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Abstract

Graph neural networks (GNNs) have achieved state-of-the-art performance in

graph representation learning. Message passing neural networks, which learn

representations through recursively aggregating information from each node and

its neighbors, are among the most commonly-used GNNs. However, a wealth

of structural information of individual nodes and full graphs is often ignored in

such process, which restricts the expressive power of GNNs. Various graph data

augmentation methods that enable the message passing with richer structure

knowledge have been introduced as one main way to tackle this issue, but they

are often focused on individual structure features and difficult to scale up with

more structure features. In this work we propose a novel approach, namely

collective structure knowledge-augmented graph neural network (CoS-GNN), in

which a new message passing method is introduced to allow GNNs to harness

a diverse set of node- and graph-level structure features, together with origi-

nal node features/attributes, in augmented graphs. In doing so, our approach

largely improves the structural knowledge modeling of GNNs in both node and

graph levels, resulting in substantially improved graph representations. This

is justified by extensive empirical results where CoS-GNN outperforms state-
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of-the-art models in various graph-level learning tasks, including graph clas-

sification, anomaly detection, and out-of-distribution generalization. Code is

available at: https://github.com/RongrongMa/CoS-GNN.

Keywords: Graph representation learning, Graph neural networks, Data

augmentation

1. Introduction

Graph representation learning is one of the most popular topic in graph

mining because of its numerous potential applications in bioinformatics [1, 2, 3,

4, 5], chemical [6, 7, 8], social networks [9, 10, 11, 12] and cyber security [13]. In

the past few years, Graph Neural Networks (GNNs) [14, 43] have been emerging

as one of the most powerful and successful techniques for graph representation

learning.

Message passing neural networks constitute a prevalent category of GNN

models, which learn node features and graph structure information through

recursively aggregating current representations of node and its neighbors. Di-

verse aggregation strategies have been introduced, giving rise to various GNN

backbones, such as GCN, GIN, and among others [14, 15, 16, 17, 18]. How-

ever, the expressive power of these message passing GNNs is upper bounded

by 1-dimensional Weisfeiler-Leman (1-WL) tests [18, 19] that encode a node’s

color via recursively expanding the neighbors of the node to construct a rooted

subtree for the node. As shown in Figure 1, such rooted subtrees are with lim-

ited expressiveness and might be the same for graphs with different structures,

leading to failure in distinguishing these graphs. This presents a bottleneck for

applying WL tests or message passing neural networks to many real-world graph

application domains.

The failure of WL test is mainly due to the rooted subtree’s limited capabili-

ties in capturing different substructures that can appear in the graph. Since the

message passing scheme of GNNs mimics the 1-WL algorithm, one intuition to

enhance the expressive power of GNNs is to enrich the passing information, es-
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Figure 1: 1- and 2-WL tests fail to distinguish the two graphs as they obtain the same rooted

subtree (node coloring).

pecially structural knowledge, to help GNNs model diverse substructures. One

popular approach to achieve this is data augmentation (DA) techniques [20].

One general framework in this line is to compute additional node features based

on structural properties and attach them to original node features, such as

DE [21], GSN [22], fast ID-GNN [23] and LAGNN [24]. Except extending node

features, NestedGNN [25] and ID-GNN [23] compute and add node embeddings

based on the local subgraph of each node. However, these methods only focus

on local structure while many important global structure features are ignored.

Also, GSN and fast ID-GNN often rely on a properly pre-defined substruc-

ture set to incorporate domain-specific inductive biases [25]. Further, these DA

techniques are focused on augmenting the graph with some individual features,

which are difficult to scale up to the incorporation of a diverse, large set of

augmented features.

In this work, we propose a novel approach, namely collective structure knowledge-

augmented graph neural network (CoS-GNN), to leverage a variety of informa-

tive structural knowledge of graphs through DA for enhancing the expressiveness

of existing GNNs. Instead of implicitly using structural information in other

DA methods, we explicitly extract collective, domain-adaptive graph structural

statistics at the graph and node levels as additional structure features. To

fully leverage those augmented structural knowledge, we design a new message

passing mechanism to respectively perform neighborhood aggregation on graph

3



(a) GCN (b) CoS-GCN w/o graph structure (c) CoS-GCN

Figure 2: Graph representations of REDDIT-BINARY yielded by (b) CoS-GCN with aug-

mented node-level structural features and (c) CoS-GCN with augmented structural features

at both node and graph levels are more class-separable than those produced by (a) the original

GCN.

data using these augmented structure features and the original node attributes.

Further, the new message passing can also model the interaction between the

augmented features and the original node attributes. In doing so, our GNNs

break down the upper bound of 1-WL tests and learn graph representations with

significantly improved expressiveness (see the graph representations produced

by CoS-GNN in Figure 2(b)(c) vs. those yielded by the original GCN).

In summary, our main contributions are as follows:

• We introduce a novel collective structure knowledge augmented GNN ap-

proach (CoS-GNN) that explicitly harnesses a diverse set of node and

graph-level structural information for enhancing the expressiveness of GNN-

based graph representations. The approach is generic and applicable to

different GNN backbones.

• To effectively leverage the augmented structural features, a new message

passing scheme is introduced in CoS-GNN, which simultaneously performs

neighborhood aggregation on the augmented features and the original

node attributes, enabling the learning of graph representations with sig-

nificantly enriched structural knowledge.

• Comprehensive experiments on 12 graph datasets demonstrate that CoS-

GNN (i) significantly outperforms competing methods in graph classifi-

cation task; (ii) provides more discriminative information for anomaly
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detection task; (iii) is more generalized to out-of-distribution graphs.

2. Related Work

2.1. Graph Neural Networks

Graph neural networks (GNNs) have gained numerous attentions and re-

markable success in the past few years [14, 37, 38, 43]. Wu et al. [14] summarize

various GNN models, among which message passing between nodes based on

graph structure to learn graph representations is one of the most popular ones.

They iteratively aggregate information from nodes and their neighbors to learn

expressive representations of nodes. GCN [15], GraphSAGE [16], graph atten-

tion network (GAT) [17] and graph isomorphism network (GIN) [18] are sev-

eral most representative and state-of-the-art message-passing GNNs. However,

since the message passing mechanism of GNNs mimics the 1-WL algorithm, the

expressive power of these GNNs is limited and upper bounded by the Weisfeiler-

Leman test [18, 19], which restricts their performance in graph representation

learning. The proposed CoS-GNN aims to improve the expressiveness of these

popular GNNs by modeling a collective set of additional structural features.

2.2. Graph Data Augmentation

Motivated by the excellent achievements of data augmentation in image

and text data [26, 27], graph data augmentation techniques are attracting in-

creasing attention to improve the representation expressiveness obtained from

GNNs in graph-domain tasks [20]. To solve the label scarcity in semi/un-

supervised classification tasks, augmentation through changing the graph struc-

ture or node attribute, e.g., node/edge deletion, attribute masking, and sub-

graph sampling, is used to construct a contrastive or consistent learning frame-

work in [39, 40, 41, 42, 44]. In supervised graph classification tasks, some

augmentation methods are implemented to enhance the representation expres-

siveness of GNNs and further improve the classification performance. One di-

rection is to enrich node features. For example, distance encoding is proposed in
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[21] to generate and add extra node features. Sato, Yamada and Kashima [28]

add random node features, while GSN [22] and fast ID-GNN [23] use the count

of various motifs to extend the node features. In [24], neighborhood features

are augmented via a generative model conditioned on local structures and node

features. Except to node feature extension, augmenting the graph from the

structure perspective is another popular approach. For example, Zhang and Li

[25] and You et al. [23] sample a subgraph for each node and use the subgraphs

to compute node embeddings and add them to complement the original graph.

