractions (or incentives). We model the visitors’ mobility

behaviors in the theme park as diffusion dynamics.

In general, diffusion processes describe how ideas, influence, and people spread

over an underlying network, which for example may be a social network [27] or

a transportation network [29]. Understanding diffusion dynamics is important as

it helps predict and control the contagion spread in a network. The independent

cascade (IC) model of [27] and its variants have been quite successful in modeling

such a diffusion process over a network in a variety of domains [34],[28],[18].

We address several features of cascades in real-world that are not modeled in

the existing IC model. For example, in many networks, it is not feasible to track the

status of each entity in the cascade (e.g., tracking visitors moving in a theme park).

Therefore, diffusion dynamics must be learned from the aggregate observed data for

the underlying contagion. Some examples include finding the most probable path

of migratory birds [13], understanding the evolution of traffic in a transportation

network [8],[29], emotional contagion in a crowd evacuation scenario [54] and mo-

bility pattern of visitors in a theme park. Therefore, we develop techniques based on

mathematical optimization that can learn the underlying dynamics of the diffusion

process using only aggregate data.

We incorporate realistic features, such as modeling queues at nodes in the un-

derlying network (e.g., attractions in a theme park) while learning the diffusion

dynamics based on aggregate data. We further augment the IC model with flow
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conservation that is required when modeling the diffusion process in problems such

as traffic flow diffusion or visitor flow across theme park attractions. Incorporat-

ing such features results in a dependent cascade model, where the diffusion over

the outgoing edges must satisfy flow conservation and is no longer independent for

each edge.

Given the learned model of the diffusion dynamics, the next key problem we

address is how to take decisions within a given budget to alter the dynamics of the

underlying diffusion process to optimize some performance criterion. We are moti-

vated by the problem of placing sideshows in an overcrowded theme park to reduce

congestion at different attractions. Sideshows alter the underlying flow of visitors

by attracting some fraction of visitors to themselves, thereby reducing congestion

at main attractions in the theme park. When and where to place sideshows using

limited resources is the key decision making problem we address. We show the

research of this part in Chapter 3.

1.2.2 Bus Bridging in Post-event Crowd Diffusion: A Spatial Re-

distribution Approach

In this section, I propose to study the use of the second strategy, which distributes

crowds spatially to other part of network quickly so as to avoid clogging the node

that is closest to the demand node. More specifically, I propose to provide paral-

lel services complementing existing ones so that more commuters can leave over-

crowded areas and start their trips from other less crowded nodes.

In urban city, there is a growing number of large events such as concert, sports

game and festivals. Operating the events is challenging as the surge of human traffic

demand caused by the events impose a ultra-high traffic stress in transportation.

Impacts include but not limited to slow road traffic, delay on public transportation,

extremely long wait time for passengers and so on.

Our aims in this work are to provide a formal model and a computationally

scalable approach for handling demand surges concentrating at a few highly con-
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gested origins. In particular, we propose a “spatial redistribution” approach, which

optimally reroutes public transport passengers experiencing excessive wait times at

known origins to other less congested parts of the public transport network. As

these rerouting efforts are achieved mostly by providing complementary shuttle bus

services linking pairs of existing public transport stations, the capacity of these con-

nection services will be limited by the available budget. Due to this budget limit,

and the fact that the number of service lines is exponential in the number of stops, a

computationally efficient optimization approach will be necessary to overcome the

combinatorial nature of the optimization problem.

To make our approach computationally feasible, we propose a two-phase frame-

work which first decides which shuttle bus links should be established, followed by

deciding the capacity for each established link. During the first phase, we imple-

ment a column generation procedure, which iteratively identifies new route that

could satisfy more demands. The key idea of this phase is to identify a portfolio

of additional connection services that could serve as many passengers as possible.

Given the set of service lines to establish, the second phase will then assign avail-

able buses to individual service lines, minimizing the total travel time experienced

by commuters while observing the budget constraint.

1.2.3 Integrated Bus and Bike Sharing Services for Last-mile

Commute: A Spatial Redistribution Approach

In this section, I propose to study the use of the second strategy to distribute crowds

spatially in the context of business district. In the main station of the business park,

we observe a clear demand surge pattern during morning and evening peak hours

on working days. Typically, I propose to provide bimodal transportation services

between the demand node and passengers’ destination nodes, which expands the

transportation capacities in two dimensions.

Many foreign companies prefer to establish their business hub in world-class

cities such as Singapore, which, encourages the local government to develop the ar-
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eas for building business districts. As more and more business districts are planned

and constructed, their locations are not limited to downtown but cover suburban

areas as well. Transportation network for business district in downtown center is

vibrant. However, regarding suburban areas, there is only limited number of MRT

stations in the business park, which is not sufficient to serve all passengers heading

towards the business park. During morning and evening peak hours, demand surge

occurs at those major MRT stations.

Our goal for this work is to provide a formal model that computes the optimal

portfolio over two different transportation services for passengers to travel from

major MRT stations to their working offices. Specifically, we present a compu-

tationally efficient approach which comes out with the best portfolio assignment

plan over a mixture of transportation modes: bus and bike sharing services. Adopt-

ing both bus and bike services provide benefits to operators: bus allows flexible

transportation such that the schedule can be altered according to real-time demand

patterns; bike sharing service is cheap to deploy. Integrating both services provide a

way to increase transportation capacities in parallel between the major MRT station

and destinations.

As bus and bike planning problems are two independent problems, we propose

each model in the first phase. The fundamental idea behind bus model is to de-

termine good bus routes which can serve a group of passengers along its way and

deploy buses over each candidate routes so that to achieve minimal travel time. The

main issues solved by bike sharing model is to determine where to construct bike

storing stations and its relative capacity. In the meanwhile, the model also produces

the bike-rebalancing plan. With above model proposed, in the second phase we

connect them using systematic methods – Lagrangian Relaxation and Sub-gradient

approach. In this way, we iteratively obtain good plans which save passengers’

travel time.
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1.3 Contributions

To summarize, we review the contributions in this dissertation mainly in two as-

pects.

Methodologically speaking, the major contributions are:

1. For distributing demands along the temporal dimension, I apply the Depen-

dent Cascade (DC) model to model visitors transition behaviors, which aug-

ments existing Independent Cascade (IC) models by incorporating a real-

world feature of (1). adding flow conservation constraints at each node; and

(2). learning the diffusion dynamics with only aggregate observations.

2. For distributing demands along the spatial dimension, I provide the optimization-

based approaches to identify bus routes and their operational policies for con-

nection service. To scale up computational, a particular variant of column

generation technique is applied: I identify bus routes that minimize total travel

cost in the master problem; I identify the beneficial route in the pricing sub-

problem.

3. For distributing demands along the spatial dimension during morning and

evening peak hours, I provide bimodal transportation options including both

bus and bike sharing services to expand the transportation capacity along the

way. To connect those two independent models systematically, I apply La-

grangian Relaxation and Sub-gradient method so that can iteratively obtain

the solutions.

Practically speaking, the major contributions are:

1. I use the theme park context to illustrate the first strategy. I apply the real-

world historical wait time data to learn visitors transition probabilities and the

accuracy is close to 80%. With the learned parameters, links that should be

slowed down will be identified, and distractions such as side shows or parades

will be introduced to avoid crowd build-ups for busy attractions. Close to 20%
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average wait time reduction and up to 25% peak wait time reduction can be

achieved by my approach.

2. I use the public transportation context to illustrate the second idea. I vali-

date the model using a concession card dataset in Singapore (which contains

all tap-in and tap-off records for all commuters). Numerical experiments are

conducted under two conditions: In the normal situation where the existing

infrastructures are working well, a reduction of 18.8% in the total travel time

is achieved; under the disrupted case where certain links are shut down, my

approach is comparable to one of the state-of-art methods found in the litera-

ture (despite the fact that the method is not designed for the disrupted case).

3. I further use the bus services in the context of a business park to illustrate the

second idea. I validate the model by comparing our bus service and mixed

transportation options to the existing deployment addressed by the operators.

Results indicate we generate better bus routes than the current ones and we

save passengers’ average travel time with bike services incorporated.

Generalization: the extension of research findings and strategies proposed in

my thesis is generalizable due to following reasons:

1. The data set we collected are either from urban planners or online sources,

such as waiting time and service rate in the theme park, network topology

of transportation network, travel time extracted from Google map, etc. To

extend this work in the context of other cities, there should be no difficulties

in collecting similar data set. Specifically, in most cases, no extra facilities

need to be built for data collection;

2. We have adopted network flow model in this thesis to describe the movement

of crowds. This model is flexible to extend to model demand surge in different

contexts, such as taxi network, pedestrian network, etc. The advantage of

applying network flow model is to quantify the demand surges through flow

analysis so that operators can provide optimal strategies accordingly;
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3. Proactive and reactive strategies we proposed for managing the surges are

practical and easy to be extended. Parameters can be tuned with real-world

considerations for different problems. In our experiments, we show the rela-

tionships between budget deployed and service quality. From which, opera-

tors can assess how much the efforts can be delivered and adjust the deploy-

ment of service under a reasonable budget.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, I review previous

studies that handle demand surges in different aspects. In Chapter 3, I use theme

park context to illustrate the first strategy of distributing demands temporally. In

Chapter 4, I introduce the second strategy of distributing demands spatially using the

public transportation context. In Chapter 5, I introduce the problem of optimizing

the portfolio for a mixture of transportation services to handle morning and evening

demand surges in a business district. I conclude this dissertation thesis and discuss

the future works in Chapter 6.
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Chapter 2

Related Work

Demand surges or sudden demand build-ups can easily lead to congestions in the

urban city. One of the examples lies in large event situation. An observation [31]

shows two clear subsequent waves of large crowds due to people going to and leav-

ing the event venue. Such congestion affects the normal operation of transportation

system, for example, in [30], a slow-moving traffic for 10 miles from the concert

venue in the UK was caused [31]. Other examples include traffic congestions on

expressways during peak hours [12], parking obstructions at parking slot [17], evac-

uation and egress during the emergency at buildings [43] and so on.

A variety of solutions is proposed to solve surges in different contexts. To man-

age the congestion of the theme park, Disneyland introduced the Fastpass system,

which encourages people to visit popular attractions at designated times by pro-

viding express accesses to those who follows the instructions[7]. Such system can

offset the waiting time at busy attractions and spread the crowd more evenly. To

manage the road traffic, real-time information were provided to facilitate the move-

ment of the large number of passengers [2]. Closure of tunnels and re-route vehicles

is another way[2]. Other measures include traffic signal re-timing and real-time traf-

fic monitoring [32].

Strategies to handle demand surges are mainly categorized into two ways: proac-

tive and reactive, with the consideration of their reactions to the situations. Proactive
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strategy refers to responding to the system before congestions get worse. Reactive

strategy is to act to the situation rather than anticipating the future. We summarize

some works in Table 2.1

Table 2.1: A summary of approaches in different contexts

Context Solution Reference

Emergency egress Integrate the desired states and the current pre-
vailing traffic conditions to produce real-time
traffic control schemes.

[35]

Theme park Routing visitors to less crowded areas by offer-
ing incentives and information on mobile de-
vices.

[6]

Service systems Adjust operating capacity (service counters and
servers) to for reduce congestion.

[52]

Emergency egress Maximize the throughput during the specified
evacuation duration.

[37]

Traffic congestion Charge tunnel tolls to adjust the volume of traf-
fic so that reduce congestion.

[61]

Parking congestion Reduce the parking congestion by increasing
the parking fees.

[17]

Among these works, [35], [6] and [52] solve congestion proactively. They

measure the crowds and make proper adjustment before the congestion get worse.

Whereas [37], [61] and [17] deal with congestion reactively by providing strategies

to manage the congestion afterwards.

Although methods are provided, research gaps still remain. Each of them has

limitations in various ways and cannot be extended to our domain. For example,

[35] and [37] handles surges in emergency egress, whereas in our context, existing

infrastructures are in good working conditions and we are trying to complement

the existing services. [61] deals with road congestions by altering the charge fees

whereas our model mainly focus on public transportation system. Strategy provided

in [6] is difficult due to the private issues that visitors’ may not want to reveal their

current locations. Moreover, adopting this method is costly for park operators as

they need to open a developer and data analytics team to handle.

Hence, we study the proactive and reactive strategies to handle demand surges in
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this thesis. The rest part of this chapter is organized as follows. I review literatures

in theme park context in section 2.1 and public transport domain in 2.2.

2.1 Proactive Strategy to Handle Surges in Theme

Park Context

2.1.1 Handling Surges in Theme Park

In theme park context, various methods are proposed to handle the congestions.

Major ideas include: (1). avoid visitors going to the same attraction simultaneously

with the help of a coordination system [26]; (2). balance the capacity at attractions

and queuing flow of visitors [1] and so on.

However, the coordination system [26] is based on simulation results. Without

real-world information that reflects transitions of visitors, the proposed solutions

may not be optimal. The empirical data collected for inferring diffusions is from a

survey rather than from operators in [1]. Whereas in our work, visitors’ transition

behaviours are derived with real world data set offered by park operators, which

provides better accuracy for learning the diffusion process.

2.1.2 Dependent Cascade to Model Visitors’ Diffusions

I apply Dependent Cascade (DC), which augments Independent Cascade (ID) model,

to model visitors transition behaviors. In social network literature, learning the pa-

rameters of a IC model based diffusion process has become a flourishing research

area [41],[18],[42],[59],[9],[46]. Myers and Leskovec [41] formulate the problem

of parameter learning using convex optimization. Gomez et al. [18] address a sim-

ilar problem using sub-modularity based optimization. Netrapalli and Sanghvi [42]

address the complementary question of how many observed cascades are necessary

to correctly learn the structure of a network. There has also been work on learn-

ing the parameters using features of the diffusion process, such as the language of

14



CHAPTER 2. RELATED WORK

tweets [59] in a Twitter network and geographical features to learn an endangered

species movement parameters [60]. Daneshmand et al. [9] investigate the net-

work structure inference problem using an l1-regularized likelihood maximization

framework recently. Qu et al. [46] utilized data summarization tools to learn the

diffusions over large and dynamic online social networks.

Our work is different in the sense that the underlying diffusion process has de-

pendent outgoing flows from a node to maintain flow conservation unlike the IC

model. We also assume that only aggregate information is available, rather than

individual-level tracking information required in the IC model. The dependent

cascade model we use is closely related to the collective diffusion model (CDM)

in [29]. Our work addresses an enriched version of such a collective diffusion

model as data requirements in our approach are much weaker. In addition, a sig-

nificant contribution of our work is to formulate and validate diffusion models with

real world data, which was not provided in [29].

In the proactive strategy to handle demand surges, with a learned model of the

diffusion process, the next step is decision-making in the context of the learned

model to handle the congestions proactively The goal is typically to find the set of

actions that result in a diffusion process with certain desirable properties subject to

operational constraints [27, 28, 50],[36]. This kind of decision-making has numer-

ous applications. For example, in disease control, the decision is which nodes to

vaccinate to curb the spread of disease while in advertising, the question is which

nodes to target to encourage the adoption of a product. In traffic scenario, the de-

cision is to route cooperate vehicles such that can ease congestions, the challenge

then becomes how to capture the dynamic and congestion situation and control the

vehicles. Our work proposes and develops an optimization formulation for similar

decision making problem within the context of dependent cascades and aggregate

flow.
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2.2 Reactive Strategy to Handle Surges in Public Trans-

portation Context

2.2.1 Handling Surges in Public Transportation

Our focus for solving the demand surges is mainly on the public transportation field.

There are extensive works in the literatures discussing about the strategic planning

for public transportation services. The general process consists of three major prob-

lems: network design, line planning and timetabling [24]. On solving these three

major problems, various approaches and techniques were proposed, readers may

refer to the following works for details [33], [5], [25].

Unlike the above works, whose focus were on the strategic planning under nor-

mal situations and improving the service quality during a long term period, our

work put the emphasis on minimizing the negative effect caused by the demand

surges through establishing the temporary services. Reasonable bus planning strat-

egy in context of the normal cases might not be applicable under the demand surge

cases as the passengers demand change dramatically during special hours. More-

over, regular bus service that is suitable for the long term period is unnecessary with

respect to the special cases, since the impact results from the event only last for

a few hours. Therefore, we seek strategic planning for the transportation services

under special situations.

One of the special situations in terms of demand surge is metro infrastructure

disruption. Contingency plans were investigated in case of disruption, which can be

found in [22],[56] and [40]. A survey by Pender et al. [44] on the various practices

to manage the disruption, which indicated that bus bridging service is the most

common way to minimize the negative impact of the disruption. Konstantinos et

al. [45] proposed a methodological framework for planning the bus services. There

were two key steps: bus routes planning on the network and shuttle bus assignment

over the selected routes. The optimal bus routes were generated by using the shortest

path algorithm and improved by a heuristic approach. Following this framework, Jin
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et al. [24] formulated the problem by applying a different approach for generating

candidate bus routes compared to [45].

Despite the similarity between disruption management and regular egress, they

are fundamentally different, in the following aspects. For disruption management,

the priority is on restoring as much connectivity as possible, and as a result, the

modeling effort has been mostly on maximizing the amount of flow that can pass

through the point of disconnection. For regular egress, on the other hand, the focus

is on experience management, which aims at minimizing total journey time includ-

ing both travel and waiting time.

In this thesis, my major focus is the case where the transportation services are

in good working condition. We are trying to provide complementary services rather

than contingency plans. However, the proposed methods are general enough to

study the demand surges during both normal and train disruption cases. Specifi-

cally, the model will generate efficient bus routes for passengers regardless of the

completeness of service network.

2.2.2 Studies for Serving Public Transportation

Public transport modes include city buses, trams, massive rapid transit and so on. In

this thesis, we studied bus planning and bike sharing planning problems and I will

introduce the related studies in following sections.

