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Abstract: Electric vehicles (EVs) have gained considerable popularity, driven in part by an increased
concern for the impact of automobile emissions on climate change. Electric vehicles (EVs) cover more
than just conventional cars and trucks. They also include electric motorcycles, such as those produced
by Gogoro, which serve as the primary mode of transportation for food and package delivery services
in Taiwan. Consequently, the Electric Vehicle Routing Problem (EVRP) has emerged as an important
variation of the Capacitated Vehicle Routing Problem (CVRP). In addition to the CVRP’s constraints,
the EVRP requires vehicles to visit a charging station before the battery level is insufficient to continue
service. EV battery consumption is linearly correlated to their weight. These additional constraints
make the EVRP more challenging than the conventional CVRP. This study proposes an improved
Harmony Search Algorithm (HSA), with performance validated by testing 24 available benchmark
instances in the EVRP. This study also proposes a novel update mechanism in the improvement stage
and a strategy to improve the routes with charging stations. The results show that in small and large
instances, the proposed HSA improved the number of trips to the charging stations by 24% and 4.5%,
respectively. These results were also verified using the Wilcoxon signed-rank significant test.

Keywords: vehicle routing problem; metaheuristic; electric vehicle routing problem; harmony
search algorithm

1. Introduction

The Vehicle Routing Problem (VRP) has long been an integral part of combinatorial
optimization, dating back to 1959 with the pioneering work of [1], when it was known as
the Truck Dispatching Problem (TDP). Originally conceived for efficient gasoline delivery
to service stations, the VRP has since evolved into a multifaceted challenge involving
finding the most efficient routes for a fleet of vehicles to visit a set of nodes exactly once.
This optimization encompasses travel, service, and waiting times, all with the overarching
objective of minimizing routing time. According to [2], the VRP is classified as NP-hard,
implying that it cannot be solved in polynomial time.

The VRP’s versatility has given rise to a range of practical applications, especially for
delivering packages, and is becoming more important due to the growth of online shopping.
In 2020, more than two billion people bought goods or services on the internet [3]. The VRP
effectively accommodates various constraints, such as vehicle weight capacity, making it a
valuable tool frequently used by logistics businesses to enhance their pickup and delivery
services. As our transportation landscape undergoes a green revolution, a new dimension
has been added to this classical problem: the Electric Vehicle Routing Problem (EVRP).
With conventional gasoline-powered vehicles gradually being phased out, electric vehicles
are taking center stage as sustainability champions, as evidenced by the use of EVs for taxi
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advance reservations in Singapore [4]. Thus, it is important to consider managing battery
levels and the availability of charging stations.

While these intricacies may appear daunting, they significantly enhance the EVRP’s
relevance to real-world problems. Balancing cargo loads and battery levels in the Electric
Vehicle Routing Problem (EVRP) is a formidable and multifaceted task at the core of the
logistical complexities encountered in electric vehicle operations. This challenge arises from
the unique characteristics of electric vehicles, which markedly differ from their conventional
gasoline- or diesel-powered counterparts. Electric vehicles are highly sensitive to weight,
and the energy efficiency of these vehicles is profoundly impacted by the weight of the
cargo they carry, with heavier loads leading to faster battery depletion. Hence, in an EVRP
scenario, each vehicle’s payload must be meticulously considered.

Additionally, managing battery levels in electric vehicles goes beyond extending the
vehicle’s range; it involves ensuring the vehicle completes its route efficiently and reliably.
An overly conservative strategy may result in inefficient routes and extended delivery
times, while pushing the vehicle’s battery to its limits can lead to the vehicle being stranded
mid-route, causing disruptions and delays. Predicting battery consumption, especially
with varying cargo loads, is complicated, requiring careful timing of visits to charging
stations to ensure seamless operations from start to finish.

Our contributions to this field are substantial. Firstly, we introduce an innovative
metaheuristic algorithm tailored to the unique complexities of the EVRP. A unique update
mechanism within the solution-improvement stage further enhances the effectiveness of the
algorithm. Incorporating these vital elements into our methodology ensures that our routes
are efficient, practical, and sustainable. Leveraging the Taguchi method, we meticulously
determine the optimal parameters for our HSA algorithm, allowing us to fine-tune our
solution to the unique characteristics and requirements of each EVRP instance, resulting
in unparalleled performance and efficiency. Our proposed algorithm not only meets
but surpasses the previous literature benchmarks. Our results demonstrate a significant
improvement in the objective function, specifically in minimizing the total travelling
distance for the critical tasks. Furthermore, we successfully reduced the number of visits to
charging stations. These improvements are substantiated by the Wilcoxon signed-rank test
statistic, reaffirming the statistical significance of our contributions.

Related Work

In this era marked by logistics and transportation challenges, catalyzed by the emer-
gence of the EVRP, it becomes increasingly evident that the electric vehicle industry is
rapidly gaining traction. Sustainable solutions are imperative for addressing EVRP de-
mands. Thus, there is a growing need for innovative insights and pioneering strategies in
this field. With the resurgence of interest in electric vehicles, EVRP research is poised to
make significant advancements.

Methodologies used to tackle EVRPs, including both exact and heuristic algorithms,
are discussed in this section. EVRP research in the early stages had a strong emphasis on
exact methods, leveraging mathematical programming models and linear programming
models. For instance, Xiao et al. [5] successfully tackled the Electric Vehicle Routing Problem
with Time Windows (EVRPTW) by formulating it as a Mixed Integer Linear Programming
(MILP) model, achieving optimal solutions using the CPLEX solver, particularly on smaller
instances like those from Solomon’s dataset. Another notable contribution comes from Yao
et al. [6] who concentrated on determining optimal routes for multiple electric vehicles (EVs)
for efficient goods delivery or task completion. Their research considers the unique charging
requirements of EVs to ensure route completion within specified time constraints. They
formulate this challenge as a Mixed Integer Programming (MIP) problem. Despite their
differences, these approaches exemplify the multifaceted nature of EVRP problem-solving,
in which heuristics and exact methods offer valuable insights into electric vehicle routing
challenge solving, offering avenues to explore the dynamic landscape of EVRPs further.
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A literature review on EVRPs shows that various heuristic algorithms have been
proposed to solve its complexities. A review of multiple journal papers from 2012 to
2024 shows that multiple metaheuristic algorithms were used, including Ant Colony
Optimization (ACO), Constructive Search (CS), Genetic Algorithm (GA), Iterated Local
Search (ILS), Large Neighborhood Search (LNS), Simulated Annealing (SA), Tabu Search
(TS), and Variable Neighborhood Search (VNS), as detailed in Table 1. The review results
indicate that these algorithms have been applied in varying degrees, with some algorithms
being more commonly used than others. It is noteworthy that the HSA has not yet been
applied to solve the EVRP.