The structural information used in these methods is local, while many useful

graph-level structural information is ignored. To alleviate this issue, Liu et al.

[29] add a dummy node that connects to all existing nodes without affecting

original node and edge properties for better graph representation learning. G-

mixup [30] and graph transplant [31] mixup graphs to obtain more graph data

for data-hungry tasks. Papp et al. [32] instead perform augmentation through

iteratively removing nodes randomly and executing multiple different runs on

these node-dropout graphs. All these DA methods are focused on utilizing some

specific types of additional features, like substructure and local structure varia-

tion, which often cannot generalize to graphs from different application domains.

By contrast, our approach aims to harness collective, domain-adaptive node and

graph features via a new message passing mechanism.

3. Framework

3.1. Problem Statement

This work focuses on the problem of graph representation learning. Specif-

ically, given a set of graphs G = {G1, · · · , GN}, each graph G = {VG, EG} con-

tains a vertex/node set VG and an edge set EG. The structure of G is denoted

by an adjacency matrix A ∈ R|VG|×|VG|, where |VG| is the number of nodes in

G. A(i, j) = 1 if an edge exists between node vi and vj (∃(vi, vj) ∈ EG), and

A(i, j) = 0 otherwise. If a feature vector xn
i ∈ Rd is associated with each node

vi ∈ VG, the graph G is an attributed graph, and otherwise G is a plain graph.
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Node structural augmentation
Graph structural augmentation

Graph 
representation

Down-stream
task

Message Passing

Figure 3: A schematic depiction of our CoS-GNN. Our CoS-GNN first calculates the specific

node- and graph-level structural features. Then a new message passing mechanism is devised

to utilize the original node attributes and the augmented node structural features to compute

the graph representation, which is further combined with the graph structural augmentations

for down-stream tasks.

For a plain graph, we use the one-hot node label as the node attributes. Our

goal is to learn a representation for each graph G for further use in down-stream

tasks like graph classification and anomaly detection.

3.2. The Proposed Framework

We propose a novel collective structure knowledge-augmented graph neural

network (CoS-GNN) that aggregates original and augmented structural fea-

tures of single nodes and whole graph to learn expressive graph representations.

The key intuition of CoS-GNN is to utilize various local (node) and global

(graph) structural information to enrich the original graph structural knowl-

edge, through which we can learn a more informative and discriminative graph

representation. The overall procedure of CoS-GNN is illustrated in Figure 3,

which is composed of the following three major components:
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• Collective Graph Data Augmentation. In this component, we generate

a diverse set of specific structural features for each graph G (denoted

by xgs
G ) and each node vi in G (denoted by xns

i ). These two types of

features are added to augment each graphG from the structural knowledge

perspective. It is a component that can be done offline.

• Augmented Node-level Message Passing. This component is designed to

iteratively aggregate both the original and augmented node features, i.e.,

xn
i and xns

i , to learn the node representation hi with significantly enriched

structural knowledge for each node vi. To this end, a new message passing

mechanism is introduced for this process. The node representations are

then fed to a readout layer to gain the graph representation hl.

• Graph-level Representation Fusion. This component aims to synthesize

the learned graph representation hl and the pre-defined graph-level struc-

tural features xgs
G via concatenation/fully-connected layers to obtain the

final representation hg. hg is then fed to a down-stream graph-level learn-

ing task.

4. Model

CoS-GNN is a generic framework. In this section, we introduce two instan-

tiations of our CoS-GNN framework with the commonly-used GCN and GIN as

the GNN backbone, namely CoS-GCN and CoS-GIN, respctively.

4.1. Collective Graph Data Augmentation

We first augment the graph via computing some important node and graph

statistics, which serve as additional node and graph features to complement the

original node attributes. This component is shared by different model instanti-

ations, and it can be performed before the model training.

Specifically, we select and generate a number of widely-used and domain-

adaptive node-level features, including the degree, triangle number, clique size,

clique number, core number, cluster coefficient and square cluster coefficient,
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resulting seven new features in xns
i for each node vi. The last two coefficient

measures capture the tendency of the node to form relatively dense communities,

while other measures are to capture substructural information from varying

scales. The detailed definition of these features is as follows:

• Degree. The degree of a node/vertex is the number of edges that are

incident to the node, which is an important and commonly-used node

structure statistic.

• Triangle. Triangle is a simple and direct structure, and we counts the

number of triangles that use this node as a vertex.

• Clique. The clique is a substructure, in which every two distinct nodes

are adjacent. We calculate the size of the maximal clique and the number

of maximal cliques containing each given node.

• K-core. A k-core is defined as a maximal subgraph that is composed of

nodes with degree k or more, the core number of a node is the largest

value k of a k-core containing the given node. We collect the core number

of each node as one of the augmented node-structural characteristics.

• Quantized values. Beyond the number, we also calculate the trian-

gle/square clustering coefficient for each node, which are the fraction of

possible triangles/squares through the given node that exist. This quan-

tifies the tendency of nodes to form relatively dense network groups, i.e.,

triangles or squares.

For graph-structural-level augmentation, we utilize a variety of important

global statistics, including triangle number, clique size, the existence of bridge,

average clustering coefficient, average global efficiency, and average local effi-

ciency, to generate six graph-level structural features xgs
G for each graph G. The

three coefficients quantify the abundance of dense communities in the graph and

the other statistics are the measurement of the node-to-node communication ef-

fectiveness within a graph. Detailed definition of each statistic is presented as

follows:
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• Triangle. We use the total number of triangles as one graph feature.

• Clique. We count the size of the largest clique in the graph as the second

graph feature.

• Bridge. Another employed statistic is the existence of a bridge in the

graph, which is an edge whose removal will cause the number of connected

components of the graph to increase. The bridge is a specific characteristic

of the graph.

• Quantized values. The average clustering coefficient for the graph is

also included to measure the abundance of dense network groups in the

graph. The efficiency of a pair of nodes is the multiplicative inverse of the

shortest path distance between the nodes, and we calculate the average

efficiency of all pairs of nodes in the graph, called average global efficiency,

as one of the graph-structural statistics to measure the effectiveness of

communication in the graph. The local efficiency of a node is defined as

the average global efficiency of the subgraph induced by the neighbors of

the node. We utilize the average local efficiency, which is the mean of local

efficiencies of each node in the graph, as another statistic.

These collective statistics consider the configurations with different scales

and complexities, which are normally adaptive to graphs from different domains.

4.2. Augmented Node-level Message Passing

Once the augmented node structural feature xns is obtained, we then aggre-

gate the original feature xn and the augmented features xns to learn the original

node attributes and their interaction with augmented structural knowledge of

nodes. One straightforward solution that many previous methods do is to con-

catenate them directly and then apply GNN to perform the commonly-used

neighborhood aggregation on nodes using the combined feature. This approach

is easy-to-implement but fails to capture intricate interactions (e.g., higher-order

and/or non-linear interactions) between the original node attributes and aug-

mented features. To address this issue, we propose a novel message passing
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mechanism for effectively capturing the diverse knowledge embedded in the two

types of features and their interactions. Our experiments also show that our

message passing mechanism outperforms the conventional message passing with

the concatenated input (see results in Table 10).