2.2.2.1 Line planning

As mentioned above, line planning is one of the key procedures in bus service plan-

ning problem. Line planning problems mainly discuss the design of routes and their

relative frequencies over the public transportation network. In [48], Anita et al.

proposed an integer programming approach and apply the Dantzig-Wolfe decom-

position method to get the solution. Year after, Ralf et al. presented the branch and

price method to solve the problem in [5]. Later in 2012, A comprehensive survey

of line planning problem was summarized in [47].
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Taking above researchers’ work as a basis, I solve the line planning problem in

two phases. In the first phase, we make use of column generation technique to help

derive good bus candidate routes, which contains a list of candidate bus stops for

passengers to take-off. When devising the routes, we also consider the travel delay

at each stop. In the second phase, we assign a fleet of buses over each route and

distribute passengers in each bus when there are enough capacities allowed. The

target is to achieve the minimal travel time of all passengers.

2.2.2.2 Bike Sharing Problem

The bike-sharing system is another transportation option that we addressed in this

thesis. It is successfully implemented in many places in the world, such as cities

in Europe [3], Asia and America [49]. For implementing the bike-sharing prob-

lem, three major aspects are studied: strategic, tactical or operational planning [58].

Strategic planning problems focus on making decisions on the number, location

and size of bike stations. Martinez et al. [38] optimized the location of biking

stations and measured the bike relocation activities required in a regular operation

day. Tactical planning takes the variant demand into consideration and try to op-

timize the service level by maintaining the bike fill level in the station. George et

al. [16] applied a closed queuing network to model the service network and then

find the optimal fleet size and allocation of rental vehicles. On the operational level,

relocation issues over shorter terms are studied. In 2013, Dell’Amico et al. [10]

addressed the Bike sharing Rebalancing Problem (BRP), with a fleet of capacitate

vehicles employed to redistribute the bikes.

In our work, the challenge for solving bike-sharing problem not only consists

of the above-mentioned issues, moreover, a key problem is to determine the port-

folio assignment over both bike and other public transportation services. The way

that we connect the two independent planning problem is based on there shared con-

straints: demand and budget fulfillment constraints. We make use of the Lagrangian

Relaxation and Sub-gradient optimization approach to solve them.
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Learning and Controlling Network

Diffusion: A Temporal

Redistribution Approach

3.1 Overview

3.1.1 Motivation

The tourism and entertainment industry plays an increasingly important role in the

global economy. In recent years, theme parks have been an important driver in the

growth of this industry. Unfortunately, a vibrant growth in the theme park industry

comes hand-in-hand with worsening congestion and increased wait times. From

studies, we notice that the wait times on weekends and holidays at popular attrac-

tions, particularly in Asian theme parks reaches 2-3 hrs 1.

Improving visitor experience by reducing overall wait times in the theme park

context is challenge in two ways. Firstly, a complete mobility model must be learned

from aggregate data set. In other words, the park operator records only the waiting

time at attractions during different hours of the day, rather than track each patron

1http://www.scmp.com/news/china/money-wealth/article/2021968/100-days-crowds-queues-
and-some-complaints-after-opening
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APPROACH

individually, which, make it hard to understand how people are transiting over dif-

ferent attractions in the park. Secondly, having learned the mobility patterns, we

need to provide effective strategy to help reduce the congestions. This strategy

must be practical and not too costly.

3.1.2 Problem Description

We provide an operational model to represent diffusion in a time indexed graph,

G(V,E, T ) with dependent cascades. Before explicitly explaining our model, we

start with the well known independent cascade model [27],[50] that is used to repre-

sent spread of ideas, influence. Every edge (u, v) ∈ E at time t is associated with a

transition probability ptu,v representing the probability that node v will be activated

if node u was previously activated. In the independent cascade model, probabili-

ties associated with outgoing edges from a node are independent of each other and

hence the cascades in different parts of the network are independent.

On the other hand, since we primarily consider diffusion of agents (people/vehicles)

where flow is preserved, the probabilities associated with edges going out of a node

are dependent on each other. Specifically, we have the following flow preservation

dependency for every node u and time t:
∑

w p
t
u,w = 1. Namely, every agent com-

ing out of umove to one of the nodes w according to the diffusion dynamics, p. Our

work is concerned with the following learning and planning problems in the context

of such dependent cascade models of network diffusion:

(a) Learning: Compute the transition probabilities, p that maximize the likelihood

of observing the aggregate observations n (ex: number of people waiting in queues

at attractions in a theme park over multiple days).

(b) Planning: Given p and budgetB, compute the plan for execution of management

actions that achieve a desired objective.

20



CHAPTER 3. LEARNING AND CONTROLLING NETWORK DIFFUSION: A TEMPORAL REDISTRIBUTION

APPROACH

u

v

w

𝑛𝑢
𝑡 ,𝑑

 

𝑝𝑢 ,𝑤
𝑡  

t=0 t=1 t=2 t=3

Figure 3.1: Time indexed graph representing diffusion of visitors for 3 time steps.

3.1.3 Application to Theme Park Management

Time indexed graph in figure 3.1 represents diffusion of people at theme park. Each

node represents an attraction and an attraction being active at a time step t indicates

that there are people who are coming out of the attraction after getting serviced at

that time step. ptu,v associated with an edge between attractions u and v indicates

the probability that a visitor coming out of attraction u would move to the attraction

v at time t. Since visitors stay within the theme park, summation of transition

probability over all outgoing attractions v from u is 1, i.e.,
∑

v p
t
u,v = 1.

At a theme park, it is impractical to track every visitor transitioning between

attractions (referred to as x henceforth). Instead, there are both people and sensors

(2) to guide and track people at individual attractions. We use this information from

multiple days, represented as nt,du (number of people waiting at attraction u at time

t in day d). The learning problem can be formally defined as:

max
p
L(p|n) (3.1)

where L(p|n) represents the likelihood of parameters p given the observed n.

Theme parks typically conduct moving road shows and/or photo-shoots with

cartoon characters near attractions that have high wait times to ensure people spend

lesser time waiting at attractions. In doing so, passengers are re-distributed in tem-

2http://www.qmetrix.com/sensors/queue-waiting-time-sensors/
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poral dimensions and such redistribution helps alter the existing mobility patterns

and hence reduce the waiting time. However, current practice of placement of such

side shows is ad-hoc and does not consider the diffusion dynamics over time steps.

To address this, our planning approach will compute a placement of sideshows, l,

on edges to minimize wait times while respecting a budget available for side shows.

Thus, the planning problem can be formally defined as:

min
l

∑
d,t,u

ωtu(l,p) s.t.
∑
u,v,k,t

f(lt,ku,v) ≤ B

where ωtu(l,p) is the wait time at time step t for attraction u given diffusion

dynamics p and placement of side shows given by l. f represents the cost of placing

a side show and B is the budget available.

3.2 Learning Diffusion Dynamics

We now describe our method for solving the learning problem described in Equa-

tion 3.1, when we only have access to aggregate observations n. We assume that

the diffusion dynamics from any node u described by pu is a standard probability

distribution characterized by a few parameters. Specifically, we explore the most

relevant ones, namely Multinomial and Poisson. The notation employed in this and

subsequent sections is provided in Table 3.1. Boldface letters are used to represent

vectors of the items described by the corresponding normal-face letter.

Before we describe our approach, we note that our learning problem is different

than the collective flow diffusion (CFD) model of [29] that was developed to under-

stand traffic flow. In the CFD model, it is assumed that the total number of agents

that exit and enter each node are known as shown in Fig. 3.2(a). In Fig. 3.2(a) each

dark square represents the total in and out flow of agents.

However, in many cases, such as our theme park setting, this type of aggregate

data is not available. Instead, we only observe the total number of people waiting

to be serviced at an attraction i as provided by the theme park operator. This makes
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Table 3.1: Notation

Variable Definition

ptu,v Transition probability between nodes u and v at time
step t

nt,du Number of agents in node u at time t on day d
su Service rate (number of agents serviced in one time

step) of node u
D Set of cascades or days on which observations about

n are made
xt,du,v Number of agents moving from node u to node v at

time t on day d
lt,ku,v Binary variable that is set to 1 if side show of type k

is placed on
edge (u, v) at time t

βk Percentage of diffusion attracted by side show of type
k

in

i

j

queue

t t + 1

j

i

t + 1t

out

(a)

t

i

j

queue

t t + 1

j

i
in

t + 1

out

(b)

Figure 3.2: a) shows the aggregate data requirement for the CFD model of [29]; b)
shows the same for our model.

learning more complex in our case due to more hidden variables than the CFD

model. We develop additional constraints to reflect such visitor queues as explained

later using constraint 3.5 in Table 3.2. We can further enrich our diffusion models

using features of attractions similar to [60]. However, visitors currently do not have

access to features such as advanced notification of wait times for attractions they

are planning to visit next.

This makes learning more complex due to more hidden variables than the CFD

model. We develop additional constraints to reflect such visitor queues as explained

later using constraint 3.5 in Table 3.2.

We provide multinomial and poisson distribution based diffusion model and de-
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velop optimization based learning algorithm for computing the parameters.

3.2.1 Multinomial Distribution Based Diffusion

Multinomial distribution – a generalization of the binomial distribution – is a cat-

egorical distribution where each trial results in exactly one of k possible outcomes

with probabilities P1, · · · , Pk (so that Pi ≥ 0,∀i = 1, · · · , k) and
∑k

i=1 Pi = 1. We

represent diffusion from each node, u at time t as a multinomial distribution with

probabilities given by {ptu,v}v∈V for each of the outcomes v ∈ V . Therefore, the

probability of observing xt,du,v number of transitions3 from node u to node v, xt,du,w

number of transitions from node u to node w and so on for any day/cascade d is

given by:

Pr(xt,du |p) =
(
∑

z x
t,d
u,z)!∏

z x
t,d
u,z!

∏
z

(ptu,z)
xt,du,z

where
∑

z p
t
u,z = 1 and xt,du,z represents the number of times (frequency) there was

a transition from u to z at time t on day d. Since, we do not observe either the

probabilities, p or frequencies, x. We learn them by maximizing the likelihood,

L(p|x,n).

More specifically, over all the attractions, likelihood is defined as follows:

L(p|x,n)=Pr(x,n|p)=
∏
d∈D

∏
t∈T

∏
u∈V

(
∑

z x
t,d
u,z)!∏

z x
t,d
u,z!

∏
z

(ptu,z)
xt,du,z (3.2)

where ∑
z

xt,du,z =


nt,du if nt,du < su

su otherwise

Given the equivalence of maximizing likelihood and maximizing log likelihood,

we employ the following objective

max
p

log
∑
x

Pr(n,x|p) (3.3)

3Since x represents an observation, it can be different for different days or cascades, d ∈ D.
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Table 3.2: GETDIFFUSIONDYNAMICS(n, s)

max:
∑
d

∑
u

∑
t

(
log
(
(
∑
z

xt,du,z)!
)
−
∑
z

log(xt,du,z!) +
∑
z

xt,du,z log(ptu,z)

)
s.t. nt+1,d

u = nt,di +
∑
z

xt,dz,u−
∑
z

xt,du,z, ∀t, d, u (3.5)∑
z

xt,du,z ≤ min(su, n
t,d
u ), ∀t, d, u (3.6)∑

z

ptu,z = 1, ∀t, u (3.7)

xt,du,z ∈ N0, ∀t, d, u, z (3.8)

0 ≤ ptu,z ≤ 1, ∀t, u, z (3.9)

To make it computationally simpler, we use the following approximation:

max
p,x

logPr(n,x|p) (3.4)

This approximation is in the same spirit as the one in Sheldon et al. [51]. The main

intuition is that for categorical distributions, such as Binomial distribution, the mode

is very close to the mean. The above optimization problem can be formulated as a

non-linear program as shown in Table 3.2. The objective function is the logarithm

(log) of Eq. (3.2). The first and the second constraint jointly represent the flow

conservation at each node. In the first constraint, the number of visitors at a node

u at time t + 1 according to a cascade d (= nt+1,d
u ) is constrained to be equal to

the number of visitors at the same node at time t with the addition of in-flow into

the node (=
∑

z x
t,d
z,u) and subtraction of the out-flow from the node (=

∑
z x

t,d
u,z) at

the same time step. The second constraint ensures that the out-flow is equal to the

minimum of the service rate at node u and the number of people currently waiting to

be serviced at the node at time step t. Rest of the constraints enforce basic properties

of the diffusion model.

We solve the optimization problem in Table 3.2 using a commercial non-linear

solver called Lingo (http://www.lindo.com).
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3.2.2 Poisson Distribution Based Diffusion

Poisson distribution is often used to provide the probability of a given number of

events occurring in a fixed time interval. Therefore, we also model the visitor dif-

fusion process using this distribution. Similar to the previous two models, we first

define the log-likelihood as follows:

L(λ|x,n)=P (x,n;λ)=
∏
d∈D

∏
t∈T

∏
i∈A

∏
j∈A

λ
xd,t,i,j
t,i,j e−λt,i,j

xd,t,i,j!
(3.10)

Taking log of the above, we get:

log(L(λ|x,n))=
∑
d,t,i,j

[
xd,t,i,j log(λt,i,j)− λt,i,j− log(xd,t,i,j!)

]

The key parameter of interest in addition to x with Poisson distribution isλλλ. The op-

timization formulation in Table 3.2 is appropriately modified to reflect this change.

3.3 Controlling Diffusion Dynamics Through Redis-

tributing Visitors in Temporal Dimension

We now describe our mechanism to compute plans of management actions that will

be used to control diffusion dynamics through re-distributing the visitors. In this

work, we consider management actions that can be viewed as dampeners that are

placed on an edge to absorb the diffusion on that edge for a certain time duration.

In the context of a theme park, these management actions correspond to side shows

that can be placed between attractions for a limited time. Depending on their type,

such management actions have an associated cost and impact on the diffusion. For

instance, a photo opportunity with a cartoon character only attracts a few people

and is not typically expensive as only one actor is involved. In contrast, an elaborate

road show attracts most visitors traveling on that edge, and is more expensive due
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to multiple actors being involved.

Figure 3.3: Representation of management actions

Figure 3.3 provides a visual representation of how the diffusion dynamics are

altered due to a management action. As explained earlier, ptu,v represents the pref-

erence of visitors coming out of node u to move to node v; βk is the proportion of

visitors absorbed on an edge for one time step due to the management action of type

k. When lt,ku,v=1, there is a management action of type k executed on edge between

u and v at time step t. In this case, βk proportion of visitors are absorbed into the

buffer node F for the current time step t. Their movement is re-distributed in the

temporal dimension. After one time step, at time step t + 1, such visitors at the

buffer node move with probability 1 to their original intended destination v. Thus,

introducing the buffer node via the action lt,ku,v =1 helped alter the mobility patterns

and hence reduced congestion at node v at time step t. Action lt,ku,v=0 indicates that

there is no management action of type k executed on edge between u and v at time

step t. In this case, the diffusion probability remains the same as ptu,v.

Given the diffusion dynamics, p, the goal is to compute the plan l of manage-

ment actions that will minimize the total waiting time or latency over all the nodes

across all time steps over different realizations of diffusion. We also assume that

each management action has a cost, and there is a fixed available budget. Two exist-

ing methods that have been employed for controlling/influencing diffusion are:

• Exploiting sub-modularity: (sub-modularity is a property of set functions indicat-

ing that the difference in the incremental value of the function that a single element

makes decreases as the size of the input set increases.) The problem of selecting
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a fixed number of nodes in a social network that will maximize influence in the

context of independent cascade model [27] is solved by exploiting sub-modularity

of the objective. Specifically, because of sub-modularity, nodes can be greedily

selected one after another based on their marginal addition to the overall influence.

Such an approach provides a solution that is at least 1− 1
e

(=63%) of the optimal.

Unfortunately, with dependent diffusion dynamics, the problem of minimizing

wait time is not sub-modular. (I will show the proofs in the Appendix.)

Given the relevance, we experimentally benchmark the performance of our ap-

proach against the greedy approach, even though it does not provide quality guar-

antees.

• Employing Sample Average Approximation (SAA): The problem of buying parcels

of land to maximize the population of rare species [50] is formulated as a stochas-

tic optimization problem. The key idea is that instead of solving the stochastic

optimization problem directly, a solution is computed for a few samples from the

diffusion process. Because of independence in cascades, samples can be gener-

ated before the optimization.

Unfortunately, when simulating a large population of visitors moving in a theme

park, we would need to sample the trajectory for each of them in the context

of SAA. This leads to a prohibitively large size of the decision problem when

formulated using a mathematical program, and is not scalable.

Therefore, the main contribution of this work with respect to controlling diffu-

sion dynamics is a scalable approach that substitutes the computation of expected

wait time (expectation over trajectory samples of visitors) with wait time for ex-

pected numbers of visitors (expectation over diffusion dynamics) over all nodes and

all time steps. Specifically, we denote EP [
∑

i,t g(nti)] as the expected wait time for

the joint multinomial distribution P (=
∏

t

∏
i

(
∑
j x

t
i,j)!∏

j x
t
i,j !

∏
j(p

t
i,j)

xti,j ) over all nodes

and all time steps. We use
∑

i,t g(Eqti [n
t
i]) to represent the wait time of expected

number of visitors with distribution qti for each individual attraction i at time t.

Proposition 3.3.1 With liner function g(x) measuring the wait time (i.e. g(x) =
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ax+ b), EP [
∑
i,t

g(nti)] =
∑
i,t

g(Eqti [n
t
i]).

Proof First of all, we explain the equivalence of EP [
∑
i,t

g(nti)] and
∑
i,t

g(Eqti [n
t
i]):

EP [
∑
i,t

g(nti)] =
∑
i,t

Eqti [g(nti)]

=
∑
i,t

Eqti [a ∗ n
t
i + b]

=
∑
i,t

a ∗ Eqti [n
t
i] + b

=
∑
i,t

g(Eqti [n
t
i])

The expected wait time can be easily obtained if we get Eqti [n
t
i]. �

To simplify the notation, we use E[nti] instead of Eqti [n
t
i]. We propose the fol-

lowing proposition.