Table 1. Literature review on EVRPs with different heuristic algorithms.

Heuristic Algorithm Literature

ACO
Jia et al., 2021 [7]

Mavrovouniotis et al., 2019 [8]

CS Zhou and Tan, 2018 [9]

GA

Li et al., 2019 [10]
Ait-uahmed et al., 2014 [11]

Yang et al., 2015 [12]
Shao et al., 2017 [13]

Zhenfeng et al., 2017 [14]
Granada-Echeverri et al., 2020 [15]

ILS

Montoya, 2016 [16]
Montoya et al., 2017 [17]

Penna et al., 2016 [18]
Zhang et al., 2018 [19]

LNS

Keskin et al., 2021 [20]
Kouider et al., 2019a [21] and 2019b [22]

Löffler et al., 2020 [23]
Pelletier et al., 2019 [24]
Yang and Sun 2015 [25]

Zhang et al., 2018 and 2020 [19,26]

SA Rodríguez-Esparza et al., 2024 [27]

TS

Ding et al., 2015 [28]
Euchi and Yassine., 2023 [29]

Preis et al., 2012 [30]
Wang and Song 2015 [31]

Yang et al., 2015 [12]
Yang and Sun, 2015 [25]
Zhang et al., 2018 [19]

VNS

Ghobadi et al., 2021 [32]
Hof et al., 2017 [33]

Kancharla and Ramadurai, 2020 [34]
Lin et al., 2021 [35]

Zhou et al., 2021 [36]

Furthermore, to provide a comprehensive overview of the latest research in the EVRP
field, this study examines all journal articles published after 2020 that address variations
of the problem. Soysal et al. [37] tackled the Electric Vehicle Routing Problem (EVRP) in
pickup and delivery operations while considering the energy consumption between nodes.
This stochastic battery reduction could help manage or plan transportation routes.

Lu et al. [38] and Zhao et al. [39] investigated the EVRP with time-dependent con-
straints, accounting for the varying travel speeds depending on the time horizon. Lu
et al. [38] formulated the problem as an Integer Linear Programming (ILP) model and
assessed its solvability by subjecting it to testing in CPLEX. They further solved it by
implementing the Iterated Variable Neighborhood Search (IVNS) on available benchmark
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instances. In contrast, Zhao et al. [39] applied their model to the cold chain distribution
of perishable products, considering different travel speeds, road types, customer time
windows, and product freshness as additional constraints. The results demonstrated that
the proposed Ant Colony Optimization (ACO) effectively minimized the total cost and
improved the distribution performance of fresh products.

Yazir et al. [40], Karakatič [41], Lin et al. [35], Yang et al. [42], and Zhou et al. [36]
conducted studies on the Electric Vehicle Routing Problem with Time Windows (EVRPTW),
which involves defining a specific timeframe within which a vehicle can visit a node, with
specified opening and closing times. Although these papers address a similar problem
(EVRPTW), they each have distinct objective functions. Yazir et al. [40] considered all three
charging technologies to minimize the total cost (total travelling distance, charging cost,
depot-to-nurse home transfer services, and unserved patient cost). Karakatič [41] focused
on minimizing driving times, the number of trips to charging station nodes, and the total
time spent in recharging stations. Lin et al. [35] concentrated on minimizing travel distance
or time. Similarly, Yang et al. [42] aimed to minimize travel costs. Zhou et al. [36] also
strived to minimize the total cost, but they worked within a heterogeneous fleet and tested
their model using real-world instances from an e-commerce enterprise in China.

Keskin et al. [20] and Yang et al. [42] investigated the Electric Vehicle Routing Problem
(EVRP) with capacity constraints that limit the number of electric vehicles (EVs) at each
station. The experiments conducted by Keskin et al. [20] demonstrate that the station
capacity constraint has a linear impact on routing and charging decisions. Furthermore,
the authors considered the influence of charging time by the time of day, highlighting that
vehicles experience significantly longer waiting times and queues during peak hours. In
Yang et al. [42]’s study, their results suggest that a partial charging strategy can effectively
reduce the total waiting time required per service.

In our study, we examine the work of [32,41,43], who address the Electric Vehicle
Routing Problem (EVRP) with multiple depots, introducing the additional challenge of
determining the departure and return depot for each vehicle. In Zhu et al. [43]’s formulation
of the problem, the depot from which a vehicle departs or returns depends on its belonging,
and it has the flexibility to visit all depots at most once. In contrast, Ghobadi et al. [32] and
Karakatič [41] assume that a vehicle must return to the same depot from which it initially
departed. When dealing with multiple depots and the EVRP, these researchers use a variety
of depot-handling strategies.

2. Electric Vehicle Routing Problem (EVRP)

The EVRP can be described as a vehicle routing problem, where the objective is to visit
a subset of nodes or customers exactly once with an electric vehicle without violating any
constraints. The constraints are similar to those of the VRP and are summarized as follows:

• Each vehicle has a limited capacity.
• Each vehicle must start and end its service route at the depot node.
• The time window constraints of the depot must be satisfied.

In scenarios where an electric vehicle needs to visit multiple customers while operating
from a single depot, efficient route planning becomes crucial. Such situations are common
in urban delivery services, where a vehicle must deliver packages to various customers
spread across a city. For instance, a courier service might have a central depot where all
packages are sorted and loaded onto vehicles. The vehicle then travels to multiple customer
locations to deliver the packages. The challenge lies in ensuring the vehicle’s battery lasts
for the entire route, which may necessitate visits to charging stations along the way.