To this end, we construct a dual-graph structure that facilitates the mod-

eling of the original node features, the modeling of the collective augmented

node features, and the modeling of the interactions between these two types of

features in each message passing step. In detail, given a graph G, we construct

a new graph Ĝ with the same node and structure as the original graph but with

the xns as its node attributes and link the corresponding nodes of G and Ĝ.

This results in our augmented graph with a dual-graph structure, G
′
.

4.2.1. Message Passing in CoS-GCN

Next we perform message passing on the dual-graph structure G
′
. When

using GCN as our GNN backbone, the adjacent matrix A
′
of G

′
can be written

as

A
′
=

A I

I A

 , (1)

and the degree matrix D
′
is

D
′
=

D + I 0

0 D + I

 , (2)

where A and D are the adjacent and degree matrices of G and I is the identity

matrix. We then convolute the node features of G
′
by

H(l) = σ

D̃
′− 1

2 Ã
′
D̃

′− 1
2

H
(l−1)
n

H
(l−1)
ns

W (l)



= σ


D̃ + I 0

0 D̃ + I

− 1
2
Ã I

I Ã

D̃ + I 0

0 D̃ + I

− 1
2
H

(l−1)
n W (l)

H
(l−1)
ns W (l)




= σ

(D̃ + I)−
1
2 Ã(D̃ + I)−

1
2 D̃ + I

D̃ + I (D̃ + I)−
1
2 Ã(D̃ + I)−

1
2

H
(l−1)
n W (l)

H
(l−1)
ns W (l)


= σ

(D̃ + I)−
1
2 Ã(D̃ + I)−

1
2H

(l−1)
n W (l) + (D̃ + I)H

(l−1)
ns W (l)

(D̃ + I)−
1
2 Ã(D̃ + I)−

1
2H

(l−1)
ns W (l) + (D̃ + I)H

(l−1)
n W (l)

 ,

(3)
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where Ã = A + I, D̃ = D + I and D̃
′
= D

′
+ I. H

(l−1)
n and H

(l−1)
ns is the

node representation matrices of G and Ĝ after the (l−1)-th convolutional layer.

The feature input of the 0th layer is node feature matrices Xn and Xns, which

stack xn
i and xns

i (vi ∈ G) across all graph nodes, respectively. H(l) is the node

representation matrix of all nodes after the lth convolutional layer. W (l) is the

parameter matrix of the lth convolutional layer. σ is a non-linear activation

function.

Since the original node features and augmented node structural features

can be very different, we employ two different convolutional filters (i.e., with

different convolutional weights) to learn their knowledge as follows:

H(l) =

H
(l)
n

H
(l)
ns

 ≈ σ

(D̃ + I)−
1
2 Ã(D̃ + I)−

1
2H

(l−1)
n W

(l)
n + (D̃ + I)H

(l−1)
ns W

(l)
ns

(D̃ + I)−
1
2 Ã(D̃ + I)−

1
2H

(l−1)
ns W

(l)
ns + (D̃ + I)H

(l−1)
n W

(l)
n

 ,

(4)

where W
(l)
n and W

(l)
ns are the parameter matrices of lth layer for two types of

features respectively, and H
(l)
n and H

(l)
ns are the node representation matrices of

G and Ĝ after current lth message passing layer.

After Lmessage-passing layers, we aggregate the node representations of two

graphs G and Ĝ in each layer to obtain the final node representation matrix as

follows:

H = AGGATEn(H
(1)
n , · · · , H(L)

n , H(1)
ns , · · · , H(L)

ns ), (5)

where AGGATEn(·) is an aggregate function, and concatenation is used in our

experiments; H denotes the representation matrix that encapsulates the repre-

sentation of all individual nodes. Then a readout function is applied to obtain

the learned graph representation hl.

4.2.2. Message Passing in CoS-GIN

The framework can also be extended to other GNN backbones. Here we

now present how the proposed message passing method can be adopted to the

case using GIN as our backbone. To this end, the GIN-based message passing
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is re-defined as follows:

h(l)
vi,n = MLP(l)

n

(1 + ϵ(l))h(l−1)
vi,n +

∑
vj∈N (vi)

h(l−1)
vj ,n + h(l−1)

vi,ns

 ,

h(l)
vi,ns = MLP(l)

ns

(1 + ϵ(l))h(l−1)
vi,ns +

∑
vj∈N (vi)

h(l−1)
vj ,ns + h(l−1)

vi,n

 ,

(6)

where MLP is a multi-layer perceptron layer. Then we combine the obtained

representations via summation. In detail,

hn =
∑
l

FC(l)
n (READOUT(H(l)

n )),

hns =
∑
l

FC(l)
ns(READOUT(H(l)

ns )),
(7)

where FC(l)
n (·) and FC(l)

ns(·) are fully-connected layers in the lth layer. We gain

the learned graph representation hl through adding them together:

hl = hn + hns. (8)

The key insight of the message passing mechanism in CoS-GIN is analogous

to that in CoS-GCN, but they are derived at different representation levels:

matrix of node representations in CoS-GCN vs. vectorized node representations

in CoS-GIN, which is mainly done for presentation brevity.

4.3. Graph-level Representation Fusion

After gaining the learned graph representations hl, we then employ MLP

to synthesize it, together with the augmented graph-structural feature xgs, to

learn the final graph representations. In detail, we input hl and xgs into the

two different MLPs as:

hMLP
l = MLPl(hl),h

MLP
gs = MLPgs(xgs), (9)

where MLPl(·) and MLPgs(·) are MLP functions. We then integrate the infor-

mation learned to gain the final graph representation:

hg = AGGATEg(h
MLP
l ,hMLP

gs ), (10)
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where AGGATEg(·) is the aggregation function and we use concatenation in

our model. Then the graph representation can be used for any down-stream

tasks. Algorithm 1 presents the procedure of CoS-GCN to calculate graph

representations, which can be later input to any down-stream tasks.

Algorithm 1 Graph representation learning via CoS-GCN

Input: Graph set G = {Gi}i, two GNNs with parameter set {W (1)
n , ...,W

(L)
n }

and {W (1)
ns , ...,W

(L)
ns }, two MLP functions MLP l(·) and MLP gs(·)

Output: Graph representation hg for G ∈ G

1: Augment node and graph structural knowledge to obtain Xns and xgs for

each G ∈ G

2: for G in G do

3: Compute H(l), l ∈ {1, · · · , L} with Eq.(4)

4: Aggregate H(l), l ∈ {1, · · · , L} with Eq.(5) to obtain H

5: Readout H to obtain hl

6: Input hl and xgs into MLP l and MLP gs respectively to gain hMLP
l and

hMLP
gs

7: Aggregate hMLP
l and hMLP

gs to obtain the final representation hg for G

8: end for

9: return Graph representation hg for G ∈ G

4.4. Expressive Power of CoS-GNN

This section discusses the expressive power of CoS-GNN. When comparing

the expressiveness of GNN models, we can define that:

Definition 1. For any two GNN models: A and B, model A is said to be

more expressive than model B, if and only if 1) model A can distinguish all

samples that model B can distinguish, and 2) there exists samples which can be

distinguished by model A but not by model B.