Proposition 3.3.2 If nti ≥ si for all 1 ≤ i ≤ m and t ≥ 1, we have

E[nt+1
i ] = E[nti] +

j=m∑
j=1

(
pj,i · sj

)
− si (3.11)

Proof Obviously, we have E[nt+1
i ] = E[nti +

∑j=m
j=1 (xtj,i − xti,j)] = E[nti] +∑j=m

j=1

(
E[xtj,i] − E[xti,j]

)
, where xti,j is the number of people move to attraction

j after they finished the attraction i at time t. So the problem becomes how to

calculate xti,j .
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E[xti,j] =
k=∞∑
k=0

y=k∑
y=0

(
P (nti = k, xti,j = y|si) · y

)
(3.12)

=
k=∞∑
k=0

y=k∑
y=0

(
P (nti = k) · P (xti,j = y|nti = k, si) · y

)
(3.13)

=
k=∞∑
k=0

(
P (nti = k) ·

y=k∑
y=0

P (xti,j = y|nti = k, si) · y
)

(3.14)

=
k=∞∑
k=0

(
P (nti = k) ·

y=γ∑
y=0

γ!

y!(γ − y)!
pyi,j(1− pi,j)γ−y · y

)
(3.15)

=
k=∞∑
k=0

(
P (nti = k) · γ · pi,j

)
(3.16)

= pi,j ·
k=∞∑
k=0

(
P (nti = k) · γ)

)
. (3.17)

where γ = min(k, Si) in Eq. (3.15). The first “=” is from the independent relation-

ship among the joint multinomial distributions over a set of attractions.

Since nti ≥ Si by assumption, we can easily get P (nti = k) = 0 when k < Si.

Thus, E[xti,j] = pi,j ·
∑k=∞

k=Si

(
P (nti = k) · γ)

)
= pi,j ·

∑k=∞
k=Si

(
P (nti = k) · Si)

)
=

pi,j · Si. Therefore,

i=m∑
i=0

E[xti,j] =
i=m∑
i=1

pi,j · si, (3.18)

and
i=m∑
i=0

E[xtj,i] =
i=m∑
i=1

pj,i · sj = sj. (3.19)

Therefore, the Proposition 3.3.2 holds.

Further, when t = 1, we have E[nt=1
i ] = nt=1

i , for all 1 ≤ i ≤ m. Thereby, we

can recursively obtain E[nti] based on Eq. (3.11), for all 1 ≤ i ≤ m and t ≥ 2. �

The resulting optimization formulation is much smaller and scalable when com-

pared with the sampling approach using SAA. It should however be noted that even

with using expected numbers of visitors, the problem of minimizing wait time using

management actions remains NP-Hard.
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Proposition 3.3.3 The problem of minimizing wait time for expected numbers of

visitors at nodes over all time steps by using management actions l and a given

budget is an NP-Hard problem.

We omit the proof. We prove this by showing that 0/1 knapsack problem is a spe-

cial case of our problem. Specifically, we reduce the 0/1 knapsack problem to our

problem. The key insight is that minimizing wait time at all nodes at all times is

equivalent to maximizing number of agents in buffer nodes at all times. By map-

ping items in knapsack to management actions, weight of an item, wk to the cost, ck

of executing management action and value of an item and finally vk to the overall

increase in number of agents at buffer node due to execution of management action,

we demonstrate this reduction. �

Table 3.3 provides an optimization formulation to compute l that minimizes

the average wait time for expected number of visitors at every node and at every

time step. Let |U | denote the total number of attractions in the theme park, and

T denote total time steps. Each time step in our case denoted a block of 1 hour

period during the day resulting in T = 9. The objective function is the average

wait time over all the attractions u across all time steps. This particular metric was

suggested to us by the theme park operator and is a key performance indicator for the

theme park management. While this formulation contains non-linear constraints, we

will subsequently provide linear equivalents. We refer to this approach as CDON

(Controlling Diffusion through OptimizatioN).

Constraints (3.20) ensures that expected number of visitors in a node, u at time

t+ 1 is equivalent to the expected number of visitors at u at time t plus the expected

number of visitors transitioning out of uminus the expected number of visitors tran-

sitioning into u at time t. Constraints (3.21) are the flow preservation constraints,

which ensure that all visitors coming out of a node go to one of the other nodes. This

introduces dependencies across cascades. Constraints (3.22) ensures correct com-

putation of number of visitors coming out of a node u. Service rate su indicates the

number of visitors that are served in one time step. Therefore, the number of visitors
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Table 3.3: CDON(p, s, n0)

min:
1

|U | · T
∑
u,t

ntu
su

s.t. ntu +
∑
z

xtz,u −
∑
z

xtu,z = nt+1
u ∀u, t (3.20)∑

z

xtu,z = ytu ∀u, t (3.21)

ytu = min(su, n
t
u) ∀u, t (3.22)

xtu,z = ytu ·
[
ptu,z −

∑
k

βk · lt,ku,z · ptu,z
]

∀u, z, t (3.23)

xtu,F = ytu ·
[∑

k

βk · lt,ku,z · ptu,z
]

∀u, z, t (3.24)

xtF,z =
∑
u

∑
k

βk · lt−1,ku,z · yt−1u · pt−1u,z ∀t, z (3.25)∑
k

lt,ku,z ≤ 1 ∀u, z, t (3.26)∑
t,u,z,k

lt,ku,zc
k ≤ B (3.27)

lt,ku,u ∈ {0, 1} ∀u, v 6= u, k, t (3.28)

served in any one time step is the minimum of su and number of visitors in u at time

t, i.e., ntu. Constraints (3.23)-(3.25) clearly state the redistribution procedure and

they ensure correct computation of the expected number of visitors4 that move to

other nodes and the buffer node due to placement of side shows. Constraints (3.26)

and (3.27) are the constraint on for management actions. Constraints (3.26) ensures

that for the same link at the same time, it is only allowed for one type of action.

Constraint (3.27) enforces the budget constraints for the management actions.

As can be noted, Constraints (3.22),(3.23),(3.24),(3.25) all contain non-linear

terms. The first non linear term is in Constraints (3.22). To provide a linearisation

4When there are no side shows, expected number of visitors moving from node u to z at time t
is given by ytu · ptu,z
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to this constraint, we use two binary variables, namely, dtu and etu as follows:

dtu + etu = 1; ytu ≤ ntu; ytu ≤ su

ytu ≥ ntu −M · (1− dtu); (3.29)

ytu ≥ su −M · (1− etu)

In these constraintsM is a large positive number and the tightest bound forM is the

largest value of ntu and su. The validity of these linear constraints can be ascertained

by considering all possible values for the two binary variables, dtu and etu. Next, we

consider the non-linearity in constraints (3.23),(3.24) and (3.25), which is the term

ytu · lt,ku,z. Since ytu is positive and lt,ku,z is a binary number, the linear equivalent

constraints are:

rt,ku,z ≤ lt,ku,z ·M ; rt,ku,z ≤ ytu;

rt,ku,z ≥ ytu − (1− lt,ku,z) ·M ; rt,ku,z ≥ 0

Again the validity of these constraints can be ascertained by considering both pos-

sible values for lt,ku,z.

3.4 Experiments: Learning Diffusion Dynamics

In order to demonstrate the utility of our approaches in computing diffusion dy-

namics, we use a 5-month long data set of wait times from a real theme park in

Singapore which consists of 9 major attractions. Using the wait time data and ser-

vice rate for each attraction in the data set, we get an estimate of how many visitors

are currently waiting in queue at each attraction. We are unable to provide a map of

the attractions due to confidentiality agreements.
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Figure 3.4: Hourly wait time data for the four busiest attractions.

3.4.1 Wait Time Data

We have wait time data available for each of the 9 attractions. The intervals at

which wait times are stored for each of the attractions is different. Therefore, to

ensure consistency, we consider the wait time at hourly interval for each attractions.

A smaller reporting interval may not be necessarily helpful given that the wait time

during the busy period can be quite high.

Fig.3.4 shows the average wait time for the 4 busiest attractions for each hourly

interval starting from 10AM to 6PM. We can clearly see that wait times are close

of 1 hour for many of these attractions. Wait times gradually peak during the af-

ternoon hours when the rush is maximum. Attraction 9 (‘A9’) is the most popular

attraction with patrons preferring to visit it early in the day. This causes an early

wait time peak for this attraction. Such high wait times motivate our approach to

find the mobility patterns of visitors, which can then be analyzed to better manage

congestion. Some congestion control measures include conducting sideshows be-

tween attractions that have high visitor flow among themselves as well as high wait

time.

Leisure node: To account for lack of data on visitors entering and exiting the theme

park as well as taking breaks, we introduce a new attraction called the ‘leisure’ node

numbered ‘A10’. This node is required to account for initial inflow of visitors and

their exit. This node has infinite service rate and infinite capacity. We will show
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Figure 3.5: Accuracy for 5 busiest attractions and leisure node

concretely how this can be captured using the leisure node.

Accuracy Figures 3.5(a) and (b) show the average accuracy achieved by different

diffusion models using the 5-fold cross validation. Using the learned model param-

eters, for example, transition probabilities {ptu,z} for the multinomial diffusion, we

predict the number of people n waiting at each attraction at hourly intervals for all

the days in the test data.

To compute the accuracy, we consider a fixed confidence interval. A predicted

aggregate value n is considered correct for an attraction if it is within a particular

threshold, say 25%, of the true n. Using this definition, we count the total accuracy

for all the predictions with one prediction for each time step for each test day per
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attraction. Figure 3.5(a) and (b) show the accuracy for 25% and 30% threshold. We

make the following observations.

A key observation from figures 3.5(a) and (b) is that attractions that have high

wait times (3, 5, 8, and 9 in Fig. 3.4) also have a high accuracy of prediction (≈

70%-80%). The accuracy is lower for attractions that are relatively lightly con-

gested, such as attraction 7. Attraction 7 as well as attractions 1, 4 and 6 have an

average wait time of 15 minutes. This may contribute to lower accuracy as we use

hourly wait times. Using finer grained reporting intervals (such as every 15 min.),

we expect to increase the accuracy for such lightly congested attractions. We are

currently in the process of collecting such fine grained data from the theme park

operator. Importantly, our approach is able to provide good accuracy for all the

heavily congested attractions validating our models and learning algorithms.

We also observe from figures 3.5(a) and (b) that the multinomial distribution

consistently provides higher accuracy than Poisson distributions. The probability

mass function for Poisson distribution is as follows:

P (x) =
λxe−λ

x!
(3.30)

where x is the number of times an event occurs in an interval and x takes integer

values. According to the definition of poisson distribution, one of the key charac-

teristics is two events cannot occur at exactly the same instant. In our model, event

x represent the action that a visitor coming out of an attraction. However, when

finishing the entertainment, many of the visitors may come out of the attraction si-

multaneously, which implies that the poisson distribution may not proper to model

the diffusions in our context. Thus, the results are worse.

Figure 3.5(c) provides the regression error characteristic (REC) curve [4] for the

5 busiest attractions to show how the accuracy varies continuously with the tolerance

threshold. The x-axis denotes the tolerance, y-axis denotes the fraction of total

predictions that are correctly predicted to be within the tolerance threshold. This

graph shows that the accuracy increases sharply between 20%-30% tolerance level.
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(b) Parameters for A9 for 12PM-1PM

Figure 3.6: Learned parameter verification for the multinomial based diffusion (fig-
ures best viewed in color)

As expected, all the busiest attractions (3, 5, 8 and 9) have high accuracy. Lightly

congested attraction 7 has lower accuracy. Overall, the above set of experiments

indicate a strong performance by our models and algorithms. Using finer grained

wait times from the theme park operator, we expect that our approach would provide

good accuracy even for lightly congested attractions.

Learned Parameter Verification We now explain the transitions into the leisure

node and provide a verification mechanism for the learned parameters obtained for

the multinomial diffusion model ({ptu,z}). Figure 3.5(d) shows the average transi-

tion probability from and to the leisure node over all the attractions for each time

interval of the day. The legend 10-11 refers to the interval 10AM to 11AM. This

figure clearly shows that during the beginning of the day, the transitions from leisure

node to major attractions gradually increases until reaches the peak at around 12PM

to 1PM. Whereas the transition probability to the leisure node is quite low. This is

expected as during the morning and early afternoon, visitors arrive in to the theme

park and they are joining the queue of those major attractions. In contrast, the tran-

sition probability to the leisure node increases significantly towards the latter part

of the day. This is also expected as visitors exit the theme park during late after-

noon and evenings. Thus, the concept of leisure node is able to capture such visitor
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movements succinctly.

To verify the parameters generated using the optimization formulation in ta-

ble 3.2, we compare the learned parameters p against the p′ calculated for each

day from the x values for that specific day: p′t,du,z =
xt,du,z∑
z x

t,d
u,z

. Ideally, the learned

parameters p and parameters p′ for each test day should be as close as possible.

Figure 3.6(a) and (b) show these comparisons for attraction 8 for time interval

4PM-5PM and attraction 9 for time interval 12PM-1PM respectively. The x-axis

denotes the attractions to which visitors can transition to. For example, for fig-

ure 3.6(a), x = 3 implies the parameter p′t=7,·
u=8,z=3, where the holder ‘·’ is for day

number. Intuitively, this parameter represents the probability that a visitor currently

at attraction 8 moves to attraction 3 during the time interval 7 (4PM-5PM). For each

cluster on the x-axis, we show 7 bars. The first bar corresponds to the ‘Learned’

parameter from table 3.2. Other bars show the computed parameter p′ for different

test days, 6 in total.

We make the following observations from figures 3.6 (a) and (b). First, both

the learned parameters p and the computed parameters p′ are very close to each

other. This is true for other busy attractions as well as rest of the time intervals.

This further validates our approach. In addition, for figures 3.6(a), we see clearly

that transition to the leisure node (x=10) dominates all the other transitions. This

is as expected as during the evening hours, visitors exit the theme park. We also

see a clear domination of a few attractions to which the visitors move from both the

attractions 8 and 9. For example, figure 3.6(b) shows that visitors prefer to move

to attractions 3, 5 and 8. Thus, our approach is able to extract meaningful visitor

dynamics from the observed aggregate data.

3.5 Experiments: Controlling Diffusion Dynamics

We now provide an empirical evaluation to demonstrate the utility of our approach

presented in Table 3.3 to control diffusion with temporal redistribution. This method
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Figure 3.7: Average and peak wait time reduction for CDON
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Figure 3.8: Average (left figure) and peak (right figure) wait time reduction due to
CDON in comparison with greedy on real data

is compared to the setting of no side shows and the greedy baseline described below.

We first consider the real data set of theme park along with the diffusion dynamics

obtained using our learning mechanism (described in previous section) and then

consider synthetic problems to demonstrate scalability of our approach in compari-

son to the greedy baseline.

Greedy We employ a greedy algorithm as a baseline in our experiment. It starts with

an empty action set S and iteratively adds the best management actions until cost of

management actions exceeds the budget. In each round, the objective is evaluated

by simulating the cascade when adding every possible management action of type

k to S. The action with the largest reduction in wait time is added to the set S.
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Figure 3.9: Runtime comparison of CDON with greedy on real and synthetic
datasets

3.5.1 Real-world Dataset

Since side shows are placed on the edges, the complexity of controlling diffusion is

dependent on the number of edges, which is 729 in the time indexed graph for the

real data set.

Single Type of Side Show Initially, we show the utility of using side shows by

considering only one type of side shows and β = 1.0 for that side show type.

Since there is only one type, we consider the budget to be the maximum number

of available side shows that can be employed across different time steps. Figure

3.7 shows the average5 and peak wait time6 reduction when compared to wait times

without any side shows for total population ranging from 5k-8k. As expected, both

average and peak wait time reduction increased with the budget, irrespective of the

population size and this reduction in wait time is as much as 20% for the average

and up to 25% for the peak wait time.

Multiple Type of Side Shows We now consider multiple types of side shows, where

the cost, ck and diffusion absorption parameter, βk for the type k are connected

to each other according to one of the five relations below: (1) ck = 10
√
βk; (2)

5Average wait time is the objective of CDON
6Peak wait time is the current wait time with CDON strategy for the attraction that had the highest

wait time previously.
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ck = 10βk; (3) ck = 10(βk)2; (4) ck = 10(βk)3; and (5) ck = 10(βk)4. Their relations

are based on the fact that a side show with low attractiveness (or low β) should be

cheaper to deploy than a popular one. We consider k=4 different types of shows are

available, with βk values given by {0.2, 0.5, 0.75, 1.0} and a fixed initial population

of 7000.

In figure 3.8, we compare the wait time reduction due to CDON in compari-

son with greedy approach on real dataset or (Wgreedy−Wcdon) ∗ 100/Wgreedy, Walg

denotes the objective for the corresponding approach. A higher value of this per-

centage reduction denotes better performance by CDON over greedy. As the budget

is increased, CDON performed consistently better than greedy on all five relations.

We observe that as power of β is increased in the relation, the average wait time

reduction is increased. Because CDON coordinates the placement of shows at dif-

ferent edges, if we have more available shows to place, the difference with greedy

increases. With higher powers for beta, cost values for side shows are smaller result-

ing in more available side shows. This explains the reason for up to 9% wait time

reduction provided by CDON in comparison with greedy. We similarly compare the

wait time reduction for the peak attraction due to CDON in comparison with greedy

approach in Figure 3.8(b). We observe that for all relations, the wait time reduction

percentage is positive and in the best case it goes up to 20%.

We also record the runtime for the 5 different relationships for both CDON and

greedy approach, the results are shown in figure 3.9. Due to space constraints, we

only provide the results for relation 4. In each relation, greedy takes significantly

more time to run than our approach, with the difference increasing as power of β is

increased. This is because greedy strategy needs to evaluate many options as more

number of side shows can be placed within the same budget.

3.5.2 Synthetic Data Set

To further demonstrate the performance improvement provided by CDON in com-

parison with greedy, we generate synthetic problems. Our goal is to identify scal-
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Figure 3.10: Synthetic dataset: reduction in wait time with CDON in comparison to
the greedy approach

ability limits of CDON and greedy. The diffusion dynamics are skewed and are

generated by using a gamma distribution (with different values of shape parameter

σ and scale parameter θ). The sum of diffusion probabilities out of an attraction are

normalised to 1. We show results for relation 4.

Figure 3.9(b) provides the runtime results as the number of nodes (N=12,16,20)

and budget are increased. We have runtime on y-axis and budget on x-axis. There is

an order of magnitude reduction in runtime provided by CDON in comparison with

greedy. For most cases, greedy does not compute a solution within our threshold

of 10000 seconds. This is because greedy has to evaluate placement of a side show

of each type on each of the edges in the time indexed graph, and the number of

edges has been increased from 729 (real problem) to 1296 (for N=12), 2304 (for

N=16) and 3600 (for N=20). Thus, our CDON approach is highly scalable w.r.t.the

number of attractions or network nodes as opposed to greedy. Figure 3.10 provides

the percentage reduction in average wait time as the budget is increased for the

same relation with different values of the gamma distribution’s parameters. We

again observe that gain by CDON increases up to 15% as the budget is increased.