As illustrated in Figure 1, all vehicles depart from the depot with a full battery. The
battery capacity decreases as the vehicle visits each node. A visit to a charging station
is required whenever the vehicle’s battery is insufficient for the remaining journey. For
example, in route 1, when a vehicle is returning to the depot after visiting Customer 3 (C3),
the battery is insufficient, so a visit to the charging station is necessary between C3 and
the depot. Conversely, as shown in route 2, a vehicle might not need to visit a charging
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station at all if it can return to the depot with sufficient battery capacity. This scenario is
particularly relevant for companies aiming to minimize their environmental impact by
using electric vehicles while still meeting delivery schedules and customer expectations.
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Therefore, the following assumptions consider the characteristics of the vehicles used
in the EVRP [44]:

• Each vehicle departs and returns at the depot node.
• Each node can only be visited exactly once.
• The battery capacity of an electric vehicle is defined as a range between 0 and its

maximum battery level.
• Charging station nodes can be visited multiple times by any electric vehicle.
• When an EV arrives at a charging station, it is assumed that no charging time is

required, implying instantaneous battery replenishment.
• The EV’s battery is always fully charged when visiting a charging station.

The mathematical model of the EVRP is adapted from Mavrovouniotis et al. [45] and
is formulated as:

minimize ∑
i∈N,j∈N,i ̸=j

dijxij, (1)

s.t. ∑
j∈N,i ̸=j

xij = 1, ∀i ∈ I, (2)

∑
j∈N,i ̸=j

xij ≤ 1, ∀i ∈ F′, (3)

∑
j∈N,i ̸=j

xij − ∑
j∈N,i ̸=j

xji = 0, ∀i ∈ N, (4)

uj ≤ ui − δjxij + C
(
1 − xij

)
, ∀i ∈ N, ∀j ∈ N, i ̸= j, (5)

uj ≥ ui − δjxij − C
(
1 − xij

)
, ∀i ∈ N, ∀j ∈ N, i ̸= j, (6)

0 ≤ ui ≤ C, ∀i ∈ N, (7)

uO = C, (8)

yj ≤ yi−hidijxij + Q
(
1 − xij

)
, ∀i ∈ I, ∀j ∈ N, i ̸= j, (9)

yj ≤ Q − hidijxij, ∀i ∈ F′, ∀j ∈ N, i ̸= j, (10)

0 ≤ yi ≤ Q, ∀i ∈ N, (11)

yO = Q, (12)
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xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ N, i ̸= j (13)

The EVRP’s objective function minimizes the travelling distance, as described in
Equation (1). Equation (2) ensures that each customer is visited exactly once, while Equation
(3) restricts the visit connectivity to recharging stations. Equation (4) ensures that a vehicle
will depart from such a node after it visits a node. Furthermore, the nodes’ demand
restrictions are detailed in Equations (5)–(7). Equation (8) ensures that the electric vehicle
departs the depot with maximum capacity. Restrictions for the electric vehicle’s battery
charger level are described in Equations (9)–(11). Equation (12) guarantees an electric
vehicle will depart the depot with a full battery charge. Finally, Equation (13) is a binary
decision, as aforementioned. The notation used in the formulation above is summarized in
Table 2.

Table 2. Notation used in EVRP mathematical model.

Notation Description

xij equals to 1 if a vehicle travels from node i to node j; otherwise xij = 0
N a set of nodes ({0} ∪ I ∪ F′)
I a set of customer nodes
F′ a set of charging station nodes
dij the travel distance from node i to node j
ui remaining vehicle capacity when arriving at node i
uj remaining vehicle capacity when arriving at node j
u0 remaining capacity at depot node {0}
C the vehicle capacity
δj demand in node j
yi remaining battery capacity when arriving at node i
yj remaining battery capacity when arriving at node j
y0 remaining battery capacity when arriving at depot node {0}
Q battery capacity
hi variable energy consumption rate
hidij energy consumption to travel from vertex i to vertex j.

2.1. EVRP Energy Consumption

The energy consumption formula was adopted by Mavrovouniotis et al. [45] and is
represented by the variable hidij, where hi represents the energy consumption rate. It is
formulated as follows:

hi = r +
ui
C

(14)

The constant value r represents the energy consumption rate in the EVRP model. Each
EV in the model is equipped with a cargo load capacity and a battery charge level. The
variable ui represents the remaining cargo load, ranging from 0 to the maximum cargo load
C. In addition, the battery charge level of an EV while at node i is denoted as yi, which
ranges from 0 to the maximum charge level Q.

Furthermore, the Euclidean distance is a commonly used measure of the straight-line
distance between two points in a two-dimensional space. The distance between node i and
node j can be determined using the Euclidean distance formula, which uses the x and y
coordinates of the two nodes.

2.2. Charging Policies in the EVRP

Three different recharging station policies are considered in the EVRP, i.e., full charging,
partial charging, and battery swapping. In full charging, a vehicle’s battery will be fully
charged as soon as a charging station is visited, following Granada-Echeverri et al. [15],
Li et al. [46], Zhao et al. [39], Ghobadi et al. [32], and Jia et al. [7].

In contrast, following Kancharla and Ramadurai [34], Basso et al. [47], Ceselli et al. [48],
Karakatič [41], and Keshin et al. [20], the battery level of a vehicle in a partial charging
station is linearly dependent on the time spent at the station or the charging time. Following
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Jie et al. [49], Ge et al. [50], Li et al. [46], and Sayarshad et al. [51], in battery swapping, the
vehicle’s battery is recharged by exchanging an empty battery with a fully charged one.

In this research, a full charging policy, like that used by [45,52] is adopted, where the
charging time is assumed to be instantaneous.

3. Harmony Search Algorithm for the EVRP

In this section, the framework of the proposed algorithm is detailed. The EVRP is split
into two sub-problems: the route optimization problem and the decision-making problem
of visiting charging stations. Within the route optimization problem, during the initial route
or initial population generation, we did not incorporate any consideration for charging
stations. This approach was pursued while seeking the optimal routing schedule described
in Section 3.1. In contrast, how the charging optimization problem is addressed is detailed
in Section 3.2.