To measure the expressive power of GNNs, the Weisfeiler-Lehman (WL)

graph isomorphism test is commonly used, which is a family of algorithms (k-
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WL, k-FWL) used to test graph isomorphism [33, 34]. Two graphs G1 and

G2 are called isomorphic if there exists an edge and color preserving bijection

ϕ : V1 → V2. Next we show the strong expressive power of our model CoS-GNN

from the WL-test perspective:

Theorem 1. CoS-GNN is not less expressive than 1-WL and 2-WL tests.

Proof. We first consider the comparison with 1-WL test. This equals to prove

such statement: If CoS-GNN deems that two graphs are isomorphic, then 1-

WL test will also deem them isomorphic. If after k iterations, the CoS-GNN

regards two graphs G1 and G2 are isomorphic, we have h
(k)
1,g = h

(k)
2,g . Assuming

that the AGGATEg is injective, we can obtain that h
MLP (k)
1,l = h

MLP (k)
2,l and

h
MLP (k)
1,gs = h

MLP (k)
2,gs , followed by h

(k)
1,l = h

(k)
2,l and xgs

1 = xgs
2 . Thus we have

H
(i)
1 = H

(i)
2 and then h

(i)
v,n = h

(i)
u,n and h

(i)
v,ns = h

(i)
u,ns for v ∈ VG1

, u ∈ VG2
and

i = 1, ..., k when the AGGATEn is injective.

What we need to prove next is that the color extracted by 1-WL for node v

and u is same, i.e.c
(k)
v = c

(k)
u . We use the induction as [22] to demonstrate this.

For i = 0, since the initial node features are the same for both CoS-GNN and

1-WL, we can get c
(0)
v = c

(0)
u when h

(0)
v,n = h

(0)
u,n. Suppose h

(j)
v,n = h

(j)
u,n,h

(j)
v,ns =

h
(j)
u,ns ⇒ c

(j)
v = c

(j)
u holds for j = 1, · · · , k − 1, we later need to prove that it

holds for j = k. Since each node representation, including h
(j)
v,n and h

(j)
v,ns, is

calculated by a COM function, if COM is injective, we have h
(k−1)
v,n = h

(k−1)
u,n ,

h
(k−1)
v,ns = h

(k−1)
u,ns , AGGATE({h(k−1)

q,n |q ∈ Nv}) = AGGATE({h(k−1)
p,n |p ∈ Nu})

and AGGATE({h(k−1)
q,ns |q ∈ Nv}) = AGGATE({h(k−1)

p,ns |p ∈ Nu}) when h
(k)
v,n =

h
(k)
u,n and h

(k)
v,ns = h

(k)
u,ns. According to Lemma 5 from [18], there exists an

injective function. When AGGATE is injective, we have h
(k−1)
q,n = h

(k−1)
p,n and

h
(k−1)
q,ns = h

(k−1)
p,ns , which lead to c

(k−1)
q = c

(k−1)
p for q ∈ Nv and p ∈ Nu. Since

we have c
(k−1)
u = c

(k−1)
v according to the induction hypothesis, we can get

c
(k)
u = c

(k)
v . Therefore, the 1-WL test regards two graphs isomorphic if the

CoS-GNN regards them isomorphic.

Since 1-WL and 2-WL test have equivalent discrimination power [33, 25],

CoS-GNN is also at least as expressive as 2-WL test.
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The theorem states that CoS-GNN is at least as expressive as 1-WL and

2-WL tests. Some graphs that 1-WL and 2-WL tests cannot distinguish can be

identified by our CoS-GNN. For example, 1-WL and 2-WL fail to distinguish

the two graphs in Figure 1, whereas CoS-GNN can easily differentiate them with

the augmented features. Thus, our CoS-GNN can often learn more expressive

representations than popular GNNs since they are mainly based on the 1-WL

test, when handling complex graph datasets. For example, Chen et al. [35] have

shown that MPNNs cannot perform induced-subgraph-count of any connected

pattern consisting of 3 or more nodes. For graphs with subgraphs that MPNNs

cannot learn to count, there would be some pairs of graphs with different num-

ber of such uncounted subgraphs that are regarded as isomorphic by MPNNs.

On the other hand, CoS-GNN can discriminate these graphs through including

structural features that differentiate these subgraphs. As shown in Figure 1, the

two graphs cannot be distinguished by MPNNs, but they can be differentiated

by the triangle counting for both nodes and graphs, and the existence of bridge

in the graphs as well.

When compared with higher-order WL tests, we can also observe that our

CoS-GNN can distinguish graphs that 2-FWL test (which is equivalent to 3-

WL test [33]) fails to identify, meaning that 3-WL test is not more expressive

than our CoS-GNN. For example, Arvind et al. [36] and Bouritsas et al. [22]

have shown that the 2-FWL test fails to distinguish the well-known Rook’s 4×4

and Shrikhande graphs, as illustrated in Figure 4. However, the clique features

incorporated into our CoS-GNN model help effectively discriminate these two

graphs.

4.5. Time Complexity Analysis

In this section, we analyze the time complexity of CoS-GNN. The computa-

tion cost mostly concentrates on the feature extraction stage and the message

passing stage. Let n and m be the number of nodes and edges in the graph

respectively, in the feature learning phase, the degree and triangle counting cost

are O(n) and O(n2) time respectively. The complexity of clique and core finding

16



Figure 4: The strongly regular Rook’s 4×4 graph (left) and Shrikhande graph (right) [22, 36].

The 3-WL/2-FWL test is not able to deem them as non-isomorphic. Rook’s 4×4 graph

possesses 4-cliques while the Shrikhande graph features 5-rings, which are not present in

Rook’s.

are respectively bounded by O(n∗3n) and O(n+m). The computation of trian-

gle and square clustering coefficient is O(n2). The bridge finding needs O(n+m)

time. The average clustering coefficient, average global and local efficiency re-

quire O(n2), O(n3) and O(n4) respectively. Therefore, the feature extraction

stage requires O(n4+n∗3n+m) time. As for the message passing stage, the time

complexity of our CoS-GNN equals to the corresponding vanilla GNN. Thus,

the total time complexity of our CoS-GNN is O(n4 + n ∗ 3n +m) +OGNN .

5. Experiments and Results

5.1. Datasets

We perform experiments on 12 publicly available datasets from the TU-

Dataset graph classification benchmark [45] to justify the effectiveness of our

CoS-GNN. The detailed information of the datasets is displayed in Table 1.

5.2. Competing Methods and Evaluation Metrics

Our method CoS-GNN is compared with 13 state-of-the-art (SOTA) meth-

ods:

• Graph kernels. We use two graph kernels, i.e.Weisfeiler-lehman sub-

tree kernel (WL) [46] and Propagation graph kernels (PK) [47] as

baselines.

17



Table 1: The detailed information of 12 public datasets. The following acronyms,

PROTEINS full (PROTS full), IMDB-BINARY (I-BINARY), IMDB-MULTI (I-MULTI),

REDDIT-BINARY (R-BINARY) and REDDIT-MULTI-5K (R-MULTI), are used. The ‘bi-

nary’ in the ‘Class’ column denotes the dataset is for binary classification while ‘multi’ implies

multi-class classification. The ‘#Graphs’ is the total number of graphs in the dataset and the

‘#Nodes’ means the average number of nodes in the dataset. The ‘✓’ in the ‘Attribute’

column indicates the data contains attributed graphs, and otherwise they contain only plain

graphs.