3.6 Conclusion and Discussion

Managing diffusion in networks is an important and challenging problem with ap-

plications in ecology, leisure and entertainment, and marketing among others. Ex-
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isting work has primarily focused on phenomena that diffuse independently on all

outgoing edges of a node. We augmented the basic independent cascade model with

important features required to model real-world problems, such as learning from ag-

gregate data, modeling queues at network nodes and addressing flow conservation at

network nodes. We also developed an optimization based approach that provided a

plan for management actions to distribute the underlying visitors’ diffusion process

in a theme park for reducing the average wait time. We also demonstrated the effi-

ciency and effectiveness of our learning and planning approaches through extensive

evaluations on both real world and synthetic problems.

A limitation of using HMM to model diffusions is: future transitions only de-

pend on the current state and are independent of the history. To account for such

limitation, Long Short-Term Memory (LSTM) [20] model can be utilized. Typi-

cally, LSTM is a Recurrent Neural Network (RNN) architecture which is capable

of doing sequential / time-series learning and predicting. It gets long-term depen-

dencies by connecting previous information to the present task. We can obtain the

parameters learned from dependent cascade model using LSTM and compare it to

our proposed model.
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Chapter 4

Bus Bridging in Post-event Crowd

Diffusion: A Spatial Redistribution

Approach

4.1 Overview

4.1.1 Motivation

In architectural and urban design community, there is a growing trend to design and

build increasingly larger facilities that integrate diverse functions [55]. Examples

of such facilities include stadiums, convention centers and airports. Operating such

facilities with high volumes of human traffic is very challenging and needs to be

carefully planned. Issues related to the operation of such facilities include, but not

limited to, way-finding inside the facility, regular egress, and emergency egress. In

particular, to serve the transportation needs of crowds moving into and out of such

facilities, an important consideration is to integrate mass transit to the facilities.

In this work the key motivation is to design a bus bridging service to complement

mass transit during regular egress in order to minimize total travel time of crowds.

While regular egress is predictable in both crowd volume and timing (the planner

should know exactly how many people will be leaving the facility, and at what time),
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and all utilities can be assumed to be in perfect working condition (which contrasts

the case of emergency egress, where the timing is uncertain, and some utilities could

be faulty), the planning problem is still challenging. The major challenge in regular

egress is to avoid bottlenecks and crowd buildups, which is hard to avoid since mass

transit is designed to satisfy regular transport demands and not demand surges. A

popular solution adopted by many planners is to complement mass transit with bus

bridging services, yet despite the long history of using such services, optimizing

its delivery has not received much attention; as a result, the design of bus bridging

services for regular egress is usually ad hoc and static.

4.1.2 Problem Description

Our problem can be represented by a graph Ĝ = (N̂ , Ê) incorporating existing pub-

lic transport service lines, where stations are denoted as nodes N̂ and connectivities

are denoted as directed links Ê. An example can be seen in Figure 4.1(a), where

each of the three lines is represented by a different line style. Stations along all lines

are represented as hollow nodes in Figure 4.1(a), the node with ultra-high demand

is shaded as node s ∈ N̂ . Note that node s is not necessarily connected to existing

stations, and visitors at node s might need to find their ways to the closest station.

This might be feasible for normal circumstances, yet when the demand is beyond

planned capacity, this sudden inflow of demand might overwhelm the service pro-

vided at the nearby stations.

In this context, the bus bridging service between origin and destination is es-

sentially a way to add temporary routes to the underlining network: if the existing

routes between origin and destination do not have enough capacities to transport

the allocated flow, a new route will be created; otherwise, no other routes will be

generated in between. Noted that a route is composed of a set of connected arcs.

Variable σrτ denotes the deployment of bus service on route r and time τ . The total

number of buses that can be deployed is bounded by the budget B.

If the current resource is enough, all of the commuters will travel via public
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Figure 4.1: Network structure and problem statement

transportation systems. Otherwise, a proportion of commuters has to find their own

way getting home and hence we add a penalty when measuring their travel time.

Commuters are characterized as a set of commodities based on their OD: there are

divided into k groups and commuters of the same group share exactly the same

origin and destination pair. We use variable yrk,τ to determine the number of passen-

gers in group k that take bus service operate on route r at time τ and variable ŷk to

represent the unserved passengers in group k. As our major focus in this work is on

the capacity planning, rather than scheduling, we assume passengers arrive in one

shot, other than arriving in batches. Noted that the number of visitors that can be

served is constrained by the bus services that have been deployed. Moreover, when

we design the bus service in this model, we did not take congestions caused by bus

service into account, which is one of the limitations in our model.

Therefore, our work is concerned with the following problem:

computing the optimal bus deployment plan σ, that can distribute passengers over

the map and in the meantime, miniminizes the total travel time for all passengers y

with a fixed budget B.
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4.2 The Crowd Management Model for Dynamic Bus

Transit Service

To focus only on the part of graph where the bridging service can reach within rea-

sonable amount of time, we define N ⊆ N̂ to be the set containing only nodes

that can be reached from node s within X minutes (X is empirically set to be large

enough to contain all nodes we will ever consider, i.e.: X = 30mins). This region

bounds the area that for us to do flow redistributions. Similarly, we define E ⊆ Ê

to contain all edges between nodes in N . The reduced graph G = (N,E) will be

our focus for the rest of the section. In this work, we plan for commuters’ trip on

reduced graph G and define a station π ∈ N to be the temporary destination inside

the boundary, which is nearest to the final destination π′. In other words, we con-

sider the problem of distributing flow as well as minimizing travel time from node

s ∈ N to temporary node π. Figure 4.1(b) illustrates an example of the mapping

between stations inside and outside the boundary.

Formally, our problem is defined on a graph G = (N,E), where N contains a

set of nodes and E contains a set of arcs. Arcs are directed and each arc (i, j) ∈ E

is associated with the capacity capi,j and arc cost δi,j . Passengers are represented

by multi-commodity flow as they are flow over the network with multiple pairs of

origins and destinations. The set of commodities are given and each commodity

k ∈ K is defined by a tuple (sk, πk, dk), where sk is the origin, πk is the destination

and dk is the quantity of commuters in the group. Each commodity k maintains

a set of available route Rk ∈ R and each route r ∈ Rk is constituted of a set of

arcs (i, j). We use αri,j to represent if route r covers arc (i, j) (αri,j = 1) or not

(αri,j = 0). The cost of a route r is the summation of cost for all arcs that belong to

r, δr =
∑

(i,j)∈r δi,j .

Enumerating all routes for each group k is impossible as there are
∑k=n

k=0 P
k
n

ways going to the destination station from the source station, where n is the total

number of stations in between. Besides, given the information of k commodities, it
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is in-obvious to tell efficient candidate routes for each k. Therefore, in this case, we

apply the column generation procedure to identify good alternative bus routes for

each commodity k with consideration of the demand dk.

In the literature, Kaj et al. proposed the column generation procedure for multi-

commodity flow in [21]. Column generation is a technique in operation research

to solve large linear programming problem efficiently. They key idea for column

generation is to add better solutions into the existing solution pool and improve

the objective iteratively. In Kaj’s work, he intends to solve the routing problems

in a capacitated network that can send commodities efficiently. He contributes in

proving column generation as a promising way for solving the extended model,

which is NP-hard.

Although it was motivated to solve the problem related to telecommunication

applications, this approach can be extended to other fields as well. We in this work

extend the methodology in Kaj et al.’s work [21] and generate the candidate bus

route with following assumptions:

• Each route r ∈ Rk serves for commodity k and starts its service from origin

sk and ends at destination πk.

• Each route r visits the selected arcs (i, j) in sequence and return to the origin

directly after visiting the last node.

4.2.1 Candidate Route Selection

With above assumptions, we apply column generation procedure to generate bus

routes. Restrictive master problem and pricing subproblem run iteratively to gener-

ate beneficial candidate routes until there is no improvement.
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Restrictive Master Problem (RMP) We formulate the RMP problem in Table

4.1 which employs the following decision variables:

yr ∈ Rk : Quantity of flow in group k that takes route r (4.1)

ȳk : Quantity of flow in group k not assigned to any route (4.2)

Table 4.1: RESTRICTIVE MASTER PROBLEM

min
∑
k,r∈Rk

δr · yr +
∑
k

ȳkM

s.t. ȳk +
∑
r∈Rk

yr = dk ∀k, r ∈ Rk (4.3)∑
r∈Rk

αri,jy
r ≤ capi,j ∀i, j (4.4)

0 ≤ yr ≤ dk ∀r ∈ Rk (4.5)
0 ≤ ȳk ≤ dk ∀k (4.6)

The objective function is to assign all commodities to the network with minimal

cost. M is a large number which assigns the penalty to the quantity commodity that

is not able to be assigned. Constraint (4.3) guarantees the flow conservation where

the total amount of flow in each commodity k is equivalent to the sum of assigned

and unassigned flow. Constraint (4.4) limits the flow passing through each arc not

exceed the arc capacity. Constraint (4.5) and (4.6) ensures the non-negativity and

we make both decision variable xr, x̄k linearized.

Pricing Subproblem (PSP) ω, σ are defined to be the dual variables correspond-

ing to constraints (4.4) and (4.3) in respective. In this case, all of the commodities

would be assigned on the graph and thus optimality holds if the following restriction

holds:

∑
i,j

αri,j · δi,j −
∑
i,j

αri,j · ωi,j ≥ σk (4.7)
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Otherwise, a path r will be added into Rk as a column.

Therefore, we formulate the pricing subproblem in Table 4.2 with the objective

function minimizing the reduced cost. We introduce the binary decision variable zi,j

which indicates the arc (i, j) will be covered on a route if it takes the value 1 and

0 otherwise. Constraint (4.8) restricts the generation of duplicate route that exist in

route set Rk. Constraint (4.9), (4.10) and (4.11) ensure that the amount of incoming

and outgoing flow for all vertices must be the same except the start node sk to end

vertex πk.

Table 4.2: PRICING SUBPROBLEM

min
∑
i,j

(δi,j − ωi,j)zi,j − σk

s.t.
∑

(i,j)∈r

zi,j ≤ size(r)− 1 ∀r ∈ Rk (4.8)

∑
j

zi,j =
∑
j

zj,i + 1 ∀i = sk (4.9)∑
j

zi,j =
∑
j

zj,i − 1 ∀i = πk (4.10)∑
j

zi,j =
∑
j

zj,i ∀i! = πk, sk (4.11)

zi,j ∈ {0, 1} (4.12)

Column Generation Procedure In column generation procedure, the RMP and

PSP are solved iteratively until the reduced cost become positive and hence there is

no further improvement can be made. Note that our RMP is for multi-commodity

flow assignment problem and thereby the PSP generates alternative routes for each

commodity k at one time. In this case, we denote set S to be the set of commodities

that already got the good assignment and thus we only focus on generating routes

for those groups that are not properly assigned.

The column generation procedure is shown in Algorithm 1, which starts with

a basic route set Rk for each commodity k. Those basic routes are formed by the

MRT lines with smallest travel time. By solving the restrictive master problem, the
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Algorithm 1 Column Generation
Require: capi,j, δi,j, dk

1: function COLUMNGEN

2: Rk ←MRT routes
3: for do
4: ω, σ ← RMP (R)
5: for k ∈ K do
6: if k /∈ S then
7: r ← PSP (ω, σ,Rk, k)
8: λk ←

∑
k,i,j(δi,j − ωi,j)zi,j − σk

9: if λk ≥ 0 then
10: S ← S ∪ k
11: else
12: Rk ← Rk ∪ r

dual variables ω, σ are obtained. With such dual variables, we solve the pricing

subproblem for each commodity k. While the reduced cost of commodity k, λk is

larger than 0, we keep generating new routes for this group. Otherwise, we stop

generating new routes for it. We use set S to record the set of the commodity that is

well assigned.

4.2.2 Bus Resource Allocation

Given the set of candidate route Rk for each commodity k generated in Section

4.2.1, the next phase is to plan for an optimal schedule with a limited number of

buses and distribute passengers out of the congested region so that to minimize those

commuters’ travel time. As we generate routes for each commodity separately, there

might be a case where route r for a commodity is part of the route r′ for the other

commodity. In this case, before planning for the buses, we first of all, organize

those routes for all commodities by merging sub-routes to the complete routes. In

the meantime, we generate variable γrk,i,j as the number of commuters in group k

that is assigned to take route r which covers arc (i, j).

To schedule those available buses, we introduce the time horizon τ . Before a bus

starts its service at time τ , commuters are queuing at station s. From the commuters’

perspective, the total time taken during this process is comprised of the following
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components:

• Total travel time on route r;

• Waiting time for boarding the bus at s at time τ ;

To plan for the bus deployment on each route with above considerations, we

formulate the model in table 4.3 which employs the following decision variable:

σrτ : Indicate employ a bus on route r at time τ or not (4.13)

yrk,τ : Number of commuters in group k take route r at time τ (4.14)

Table 4.3: RESOURCE ALLOCATION MODEL

min
∑
k,r,τ

(δr + τ) · yrk,τ +
∑
k

θk · ȳk

s.t.
∑
r,τ

yrk,τ + ȳk = dk ∀k (4.15)∑
r,k

γrk,i,j · yrk,h ≤
∑
r

σrτ · αri,j ·Q ∀i, j, τ (4.16)

0 ≤ yrk,τ , ȳk ≤ dk (4.17)

σrτ ∈ {0, 1} (4.18)

Objective function is constituted by two parts: (1). the total travel time on route

r together with the commuters’ waiting time when to board the bus departing at

time τ ; (2). the penalty for those commuters in each group k that are not able to rely

on our planned bus to reach their destinations. Constraint (4.15) ensures the total

demand in group k must be equivalent to the total demand that is served plus those

are not served. Constraint (4.16) guarantees that, for each arc (i, j) and each time

τ , the amount of commuters taken on arc (i, j) should not exceed the bus capacity

that employed on this link. Q is the capacity associated with arc (i, j), either the

capacity of an MRT arc or a bus arc.
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4.3 Greedy Baseline

Besides the optimization based approach, in this section,we propose the greedy

baseline to solve the crowd management problem in Algorithm 2.

Algorithm 2 Greedy Heuristic
Require: d, f0, Rt, Rb, B

1: function GREEDYBASELINE

2: for r ∈ Rt do
3: Γ← Γ ∪ (r, f0)

4: δ = calTravelT ime(Q,Γ)
5: b = 0
6: while b < B do
7: for τ = 1..T, r ∈ Rb do
8: if (r, τ) /∈ Γ then
9: Γ′← Γ ∪ (r, τ)

10: δ′ = calTravelT ime(Q,Γ′)
11: if δ′ < δ then
12: δ ← δ′, γ ← (r, τ)

13: if γ! = null then
14: Γ← Γ ∪ γ, b← b+ 1
15: else
16: break

Input information includes demand of commuters d, fixed frequencies f0 of

train service, train route set Rt, candidate bus route set Rb and limit budget B.

The candidate bus route set Rb contains the direct link connecting start and end

stations. In Algorithm 2, we denote Γ as the bus deployment plan, which is formed

by tuples (r, τ) containing the information of route r and time τ . Before starting to

search the strategy, Γ is initialized as incorporating the existing train services with

known frequency f0. Commuters are assigned under the initial deployment Γ and

the total travel time τ is thereby measured. Variable b is used to record the number

of available buses employed and it is initialed to be 0 at the beginning.

When b does not exceed the budget B, we iterate each time horizon τ and each

bus route r ∈ Rb, forming a tuple γ′ = (r, τ). A temporary deployment plans Γ′

is set as the current deployment plan together with γ′. If Γ′ can help disperse the

large crowds and achieve the smaller travel time δ′, we record the tuple and travel

time and continue. This process ends with the tuple γ which decrease the travel
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time most. Consequently we include γ into the deployment set Γ and increase b

by 1. Such procedure repeats until exceeding the budget. If adding additional bus

deployment plan dose not help reduce the travel time, we break and jump out of the

while loop.

4.4 Experiment

This section is organized as follows: firstly we compare the effectiveness of crowd

distribution approach to the greedy baseline in section 4.4.1. After which, we do the

sensitivity analysis over different population size in section 4.4.2. As our model can

be generalized to deal with the large crowd due to train disruption, we compare the

performance of our approach to a state-of-art disruption response model in section

4.4.3.

4.4.1 Comparing to Greedy Baseline

In this section, we show how our approach complements the mass transit services

when the train is in perfect working condition. To concretely evaluate the perfor-

mance, we compare the optimization-based approach described in Section 4.2 to the

greedy baseline shown in Algorithm 2.

The experiment is conducted with the settings in Table 4.4. There are in total 25

stations shared by both MRT and bus networks. 50, 000 commuters are divided into

23 groups will be distribute from Singapore Sports Hub to their home locations.

Regarding those commuters who are not able to board the bus or MRT, we make

the penalty θk as the walking time from Singapore Sports Hub to destinations of the

commuter group k.

4.4.1.1 Results

We provide performance and run time comparisons between the optimization ap-

proach and the greedy heuristic in Figure 4.2. Figure 4.2(a) plots the travel time

54



CHAPTER 4. BUS BRIDGING IN POST-EVENT CROWD DIFFUSION: A SPATIAL REDISTRIBUTION APPROACH

Table 4.4: Experiment setting

Item Details

Num. of stations 25
Num.of BUS arcs 600
Groups of Commuters 23
Number of Commuters 50000
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Figure 4.2: Comparing to greedy heuristic

reduces due to the implementation of crowd management approach in comparison

with the greedy baseline. Y-axis represent the commuters’ average delay in travel

time and x-axis denotes the number of available buses employed. We observe the

average travel delay decreases when the number of employed bus increases for both

methods. Intuitively, when fixing the number of buses deployed, smaller travel time

indicates better performance. From the figure, our approach consistently performs

better than greedy heuristic with 10 to 90 buses employed. Specifically, when the

number of employed buses is 90, our approach can achieve 18.8% of the average

travel time reduction. While for greedy heuristic, the reduction is 13.8%, which is

5% worse than optimization method.