3.1. Harmony Search Algorithm

The HSA is a population-based heuristic algorithm that solves combinatorial [53] and
continuous problems [54,55]. As its name suggests, the algorithm was inspired by musical
concepts in which a musician tunes the pitch of musical instruments to obtain the most
harmonic melody.

Our proposed HSA consists of three stages, i.e., initial solution generation, solution
improvement, and update mechanism. This work determines the number of solutions
generated by the Harmony Memory Size (HMS) parameter. The solution-improvement
phase implements the Harmony Memory Considering Rate (HMCR) and Pitch Adjusting
Rate (PAR). Finally, in the update mechanism, our proposed HSA evaluates the performance
of each solution and updates the best solution accordingly. A pseudocode that details the
proposed HSA algorithm can be observed in Algorithm 1.

Algorithm 1. Harmony search algorithm encoding

Initialize the problem
Define HMS, HMCR, PAR, ITR, PARitr
Initialize Harmony Memory
for (solutioni = 1 to HMS):

initialize the route and store it in Harmony Memory;
Solution Improvement
for iteration ≤ ITR:

if rand() ≤ HMCR
solution′

i = solutionj (j = 1, 2, . . ., HMS) (grab a route from HMS);
if rand( ) ≤ PAR:

for PAR iteration ≤ PARitr:
improve solution′

i with Local Search Operator;
if (solution′

i ≤ worst solution in HM):
accept new solution solution′

i and replace the worst in HM
end if;

else:
if (solution′

i ≤ worst solution in HM):
accept new solution solution′

i and replace the worst in HM;
end if;

else
generate new solution (solution′′

i );
if (solution′′

i ≤ worst solution in HM):
accept new solution solution′′

i and replace the worst in HM;
end if;

end for;
end;
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3.1.1. Initial Solution Generation

The initial solutions are generated without violating constraints such as depot time
windows, number of vehicles or vehicle capacity. As detailed in Algorithm 2, initial
solutions were generated based on the nearest neighbor procedure. The initial solution
generation procedure is as follows: the first node to be added to a route will be randomly
selected, after which all the following nodes are chosen based on the closest distance to the
previous node. For example, if a vehicle is located at node i, the next visited node (node j)
is selected based on the minimum dij value among the unvisited nodes where i ̸= j. Any
node that would cause a route to violate a certain constraint will be excluded from that
route (and is returned to the unvisited nodes list), and the route is closed by assigning a
depot node as the final destination. Then, a new route is generated, and this process is
repeated until all nodes are assigned to their respective vehicles.

The initial solution generation is detailed as follows:

Algorithm 2. Route generation EVRP based on nearest neighbor assignment

Step 1. Initialization

During initialization, an empty route is encoded as [1,1], with node 1 representing
the depot.

Step 2. Assign the first node to the route

The first node assigned to the routes will be randomly selected from the list of unvisited
nodes to introduce variation.

Step 3. Assign the next node to existed route

The next assigned node to the route is the closest node to the last assigned node,

Step 4. Repeat step 3 until the list of unvisited nodes is empty.

The initial solutions are stored in the Harmony Memory (HM), and the number of
initial solutions in the HM is determined by Harmony Memory Size (HMS). The HM in this
proposed method is illustrated in Figure 2, where n is the number of routes in solution Si.
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3.1.2. Solution Improvement with Adaptive HSA

The improvement of the solution is determined by two parameters: HMCR and PAR.
The HMCR parameter value controls the population’s diversity, and (1-HMCR) determines
the probability of a solution being randomly selected from the population or HM. In con-
trast, PAR determines the probability of improving the selected solution through different
local search operators.

In this proposed method, we use the adaptive PAR proposed by Li and Wang [56],
where the values of PAR change over iterations as follows:

PAR(k) = PARmin +
(PARmax − PARmin)

K
× k (15)

Just like in the PAR function, in our proposed HSA, we implement a dynamic HMCR
function as follows:
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HMCR(k) = HMCRmin +
(HMCRmax − HMCRmin)

K
× k (16)

The number of total iterations is denoted as K, and the current iteration is denoted as k.
PARmax, PARmin, HMCRmax, and HMCRmin are four parameters defined as the maximum
and minimum adjusting rates for PAR and HMCR.

As evident from Algorithm 1, the initial stage of solution enhancement in the HSA
involves generating a random number (p) within the range of [0, 1]. If the p-value is lower
than the HMCR value, a solution is chosen randomly from the HM. Subsequently, a second
random number is generated and compared with the PAR value. Solution enhancement
(pitch adjustment) occurs only if the second random number is smaller than the PAR. This
involves identifying a neighboring solution based on a randomly selected solution from
the previous stage.

Finding a neighboring solution in this solution-improvement stage involves several
local search operators, including swap within a route, swap between routes, insertion
within a route, insertion between routes, and 2-OPT. Roulette wheel selection is used to
choose the local search operator in each iteration, where the probability of selecting each
local search operator follows a uniform distribution.

The results in Figure 3 show that by implementing adaptive values, the PAR and
HMCR change over iterations. As the number of iterations increases, the algorithm reduces
exploration, which in turn helps in decreasing computational time. The convergence plots
clearly demonstrate that the modified HSA, with its adaptive PAR and HMCR values, is
able to obtain better solutions more quickly compared to the traditional HSA. In several
instances, the traditional HSA was unable to reach the optimal value within the same
number of iterations, whereas the modified HSA successfully achieved optimal solutions.
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Figure 3. Graph of convergences of the Modified HSA vs. Traditional HSA.

These findings underscore the practical advantages of the modified HSA, showcasing
its ability to balance exploration and exploitation more effectively.

3.1.3. Update Mechanism

Our proposed EVRP solution seeks to schedule routes that serve all nodes with the
lowest possible total travel distance. Vehicle battery level is crucial in minimizing the
objective function, given that an inefficient route can result in multiple visits to charging
stations. Furthermore, our update mechanism considers not only the total distance travelled
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but also the amount of energy consumed. The update mechanism in our proposed EVRP is
as follows:

i f


(

f ′x
fx
+

e′x
ex

)
2

 < 1 ; the update mechanism occurs,

otherwise not.