Dataset Area Class #Graphs #Nodes Attribute

BZR molecule binary 405 35.75 ✓

COX2 molecule binary 467 41.22 ✓

DD bioinformatics binary 1178 284.32 -

I−BINARY social binary 1000 19.77 -

I−MULTI social multi 1500 13.00 -

MUTAG molecule binary 188 17.93 -

NCI1 molecule binary 4110 29.87 -

NCI109 molecule binary 4127 29.68 -

PROTS full bioinformatics binary 1113 39.06 ✓

R−BINARY social binary 2000 429.63 -

R−MULTI social multi 4999 508.52 -

ENZYMES bioinformatics multi 600 32.63 ✓
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• Basic graph neural networks. We consider four popular networks,

i.e., GCN [15], SAGE [16], GAT [17] and GIN [18], as the network

baselines.

• GNN-based augmentation methods. We also compare CoS-GNN

with several augmentation models that are built based on GNNs, includ-

ing G-mixup [30], Dummy [29], DropGNN [32], rGIN [28], Nest-

edGNN [25], LAGNN [24], and GSN [22].

In terms of performance evaluation, we employ accuracy and Area Under

Precision-Recall Curve (AUPRC) as the evaluation metrics for graph classifi-

cation while Area Under Receiver Operating Characteristic Curve (AUC) for

anomaly detection. Higher accuracy/AUPRC/AUC indicates better perfor-

mance. We report the mean results and standard deviation based on 10-fold

cross-validation for all datasets.

5.3. Implementation Details

All experiments are executed on NVIDIA Quadro RTX 6000 GPU with

an Intel Xeon E-2288G 3.7GHz CPU, and all models are implemented with

Python 3.81. The following parameters are set by default for CoS-GCN and

its competing methods, including WL, PK, GAT, SAGE and GCN, on all 12

datasets: the learning rate is 0.001, the batch size is set to 512, the number of

network layers is 3, the hidden layer dimension of network is 256, the classifier

is a 3-layer MLP, pooling operation is max pooling, and the number of epochs

is 1,000. The iteration number of WL is 3. For GIN and CoS-GIN, the learning

rate is chosen from {0.01, 0.001, 0.0005, 0.0001}, the batch size is selected from

{32, 64, 128, 256}, hidden layer dimension is ranged in {16, 64, 128, 256} and the

readout operation is either meanpooling or maxpooling. For other baselines, we

run their public codes with their recommended settings.

1https://www.python.org/
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5.4. Enabling Graph Classification

The graph classification accuracy results of CoS-GNN models (including

CoS-GCN and CoS-GIN) and 12 SOTA competing methods are reported in

Table 2, where the GNN backbone used in G-mixup, Dummy and DropGNN

is all GIN due to its better performance; the results of G-mixup on the IMDB

and REDDIT datasets are taken from [30]; the result of Dummy on DD, NCI1

and NCI109 are from [29]; the results of NestedGCN and NestedGIN on DD,

MUTAG and ENZYMES are from [25]; and ‘-’ means the results are not reported

in the original papers.

It is clear that CoS-GIN and CoS-GCN achieve the best or second-best per-

formance on most of the datasets and the two top-ranked methods among all

methods. Specifically, CoS-GCN improves GCN by 0.8%, 2.2%, 3.0%, 3.1%,

3.2% and 8.3% for PROTEINS full, DD, IMDB-BINARY, NCI1, NCI109 and

ENZYMES respectively, while the improvements brought by CoS-GIN over GIN

are 1.5%, 1.7%, 1.7%, 2.2%, 2.3%, 3.3% and 10.3% for BZR, COX2, IMDB-

BINARY, DD, NCI1, NCI109 and ENZYMES respectively. These large per-

formance advancement reveals that the structural information in these dataset

is specific and the feature augmentation and message passing process in our

CoS-GNN makes full use of these structural information to improve its perfor-

mance. When compared with other augmentation methods, our models can also

perform better than the SOTA models on most datasets (i.e., NCI109 (0.2%),

REDDIT-MULTI (0.2%), MUTAG (0.4%), BZR (0.5%), IMDB-MULTI (0.5%)

and NCI1 (1.4%)) and ranks top among all the competitors on overall perfor-

mance. We also perform a paired Wilcoxon signed rank test to examine the

significance of CoS-GNN against each of the competing methods across the 12

datasets. As shown by the p-values in Table 2, our CoS-GIN significantly out-

performs GSN-v and LAGIN at the 95% confidence level and exceeds other

competitors at the 99% confidence level. These results indicate that our col-

lective node and graph structural knowledge augmented GNNs can learn more

important graph structure information for graph classification. Besides, on indi-

vidual datasets, CoS-GNN can gain 2%-11% accuracy improvement maximally
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on specific datasets when compared to the best-performing competing methods

NestedGNN, GSN-v and LAGNN (for example, 5% enhancement of Nested-

GIN on NCI1, 9% improvement of GSN on REDDIT-BINARY). This means

that the domain-adaptive graph structural knowledge in CoS-GNN can provide

more generalized information to improve the model performance across different

datasets while NestedGNN, GSN-v and LAGNN only consider the local struc-

tural information, which limits their performance. In summary, compared to

each SOTA method, CoS-GNN may only have limited improvements on a few

individual datasets, but the improvement on a set of datasets is substantial, and

its improvement is significant across the 12 datasets used.

We report the AUPRC results of CoS-GNN and the competing methods

on binary classification tasks in Table 3. Considering the limited performance

of WL, PK and LAGCN, we omit their results. As can be seen in Table 3,

although our CoS-GNN is not always the best model on every dataset, our CoS-

GIN and CoS-GCN still achieve the top two performance on overall datasets,

which further demonstrates the excellent ability of our CoS-GNN.

We also compare our CoS-GNN with vanilla GNNs on Open Graph Bench-

mark (OGB) dataset–ogbg-molhiv and ogbg-molpcba in Table 4. Our CoS-GNN

achieves better performance than corresponding vanilla GNN in most situations,

indicating the positive contribution of the augmented features. The performance

of CoS-GIN is a bit worse than that of GIN on ogbg-molpcba, which might be

because that although our augmented features are useful, which is demonstrated

by the improvement of CoS-GCN compared with GCN, GIN has also learned

enough useful structural information and the augmentation operation in our

CoS-GIN does not provide extra discriminative information.