We plot the running time for both methods in Figure 4.2(b). Apparently, greedy

heuristic runs much faster than our approach. However, when looking at the running

time for our approach, it is still considered affordable as it is around 150 seconds.

To have a comprehensive understanding of Figure 4.2 (a), we plot the average
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Figure 4.3: Served and non-served

travel time for served passengers and the percentage of non-served passengers in

Figure 4.3. Figure 4.3(a) indicates that our approach works better in serving the

passengers who are able to be on board. This can be seen from the travel time re-

duction for our approach over greedy heuristic. The reduction achieved by Figure

4.3(a) is larger than it in Figure 4.2 (a). Figure 4.3 reports the percentage of non-

served passengers for our approach and greedy heuristic. Together with the Figure

4.2(a), we observe that even the percentage of non-served passengers for our opti-

mization based model is high, the travel time is lower. In other words, our model

utilized better bus route to deploy its services and thus achieve lower travel time.

There are in total 25.2% of the commuters assigned to take the bus for both of

the optimization-based approach and greedy baseline. To get an insight of the routes

and commuter assignment, we plot the details in Figure 4.4 and 4.5. On both figures,

lines with different line styles and color represent different routes and vice versa.

Numbers associated with each link represent the proportion of commuters that adopt

this one. When looking at the routes adopted by both methods, we observe that there

are 4 common ones (CC6−NE10, EW10−EW7, CC6−NE8 andCC6−NS24)

and we plot them with the same line style and color in both figures. The 4 routes

are important in carrying commuters: for crowd management approach, the total

percentage of commuters taking these routes is 10.1%; for greedy baseline, 18.2%
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Figure 4.5: Routes of greedy heuristic

of the commuters is assigned on those routes.

Except the common routes, other routes adopted by optimization-based ap-

proach is different from greedy heuristic. In optimization-based approach, there

are 9 routes starting from CC6 (a station near to the Singapore Sports Hub). While

for greedy heuristic, despite concentrating on the nearest station CC6 to Singa-

pore Sports Hub, it helps deal with the crowd around station EW10 as this station

is within walking distance from Singapore Sports Hub. Essentially speaking, this

result is due to the different ways of dealing with crowd of the two approaches:
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optimization-based approach searches global optimal solution for all commuters in

all groups and in the meantime, minimizing the total travel time. While the greedy

baseline only focuses on commuters who are not able to board due to the limited

resource and find local optimal routes for reducing the travel time for unserved

commuters.
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Figure 4.6: Percentile of arrivals

We plot the relationships between percentile of arrivals and average travel time

in Figure 4.6. The solid line represent the baseline where there is no bus employed.

The rest two lines with different line styles represent the results derived with dif-

ferent approaches. From this figure we observed that using the bus deployment de-

rived by crowd management model, with average travel time is 30 minutes, 28.1%

of commuters arrived at their destinations. However, with the same average travel

time for greedy heuristic, 21.6% of commuters arrived. The baseline with no bus

employed, only 6% of commuters arrived at destinations. From another aspect, 60%

of commuters arrive at their destinations with average travel time around 53 min-

utes derived by both crowd management approach and greedy heuristic. In the end,

almost 40% of the commuters reply on their own way to go home so they take their

relative penalty with them. While for the baseline, where there is no external inter-

vention on commuters’ journey, only around 39% of the commuters arrived at home
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with average travel time 60 minutes.

4.4.2 Sensitivity to Different Population

We now consider the travel time reduction due to the employment of buses with

regarding to different population size. The travel time reduction ∆i with i buses

incorporated can be calculated as follows:

∆i =
δ0 − δi
δ0

∗ 100% (4.19)

where δ0 is the original travel time with no bus incorporated and δi is the travel time

with i bus incorporated. We plot relationship between ∆i (y-axis) and i (x-axis)

with different number of bus deployed for different population size in Figure 4.7(a).

In this figure, three different line styles represent different population size and we

observe that travel time reduction ∆i get higher with increasing number of buses i

for all of the three population size. When i reaches 80, population size 50, 000 gets

the highest travel time reduction, 17.2%. While for 30, 000 and 70, 000 commuters,

the reduction is 14.0% and 12.5%, respectively.

One interesting question is raised as the reduction ∆i for 50, 000 is higher than

that of 70, 000 when fixing i. Refer to Figure 4.7(b), this is because the demand

surges of 50, 000 commuters is still considered affordable to the current public trans-

portation system as almost 40% commuters can be served by public transportation

system without any external intervention. With 80 buses incorporated, the percent-

age of the served commuters increases and is approaching 60%. While in terms

of 70, 000 commuters, the current service system is significantly overwhelmed as

over 70% commuters cannot be served without any buses. Even with 80 buses. this

number slightly decreases to 55.2%, which implies that in the situation of 70, 000

commuters, a large portion of them are not able to be served and the therefore

the penalty associated with each non−served commuter contributes to increase the

overall average travel time.
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Another interesting phenomenon occurs for population size 30, 000, where the

reduction increases to 14% for 50 buses and keeps flat afterwards. This situation

indicates that with enough buses, adding more resources does not help. MRT and

buses come in sequence and such sequence make commuters wait at the station.

Although taking MRT or bus helps reduce the total travel time for commuters, com-

muters may not afford the wait time if they have to wait for too long. In this case,

commuters would rather prefer to find their own ways traveling home, which causes

a relatively smaller travel time penalty: θk for commuters of group k. Consequently,

the average travel time reduction keeps the same with enough buses incorporated.
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Figure 4.7: Sensitivity to population size

4.4.3 Comparing to Disruption Response Model

In the literature review section, we have briefly introduced the work proposed by Jin

et al.[24] which presented a state-of-art optimization-based approach that responds

to the disruption over massive transit train network by introducing the bus bridging

services. This work is relevant to ours in the sense that it also adopts shuttle buses

as a way to manage the large crowd that degenerates the current public transporta-

tion system. However, the major difference occurs as the model proposed by Jin et

al. must be in the context of train disruption and it does not work out with fully
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connected train network. This is due to the design of column generation when de-

riving the candidate routes: with perfectly connected train network, existing routes

are efficient enough and there is no potential for objective value in restricted master

problem to improve. Thus, dual prices for each of the relevant constraints in the

master problem is 0 which makes the objective value of the subproblem 0. In this

case, no effective bus routes can be added into the routes set.

While our model is more general as we are able to deal with the large crowds

regardless of the connectivity of existing network. Unlike Jin et al.’s work [24]

, which designs column generation procedure by taking network connectivity into

consideration, we make routes capacity as a key indicator to decide whether adding

more routes or not: while the current network does not have enough capacity to

transport all commuters, new routes are adding in; otherwise, the column generation

procedure stops.

To show the performance of our model under the train breakdown situation, we

next compare the results for the two approaches in context of train disruption.

4.4.3.1 Disruption Case

The specific parameters of the disruption scenario are shown in Table 4.5. The

network contains 31 MRT nodes. Out of which, 8 links were broken down and

hence the capacities relevant to these links are set to 0. Each MRT station has a

nearby bus station but as there are some interchange MRT stations next to each

other so that we only set one bus station among that area. In the end, there are

25 bus stations settled and we assume that buses can travel between any pairs of

stations. Commuter information is derived from EZlink data set and 26 groups of

commuters are affected by such disruption.

To compare the two works, we set the common parameters as follows:

• Standard bus bridging services are running between pairs of disrupted stations

with the same frequency as the MRT.

• Bus capacity: 140
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Disruption

Num. of affected links 8

Disrupted links

CC3 − CC4
NE6 − NE7
EW11− EW12
EW12 − EW13

Network

Num. of MRT stations 31
Num. of BUS stations 25
Num.of BUS arcs 600
Groups of Commuters 26

Table 4.5: Disruption parameters

• Bus frequencies are between 1 ∼ 6 mins.

• Penalty for commuters who are not able to board a bus: 50 min.

• The number of buses starting simultaneously from each station should not

exceeding 3.

In real world, there are two major types of disruption: unexpected and planned.

. Unexpected disruption happens in a sudden. For instance, in some cities like

Singapore, train service always breaks down unexpectedly and commuters

have no idea of such information until they arrive at one station just before the

disruption. In this situation, commuters are not able to plan their journey at

the time they depart. Instead, they have to find alternative ways that can bridge

the broken link only when they reach the affected station. In Figure 4.8 for

instance, realizing that links between e′ and e are still connected, commuters

in this scenario are probably trying to find the alternative bridging services

between s′ and e′ and after that reply on the rest non-affected metro system

from station e′ onwards to their destinations.

. Planned disruption refers to the case where metro system is under main-

tenance and notifications of affected links and timing are revealed to com-

muters beforehand. For example, in some cities such as London and Boston,
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the metro systems periodically close due to regular maintenance. Commuters

are aware of the current transportation network structure and are expected to

find alternative ways from origin to destination before departure in order not

to be affected by such disruption. For example, in Figure 4.8, a group of com-

muters have their original starting station s and destination e, which covers

a disrupted link (s′, e′). Noticing that there will be a link closure between s′

and e′, commuters in this group are going to plan their alternative ways from

s to e before they depart. In this case, commuters travel demand is from s to

e.

s s’ e’ e

Figure 4.8: Disruption information

Although in above two situations, commuters react to the different types of dis-

ruption in different ways, the commuters demand scenario are exactly the same.

In the following sections, we experimentally show the performance of these two

models to response to the above situations. For simplicity, we call the first scenario

unexpected disruption and similarly, the second one planned disruption.

4.4.3.2 Unexpected Disruption

In this section, we keep the same travel demand but alter the commuters’ start station

and end station for their trips’ planning as in this context they might plan their trip

in a different way. Refer to Figure 4.8, start station s′ is defined as the first station

just before the disruption and end π′ the first station just after the disruption.

We compare the relationship between commuter travel delay and the number

of buses deployed for both works and report the results in Figure 4.9. As can be

seen, increasing the number of deployed buses reduces the average delay for all

commuters for both methods. A key observation is that when number of deployed

buses are larger than 20, travel delay of Jin et al.’s approach goes flat while our
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approach keeps going down. This is because commuters in Jin et al.’s approach

are mostly assigned to take the standard routes as they do not consider the route

capacity when do the assignment. However, the number of buses scheduled on the

standard routes are very limited. Thus adding more buses does not help. We further

clarify this in the following paragraphs.
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Figure 4.9: Average delay

Different column generation process in both works lead to the different com-

muters assignment on routes. In Jin et al.’s work, the column generation procedure

does not consider the link capacity limit when assigning commuters. Hence, most

commuters are assigned only to the routes with the least travel time – the standard

bus bridging routes that connect two neighboring disrupted stations. While in our

approach, noticing that existing routes capacity cannot fulfill commuters’ travel de-

mand, our column generation process creates more diverse routes to disperse the

commuters flow to fulfill all commuters’ travel demand. Figure 4.10 and 4.11 plots

the routes and assignment of commuters derived by column generation procedure

for both Jin et al.’s method and our approach in respective. For simplicity, we only

plot those routes that has commuters assigned on it. Those routes directly bridging

the disconnected links are standard bus routes (refer to the second row in legend).

Routes of other styles are additional routes added by column generation procedure.
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Figure 4.10: Routes and assignment of Jin et al.’s approach
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Figure 4.11: Routes and assignment of crowd management model

Comments on the routes indicate the group of commuters are assigned to take this

route, e.g.: G4,G5 on the link connecting station EW12 and EW11 indicates that

this link will be taken by commuters in group 4 and 5. As can be seen, in Fig-

ure 4.10, there are 3 additional routes added besides the standard bridging routes.

38.8% of the commuters are assigned to take these routes and the rest 61.2% rely

on standard bridging services. While in Figure 4.11, only 34.9% of the commuters

takes standard services to travel and the rest 65.1% of commuters take the additional

16 routes added by column generation.

The number of buses scheduled on the standard routes are very limited. We

explain this point with the Figure 4.12 and 4.13, which plot the number of buses
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Figure 4.12: Routes and assignment of Jin et al.’s approach
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Figure 4.13: Utilization of stations of crowd management model

depart from various stations for both approaches in X-axis denotes a list of stations

and y-axis plot the maximum number of buses that can start simultaneously. For

simplicity, we only plot the status of those bus stops in the first 5 time unit as stan-

dard bridging services only provide services in intervals in 5, 10, 15.... To make it a

fair comparison, we make the number of buses departing from the same location not

exceed 3. According to Jin et al.’s approach, only 3 additional routes are utilized

besides the standard response. Those routes starts from NS24, EW11 and CC3 in

respective. As there is a common constraint for both model: only one bus can be

deployed to a route at one time. Therefore, the number of buses starting from each

of the 3 stations is 1 before τ = 5. At τ = 5, there will be additional buses serving

for standard routes. In this model, most commuters are assigned to the standard bus
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routes, where the frequencies are fixed, adding too many buses on other routes does

not increase the volume of commuters to be transported. Therefore, the travel delay

does not continue to drop with more than 40 buses. Refer to Figure 4.12, the de-

parting buses of each bus stop is far below 3, which implies that the utilization rate

of resources is actually small. While for our approach, commuters are dispersed to

a variety of routes and adding more buses to various routes help to transport com-

muters. According to Figure 4.13, we make many buses departing from the same

station serving different routes. For example, in the first 3 time units, the number

of buses starting from EW13 and NS24 reaches the top limit of 3, which indicates

that we make a high utilization rate of the bus stop resources. As a consequence,

travel delay keeps decreasing with more than 40 buses.

4.4.3.3 Planned Disruption

In case of planned disruption, we plot the relationships between commuter travel

delay and the number of buses deployed in Figure 4.14. As can be seen, increasing

the number of deployed buses reduces the average delay for all commuters for both

methods. A key observation is that with the smaller number of buses employed,

disruption response get smaller travel delay than our approach. However, our ap-

proach get better performance with enough buses employed. Such situation can

be explained with the help of Figure 4.14(b). In this figure, we observe that the

proportion of commuters that cannot board on bus derived from our model is signif-

icantly larger than that proposed by disruption model with number of buses ranged

20 ∼ 80. However, with enough buses (≥ 100) available to deploy, the proportion

of non-served commuters for both methods get closer. In such case, the average

delay in Figure 4.14(a) for both model become closer as well. With more than 120

buses, our approach even get better performance. Regarding to the proportion of

non-served commuters shown in Figure 4.14(b), an interesting question is raised:

why the non-served commuters derived by the disrupted response approach is sig-

nificant smaller than the one derived by our work with the same number of buses
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Figure 4.14: Comparing different number of buses

employed. Such results can be explained by the different ways of doing column

generations. For both works, column generation procedure searches for beneficial

candidate bus bridging routes and in the meantime, assign commuters to beneficial

routes. Such assignment is going to affect commuters’ total travel delay. For in-

stance, there will be no travel delay on MRT links whereas bus routes creates the

travel delay. Furthermore, MRT links are able to transport many commuters while

bus links have capacity limitation.

In Jin et al.’s work [24], commuters only take certain legs of the bus routes. The

rest of their trips rely on non-disrupted MRT links. Therefore, closure of a MRT link

leads assignment of commuters to various alternative bus legs that can bridge such

link. In this way, the total travel delay only consists of the extra travel time on those

bridging bus legs. However, in terms of our approach, if commuters are assigned

to a route, they must take all links along it. In another word, for routes containing

both MRT and bus links, the capacity of such route is limited by the bus lines,

which has smaller capacity. In fact, the disrupted MRT networks are not able to

fulfill commuters demand and we have to bridge them by bus legs, and the capacity

bottleneck limits the efficiency of the transportation network. In this way, the non-

served commuters derived by our model is larger than Jin et al.’s model. However,

68



CHAPTER 4. BUS BRIDGING IN POST-EVENT CROWD DIFFUSION: A SPATIAL REDISTRIBUTION APPROACH

from another perspective, our model is not designed to handle the disruption case.

We mainly focus on complementing the MRT services in normal situation without

any MRT breakdown and we would not have this capacity bottleneck then.

4.5 Conclusion

Operating large facility in the urban city is challenging in many aspects. Distribut-

ing the passengers using public transportation system out of the large facilities is

one of the hot spots. In this work, we target on minimizing the negative effect of the

large crowds on the existing infrastructure. In doing so, we propose a two-phase op-

timization based approach to find efficient routes for commuters and schedule buses

over the generated routes. This approach is general in the sense that it works out in

both non-disrupted and disrupted transportation networks. In the normal situation

where the network is in perfect working condition, we propose a greedy baseline

and experimentally show the comparison to the optimization approach. Results

show that the optimization approach is able to save 5% of the average travel time

compared to the greedy baseline. We demonstrate the usage of our approach by

comparing it to a state-of-art work handling the disruptions. We conduct the exper-

iment with the configuration of two types of disruption, expected and unexpected.

Our optimization model can obtain better performance when the disruption is totally

unexpected.
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Chapter 5

Integrated Bus and Bike Sharing

Services for Last-mile Commute: A

Spatial Redistribution Approach

5.1 Overview

5.1.1 Motivation

Singapore is a world-class city with many foreign companies keen on establishing

their business in the region. The government built many business parks in many

different locations over the past decade. In some of the above business parks, there is

only limited number of MRT stations (in most cases, one station) taking passengers

from other areas of the city to the business park. During morning and evening peak

hours, demand surge occurs at those major MRT stations. Moreover, there is limited

services provide the service from MRT stations to passengers’ final destinations. In

this case, operators need to carefully design temporal transportation services that

helps disperse the crowds during peak hours and send passengers to their office

destinations within a fixed budget.

The key problem we studied in this work is to determine the best portfolio as-

signment that can plan over a mixture of transportation modes, in this work, we take
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bus and bike sharing services as an example. The key challenge in this work is to

connect the two independent problems together and leverage the trade-offs between

budget assignment and passengers assignment.

5.1.2 Problem Description

Our problem is defined on an underlying networkG = (N,E), shown in Figure 5.1.