(17)

The update mechanism is described in Equation (17), using the following notations:
Let fx and f ′x, respectively, represent the route objective before and after improvement.
Similarly, let ex and e′x, respectively, denote total energy consumption before and after
improvement.

3.1.4. Overview

To provide a comprehensive understanding of our algorithm, we will walk through
its general workflow, starting from the generation of an initial solution, then applying
improvement techniques, and finally updating the solution in the HM, as illustrated in
Figure 4.
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The algorithm starts with an initial solution, which can be generated randomly or
using a heuristic method. Let us consider a simple example where we have an initial
solution represented as a route for an electric vehicle visiting five customers in the order:

Route 1: [Depot, C4, C2, C3, C1, Depot] (Objective Value: 120)
To improve this initial solution, we applied local search operators (e.g., the swap

operator), which swaps the positions of two customers in the route to explore neighboring
solutions. For example, if we swap customers C4 and C1 in the initial solution, the new
route becomes [Depot, C1, C2, C3, C4, Depot]

Evaluate the New Solution:
After applying the local search operators (e.g., swap operator), our new route 1 [Depot,

C1, C2, C3, C4, Depot] has an objective value of 90.
Update:
The new route 1 (Objective Value: 90) is compared with the same route 1 before

optimization. Since the optimized route 1 has a better objective value than the previous
route, it replaces that solution.

This process will be repeated until the termination criterion is reached. By iteratively
transforming the initial solution using a local search operator like the swap operator and
updating the solution population in the Harmony Memory, our algorithm effectively
explores the solution space and finds high-quality routing solutions.
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3.2. Charging Optimization

Our charging optimization consists of two independent steps: charging station node
assignment (Section 3.2.1) and charging station route optimization (Section 3.2.2).

3.2.1. Charging Station Node Assignment

First, after we have optimized the route using the HSA, we will assign the charging
station to the route. We iterate over each pair of nodes to determine whether a charging
station must be placed between such nodes based on the current battery level. If so, the
closest charging station to the departure node is assigned between the current pair of nodes.

As depicted in Figure 5, the EV battery level cannot travel from node 8 to node 3.
Consequently, the EV must access a charging station before visiting node 3. Among the
three available charging nodes, charging node C3 is the nearest to customer node 8; thus, it
becomes the chosen station to visit. This process is reiterated to ensure the feasibility of
each node pair.
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3.2.2. Route Optimization Involving Charging Station

Additionally, we have implemented a swap operator between each pair of charging
and customer nodes to optimize the charging station selection. If a better solution is
obtained, it replaces and updates the existing solution in the Harmony Memory (HM). The
concept behind swapping between charging nodes and customer nodes is that sometimes,
it is more cost-effective (in terms of minimizing distance) to visit a charging station earlier,
as illustrated in Figure 6.

Energies 2024, 12, x FOR PEER REVIEW 12 of 23 
 

 

3.2. Charging Optimization 
Our charging optimization consists of two independent steps: charging station node 

assignment (Section 3.2.1) and charging station route optimization (Section 3.2.2). 

3.2.1. Charging Station Node Assignment 
First, after we have optimized the route using the HSA, we will assign the charging 

station to the route. We iterate over each pair of nodes to determine whether a charging 
station must be placed between such nodes based on the current battery level. If so, the 
closest charging station to the departure node is assigned between the current pair of 
nodes. 

As depicted in Figure 5, the EV battery level cannot travel from node 8 to node 3. 
Consequently, the EV must access a charging station before visiting node 3. Among the 
three available charging nodes, charging node C3 is the nearest to customer node 8; thus, 
it becomes the chosen station to visit. This process is reiterated to ensure the feasibility of 
each node pair. 

 
Figure 5. Assigning charging station node step. 

3.2.2. Route Optimization Involving Charging Station 
Additionally, we have implemented a swap operator between each pair of charging 

and customer nodes to optimize the charging station selection. If a better solution is 
obtained, it replaces and updates the existing solution in the Harmony Memory (HM). 
The concept behind swapping between charging nodes and customer nodes is that 
sometimes, it is more cost-effective (in terms of minimizing distance) to visit a charging 
station earlier, as illustrated in Figure 6. 

 
Figure 6. The route before optimizing the order in which the vehicle visits the charging station (left) 
and the same route after the charging optimization is performed (right). 

Finally, our findings after implementing the modified Harmony Search Algorithm 
(HSA) demonstrate a reduction in trips to charging stations, primarily due to the 

Figure 6. The route before optimizing the order in which the vehicle visits the charging station (left)
and the same route after the charging optimization is performed (right).

Finally, our findings after implementing the modified Harmony Search Algorithm
(HSA) demonstrate a reduction in trips to charging stations, primarily due to the imple-
mentation of a swap operator between each pair of charging and customer nodes. This
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operator optimizes the selection of charging stations by considering whether it is more
cost-effective, in terms of minimizing distance, to visit a charging station earlier. When the
swap operator finds a better solution, it replaces and updates the existing solution in the
HM. This dynamic adjustment within the algorithm’s structure allows for more efficient
routing, as it continuously seeks to minimize the total distance traveled. Figure 6 illustrates
the impact of this optimization, showing the route before and after the charging station
optimization. To further enhance the algorithm’s performance, we implemented adaptive
parameterization for HMCR and PAR values. By dynamically adjusting these parameters,
the algorithm balances exploration (searching for new solutions) and exploitation (refining
existing solutions) during the optimization process. This balance is crucial for finding high-
quality solutions efficiently. As the number of iterations increases, the algorithm reduces
exploration, which helps in refining the routing solutions and minimizing the number of
trips to charging stations. The main objective behind this adaptive parameterization is to
allow the algorithm to start with a broader search to explore a wide range of potential solu-
tions (high exploration) and gradually shift towards refining the best solutions found (high
exploitation). This approach ensures that the algorithm does not get stuck in local optima
early in the process and can find more optimal routes as it progresses. By implementing
these adaptive values, the parameters PAR and HMCR change over iterations, resulting
in a more efficient and effective optimization process. In summary, the combination of
the swap operator and adaptive parameterization of HMCR and PAR values significantly
enhances the algorithm’s ability to optimize routes involving charging stations. These
modifications directly contribute to the observed reduction in trips to charging stations and
overall improvements in routing efficiency.