We also calculate the training and inference time of our CoS-GNN and its

competitors to demonstrate the efficiency of the CoS-GNN. We use the same

GIN structure in all models. The results are reported in Table 5. We can see

that our CoS-GIN is a little more costly than simple augmentation operation

with conventional GIN module, which is caused by the feature augmentation

operation, but it is more efficient than complex structural augmentation meth-
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Table 4: Results (mean±std) of CoS-GNN and corresponding vanilla GNN on OGB datasets

– ogbg-molhiv and ogbg-molpcba. The best performance per dataset is boldfaced.

ogbg-molhiv ogbg-molpcba

Model AUROC AP

GCN 0.7626±0.0098 0.1753±0.0023

CoS-GCN0.7662± 0.01650.2045± 0.0034

GIN 0.7825±0.0077 0.2288± 0.0027

CoS-GIN 0.7912± 0.0068 0.2249±0.0034

ods, including DropGNN and NestedGIN. Besides, although our CoS-GIN is a

little time-costly on some large-scale datasets, it can still be successfully imple-

mented on devices with limited computational ability, while G-mixup, dummy,

DropGNN and NestedGIN require more powerful devices on such instances,

which restricts their application.
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5.5. Employ CoS-GNN as GNN Backbone

5.5.1. Combined with GNN-based Methods

In this section, we examine the applicability of our CoS-GNN as GNN

backbone in other GNN-based methods by replacing the GCN of G-mixup

and Dummy with CoS-GCN. We omit the results on REDDIT-BINARY and

REDDIT-MULTI here because we can not run G-mixup and Dummy on them

by our device. The accuracy results of GCN-based and CoS-GCN-based G-

mixup and Dummy are reported in Table 6. The results show that the CoS-

GCN-based G-mixup outperform GCN-based G-mixup on all datasets and the

largest improvement can be up to 32%. The performance of CoS-GCN-based

Dummy method is also better than the GCN-based Dummy on most datasets,

achieving up to 25% improvement. The paired signed-rank test indicates that

the improvement of CoS-GCN-based G-mixup and Dummy across 10 datasets is

significant at 99% and 90% confidence level, respectively. The decrease in accu-

racy of CoS-GCN-based Dummy on DD and PROTEINS full might be because

that the specific structural statistics augmented on the graphs are influenced

and disturbed by the addition of the dummy node. When compared with the

results of single CoS-GCN, there are also some improvement brought by CoS-

GCN-based G-mixup on BZR (3.5%), MUTAG (0.5%) and NCI1 (0.5%) and by

CoS-GCN-based Dummy on ENZYMES (7.4%), which means that the combina-

tion with other GNN-based methods can also enhance the power of CoS-GNN.

Overall, our CoS-GNN and other GNN-based methods are complementary and

can be used as the basic GNN module in GNN-based methods to improve their

performance successfully.

5.5.2. Combined with Other Pooling Methods

There have been a type of pooling methods that hierarchically extract the

graph information [48, 49]. We demonstrate that our CoS-GNN structure can be

combined with these methods in this section. In each pooling layer, we use the

real node features to calculate the pooling criterion and construct the coarsened

graph.
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Table 6: Accuracy (mean±std) results of G-mixup and Dummy using CoS-GCN as the GNN

module, with G-mixup and Dummy with GCN as baselines in graph classification. ‘Different’

denotes accuracy improvement (↑) or decrease (↓) brought by the replacement of CoS-GCN.

Both of two methods suffer out of memory on REDDIT-BINARY and REDDIT-MULTI.

Dataset G−mixup(GCN) G−mixup(CoS-GCN) Difference

BZR 0.8295± 0.0188 0.8666± 0.0471 0.0371 ↑

COX2 0.7730± 0.0482 0.7967± 0.0416 0.0237 ↑

DD − − −

I−BINARY 0.7360± 0.0350 0.7410± 0.0243 0.0050 ↑

I−MULTI 0.5013± 0.0283 0.5073± 0.0264 0.0060 ↑

MUTAG 0.7173± 0.1130 0.8830± 0.0617 0.1657 ↑

NCI1 0.5007± 0.0010 0.8212± 0.0146 0.3205 ↑

NCI109 0.5038± 0.0007 0.7986± 0.0179 0.2948 ↑

PROTS full 0.7152± 0.0350 0.7512± 0.0246 0.0360 ↑

ENZYMES 0.3456± 0.0435 0.4909± 0.0490 0.1453 ↑

p-value 0.0039 - -

Dataset Dummy(GCN) Dummy(CoS-GCN) Difference

BZR 0.8296± 0.0203 0.8321± 0.0482 0.0025 ↑

COX2 0.7899± 0.0509 0.8112± 0.0654 0.0213 ↑

DD 0.7776± 0.0717 0.7699± 0.0433 −0.0077 ↓

I−BINARY − − −

I−MULTI − − −

MUTAG 0.7813± 0.1292 0.8673± 0.0754 0.0860 ↑

NCI1 0.6608± 0.1016 0.8092± 0.0146 0.1484 ↑

NCI109 0.5527± 0.0851 0.8013± 0.0243 0.2486 ↑

PROTS full 0.7557± 0.0375 0.7556± 0.0286 −0.0001 ↓

ENZYMES 0.4450± 0.1038 0.6067± 0.0602 0.1617 ↑

p-value 0.0547 - -
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We run our CoS-GCN with a hierarchical pooling–MVPool as the pooling op-

eration to prove that our CoS-GCN can improve the performance of hierarchical

pooling. The results of CoS-GCN with MVPool and GCN with MVPool as base-

line are reported in Table 7, showing that CoS-GCN still can bring improvement

on all datasets except COX2 and IMDB-MULTI. The average improvement is

2.02% and the maximal improvement can be up to about 12.28%. The paired

signed-rank test indicates that the improvement across 12 datasets is significant

at 99% confidence level. These results demonstrate that the augmented node

and graph structural information also can provide extra useful information while

the pooling operation is learning graph structural information. The accuracy

decline of CoS-GCN with MVPool on COX2 is very marginal, only 0.01%. The

1% drop of CoS-GCN with MVPool on IMDB-MULTI might be because that

the structural information in IMDB-MULTI might be limited and the hierar-

chical learning of MVPool can utilize most structural information in the graph.

The feature augmentation in CoS-GCN provides some redundant information

to the CoS-GCN-MVPool.

5.6. Enabling Other Down-stream Tasks

5.6.1. Graph Anomaly Detection

We next evaluate the performance of CoS-GNN in anomaly detection, in

which the normal graph samples are available for training. It should be noted

that this experiment is focused to demonstrate the ability of CoS-GNN in

enabling better performance of some popular anomaly detection algorithms,

compared to the use of original GNNs, rather than to argue for state-of-the-

art anomaly detection performance of CoS-GNN. Thus, we use one-class GCN

(OCGCN) and GLocalKD [50] as baselines and replace the GCN of GLocalKD

with CoS-GCN to examine the ability of CoS-GCN to enable the anomaly de-

tector GLocalKD. Since GLocalKD employs degree information as the node

features for plain graphs, which is one of the features we augment in CoS-GNN,

we only compare the performance of them on graphs with node attributes. The

datasets we use in this experiment are all from TUDataset graph classification
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Table 7: Accuracy (mean±std) results of GCN and CoS-GCN with MVPool as the readout

operation. ‘Different’ denotes accuracy improvement (↑) or decrease (↓) brought by CoS-GCN

compared to GCN.