Node set N contains important nodes including transportation hubs, road crossings

and office buildings. Directed arc set E denote the driveways which are connected

by crossings. Buses follow driveways to travel and each bus route r is formed by a

Legend: Start node business buildingsRoad intersection

Bus lane Bike lane

Figure 5.1: Network structure

sequence of arcs. A route must be simple, in other words, the repetition of nodes

is not allowed. A route r ∈ Rk serving passengers in group k, is defined as a path

making start node s to destination πk reachable. A route r covering several OD pairs

can be shared by multiple groups of passengers. At different time of a day, bus travel

time δr on route r is different and this information can be extracted from Google

map. From Figure 5.1 we observe that routes of bikes are directly linked between

stations. In fact, bike lanes can be flexible, and both driveways and sidewalks may

be utilized according to passengers’ preferences. The riding time between a pair

of stations can be approximated as the average travel time for several routes that
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connects them.

Y By Bike

Level 1: Determine 
budget assignment

Level 2: Determine 
passengers assignment

Figure 5.2: Problem structure

We consider providing a mixture of transportation options including both bus

and bike services at a business park to distribute the demands and support the last-

mile commute. The primary goal of the operators is to optimize their portfolio when

implementing the services. Specifically, the major concern is to optimally split a

fixed budget B to different transportation modes so that can achieve the desired

purpose. Regarding passengers, their travel convenience can be quantified using

the travel time. Shorter travel time offers a more convenient service to passengers.

Therefore, this problem is divided into two steps indicated by Figure 5.2. In the first

step, operators specify the budget B1 to maintain bus services and B2 = B −B1 to

operate bike sharing service. With the assigned budget to build infrastructures, X

passengers are allowed to take the buses, Y passengers can take the bike, and the

rest passengers have to walk to travel shown on the second step.

Modeling passengers’ choice: Number of passengers served by each mode is

highly related to how this mode is designed. We adopt the choice function βi,j in-

troduced by [19] to describe passengers’ preferences which has the following form:

βi,j =


exp−

d̂i,j
r̂ d̂i,j ≤ r̂

0 otherwise
(5.1)
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Equivalently, βi,j denotes the probability of passengers going from location i to j

depends on the distance d̂i,j between them. The higher the d̂i,j , the lower the βi,j .

When the distance between i and j is over a threshold r̂, βi,j = 0 and implies that

passengers are not intend to go.

We incorporate choice function βi,π for both bus and bike services. In terms

of bus mode, we assume whether passengers alighting at a station i depends on

the distance of i to passengers’ destination π. Smaller distance provides higher

probabilities for passengers to get-off. In terms of bike mode, we assume whether

passengers prefer to take bike mode depends on the distance from their origin and

destination. If the distance is too far, passengers would choose to take other trans-

portation modes rather than taking bikes.

The decision making problem in this work is to find the best trade-offs between

investing different budget between bus and bike services so that can save passen-

gers’ travel time. Therefore, our work is to solve following problem:

Computing the optimal budget assignment B1, B2, which minimize the travel time

of all the visitors, including those choose to take buses X , bikes Y and non-served

passengers.

5.2 Designing Bus Services

To design the bus service inside the business districts, we have two major issues

to consider: (1). identify good candidate routes; (2). determine the best bus de-

ployment over different routes. We present the two parts in Section 5.2.1 and 5.2.2,

respectively.

5.2.1 Generating Bus Routes

A bus route defined in this work is a path starting and ending at the source node,

composed by a list of arcs on the graph. Enumerate all possible paths on the graph is

costly and therefore, we employ column generation [57] technique to identify good
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bus routes. In which process, Restricted Master Problem (RMP) and Pricing Sub-

Problem (PSP) run iteratively to derive good paths until there is no improvement.

5.2.1.1 Restricted Master Problem

In this section, we seek to find a set of efficient route R to serve passengers. Effi-

ciency can be considered in many ways, such as the route with smaller travel time

and so on. In this work, each route has a related travel time δr and consider the

route with smaller δr more efficient. We introduce decision variable zr ∈ {0, 1} to

represent whether we adopt route r or not. Hence, the objective function is:

minimize
∑
r∈R

δr · zr (5.2)

We illustrate the problem with following constraints:

1. Demand coverage: Each route has a sequence of intermediate stops and if a

station is within the walking distance to passengers’ destination, we consider

this route cover passengers’ demand. We must ensure the demand coverage

holds for each group of passengers:

∑
r∈R

wrk · zr ≥ 1 ∀k ∈ K (5.3)

We denote Nk as a list of stations which can serve passengers demand in

group k, i.e. node i ∈ Nk if βπk,i ≥ φ. In other words, if the probability

of passengers walking towards their final destination πk from node i is equal

to or greater than a threshold φ, i belongs to Nk. We have wrk = 1 if route

r contains nodes in Nk. Constraint (5.3) therefore indicates that at least one

route r designed covers the demand in group k.

2. Bound the utilization times: We use the following constraints to denote that
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the number of routes that are utilized must be within a tolerate range.

∑
r∈R

zr ≤ U (5.4)∑
r∈R

zr ≥ L (5.5)

5.2.1.2 Pricing Subproblem

From the Restrictive Master Problem, we obtain dual variables associated with con-

straint (5.3), (5.4) and (5.5) as: λk, µi and ω. Hence, the reduced cost for each route

r is:

cr = δr +
∑
i∈N

gri · µi −
∑
k∈K

wrk · λk − ω (5.6)

If reduced cost is negative, there is potential improvement for route r in Restric-

tive Master Problem. Otherwise, the Restrictive Master Problem is optimal. The

following objective function (5.7) minimizes the reduced cost.

minimize
∑
i,j∈N

(δi,j + pj)zi,j +
∑
i∈N

µi · gi −
∑
k∈K

λk · wk − ω (5.7)

The node and demand coverage issues are captured by decision variables gi and wk

in Equation (5.7). gi ∈ {0, 1} is to indicate whether node i is incorporated in a route

and wk ∈ {0, 1} denote if the demand in group k can be served by this route.

Pricing subproblem generates a route starting and ending at source station s at a

time. We use auxiliary variable zi,j ∈ {0, 1} as an indicator of whether arc (i, j) is

included. The following constraints help form a valid route.

1. Flow conservation: In this context, each node can be visited at most once
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and the inflow and outflow must be exactly equal.

∑
j∈N

zi,j ≤ 1 ∀i ∈ N (5.8)∑
i∈N

zi,j ≤ 1 ∀j ∈ N (5.9)∑
j∈N

zi,j =
∑
j∈N

zj,i ∀i ∈ N (5.10)

2. Include source node: A valid route must start and end at source node.

∑
j∈N

zs,j = 1 (5.11)

Constraint (5.11) ensures exactly 1 arc starting from source node s. Together

with Constraint (5.10), there is exactly 1 arc ending at source node s as well,

making this route a circle.

3. Demand coverage: We must make sure the demand coverage decision vari-

able wk is consistent with the routes formed using zi,j .

wk ≤
∑

i∈N,j∈Nk

zi,j ∀k ∈ K (5.12)

wk ·M ≥
∑

i∈N,j∈Nk

xi,j ∀k ∈ K (5.13)

Nk represent the set of nodes that can serve demand group k, Specifically,

if the probability of walking from a station i ∈ Nk to the destination of k

is equal to or greater than a threshold, i.e. βi,πk ≥ φ, we include i in Nk.∑
i,j∈Nk zi,j denotes the inflow into demand node j ∈ Nk. If there is at least 1

arc connecting the demand node j ∈ Nk, the demand in group k is satisfied,

wk = 1. Otherwise, wk = 0.

4. Node coverage: Once a node has outgoing edges included, it must be covered
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in this generated route.

gi =
∑
j∈N

zi,j ∀i ∈ N (5.14)

5. Bounding the number of arcs included: We use the following constraints

to limit the number of arcs in a route not exceeding L1 and the travel time of

a route not exceeding L2.

∑
i∈N,j∈N

zi,j ≤ L1 (5.15)∑
i∈N,j∈N

δi,j · zi,j ≤ L2 (5.16)

When we generate a route of a circle, sub-tour may exist. To eliminate the sub-

tour, we add Constraint (5.17) introduced by Jin et al. [23].

∑
i,j∈St

(1− zi,j) ≤ 1 (5.17)

where St is the set of arcs belongs to the sub-tours in the tth iteration.

The Restrictive Master Problem and Sub-Pricing Problem are illustrated in Table

5.1 and Table 5.2.

Table 5.1: Restrictive Master Problem

min
∑
r∈R

δr · zr∑
r∈R

wrk · zr ≥ 1 ∀k ∈ K (5.18)∑
r∈R

zr ≤ U (5.19)∑
r∈R

zr ≥ L (5.20)
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Table 5.2: Subpricing Problem

min
∑
i,j∈N

(δi,j + pj)zi,j +
∑
i∈N

µi · gi −
∑
k∈K

λk · wk − ω∑
j∈N

zi,j ≤ 1 ∀i ∈ N (5.21)∑
i∈N

zi,j ≤ 1 ∀j ∈ N (5.22)∑
j∈N

zi,j =
∑
j∈N

zj,i ∀i ∈ N (5.23)∑
j∈N

zs,j = 1 (5.24)

wk ≤
∑

i∈N,j∈Nk

zi,j ∀k ∈ K (5.25)

wk ·M ≥
∑

i∈N,j∈Nk

zi,j ∀k ∈ K (5.26)

gi =
∑
j∈N

zi,j ∀i ∈ N (5.27)∑
i∈N,j∈N

zi,j ≤ L1 (5.28)∑
i∈N,j∈N

δi,j · zi,j ≤ L2 (5.29)

5.2.1.3 Column Generation Procedure

The column generation procedure adopted in this work is presented in Algorithm 3.

Algorithm 3 Column Generation Procedure
1: procedure COLUMNGEN

2: R← R ∪R0

3: while do
4: µ,λ, ω ← RestrictiveMasterProblem(R)
5: r ← PricingSubproblem(µ,λ, ω)
6: while sub-tour exist in r do
7: add Constraint (5.17)
8: re-solve PricingSubproblem(µ,λ, ω)

9: R← R ∪ r
10: if rc ≥ 0 then
11: break

We first initialize the route set R by incorporating a set of feasible route R0.

After which, the Restrictive Master Problem and Pricing Subproblem run iteratively
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until reduced cost rc >= 0, indicating no better routes can be generated.

5.2.2 Determining Bus Deployment

Given the set of bus routes generated by column generation approach, the next step

is to determine the optimal deployment of buses over each route.

To distribute the passengers over the spatial horizon, the key concern for oper-

ators is to determine the number of buses to rent for each route and the number of

service rounds to be provided over each route. Therefore, we introduce decision

variable hr ∈ N to denote the number of vehicles to rent or buy for route r and

f r ∈ N to represent the deployed round of services for route r. A good deployment

plan is able to give more benefit to passengers under a fixed budget.

Passengers’ benefit can be interpreted in many ways, such as the shortest travel

time for all passengers, the expected number of passengers can be served and so on.

In this problem, we quantify the benefit as the shortest travel time for all passengers.

We use variable ŷrk,i ∈ {0, 1} to represent whether passengers in group k choose to

take r alight at station i and yrk,i ∈ N to denote the number of passengers in group

k choose to take r alight at station i. For those passengers in group k who are not

able to be served, we use variable ȳk ∈ N to represent.

We therefore propose the objective function to minimize the average travel time

for all passengers as follows:

minimize
∑

r∈R,i∈Nr,k∈K

(δri + δ̄i,πk) · yrk,i +
∑
k∈K

δ̄s,πk · ȳk (5.30)

δri is the on bus time when passengers choose to take bus serving route r and alight

at station i and δ̄i,πk represent the walking time from station i to destination πk.

Thus the first term represent the travel time for those passengers that are served and

the second term is the travel time for those unserved passengers.

We address the concerns of this problem using following constraints:

1. Set upper bound for served passengers according to their choices: A route
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contains a list of intermediate stops and the distance between passengers’

destinations and bus stops affects passengers’ alighting choices. Shorter the

distance leads to higher incentives for passengers to alight, which sets the

upper bound on the amount of passengers taking a route. We represent it in

following constraint:

yrk,i ≤ βπk,i · dk · gri · ŷrk,i ∀r ∈ R, i ∈ Nr, k ∈ K (5.31)∑
i∈Nr

ŷrk,i ≤ 1 ∀r ∈ R, k ∈ K (5.32)

In terms of a station i on route r, βπk,i · dk denotes the expected number of

passengers in group k that takes route r and alights at this stop. gri guarantees

route r contain this stop and ŷrk,i ensures passengers choose to alight at at

this stop. Therefore, number of passengers yrk,i chooose to alight at this stop

i cannot exceed the expectation value on stop i with maximum benefit for

passengers . Together with Constraint (5.32), this set of constraints indicate

that passengers in each group taking each route will only choose the best

station to alight.

2. Set upper bound for served passengers according to bus deployment:

Amount of passengers taking a route is further bounded by the deployment

issues:

∑
k∈K,i∈Nr

yrk,i ≤ fr ·Q ∀r ∈ R (5.33)

In Constraint (5.33),Q denotes the bus capacity and this constraint guarantees

that the number of passengers served by bus cannot exceed total bus capacities

provided by the operators.

3. Set upper bound for deployed buses: In real-world operations, the number

of buses deployed on a route must be within a reasonable range, otherwise

traffic jams may occur. The following constraint limits the number of buses
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on each route r not exceed the maximum number of buses F .

f r ≤ F ∀r ∈ R (5.34)

f r ≤ T
δr
· hr ∀r ∈ R (5.35)

Constraint (5.35) ensures the provided services must be limit by the number

of buses offered by operators. T is the total time horizon and the round of

services for a particular route is bounded by the travel time on this route.

Shorter travel time allows a bus provide multiple round services along a route

r. The more buses offered for a route xr, the more round services can be

provided accordingly.

4. Demand constraint: The following constraint ensures the served amount of

passengers plus the unserved amount of passengers equal to the total number

of passengers. dk is the demand for group k.

∑
r∈R,i∈Nr

yrk,i + ȳk = dk ∀k ∈ K (5.36)

5. Budget constraint: In this context, operators’ cost is mainly from two as-

pects: fixed cost of offering buses and variable cost of operations. We use the

following constraints to represent the cost scheme and hence set constraints

on the cost by the total budget.

∑
r∈R

cx · hr +
∑
r∈R

cf · f r ≤ B1 (5.37)

Parameter ch denotes the cost related to buying or renting a new route and

cq denotes the cost of adding extra round of bus service on the route. The

summation of the overall cost is bounded by the total budget B1.

To help readers recap, we summarize the parameters utilized in this section in

Table 5.3.
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Table 5.3: Notations for Designing Bus Service

Parameters Explanations
K Passenger set, contain demand dk and destination πk for each group k
Nr Node set containing nodes in route r
wrk Whether demand k is covered by route r
gri Whether station i is covered by route r
Q Bus capacity
F Maximum round of bus service for a route

We summarize the model in Table 5.4.

Table 5.4: MILP Model for Bus Service

min
∑

r∈R,i∈Nr,k∈K

(δri + δ̄i,πk) · yrk,i +
∑
k∈K

δ̄s,πk · ȳk

yrk,i ≤ βπk,i · dk · gri · ŷrk,i ∀r ∈ R, i ∈ Nr, k ∈ K (5.38)∑
k∈K,i∈Nr

yrk,i ≤ fr ·Q ∀r ∈ R (5.39)

f r ≤ T

δr
· hr ∀r ∈ R (5.40)

f r ≤ Fmax ∀r ∈ R (5.41)∑
r∈R,i∈Nr

yrk,i + ȳk = dk ∀k ∈ K (5.42)∑
i∈Nr

ŷrk,i ≤ 1 ∀r ∈ R, k ∈ K (5.43)∑
r∈R

cx · hr +
∑
r∈R

cf · f r ≤ B1 (5.44)

5.3 Designing Bike Sharing Services

Bus is not the only mode that can distributing passengers over the spatial horizon in

public transportation domain. Bike sharing services play an important role in recent

years. Unlike bus services, infrastructures for bike services inside the park is not

established and we need to plan the location of bike stations. We simplify the model

from [15] to design the bike service system.

This model combines strategic decisions for both locating bike stations and

defining the operation issues of the system. The bike-sharing model determines
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the location of the stations, the number of bicycles that should be purchased in each

station and the fleet size simultaneously.

The criterion to determine whether such bike sharing system works well is the

total travel time achieved by this system. A common issue related to bike service

design is the unbalanced inventory caused by the passengers’ time-varying demand.

We therefore, consider time-dependent travel demand. We introduce decision vari-

able xτi,j ∈ N+ to represent number of passengers moving from i to j at time τ .

x̄k represent the number of passengers that could not take bike services in group k.

Therefore, the objective function for our model is to minimize the total travel time

for all passengers (5.45).

minimize
∑

k∈K,τ∈T

δs,πk · xτs,πk + δ̄s,πk · x̄k (5.45)

δs,πk denotes the travel time associated with riding bikes and δ̄s,πk represents the

relative walking time. The objective function provides optimal design of a bike-

sharing system to minimize passengers’ travel time while taking the service level

into account.

We address the concerns of this problem using following constraints:

1. Determine the location and capacity of bike stations: With a set of can-

didate bike station set, the natural next step is to determine the location and

capacity of each candidate bike station.

qi ≥ q · li ∀i ∈ N (5.46)

qi ≤ q̄ · li ∀i ∈ N (5.47)

Decision variables li ∈ {0, 1} represent whether to choose operate the candi-

date bike station i or not. Relatively, qi ∈ N denotes the capacity of the bike

station. Only when a station is utilized, i.e. li = 1, the capacity for this station

makes sense. Constraint (5.46) gives an upper and lower bound for the real
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capacity designed.

2. Balance and rebalance issues: When passengers travel with bike, they sim-

ply put bikes at the stations near their destinations. Overtime, the inventory

of bikes one station will be extremely larger than the others. Therefore, oper-

ators need to use a truck or whatever methods to rebalance the bike inventory.

vτi = vτ−1i −
∑
j∈N

xτ−1i,j +
∑
j∈N

xτ−1j,i

−
∑
j∈N

rτ−1i,j +
∑
j∈N

rτ−1j,i ∀i ∈ N, τ ∈ T (5.48)∑
j∈N

rτi,j ≤ vτi ∀i ∈ N, τ ∈ T (5.49)

vτi ≤ qi ∀i ∈ N (5.50)

v0i = vTi ∀i ∈ N (5.51)

We denote rτi,j ∈ N as the number of bikes relocated from i to j at time τ . vτi ∈

N represents the number of bikes at bike station i at the beginning of time τ .