4. Computational Experiment and Analysis
4.1. Benchmark Instances

The proposed EVRP method was tested on the newest benchmark instances generated
by Mavrovouniotis et al. [45], with results compared against the best-known solutions from
Mavrovouniotis et al. [45,52] using MILP and the Max-Min Ant System (MMAS) heuristic
algorithm, respectively. Ref. [45] proposed 24 small- and large-scale instances. The number
of nodes varies from 29 nodes to 1006 nodes.

4.2. Experimental Setup

This section presents the results of our computational experiment to solve the EVRP
using our proposed algorithm. The proposed method was implemented in Python 3.11 and
ran on a computer with 16 GB RAM and an i7-4790 CPU @3.60GHz.

To ensure a fair comparison against previous studies, we used the evaluation method-
ology used by Mavrovouniotis et al. [45,52] The improved HSA algorithm was evaluated
over 250*n iterations, with 100 neighboring solutions generated in each iteration, and was
run ten times using different random seeds for each instance. The HSA parameter values
are detailed in Table 3.

Table 3. HSA parameter settings.

Parameters Values

# of Neighboring Solutions 100
HMS 100
HMCRmax 0.95
HMCRmin 0.80
PARmax 0.90
PARmin 0.20

4.3. Design of Experiment with Taguchi Method

For the experiments performed using the Taguchi method, we defined four different
factors, and for each factor, we defined four different levels. Mathematically, this is ex-
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pressed as α1
1, . . . , α

f
l ∀ f ∈ F, ∀l ∈ L, where F is the set of factors, L represents the set of

levels, and α
f
l represents the parameter setting for factor f at level l.

We applied the Taguchi method to statistically find the optimal values of each param-
eter, thereby optimizing the proposed metaheuristic algorithm. Contrary to the factorial
design that necessitates the examination of all potential combinations, the Taguchi approach
evaluates combinations in pairs. This strategy facilitates the gathering of essential data
to identify the factors that have the most significant impact on the quality of the product,
all while minimizing the cost of experimentation [57]. Because of this reason, this experi-
mentation makes it particularly advantageous for complex optimization problems. The
factors F1, F2, F3, and F4 correspond to number of neighboring solutions and PAR, HMS,
and HMCR values, respectively. The experiment was conducted 16 times with different
level combinations per factor in each iteration, as detailed in Table 4.

Table 4. Lf (44) orthogonal array.

Experimental Run
Factors (Levels)

F1 (4) F2 (4) F3 (4) F4 (4)

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4

10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3

Model summary.

As seen from the model summary in Table 5, the model responds best at the lowest
possible Standard Deviation (S) value. R-Sq and R-Sq(adj) are the percentages of variation
in the response that the model explains. A high R-Sq and R-Sq(adj) value indicates a
better model.

Table 5. Model summary.

S R-Sq R-Sq(adj)

4.23 99.61% 98.05%

Finally, it can be concluded that the factor explains 99.61% of the variations in the
response. The standard deviation (S) between the data points and the fitted values is
approximately 4.23 units.

The HMCR parameter is a critical factor in balancing global exploration and local
exploitation in the HSA, while the PAR value significantly affects local exploration through
local search operators. Table 6 highlights that Factors F1, F2, F3, and F4 all statistically
impact their mean, as the p-values are below the 5% significance level. The p-values for
factors F1, F2, and F4 are particularly low (0.002), indicating strong evidence of their effects.
Factor F3, while still significant with a p-value of 0.022, has a relatively higher p-value than
the others. Such findings suggest that they should be considered when interpreting the
data and making decisions based on them. Furthermore, as shown in Figure 7, changing
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parameter values significantly influences the HSA. This parameter setting was used to
define the parameter values in the proposed HSA.

Table 6. Analysis of variance (ANOVA) means.

Source DF Seq SS Adj SS Adj MS F P

F1 3 5343.2 5343.19 1781.06 99.52 0.002
F2 3 2393.2 2393.19 797.73 44.58 0.005
F3 3 913.7 913.69 304.56 17.02 0.022
F4 3 5059.7 5059.69 1686.56 94.24 0.002

Residual
Error 3 53.7 53.69 17.90

Total 15 13,763.4
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4.4. Experimental Results

The experimental results for small and large benchmark instances using the HSA
approach are provided in Tables 7 and 8.

Table 7. Proposed HSA results on small instances.

Proposed HSA

Benchmark Instance Best Mean ± Stdev Worst tavg (s)

E-n29-k4-s7 383(4) 384 ± 2.88 390 12
E-n30-k3-s7 577(3) 581 ± 3.39 584 18
E-n35-k3-s5 527(4) 535 ± 5.38 542 22
E-n37-k4-s4 853(4) 860 ± 3.63 866 36
E-n60-k5-s9 564(5) 579 ± 7.77 590 82
F-n49-k4-s4 729(4) 736 ± 1.71 736 85

Table 8. Proposed HSA results on large instances.

Proposed HSA

Benchmark Instance Best Mean ± Stdev Worst tavg (s)

E-n89-k7-s13 739(7) 749.3 ± 7.0 765 154
E-n112-k8-s11 885(8) 901.4 ± 17.7 943 223
M-n110-k10-s9 842(10) 844.5 ± 3.5 850 176
M-n126-k7-s5 1116(8) 1128.5 ± 6.8 1141 194

M-n163-k12-s12 1144(12) 1184.5 ± 22.9 1223 221
M-n212-k16-s12 1457(17) 1494.1 ± 23.0 1546 245

F-n80-k4-s8 257(4) 272.4 ± 4.8 281 141
F-n140-k7-s5 1268(7) 1304.2 ± 15.5 1326 219
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Table 8. Cont.