Dataset GCN-MVPool CoS-GCN-MVPool Difference

BZR 0.8273± 0.0565 0.8345± 0.0301 0.0072 ↑

COX2 0.7987± 0.0351 0.7986± 0.0430 −0.0001 ↓

DD 0.7750± 0.0363 0.7962± 0.0390 0.0212 ↑

I−BINARY 0.7280± 0.0268 0.7350± 0.0492 0.0070 ↑

I−MULTI 0.5180± 0.0253 0.5080± 0.0332 −0.0100 ↓

MUTAG 0.7178± 0.0858 0.8406± 0.1107 0.1228 ↑

NCI1 0.7791± 0.0155 0.8015± 0.0094 0.0224 ↑

NCI109 0.7754± 0.0233 0.7989± 0.0198 0.0235 ↑

PROTS full 0.7556± 0.0360 0.7664± 0.0298 0.0108 ↑

R−BINARY 0.9050± 0.0219 0.9140± 0.0202 0.0090 ↑

R−MULTI 0.5311± 0.0136 0.5515± 0.0255 0.0204 ↑

ENZYMES 0.5833± 0.0516 0.5917± 0.0455 0.0084 ↑

p-value 0.0093 - -

benchmark [45], with the results reported in Table 8, where FTEIN is short

for FRANKENSTEIN. It can be observed that CoS-GCN improves the perfor-

mance of GLocalKD largely on most datasets and the largest improvement can

be up to 24.6%, which means that the augmented node and graph structural

features can also be effectively leveraged via our proposed message passing for

improving the detection of anomalies, despite it is an semi-supervised task. The

decrease of CoS-GCN on AIDS might be because that AIDS is a rather simple

dataset on which the original GLocalKD has obtained an AUC of almost one;

CoS-GCN is slightly over-parameterized for such a simple dataset.

5.6.2. Out-of-distribution Generalization

We evaluate the generalization ability of CoS-GNN on out-of-distribution

(OOD) data in this section. This experiment is designed to compare the perfor-

mance of CoS-GNN with other two message passing neural networks (i.e.GCN

and GIN) in OOD generalization. These GNNs can be utilized as GNN back-
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Table 8: AUC results (mean±std) of OCGCN, GLocalKD based on GCN, and CoS-GCN-

enbaled GLocalKD (CoS-GCN for short) on 12 public attributed graph datasets. ‘Diff.’ de-

notes AUC improvement (↑) or decrease (↓) resulted by replacing the GCN backbone with

CoS-GCN in GLocalKD.

Dataset OCGCN GLocalKD CoS-GCN Diff.

AIDS 0.664± 0.080 0.992± 0.004 0.948± 0.008 −0.044 ↓

BZR 0.658± 0.071 0.679± 0.065 0.804± 0.068 0.125 ↑

COX2 0.628± 0.072 0.589± 0.045 0.665± 0.050 0.076 ↑

DHFR 0.495± 0.080 0.558± 0.030 0.595± 0.053 0.037 ↑

PROTS full 0.718± 0.036 0.785± 0.034 0.792± 0.024 0.007 ↑

ENZYMES 0.613± 0.087 0.636± 0.061 0.760± 0.070 0.124 ↑

COIL−RAG 0.629± 0.210 0.656± 0.220 0.700± 0.082 0.044 ↑

Letter−high 0.580± 0.042 0.591± 0.023 0.655± 0.071 0.064 ↑

Letter−low 0.616± 0.168 0.738± 0.051 0.984± 0.005 0.246 ↑

Letter−med 0.618± 0.080 0.662± 0.062 0.852± 0.024 0.190 ↑

FTEIN 0.550± 0.031 0.547± 0.019 0.563± 0.018 0.016 ↑

Synthie 0.568± 0.083 0.844± 0.036 0.862± 0.017 0.018 ↑

bone in various generalization methods to obtain better performance further.

The datasets we utilize are from GOOD2 [51]. GOOD-Motif is a synthetic

dataset designed for structure shifts, GOOD-HIV is a molecular dataset, and

GOOD-SST2 is a natural language sentiment analysis dataset. For each dataset,

the GOOD benchmark selects one or two domain features (e.g., base and size for

GOOD-Motif, scaffold and size for GOOD-HIV, and length for GOOD-SST2)

and then applies covariate and concept shift splits per domain to create diverse

distribution shifts. Following [51], the metric we use for GOOD-HIV is AUC

and classification accuracy is used for other datasets. We examine the gener-

alization power of CoS-GNN with the baseline models taken from the GOOD

benchmark [51]. The GNN backbone used in the baselines is GIN.

The results on the OOD and the in-distribution (ID) validation sets are

reported in Table 9. It can be seen from the results that our model CoS-GCN

2https://github.com/divelab/GOOD/
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outperforms the basic GCN on all settings except the one on GOOD-HIV; CoS-

GIN gains better performance than GOOD on all settings except GOOD-HIV.

This is mainly because that the node and graph structures augmented in our

CoS-GNN are more generalizable w.r.t. different shifts of base, size, or length

on the three GOOD datasets, while being less generalizable to the scaffold shift,

a two-dimensional structural base of a molecule. The especially outstanding

performance of CoS-GNN on GOOD-Motif also helps justify this. Each graph

in GOOD-Motif is generated by connecting a base graph and a motif, and thus,

the structure of base graphs and motifs is highly differentiated. Thus, the

augmented structural information of each class enables the structure learning in

CoS-GNN to obtain substantially improved OOD generalization performance,

when compared with vanilla GNN.

5.7. Robustness w.r.t. Structure Contamination

Since the data collected in real applications may be with limited/noisy struc-

tural information, the performance of our CoS-GNN, which harnesses rich struc-

tural information, might be influenced by these contaminated information. In

this section, we discuss the impact of limited/noisy structural knowledge on our

CoS-GNN. Specifically, we randomly remove {1%, 5%, 10%, 15%, 20%} edges of

the data and compare their results with the results on original data. Our ex-

periment is implemented on GCN backbone.

The results on NCI1 is displayed in Figure 5. It is obvious that both CoS-

GCN and GCN suffer from performance decline due to the edge removal and the

decline level of them is similar. Our CoS-GCN always have better performance

than GCN under various structural contamination situation. This means that

limited/noisy structure brings no more serious effects on the CoS-GCN. This

might be because that the structures we augment are in different scales and parts

of the extracted features will be infected while others will still be exact. The

unaffected structure features can correct the influence of the wrong information

brought by the limited/noisy graph structure.
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Figure 5: Accuracy performance of CoS-GCN and GCN w.r.t. different structural contami-

nation rates.

Figure 6: Loss variation tendency of CoS-GCN on the training and validation dataset of

REDDIT-BINARY.

5.8. Convergence Analysis

In this section we run an experiment to illustrate the convergence ability

of our CoS-GNN. In detail, we run the CoS-GCN on the REDDIT-BINARY

dataset and record the loss tendency of training and validation dataset. The

result is shown in Figure 6. It is obvious that both the training and validation

loss will approach stability after a number of epochs. Besides, the early stopping

used during training can ensure the model against overfitting and obtaining an

excellent result.

5.9. Ablation Study

5.9.1. Ablation Study of the Specific Message Passing Scheme

This section examines the importance of the graph augmentation and the

message passing scheme designed in CoS-GNN. All expeirments are based on
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CoS-GCN. We first evaluate the performance of GCN with original/augmented

features as sole input (Vnf for real node feature, Vns for augmented node struc-

ture features, and Vgs for augmented graph structure features), and then com-

bine original and augmented node features by convolution after concatenation

(conv cat(Vnf ,Vns)), concatenation after convolution (cat conv(Vnf ,Vns))), and

convolution with our proposed message passing method (conv(Vnf ,Vns))). In-

corporating the augmented graph features to conv(Vnf ,Vns) leads to the full

CoS-GCN.