Constraint (5.48) defines the equality relationship on the number of bicycles

at station i between time step τ and time step τ − 1. Concretely, the number

of bicycles available at station i time τ , equals to: the number of bicycles

available at τ − 1 plus the bicycles relocated to station i, minus the bicycles

relocated from station i, as well as taking considerations for those bicycles

that are utilized for passengers’ movement. Constraint (5.49) tells the reality

that the number of bicycles to be relocated at any station i must be lower than

the real number of bicycles in the station at any time τ . Constraint (5.50)

indicates that the storage of bicycles for any station need to be constrained by

the real capacity of the stations. Constraint (5.51) assumes that the number of

bicycles at the beginning of the day is the same with the end of the day.

3. Passengers movement constraint: Number of passengers moving over the

bike sharing system is limited by the state of the stations. If one of the stations

between passengers orgin and destination is closed, passengers cannot place

84



CHAPTER 5. INTEGRATED BUS AND BIKE SHARING SERVICES FOR LAST-MILE COMMUTE: A SPATIAL

REDISTRIBUTION APPROACH

their bikes and thus they cannot travel on this link.

xτs,πk ≤ dk · ls ∀k ∈ K, τ ∈ T (5.52)

xτs,πk ≤ dk · lπk ∀k ∈ K, τ ∈ T (5.53)

li ≤
∑
j,τ

xτi,j + xτj,i ∀i ∈ N (5.54)

vτi ≥
∑
j

xτi,j ∀i ∈ N, τ ∈ T (5.55)

Constraint (5.52), (5.53) together ensure station at origin s and destination πk

must open if passengers in group k travel on this link. Conversely, if there is

no passengers travel into or out of station i, station i can be closed according

to Constraint (5.54). Constraint (5.55) is the requirement from designer that

the stored number of bicycles must fulfill the passengers’ travel demand.

4. Demand constraint: The following constraint ensures the served amount of

passengers plus the unserved amount of passengers equal to the total number

of passengers and the total number of passengers taking bikes cannot exceed

the expected value.

x̄k +
∑
τ∈T

xτs,πk = dk ∀k ∈ K (5.56)∑
τ∈T

xτs,πk ≤ βs,πk · dk ∀k ∈ K (5.57)

5. Budget constraint: The cost of bike sharing system consists of 2 major parts:

fixed cost and operational cost. The fixed cost consists of the spending on

establishing a bike station, capacity of this station and purchasing bikes. Op-

erational cost mainly refers to the rebalanced fees.

∑
i∈N

cq · qi +
∑
i∈N

cl · li +
∑

i,j∈N,τ∈T

cr · rτi,j + V · cb ≤ B2 (5.58)

Constraint (5.58) has 4 relative terms, including the cost of (1) establishing

the stations and designing the capacities; (2) purchasing all bicycles; and (3)
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re-balancing the bikes. The summation of these cost cannot not exceed the

total budget.

To help readers to recap, we list some parameters in table 5.5.

Table 5.5: Notations for Designing Bus Service

Parameters Explanations
q, q̄ min/max bike station capacity
cq cost of designing the capacity of a station
cl cost of constructing bike station
cr cost of relocation
cb cost of purchasing a single bike

We summarize the model in Table 5.6.

5.4 Lagrangian Relaxation

We have two phases of our problem, the first phase is to determine the assignment

of portfolio over each transportation mode mode. Hence, we have the total cost not

exceeding the total budget:

[∑
i cq · qi + cl · li +

∑
j,τ cr · rτi,j + V · cb

]
+

[∑
r ch · hr + cf · f r

]
≤ B (5.72)

The second phase is to run each sub model and obtain the optimal deployment

under budget constraints. In this phase, we must ensure the total number of served

passengers plus the total number of unserved passengers equal to the total demand

in each group:

∑
r,i

yrk,i +
∑
τ

xτs,πk + s̄k = dk ∀k (5.73)

where we use variable s̄k to represent the passengers that can neither be served by

bus or bikes.

The optimal solution is to achive minimal travel time for all passengers includ-

ing those who take buses, bikes and walking. Therefore, we have the integrated
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Table 5.6: MILP Model for Bike Service

min
∑

k∈K,τ∈T

δs,πk · xτs,πk + δ̄s,πk · x̄k

qi ≥ q · li ∀i ∈ N (5.59)

qi ≤ q̄ · li ∀i ∈ N (5.60)

vτi = vτ−1i −
∑
j∈N

xτ−1i,j +
∑
j∈N

xτ−1j,i −
∑
j∈N

rτ−1i,j +
∑
j∈N

rτ−1j,i ∀i ∈ N, τ ∈ T

(5.61)∑
j∈N

rτi,j ≤ vτi ∀i ∈ N, τ ∈ T (5.62)

vτi ≤ qi ∀i ∈ N (5.63)

v0i = vTi ∀i ∈ N (5.64)
xτs,πk ≤ dk · ls ∀k ∈ K, τ ∈ T (5.65)

xτs,πk ≤ dk · lπk ∀k ∈ K, τ ∈ T (5.66)

li ≤
∑

j∈N,τ∈T

xτi,j + xτj,i ∀i ∈ N (5.67)

vτi ≥
∑
j∈N

xτi,j ∀i ∈ N, τ ∈ T (5.68)

x̄k +
∑
τ∈T

xτs,πk = dk ∀k ∈ K (5.69)∑
τ∈T

xτs,πk ≤ βs,πk · dk ∀k ∈ K (5.70)∑
i∈N

cq · qi +
∑
i∈N

cl · li +
∑

i,j∈N,τ

cr · rτi,j + V · cb ≤ B2 (5.71)

objective function:

min
∑
k,r,i

(δri + δ̄i,πk) · yrk,i +
∑
k,t

δs,πk · xτs,πk +
∑
k

δ̄s,πk · s̄k (5.74)

As the two models are independent in nature, we need to construct them using

a systematic approach. Therefore, we adopt Lagrangian Relaxation to accomplish

the above task. We exploit the dependencies between these two problem as follows:

Observation 5.4.1 In bus and bike models, we have:

• Variables hr and f r capture the cost of bus deployment plan;

• Variables qi, li, V and rτi,j capture the cost for bike deployment plan.
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These two set of variables only interact in Constraint (5.72) when combining bus

and bike models.

Observation 5.4.2 In bus and bike models, we have:

• Variables yrk,i capture number of passengers served with bus service;

• Variables xτs,πk capture number of passengers served with bike service.

These two set of variables only interact in Constraint (5.73) when combining bus

and bike models.

Given the above observations, we employ Lagrangian Relaxation and Sub-gradient

method [14] to dualize constraints (5.72) and (5.73) using price variables λ,α. We

obtain the following equations:

L(λ,α) = min

[∑
k,r,i

(δri + δ̄i,πk) · yrk,i +
∑
k,t

δs,πk · xτs,πk +
∑
k

δ̄s,πk · s̄k

+λ

[
(
∑
r

ch · hr + cf · f r) (5.75)

+(
∑
i

cq · qi + cl · li +
∑
j,τ

cr · rτi,j + V · cb)−B
]

+
∑
k

αk

[
dk − (

∑
r,i

yrk,i +
∑
τ

xτs,πk + s̄k)

]]

= min

[∑
k,t

δs,πk · xτs,πk +
∑
k

δ̄s,πk · s̄k

+λ · (
∑
i

cq · qi + cl · li +
∑
j,τ

cr · rτi,j + V · cb −B)

+
∑
k

αk(dk −
∑
τ

xτs,πk − s̄k)
]

+ min

[∑
k,r,i

(δri + δ̄i,πk) · yrk,i + λ · (
∑
r

ch · hr + cf · f r)

−
∑
k,r,i

αk · yrk,i
]

(5.76)

In Equation (5.76), the first part corresponds to the bike problem and the second

part corresponds to the bus deployment problem. Specifically, we summary the two

slave problems in Table 5.7 and Table 5.8.
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min
∑
k,τ

δk · xτs,πk +
∑
k

δ̄s,πk · s̄k

+λ · (
∑
i

cq · qi +
∑
i

cl · li +
∑
i,j,τ

cr · rτi,j + V · cb −B)

+
∑
k

αk(dk −
∑
τ

xτs,πk − s̄k)

s.t. Constraint (5.48) −− (5.58) hold

Table 5.7: Solve Bike Deployment

max
∑
k,r,i

(δri + δ̄i,πk) · yrk,i + λ · (
∑
r

cx · xr +
∑
r

cf · f r)−
∑
k,r,i

αk · yrk,i

s.t. Constraint (5.31) −− (5.36) hold

Table 5.8: Solve Bus Deployment

In Lagrangian Relaxation procedure, the dual problem min
λ,α

L(λ,α) is solved

iteratively with sub-gradient approach. In each iteration, we update λ by:

λiter+1 =

[
λiter + γiter(

∑
r

cx · xr + cf · fr +
∑
i

cq · qi + cl · li +
∑
j,τ

cr · rτi,j + V · cb −B)

]
+

[·]+ is to ensure λ always obtain positive value, otherwise we take it 0. Similarly,

we update α by:

αiter+1
k =

[
αiterk + γiter(

∑
r,i

yrk,i +
∑
τ

xτs,πk + s̄k − dk)
]
+

∀k (5.77)

If the difference between dual objective and primal objective is less than a

threshold η, the convergence is detected. We extract the Primal problem by de-

ploying bus service in the first place and utilize the remaining budget B′ to deploy

bike services. Given solutions Xr and F r provided by bus deployment in Table 5.8,

we have remaining budget:

B′ = B − (
∑
r

cx ·Xr + cf · F r) (5.78)
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Therefore, the detailed Primal problem is described in Table 5.9.

max
∑
k,τ

δs,πk · xτs,πk +
∑
k

δ̄s,πk · s̄k

s.t. Constraint (5.46) −− (5.58) hold∑
i

cq · qi +
∑
i

cl · li +
∑
i,j,τ

cr · rτi,j + V · cb ≤ B′

Table 5.9: Extract Primal

We summarize the Lagrangian Relaxation process in Algorithm 4. For simplic-

ity, we set:

B =
∑
r

cx · xr + cf · f r +
∑
i

cq · qi +
∑
i

cl · li +
∑
j,τ

cr · rτi,j + V · cb −B

D =
∑
r,i

yrk,i +
∑
τ

xτs,πk + s̄k − dk (5.79)

Algorithm 4 Lagrangian Relaxation Procedure
1: procedure SOLVELR
2: λ← λ0, αk ← α0

k, iter ← 0
3: repeat
4: o1,y,f ,h← SolveBus (λiter,αiter)
5: o2,x← SolveBikes (λiter,αiter)
6: λiter+1 ← [λiter + γiter · B]+
7: αiter+1

k ← [αiterk + γiter · D]+ ∀k
8: op,x←ExactPrimal(y,f ,h)

9: γiter ← 1.2∗
[
op−(o0+o1)

]
||B||2+||D||2

10: iter ← iter + 1
11: until op − (o1 + o2) ≤ δ
12: return op,x,y,f ,h

5.5 Experiment

We conduct experiment with Java, CPLEX 12.51 and executed on a Core(TM) i7-

6700 CPU 3.4GHz processor under Windows.
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5.5.1 Dataset

We focus on a business park called One-North in Singapore, which is designed to

host a cluster of world-class research facilities and business park space 1. There

is one single MRT station called One-North MRT station serving the hubs of this

business district. Most of the passengers alight at One-North MRT station and find

their way towards their destinations in the business park. Therefore, we need to

effectively distribute the demand particularly during morning and evening peak

hours. We concern about providing efficient transportation services that connect

One-North MRT station and the office buildings inside the business park. The topol-

ogy of the transport network is extracted from open street map.

We derive the demand data using the record from transportation fare card, which

is called EZLink card in Singapore. EZlink card is mainly used for transportation

payment in Singapore. Passengers need to tap their card whenever boarding and

alighting. In other words, a full set of information including passengers’ boarding

time/location, alighting time/location, transportation modes, etc. will be created for

each particular card.

The total demand at this business district is extracted from a full week of EZLink

data recorded (from 21, November 2011, Monday to 25, November 2011, Friday).

From Figure 5.3 we clearly observe two demand peak during morning and evening

peak hours.

We adopt the public information provided by JTC webpage 2 to measure the

distribution of demand. From which, we obtain the location of office buildings

at the business park. One assumption we made here is to assume the number of

passengers belongs to each building is proportional to the area occupied by such

building. We use Google map to measure the area of each office and use the same

ratio to derive the demand for each location.
1http://www.jtc.gov.sg/industrial-land-and-space/pages/one-north.aspx
2http://landtransportguru.net/web/wp-content/uploads/2016/07/one-north-rider-map-1.jpg
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(a) Alighting
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(b) Boarding

Figure 5.3: Passengers alighting / boarding from One-North MRT station

5.5.2 Penalty for Setting Stations

In real world, most of the time bus runs with a regulate speed yet makes stopping

delay at bus stops. Intuitively, bus decelerates when entering a bus station and

stop for passengers to board and deboard. After which, it accelerates to normal

speed again. Thus stopping delay at bus stop include bus acceleration, deceleration,

dwell time [53] and so on. When designing bus lines, we take such delay into

considerations by adding up ∆ to the travel time for each line.

time

speed

k1 k2

dwell duration

X m/s

Figure 5.4: Computing the delay for each station

Figure 5.4 is a simple illustration on how to compute the penalty ∆. Initially

bus travel with regulate speed which we assume to be 25 km/h according to [11],

in other words, X = 6.94. When reaching the bus stop, the dwell time is around

30s according to [39] and the decelerate slope k1 = 1.2, accelerate k2 = 1.2 based

on [53]. The area for the shaded region is the extra distance traveled and ∆ =
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Sshaded/X and thus the delay for each station as ∆ = 35.78s.

5.5.3 Results of Column Generation

The operators deployed bus service at One-North business park using two routes

shown in Figure 5.5 (a) and (b). In this figure, markers with red color are those

stations that form a route (red line). Those blue ones denote candidate stations

that are not utilized. Passengers’ destinations are represented by green markers.

Numbers on the markers represent the index of each node.

(a) Route 1 (b) Route 2

Figure 5.5: Existingn routes deployed at One-north business park

We use the two routes that operators provides as the feasible routes and start the

column generation procedure to generate new routes. The following routes shown

in Figure 5.6 show the routes generated. Routes in Figure 5.6(c) and Figure 5.6(d)

look similar at the first glance. However, bus makes stops at different stations in

each route. Therefore, they are characterised as different routes. Whether bus makes

a stop is due to the penalty of setting stops. Stopping at a station takes extra decel-

eration and acceleration time, which makes the trip longer. Thus, model chooses

those stations that make benefit to the objective function.
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(a) Route 1 (b) Route 2

(c) Route 3 (d) Route 4

Figure 5.6: Generated routes

5.5.4 Results of Comparing to Existing Deployment

With the routes generated in the first phase, in this section, we compare the perfor-

mance of existing settings deployed by operators to our settings. We first discuss

the parameter settings in our experiment.

5.5.4.1 Parameter Settings

To set the budget, we amortize the one-year investment and map to the period bud-

get. The annual investment is around 1 million 3. Our planning horizon is 3 hours

as the demand surge occurs during morning peak hours, from 7 : 00 − 9 : 00 AM

according to Figure 5.3. The loan interest rate in Singapore is around 1.7%. There-

fore, we show the amortization results for annual investment to 3 hour period budget

3http://www.straitstimes.com/singapore/transport/big-sponsor-wanted-for-bike-sharing-scheme
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in Table 5.10.

Table 5.10: Annual investment and period budget

annual investment period buget annual investment period buget

$100,000 $92.10 $900,000 $828.93
$200,000 $184.21 $1,000,000 $921.03
$300,000 $276.31 $1,100,000 $1,013.14
$400,000 $368.41 $1,200,000 $1,105.24
$500,000 $460.52 $1,300,000 $1,197.34
$600,000 $552.62 $1,400,000 $1,289.45
$700,000 $644.72 $1,500,000 $1,381.55
$800,000 $736.83 $1,600,000 $1,473.65

Bus rental fee and bus capacity can be obtained from public information online

4. In our experiment we take bus with 45 seats and hourly rental fee 85 SGD. In

terms of the operational fees, according to a report 5, the daily cost of a bus is

around 600 SGD. However, this cost is based on an average trip length 4.3 km over

a day 6. We translate this value to our case where the average trip length is 0.4km

and obtain the period operational cost 6.9.

The cost of setting bike services are not published. We thus obtain the informa-

tion from [15] and translate the Euros to Singapore dollars. In this case, the fixed

cost of constructing a station is 4538 SGD. This value is supposed to be a year cost

and we divide 1095 to translate to 3 hours time horizon and find out the payment to

be 4.15. Following the same way, the cost of per docks in a station is 0.69, per bike

0.41. The relocation fee is 0.02 for each bicycle.

With above settings, the comparison is conducted in two ways: the first compar-

ison is to compare the bus service we provide to the existing service. The second

one compares the mixed transportation modes with exiting bus services.

4http://www.singaporeluxurylimousine.com/charter-a-bus/
5https://www.mot.gov.sg/News-Centre/Highlights/The-$1-1-billion-bus-question/
6https://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/files

/FactsandFigures/Statistics in Brief 2015 FINAL.pdf
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5.5.4.2 Comparing Bus Services

We evaluate the performance using passengers average travel time. Intuitively, the

lower the travel time, the better the performance. We take the existing routes de-

ployed by operators and the routes generated using column generation to conduct

the experiment. As the operators only have 2 routes incorporated in total, we further

include an experiment taking as most 2 routes out of all to make a fair comparison.

Annual Investment (million SGD)
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Figure 5.7: Comparison of bus services

Figure 5.7 reports the comparison results with three different services deployed.