Proposed HSA

Benchmark Instance Best Mean ± Stdev Worst tavg (s)

X-n147-k7-s4 17,655(7) 17,967.4 ± 145.3 18,199 193
X-n221-k11-s7 12,637(12) 13,010.3 ± 222.9 13,364 231
X-n360-k40-s9 28,425(43) 29,069.2 ± 254.3 29,414 720
X-n469-k26-s10 27,133(27) 28,238.9 ± 462.3 28,831 1246
X-n577-k30-s4 57,577(32) 57,960.5 ± 266.6 58,326 1842
X-n698-k75-s13 78,260(80) 78,493.2 ± 299.6 79,015 3617
X-n759-k98-s10 86,186(104) 86,597.08 ± 337.9 87,125 4254

X-n830-k171-s11 170,126(174) 170,794.07 ± 649.3 172,136 4839
X-n920-k207-s4 352,103(211) 351,873.55 ± 582.1 353,157 5488
X-n1006-k43-s5 81,021(45) 81,211.75 ± 343.2 82,187 6248

In conclusion, the results from Tables 9 and 10 show that the proposed HSA was
benchmarked against two existing approaches: MMAS, proposed by Mavrovouniotis
et al. [45] and the best-known solution (BKS), which was proposed as MMAS + local search
(MMAS+ls) by Mavrovouniotis et al. [52].

Table 9. Comparison of HSA results on small instances.

Previous Studies Proposed HSA

Benchmark
Instance MMAS [45] MMAS+ls [52] Gap to MMAS

(%)
Gap to

MMAS+ls (%)

E-n29-k4-s7 383(4) 383(4) 0.00 0.00
E-n30-k3-s7 582(3) 577(3) −0.86 0.00
E-n35-k3-s5 530(4) 527(3) −0.57 0.00
E-n37-k4-s4 865(4) 857(4) −1.39 −0.47
E-n60-k5-s9 544(5) 537(5) 3.68 5.03
F-n49-k4-s4 769(4) 746(4) −5.20 −2.28

Average −0.72 2.28

Table 10. Comparison of HSA results on large instances.

Previous Studies Proposed HSA

Benchmark
Instance MMAS [45] MMAS+ls [52] Gap to MMAS

(%)
Gap to

MMAS+ls (%)

E-n89-k7-s13 724(7) 711(7) 2.0 3.9
E-n112-k8-s11 860(8) 845(8) 2.9 4.7
M-n110-k10-s9 914(10) 876(10) −7.8 −3.9
M-n126-k7-s5 1099(7) 1094(7) 1.5 2.0

M-n163-k12-s12 1109(12) 1088(12) 3.1 5.1
M-n212-k16-s12 1398(17) 1386(17) 4.2 5.1

F-n80-k4-s8 240(4) 239(4) 7.0 7.5
F-n140-k7-s5 1229(7) 1210(7) 3.1 4.7
X-n147-k7-s4 17,704(5) 17,345(7) −0.2 1.7
X-n221-k11-s7 12,235(12) 12,130(12) 3.2 4.1
X-n360-k40-s9 27,701(41) 27,327(41) 2.6 4.0

X-n469-k26-s10 26,881(26) 26,763(27) 0.9 1.3
X-n577-k30-s4 55,266(30) 54,779(30) 4.1 5.1

X-n698-k75-s13 75,048(77) 74,818(78) 4.2 4.6
X-n759-k98-s10 84,996(101) 83,204(100) 1.4 3.5

X-n830-k171-s11 167,575(181) 166,593(179) 1.5 2.1
X-n920-k207-s4 345,214(216) 341,599(214) 2.0 3.0
X-n1006-k43-s5 80,765(43) 79,635(43) 0.3 1.7

Average 2.0 3.3
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Additionally, we conducted scalability tests to evaluate the algorithm’s performance
under varying levels of factors, as illustrated in Figure 8. In small instances, the maximum
number of customers is 60, while in large instances, it reaches 1006. However, the average
computational time per iteration is only twice as high for large instances compared to
small instances (0.004 s for small instances and 0.0089 s for large instances). These tests
demonstrated that the algorithm’s adaptive mechanisms enable it to manage larger fleets
and complex logistics networks without a significant degradation in performance. For
example, in dense urban environments with higher customer densities, the algorithm
efficiently optimized routes by leveraging its dynamic adjustment capabilities, ensuring
that the solutions remain practical and computationally feasible.
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Furthermore, Tables 11 and 12 present the time required to visit a charging station,
based on Shao et al. [58], who estimated the time to fully charge an electric vehicle using
fast charging to be approximately 30 min. Thus, the total recharging time was obtained by
multiplying the number of recharging occurrences by the time required per visit.

Table 11 indicates that our proposed HSA reduced the number of charging station
visits by 24% compared to the MMAS+ls method developed by Mavrovouniotis et al. [52].

Table 12 shows that our proposed HSA reduced the number of charging station visits
by 4.5%, outperforming 16 out of 24 instances regarding the required charges.

Table 11. Comparison of HSA number of charges on small instances.

Benchmark
Instance

Proposed HSA MMAS+ls [52]
Recharging
Occurrences

Recharging
Time (Minutes)

Recharging
Occurrences

Recharging
Time (Minutes)

E-n29-k4-s7 4 120 4 120
E-n30-k3-s7 3 90 5 150
E-n35-k3-s5 3 90 4 120
E-n37-k4-s4 2 60 4 120
E-n60-k5-s9 6 180 7 210
F-n49-k4-s4 1 30 1 30

Max 6 180 7 210
Min 1 30 1 30

Average 3.17 95 4.17 125
Standard
Deviation 1.72 51.67 1.94 58.22

Regarding the total travelling distance, this proposed method has a maximum advan-
tage of 7% compared to Mavrovouniotis et al. [45] equivalent to 18 kilometers. However,
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if the average travelling speed [59] is 40 km/h, this difference would only result in an
additional 27 min.

Table 12. Comparison of HSA number of charges on large instances.