The results of our ablation study using the graph classification task are

displayed in Table 10. The paired signed-rank test shows when compared with

other ablation parts except conv(Vnf ,Vns), the improvement of CoS-GCN across

12 datasets is significant at 99% confidence level. The enhancement of CoS-GCN

than conv(Vnf ,Vns) across all datasets is significant at 85% confidence level. In

detail, using node features (Vnf ) or augmented node/graph structural features

(Vns/Vgs) solely can achieve good performance, and using Vnf often outperforms

Vns and Vgs on most datasets. This indicates that both the original and aug-

mented features are useful in graph representation learning but the augmented

features is limitedly informative. The simple concatenation of Vnf and Vns, i.e.,

conv cat(Vnf ,Vns) or cat conv(Vnf ,Vns)), helps improve the performance over

the using of them solely, indicating the complementary information gained from

the graph augmentation relative to the original node features. Our proposed

message passing (convolution) method on top of the real and augmented node

features, i.e., conv(Vnf ,Vns), further enhances the results substantially, which

demonstrates the effectiveness of our proposed message passing in capturing in-

tricate relations that cannot be captured in the vanilla GCN. Lastly, incorporat-

ing the augmented graph-level features would lead to the full model CoS-GNN

that largely improves conv(Vnf ,Vns), demonstrating that the generated global

graph structural features are also important for the overall improvement.
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Table 9: Results of CoS-GNN with two baselines on three OOD datasets. G-X is short for

the dataset name GOOD-X.

G-Motif
Base

Covariate Concept

Accuracy OOD Validation ID Validation OOD Validation ID Validation

GCN 0.321± 0.000 0.343± 0.025 0.395± 0.014 0.382± 0.017

GOOD 0.687± 0.034 0.700± 0.019 0.814± 0.006 0.809± 0.007

CoS-GCN 0.868± 0.004 0.865± 0.003 0.934± 0.000 0.932± 0.001

CoS-GIN 0.888± 0.020 0.896± 0.007 0.931± 0.001 0.923± 0.009

G-Motif
Size

Covariate Concept

Accuracy OOD Validation ID Validation OOD Validation ID Validation

GCN 0.346± 0.008 0.350± 0.003 0.391± 0.0172 0.385± 0.018

GOOD 0.517± 0.023 0.513± 0.019 0.708± 0.006 0.694± 0.009

CoS-GCN 0.863± 0.043 0.816± 0.077 0.935± 0.000 0.933± 0.002

CoS-GIN 0.598± 0.070 0.555± 0.096 0.918± 0.006 0.898± 0.014

G-HIV
Scaffold

Covariate Concept

AUC OOD Validation ID Validation OOD Validation ID Validation

GCN 0.669± 0.026 0.676± 0.016 0.700± 0.014 0.607± 0.016

GOOD 0.696± 0.020 0.689± 0.021 0.723± 0.010 0.653± 0.035

CoS-GCN 0.690± 0.017 0.699± 0.023 0.708± 0.009 0.605± 0.026

CoS-GIN 0.684± 0.021 0.663± 0.036 0.722± 0.011 0.636± 0.016

G-HIV
Size

Covariate Concept

AUC OOD Validation ID Validation OOD Validation ID Validation

GCN 0.591± 0.020 0.580± 0.012 0.638± 0.0110 0.533± 0.009

GOOD 0.600± 0.029 0.584± 0.025 0.633± 0.025 0.448± 0.029

CoS-GCN 0.607± 0.019 0.619± 0.005 0.654± 0.008 0.547± 0.007

CoS-GIN 0.585± 0.029 0.599± 0.028 0.731± 0.006 0.622± 0.016

G-SST2
Length

Covariate Concept

Accuracy OOD Validation ID Validation OOD Validation ID Validation

GCN 0.825± 0.008 0.805± 0.010 0.724± 0.012 0.677± 0.010

GOOD 0.813± 0.004 0.778± 0.011 0.724± 0.005 0.673± 0.001

CoS-GCN 0.828± 0.010 0.814± 0.014 0.730± 0.007 0.685± 0.023

CoS-GIN 0.822± 0.012 0.796± 0.021 0.737± 0.012 0.685± 0.013
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5.9.2. Ablation Study of the Augmented Features

In this section, we evaluate the effect of each augmented features on the final

performance of CoS-GNN. We divided the augmented features into two cate-

gories, i.e., one is the characteristics of some specific substructures, and another

is some quantized values to measure structural properties of the node/graph.

Then we remove each feature and their combinations in each category separately

and compare the classification results with our CoS-GNN. The removal of node

and graph features are implemented separately. The GNN backbone we use

here is CoS-GCN.

Firstly, we delete degree, triangle, clique and k-core (denoted by w/o Dg,

w/o Tri, w/o CK respectively) and then remove their combinations, i.e., de-

gree and triangle; degree, clique and k-core; triangle, clique and k-core; all the

characteristics (shortened to w/o DT, w/o DCK, w/o TCK, w/o n sub). We

also remove quantized values – triangle clustering coefficient, square cluster-

ing coefficient and their combination (written as w/o TCo, w/o SCo and w/o

n quant respectively). The results are reported in Table 11. It is obvious that

the removal of augmented features might cause better performance on some

specific datasets but will results in decline on many other datasets, leading to

a clear decline in the overall performance. Although our CoS-GCN still ranks

first on the overall performance, yhe paired signed-rank test indicates that the

performance drop of models with part of augmented features across 12 datasets

is significant at 85% to 99% confidence level. Deletion of degree and clique and

k-core characteristics respectively and their combinations often lead to worse

performance, indicating their effect in the full CoS-GCN. Omitting all the node

structural characteristics performs better than removing part of them on some

datasets and this might be because that the remaining structural characteristics

increase the similarity among data.

Later, we delete augmented graph features sequentially (i.e., w/o Tri, w/o

Cli, w/o Bri, w/o ClCo and w/o Effi stand for removing triangle, clique, bridge

numbers, average clustering coefficient and average local and global efficiency,
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respectively; w/o TBri, w/o ClBri and w/o TrCl denote deleting triangle and

bridge numbers, clique and bridge numbers and triangle and clique numbers;

w/o g quant and w/o g sub means removing the quantized values and graph

substructural statistics, respectively). The results are shown in Table 12. The

improvement of our CoS-GCN over the competing methods across the datasets

is significant at 80% to 99% confidence level. The removal of triangle, clique,

bridge and their combination knowledge results in similar overall performance,

which might be because that each feature contributes to the performance of

CoS-GNN differently in different dataset. The deletion of average clustering

coefficient or all quantized values has larger effect on the final performance,

which indicates that the average clustering coefficient information is more dis-

criminative. In summary, the graph-level substructural characteristics are also

beneficial in our CoS-GNN since the removal of them leads to a clear decline of

the overall performance of CoS-GNN.

6. Conclusion

In this work, we propose a collective structure knowledge-augmented graph

neural network (CoS-GNN) to enhance the expressive power of conventional

message passing neural networks. The augmented node and graph features

carry important and generalizable structural knowledge, which is tapped by

our proposed message passing mechanism to integrate the original and aug-

mented graph knowledge, resulting in graph representations with significantly

improved expressiveness. This is justified by extensive experiments in various

down-stream tasks, including graph classification, anomaly detection, and OOD

generalization.
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