From this figure, we observe the average travel time does not change when the

annual investment is smaller than 0.2 million, since the budget is not enough to

implement the bus service at that point. With annual investment increases, travel

time of all three modes goes down. This is reasonable as the more budget we invest,

the more passengers we can serve with buses. When annual investment is larger than

0.3 million, the average travel time derived by existing JTC Rider is higher than the

bus service derived by us. We use the situation of 0.3 million annual investment to

explain the result. At this point, the number of passengers served by both modes

is the same. Hence, it is the different settings of stops in the route that make a

difference.

Figure 5.8 show the bus routes adopted when the annual investment is 0.3 mil-
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(a) JTC rider route (b) Bus service route

Figure 5.8: Bus deployment when annual invest is 0.3

lion for both JTC Rider and our bus service in respective. We mark the stations

that passengers alight using arrows. Destinations with the same color represent the

group of passengers served by the associated station. In Figure 5.8 (a), 4 groups of

passengers with destinations 21, 22, 23 and 25 are served by station 8. The curiosity

occurs when passengers with destination 23 alight from station 8 rather than station

11. This is because if passengers alight at station 11, the total travel time is 11.46

with on board time 8.63 and walk time 2.83. While alighting from station 8 takes

total time 6.26 with 4.45 minutes on board and 1.81 minutes walk. Obviously sta-

tion 8 is a better choice than station 11 for these passengers. In Figure 5.8, 2 groups

of passengers with destination 21 and 23 are served by station 10 and 7, receptively.

Figure 5.9 plot the average travel time achieved by different service modes when

the annual investment is 0.3 million. X-axis denotes the destination of passengers

in various groups, which is consistent with Figure 5.8. This figure explicitly shows

how passengers from each destination benefit from the above two services deployed.

With no service provided, passengers have to walk towards destinations. Therefore,

the travel time associated with no service is an upper bound of travel time for each

group of passengers. With JTC Rider and our bus service provided, lower travel

time will be achieved. Regarding JTC Rider (represented by the blue bar), the aver-
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Figure 5.9: Explanation of bus services for annual investment 0.3

age travel time for destination 21, 22, 23 and 25 is reduced compared to no service

mode. However, the reduction is relatively smaller than the reduction achieved by

our bus mode. When we take a look at our bus service, the travel time reduction

for passengers with destination 21 and 23 is large enough to beat the reduction of

JTC Rider. Therefore, at this point when annual investment is 0.3 million, our bus

mode achieve lower travel time and from the abovementioned analysis which indi-

cates that our bus route generated by column generation approach is better than the

existing one.

Back to Figure 5.7, when the annual investment is 1 million Singapore Dollars,

the average travel time for both JTC Rider and bus with 2 routes go flat. This is

due to the setting of an upper bound for the resources to assign to each single line.

Otherwise too frequent bus services or too many buses running on this line may

cause congestions. Therefore, at this point, adding more budget does not help to in-

corporate the services and thus average travel time remains the same. This is further

demonstrated by the Bus service with more than 2 bus routes incorporated. Invest-

ing more budget helps devoting resources to a new bus line and thus the average

travel time keep going down.

We summarize deployment and bus route when annual investment is 1 million

98



CHAPTER 5. INTEGRATED BUS AND BIKE SHARING SERVICES FOR LAST-MILE COMMUTE: A SPATIAL

REDISTRIBUTION APPROACH

SGD in Table 5.11. The numbers with bold font represent the stations that passen-

gers choose to alight. Our bus services provide passengers more options to alight.

Even with 2 bus, our service can provide 5 good stations rather than 2 compared

with existing JTC Rider.

Table 5.11: Explanation of bus services for investment 1.0

Annual Investment Services Deployment & Route

1 million

Bus
20 mins: 0-12-13-14-0
25 mins: 0-10-7-6-5-13-16-14-0
22 mins: 0-9-10-8-7-5-4-13-16-14-0

Bus-2R
20 mins: 0-12-13-14-0
20 mins: 0-9-10-8-7-5-4-13-16-14-0

JTC Rider
20 mins: 0-12-13-14-0
36 mins: 0-8-15-11-10-9-0
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Figure 5.10: Explanation of bus services for annual investment 1.0

Setting different stations offer passengers different travel time reduction. We

summarize all possible stations and their relative travel time reduction for 3 different

transportation services in Figure 5.10. From this figure, we observe for station 8 and

12 utilized by JTC Rider; the travel time reduction is smaller compared to the bus

service provided by our model. Moreover, those bus services can take other stations

to make travel time reduction. Therefore, our model achieves smaller travel time

than existing deployment at this point.
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5.5.4.3 Comparing Mixed Transportation Options

The second comparison is conducted between the bus service and a mixed trans-

portation options of both bus and bike services. Figure 5.11 reports the comparison

Annual Investment (million SGD)
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Figure 5.11: Comparison of bimodal options

results between existing bus service and mixed transportation options for JTC Rider.

First of all, we take a look at bus model and the mixed service. Before the annual

investment reaches 0.4 million, model chooses bus service to reduce the travel time.

In this case, the two lines are identical. When the annual investment is 0.4 million,

the budget starts to invest to bike service to serve passengers. Details are presented

in Table 5.12 where we notice that 57.16 budget is assigned to bike service to serve

55 passengers.

Table 5.12: Budget and passengers distribution with annual investment 0.4

Budget assignment Num. of served passengers

JTC Rider
bus: 368.41
bike: 0

bus: 405
bike: 0

JTC+bike
bus: 311.25
bike: 57.16

bus: 405
bike: 55

We plot the detailed deployment when annual investment is 0.4 million in Fig-

ure 5.12. Figure 5.12 (a) plots the utilized bus route with passengers’ choice over
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alighting stations and Figure 5.12 (b) added the bike station location deployment

represented with pink stars.

(a) Route (b) Route and bike station

Figure 5.12: JTC rider deployment

Intuitively, without implementing bike services, passengers with destinations 21

and 24 choose to alight at their nearest station 12. In Figure 5.12 (b), there are

3 bike stations constructed, with capacity 20, 5 and 15 for stations 0, 21 and 23 in

respective. Constructing a bike station help serve passengers and reduce passengers’

travel time. We further plot the travel time achieved by each bike station in Figure

5.13. In Figure 5.13 (a), we observe station 21 and 23 serve 17 and 38 passengers,

(a) Served passengers (b) Travel time

Figure 5.13: Performance of bike service when annual investment is 0.4

in respective. In Figure 5.13 (b), the white bar with no service is the walking time
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for those un-served passengers. The blue bar is the travel time when riding bike

for those served passengers. Providing bike service helps reduce 32.5% and 32.5%

travel time reduction for passengers with destination 21 and 23.

When annual investment reaches 1.6 million, JTC Rider maintains 2 of its bus

routes and operate the way shown in Table 5.13. Connecting Table 5.13 and 5.14,

with bike services, 4 bike stations can be constructed with around 5% of the total

budget. 60 passengers are served by bike with the distribution and relative travel

time reduction shown in Figure 5.14.

Table 5.13: Explanation of jtc bimodal services for investment 1.6

Annual Investment Modes Deployment & Route

1.6 million

JTC Rider
20 mins: 0-12-13-14-0
36 mins: 0-8-15-11-10-9-0

JTC Rider + Bike

20 mins: 0-12-13-14-0
45 mins: 0-8-15-11-10-9-0
stations: | 0 | 21 | 23 | 25 |
capacity:| 20 | 19 | 20 | 20 |

Table 5.14: Budget and passengers distribution with annual invest 1.6

Budget assignment Num. of served passengers

JTC Rider
bus: 1842.07
bike: 0

bus: 604
bike:0

JTC+bike
bus: 1753.76
bike: 88.31

bus: 585
bike: 60

5.6 Conclusion

Managing the demand surges during morning and evening peak hours at business

park is a challenging task. Existing strategies utilize a single transportation mode

(bus) to serve passengers. We improved this approach by (1). Applying column

generation approach to derive better bus operation routes; (2). Adding bike sharing

option to help expand the transportation capacity, which can further reduce passen-

gers’ travel time. Regarding handle the demand surges, bike sharing service is not
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(a) Served passengers (b) Travel time

Figure 5.14: Performance of bike service when annual investment is 1.6

flexible as altering the existing plan is hard once the infrastructures are set. Bus

service gives more flexibility for operators to handle such sudden high demand by

renting and deploying more buses. Our work offers a handbook for operators to de-

termine the deployment of bus and bike services in the business park. We validate

the plan in the context of a Singapore business park and results indicate our method

helps reduce passengers’ travel time.

5.7 Discussion

The bike sharing model described in this thesis uses fixed bike stations. As passen-

gers have to take and return bikes at the bike stations, the bike journeys are limited

by the number of bikes/docks available at the bike station and the location of the

bike stations.

Unlike the traditional bike sharing, the station-less bike sharing scheme works

in a different way, which does not require the constructions of bike stations. Each

bike is installed with GPS system that allows users to locate them using a map from

their smartphone app. Once users reach the destinations, they just park the bicycles

at any public bicycle parking area and lock the bike back up using the clamp. Their

is no more need for them to park the bike to bike stations.
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It is possible for the proposed bike sharing model to be extended to stationless

bike sharing scheme with some following modifications. The cost for the station

should set to be 0 and the trips are not limited by the availabilities of bikes and

docks in stations. The unit price associated with each bike needs to be increased

as additional each bike is required to install some additional accessories, such as

the GPS sensor. By the way, the cost for developing smartphone app needs to be

addressed.
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Chapter 6

Conclusions and Future Work

In urban city, most infrastructures are designed to cater a planned capacity, yet

surges do happen in times and this has long been a major challenge for urban plan-

ners.

In industry, the surging of demand is resolved from the economic perspective

where operators use price as a tool to alter the supply and demand. One of the

examples is Uber’s surging price mechanism. (Uber is a transportation network

company who develops, markets and operates the Uber car transportation via mobile

apps.) This system justifies the price of ridership based on the demand-supply curve.

When detecting the passengers’ demand is over-full, Uber starts to raise a multiplier

(2x, 3x and so on) on the original price during regular hours to balance the supply-

demand relationship.

In this thesis, I presented research on both proactive and reactive strategies to

handle the demand surges in urban crowds. Proactive strategy refers to distributing

the excessive demand in the temporal dimension. To prevent the demand peaks,

this strategy is proposed to provide incentives or distractions such that can slow

down the flow rate towards the congested region. Reactive strategy deals with the

demand in spatial dimension regarding the situation where it is impossible to delay

the crowd movement. For example, after major events, most of the people prefer

to go home as soon as possible regardless what incentives are provided. The focus
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of reactive strategy is to redirect the overflow demand to other parts of the network

spatially.

In section 6.1 and 6.2, I review the two strategies and discuss their limitations

from both methodological and practical perspectives. Following each limitation, I

discuss several lines of future works arising from this dissertation.

6.1 Proactive Strategy

In Chapter 3, we developed model to learn diffusion dynamics parameters and pro-

vide decision support to alter the diffusion dynamics to achieve a desired outcome

in dependent cascade models.

On the methodology development front, existing works at learning stage fo-

cus on independent diffusions on all outgoing edges of a node. We contribute to

incorporate the real-world features (such as learning from aggregate data, model-

ing queues at network nodes, etc.) into the model, and address flow conservation

at network nodes. To account for the lack of data on visitors entering and exiting

the theme park as well as taking breaks, we also introduce the “leisure node” with

unlimited capacity. Experiment results concretely show how visitors’ behaviors can

be captured with this node. At the controlling stage, we developed an optimization-

based approach to compute an optimal plan of management actions to control the

underlying diffusion process.

A limitation of this work is to model the transitions as a Hidden Markov Model

at the learning stage, where the future transitions only depend on the current state

and are independent of the history. Though this model is experimentally validated to

be valid in our paper, incorporating information from the past may provide more ac-

curacy. To account for this limitation, a possible way is to apply a cutting-edge tech-

nique in deep learning – Long Short-Term Memory (LSTM) [20] to learn the model.

Typically, LSTM is a Recurrent Neural Network (RNN) architecture which is ca-

pable of doing sequential, or time-series learning and predicting. It gets long-term
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dependencies by connecting previous information to the present task. By appropri-

ately setting the parameters, we can obtain the parameters learned from dependent

cascade model using LSTM and compare it to our proposed model.

On the application-related research front, we have tested the above-mentioned

approach using real-world data from a theme park in Singapore. We have experi-

mentally shown that our learning approach achieves an accuracy close to 80% for

popular attractions and the decision support algorithm can provide about 10− 20%

reduction in wait time. Though this model is only demonstrated to be effective

in managing the congestion in theme park context, it’s capability is not limited in

theme park domain.

Another application of this model is to apply the dependent cascade model to

learn and control diffusions over transportation network. In Singapore, road cam-

eras record the aggregate number of vehicles appear at a particular road crossing

at the different time of a day. From which we can learn the diffusion dynamics

over the traffic network. This data set also provides a convenient way to validate

transition probabilities in the learned model given the moving behavior of each ve-

hicle recorded. With the learned diffusion models, we can observe the congestions

caused by vehicles’ movement. One of the strategies to control the congestion is

to use Electronic Road Pricing (ERP). ERP is a mechanism deployed by Singapore

government to monitor the congestion. Motorists are charged when they use priced

roads during peak hours. We can further investigate the best roads to apply ERP

tolls to ease the road congestions over the networks.

6.2 Reactive Strategy

In Chapter 4 and Chapter 5, we introduce the usage of public transportation op-

tions to disperse the ultra-high demand and in the meantime, minimize passengers’

overall travel time.

On the methodology development front, we introduce a two-phase optimization
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based approach for designing bus service, which generates efficient candidate bus

routes based on commuters demand and plans the bus deployment such that mini-

mize passengers total travel time. We further extend this service by incorporating

bike sharing system to expand the transportation capacity from a central station to

passengers’ destinations in the context of the business district. In current work,

our focus is on capacity planning, where the input demand is static, and the out-

put deployment is an expected outcome over the whole time horizon. Hence, the

proposed decision is made to determine the capacity needed by operators to serve

the appeared demand. However, for a real-world problem, passengers arrive at the

source node in batches.

An extension of the model is to incorporate time-dependent features for the pas-

sengers’ arrivals. One interesting problem is to capture the time-dependent demand

by putting a time index t on demand variable d. Based on such time-dependent,

origin-to-destination demand records from EZlink data set, an optimization-based

model computing and adjusting bus timetables need to be developed. In particular,

this model should determine the departure timing for each bus at the source station.

The even time space for the departure of each bus may lead to long waiting time for

passengers during peak hours. Therefore, an uneven time space schedule for bus

service may help accommodate peak-hour demand and in the meantime, maintain

some degree of service for passengers during non-peak hours.

On the application-related research front, the proposed approach is validated

in the context of Singapore community. We extracted passengers’ demand infor-

mation from EZlink data set and conduct the experiment with different settings in

Chapter 4: (1). in a normal situation where existing train network is in good op-

eration; (2). in the case of train disruption case where current train system breaks

down somewhere. Results show that the optimization approach achieves reduction

in the travel time. In Chapter 5, we measured the performance of our approach in

business district during morning and evening peak hours. Existing strategies utilize

a single transportation mode (bus) to serve passengers. We improved this approach
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by (1). Applying column generation approach to derive better bus operation routes;

(2). Adding bike sharing option to help expand the transportation capacity, which

can further reduce passengers’ travel time. However, some of the key parameters

cannot be obtained, such as the cost of setting bike services, the distribution of pas-

sengers’ destinations for those attend the concert. In fact, the best way to validate

the performance of our model is to use real-world data. To achieve this, we must

cooperate with operators and collect empirical data from them. Utilizing such data

set, we can estimate the accuracy our model by deploying resources in the real-

world and measure the performance of our approaches in reducing the congestion.

In this way, the effectiveness can be further validated, and we can adjust our model

according to the real-world requirement as well.
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Appendix

Non-sub-modularity proof

A function f is sub-modular if: for all X ⊆ Y and x ∈ Ω\Y , the marginal gain of

adding x to the set Y is no more than the gain of adding x to X .

f(X ∪ x)− f(X) ≥ f(Y ∪ x)− f(Y )

In our problem, Ω is the set of all possible side shows that can be added into the

system. Function f corresponds to:

−
∑
u∈A

∑
t∈T

ntu
su

(6.1)

We use a counter-example to show that our problem is not sub-modular. Con-

sider there are 3 nodes u, v and w in the system shown in figure (6.1). Node u and

v represent the ordinary nodes in the network and w is the buffer node. We set the

service rate su = 1 and sv = 2. Constant transition probabilities ptu,v = 1, ptv,u = 1

holds for all time steps t. Initially, both nt=0
u and nt=0

u equal to 1.

Empty set X describes the case where there is no side shows taken into the

system. Set x = {a0u,v} denotes that at time t = 0, a show is taken between node

u and v. Similarly, set Y = {a0v,u} shows that a show is added between node v and

node u at time 0. In figure (6.1), we explicitly explain the calculation of function f

under above scenarios. In this figure, numbers in the circle is ntu for each node u.
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Solid lines represents transition probabilities p without any interventions, while the

dotted line represents the locations where side shows are taken.
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(c) X ∪ x
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(d) Y ∪ x

Figure 6.1: Non-Submodularity

Figure (6.1(a)) shows the case where there is no intervention in the system.

According to this figure, we calculate f(X) as follows:

f(X) = f(∅) = −
∑
u∈A

∑
t∈T

ntu
su

= −(
4

1
+

4

2
) = −6 (6.2)

In figure (6.1(b)), transitions with action set Y is described. At t = 0, transitions

from node v to u is blocked and this flow goes into buffer node w at t = 0. After 1

time step delay, the flow starts from buffer node w and transits to its original target

node u at t = 1. In this case, f(Y ) is calculated as:

f(Y ) = −(
4

1
+

3

2
) = −5.5 (6.3)

Similarly, calculation of f(X ∪ x) and f(Y ∪ x) is shown in figure (6.1(c)) and

(6.1(d)), respectively. According to the figures, f(X ∪ x) = −5.5 and f(Y ∪ x) =

−4.5.

From the above examples, f(X ∪ x)− f(X) = 0.5 and f(Y ∪ x)− f(Y ) = 1.
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As f(X ∪ x) − f(X) < f(Y ∪ x) − f(Y ) = 1, we conclude that our problem is

not sub-modular.
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