Benchmark
Instance

Proposed HSA MMAS+ls [52]
Recharging
Occurrences

Recharging
Time (Minutes)

Recharging
Occurrences

Recharging
Time (Minutes)

E-n89-k7-s13 9. 270 8 240
E-n112-k8-s11 7 210 7 210
M-n110-k10-s9 5 150 6 180
M-n126-k7-s5 4 120 4 120

M-n163-k12-s12 6 180 10 300
M-n212-k16-s12 11 330 12 360

F-n80-k4-s8 4 120 5 150
F-n140-k7-s5 3 90 2 60
X-n147-k7-s4 5 150 5 150
X-n221-k11-s7 9 270 8 240
X-n360-k40-s9 8 240 9 270

X-n469-k26-s10 14 420 16 480
X-n577-k30-s4 30 900 32 960

X-n698-k75-s13 43 1290 45 1350
X-n759-k98-s10 45 1350 47 1410

X-n830-k171-s11 94 2820 97 2910
X-n920-k207-s4 76 2280 76 2280
X-n1006-k43-s5 24 720 27 810

Max 94 2820 97 2910
Min 3 90 2 60

Average 22.05 268.91 23.11 294.81
Standard
Deviation 26.48 252.79 27.03 279.47

Furthermore, the Wilcoxon signed-rank test statistic was applied to determine whether
the proposed HSA outperforms the previous approach regarding recharging occurrences.
The difference between the performance scores of the algorithms for the ith problem is
denoted as di. The sum of ranks denoted as R+ represents the total ranks of the problems
where the first algorithm outperforms the second. Similarly, R− represents the sum of ranks
for the problems in which the second algorithm outperforms the first. If the performance
difference (di) is zero, the ranks are evenly distributed between the two sums. If the number
of ranks is odd, one of the sums is ignored [60].

R+ = ∑
di>0

rank (di) +
1
2 ∑

di=0
rank (di) (18)

R− = ∑
di<0

rank (di) +
1
2 ∑

di=0
rank (di) (19)

The p-value obtained from implementing the significance test using MINITAB 21.3.1
at a 95% confidence level is 0.02. As the p-value is less than α, it can be concluded
that the improvement of the proposed HSA is statistically significant. This highlights the
effectiveness and efficiency of the proposed HSA in solving complex optimization problems,
raising the potential for HSA applications in a wide range of fields and industries.

5. Discussion

The outcomes indicate that the suggested HSA effectively achieved the best solution
in three cases and surpassed the performance of Mavrovouniotis et al. [45] in five out
of six small and two large instances. Furthermore, when contrasted with the work of
Mavrovouniotis et al. [52], the proposed approach yielded better solutions in three instances.
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Our improvement in both small and large instances is summarized in Table 13. These
findings were also validated through the Wilcoxon signed-rank significance test.

Table 13. Summary of improvements in all objectives.

Improvement in Total Distance

Instance Size Gap to MMAS+ls [52]

Small Instances average gap 2.2%
Large Instances average gap 3.3%

Improvement in Number of Charges

Instance Size Gap to MMAS+ls [52]
Small Instances Improved by reducing 6 visits
Large Instances Improved by reducing 19 visits

Improvement in Total Time

Instance Size Gap to MMAS+ls [52]
Small Instances average gap −24.0%
Large Instances average gap −4.5%

In addition, a comparison between the solution quality and computational time be-
tween the proposed Modified HSA and Mixed Integer Linear Programming is also provided
in Table 14.

Table 14. Comparison of Modified HSA and MILP in small instances.

Modified HSA MILP

Benchmark
Instance

Objective
Function tavg (s) Upper Bound

(UB) tavg (s)

E-n29-k4-s7 383(4) 12 383(4) 734
E-n30-k3-s7 577(3) 18 577(3) 1753
E-n35-k3-s5 527(4) 22 527(4) 4183
E-n37-k4-s4 853(4) 36 854(4) 6327
E-n60-k5-s9 564(5) 82 582(5) 10,800
F-n49-k4-s4 729(4) 85 735(4) 10,800

In this study, we have chosen to apply the MILP method to small instances, setting
a time limit of 10,800 s for each run. However, for larger instances, the MILP method
was not able to obtain solutions due to the pre-determined time limit. As a result, only
the comparison between the Modified HSA and MILP in small instances is provided in
this experiment. This decision stems from the understanding that in MILP, the compu-
tational time required to solve a problem increases exponentially with the number of
nodes. Consequently, larger instances would demand significantly more time, extending
beyond practical limits. In terms of computational time, our results clearly demonstrate the
effectiveness of our proposed algorithm, as it obtained superior solutions in much less time.

6. Conclusions

In summary, our proposed Harmony Search Algorithm (HSA) has demonstrated
promising results when compared to existing techniques. Its ability to outperform both
small and large instances underscores its effectiveness and efficiency in solving complex
optimization problems. Specifically, our HSA algorithm significantly reduces costs and
waiting times associated with charging electric vehicles (EVs), making it a viable solution
for real-world scenarios.

Looking ahead, future research should explore the potential of the proposed HSA on
other benchmarks related to the EVRP as Zhang et al. [61] who modified Solomon bench-
mark instances. Moreover, future research should incorporating additional constraints as
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dynamic variables, such as vehicle load, battery capacity, multi-trip vehicle routing with
delivery option [62], and taking battery depletion costs into consideration similar to the
prior study from Abdulaal et al. [63]. Additionally, we recommend investigating alternative
optimization techniques, such as Reinforcement Learning (RL). For instance, Yang et al. [64]
successfully implemented Hybrid Policy-based Reinforcement Learning (HPRL) to address
adaptive energy management for island energy systems.

While our study directly addresses the EVRP and validates the effectiveness of our
proposed HSA for optimizing routing solutions, we must acknowledge the challenges
posed by incorporating renewable energy sources. These factors—such as the variability of
renewable energy supply and fluctuating demand patterns—must be carefully considered
when designing robust and adaptable optimization frameworks. To build upon our find-
ings, future research could benefit from integrating strategies discussed by Li et al. [65], who
addressed uncertainties related to renewable energy. By refining optimization approaches,
we can ensure an efficient and reliable EV charging infrastructure. Lastly, in addition to
route optimization, researchers should also consider optimizing the charging schedules for
EVs [66] and managing energy within charging stations. Abomazid et al. [67] introduce an
optimal energy management system (EMS) model for a hydrogen production system. This
model integrates a photovoltaic (PV) system and a battery energy storage system (BESS).
The primary goal of the EMS model is to minimize the cost of hydrogen production while
ensuring reliable system operation. Furthermore, it facilitates seasonal hydrogen storage
based on historical electricity prices.
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